JP2023135116A - 複合焼結体、ハニカム構造体、電気加熱触媒および複合焼結体の製造方法 - Google Patents

複合焼結体、ハニカム構造体、電気加熱触媒および複合焼結体の製造方法 Download PDF

Info

Publication number
JP2023135116A
JP2023135116A JP2022040159A JP2022040159A JP2023135116A JP 2023135116 A JP2023135116 A JP 2023135116A JP 2022040159 A JP2022040159 A JP 2022040159A JP 2022040159 A JP2022040159 A JP 2022040159A JP 2023135116 A JP2023135116 A JP 2023135116A
Authority
JP
Japan
Prior art keywords
sintered body
composite sintered
mass
honeycomb structure
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022040159A
Other languages
English (en)
Inventor
和也 細田
Kazuya Hosoda
恭平 阿閉
Kyohei Atsuji
規介 山本
Kisuke Yamamoto
崇弘 冨田
Takahiro Tomita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2022040159A priority Critical patent/JP2023135116A/ja
Priority to US18/162,786 priority patent/US20230294082A1/en
Priority to DE102023200885.8A priority patent/DE102023200885A1/de
Priority to CN202310127910.5A priority patent/CN116768647A/zh
Publication of JP2023135116A publication Critical patent/JP2023135116A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2455Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the whole honeycomb or segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/657Pore diameter larger than 1000 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • F01N3/2026Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means directly electrifying the catalyst substrate, i.e. heating the electrically conductive catalyst substrate by joule effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • F01N2370/04Zeolitic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Nanotechnology (AREA)

Abstract

【課題】複合焼結体の耐酸化性を向上する。【解決手段】複合焼結体は、シリコン相と、コージェライト相と、高抵抗シリコンカーバイド相とを含む。当該複合焼結体におけるシリコンの含有率は当該複合焼結体に対して30質量%以上かつ50質量%以下である。当該複合焼結体におけるコージェライトの含有率は当該複合焼結体に対して10質量%以上かつ50質量%以下である。当該複合焼結体における高抵抗シリコンカーバイドの含有率は当該複合焼結体に対して20質量%以上かつ50質量%以下である。これにより、シリコン粒子を粗大化することができ、複合焼結体の耐酸化性を向上することができる。【選択図】図1

Description

本発明は、複合焼結体およびその製造方法、当該複合焼結体を含んで構成されるハニカム構造体、並びに、当該ハニカム構造体を備える電気加熱触媒に関する。
従来、自動車等のエンジンから排出される排ガス中に含まれるHC 、CO 、NOx等の有害物質の浄化処理のため、柱状のハニカム構造体等に触媒を担持させた触媒コンバータが使用されている。当該触媒コンバータでは、排ガスの浄化処理の際に、触媒が活性温度まで昇温されている必要があるが、エンジンの始動直後等は触媒コンバータの温度が低いため、排ガスの浄化性能が低下するおそれがある。特に、プラグインハイブリッド車(PHEV)やハイブリッド車(HV)では、モータのみによる走行が行われることにより、触媒の温度が低下しやすい。そこで、導電性の触媒コンバータに一対の電極を接続し、通電によって触媒コンバータ自体を発熱させることにより触媒を予熱する電気加熱触媒(EHC:Electrically Heating Catalyst)が利用されている。
