WO2020195063A1 - 電気抵抗体、ハニカム構造体、および、電気加熱式触媒装置 - Google Patents

電気抵抗体、ハニカム構造体、および、電気加熱式触媒装置 Download PDF

Info

Publication number
WO2020195063A1
WO2020195063A1 PCT/JP2020/002109 JP2020002109W WO2020195063A1 WO 2020195063 A1 WO2020195063 A1 WO 2020195063A1 JP 2020002109 W JP2020002109 W JP 2020002109W WO 2020195063 A1 WO2020195063 A1 WO 2020195063A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
electric
electric resistor
honeycomb structure
particles
Prior art date
Application number
PCT/JP2020/002109
Other languages
English (en)
French (fr)
Inventor
剛大 徳野
淳一 成瀬
泰史 ▲高▼山
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202080024833.5A priority Critical patent/CN113631266A/zh
Priority to DE112020001421.5T priority patent/DE112020001421T5/de
Publication of WO2020195063A1 publication Critical patent/WO2020195063A1/ja
Priority to US17/448,735 priority patent/US20220013260A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C8/00Non-adjustable resistors consisting of loose powdered or granular conducting, or powdered or granular semi-conducting material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/18Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor the conductor being embedded in an insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C13/00Resistors not provided for elsewhere
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/022Heaters specially adapted for heating gaseous material
    • H05B2203/024Heaters using beehive flow through structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/03Heating of hydrocarbons

