WO2024009702A1 - 電子制御サスペンションの制御装置および制御方法 - Google Patents

電子制御サスペンションの制御装置および制御方法 Download PDF

Info

Publication number
WO2024009702A1
WO2024009702A1 PCT/JP2023/021860 JP2023021860W WO2024009702A1 WO 2024009702 A1 WO2024009702 A1 WO 2024009702A1 JP 2023021860 W JP2023021860 W JP 2023021860W WO 2024009702 A1 WO2024009702 A1 WO 2024009702A1
Authority
WO
WIPO (PCT)
Prior art keywords
rear wheel
state quantity
vehicle
command value
unsprung
Prior art date
Application number
PCT/JP2023/021860
Other languages
English (en)
French (fr)
Inventor
隆介 平尾
修之 一丸
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Publication of WO2024009702A1 publication Critical patent/WO2024009702A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method

Definitions

  • the present disclosure relates to a control device and a control method for an electronically controlled suspension that is suitably used in a vehicle such as a four-wheeled vehicle.
  • Patent Document 1 discloses that front wheel unsprung vibration information such as front wheel displacement, speed, acceleration, etc. is detected, and rear wheel unsprung vibration information is estimated based on this front wheel unsprung vibration information and the vehicle wheel base. An estimating device is disclosed.
  • rear wheel unsprung vibration information is estimated from information obtained by delaying front wheel unsprung vibration information by the wheel base.
  • this estimation method is based on the premise that the front wheels and rear wheels pass through the same trajectory. For this reason, the estimation accuracy deteriorates under conditions where the running trajectories of the front wheels and the rear wheels are different.
  • the conditions under which the trajectories of the front and rear wheels deviate are: (1) at very low speeds where the difference in the trajectories of the front and rear wheels is large, (2) at large steering angles or skidding where the difference in the trajectories of the front and rear wheels is large, and (3) when it is impossible to calculate the delay. (4) When the rear wheels receive input from the road surface before the front wheels, etc.
  • An object of an embodiment of the present invention is to provide a control device and a control method for an electronically controlled suspension that can suppress deterioration of damping performance even when the estimation accuracy of the unsprung state of the rear wheel decreases. .
  • One embodiment of the present invention is a control device for an electronically controlled suspension provided in a vehicle having front wheels and rear wheels, which detects a correspondence relationship between trajectories of the front wheels and the rear wheels when the vehicle is running.
  • the vehicle includes a correspondence relationship detection unit, and a command value calculation unit that calculates a control amount command value, which is a control amount of the electronically controlled suspension of the rear wheel, according to the correspondence relationship of the trajectories.
  • one embodiment of the present invention is a control method for an electronically controlled suspension that is installed in a vehicle having front wheels and rear wheels and is capable of adjusting damping force, the method comprising calculating a front wheel state quantity that is a state quantity of the front wheel. a front wheel state quantity calculation step, a rear wheel state quantity calculation step of calculating a rear wheel state quantity which is a state quantity of the rear wheel using the front wheel state quantity, and a control which is a control quantity of the electronically controlled suspension of the rear wheel.
  • FIG. 1 is a front view showing a vehicle to which controllers according to first and second embodiments are applied.
  • FIG. 2 is a diagram schematically showing a controller according to the first and second embodiments.
  • FIG. 2 is a control block diagram showing a controller according to the first embodiment.
  • FIG. 2 is an explanatory diagram showing a condition in which the trajectories of the front wheels and the rear wheels deviate from each other due to the relationship between the speed of the vehicle and the lateral acceleration.
  • FIG. 3 is a characteristic diagram showing temporal changes in relative speed between sprung mass and unsprung mass, command current value, and sprung mass acceleration.
  • FIG. 3 is a characteristic line diagram showing frequency characteristics of acceleration PSD.
  • FIG. 3 is a control block diagram showing a controller according to a second embodiment.
  • the vehicle behavior control device 1 includes a suspension device 5 that constitutes a damping force generator, and a controller 11 that constitutes a control device.
  • a suspension device 5 that constitutes a damping force generator
  • a controller 11 that constitutes a control device.
  • left and right front wheels and left and right rear wheels (hereinafter collectively referred to as wheels 3) are provided on the lower side of a vehicle body 2 that constitutes the body of a vehicle.
  • the wheel 3 includes a tire 4, and the tire 4 acts as a spring that absorbs fine irregularities on the road surface.
  • the suspension device 5 is an electronically controlled suspension, and is provided in a vehicle having front wheels and rear wheels.
  • the suspension device 5 is interposed between the vehicle body 2 and the vehicle wheels 3. Therefore, the suspension device 5 is provided between the vehicle body 2 and the front wheels, and also between the vehicle body 2 and the rear wheels.
  • the suspension device 5 includes a suspension spring 6 (hereinafter referred to as spring 6) and a damping force adjustable shock absorber (hereinafter referred to as variable damper 7) provided between the vehicle body 2 and the wheels 3 in parallel with the spring 6. ).
  • FIG. 2 shows a case where one set of suspension devices 5 is provided between the vehicle body 2 and the wheels 3.
  • a total of four sets of suspension devices 5 are provided individually and independently between, for example, the four wheels 3 and the vehicle body 2, and only one of these sets is schematically shown in FIG.
  • the variable damper 7 of the suspension device 5 is constructed using a damping force adjustable hydraulic shock absorber interposed between the vehicle body 2 and the wheels 3.
  • the variable damper 7 includes a damping force adjustment valve, etc., in order to continuously adjust the characteristics of the generated damping force (that is, the damping force characteristics) from hard characteristics (hard characteristics) to soft characteristics (soft characteristics).
  • a variable force actuator 8 is attached.
  • the variable damper 7 constitutes a force generation mechanism that generates an adjustable force between the vehicle body 2 and the wheels 3.
  • the variable damping force actuator 8 does not necessarily need to be configured to adjust the damping force characteristics continuously, and may be capable of adjusting the damping force in multiple stages, for example, two or more stages.
  • the variable damper 7 may be of a pressure control type or a flow rate control type.
  • the variable damper 7 may be of a type that controls viscosity, such as magnetorheological fluid or electrorheological fluid.
  • the sprung mass acceleration sensor 9 is a sprung mass vertical acceleration detection section attached to the vehicle.
  • the sprung acceleration sensor 9 is provided on the vehicle body 2 side of the vehicle as a sprung mass.
  • the sprung acceleration sensor 9 detects vibration acceleration in the vertical direction on the sprung side of the vehicle body 2, and outputs detection signals of the sprung acceleration of the front wheels and rear wheels to the controller 11.
  • the unsprung acceleration sensor 10 is an unsprung vertical acceleration detection unit attached to the vehicle.
  • the unsprung acceleration sensor 10 is provided on the wheel 3 side of the vehicle.
  • the unsprung acceleration sensor 10 detects vertical vibration acceleration on the unsprung side of the front wheel 3, and outputs a detection signal of the front wheel unsprung acceleration to the controller 11.
  • the controller 11 constitutes a control device for the variable damper 7 (suspension device 5).
  • the controller 11 controls the damping characteristics of the variable damper 7.
  • the controller 11 is configured by, for example, a microcomputer.
  • the controller 11 is connected to, for example, a CAN 12 (Controller Area Network), which is a line network necessary for data communication.
  • the controller 11 acquires specifications related to vehicle running through the CAN 12. At this time, the specifications regarding the running of the vehicle include, for example, vehicle speed, steering angle, etc.
  • the controller 11 is connected to the sprung acceleration sensor 9 and the sprung acceleration sensor 10. Therefore, the sprung acceleration, front wheel unsprung acceleration, vehicle speed, and steering angle are input to the controller 11.
  • the controller 11 executes a front wheel state quantity calculation step of calculating a front wheel state quantity (front wheel unsprung acceleration), which is a state quantity of the front wheel, based on the detection signal input from the unsprung acceleration sensor 10.
  • the output side of the controller 11 is connected to the variable damping force actuator 8 of the variable damper 7.
  • the controller 11 has a storage section 11A consisting of ROM, RAM, nonvolatile memory, etc.
  • the storage unit 11A of the controller 11 stores various programs, information (vehicle information), data, etc. for controlling the variable damper 7.
  • the controller 11 includes a rear wheel unsprung acceleration estimation section 20, a subtracter 21, integrators 22, 23, a trajectory correspondence detection section 24, and a command value calculation section 25.
  • the rear wheel unsprung acceleration estimating unit 20 is a rear wheel unsprung state quantity calculation unit that calculates a rear wheel unsprung acceleration, which is the unsprung acceleration of the rear wheel, as a rear wheel state quantity.
  • the rear wheel unsprung acceleration estimating unit 20 executes a rear wheel state quantity calculation step and estimates the rear wheel unsprung acceleration based on the front wheel unsprung acceleration and the vehicle speed.
  • the rear wheel unsprung acceleration estimation unit 20 estimates the rear wheel unsprung acceleration from the front wheel unsprung acceleration based on the wheel base and vehicle speed of the vehicle.
  • the rear wheel unsprung acceleration as a rear wheel state quantity is determined by using the vehicle speed and vehicle wheelbase to match the front wheel unsprung acceleration, which is a front wheel acceleration related state quantity, with the rear wheel phase. It is a state quantity.
  • the subtractor 21 subtracts the unsprung acceleration from the sprung acceleration and calculates the difference between the sprung acceleration and the unsprung acceleration. This difference value corresponds to the relative acceleration between the vehicle body 2 and the wheels 3. At this time, the subtractor 21 calculates the relative acceleration of the front wheels by subtracting the detected value of the unsprung acceleration of the front wheels from the detected value of the unsprung acceleration of the front wheels. The subtractor 21 calculates the relative acceleration of the rear wheel by subtracting the estimated value of the unsprung acceleration of the rear wheel from the detected value of the sprung acceleration of the rear wheel.
  • the integrator 22 integrates the relative acceleration output from the subtracter 21 and calculates the vertical relative velocity between the vehicle body 2 and the wheels 3. At this time, the integrator 22 calculates the relative speed of the front wheels and the relative speed of the rear wheels. The integrator 22 outputs the relative speed between the front wheels and the rear wheels.
  • the integrator 23 calculates the sprung mass speed, which is the velocity of the vehicle body 2 in the vertical direction, by integrating the sprung mass acceleration. At this time, the sprung accelerations of the front wheels and the rear wheels are input to the integrator 23. Therefore, the integrator 23 calculates the sprung speed of the front wheels and the sprung speed of the rear wheels. The integrator 23 outputs the sprung speeds of the front wheels and the rear wheels.
  • the trajectory correspondence detection unit 24 detects the correspondence between the trajectories of the front wheels and the rear wheels when the vehicle is running.
  • the trajectory correspondence detection section 24 includes a front and rear wheel trajectory difference calculation section 24A and a backward/abnormality determination section 24B.
  • the vehicle speed and steering angle are input to the front and rear wheel trajectory difference calculation unit 24A.
  • an increase in the steering angle causes an inner wheel difference in the vehicle. Therefore, when the vehicle speed is low and the steering angle is large, the difference in trajectory between the front and rear wheels becomes large. Further, when the vehicle is traveling at high speed, even when the steering angle is small, sideways slipping occurs in the rear wheels of the vehicle, and the difference in trajectory between the front and rear wheels increases.