特許文献1では、電気加熱触媒に利用されるハニカム構造体において、ハニカム構造体を構成する電気抵抗体のシリコン粒子同士を面接合し、当該シリコン粒子の連続体の周囲に、ホウケイ酸塩およびコージェライトを含むマトリックスを設ける技術が開示されている。これにより、ハニカム構造体が高温酸化雰囲気に曝された場合の電気抵抗の増加抑制(すなわち、耐酸化性の向上)が図られている。
特許文献2では、電気加熱触媒に利用可能な炭化珪素質多孔体が提案されている。当該炭化珪素質多孔体は、炭化珪素を50~80重量%、金属珪素を15~40重量%、コージェライトを1~25重量%含み、当該炭化珪素質多孔体の開気孔率は10~40%である。これにより、耐熱衝撃性および抵抗発熱特性の向上が図られている。
特開2020-161413号公報 国際公開第2012/128149号
ところで、特許文献1のハニカム構造体では、シリコン粒子同士が連続している部位が局所的な微構造であるため、ハニカム構造体の部位毎の体積抵抗率のばらつきが大きく、耐酸化性の向上に限界があると考えられる。当該局所的な微構造は、ホウケイ酸塩によってシリコン粒子同士の焼結が阻害されたことに起因すると考えられる。また、当該ハニカム構造体はホウケイ酸塩を含むため焼成収縮が大きくなり、ハニカム構造体を寸法精度良く形成することが難しい。
本発明は、上記課題に鑑みなされたものであり、複合焼結体の耐酸化性を向上することを一の目的としている。
本発明の好ましい一の形態に係る複合焼結体は、シリコン相と、コージェライト相と、高抵抗シリコンカーバイド相と、を含む。前記複合焼結体におけるシリコンの含有率は前記複合焼結体に対して30質量%以上かつ50質量%以下である。前記複合焼結体におけるコージェライトの含有率は前記複合焼結体に対して10質量%以上かつ50質量%以下である。前記複合焼結体における高抵抗シリコンカーバイドの含有率は前記複合焼結体に対して20質量%以上かつ50質量%以下である。
好ましくは、前記複合焼結体におけるシリコン粒子の体積基準のメジアン径は9μm以上である。
好ましくは、前記複合焼結体の気孔率は30%以上かつ50%以下である。
好ましくは、前記複合焼結体の平均気孔径は2.5μm以上かつ4.0μm以下である。
好ましくは、前記複合焼結体の20℃における体積抵抗率は、1.0Ω・cm以上かつ100Ω・cm以下である。
好ましくは、前記複合焼結体を950℃の大気中に50時間曝露した後の曝露後の複合焼結体の体積抵抗率の変化率は100%以下である。
好ましくは、前記複合焼結体における低抵抗シリコンカーバイドの含有率は1質量%以下である。
本発明は、ハニカム構造体にも向けられている。本発明の好ましい一の形態に係るハニカム構造体は、筒状の外壁と、前記外壁の内部を複数のセルに仕切る格子状の隔壁と、を備える。前記外壁および前記隔壁は、上述の複合焼結体を含んで構成される。
本発明は、エンジンから排出される排ガスの浄化処理を行う電気加熱触媒にも向けられている。本発明の好ましい一の形態に係る電気加熱触媒は、上述のハニカム構造体と、前記ハニカム構造体の外側面に固定されて前記ハニカム構造体に電流を付与する一対の電極端子と、を備える。
本発明は、複合焼結体の製造方法にも向けられている。本発明の好ましい一の形態に係る複合焼結体の製造方法は、a)シリコン原料、コージェライト原料および高抵抗シリコンカーバイド原料を含む原料粉末を成形して成形体を得る工程と、b)前記成形体を焼成して複合焼結体を得る工程と、を備える。前記複合焼結体は、シリコン相と、コージェライト相と、高抵抗シリコンカーバイド相と、を含む。前記複合焼結体におけるシリコンの含有率は30質量%以上かつ50質量%以下である。前記複合焼結体におけるコージェライトの含有率は10質量%以上かつ50質量%以下である。前記複合焼結体における高抵抗シリコンカーバイドの含有率は20質量%以上かつ50質量%以下である。
好ましくは、前記成形体に対する前記複合焼結体の焼成収縮率は7%以下である。
本発明では、複合焼結体の耐酸化性を向上することができる。
一の実施の形態に係る電気加熱触媒の断面図である。 ハニカム構造体の製造の流れを示す図である。 実施例のハニカム構造体のSEM画像である。 比較例のハニカム構造体のSEM画像である。
図1は、本発明の一の実施の形態に係る電気加熱触媒(EHC:Electrically Heating Catalyst)を示す断面図である。電気加熱触媒1は、一方向に長い柱状部材であり、図1では、電気加熱触媒1の長手方向に垂直な断面を示している。電気加熱触媒1は、自動車等のエンジンから排出される排ガスの浄化処理を行う。