Definitions

  • the present disclosure relates to an electric resistor, a honeycomb structure, and an electric heating type catalyst device.
  • an electric heating type catalyst device in which a honeycomb structure supporting a catalyst is composed of an electric resistor such as SiC, and the honeycomb structure is heated by energization heating.
  • the electric resistor for example, a ceramic electric resistor made by firing a mixture of silicon particles, borosilicate glass or boric acid, and kaolin at 1250 ° C to 1300 ° C has been proposed. There is.
  • the conventional electric resistor In the conventional electric resistor, a conductive path is formed by point contact between silicon particles. Therefore, when the conventional electric resistor is exposed to a high temperature oxidizing atmosphere of 1000 ° C., oxidation proceeds at the contact portion between the silicon particles, and an insulating oxide film is formed. As a result, the conventional electric resistor has a problem that the conductive path is cut or narrowed at the contact portion between the silicon particles, and the electric resistance sharply increases.
  • An object of the present disclosure is to provide an electric resistor capable of suppressing an increase in electric resistance even when exposed to a high temperature oxidizing atmosphere of 1000 ° C.
  • One aspect of the present disclosure comprises a particle continuum in which a plurality of conductive particles are connected, and a matrix around the particle continuum.
  • the particle continuum is It is an electric resistor having a surface bonding portion formed by surface bonding of the conductive particles.
  • Another aspect of the present disclosure is a honeycomb structure including the above electric resistor.
  • Yet another aspect of the present disclosure is in an electrically heated catalyst device having the honeycomb structure.
  • the above electric resistor can suppress an increase in electric resistance even when exposed to a high temperature oxidizing atmosphere of 1000 ° C.
  • honeycomb structure can suppress an increase in electrical resistance even when exposed to a high-temperature oxidizing atmosphere of 1000 ° C., a constant temperature rise rate can be realized.
  • the electric heating type catalyst device can suppress an increase in the electric resistance of the honeycomb structure even when exposed to a high temperature oxidizing atmosphere of 1000 ° C. in an exhaust gas environment, so that a constant heating rate can be realized. Can be done.
  • the electric heating type catalyst device is also advantageous in improving thermal durability.
  • FIG. 1 is an explanatory view schematically showing a cross section of the electric resistor according to the first embodiment.
  • FIG. 2 is an explanatory view schematically showing a part of an EBSD image of a cross section of the electric resistor according to the first embodiment.
  • FIG. 3 is an explanatory view schematically showing the honeycomb structure of the second embodiment.
  • FIG. 4 is an explanatory view schematically showing the electric heating type catalyst device of the third embodiment.
  • FIG. 5 is an EBSD image of a cross section of the electric resistor of Sample 1 prepared in the experimental example.
  • FIG. 1 is an explanatory view schematically showing a cross section of the electric resistor according to the first embodiment.
  • FIG. 2 is an explanatory view schematically showing a part of an EBSD image of a cross section of the electric resistor according to the first embodiment.
  • FIG. 3 is an explanatory view schematically showing the honeycomb structure of the second embodiment.
  • FIG. 4 is an explanatory view schematically showing the electric heating type catalyst
  • FIG. 6 is an EBSD image of a cross section of the electric resistor of Sample 1 prepared in the experimental example (magnification is different from that of FIG. 5).
  • FIG. 7 is an EBSD image of a cross section of the electric resistor of sample 1C prepared in the experimental example.
  • the electric resistor of the present embodiment includes a particle continuum in which a plurality of conductive particles are connected, and a matrix around the particle continuum.
  • the conductive particles are in contact with each other. It has a surface joint formed by being joined.
  • the electric resistor of the present embodiment since the particle continuum has a surface bonding portion in which conductive particles are surface-bonded to each other, the surface bonding portion is formed even when exposed to a high temperature oxidizing atmosphere of 1000 ° C. It is unlikely that the conductive path will be cut or narrowed. Therefore, the electric resistor of the present embodiment can suppress an increase in electric resistance even when exposed to a high temperature oxidizing atmosphere of 1000 ° C.
  • the electric resistor of the present embodiment will be described with reference to FIGS. 1 and 2.
  • the electrical resistor 1 includes a particle continuum 10 and a matrix 11.
  • the particle continuum 10 is formed by connecting a plurality of conductive particles 100.
  • the particle continuum 10 has a surface bonding portion 101 formed by surface bonding of the conductive particles 100 to each other.
  • FIG. 1 illustrates a particle continuum 10 having a constricted portion 102 at a portion of the surface joining portion 101.
  • the arrow Y shown in FIG. 1 means a conductive path.
  • EBSD electron backscatter diffraction
  • the boundary line 101a is seen at the surface junction 101, which is considered to be due to the crystal orientation of the material constituting the conductive particles 100 being disturbed at the interview portion 101. Therefore, it is technically incorrect to determine that the conductive particles 100 are not connected to each other because of the existence of the boundary line 101a. This can be easily understood by comparing the SEM image and the EBSD image at the same location.
  • the average boundary line length of the surface joint 101 by EBSD described above can be 0.5 ⁇ m or more. According to this configuration, it becomes easy to obtain an effect of suppressing an increase in electric resistance when exposed to a high-temperature oxidizing atmosphere of 1000 ° C., and the oxidation resistance of the electric resistor 1 can be ensured.
  • the average boundary line length can be preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, still more preferably 4 ⁇ m or more. Further, the average boundary line length can be 10 ⁇ m or less from the viewpoints of productivity, uniformity when considering the cell wall thickness when the electric resistor 1 is used for the honeycomb structure, and the like.
  • the electric resistor used as a resistance heating element increases in electric resistance as it is used, and is generally replaced when the electric resistance becomes about three times, depending on the application. Therefore, it is preferable to use the material structure when the electric resistance increases three times as a threshold value.
  • the cross-sectional area of the surface joint portion 101 is reduced to about 1/3 by oxidation, and the electric resistance is increased by about 3 times. Therefore, by setting the average boundary line length of the surface joining portion 101 to 0.5 ⁇ m or more, the oxidation resistance of the electric resistor 1 can be ensured.
  • the following can be mentioned as one of the grounds for setting the oxide film thickness to 0.1 ⁇ m in the above.
  • silicon is considered as a material constituting the conductive particles. Oxidation of silicon proceeds by being exposed to an oxidizing atmosphere of about 1000 ° C. At the initial stage of oxidation, the interfacial reaction becomes rate-determining and the surface is oxidized by about 40 nm in a relatively short time.
  • the SiO 2 film which is an oxide film on the silicon surface, functions as a barrier for oxygen gas, so that the oxidation rate is suppressed. Therefore, the oxidation rate of silicon becomes moderate, but the oxidation proceeds to about 100 nm in a dry environment, and a wet oxidation process is used to further oxidize. Therefore, assuming the use of the electric resistor in a dry environment, it can be set that 100 nm of the silicon surface is oxidized during use.
  • the number of surface bonding portions 101 having a boundary line length of 0.5 ⁇ m or more is preferably 5 or more, more preferably 10 or more, still more preferably 20 or more. It can be configured. According to this configuration, the average boundary line length of the surface joint 101 can be easily set to 0.5 ⁇ m or more, and the effect of suppressing an increase in electrical resistance when exposed to a high-temperature oxidizing atmosphere of 1000 ° C. can be easily obtained. It becomes easy to improve the heat resistance of the body 1.
  • the number of existing parts can be determined by counting the number of surface joints 101 having a boundary line length of 0.5 ⁇ m or more in the EBSD image acquired in the range of 20 ⁇ m ⁇ 20 ⁇ m as described above.
  • the conductive particles 100 can be made of a material whose surface can be oxidized. According to this configuration, even when the insulation of the conductive particles 100 due to oxidation proceeds on the surface of the particle continuum 10, it is difficult for the surface joint 101 to undergo insulation due to oxidation. Therefore, according to this configuration, an electric resistor 1 that can easily enjoy the effect of suppressing an increase in electric resistance when exposed to a high-temperature oxidizing atmosphere of 1000 ° C. can be obtained. At this time, when the particle continuum 10 has a constricted portion 102 at the portion of the surface joining portion 101, the surface of the constricted portion 102 is particularly easily oxidized, so that the effect of adopting the above configuration is fully exhibited. can do.
  • the material constituting the conductive particles 100 for example, silicon particles (Si particles) and the like can be exemplified as suitable materials. A SiO 2 thin film is formed on the surface of silicon by oxidation.
  • the conductive particles 100 can be made of silicon particles. In the material in which the silicon particles play a major role in the conductive path, the increase in electrical resistance in a high-temperature oxidizing atmosphere at 1000 ° C. is considered to be due to the surface oxidation of the silicon particles cutting or narrowing the conductive path between the silicon particles. Be done.
  • the electric resistor 1 having the above configuration has a surface bonding portion 101 in which silicon particles are surface-bonded to each other, so that a sufficient bonding area is secured.
  • the matrix 11 exists around the particle continuum 10.
  • the electric resistor 1 can include a plurality of particle continuums 10, and the plurality of particle continuums 10 are electrically connected to each other directly or via the conductive phase 111. Can be done.
  • the oxide film formed by oxidizing the material constituting the conductive particles 100 is not included between the plurality of particle continuums 10 in the initial state. Is preferable.
  • Such a configuration can be realized by firing in an inert gas atmosphere such as an Ar gas atmosphere.
  • the matrix 11 can be specifically configured to have a conductive phase 111 and an insulating phase 112.
  • the conductive phase 111 can include, for example, a conductive coating portion 111a that covers the surface of the particle continuum 10. According to this configuration, adjacent particle continuums 10 are electrically connected to each other via the conductive coating portion 111a. It is advantageous for forming a conductive path because it is easily formed.
  • the conductive coating portion 111a may cover the entire surface of the particle continuum 10 or a part thereof.
  • the conductive coating portion 111a can be made of, for example, borosilicate from the viewpoint of forming a conductive path between the particle continuums 10.
  • the conductive phase 111 may contain conductive particles as a single substance, or may contain borosilicate or the like that does not cover the surface of the particle continuum 10.
  • the conductive particles that can be contained as a simple substance include silicon particles (Si particles) and VDD particles.
  • the silicide particles for example, at least one selected from the group consisting of TiSi 2 , TaSi 2 , and CrSi 2 , preferably CrSi 2 from the viewpoint of excellent balance between oxidation resistance and low volume expansion. Etc. can be exemplified.
  • the insulating phase 112 can be composed of, for example, insulating particles. Examples of the insulating particles include cordierite particles.
  • Corgerite has a lower coefficient of thermal expansion than alumina, mullite, and the like. Therefore, according to this configuration, it becomes easy to reduce the coefficient of thermal expansion of the electric resistor 1. Further, since cordierite melts at 1300 ° C. or higher, the material structure of the electric resistor 1 becomes dense, and it becomes difficult for oxygen gas to permeate into the material. Therefore, according to this configuration, it becomes easy to improve the oxidation resistance of the electric resistor 1.
  • the electric resistor 1 can include pores.
  • the matrix 11 is preferably composed of borosilicate and cordierite. According to this configuration, the balance of securing the conductive path, lowering the thermal expansion rate, and improving the oxidation resistance by suppressing the permeation of oxygen gas into the material by densification is excellent.