  • FIG. 4 shows the conditions under which the trajectories of the front and rear wheels deviate from the relationship between vehicle speed and lateral acceleration when the steering angle, which is the turning angle of the steering wheel, is 30°, 60°, 90°, and 120°.
  • the lateral acceleration becomes large when the steering angle is large such as 90° or 120°.
  • the vehicle speed is below a low speed threshold of, for example, about 50 km/h
  • the steering angle is above a large steering angle threshold of, for example, about 120°
  • the front and rear wheel trajectory difference falls outside the allowable range (for example, 0.1 m).
  • the vehicle speed is higher than about 60 km/h
  • the lateral acceleration becomes large even when the steering angle is small such as 30° or 60°, and Side skidding occurs in the wheels, and the difference in trajectory between the front and rear wheels increases.
  • the front and rear wheel trajectory difference calculation unit 24A calculates and outputs the front and rear wheel trajectory difference based on the vehicle speed and the steering angle, taking into account the lateral acceleration acting on the vehicle.
  • the vehicle speed is input to the backward/abnormality determination section 24B.
  • the backward/abnormality determining section 24B determines whether the vehicle is moving backward and whether an abnormality has occurred in the vehicle speed signal based on the vehicle speed. Specifically, the backward/abnormality determining section 24B determines whether the vehicle is moving forward or backward based on the vehicle speed signal. Further, the reverse/abnormality determination unit 24B determines that an abnormality has occurred in the vehicle speed signal, for example, when the vehicle speed signal does not vary at a constant value or when the vehicle speed signal has a value outside the allowable range. The backward/abnormality determining section 24B outputs these determination results.
  • the command value calculation unit 25 calculates a control amount command value that is a control amount of the variable damper 7 of the front wheel suspension device 5. In addition, the command value calculation unit 25 executes a command value calculation step, and calculates a control amount command value, which is a control amount of the variable damper 7 of the rear wheel suspension device 5, according to the correspondence of the trajectories. do.
  • the command value calculation section 25 includes a relative speed correction section 25A, a bilinear optimal control section 25B (hereinafter referred to as BLQ25B), and a control command calculation section 25C.
  • the relative speed correction unit 25A corrects the relative speed of the rear wheels based on the correspondence between the trajectories of the front wheels and the rear wheels when the vehicle is running, which is detected by the trajectory correspondence detection unit 24.
  • the relative speed of the front wheels and the rear wheels, the sprung speed of the rear wheels, the front and rear wheel trajectory difference, and the determination results of backward movement and abnormality are input to the relative speed correction unit 25A.
  • the relative speed correction unit 25A directly outputs the relative speed of the front wheels output from the integrator 22 as the corrected relative speed of the front wheels.
  • the relative speed correction section 25A determines whether the rear wheels are corrected based on the front and rear wheel trajectory difference output from the front and rear wheel trajectory difference calculation section 24A and the backward and abnormal determination results output from the backward and abnormality determination section 24B. Correct relative speed.
  • the relative speed correction unit 25A determines whether the following three conditions (A) to (C) are satisfied.
  • (A) The absolute value of the front and rear wheel trajectory difference is below a predetermined threshold
  • (B) The vehicle is moving forward
  • (C) The vehicle speed signal is normal
  • the threshold value of the difference in front and rear wheel trajectories is set in consideration of the case where the tire trajectories are clearly different from each other, for example, considering the tire widths of the front and rear wheels (the width dimension of the tires 4). That is, the threshold value of the front and rear wheel trajectory difference is set, for example, based on the tire width of the wheels 3, as a value that causes an unacceptable difference in unsprung acceleration between the front wheels and the rear wheels. As an example, the threshold value for the front and rear wheel trajectory difference is set to a value that is half the tire width. The threshold value for the front and rear wheel trajectory difference is appropriately set with reference to the actual unsprung acceleration of the front and rear wheels.
  • the relative speed correction unit 25A adjusts the speed to a predetermined value (for example, 0.1 m/s) as shown in equation 1.
  • a predetermined value for example, 0.1 m/s
  • the value obtained by multiplying by the sign of the sprung mass speed corresponding to the rise or fall of the rear wheel is output as the corrected relative speed of the rear wheel. That is, if at least one of the conditions (A) to (C) is not satisfied, the relative speed correction unit 25A uses the value calculated based on the formula of Equation 1 as the corrected relative speed of the rear wheels. Output.
  • the predetermined value is a value determined according to the relative speed on a undulating road where control frequency is high, and is appropriately set, for example, in the range of 0.08 to 0.3 m/s. Note that the predetermined value may be changed as appropriate depending on the damping force characteristics of the variable damper 7.
  • the relative speed correction unit 25A calculates the Calculate and output the corrected relative speed.
  • the relative speed correction section 25A corrects the rear wheels based on the formula of Equation 1. Calculate and output the rear relative velocity.
  • the relative speed correction section 25A adjusts the rear wheel Calculate and output the corrected relative velocity.
  • the relative speed correction unit 25A outputs the rear wheel relative speed output from the integrator 22 as it is as the corrected relative speed. That is, when all conditions (A) to (C) are satisfied, the relative speed correction unit 25A outputs the relative speed of the rear wheels output from the integrator 22 as is as the corrected relative speed.
  • the sprung speed and the corrected relative speed are input to BLQ25B.
  • the BLQ 25B calculates the damping force and damping coefficient of the variable damper 7 for reducing vertical vibration on the spring from the sprung mass speed and the corrected relative velocity based on bilinear optimal control theory.
  • BLQ25B outputs the calculated damping force etc. as a target command.
  • the control command calculation unit 25C calculates a command value (control amount command value) of the current to be supplied to the variable damping force actuator 8, which is the control amount of the variable damper 7, based on the target command output from the BLQ 25B.
  • the control amount command value corresponds to a damping force command value that is a command value of the damping force of the front wheels and the rear wheels.
  • the controller 11 outputs a command signal (command current) to the variable damping force actuator 8 according to this control amount command value (command current value). Thereby, the controller 11 controls the damping force generated by the variable damper 7 according to the control amount command value.
  • the vehicle behavior control device 1 has the configuration described above. Next, a process for variably controlling the damping force characteristics of the variable damper 7 using the controller 11 will be described.
  • variable damper 7 interposed between the vehicle body 2 and the wheels 3, a command value (control command) from the controller 11 is input to the variable damping force actuator 8 as a command current. Thereby, the variable damping force actuator 8 is driven so as to variably control the flow path area of the oil flowing within the variable damper 7. As a result, the damping force characteristics of the variable damper 7 are variably controlled between hard characteristics (hard characteristics) and soft characteristics (soft characteristics) according to the command value.
  • the controller 11 estimates the unsprung acceleration of the rear wheel based on the detection signal from the unsprung acceleration sensor 10 provided in the front wheel. At this time, the accuracy of estimating the unsprung acceleration of the rear wheels may decrease depending on the driving state of the vehicle.
  • the trajectory correspondence detection unit 24 of the controller 11 detects the correspondence between the trajectories of the front wheels and the rear wheels when the vehicle is running.
  • the command value calculation unit 25 calculates a control amount command value that is a control amount of the front wheel suspension device 5.
  • the command value calculation unit 25 calculates a control amount command value, which is a control amount of the rear wheel suspension device 5, according to the correspondence of the trajectories.
  • the controller 11 controls the front wheel and rear wheel variable dampers 7 based on these control amount command values. As a result, even in a situation where the accuracy of estimating the unsprung acceleration of the rear wheel decreases, deterioration of damping performance can be suppressed.
  • the acceleration PSD Power Spectral Density
  • the ride comfort is as follows: (1) when normal, (2) when vehicle speed is abnormal in this embodiment. , (3) When the vehicle speed is abnormal in the comparative example. Therefore, it can be seen that in this embodiment, even when a vehicle speed abnormality occurs, deterioration of damping performance can be suppressed, and ride comfort can be improved compared to the comparative example.
  • the present embodiment is a controller 11 for a variable damper 7 of a suspension device 5 provided in a vehicle having front wheels and rear wheels
  • the controller 11 is a controller 11 for a variable damper 7 of a suspension device 5 provided in a vehicle having front wheels and rear wheels. It includes a correspondence detection section 24 and a command value calculation section 25 that calculates a control amount command value, which is a control amount of the rear wheel variable damper 7, according to the correspondence of the trajectories.
  • the command value calculation unit 25 refers to the front wheel state quantity (front wheel unsprung acceleration) which is the state quantity of the front wheel.
  • the control amount command value is calculated using the rear wheel state quantity (rear wheel unsprung acceleration), which is the rear wheel state quantity calculated by A controlled variable command value that is different from that in the case of is calculated.
  • the command value calculation unit 25 calculates a condition ( If all of A) to (C) are true, the unsprung acceleration of the rear wheel is estimated from the unsprung acceleration of the front wheel, and the variable damper 7 of the rear wheel is controlled based on this estimated value. On the other hand, if the conditions (A) to (C) are false, the command value calculation unit 25 uses a value different from the estimated value of the unsprung acceleration of the rear wheel to control the variable damper 7 of the rear wheel. control.
  • variable damper 7 of the rear wheel when the front and rear wheel trajectory difference is larger than a predetermined threshold, when the vehicle is moving backward, or when an abnormality occurs in the vehicle speed signal, the variable damper 7 of the rear wheel is It can be operated in the same way as a damper, and deterioration of damping performance can be suppressed.
  • the front wheel state quantity is a front wheel acceleration-related state quantity obtained by differentiating or integrating the unsprung acceleration of the front wheel or the unsprung acceleration of the front wheel (for example, the unsprung acceleration of the front wheel), and the rear wheel state
  • the quantity is a state quantity (for example, unsprung acceleration of the rear wheel) that matches the state quantity related to the acceleration of the front wheels with the phase of the rear wheels using the vehicle speed and the wheel base of the vehicle.
  • the command value calculation unit 25 calculates the rear wheel state amount by referring to the front wheel state amount (for example, front wheel unsprung acceleration). (for example, rear wheel unsprung acceleration) to calculate the control amount command value. If all conditions (A) to (C) are true, the accuracy of the rear wheel state quantity calculated with reference to the front wheel state quantity is high. Therefore, the command value calculation unit 25 can obtain desired vibration damping performance by calculating the control amount command value using the rear wheel state quantity calculated with reference to the front wheel state quantity.