電気加熱触媒1は、ハニカム構造体2と、一対の電極層31と、一対の電極端子41とを備える。ハニカム構造体2、一対の電極層31、および、一対の電極端子41は導電性を有する。ハニカム構造体2は、ハニカム構造を有する略円柱状の部材であり、電気加熱触媒1において触媒を担持する担体である。一対の電極層31は、ハニカム構造体2の外側面に固定される。一対の電極層31は、ハニカム構造体2の長手方向に延びる中心軸J1を挟んで対向して配置される箔状または板状の部材である。各電極層31は、ハニカム構造体2の外側面に沿って設けられる。なお、電気加熱触媒1では、ハニカム構造体2の外形は略円柱状には限定されず、様々に変更されてよい。また、電極層31および電極端子41の数および配置も様々に変更されてよい。電気加熱触媒1では、電極層31が省略され、電極部41がハニカム構造体2に直接的に固定されてもよい。
一対の電極端子41は、接合部42により一対の電極層31の表面に固定される。換言すれば、一対の電極端子41は、一対の電極層31を介してハニカム構造体2の外側面に間接的に固定される。電極端子41は、例えば、略帯状の部材である。電極端子41は、図示省略の電源に接続される。当該電源から電極端子41を介して一対の電極層31間に電圧が印加されると、ハニカム構造体2に電流が流れ(すなわち、電流が付与され)、ハニカム構造体2はジュール熱により発熱する。これにより、ハニカム構造体2に担持されている触媒が予熱される。電気加熱触媒1に印加される電圧は、例えば12V~900Vであり、好ましくは64V~600Vである。なお、当該電圧は適宜変更されてよい。
ハニカム構造体2は、内部が複数のセル23に仕切られたセル構造体である。ハニカム構造体2は、外壁21と、隔壁22とを備える。外壁21は、長手方向(すなわち、図1中の紙面に垂直な方向)に延びる筒状の部位である。長手方向に垂直な外壁21の断面形状は、略円形である。当該断面形状は、楕円形や多角形等の他の形状であってもよい。ハニカム構造体2は、上記電気加熱触媒以外の用途(例えば、セラミックスヒータ)に利用されてもよい。
隔壁22は、外壁21の内部に設けられ、当該内部を複数のセル23に仕切る格子状の部材である。複数のセル23はそれぞれ、ハニカム構造体2の略全長に亘って長手方向に延びる空間である。各セル23は、排ガスが流れる流路であり、排ガスの浄化処理に利用される触媒は隔壁22に担持される。長手方向に垂直な各セル23の断面形状は、例えば、略矩形である。当該断面形状は、多角形または円形等の他の形状であってもよい。排ガスがセル23を流れる際の圧力損失低減の観点からは、当該断面形状は四角形または六角形であることが好ましい。また、ハニカム構造体2の構造強度向上および加熱均一性の観点からは、当該断面形状は長方形であることが好ましい。複数のセル23は、原則として同じ断面形状を有する。複数のセル23には、異なる断面形状のセル23が含まれてもよい。
外壁21の長手方向の長さは、例えば、30mm~200mmである。外壁21の外径は、例えば、25mm~120mmである。ハニカム構造体2の端面の面積(すなわち、ハニカム構造体2の端面において外壁21に囲まれる領域の面積)は、ハニカム構造体2の耐熱性向上の観点から、2000mm~ 20000mmであることが好ましく、5000mm~ 15000mmであることがさらに好ましい。外壁21の厚さは、セル23を流れる流体の流出防止、ハニカム構造体2の強度向上、および、外壁21と隔壁22との強度バランスの観点から、例えば0.1mm~1.0mmであり、好ましくは0.15mm~0.7mmであり、より好ましくは0.2mm~0.5mmである。
隔壁22の長手方向の長さは、外壁21と略同じである。隔壁22の厚さは、ハニカム構造体2の強度向上、および、排ガスがセル23を流れる際の圧力損失低減の観点から、例えば0.07mm~0.3mmであり、好ましくは0.1mm~0.25mmである。
ハニカム構造体2のセル密度(すなわち、長手方向に垂直な断面における単位面積当たりのセル23の数)は、隔壁22の触媒担持面積の増大、および、排ガスがセル23を流れる際の圧力損失低減の観点から、例えば、40セル/cm~150セル/cmであり、好ましくは70セル/cm~100セル/cmである。当該セル密度は、ハニカム構造体2の底面における外壁21の内周縁よりも内側の領域の面積により、ハニカム構造体2の全セル数を除算することにより求められる。セル23の大きさ、数、セル密度等は、様々に変更されてよい。
ハニカム構造体2の外壁21および隔壁22は、以下に説明する複合焼結体を含んで構成される。本実施の形態では、外壁21および隔壁22は、実質的に当該複合焼結体のみにより構成される。
当該複合焼結体は、シリコン相と、コージェライト相と、高抵抗シリコンカーバイド相とを含む多孔質セラミックスである。本明細書では、「シリコン相」とは、主にシリコン(Si)により構成される結晶相である。シリコン相には、シリコン以外の不純物(例えば、シリコン以外の金属)が含まれていてもよい。不純物の含有率は、100質量部のシリコンに対して1質量部以下である。また、「シリコン」とは、シリコン元素からなる物質(単体)のことを意味する。シリコン相は、複合焼結体の骨材である複数のシリコン粒子を含む。複合焼結体では、複数のシリコン粒子が連続することにより導通パスが形成される。なお、複合焼結体は、ハニカム構造体2以外の構造体に利用されてもよい。例えば、略円筒状または略平板状等の様々な形状の構造体が、当該複合焼結体を含んで構成されてもよい。