  • the matrix 11 may contain one or more kinds of fillers, materials for lowering the coefficient of thermal expansion, materials for increasing the thermal conductivity, materials for improving the strength, and the like, if necessary.
  • the electric resistor 1 can be configured such that the rate of change in electrical resistance after being held at 1000 ° C. for 50 hours in the atmosphere is 200% or less. According to this configuration, the oxidation resistance in a high temperature oxidizing atmosphere of 1000 ° C. is good.
  • the rate of change in electrical resistance is preferably 150% or less, more preferably 100% or less, still more preferably 50% or less, still more preferably in an electric heating type catalyst device, from the viewpoint of improving oxidation resistance and the like. From the viewpoint of easy maintenance of the circuit element, it can be 35% or less, and even more preferably 30% or less.
  • the value measured as follows is used. For each sample of the electric resistor 1, the electrical resistivity before (that is, initial) holding at 1000 ° C. for 50 hours and after holding the sample are measured.
  • the absolute value of the value calculated by the formula for (electrical resistivity) is defined as the electrical resistivity change rate.
  • the electric resistor 1 has an electric resistivity of 0.0001 ⁇ ⁇ m or more and 1 ⁇ ⁇ m or less and an electric resistance increase rate of 0 / K or more and 5.0 ⁇ 10 -4 in a temperature range of 25 ° C. to 500 ° C. It is good that it is / K or less. According to this configuration, since the temperature dependence of the electric resistor 1 is small, it is possible to obtain the electric resistor 1 in which a temperature distribution is unlikely to occur during energization heating and cracks due to thermal expansion and contraction are unlikely to occur.
  • the electric resistor 1 can be heated at a lower temperature at an early stage during energization heating, the material of the honeycomb structure is required to be heated at an early stage for the early activation of the catalyst. It is useful as.
  • the electrical resistivity of the electric resistor 1 varies depending on the required specifications of the system using the electric resistor 1, but from the viewpoint of reducing the electric resistance of the electric resistor 1, for example, it is preferably 0.5 ⁇ ⁇ m. Hereinafter, it can be more preferably 0.1 ⁇ ⁇ m or less, still more preferably 0.05 ⁇ ⁇ m or less.
  • the electrical resistivity of the electric resistor 1 is preferably 0.0002 ⁇ ⁇ m or more, more preferably 0.0005 ⁇ ⁇ m or more, still more preferably 0.001 ⁇ , from the viewpoint of increasing the amount of heat generated during energization heating. ⁇ It can be m or more.
  • the rate of increase in electrical resistance of the electrical resistor 1 is preferably 0.001 ⁇ 10 -6 / K or more, more preferably 0.01 ⁇ 10 from the viewpoint of facilitating the suppression of temperature distribution by energization heating. It can be -6 / K or more, more preferably 0.1 ⁇ 10 -6 / K or more. From the viewpoint that the electric resistance increase rate of the electric resistor 1 has an optimum electric resistance value for energization heating in the electric circuit, it is ideal that the electric resistance increase rate does not change, preferably 100 ⁇ 10. It can be -6 / K or less, more preferably 10 ⁇ 10 -6 / K or less, and even more preferably 1 ⁇ 10 -6 / K or less.
  • the honeycomb structure 2 of the present embodiment is configured to include the electric resistor 1 of the first embodiment.
  • the honeycomb structure 2 is composed of the electric resistor 1 of the first embodiment.
  • FIG. 3 specifically, in a cross-sectional view of the honeycomb perpendicular to the central axis of the honeycomb structure 2, a plurality of cells 20 adjacent to each other, a cell wall 21 forming the cells 20, and an outer peripheral portion of the cell wall 21 are formed.
  • An example is a structure having an outer peripheral wall 22 that is provided and integrally holds the cell wall 21.
  • a known structure can be applied to the honeycomb structure 2, and the structure is not limited to the structure shown in FIG. FIG.
  • FIG. 3 shows an example in which the cell 20 has a quadrangular cross section, but in addition, for example, the cell 20 may have a hexagonal cross section. Further, FIG. 3 shows an example in which the honeycomb structure 2 has a cylindrical shape, but in addition, for example, the honeycomb structure 2 may have a cross-sectional track shape or the like.
  • the honeycomb structure 2 of the present embodiment is configured to include the electric resistor 1 of the first embodiment. Therefore, the honeycomb structure 2 of the present embodiment can suppress an increase in the electrical resistance of the honeycomb structure 2 even when exposed to a high temperature oxidizing atmosphere of 1000 ° C. Since the amount of heat generated increases in proportion to the electrical resistance, according to the honeycomb structure 2 of the present embodiment, a constant heating rate can be realized.
  • the electrically heated catalyst device 3 of the present embodiment has the honeycomb structure 2 of the second embodiment.
  • the electrically heated catalyst device 3 includes a honeycomb structure 2, an exhaust gas purification catalyst (not shown) supported on the cell wall 21 of the honeycomb structure 2, and the honeycomb structure 2. It has a pair of electrodes 31 and 32 arranged to face the outer peripheral wall 22, and a voltage applying unit 33 that applies and controls a voltage to the electrodes 31 and 32.
  • a voltage is applied to the electrode 31 and the electrode 32 through the rod-shaped electrode terminal 310 and the rod-shaped electrode terminal 320, respectively.
  • a known structure can be applied to the electrically heated catalyst device 3, and the structure is not limited to that shown in FIG. Further, the form of voltage application may be any form or combination such as direct current, alternating current, pulsed voltage application and the like.
  • the electric heating type catalyst device 3 of the present embodiment has the honeycomb structure 2 of the second embodiment. Therefore, the electric heating type catalyst device 3 of the present embodiment can suppress an increase in the electric resistance of the honeycomb structure 2 even when exposed to a high temperature oxidizing atmosphere of 1000 ° C. in an exhaust gas environment, and is therefore constant. The heating rate can be realized. Further, the electric heating type catalyst device 3 of the present embodiment is also advantageous in improving the thermal durability.
  • sample 1 sample 2, sample 3, sample 1C, sample 2C- Silicon (Si) particles (average particle diameter 7 ⁇ m), boric acid and cordierite were mixed at the mass ratio shown in Table 1. Then, 4% by mass of methyl cellulose was added as a binder to this mixture, water was added, and the mixture was mixed. Next, the obtained mixture was molded into pellets by an extrusion molding machine, dried at 80 ° C. in a constant temperature bath, and then degreased. The degreasing conditions were air atmosphere / normal pressure, degreasing temperature 700 ° C., and degreasing time 3 hours.
  • the degreased fired body was calcined.
  • the calcination conditions were Ar gas atmosphere, normal pressure, calcination temperature shown in Table 1, and calcination time of 30 minutes.
  • the sample that has not been calcined is described as "none" (specifically, sample 1C).
  • the obtained fired body was main fired.
  • the conditions for the main firing were an Ar gas atmosphere, normal pressure, the main firing temperature shown in Table 1, and a firing time of 30 minutes.
  • the obtained fired body was pre-oxidized (oxidation-aged).
  • the conditions for pre-oxidation were air atmosphere / normal pressure, treatment temperature 1000 ° C., and treatment time 10 hours.
  • electrical resistors of Sample 1, Sample 2, Sample 3, Sample 1C, and Sample 2C having a shape of 5 mm ⁇ 5 mm ⁇ 25 mm were obtained.
  • sample 3C and sample 4C- Same as sample 1 except that a mixture of silicon particles, boric acid and kaolin in the mass ratio shown in Table 1 was used, no calcining was performed, and the above pre-oxidation treatment was not performed.
  • the electric resistors of Sample 3C and Sample 4C were obtained.
  • FIG. 5 the observation result of the electric resistor of sample 1 is shown in FIG. 5 as a representative example of sample 1, sample 2, and sample 3.
  • the magnification of the EBSD image in FIG. 5 is 3500 times.
  • FIG. 6 is an enlarged view of the joint between the silicon particles to make it easier to see the joint between the silicon particles.
  • the magnification of the EBSD image in FIG. 6 is 10000 times.
  • the observation result of the electric resistor of the sample 1C is shown in FIG.
  • the magnification of the EBSD image in FIG. 7 is 3500 times.
  • the triangular figure shown on the right side of the EBSD image in FIGS. 5 and 7 shows the crystal orientation of silicon.
  • the electric resistors 1 of Sample 1, Sample 2, and Sample 3 are particles formed by connecting silicon particles as conductive particles 100 used as raw materials by sintering by high-temperature firing. It was confirmed that the continuum 10 and the matrix 11 arranged around the particle continuum 10 were provided. Further, as shown in FIGS. 5 and 6, in the electric resistor 1 of the sample 1, the sample 2, and the sample 3, the particle continuum 10 has a surface bonding portion 101 in which the silicon particles 100 are surface-bonded to each other. It was confirmed that it was done. Further, in the EBSD images of FIGS. 5 and 6, the matrix 11 is a region around the particle continuum 10.
  • This region includes cordierite particles used as raw materials, borosilicate particles, silicon particles whose crystal orientation could not be specified, and the like.
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • boron was detected on the surface of the silicon particles constituting the particle continuum 10, so that at least borosilicate was used. It is considered that a part of the particle continuum 10 is formed on the surface of the particle continuum 10.
  • This borosilicate is formed by reacting the surface of silicon particles used as a raw material with boric acid, and can be said to be derived from silicon and boric acid. From the above results, it can be said that in the electric resistors 1 of Sample 1, Sample 2, and Sample 3, a conductive path is formed by silicon and borosilicate.
  • the average boundary line length of the surface junction by EBSD was determined by the method described above.
  • the boundary line length of each surface joint (7 places) circled is shown.
  • the average boundary line length of the electric resistor of Sample 1 was 1.2 ⁇ m.
  • the number of existing surface joints 101 having a boundary line length of 0.5 ⁇ m or more by EBSD was measured by the method described above. As a result, the number of the sample 1 present in the electric resistor was 7.
  • the initial resistivity of the electrical resistors of each sample was measured.
  • the electrical resistivity of a prismatic sample having a size of 5 mm ⁇ 5 mm ⁇ 18 mm was measured by a four-terminal method using a thermoelectric characterization device (“ZEM-2” manufactured by ULVAC Riko Co., Ltd.). The measurement temperature in this measurement is 25 ° C.
  • the electrical resistors of each sample were then held in the air at 1000 ° C. for 50 hours. Then, in the same manner as described above, the electrical resistivity of the electrical resistor of each sample after the holding was measured.
  • the rate of change in electrical resistance of the electrical resistor of each sample was measured by the above-mentioned calculation formula.
  • the electrical resistors of Sample 3C and Sample 4C are held in the air at 1000 ° C. for 10 hours, the electrical resistivity of the electrical resistivity after the holding is measured, and the electrical resistivity change rate is similarly used.
  • the electrical resistivity change rate is similarly used.
  • Table 1 summarizes the preparation conditions for the electrical resistors of each sample and various measurement results.
  • the electrical resistors of Sample 1, Sample 2, and Sample 3 were able to suppress a rapid increase in electrical resistance even when exposed to a high-temperature oxidizing atmosphere at 1000 ° C.
  • the particle continuum has a surface bonding portion in which silicon particles are surface-bonded to each other, so that even when exposed to a high-temperature oxidizing atmosphere at 1000 ° C., the conductive path can be cut at the surface bonding portion. This is because stenosis was unlikely to occur.
  • the average boundary line length of the surface joint by EBSD is 0.5 ⁇ m or more, it becomes easy to obtain an effect of suppressing an increase in electric resistance when exposed to a high temperature oxidizing atmosphere of 1000 ° C. It was easy to improve the heat resistance of 1.
  • the electrical resistors of Sample 1C and Sample 2C as the firing temperature decreased, the electrical resistance tended to increase when exposed to a high-temperature oxidizing atmosphere of 1000 ° C. It is considered that this is because the particle continuum having the surface junction is not formed when the firing temperature is low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Resistance Heating (AREA)
  • Catalysts (AREA)