  • the front wheel state amount for example, front wheel unsprung acceleration
  • rear wheel unsprung acceleration for example, rear wheel unsprung acceleration
  • the command value calculation unit 25 calculates a control amount command value that is different from the case where all of the conditions (A) to (C) are true. , is calculated with reference to the vehicle's sprung speed. Specifically, if the conditions (A) to (C) are false, the command value calculation unit 25 calculates the control amount command using the corrected relative speed that takes into account the sign of the sprung speed of the vehicle. Calculate the value.
  • the rear wheel variable damper 7 can be operated in the same manner as a passive damper, and deterioration of damping performance can be suppressed. .
  • the conditions (A) to (C) are such that the absolute value of the trajectory difference between the front wheels and the rear wheels (front and rear wheel trajectory difference) based on the vehicle speed and steering angle is less than or equal to the threshold, the vehicle is in a forward moving state, and the vehicle speed is The state of detection or estimation is either normal. Therefore, by determining whether these conditions (A) to (C) are true or false, the controller 11 can determine whether or not the estimation accuracy of the rear wheel state quantity is degraded.
  • the controller 11 includes a rear wheel unsprung acceleration estimation unit 20 (rear wheel unsprung state quantity calculation unit) that calculates a rear wheel unsprung acceleration that is the unsprung acceleration of the rear wheel as a rear wheel state quantity. Therefore, the rear wheel unsprung acceleration estimation unit 20 can calculate the rear wheel unsprung acceleration based on the front wheel unsprung acceleration.
  • a rear wheel unsprung acceleration estimation unit 20 rear wheel unsprung state quantity calculation unit
  • the rear wheel unsprung state quantity calculating section is not limited to the rear wheel unsprung acceleration estimating section 20 that calculates the rear wheel unsprung acceleration, but may be a rear wheel unsprung speed estimating section that calculates the rear wheel unsprung speed.
  • the rear wheel unsprung speed estimation unit estimates the rear wheel unsprung speed based on the front wheel unsprung speed and the vehicle speed.
  • the present embodiment is a method for controlling a variable damper 7 of a suspension device 5 which is provided in a vehicle having front wheels and rear wheels and whose damping force can be adjusted.
  • the rear wheel variable damper 7 can be operated in the same manner as a passive damper, and deterioration of damping performance can be suppressed.
  • FIG. 7 shows a second embodiment.
  • the command value calculation unit calculates an unsprung vibration damping control command as the control amount command value.
  • the same components as those in the first embodiment described above are denoted by the same reference numerals, and the explanation thereof will be omitted.
  • the controller 31 constitutes a control device according to the second embodiment.
  • the controller 31 is configured similarly to the controller 11 according to the first embodiment, and controls the damping characteristics of the variable damper 7.
  • the controller 31 is configured by, for example, a microcomputer.
  • the controller 31 is connected to the sprung acceleration sensor 9, the unsprung acceleration sensor 10, the CAN 12, and the like.
  • the sprung acceleration, front wheel unsprung acceleration, vehicle speed, and steering angle are input to the controller 31 .
  • the output side of the controller 31 is connected to the variable damping force actuator 8 of the variable damper 7.
  • the controller 31 has a storage section 31A consisting of ROM, RAM, nonvolatile memory, and the like.
  • the storage unit 31A of the controller 31 stores various programs, information (vehicle information), data, etc. for controlling the variable damper 7.
  • the controller 31 includes a rear wheel unsprung acceleration estimation section 20, a subtracter 21, an integrator 22, a trajectory correspondence detection section 24, and a command value calculation section 32.
  • the command value calculation unit 32 calculates a control amount command value that is a control amount of the variable damper 7 of the front wheel suspension device 5. In addition, the command value calculation unit 32 calculates a control amount command value, which is a control amount of the variable damper 7 of the rear wheel suspension device 5, according to the correspondence of the trajectories.
  • the command value calculation section 32 includes an unsprung vibration damping control section 32A and an unsprung vibration damping control command correction section 32B.
  • the unsprung vibration damping control unit 32A calculates an unsprung vibration damping control command for suppressing unsprung vibration based on the relative speed.
  • the unsprung vibration damping control command is a control amount of the variable damper 7, and is a command value (control amount command value) of the current supplied to the variable damping force actuator 8.
  • the unsprung vibration damping control unit 32A may calculate an unsprung vibration damping control command for suppressing unsprung vibrations based on the unsprung accelerations of the front wheels and the rear wheels.
  • the unsprung damping control command correction unit 32B corrects the unsprung damping control command for the rear wheels based on the correspondence between the trajectories of the front wheels and the rear wheels when the vehicle is running, which is detected by the trajectory correspondence detection unit 24. .
  • the unsprung vibration damping control command correction unit 32B receives the unsprung vibration damping control commands for the front wheels and the rear wheels, the front and rear wheel trajectory difference, and the determination results of backward movement and abnormality.
  • the unsprung vibration damping control command correction unit 32B directly outputs the front wheel unsprung vibration damping control command output from the sprung vibration damping control unit 32A as the corrected front wheel unsprung vibration damping control command.
  • the unsprung damping control command correction unit 32B is based on the front and rear wheel trajectory difference output from the front and rear wheel trajectory difference calculation unit 24A and the determination result of reverse and abnormality output from the reverse and abnormality determination unit 24B. , corrects the unsprung vibration damping control command for the rear wheels.
  • the unsprung damping control command correction unit 32B determines whether or not the three conditions (A) to (C) described above are satisfied, similarly to the relative speed correction unit 25A according to the first embodiment.
  • the unsprung damping control command correction unit 32B applies a predetermined correction current command to the corrected rear wheel spring. Output as a lower vibration suppression control command. That is, if at least one of the conditions (A) to (C) is not satisfied, the unsprung damping control command correction unit 32B uses the predetermined correction current command as the corrected relative speed of the rear wheels. Output.
  • the predetermined correction current command is a constant current command that can suppress unsprung vibration.
  • the predetermined current command is, for example, the lowest current value that can suppress unsprung flapping, and is appropriately set based on test results of actual vehicles and simulations. Therefore, by supplying a current based on this command to the variable damper 7, the rear wheel variable damper 7 can be operated in the same manner as a passive damper, for example. Note that the predetermined current command may be changed as appropriate depending on the damping force characteristics of the variable damper 7.
  • the unsprung vibration damping control command correction unit 32B Outputs the corrected current command.
  • the unsprung damping control command correction section 32B outputs a predetermined current command for correction. Output.
  • the unsprung damping control command correction unit 32B uses a predetermined correction command. Outputs current command.
  • the unsprung vibration damping control command correction unit 32B sets the unsprung vibration damping command as the corrected rear wheel unsprung vibration damping control command.
  • the rear wheel unsprung vibration damping control command output from the control unit 32A is output as is.
  • the controller 31 outputs a command signal (command current) to the variable damping force actuator 8 according to the command value of the corrected unsprung vibration damping control command output from the unsprung vibration damping control command correction unit 32B. Thereby, the controller 31 controls the damping force generated by the variable damper 7 according to the command value.
  • the second embodiment can also achieve substantially the same effects as the first embodiment.
  • the command value calculation unit 25 calculates the control amount command value, which is the control amount of the suspension device 5, using the BLQ control law (bilinear optimal control law).
  • BLQ control law Bilinear optimal control law
  • the command value calculation unit 25 may calculate the control amount command value using a skyhook control law, an H ⁇ control law, or the like.
  • the command value calculation unit 25 according to the first embodiment outputs a control command for sprung mass damping
  • the command value calculation unit 25 according to the second embodiment outputs a control command for sprung mass damping. I took it as a thing.
  • the present invention is not limited to this, and the command value calculation unit may calculate the control command value in consideration of both the control command for sprung mass damping and the control command for sprung mass damping. Furthermore, the command value calculation unit may calculate the control command value by considering various control commands, such as control commands based on steering stability control, for example.
  • the command value calculation units 25 and 32 determine whether or not the three conditions (A) to (C) are false.
  • the present invention is not limited to this, and the command value calculation unit may determine whether any one of the three conditions (A) to (C) is false, and two conditions include false. It may be determined whether or not the condition is true, or it may be determined whether four or more conditions are false.
  • the front wheel state quantity is the front wheel unsprung acceleration
  • the rear wheel state quantity is the rear wheel unsprung acceleration
  • the front wheel state quantity may be, for example, a front wheel unsprung jerk obtained by differentiating the front wheel unsprung acceleration, or a front wheel unsprung speed obtained by integrating the front wheel unsprung acceleration.
  • the rear wheel state quantity may be, for example, rear wheel unsprung jerk or rear wheel unsprung speed.
  • the rear wheel unsprung state amount calculation unit is the rear wheel unsprung acceleration estimation unit 20 that calculates the rear wheel unsprung acceleration, but the present invention is not limited to this.
  • the rear wheel unsprung state quantity calculation unit may calculate, for example, rear wheel unsprung jerk or rear wheel unsprung speed as the rear wheel state quantity.
  • the controllers 11 and 31 acquire, through the CAN 12, the specifications related to the running of the vehicle, including the wheel speed and the steering angle, but the present invention is not limited to this.
  • the controllers 11 and 31 may obtain detected values of wheel speed and steering angle directly from, for example, a wheel speed sensor and a steering angle sensor.
  • the steering angle is not limited to the steering angle of the steering wheel, but may be the steering angle of the steered wheels (front wheels).
  • the electronically controlled suspension force generation mechanism
  • the variable damper 7 made of a semi-active damper
  • an active damper either an electric actuator or a hydraulic actuator
  • the electronically controlled suspension that generates an adjustable force between the vehicle body 2 side and the wheel 3 side is configured by the variable damper 7 consisting of a hydraulic shock absorber with adjustable damping force.
  • the electronically controlled suspension may be configured with an air suspension, a stabilizer (Kinesas), an electromagnetic suspension, etc. in addition to a hydraulic shock absorber.
  • a vehicle behavior control device used for a four-wheeled vehicle has been described as an example.
  • the present invention is not limited to this, and can also be applied to, for example, two-wheeled or three-wheeled vehicles, work vehicles, and transportation vehicles such as trucks and buses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