本明細書では、「コージェライト相」とは、主にコージェライトにより構成される結晶相である。コージェライト相には、コージェライト以外の不純物が含まれていてもよい。当該不純物として、例えば、コージェライトの多形(同質異像ともいう。)であるインディアライトが挙げられる。コージェライト相は、主に、複数のシリコン粒子間に存在し、複数のシリコン粒子を結合させる結合材(すなわち、マトリックス)である。複合焼結体では、複数のシリコン粒子が、シリコン粒子間に細孔を形成するようにコージェライト相によって結合されていることが好ましい。複合焼結体では、熱膨張係数が比較的低いコージェライト相が含まれることにより、複合焼結体の耐熱衝撃性が向上される。
本明細書では、「高抵抗シリコンカーバイド相」とは、主に高抵抗シリコンカーバイドにより構成される結晶相である。高抵抗シリコンカーバイド相には、シリコンカーバイド(SiC)以外の不純物が含まれていてもよい。高抵抗シリコンカーバイドは、シリコンカーバイドのうち、不純物の含有率が比較的多く、体積抵抗率が比較的高いものを意味する。本明細書では、体積抵抗率が1kΩ・cm(1000Ω・cm)以上のシリコンカーバイドを高抵抗シリコンカーバイドと呼ぶ。また、体積抵抗率が1kΩ・cm(1000Ω・cm)未満のシリコンカーバイドを「低抵抗シリコンカーバイド」と呼ぶ。なお、高抵抗シリコンカーバイドの体積抵抗率は、好ましくは10kΩ・cm以上である。高抵抗シリコンカーバイドおよび低抵抗シリコンカーバイドの体積抵抗率は、例えば、放電プラズマ焼結法(SPS法)やホットプレス法等を用いてシリコンカーバイド粉末から作製した焼結体を、所定の大きさに切り出し、四端子法(JIS C2525)により測定して得られる。
高抵抗シリコンカーバイド相は、主に、複数のシリコン粒子間に存在し、複数のシリコン粒子間の導通パスを分断することにより、複合焼結体の体積抵抗率を増大させる。一方、複合焼結体の材料に高抵抗シリコンカーバイドが含まれることにより、複合焼結体の焼結の際に、シリコンと高抵抗シリコンカーバイドとの低い濡れ性によってシリコン粒子が凝集することにより粗大化する(すなわち、シリコン粒子の粒径が増大する)。これにより、導電パスを形成するシリコン粒子同士の結合部が太くなり、複合焼結体の体積抵抗率が低減される。その結果、複合焼結体の体積抵抗率が好適な範囲とされる。また、導電パスを形成するシリコン粒子同士の結合部が太くなることにより、当該結合部が酸化された場合であっても、導電パスの遮断が生じにくくなる。したがって、複合焼結体が高温酸化雰囲気に曝露された場合であっても、複合焼結体の体積抵抗率の変化が抑制される。すなわち、複合焼結体の耐酸化性が向上される。
複合焼結体におけるシリコンの含有率は、当該複合焼結体に対して30質量%以上かつ50質量%以下である。複合焼結体におけるコージェライトの含有率は、当該複合焼結体に対して10質量%以上かつ50質量%以下である。複合焼結体における高抵抗シリコンカーバイドの含有率は、当該複合焼結体に対して20質量%以上かつ50質量%以下である。好ましくは、当該複合焼結体におけるシリコンの含有率は、当該複合焼結体に対して32質量%以上45質量%以下であり、より好ましくは、当該複合焼結体に対して35質量%以上45質量%以下である。当該複合焼結体におけるコージェライトの含有率は、好ましくは、当該複合焼結体に対して12質量%以上45質量%以下であり、より好ましくは、当該複合焼結体に対して13質量%以上35質量%以下である。当該複合焼結体における高抵抗シリコンカーバイドの含有率は、好ましくは、当該複合焼結体に対して23質量%以上50質量%以下であり、より好ましくは、当該複合焼結体に対して25質量%以上50質量%以下である。
本実施の形態に係る複合焼結体では、体積抵抗率が過剰に低くなることを抑制するという観点からは、当該複合焼結体における低抵抗シリコンカーバイドの含有率は、当該複合焼結体に対して1質量%以下であることが好ましく、低抵抗シリコンカーバイドを実質的に含まないことがさらに好ましい。換言すれば、複合焼結体における低抵抗シリコンカーバイドの含有率は、0.0質量%(すなわち、検出限界以下)であることがさらに好ましい。また、複合焼結体のサーミスタ特性が負となることを抑制するという観点からも、当該複合焼結体における低抵抗シリコンカーバイドの含有率は、当該複合焼結体に対して0.0質量%であることが好ましい。
複合焼結体は、さらに、非晶質相を含んでいてもよい。非晶質相は、例えば、シリコンを含む非晶質の相であり、主に、非晶質シリカ(すなわち、非晶質の二酸化珪素(SiO))により構成される酸化物相である。当該非晶質相は、主に、シリコン粒子の表面に存在し、当該シリコン粒子を部分的または全体的に被覆する。これにより、複合焼結体が高温酸化雰囲気に曝露された場合であっても、シリコン粒子の酸化が抑制され、複合焼結体の体積抵抗率の変化が抑制される。換言すれば、複合焼結体の耐酸化性が向上される。非晶質相に含まれる非晶質シリカは、例えば、シリコン粒子の表面が酸化されることにより生成される。なお、非晶質相は、非晶質シリカ以外の酸化物、および/または、酸化物以外の非晶質を含んでいてもよい。