Abstract

電気抵抗体(1)は、複数の導電性粒子(100)が繋がってなる粒子連続体(10)と、粒子連続体(10)の周囲にあるマトリックス(11)と、を備える。粒子連続体(10)は、導電性粒子(100)同士が面接合されてなる面接合部(101)を有している。導電性粒子(100)としては、シリコン粒子を好適に用いることができる。面接合部(101)の平均境界線長さは、0.5μm以上であることが好ましい。

Description

電気抵抗体、ハニカム構造体、および、電気加熱式触媒装置 関連出願の相互参照
 本出願は、2019年3月27日に出願された日本出願番号2019-061701号に基づくもので、ここにその記載内容を援用する。
 本開示は、電気抵抗体、ハニカム構造体、および、電気加熱式触媒装置に関する。
 従来、様々な分野において、通電加熱に電気抵抗体が用いられている。例えば、車両分野では、触媒を担持するハニカム構造体をSiC等の電気抵抗体より構成し、通電加熱によってハニカム構造体を発熱させる電気加熱式触媒装置が公知である。
 電気抵抗体としては、他にも例えば、シリコン粒子と、ホウケイ酸ガラスまたはホウ酸と、カオリンとの混合物を、1250℃~1300℃にて焼成してなるセラミック製の電気抵抗体が提案されている。
特開2019-12682号公報
 従来の電気抵抗体は、シリコン粒子同士が点接触することにより導電パスが形成されている。そのため、従来の電気抵抗体は、1000℃の高温酸化雰囲気に曝されると、シリコン粒子同士の接触部分にて酸化が進み、絶縁性の酸化膜が形成される。その結果、従来の電気抵抗体は、シリコン粒子同士の接触部分にて導電パスが切断あるいは狭窄されて電気抵抗が急激に増大するという課題がある。
 本開示は、1000℃の高温酸化雰囲気に曝された場合でも電気抵抗の増加を抑制することができる電気抵抗体を提供することを目的とする。
 本開示の一態様は、複数の導電性粒子が繋がってなる粒子連続体と、上記粒子連続体の周囲にあるマトリックスと、を備え、
 上記粒子連続体は、
 上記導電性粒子同士が面接合されてなる面接合部を有している、電気抵抗体にある。
 本開示の他の態様は、上記電気抵抗体を含んで構成されている、ハニカム構造体にある。
 本開示のさらに他の態様は、上記ハニカム構造体を有する、電気加熱式触媒装置にある。
 上記電気抵抗体は、1000℃の高温酸化雰囲気に曝された場合でも電気抵抗の増加を抑制することができる。
 上記ハニカム構造体は、1000℃の高温酸化雰囲気に曝された場合でも電気抵抗の増加を抑制することができるので、一定した昇温速度を実現することができる。
 上記電気加熱式触媒装置は、排ガス環境下にて1000℃の高温酸化雰囲気に曝された場合でもハニカム構造体の電気抵抗の増加を抑制することができるので、一定した昇温速度を実現することができる。また、上記電気加熱式触媒装置は、熱耐久性の向上にも有利である。
 なお、請求の範囲に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本開示の技術的範囲を限定するものではない。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1に係る電気抵抗体の断面を模式的に示した説明図であり、 図2は、実施形態1に係る電気抵抗体の断面のEBSD像の一部を模式的に示した説明図であり、 図3は、実施形態2のハニカム構造体を模式的に示した説明図であり、 図4は、実施形態3の電気加熱式触媒装置を模式的に示した説明図であり、 図5は、実験例において作製した試料1の電気抵抗体の断面のEBSD像であり、 図6は、実験例において作製した試料1の電気抵抗体の断面のEBSD像(図5とは倍率が異なるもの)であり、 図7は、実験例において作製した試料1Cの電気抵抗体の断面のEBSD像である。
 本実施形態の電気抵抗体は、複数の導電性粒子が繋がってなる粒子連続体と、上記粒子連続体の周囲にあるマトリックスと、を備え、上記粒子連続体は、上記導電性粒子同士が面接合されてなる面接合部を有している。
 本実施形態の電気抵抗体は、導電性粒子同士が面接合されてなる面接合部を粒子連続体が有しているので、1000℃の高温酸化雰囲気に曝された場合でも、面接合部にて導電パスの切断や狭窄が生じ難い。そのため、本実施形態の電気抵抗体は、1000℃の高温酸化雰囲気に曝された場合でも電気抵抗の増加を抑制することができる。以下、本実施形態の電気抵抗体について図1および図2を用いて説明する。
(実施形態1)
 図1に例示されるように、電気抵抗体1は、粒子連続体10と、マトリックス11と、を備えている。粒子連続体10は、複数の導電性粒子100が繋がることによって構成されている。粒子連続体10は、導電性粒子100同士が面接合されてなる面接合部101を有している。なお、図1では、面接合部101の部分にてくびれ部102を有する粒子連続体10が例示されている。また、図1に示す矢印Yは、導電パスを意味している。
 粒子連続体10が面接合部101を有することは、電気抵抗体1の断面について電子後方散乱回折(以下、単にEBSDということがある。)を実施することにより確認することができる。EBSDは、測定サンプルの持つ結晶構造の情報を基に連続的に取り込んだパターンの結晶方位を算出することにより、結晶粒の方位分布を解析する手法として知られているものである。具体的には、図2に例示されるように、EBSD装置を用いた結晶方位解析により、粒子連続体10を構成する導電性粒子100同士の間に境界線101aがある場合に、粒子連続体10が面接合部101を有していると判断される。なお、EBSD像において、面接合部101に境界線101aが見られるのは、面接合部101にて導電性粒子100を構成する材料の結晶方位が乱れることによるものと考えられる。したがって、境界線101aの存在を理由に、導電性粒子100同士が連結されていないと判断することは技術的に正しくない。このことは、同じ箇所についてSEM像とEBSD像とを見比べることなどによって容易に理解することができる。
 上述したEBSDによる面接合部101の平均境界線長さは、0.5μm以上とすることができる。この構成によれば、1000℃の高温酸化雰囲気に曝された際の電気抵抗の増加抑制効果を得やすくなり、電気抵抗体1の耐酸化性を確実なものとすることができる。平均境界線長さは、好ましくは、1μm以上、より好ましくは、2μm以上、さらに好ましくは、4μm以上とすることができる。また、平均境界線長さは、生産性、電気抵抗体1をハニカム構造体に用いた際のセル壁厚みを考慮したときの均一性等の観点から、10μm以下とすることができる。平均境界線長さは、電気抵抗体1の断面につきEBSD像を5視野取得し、全ての粒子連続体10について面接合部101の境界線101aの長さを測定し、得られた測定値の平均値とされる。なお、視野内から視野外へ延びている境界線101aについては、正確な長さが不明なためカウントしない。また、EBSDによる面接合部101の平均境界線長さの測定に当たっては、倍率を増大させ過ぎると、複数の粒子連続体10が1つの視野内に入らなくなるため、1視野に複数の粒子連続体10が入るように視野をとる。具体的には、20μm×20μmの範囲でEBSD像を取得することができる。倍率は3500倍とすることができる。
 なお、抵抗発熱体として用いられる電気抵抗体は、使用するに従って電気抵抗が増加し、用途にもよるが一般に電気抵抗が3倍程度になった際に交換されることが多い。よって、電気抵抗が3倍に増加する際の材料構造を閾値とするのがよい。具体的には、電気抵抗は、R=ρ×L/A(但し、R[Ω]:電気抵抗、ρ[Ω・m]:電気抵抗率、L[m]:長さ、A[m]:断面積)の式にて計算される。導電性粒子100間の面接合部101にて電流経路の狭窄が生じるため、面接合部101の断面積の減少により、高温酸化雰囲気での電気抵抗の増加が支配されることになる。ここで、抵抗発熱体に使用される導電性粒子を構成する材料の酸化膜厚を100nmとしたとき、面接合部101の導電面積が低下し、電気抵抗換算にて3倍となるときの境界線長さは0.5μmとなる。より具体的には、面接合部101の直径が0.5μmの時、面接合部101の断面積は0.25×0.25×3.14=0.196μmとなる。面接合部101が外表面から0.1μm内方まで酸化されるとすると、面接合部101の直径は0.3μmとなり、面接合部101の断面積は、0.15×0.15×3.14=0.071μmとなる。つまり、酸化により面接合部101の断面積が約1/3となり、電気抵抗が約3倍増加することになる。したがって、面接合部101の平均境界線長さを0.5μm以上とすることにより、電気抵抗体1の耐酸化性を確実なものとすることができる。なお、上記において酸化膜厚を0.1μmとする根拠の一つとして、以下を挙げることができる。例えば、後述するように、導電性粒子を構成する材料として例えばシリコンを考える。シリコンの酸化は、1000℃程度の酸化雰囲気下に曝されることにより進行する。酸化初期には界面反応が律速となり比較的短時間で40nm程度表面が酸化する。40nm以上酸化させる場合には、シリコン表面の酸化膜であるSiO膜が酸素ガスのバリアとして機能するために酸化速度が抑制されることが知られている。そのため、シリコンの酸化速度は穏やかになるが、ドライ環境下では100nm程度まで酸化が進み、それ以上酸化させるためには、ウェット酸化のプロセスが用いられる。したがって、ドライ環境下での電気抵抗体の使用を想定すると、使用中にシリコン表面の100nmが酸化すると設定することができる。