後輪ばね下状態の推定精度が低下する場合でも、制振性能の悪化を抑制することができる電子制御サスペンションの制御装置および制御方法を提供する。可変ダンパは、前輪および後輪を有する車両に設けられている。コントローラは、車両の走行時、前輪および後輪の軌跡の対応関係を検出する軌跡対応関係検出部と、後輪の可変ダンパの制御量である制御量指令値を、軌跡の対応関係に応じて、算出する指令値算出部とを備えている。

Description

電子制御サスペンションの制御装置および制御方法
 本開示は、例えば4輪自動車等の車両に好適に用いられる電子制御サスペンションの制御装置および制御方法に関する。
 特許文献1には、前輪の変位、速度、加速度等のような前輪ばね下振動情報を検知し、この前輪ばね下振動情報と車両のホイールベースとに基づいて、後輪ばね下振動情報を推定する推定装置が開示されている。
特開2016-190621号公報
 ところで、特許文献1に開示された推定装置では、前輪ばね下振動情報をホイールベース分遅らせた情報から後輪ばね下振動情報を推定している。しかしながら、この推定方法は、前輪と後輪が同じ軌跡を通過することを前提としている。このため、前輪と後輪の走行軌跡が異なる条件では推定精度が悪化する。前輪と後輪の軌跡がずれる条件としては、(1)前後輪軌跡差が大きい超低速時、(2)前後輪軌跡差が大きい大舵角時や横滑り時、(3)遅れの算出が不能な車速信号不正時、(4)後輪が前輪よりも先に路面入力を受ける後退時等が考えられる。
 本発明の一実施形態の目的は、後輪ばね下状態の推定精度が低下する場合でも、制振性能の悪化を抑制することができる電子制御サスペンションの制御装置および制御方法を提供することにある。
 本発明の一実施形態は、前輪および後輪を有する車両に設けられた電子制御サスペンションの制御装置であって、前記車両の走行時、前記前輪および前記後輪の軌跡の対応関係を検出する軌跡対応関係検出部と、前記後輪の電子制御サスペンションの制御量である制御量指令値を、前記軌跡の対応関係に応じて、算出する指令値算出部と、を備えている。
 また、本発明の一実施形態は、前輪および後輪を有する車両に設けられ、減衰力を調整可能な電子制御サスペンションの制御方法であって、前記前輪の状態量である前輪状態量を算出する前輪状態量算出ステップと、前記前輪状態量を用いて前記後輪の状態量である後輪状態量を算出する後輪状態量算出ステップと、前記後輪の電子制御サスペンションの制御量である制御量指令値を算出する指令値算出ステップであって、前記車両の走行状態が、一または二以上の条件すべてが真の場合には前記制御量指令値を前記後輪状態量を用いて算出し、前記条件に偽が含まれる場合には前記条件すべてに対して真の場合とは異なる前記制御量指令値を算出する指令値算出ステップと、を備えている。
 本発明の一実施形態によれば、後輪ばね下状態の推定精度が低下する場合でも、制振性能の悪化を抑制することができる。
第1,第2の実施形態によるコントローラが適用された車両を示す正面図である。 第1,第2の実施形態によるコントローラを模式的に示す図である。 第1の実施形態によるコントローラを示す制御ブロック図である。 車両の速度と横加速度との関係から前輪と後輪の軌跡がずれる条件を示す説明図である。 ばね上とばね下との間の相対速度、指令電流値、ばね上加速度の時間変化を示す特性線図である。 加速度PSDの周波数特性を示す特性線図である。 第2の実施形態によるコントローラを示す制御ブロック図である。
 以下、本発明の実施形態による電子制御サスペンションの制御装置を4輪自動車に適用した場合を例に挙げ、添付図面に従って詳細に説明する。
 図1および図2は、実施形態による車両挙動制御装置1を示している。車両挙動制御装置1は、減衰力発生装置を構成するサスペンション装置5と、制御装置を構成するコントローラ11とにより構成されている。ここで、図2において、車両のボディを構成する車体2の下側には、例えば左,右の前輪と左,右の後輪(以下、総称して車輪3という)が設けられている。この車輪3は、タイヤ4を含んで構成されており、タイヤ4は、路面の細かい凹凸を吸収するばねとして作用する。
 サスペンション装置5は、電子制御サスペンションであり、前輪および後輪を有する車両に設けられている。サスペンション装置5は、車両の車体2と車両の車輪3との間に介装して設けられている。このため、サスペンション装置5は、車両の車体2と前輪との間に設けられると共に、車両の車体2と後輪との間に設けられている。サスペンション装置5は、懸架ばね6(以下、スプリング6という)と、スプリング6と並列関係をなして車体2と車輪3との間に設けられた減衰力調整式緩衝器(以下、可変ダンパ7という)とにより構成される。
 なお、図2中では1組のサスペンション装置5を、車体2と車輪3との間に設けた場合を示している。しかし、サスペンション装置5は、例えば4つの車輪3と車体2との間に個別に独立して合計4組設けられるもので、このうちの1組のみを図2では模式的に示している。
 サスペンション装置5の可変ダンパ7は、車体2と車輪3との間に介装して設けられた減衰力調整式の油圧緩衝器を用いて構成されている。可変ダンパ7には、発生減衰力の特性(即ち、減衰力特性)をハードな特性(硬特性)からソフトな特性(軟特性)に連続的に調整するため、減衰力調整バルブ等からなる減衰力可変アクチュエータ8が付設されている。可変ダンパ7は、車体2と車輪3の間で調整可能な力を発生する力発生機構を構成している。なお、減衰力可変アクチュエータ8は、減衰力特性を必ずしも連続的に調整する構成でなくてもよく、例えば2段階以上の複数段階で減衰力を調整可能なものであってもよい。また、可変ダンパ7は、圧力制御タイプでもよく、流量制御タイプであってもよい。可変ダンパ7は、磁気粘性流体や電気粘性流体のように粘性を制御するタイプであってもよい。
 ばね上加速度センサ9は、車両に取り付けられたばね上上下加速度検出部である。ばね上加速度センサ9は、ばね上として車両の車体2側に設けられている。ばね上加速度センサ9は、ばね上側となる車体2側で上下方向の振動加速度を検出し、前輪および後輪のばね上加速度の検出信号をコントローラ11に出力する。
 ばね下加速度センサ10は、車両に取り付けられたばね下上下加速度検出部である。ばね下加速度センサ10は、車両の車輪3側に設けられている。ばね下加速度センサ10は、ばね下側となる前輪の車輪3側で上下方向の振動加速度を検出し、前輪ばね下加速度の検出信号をコントローラ11に出力する。
 コントローラ11は、可変ダンパ7(サスペンション装置5)の制御装置を構成している。コントローラ11は、可変ダンパ7の減衰特性を制御する。コントローラ11は、例えばマイクロコンピュータによって構成されている。コントローラ11は、例えばデータ通信に必要な回線網であるCAN12(Controller Area Network)に接続されている。コントローラ11は、CAN12を通じて、車両の走行に関する諸元を取得する。このとき、車両の走行に関する諸元は、例えば車速、操舵角等を含んでいる。また、コントローラ11は、ばね上加速度センサ9とばね下加速度センサ10に接続されている。このため、コントローラ11には、ばね上加速度、前輪ばね下加速度、車速、操舵角が入力される。コントローラ11は、ばね下加速度センサ10から入力される検出信号に基づいて、前輪の状態量である前輪状態量(前輪ばね下加速度)を算出する前輪状態量算出ステップを実行する。コントローラ11の出力側は、可変ダンパ7の減衰力可変アクチュエータ8に接続されている。
 また、コントローラ11は、ROM、RAM、不揮発性メモリ等からなる記憶部11Aを有している。コントローラ11の記憶部11Aには、可変ダンパ7を制御するための各種のプログラム、情報(車両情報)、データ等が格納されている。
 図3に示すように、コントローラ11は、後輪ばね下加速度推定部20、減算器21、積分器22,23、軌跡対応関係検出部24、指令値算出部25を備えている。