複合焼結体は、さらに、クリストバライト相を含んでいてもよい。本明細書では、「クリストバライト相」とは、主にクリストバライトにより構成される結晶相である。クリストバライト相には、クリストバライト以外の不純物が含まれていてもよい。クリストバライト相は、例えば、シリコン粒子の表面、並びに、シリコン粒子を被覆する非晶質相の膜の表面および内部等に存在する。クリストバライト相は、例えば、シリコン粒子の表面が酸化されることにより生成される。
複合焼結体は、さらに、ムライト相を含んでいてもよい。本明細書では、「ムライト相」とは、主にムライトより構成される結晶相である。ムライト相には、ムライト以外の不純物が含まれていてもよい。ムライト相は、例えば、シリコン粒子の表面、並びに、シリコン粒子を被覆する非晶質相の膜の表面および内部等に存在する。ムライト相は、例えば、シリコン粒子の表面が酸化されて生成されたクリストバライトを材料として消費して反応焼成等により生成される。これにより、複合焼結体の緻密性が向上され、複合焼結体の耐酸化性および強度が向上される。また、クリストバライト相の減少によって複合焼結体の熱膨張率が低減されるため、複合焼結体の耐熱衝撃性も向上される。
複合焼結体の組成の同定および定量は、粉末X線回折法(XRD)の結果を用いてWPPD(whole-powder-pattern decomposition)法によりパターンフィッティングすることにより行うことができる。これらの解析には、例えば、Bruker社製「TOPAS」等のソフトウェアを用いることができる。
複合焼結体では、シリコン相におけるシリコン粒子の平均粒径は、好ましくは9μm以上であり、より好ましくは10μm以上である。当該シリコン粒子の平均粒径の上限については、特に制限はないが、30μm以下であることが好ましく、20μm以下であることがより好ましい。このように、当該平均粒径を9μm以上とシリコン粒子を粗大化することにより、複合焼結体における高い耐酸化性および高い耐熱衝撃性を好適に実現することができる。本明細書では、「平均粒径」とは、特に断りがない限り、体積基準のメジアン径(D50)である。
本明細書では、複合焼結体におけるシリコン粒子の平均粒径は、以下のように求める。まず、複合焼結体の任意の研磨断面を任意の倍率(例えば、500倍)にてSEM(走査型電子顕微鏡)で観察し、視野内における一のシリコン粒子を抽出する。続いて、当該シリコン粒子の長径および短径を求める。具体的には、当該シリコン粒子の外周の2点を結び、かつ、重心を通る最大の径を長径として求める。また、当該シリコン粒子の外周の2点を結び、かつ、重心を通る最小の径を短径として求める。長径および短径の測定には、例えばMedia Cybernetics社製の画像解析ソフトウェア「Image Pro 9」を用いることができる。そして、長径と短径との算術平均を当該シリコン粒子の粒径とする。また、上記視野内における他の複数のシリコン粒子についても、同様の手法によりそれぞれの粒径を求める。そして、当該視野内における複数のシリコン粒子について求められた粒径を体積換算し、当該体積の累積値が50%になる粒径を、シリコン粒子の体積基準のメジアン径(D50)として求める。
次に、複合焼結体の上記研磨断面上にて視野の位置を変更し、上記と同様に、当該視野に含まれる各シリコン粒子の粒径を求め、シリコン粒子の体積基準のメジアン径(D50)を求める。そして、複合焼結体の当該断面上の所定数(2以上であり、例えば3)の視野においてそれぞれ求めたシリコン粒子の上記D50の算術平均を、複合焼結体におけるシリコン粒子の平均粒径とする。複合焼結体における他の粒子(例えば、コージェライト粒子や高抵抗シリコンカーバイド粒子)の平均粒径についても同様に求めることができる。
複合焼結体の20℃における体積抵抗率は、好ましくは1.0Ω・cm以上であり、より好ましくは2.0Ω・cm以上であり、さらに好ましくは10Ω・cm以上である。また、当該体積抵抗率は、好ましくは100Ω・cm以下であり、より好ましくは85Ω・cm以下であり、さらに好ましくは50Ω・cm以下である。本明細書では、「体積抵抗率」とは、特に断りがない限り、20℃における体積抵抗率を意味する。複合焼結体の体積抵抗率が100Ω・cm以下とされることにより、電気加熱触媒1の通電性が向上され、電気加熱触媒1の迅速な昇温が実現される。また、複合焼結体の体積抵抗率が1.0Ω・cm以上とされることにより、複合焼結体に比較的高い電圧が付与された場合であっても、過剰な電流が流れて電気回路が損傷することが防止される。また、当該体積抵抗率を100Ω・cm以下とすることにより、複合焼結体の通電性が向上される。その結果、当該複合焼結体が電気加熱触媒に利用される場合、電気加熱触媒の迅速な昇温を実現することができる。当該体積抵抗率は、四端子法(JIS C2525)により測定して得られる。