 電気抵抗体1は、境界線長さが0.5μm以上である面接合部101の存在個数が、好ましくは、5個以上、より好ましくは、10個以上、さらに好ましくは、20個以上である構成とすることができる。この構成によれば、面接合部101の平均境界線長さを0.5μm以上としやすくなり、1000℃の高温酸化雰囲気に曝された際の電気抵抗の増加抑制効果を得やすくなり、電気抵抗体1の耐熱性を向上させやすくなる。なお、上記存在個数は、上述のように20μm×20μmの範囲で取得したEBSD像について、境界線長さが0.5μm以上である面接合部101の個数を数えることによって求めることができる。
 導電性粒子100は、表面が酸化しうる材料より構成されることができる。この構成によれば、導電性粒子100の酸化に伴う絶縁化が粒子連続体10の表面にて進行した場合でも、面接合部101では酸化に伴う絶縁化が生じ難い。そのため、この構成によれば、1000℃の高温酸化雰囲気に曝された場合における電気抵抗の増加抑制効果を享受しやすい電気抵抗体1が得られる。この際、粒子連続体10が面接合部101の部分にてくびれ部102を有する場合には、くびれ部102の表面が特に酸化されやすいことから、上記構成を採用したことによる効果を十分に発揮することができる。
 導電性粒子100を構成する材料としては、例えば、シリコン粒子(Si粒子)などを好適なものとして例示することができる。なお、シリコンは、酸化によって表面にSiO薄膜が形成される。電気抵抗体1において、導電性粒子100はシリコン粒子より構成することができる。シリコン粒子が主な導電パスを担う材料において、1000℃の高温酸化雰囲気下における電気抵抗の増加は、シリコン粒子の表面酸化により、シリコン粒子間の導電パスが切断あるいは狭窄されることによるものと考えられる。これに対し、上記構成を有する電気抵抗体1では、シリコン粒子同士が面接合されてなる面接合部101を有することにより、十分な接合面積が確保されている。粒子連続体10を構成するシリコン粒子表面が酸化されると、粒子連続体10の表面に絶縁性のSiO薄膜が形成されるが、ある程度以上酸化が進行するとSiO薄膜がガスバリア膜となるため、酸素ガスが面接合部101の内側に侵入し難くなり酸化が抑制される。そのため、上記構成によれば、導電性粒子100としてシリコン粒子を用いた場合でも、導電パスの切断や狭窄が起こり難くなり、耐酸化性を向上させることができる。
 マトリックス11は、粒子連続体10の周囲に存在している。なお、電気抵抗体1は、図1に例示されるように、複数の粒子連続体10を含むことができ、複数の粒子連続体10同士は互いに直接または導電相111を介して電気的に接続されることができる。この場合、導電パスの確保等の観点から、複数の粒子連続体10同士の間には、初期状態において、導電性粒子100を構成する材料が酸化されて形成された酸化膜が含まれないことが好ましい。このような構成は、Arガス雰囲気等の不活性ガス雰囲気中で焼成することにより実現することができる。
 マトリックス11は、図1に例示されるように、具体的には、導電相111と、絶縁相112と、を有する構成とすることができる。導電相111は、例えば、粒子連続体10の表面を覆う導電被覆部111aを含むことができる、この構成によれば、導電被覆部111aを介して隣接する粒子連続体10同士が電気的に接続されやすくなるので、導電パスの形成に有利となる。なお、導電被覆部111aは、粒子連続体10の表面全体を覆っていてもよいし、一部を覆っていてもよい。導電被覆部111aは、粒子連続体10間の導電パスの形成などの観点から、例えば、ホウケイ酸塩などより構成することができる。また、導電相111は、他にも導電性粒子を単体で含んでいてもよし、粒子連続体10の表面を覆っていないホウケイ酸塩などを含むこともできる。単体で含まれうる導電性粒子としては、例えば、シリコン粒子(Si粒子)、シリサイド粒子などを例示することができる。シリサイド粒子としては、例えば、TiSi、TaSi、および、CrSiからなる群より選択される少なくとも1種、好ましくは、耐酸化性と低体積膨張とのバランスに優れるなどの観点から、CrSiなどを例示することができる。一方、絶縁相112は、例えば、絶縁性粒子より構成することができる。絶縁性粒子としては、例えば、コージェライト粒子などを例示することができる。コージェライトは、アルミナやムライト等に比べ、熱膨張率が低い。そのため、この構成によれば、電気抵抗体1の低熱膨張率化を図りやすくなる。さらに、コージェライトは1300℃以上で溶融するため、電気抵抗体1の材料構造が緻密化し、酸素ガスが材料内部に浸透し難くなる。そのため、この構成によれば、電気抵抗体1の耐酸化性を向上させやすくなる。なお、電気抵抗体1は、気孔を含むことができる。
 マトリックス11は、ホウケイ酸塩と、コージェライトとを含む構成であるとよい。この構成によれば、導電パスの確保、低熱膨張率化、緻密化による酸素ガスの材料内部への浸透抑制による耐酸化性の向上などのバランスに優れる。なお、マトリックス11は、他にも、フィラー、熱膨張率を低下させる材料、熱伝導率を上昇させる材料、強度を向上させる材料などを必要に応じて1種または2種以上含むことができる。
 電気抵抗体1は、大気中、1000℃で50時間保持した後の電気抵抗変化率が200%以下である構成とすることができる。この構成によれば、1000℃の高温酸化雰囲気下における耐酸化性が良好なものとなる。電気抵抗変化率は、耐酸化性の向上等の観点から、好ましくは、150%以下、より好ましくは、100%以下、さらに好ましくは、50%以下、さらにより好ましくは、電気加熱式触媒装置における回路素子を維持しやすいなどの観点から、35%以下、さらにより一層好ましくは、30%以下とすることができる。
 なお、電気抵抗変化率は、次のようにして測定される値が用いられる。電気抵抗体1のサンプルにつき、大気中、1000℃で50時間保持する前(つまり、初期)と当該保持した後の電気抵抗率をそれぞれ測定する。なお、電気抵抗体1の電気抵抗率は、四端子法により測定される測定値(n=3)の平均値である。そして、100×{(1000℃で50時間保持した後の電気抵抗率)-(1000℃で50時間保持する前の初期の電気抵抗率)}/(1000℃で50時間保持する前の初期の電気抵抗率)の計算式で算出される値の絶対値を、電気抵抗変化率とする。
 電気抵抗体1は、25℃~500℃までの温度範囲において、電気抵抗率が0.0001Ω・m以上1Ω・m以下、かつ、電気抵抗上昇率が0/K以上5.0×10-4/K以下であるとよい。この構成によれば、電気抵抗体1の温度依存性が小さいため、通電加熱時に内部に温度分布が生じ難く、熱膨収縮によるクラックが生じ難い電気抵抗体1が得られる。また、上記構成によれば、通電加熱時に、電気抵抗体1を、より低温で早期に発熱させることができるので、触媒の早期活性化のために早期に温めることが求められるハニカム構造体の材料として有用である。
 電気抵抗体1の電気抵抗率は、電気抵抗体1を用いるシステムの要求仕様等によっても異なるが、電気抵抗体1の低電気抵抗化などの観点から、例えば、好ましくは、0.5Ω・m以下、より好ましくは、0.1Ω・m以下、さらに好ましくは、0.05Ω・m以下とすることができる。電気抵抗体1の電気抵抗率は、通電加熱時の発熱量増大などの観点から、好ましくは、0.0002Ω・m以上、より好ましくは、0.0005Ω・m以上、さらに好ましくは、0.001Ω・m以上とすることができる。
 電気抵抗体1の電気抵抗上昇率は、通電加熱による温度分布の抑制を図りやすくなるなどの観点から、好ましくは、0.001×10-6/K以上、より好ましくは、0.01×10-6/K以上、さらに好ましくは、0.1×10-6/K以上とすることができる。電気抵抗体1の電気抵抗上昇率は、電気回路において通電加熱に最適な電気抵抗値が存在するという観点からは、電気抵抗上昇率は変化しないことが理想的であり、好ましくは、100×10-6/K以下、より好ましくは、10×10-6/K以下、さらに好ましくは、1×10-6/K以下とすることができる。
 なお、電気抵抗体1の電気抵抗率は、四端子法により測定される測定値(n=3)の平均値である。また、電気抵抗体1の電気抵抗上昇率は、上記方法により電気抵抗体1の電気抵抗率を測定した後、次の計算方法によって算出することができる。先ず、50℃、200℃、400℃の3点で電気抵抗率を測定する。400℃の電気抵抗率から50℃の電気抵抗率を引き算して導出した値を、400℃と50℃の温度差350℃で割り算して電気抵抗上昇率を算出する。
(実施形態2)
 実施形態2のハニカム構造体について、図3を用いて説明する。なお、実施形態2以降において用いられる符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