 後輪ばね下加速度推定部20は、後輪状態量として後輪のばね下加速度である後輪ばね下加速度を算出する後輪ばね下状態量算出部である。後輪ばね下加速度推定部20は、後輪状態量算出ステップを実行し、前輪ばね下加速度と車速に基づいて後輪ばね下加速度を推定する。具体的には、特許文献1に開示されているように、後輪ばね下加速度推定部20は、車両のホイールベースと車速に基づいて、前輪ばね下加速度から後輪ばね下加速度を推定する。このとき、後輪状態量としての後輪ばね下加速度は、車両の車速および車両のホイールベースを用いて、前輪の加速度関連の状態量である前輪ばね下加速度を後輪の位相と一致させた状態量である。
 減算器21は、ばね上加速度からばね下加速度を減算し、ばね上加速度とばね下加速度との差分を演算する。この差分値は、車体2と車輪3との間の相対加速度に対応する。このとき、減算器21は、前輪のばね上加速度の検出値から前輪のばね下加速度の検出値を減算することによって、前輪の相対加速度を算出する。減算器21は、後輪のばね上加速度の検出値から後輪のばね下加速度の推定値を減算することによって、後輪の相対加速度を算出する。
 積分器22は、減算器21から出力された相対加速度を積分し、車体2と車輪3との間の上下方向の相対速度を演算する。このとき、積分器22は、前輪の相対速度と後輪の相対速度を算出する。積分器22は、前輪と後輪の相対速度を出力する。
 積分器23は、ばね上加速度を積分することによって、車体2の上下方向に対する速度となるばね上速度を演算する。このとき、積分器23には、前輪と後輪のばね上加速度が入力される。このため、積分器23は、前輪のばね上速度と後輪のばね上速度を算出する。積分器23は、前輪と後輪のばね上速度を出力する。
 軌跡対応関係検出部24は、車両の走行時、前輪および後輪の軌跡の対応関係を検出する。軌跡対応関係検出部24は、前後輪軌跡差算出部24Aと後退・異常判定部24Bとを備えている。
 前後輪軌跡差算出部24Aには、車速と操舵角が入力される。車両が低速走行した場合には、操舵角が大きくなると、車両に内輪差が生じる。このため、車速が低速の場合には、操舵角が大きいときに、前後輪軌跡差は大きくなる。また、車両が高速走行した場合には、操舵角が小さいときでも、車両の後輪に横滑りが生じ、前後輪軌跡差は大きくなる。
 図4に、ステアリングホイールの切れ角である操舵角を30°、60°、90°、120°としたときの車速と横加速度の関係から前輪と後輪の軌跡がずれる条件を示す。図4に示すように、例えば車速が50km/h程度よりも小さい低速の場合には、操舵角が90°や120°のように大きな角度のときに横加速度が大きくなる。車速が例えば50km/h程度の低速閾値以下であり、かつ操舵角が例えば120°程度の大舵角閾値以上であるときに、前後輪軌跡差が許容範囲(例えば0.1m)を外れる。一方、図4に示すように、例えば車速が60km/h程度よりも大きい高速の場合には、操舵角が30°や60°のように小さい角度のときでも横加速度が大きくなり、車両の後輪に横滑りが生じて、前後輪軌跡差は大きくなる。
 車速が例えば60km/h以上であり、かつ操舵角が例えば60°以上であるときに、前後輪軌跡差が許容範囲(例えば0.1m)を外れる。さらに、車速が例えば100km/h以上であり、かつ操舵角が例えば30°以上であるときに、前後輪軌跡差が許容範囲(例えば0.1m)を外れる。このため、前後輪軌跡差算出部24Aは、車速と操舵角に基づいて、車両に作用する横加速度を考慮した上で前後輪軌跡差を算出し、出力する。
 後退・異常判定部24Bには、車速が入力される。後退・異常判定部24Bは、車速に基づいて、車両が後退しているか否か、および車速信号に異常が生じているか否かを判定する。具体的には、後退・異常判定部24Bは、車速信号に基づいて車両が前進しているか、後退しているかを判別する。また、後退・異常判定部24Bは、例えば車速信号が一定値で変動しない、車速信号が許容範囲外の値となる等のときには、車速信号に異常が生じていると判定する。後退・異常判定部24Bは、これらの判定結果を出力する。
 指令値算出部25は、前輪のサスペンション装置5の可変ダンパ7の制御量である制御量指令値を、算出する。これに加えて、指令値算出部25は、指令値算出ステップを実行し、後輪のサスペンション装置5の可変ダンパ7の制御量である制御量指令値を、軌跡の対応関係に応じて、算出する。指令値算出部25は、相対速度補正部25A、双線形最適制御部25B(以下、BLQ25Bという)、制御指令演算部25Cを備えている。
 相対速度補正部25Aは、軌跡対応関係検出部24が検出した車両の走行時、前輪および後輪の軌跡の対応関係に基づいて、後輪の相対速度を補正する。相対速度補正部25Aには、前輪と後輪の相対速度、後輪のばね上速度、前後輪軌跡差および後退と異常の判定結果が入力される。相対速度補正部25Aは、前輪の補正後相対速度として積分器22から出力される前輪の相対速度をそのまま出力する。
 一方、相対速度補正部25Aは、前後輪軌跡差算出部24Aから出力される前後輪軌跡差と、後退・異常判定部24Bから出力される後退と異常の判定結果とに基づいて、後輪の相対速度を補正する。
 相対速度補正部25Aは、以下に示す3つの条件(A)~(C)を満たすか否かを判定する。
(A)前後輪軌跡差の絶対値が予め決められた閾値以下
(B)車両が前進状態
(C)車速信号が正常
 このとき、前後輪軌跡差の閾値は、例えば前輪と後輪のタイヤ幅(タイヤ4の幅寸法)から考えて明らかにタイヤ軌跡が異なる場合を考慮して設定されている。即ち、前後輪軌跡差の閾値は、前輪と後輪でばね下加速度に許容できない差異が生じる値として、例えば車輪3のタイヤ幅に基づいて設定されている。一例としては、前後輪軌跡差の閾値は、タイヤ幅の半分の値に設定されている。前後輪軌跡差の閾値は、実際の前輪と後輪のばね下加速度等を参照して、適宜設定されている。
 相対速度補正部25Aは、これら3つの条件(A)~(C)に偽が含まれる場合には、数1の式に示すように、予め決められた所定値(例えば0.1m/s)に後輪の上昇または下降に応じたばね上速度の符号を乗算した値を、後輪の補正後相対速度として出力する。即ち、相対速度補正部25Aは、条件(A)~(C)のうち少なくとも1つの条件を満たさない場合には、数1の式に基づいて算出した値を、後輪の補正後相対速度として出力する。
 このとき、所定値は、制御頻度の高いうねり路での相対速度に応じて決めた値になっており、例えば0.08~0.3m/sの範囲で適宜設定されている。なお、所定値は、可変ダンパ7の減衰力の特性に応じて適宜変更してもよい。
 例えば、前後輪軌跡差算出部24Aから出力される前後輪軌跡差が車輪3の幅寸法の半分よりも大きいと判定したときには、相対速度補正部25Aは、数1の式に基づいて、後輪の補正後相対速度を算出し、出力する。
 後退・異常判定部24Bから出力される後退と異常の判定結果に応じて、車両が後退していると判定したときには、相対速度補正部25Aは、数1の式に基づいて、後輪の補正後相対速度を算出し、出力する。
 後退・異常判定部24Bから出力される後退と異常の判定結果に応じて、車速信号に異常が生じていると判定したときには、相対速度補正部25Aは、数1の式に基づいて、後輪の補正後相対速度を算出し、出力する。
 これに対し、相対速度補正部25Aは、条件(A)~(C)の全てが真の場合には、補正後相対速度として積分器22から出力される後輪の相対速度をそのまま出力する。即ち、相対速度補正部25Aは、条件(A)~(C)を全て満たす場合には、補正後相対速度として積分器22から出力される後輪の相対速度をそのまま出力する。
 BLQ25Bには、ばね上速度と補正後相対速度が入力される。BLQ25Bは、双線形最適制御理論に基づいて、ばね上速度と補正後相対速度とから、ばね上の上下振動を低減するための可変ダンパ7の減衰力や減衰係数を算出する。BLQ25Bは、算出した減衰力等を目標指令として出力する。
 制御指令演算部25Cは、BLQ25Bから出力される目標指令に基づいて、可変ダンパ7の制御量であって、減衰力可変アクチュエータ8に供給する電流の指令値(制御量指令値)を算出する。このとき、制御量指令値は、前輪、後輪の減衰力の指令値である減衰力指令値に対応している。コントローラ11は、この制御量指令値(指令電流値)に応じた指令信号(指令電流)を減衰力可変アクチュエータ8に出力する。これにより、コントローラ11は、可変ダンパ7の発生減衰力を制御量指令値に応じて制御する。
 実施形態による車両挙動制御装置1は、上述の如き構成を有する。次に、コントローラ11を用いて可変ダンパ7の減衰力特性を可変に制御する処理について説明する。