複合焼結体を高温酸化雰囲気である950℃の大気中に50時間曝露した後の体積抵抗率の変化率(すなわち、曝露後の複合焼結体の体積抵抗率の変化率であり、以下、「抵抗変化率」とも呼ぶ。)は、好ましくは100%以下である。当該抵抗変化率は、複合焼結体を950℃の大気中に50時間曝露した後の体積抵抗率を、当該曝露を行う前の複合焼結体の体積抵抗率(以下、「初期抵抗率」とも呼ぶ。)により除算した値から、1を減算した結果を百分率で表したものである。本明細書では、「抵抗変化率」とは、特に断りがない限り、950℃の大気中に50時間曝露した後の複合焼結体の体積抵抗率の変化率を意味する。
複合焼結体の抵抗変化率が100%以下とされることにより、複合焼結体が高温酸化雰囲気に曝露された場合であっても、複合焼結体の体積抵抗率の変動が好適に抑制される。これにより、電気加熱触媒1の通電性能等の諸性能が所望の範囲内に維持される。複合焼結体の抵抗変化率は、より好ましくは50%以下である。なお、複合焼結体の体積抵抗率は、シリコン粒子や高抵抗シリコンカーバイド粒子に含まれる不純物等の影響により低下する可能性がある。この場合、抵抗変化率は、-50%以上であることが好ましく、-10%以上であることが、より好ましい。複合焼結体の体積抵抗率は変動しないことが望ましいため、抵抗変化率は0%に近いことが望ましい。
複合焼結体の気孔率は、好ましくは30%以上であり、より好ましくは32%以上であり、さらに好ましくは35%以上である。また、当該気孔率は、好ましくは50%以下であり、さらに好ましくは45%以下である。当該気孔率を30%以上とすることにより、複合焼結体のヤング率を低減し、耐熱衝撃性を向上させることができる。また、当該気孔率を50%以下とすることにより、複合焼結体の緻密性が向上される。その結果、複合焼結体の体積抵抗率が低減されるとともに、複合焼結体の耐酸化性および強度が向上される。当該気孔率は、例えば、水銀ポロシメータ等を用いて水銀圧入法(JIS R1655)により測定して得られる。
複合焼結体の平均気孔径は、好ましくは2.5μm以上であり、より好ましくは2.8μm以上であり、さらに好ましくは3.0μm以上である。また、当該平均気孔径は、好ましくは4.0μm以下であり、より好ましくは3.8μm以下であり、さらに好ましくは3.5μm以下である。当該平均気孔径を2.5μm以上とすることにより、複合焼結体の比表面積が過剰に大きくなって耐酸化性が低下することを抑制することができる。また、当該平均気孔径を4.0μm以下とすることにより、複合焼結体の緻密性が向上される。その結果、複合焼結体の体積抵抗率が低減されるとともに、複合焼結体の耐酸化性および強度が向上される。本明細書では、「平均気孔径」とは、複合焼結体の平均細孔径を意味する。当該平均気孔径は、例えば、水銀ポロシメータ等を用いて水銀圧入法(JIS R1655)により測定して得られる。
電極層31は、ハニカム構造体2の外側面に沿って長手方向に延びるとともに、中心軸J1を中心とする周方向(以下、単に「周方向」とも呼ぶ。)に広がる。電極層31は、電極端子41からの電流を長手方向および周方向に広げ、ハニカム構造体2の発熱の均一性を向上させる。電極層31の長手方向の長さは、例えば、ハニカム構造体2の長手方向の長さの80%以上であり、好ましくは90%以上である。より好ましくは、電極層31は、ハニカム構造体2の全長に亘って延びる。
電極層31の周方向の角度(すなわち、図1において、電極層31の周方向両端から中心軸J1に延ばした2つの線分が成す角度)は、例えば30°以上であり、好ましくは40°以上であり、より好ましくは60°以上である。一方、一対の電極層31が近づきすぎてハニカム構造体2内部を流れる電流が減少することを抑制するという観点からは、電極層31の周方向の角度は、例えば140°以下であり、好ましくは130°以下であり、より好ましくは120°以下である。
図1に示す例では、一対の電極層31の中心間の周方向の角度(すなわち、図1において、2つの電極層31の周方向中心から中心軸J1に延ばした2つの線分が成す180°以下の角度)は180°であるが、当該角度は適宜変更されてよい。例えば、当該角度は150°以上であり、好ましくは160°以上であり、より好ましくは170°以上である。
電極層31の厚さ(すなわち、径方向における厚さ)は、電気抵抗が過大となることを防止するとともに、ハニカム構造体2を容器内に収納する際の(すなわち、キャニング時の)破損を防止するという観点から、例えば0.01mm~5mmであり、好ましくは0.01mm~3mmである。
電極層31の体積抵抗率は、ハニカム構造体2の体積抵抗率よりも低いことが好ましい。これにより、ハニカム構造体2に比べて電極層31に電流が流れやすくなり、ハニカム構造体2の長手方向および周方向に電流が広がりやすくなる。電極層31の体積抵抗率は、ハニカム構造体2の体積抵抗率の1/200以上であることが好ましく、1/10以下であることが好ましい。