 図3に例示されるように、本実施形態のハニカム構造体2は、実施形態1の電気抵抗体1を含んで構成されている。本実施形態では、具体的には、ハニカム構造体2は、実施形態1の電気抵抗体1より構成されている。図3では、具体的には、ハニカム構造体2の中心軸に垂直なハニカム断面視で、互いに隣接する複数のセル20と、セル20を形成するセル壁21と、セル壁21の外周部に設けられてセル壁21を一体に保持する外周壁22と、を有する構造が例示されている。なお、ハニカム構造体2には、公知の構造を適用することができ、図3の構造に限定されるものではない。図3は、セル20を断面四角形状とした例であるが、他にも、例えば、セル20を断面六角形状などとすることもできる。また、図3は、ハニカム構造体2を円柱形状とした例であるが、他にも、例えば、ハニカム構造体2を断面トラック形状などとすることもできる。
 本実施形態のハニカム構造体2は、実施形態1の電気抵抗体1を含んで構成されている。そのため、本実施形態のハニカム構造体2は、1000℃の高温酸化雰囲気に曝された場合でもハニカム構造体2の電気抵抗の増加を抑制することができる。発熱量は電気抵抗に比例して増加するため、本実施形態のハニカム構造体2によれば、一定した昇温速度を実現することができる。
(実施形態3)
 実施形態3の電気加熱式触媒装置について、図4を用いて説明する。図4に例示されるように、本実施形態の電気加熱式触媒装置3は、実施形態2のハニカム構造体2を有している。本実施形態では、具体的には、電気加熱式触媒装置3は、ハニカム構造体2と、ハニカム構造体2のセル壁21に担持された排ガス浄化触媒(不図示)と、ハニカム構造体2の外周壁22に対向配置された一対の電極31、32と、電極31、32に電圧を印加し、制御する電圧印加部33とを有している。なお、電極31、電極32には、それぞれ、棒状電極端子310、棒状電極端子320を通じて電圧が印加される。なお、電気加熱式触媒装置3には、公知の構造を適用することができ、図4の構造に限定されるものではない。また、電圧印加の形態も、直流、交流、パルス状の電圧印加等、いずれの形態、および組み合わせであってもよい。
 本実施形態の電気加熱式触媒装置3は、実施形態2のハニカム構造体2を有している。そのため、本実施形態の電気加熱式触媒装置3は、排ガス環境下にて1000℃の高温酸化雰囲気に曝された場合でもハニカム構造体2の電気抵抗の増加を抑制することができるので、一定した昇温速度を実現することができる。また、本実施形態の電気加熱式触媒装置3は、熱耐久性の向上にも有利である。
(実験例)
-試料1、試料2、試料3、試料1C、試料2Cの作製-
 シリコン(Si)粒子(平均粒子径7μm)とホウ酸とコージェライトとを、表1に示す質量比で混合した。次いで、この混合物にバインダーとしてメチルセルロースを4質量%添加し、水を加え、混合した。次いで、得られた混合物を押し出し成形機にてペレット状に成形し、恒温槽にて80℃で乾燥させた後、脱脂した。脱脂の条件は、大気雰囲気・常圧、脱脂温度700度、脱脂時間3時間とした。
 次いで、脱脂した焼成体を仮焼した。仮焼条件は、Arガス雰囲気下・常圧、表1に示す仮焼温度、仮焼時間30分とした。なお、表1において、仮焼を行わなかった試料については「なし」と表記されている(具体的には、試料1C)。
 次いで、得られた焼成体を本焼成した。本焼成の条件は、Arガス雰囲気下・常圧、表1に示す本焼成温度、焼成時間30分とした。
 次いで、得られた焼成体を予備酸化処理(酸化エージング)した。予備酸化の条件は、大気雰囲気・常圧、処理温度1000℃、処理時間10時間とした。これにより、5mm×5mm×25mmの形状を有する試料1、試料2、試料3、試料1C、試料2Cの電気抵抗体を得た。
-試料3C、試料4Cの作製-
 シリコン粒子とホウ酸とカオリンとを、表1に示す質量比で混合した混合物を用いた点、仮焼を行なわなかった点、上記予備酸化処理を行わなかった点以外は、試料1と同様にして、試料3C、試料4Cの電気抵抗体を得た。
(EBSD観察)
 各試料の電気抵抗体の断面EBSD観察を実施した。EBSD装置としては、日本電子製、JEOL-JSM7100Mを用いた。これにより、シリコンの結晶方位を検出し、結晶方位ごとに色分けされたEBSD像を得た。なお、本実験例では、試料1、試料2、試料3の代表例として、試料1の電気抵抗体の観察結果を図5に示す。図5のEBSD像の倍率は、3500倍である。試料1の電気抵抗体の観察結果(拡大)を図6に示す。まお、図6は、シリコン粒子間の接合部を拡大し、シリコン粒子間の接合部を見やすくしたものである。図6のEBSD像の倍率は、10000倍である。試料1Cの電気抵抗体の観察結果を図7に示す。図7のEBSD像の倍率は、3500倍である。上記図5および図7においてEBSD像の右側に示した三角形状の図は、シリコンの結晶方位を示したもものである。
 図5、図6に示されるように、試料1、試料2、試料3の電気抵抗体1は、原料に用いた導電性粒子100としてのシリコン粒子同士が高温焼成による焼結により繋がってなる粒子連続体10と、粒子連続体10の周囲に配置されたマトリックス11とを備えていることが確認された。また、図5、図6に示されるように、試料1、試料2、試料3の電気抵抗体1では、粒子連続体10が、シリコン粒子100同士が面接合されてなる面接合部101を有していることが確認された。また、図5、図6のEBSD像においてマトリックス11は、粒子連続体10の周りの領域となる。この領域には、原料に用いたコージェライト粒子、ホウケイ酸塩、結晶方位の特定ができなかったシリコン粒子などが含まれている。なお、別途行った飛行時間型二次イオン質量分析法(TOF-SIMS)による観察によれば、粒子連続体10を構成するシリコン粒子の表面にホウ素が検出されたことから、ホウケイ酸塩の少なくとも一部は粒子連続体10の表面に形成されていると考えられる。このホウケイ酸塩は、原料に用いたシリコン粒子の表面とホウ酸とが反応して形成されたものであり、シリコンとホウ酸とに由来するものであるといえる。上記の結果から、試料1、試料2、試料3の電気抵抗体1では、シリコンとホウケイ酸塩とによって導電パスが形成されているということができる。
 これに対し、図7に示されるように、試料1C、試料2Cの電気抵抗体では、シリコン粒子同士は点接触しているだけであり、面接合されていないことが確認された。これは、焼成温度の最高温度が試料1等の焼成時よりも低温であったため、シリコン粒子同士の焼結によるネッキング(シリコン粒子同士の焼結による化学的結合)が十分に進行しなかったためであると考えられる。
 試料1の電気抵抗体について、上述した方法により、EBSDによる面接合部の平均境界線長さを求めた。なお、図5中に、丸で囲んだ各面接合部(7か所)の境界線長さを記載した。その結果、試料1の電気抵抗体における平均境界線長さは、1.2μmであった。また、試料1の電気抵抗体について、上述した方法により、EBSDによる面接合部の境界線長さが0.5μm以上である面接合部101の存在個数を測定した。その結果、試料1の電気抵抗体における上記存在個数は、7個であった。
(電気抵抗率の測定)
 各試料の電気抵抗体について、初期の電気抵抗率を測定した。なお、電気抵抗率は、5mm×5mm×18mmの角柱サンプルについて、熱電特性評価装置(アルバック理工社製、「ZEM-2」)を用い、四端子法で測定した。なお、本測定における測定温度は、25℃である。次いで、各試料の電気抵抗体を、大気中、1000℃で50時間保持した。次いで、上記と同様にして、当該保持後の各試料の電気抵抗体の電気抵抗率を測定した。次いで、上述した計算式にて、各試料の電気抵抗体の電気抵抗変化率を測定した。但し、試料3C、試料4Cの電気抵抗体については、大気中、1000℃で10時間保持し、当該保持後の電気抵抗体の電気抵抗率を測定し、これを用いて同様に電気抵抗変化率を測定した。
 表1に、各試料の電気抵抗体の作製条件、各種測定結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 上記結果によれば、以下のことがわかる。試料1C、試料2C、試料3C、試料4Cの電気抵抗体は、1000℃の高温酸化雰囲気に曝された際にシリコン粒子同士の接触部分にて酸化が進行し、絶縁性の酸化膜であるSiO膜が形成されて導電パスが切断され、電気抵抗が急激に増加した。これは、これらの電気抵抗体はシリコン粒子同士が点接触しているためであると考えられる。
 これに対し、試料1、試料2、試料3の電気抵抗体は、1000℃の高温酸化雰囲気に曝された場合でも、電気抵抗の急激な増加を抑制することができた。これは、シリコン粒子同士が面接合されてなる面接合部を粒子連続体が有しているために、1000℃の高温酸化雰囲気に曝された場合でも、面接合部にて導電パスの切断や狭窄が生じ難かったためである。
 また、EBSDによる面接合部の平均境界線長さが0.5μm以上である場合には、1000℃の高温酸化雰囲気に曝された際の電気抵抗の増加抑制効果を得やすくなり、電気抵抗体1の耐熱性を向上させやすかった。なお、試料1C、試料2Cの電気抵抗体の結果によれば、焼成温度が低くなるにつれ、1000℃の高温酸化雰囲気に曝された際の電気抵抗が増加する傾向が見られた。これは、焼成温度が低いと面接合部を有する粒子連続体が形成されないためであると考えられる。
 本開示は、上記各実施形態、各実験例に限定されるものではなく、その要旨を逸脱しない範囲において種々の変更が可能である。また、各実施形態、各実験例に示される各構成は、それぞれ任意に組み合わせることができる。すなわち、本開示は、実施形態に準拠して記述されたが、本開示は、当該実施形態や構造等に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (7)