 車体2と車輪3との間に介装して設けられた可変ダンパ7は、コントローラ11からの指令値(制御指令)が指令電流として減衰力可変アクチュエータ8に入力される。これにより、減衰力可変アクチュエータ8は、可変ダンパ7内を流通する油液の流路面積を可変に制御するように駆動される。この結果、可変ダンパ7の減衰力特性は、指令値に従ってハードな特性(硬特性)とソフトな特性(軟特性)との間で可変に制御される。
 また、本実施形態によるコントローラ11は、前輪に設けられたばね下加速度センサ10からの検出信号に基づいて、後輪のばね下加速度を推定する。このとき、車両の走行状態等に伴って、後輪のばね下加速度の推定精度が低下することがある。この点を考慮して、コントローラ11の軌跡対応関係検出部24は、車両の走行時、前輪および後輪の軌跡の対応関係を検出する。指令値算出部25は、前輪のサスペンション装置5の制御量である制御量指令値を、算出する。これに加えて、指令値算出部25は、後輪のサスペンション装置5の制御量である制御量指令値を、軌跡の対応関係に応じて、算出する。コントローラ11は、これらの制御量指令値に基づいて、前輪および後輪の可変ダンパ7を制御する。これにより、後輪のばね下加速度を推定精度が低下する状況でも、制振性能の悪化を抑制することができる。
 このような本実施形態による制振性能の悪化抑制の効果を確認するために、前輪および後輪の軌跡の対応関係に応じて、後輪の可変ダンパ7を制御する本実施形態と、常に後輪の推定結果を用いて、後輪の可変ダンパ7を制御する比較例について、シミュレーション試験を行った。そのときの結果を、図5および図6に示す。図5に示すように、比較例では、車速が異常になった場合は、後輪ばね下加速度等の推定精度の悪化により、制御タイミングが正常時とずれが生じ、加速度が大きい、即ち乗り心地が悪化していることが分かる。これに対して、本実施形態では、正常時と近い加速度、即ち乗り心地性能を実現できていることが分かる。
 また、図6に示すように、後輪のばね上加速度に関する加速度PSD(Power Spectral Density)の結果においても、乗り心地が良い順に、(1)正常時、(2)本実施形態で車速異常時、(3)比較例で車速異常時となる。このため、本実施形態では、車速異常が生じたときでも、制振性能の悪化を抑制でき、比較例に比べて、乗り心地改善を達成できていることが分かる。
 かくして、本実施形態は、前輪および後輪を有する車両に設けられたサスペンション装置5の可変ダンパ7のコントローラ11であって、車両の走行時、前輪および後輪の軌跡の対応関係を検出する軌跡対応関係検出部24と、後輪の可変ダンパ7の制御量である制御量指令値を、前記軌跡の対応関係に応じて、算出する指令値算出部25と、を備えている。
 このとき、指令値算出部25は、前記軌跡の対応関係が一または二以上の条件すべてに対して真の場合には、前輪の状態量である前輪状態量(前輪ばね下加速度)を参照して算出する後輪の状態量である後輪状態量(後輪ばね下加速度)を用いて制御量指令値を算出し、前記条件に偽が含まれる場合には、前記条件すべてに対して真の場合とは異なる制御量指令値を算出する。
 具体的には、指令値算出部25は、前後輪軌跡差算出部24Aから出力される前後輪軌跡差と、後退・異常判定部24Bから出力される後退と異常の判定結果とに基づく条件(A)~(C)の全てに対して真の場合には、前輪のばね下加速度から後輪のばね下加速度を推定し、この推定値に基づいて後輪の可変ダンパ7を制御する。これに対し、指令値算出部25は、条件(A)~(C)に偽が含まれる場合には、後輪のばね下加速度の推定値とは異なる値を用いて後輪の可変ダンパ7を制御する。このため、本実施形態では、前後輪軌跡差が所定の閾値よりも大きい場合、車両が後退している場合、車速信号に異常が生じている場合には、例えば後輪の可変ダンパ7を受動ダンパと同様に動作させることができ、制振性能の悪化を抑制することができる。
 また、前輪状態量は、前輪のばね下の加速度または前輪のばね下の加速度を微分若しくは積分して得られる前輪の加速度関連の状態量(例えば、前輪のばね下加速度)であり、後輪状態量は、車両の車速および車両のホイールベースを用いて、前輪の加速度関連の状態量を後輪の位相と一致させた状態量(例えば、後輪のばね下加速度)である。
 このとき、指令値算出部25は、条件(A)~(C)の全てに対して真の場合には、前輪状態量(例えば、前輪ばね下加速度)を参照して算出する後輪状態量(例えば、後輪ばね下加速度)を用いて制御量指令値を算出する。条件(A)~(C)の全てに対して真の場合には、前輪状態量を参照して算出する後輪状態量の精度が高い。このため、指令値算出部25は、前輪状態量を参照して算出する後輪状態量を用いて制御量指令値を算出することによって、所望の制振性能を得ることができる。
 一方、指令値算出部25は、条件(A)~(C)に偽が含まれる場合には、条件(A)~(C)の全てに対して真の場合とは異なる制御量指令値を、車両のばね上速度を参照して算出する。具体的には、指令値算出部25は、条件(A)~(C)に偽が含まれる場合には、車両のばね上速度の符号を考慮した補正後相対速度を用いて、制御量指令値を算出する。これにより、条件(A)~(C)に偽が含まれる場合には、例えば後輪の可変ダンパ7を受動ダンパと同様に動作させることができ、制振性能の悪化を抑制することができる。
 また、前記条件(A)~(C)は、車両の車速と舵角に基づく前輪と後輪との軌跡差(前後輪軌跡差)の絶対値が閾値以下、車両が前進状態、および、車速の検出もしくは推定の状態が正常、の何れかである。このため、コントローラ11は、これらの条件(A)~(C)の真偽を判定することによって、後輪状態量の推定精度が低下するか否かを把握することができる。
 さらに、コントローラ11は、後輪状態量として後輪のばね下加速度である後輪ばね下加速度を算出する後輪ばね下加速度推定部20(後輪ばね下状態量算出部)を備えている。このため、後輪ばね下加速度推定部20は、前輪ばね下加速度に基づいて、後輪ばね下加速度を算出することができる。
 なお、後輪ばね下状態量算出部は、後輪ばね下加速度を算出する後輪ばね下加速度推定部20に限らず、後輪ばね下速度を算出する後輪ばね下速度推定部でもよい。この場合、後輪ばね下速度推定部は、前輪ばね下速度と車速に基づいて後輪ばね下速度を推定する。
 また、本実施形態は、前輪および後輪を有する車両に設けられ、減衰力を調整可能なサスペンション装置5の可変ダンパ7の制御方法であって、前記前輪の状態量である前輪状態量を算出する前輪状態量算出ステップと、前記前輪状態量を用いて前記後輪の状態量である後輪状態量を算出する後輪状態量算出ステップと、前記後輪の電子制御サスペンションの制御量である制御量指令値を算出する指令値算出ステップであって、前記車両の走行状態が、一または二以上の条件すべてが真の場合には前記制御量指令値を前記後輪状態量を用いて算出し、前記条件に偽が含まれる場合には前記条件すべてに対して真の場合とは異なる前記制御量指令値を算出する指令値算出ステップと、を備えている。これにより、条件(A)~(C)に偽が含まれる場合には、例えば後輪の可変ダンパ7を受動ダンパと同様に動作させることができ、制振性能の悪化を抑制することができる。
 次に、図7は第2の実施形態を示している。第2の実施形態の特徴は、指令値算出部は、制御量指令値として、ばね下制振制御指令を算出することにある。なお、第2の実施形態では、上述した第1の実施形態と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
 コントローラ31は、第2の実施形態による制御装置を構成している。コントローラ31は、第1の実施形態によるコントローラ11と同様に構成され、可変ダンパ7の減衰特性を制御する。コントローラ31は、例えばマイクロコンピュータにより構成されている。コントローラ31は、ばね上加速度センサ9、ばね下加速度センサ10、CAN12等に接続されている。コントローラ31には、ばね上加速度、前輪ばね下加速度、車速、操舵角が入力される。コントローラ31の出力側は、可変ダンパ7の減衰力可変アクチュエータ8に接続されている。コントローラ31は、ROM、RAM、不揮発性メモリ等からなる記憶部31Aを有している。コントローラ31の記憶部31Aには、可変ダンパ7を制御するための各種のプログラム、情報(車両情報)、データ等が格納されている。