電極層31は、例えば、導電性セラミックス、金属、または、導電性セラミックスと金属との複合材により形成される。当該導電性セラミックスは、例えば、シリコンカーバイド、または、珪化タンタル(TaSi)や珪化クロム(CrSi)等の金属珪化物である。当該金属は、例えば、クロム(Cr)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、シリコンまたはチタン(Ti)である。電極層31の材質は、1種または2種以上の金属に、熱膨張係数低減の観点から、アルミナ、ムライト、ジルコニア、コージェライト、窒化珪素および窒化アルミニウム等を添加した複合材であってもよい。
電極層31の材質は、ハニカム構造体2と同時に焼結可能であるものが好ましい。電極層31の材質は、耐熱性と導電性との両立の観点から、シリコンカーバイドまたはシリコン-シリコンカーバイド(Si-SiC)複合材を主成分とする(具体的には、90質量%以上含有する)セラミックスであることが好ましく、シリコンカーバイドまたはシリコン-シリコンカーバイド複合材であることがより好ましい。シリコン-シリコンカーバイド複合材は、骨材としてのシリコンカーバイド粒子、および、シリコンカーバイド粒子を結合させる結合材としてのシリコンを含有するものであり、複数のシリコンカーバイド粒子が、シリコンカーバイド粒子間に細孔を形成するようにして、シリコンによって結合されていることが好ましい。
電極端子41は、例えば、単体金属または合金により形成される。電極端子41の材質は、高耐食性と、適切な体積抵抗率および熱膨張係数とを有するという観点から、Cr、Fe、Co、Ni、Tiおよびアルミニウム(Al)のうち少なくとも1種を含む合金であることが好ましい。電極端子41は、好ましくはステンレス鋼であり、Alを含むことがより好ましい。また、電極端子41は、金属-セラミックス混合部材により形成されてもよい。当該金属-セラミックス混合部材に含まれる金属は、例えば、Cr、Fe、Co、Ni、SiまたはTiの単体金属、あるいは、これらの金属よりなる群から選択される少なくとも一種の金属を含有する合金である。当該金属-セラミックス混合部材に含まれるセラミックスは、例えば、シリコンカーバイド、または、金属珪化物(例えば、珪化タンタル(TaSi)や珪化クロム(CrSi))等の金属化合物である。当該セラミックスとして、サーメット(すなわち、セラミックスと金属との複合材)が用いられてもよい。当該サーメットは、例えば、金属珪素とシリコンカーバイドの複合材、金属珪化物と金属珪素とシリコンカーバイドの複合材、または、上述の1種以上の金属に、アルミナ、ムライト、ジルコニア、コージェライト、窒化珪素および窒化アルミ等の絶縁性セラミックスを1種以上添加した複合材である。
接合部42はそれぞれ、例えば、金属および酸化物を含む複合材料により形成される。当該金属は、例えば、ステンレス鋼、Ni-Fe系合金およびSiのうち1種以上である。当該酸化物は、コージェライト系ガラス、二酸化珪素(SiO)、酸化アルミニウム(Al)、酸化マグネシウム(MgO)、および、これらの複合酸化物のうち1種以上である。
接合部42は、金属以外の導電性物質を、上記金属に代えて、あるいは、上記金属に加えて含んでいてもよい。当該導電性物質は、例えば、ホウ化亜鉛やホウ化タンタル等のホウ化物、窒化チタンや窒化ジルコニウム等の窒化物、および、シリコンカーバイドや炭化タングステン等の炭化物のうち1種以上である。
次に、図2を参照しつつ、ハニカム構造体2の製造の流れの一例について説明する。まず、シリコン原料、コージェライト原料および高抵抗シリコンカーバイド原料を含む原料粉末、並びに、バインダや造孔剤等が、所定の組成になるように秤量され、乾式ミキサによって乾式混合されることにより混合粉末が得られる。上記原料粉末は、シリコン相、コージェライト相および高抵抗シリコンカーバイド相の原料となる粉末である。上記コージェライト原料は、コージェライト自体であってもよく、焼成過程における反応によりコージェライトを生成する原料(例えば、カオリン、タルク、アルミナ、シリカ、マグネシア、フォルステライト、エンスタタイト等から選択された1種以上の物質)であってもよく、これらの混合物であってもよい。上述の原料粉末およびバインダ等の混合は、溶媒(例えば、イオン交換水または有機溶媒等)を用いた湿式混合により行われてもよい。
上記混合粉末には、主原料であるシリコン原料、コージェライト原料、および、高抵抗シリコンカーバイド原料に加えて、助剤が添加されてもよい。当該助剤は、例えばAlを含む。なお、上記混合粉末には、ホウ素(B)は含まれないことが好ましい。これにより、複合焼結体の製造の際に、ホウケイ酸塩に起因するシリコン粒子同士の焼結阻害が生じず、ハニカム構造体2の部位毎の体積抵抗率のばらつきが抑制される。また、ハニカム構造体2の製造時における焼成収縮が低減されるため、ハニカム構造体2の寸法精度が向上される。
上記混合粉末に含まれるバインダとしては、例えば、メチルセルロース、ヒドロキシプロポキシルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ポリビニルアルコール等が利用可能である。造孔剤としては、グラファイト、小麦粉、澱粉、フェノール樹脂、ポリメタクリル酸メチル、ポリエチレン、ポリエチレンテレフタレート、発泡樹脂(アクリロニトリル系プラスチックバルーン)、吸水性樹脂等が利用可能である。