  1.  複数の導電性粒子(100)が繋がってなる粒子連続体(10)と、上記粒子連続体の周囲にあるマトリックス(11)と、を備え、
     上記粒子連続体は、
     上記導電性粒子同士が面接合されてなる面接合部(101)を有している、電気抵抗体(1)。
  2.  上記導電性粒子は、シリコン粒子である、請求項1に記載の電気抵抗体。
  3.  上記面接合部の平均境界線長さが0.5μm以上である、請求項1または2に記載の電気抵抗体。
  4.  上記マトリックスは、ホウケイ酸塩と、コージェライトとを含む、請求項1~3のいずれか1項に記載の電気抵抗体。
  5.  大気中、1000℃で50時間保持した後の電気抵抗変化率が200%以下である、請求項1~4のいずれか1項に記載の電気抵抗体。
  6.  請求項1~5のいずれか1項に記載の電気抵抗体を含んで構成されている、ハニカム構造体(2)。
  7.  請求項6に記載のハニカム構造体を有する、電気加熱式触媒装置(3)。
PCT/JP2020/002109 2019-03-27 2020-01-22 電気抵抗体、ハニカム構造体、および、電気加熱式触媒装置 WO2020195063A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080024833.5A CN113631266A (zh) 2019-03-27 2020-01-22 电阻体、蜂窝结构体及电加热式催化剂装置
DE112020001421.5T DE112020001421T5 (de) 2019-03-27 2020-01-22 Elektrischer widerstand, wabenstruktur, und elektrisch beheizte katalysatorvorrichtung
US17/448,735 US20220013260A1 (en) 2019-03-27 2021-09-24 Electric resistor, honeycomb structure, and electrically heated catalyst device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-061701 2019-03-27
JP2019061701A JP2020161413A (ja) 2019-03-27 2019-03-27 電気抵抗体、ハニカム構造体、および、電気加熱式触媒装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/448,735 Continuation US20220013260A1 (en) 2019-03-27 2021-09-24 Electric resistor, honeycomb structure, and electrically heated catalyst device