 図7に示すように、コントローラ31は、後輪ばね下加速度推定部20、減算器21、積分器22、軌跡対応関係検出部24、指令値算出部32を備えている。
 指令値算出部32は、前輪のサスペンション装置5の可変ダンパ7の制御量である制御量指令値を、算出する。これに加えて、指令値算出部32は、後輪のサスペンション装置5の可変ダンパ7の制御量である制御量指令値を、軌跡の対応関係に応じて、算出する。指令値算出部32は、ばね下制振制御部32A、ばね下制振制御指令補正部32Bを備えている。
 ばね下制振制御部32Aは、相対速度に基づいて、ばね下の振動を抑制するためのばね下制振制御指令を算出する。このとき、ばね下制振制御指令は、可変ダンパ7の制御量であって、減衰力可変アクチュエータ8に供給する電流の指令値(制御量指令値)である。なお、ばね下制振制御部32Aは、前輪と後輪のばね下加速度に基づいて、ばね下の振動を抑制するためのばね下制振制御指令を算出してもよい。
 ばね下制振制御指令補正部32Bは、軌跡対応関係検出部24が検出した車両の走行時、前輪および後輪の軌跡の対応関係に基づいて、後輪のばね下制振制御指令を補正する。ばね下制振制御指令補正部32Bには、前輪と後輪のばね下制振制御指令、前後輪軌跡差および後退と異常の判定結果が入力される。ばね下制振制御指令補正部32Bは、補正後の前輪のばね下制振制御指令として、ばね下制振制御部32Aから出力される前輪のばね下制振制御指令をそのまま出力する。
 一方、ばね下制振制御指令補正部32Bは、前後輪軌跡差算出部24Aから出力される前後輪軌跡差と、後退・異常判定部24Bから出力される後退と異常の判定結果とに基づいて、後輪のばね下制振制御指令を補正する。ばね下制振制御指令補正部32Bは、第1の実施形態による相対速度補正部25Aと同様に、前述した3つの条件(A)~(C)を満たすか否かを判定する。
 ばね下制振制御指令補正部32Bは、これら3つの条件(A)~(C)に偽が含まれる場合には、予め決められた所定の補正用電流指令を、補正後の後輪のばね下制振制御指令として出力する。即ち、ばね下制振制御指令補正部32Bは、条件(A)~(C)のうち少なくとも1つの条件を満たさない場合には、所定の補正用電流指令を、後輪の補正後相対速度として出力する。
 このとき、所定の補正用電流指令は、ばね下制振が可能な一定の電流指令である。具体的には、所定の電流指令は、例えばばね下のバタつきを抑制可能な最低電流値であり、実際の車両やシミュレーションでの試験結果等に基づいて適宜設定されている。このため、この指令に基づく電流を可変ダンパ7に供給することによって、例えば後輪の可変ダンパ7を受動ダンパと同様に動作させることができる。なお、所定の電流指令は、可変ダンパ7の減衰力の特性に応じて適宜変更してもよい。
 例えば、前後輪軌跡差算出部24Aから出力される前後輪軌跡差が車輪3(タイヤ4)の幅寸法の半分よりも大きいと判定したときには、ばね下制振制御指令補正部32Bは、予め決められた補正用電流指令を出力する。後退・異常判定部24Bから出力される後退と異常の判定結果に応じて、車両が後退していると判定したときには、ばね下制振制御指令補正部32Bは、予め決められた補正用電流指令を出力する。後退・異常判定部24Bから出力される後退と異常の判定結果に応じて、車速信号に異常が生じていると判定したときには、ばね下制振制御指令補正部32Bは、予め決められた補正用電流指令を出力する。
 これに対し、ばね下制振制御指令補正部32Bは、条件(A)~(C)の全てが真の場合には、補正後の後輪のばね下制振制御指令として、ばね下制振制御部32Aから出力される後輪のばね下制振制御指令をそのまま出力する。
 コントローラ31は、ばね下制振制御指令補正部32Bから出力された補正後のばね下制振制御指令の指令値に応じた指令信号(指令電流)を減衰力可変アクチュエータ8に出力する。これにより、コントローラ31は、可変ダンパ7の発生減衰力を指令値に応じて制御する。
 かくして、第2の実施形態でも、第1の実施形態とほぼ同様の作用効果を得ることができる。
 なお、前記第1の実施形態では、指令値算出部25は、BLQ制御則(双線形最適制御則)を用いてサスペンション装置5の制御量である制御量指令値を、算出するものとしたが、本発明はこれに限らない。指令値算出部25は、スカイフック制御則、H∞制御則等を用いて制御量指令値を算出してもよい。
 前記第1の実施形態による指令値算出部25は、ばね上制振用の制御指令を出力し、第2の実施形態による指令値算出部25は、ばね下制振用の制御指令を出力するものとした。本発明はこれに限らず、指令値算出部は、ばね上制振用の制御指令とばね下制振用の制御指令との両方を考慮して、制御指令値を算出してもよい。さらに、指令値算出部は、例えば操縦安定性制御による制御指令のように、各種の制御指令を考慮して、制御指令値を算出してもよい。
 前記各実施形態による指令値算出部25,32は、3つの条件(A)~(C)に偽が含まれるか否かを判定するものとした。本発明はこれに限らず、指令値算出部は、3つの条件(A)~(C)のうちいずれか1つの条件が偽か否かを判定してもよく、2つの条件に偽が含まれるか否かを判定してもよく、4つ以上の条件に偽が含まれるか否かを判定してもよい。
 前記各実施形態では、前輪状態量は前輪ばね下加速度であり、後輪状態量は後輪ばね下加速度である場合を例示したが、本発明はこれに限らない。前輪状態量は、例えば前輪ばね下加速度を微分して得られる前輪ばね下加加速度でもよく、前輪ばね下加速度を積分して得られる前輪ばね下速度でもよい。同様に、後輪状態量は、例えば後輪ばね下加加速度でもよく、後輪ばね下速度でもよい。
 前記各実施形態では、後輪ばね下状態量算出部は、後輪ばね下加速度を算出する後輪ばね下加速度推定部20である場合を例示したが、本発明はこれに限らない。後輪ばね下状態量算出部は、後輪状態量として、例えば後輪ばね下加加速度を算出してもよく、後輪ばね下速度を算出してもよい。
 前記各実施形態では、コントローラ11,31は、CAN12を通じて、車輪速、操舵角を含む車両の走行に関する諸元を取得する場合を例に挙げて説明したが、本発明はこれに限らない。コントローラ11,31は、例えば車輪速センサ、操舵角センサから直接的に車輪速、操舵角の検出値を取得してもよい。また、操舵角は、ステアリングホイールの切れ角に限らず、操舵輪(前輪)の切れ角でもよい。
 前記各実施形態では、電子制御サスペンション(力発生機構)としてセミアクティブダンパからなる可変ダンパ7である場合を例に説明した。本発明はこれに限らず、電子制御サスペンションとしてアクティブダンパ(電気アクチュエータ、油圧アクチュエータのいずれか)を用いるようにしてもよい。前記実施形態では、車体2側と車輪3側との間で調整可能な力を発生する電子制御サスペンションを、減衰力調整式の油圧緩衝器からなる可変ダンパ7により構成する場合を例に挙げて説明した。本発明はこれに限らず、例えば電子制御サスペンションを液圧緩衝器の他に、エアサスペンション、スタビライザ(キネサス)、電磁サスペンション等により構成してもよい。
 前記各実施形態では、4輪自動車に用いる車両挙動制御装置を例に挙げて説明した。しかし、本発明はこれに限るものではなく、例えば2輪、3輪自動車、または作業車両、運搬車両であるトラック、バス等にも適用できるものである。
 前記各実施形態で記載した具体的な数値は、一例を示したものであり、例示した値に限らない。
 本願は、2022年7月6日付出願の日本国特許出願第2022-109000号に基づく優先権を主張する。2022年7月6日付出願の日本国特許出願第2022-109000号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。
 2:車体、3:車輪(前輪、後輪)、5:サスペンション装置(電子制御サスペンション)、7:減衰力調整式緩衝器(可変ダンパ)、8:減衰力可変アクチュエータ、9:ばね上加速度センサ、10:ばね下加速度センサ、11,31:コントローラ(制御装置)、20:後輪ばね下加速度推定部、24:軌跡対応関係検出部、25,32:指令値算出部

Claims (7)

  1.  前輪および後輪を有する車両に設けられた電子制御サスペンションの制御装置であって、
     前記車両の走行時、前記前輪および前記後輪の軌跡の対応関係を検出する軌跡対応関係検出部と、
     前記後輪の電子制御サスペンションの制御量である制御量指令値を、前記軌跡の対応関係に応じて、算出する指令値算出部と、
     を備える電子制御サスペンションの制御装置。
  2.  請求項1に記載の電子制御サスペンションの制御装置において、
     前記指令値算出部は、
     前記軌跡の対応関係が一または二以上の条件すべてに対して真の場合には、前記前輪の状態量である前輪状態量を参照して算出する前記後輪の状態量である後輪状態量を用いて前記制御量指令値を算出し、
     前記条件に偽が含まれる場合には、前記条件すべてに対して真の場合とは異なる前記制御量指令値を算出する
     電子制御サスペンションの制御装置。
  3.  請求項2に記載の電子制御サスペンションの制御装置において、
     前記前輪状態量は、前記前輪のばね下の加速度または前記前輪のばね下の加速度を微分若しくは積分して得られる前記前輪の加速度関連の状態量であり、
     前記後輪状態量は、前記車両の車速および前記車両のホイールベースを用いて、前記前輪の前記加速度関連の状態量を前記後輪の位相と一致させた状態量である
     電子制御サスペンションの制御装置。
  4.  請求項2または3に記載の電子制御サスペンションの制御装置において、
     前記指令値算出部は、
     前記条件に偽が含まれる場合には、前記条件すべてに対して真の場合とは異なる前記制御量指令値を、前記車両のばね上速度を参照して算出する
     電子制御サスペンションの制御装置。
  5.  請求項2または3に記載の電子制御サスペンションの制御装置において、
     前記条件は、
     前記車両の車速と舵角に基づく前記前輪と前記後輪との軌跡差の絶対値が閾値以下、または
     前記車両が前進状態、および、前記車速の検出もしくは推定の状態が正常、の何れかである
     電子制御サスペンションの制御装置。
  6.  請求項2または3に記載の電子制御サスペンションの制御装置において、
     前記後輪状態量として前記後輪のばね下速度である後輪ばね下速度または前記後輪のばね下加速度である後輪ばね下加速度を算出する後輪ばね下状態量算出部を備える
     電子制御サスペンションの制御装置。
  7.  電子制御サスペンションの制御方法であって、
     前記電子制御サスペンションは、前輪および後輪を有する車両に設けられ、減衰力を調整可能となっており、
     前記前輪の状態量である前輪状態量を算出する前輪状態量算出ステップと、
     前記前輪状態量を用いて前記後輪の状態量である後輪状態量を算出する後輪状態量算出ステップと、
     前記後輪の電子制御サスペンションの制御量である制御量指令値を算出する指令値算出ステップであって、前記車両の走行状態が、一または二以上の条件すべてが真の場合には前記制御量指令値を前記後輪状態量を用いて算出し、前記条件に偽が含まれる場合には前記条件すべてに対して真の場合とは異なる前記制御量指令値を算出する指令値算出ステップと、
     を備える電子制御サスペンションの制御方法。
PCT/JP2023/021860 2022-07-06 2023-06-13 電子制御サスペンションの制御装置および制御方法 WO2024009702A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-109000 2022-07-06
JP2022109000 2022-07-06

Publications (1)

Publication Number Publication Date
WO2024009702A1 true WO2024009702A1 (ja) 2024-01-11

Family

ID=89453206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021860 WO2024009702A1 (ja) 2022-07-06 2023-06-13 電子制御サスペンションの制御装置および制御方法

Country Status (1)

Country Link
WO (1) WO2024009702A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05338425A (ja) * 1992-04-09 1993-12-21 Nissan Motor Co Ltd サスペンション制御装置
JP2009119948A (ja) * 2007-11-13 2009-06-04 Toyota Motor Corp サスペンション制御装置
JP2016190621A (ja) * 2015-03-31 2016-11-10 Kyb株式会社 サスペンション振動情報推定装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05338425A (ja) * 1992-04-09 1993-12-21 Nissan Motor Co Ltd サスペンション制御装置
JP2009119948A (ja) * 2007-11-13 2009-06-04 Toyota Motor Corp サスペンション制御装置
JP2016190621A (ja) * 2015-03-31 2016-11-10 Kyb株式会社 サスペンション振動情報推定装置

Similar Documents

Publication Publication Date Title
US12083845B2 (en) Suspension control apparatus
US9375990B2 (en) Suspension control device
US8718872B2 (en) Vehicle attitude controller
US8086371B2 (en) Control device for a wheel suspension system
WO2014002444A1 (ja) サスペンション制御装置
KR100517208B1 (ko) 차량의 앤티-롤 및 앤티-요 제어 방법
US8744681B2 (en) Damping force control device for vehicle
US20230086480A1 (en) Active suspension damping
JPH06247126A (ja) 自動車シャシを閉ループおよび/または開ループ制御するシステム
CN111137096B (zh) 用于可变阻尼力阻尼器的控制系统
JP2012136111A (ja) 車両制御システムおよび制御装置
WO2024009702A1 (ja) 電子制御サスペンションの制御装置および制御方法
JP7561287B2 (ja) サスペンションシステムおよびコントローラ
JP7507105B2 (ja) サスペンション制御装置
JP4486979B2 (ja) 減衰力可変ダンパの制御装置
WO2024127990A1 (ja) センサ異常検出装置
WO2023282275A1 (ja) 車両制御装置および車両制御システム
WO2024142840A1 (ja) 制御装置
WO2023048085A1 (ja) 車両制御装置および車両制御システム
JP7253516B2 (ja) サスペンションシステム
WO2024195493A1 (ja) 車両挙動推定方法および車両挙動推定装置
JP2023144845A (ja) 車両挙動制御装置
JP2015067163A (ja) サスペンション制御装置
JP5122342B2 (ja) サスペンションの制御装置
JPH06286450A (ja) エアサスペンション制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835238

Country of ref document: EP

Kind code of ref document: A1