Publications (1)

Publication Number Publication Date
WO2020195063A1 true WO2020195063A1 (ja) 2020-10-01

Family

ID=72611767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002109 WO2020195063A1 (ja) 2019-03-27 2020-01-22 電気抵抗体、ハニカム構造体、および、電気加熱式触媒装置

Country Status (5)

Country Link
US (1) US20220013260A1 (ja)
JP (1) JP2020161413A (ja)
CN (1) CN113631266A (ja)
DE (1) DE112020001421T5 (ja)
WO (1) WO2020195063A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4218582A4 (en) 2020-09-25 2024-02-28 FUJIFILM Corporation ADJUSTMENT DEVICE, ADJUSTMENT METHOD AND ADJUSTMENT PROGRAM
JP2022149955A (ja) 2021-03-25 2022-10-07 日本碍子株式会社 複合焼結体、ハニカム構造体、電気加熱触媒および複合焼結体の製造方法
JP2023128877A (ja) 2022-03-04 2023-09-14 日本碍子株式会社 複合焼結体、ハニカム構造体、電気加熱触媒および複合焼結体の製造方法
JP2023135116A (ja) 2022-03-15 2023-09-28 日本碍子株式会社 複合焼結体、ハニカム構造体、電気加熱触媒および複合焼結体の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249332A (ja) * 1999-05-07 2003-09-05 Ibiden Co Ltd ホットプレート及び導体ペースト
WO2012111386A1 (ja) * 2011-02-17 2012-08-23 株式会社村田製作所 正特性サーミスタ
JP2019012682A (ja) * 2017-06-30 2019-01-24 株式会社デンソー 電気抵抗体、ハニカム構造体、および、電気加熱式触媒装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH333119A (de) * 1953-04-27 1958-10-15 Kanthal Ab Feuerfestes oxydationsbeständiges Material
JPH04349387A (ja) * 1990-08-03 1992-12-03 Mitsui Mining Co Ltd 導電性発熱体
JP2904178B2 (ja) * 1997-03-21 1999-06-14 三菱電機株式会社 電圧非直線抵抗体及び避雷器
JP2001084831A (ja) * 1999-09-16 2001-03-30 Daikin Ind Ltd 導電性含フッ素材料
WO2008091003A2 (en) * 2007-01-22 2008-07-31 Panasonic Corporation Ptc resistor
JP5916146B2 (ja) * 2011-03-18 2016-05-11 日本碍子株式会社 炭化珪素質多孔体、ハニカム構造体及び電気加熱式触媒担体
KR102239367B1 (ko) 2013-11-27 2021-04-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 터치 패널
JP6081951B2 (ja) * 2014-03-26 2017-02-15 日本碍子株式会社 ハニカム構造体の製造方法
US9805839B2 (en) * 2014-09-12 2017-10-31 Shoei Chemical Inc. Resistive composition
WO2019003984A1 (ja) * 2017-06-30 2019-01-03 株式会社デンソー 電気抵抗体、ハニカム構造体、および、電気加熱式触媒装置
JP6972724B2 (ja) * 2017-07-20 2021-11-24 株式会社デンソー 電気抵抗体およびその製造方法、ハニカム構造体、電気加熱式触媒装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249332A (ja) * 1999-05-07 2003-09-05 Ibiden Co Ltd ホットプレート及び導体ペースト
WO2012111386A1 (ja) * 2011-02-17 2012-08-23 株式会社村田製作所 正特性サーミスタ
JP2019012682A (ja) * 2017-06-30 2019-01-24 株式会社デンソー 電気抵抗体、ハニカム構造体、および、電気加熱式触媒装置

Also Published As

Publication number Publication date
CN113631266A (zh) 2021-11-09
US20220013260A1 (en) 2022-01-13
JP2020161413A (ja) 2020-10-01
DE112020001421T5 (de) 2022-01-27

Similar Documents

Publication Publication Date Title
WO2020195063A1 (ja) 電気抵抗体、ハニカム構造体、および、電気加熱式触媒装置
JP6716488B2 (ja) 導電性ハニカム構造体
JP6625468B2 (ja) ハニカム構造体、及びその製造方法
US9789467B2 (en) Composite material, electrode film and method for producing the same, electrode terminal and method for producing the same, substrate and method for producing the same, and bonding material and method for producing substrate by bonding split parts together with bonding material
EP2503118B1 (en) Heater
JP6364374B2 (ja) ハニカム構造体、及びその製造方法
JP2012092820A (ja) ハニカム構造体及び電気加熱式触媒装置
JP7184707B2 (ja) ハニカム構造体、電気加熱式ハニカム構造体、電気加熱式担体及び排気ガス浄化装置
JP2012092821A (ja) ハニカム構造体及び電気加熱式触媒装置
JP2014054934A (ja) ヒーター
US11383228B2 (en) Conductive honeycomb structure
JP7223035B2 (ja) ガスセンサ
JP6999455B2 (ja) センサ素子及びガスセンサ
JP7235890B2 (ja) センサ素子
JP3525532B2 (ja) 酸素濃度検出器
JP2022142543A (ja) ハニカム構造体及び電気加熱式担体
EP3056274A1 (en) Honeycomb structure
JP2008306086A (ja) サーミスタ素子及びサーミスタ素子の製造方法
JP6093130B2 (ja) ヒーター
JP7166198B2 (ja) ハニカム構造体
US10888856B2 (en) Honeycomb structure
JP6905929B2 (ja) ハニカム構造体
JP2004043197A (ja) セラミックスラリーの製造方法並びにセラミックグリーンシート及びセラミック焼結体
CN115124333B (zh) 复合烧结体、蜂窝结构体、电加热催化器及复合烧结体的制造方法
JP7250996B2 (ja) ハニカム構造体及び電気加熱式担体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777570

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20777570

Country of ref document: EP

Kind code of ref document: A1