続いて、上述の混合粉末と適量の水等とがニーダーにより混練され、得られた混練物から土練機により坏土が作製される。そして、当該坏土が押出成形されることにより、ハニカム構造を有する成形体(以下、「ハニカム成形体」とも呼ぶ。)が作製される(ステップS11)。次に、ハニカム成形体に対して、マイクロ波乾燥が行われた後、100℃にて熱風乾燥が行われる。さらに、乾燥後のハニカム成形体に対して、大気雰囲気下において200℃~1000℃にて1時間~10時間の脱脂が行われる。
脱脂後のハニカム成形体は、アルゴン(Ar)雰囲気等の不活性ガス雰囲気下にて1250℃~1800℃(好ましくは、1300℃~1750℃)にて0.5時間~5時間焼成される。これにより、ハニカム構造を有する焼結体であるハニカム構造体2が作製される(ステップS12)。
ステップS12の終了後において、ハニカム構造体2のハニカム成形体に対する焼成収縮率は、好ましくは7%以下であり、より好ましくは5%以下である。当該焼成収縮率は、焼成後のハニカム構造体2の外径を焼成前のハニカム構造体2の外径で除算した値と、焼成後のハニカム構造体2の高さを焼成前のハニカム構造体2の高さで除算した値と、の算術平均を、1から減算して百分率に換算した結果として求められる。
ハニカム構造体2の製造では、ステップS12における焼成処理の後に、ハニカム構造体2に対する酸化処理が行われてもよい(ステップS13)。当該酸化処理は、ハニカム構造体2が使用時に酸化雰囲気に曝露される前に行われる予備的な酸化処理であり、以下、「予備酸化処理」とも呼ぶ。当該予備酸化処理は、例えば、大気雰囲気下においてハニカム構造体2が900℃~1300℃で0.5時間~20時間加熱されることにより行われる。当該予備酸化処理は、酸化エージングとも呼ばれる。なお、予備酸化処理の際の温度、時間および雰囲気等は、様々に変更されてよい。また、上述のハニカム成形体の乾燥、脱脂および焼成の際の温度、時間および雰囲気等も、様々に変更されてよい。
ハニカム構造体2の製造では、上述の原料粉末におけるシリコン原料の平均粒径(すなわち、体積基準のメジアン径(D50))は、好ましくは1μm以上であり、さらに好ましくは2μm以上である。原料粉末におけるシリコン粒子の平均粒径の上限は特に限定されないが、現実的には30μm以下であることが好ましく、20μm以下であることがさらに好ましい。これにより、ハニカム構造体2におけるシリコン粒子の粗大化が好適に実現される。その結果、上述のように、複合焼結体の体積抵抗率が好適な範囲とされるとともに、複合焼結体の耐酸化性が向上される。本明細書では、原料粉末における粒子の平均粒径は、特に断りがない限り、レーザー回折散乱法(JIS R1629)により粒度分布測定した値である。
電気加熱触媒1は、上述のように製造されたハニカム構造体2に、一対の電極層31、および、一対の電極端子41が固定されることにより製造される。電気加熱触媒1では、ハニカム構造体2の複数のセル23の内側面(すなわち、隔壁22の側面)に触媒が担持さされる。なお、一対の電極層31は、ハニカム構造体2の前駆体であるハニカム成形体に電極層31の原料である電極層ペーストが付与され、ハニカム成形体および電極層ペーストが共に焼成されることにより、ハニカム構造体2と同時に形成されてもよい。
上述のように、複合焼結体の製造方法は、シリコン原料、コージェライト原料および高抵抗シリコンカーバイド原料を含む原料粉末を成形して成形体を得る工程(ステップS11)と、当該成形体を焼成して複合焼結体を得る工程(ステップS12)と、を備える。複合焼結体は、シリコン相と、コージェライト相と、高抵抗シリコンカーバイド相とを含む。当該複合焼結体におけるシリコンの含有率は、当該複合焼結体に対して30質量%以上かつ50質量%以下である。当該複合焼結体におけるコージェライトの含有率は、当該複合焼結体に対して10質量%以上かつ50質量%以下である。当該複合焼結体における高抵抗シリコンカーバイドの含有率は、当該複合焼結体に対して20質量%以上かつ50質量%以下である。これにより、上述のように、シリコン粒子を粗大化することができる。その結果、複合焼結体の体積抵抗率を好適な範囲に収めることができるとともに、複合焼結体の耐酸化性を向上することができる。さらに、複合焼結体の耐熱衝撃性を向上することもできる。その上、複合焼結体の焼成収縮率を低減することもできる。
また、成形体に対する複合焼結体の焼成収縮率は7%以下であることが好ましい。これにより、複合焼結体を寸法精度良く作製することができる。その結果、ハニカム構造体2および電気加熱触媒1を寸法精度良く作製することができる。
次に、表1~表2を参照しつつ、本発明に係るハニカム構造体2の実施例、および、ハニカム構造体2と比較するための比較例について説明する。表1~表2は、実施例のハニカム構造体2および比較例のハニカム構造体の焼結体特性を示す。
Figure 2023135116000002
Figure 2023135116000003
表1中に示すハニカム構造体2におけるシリコン、コージェライト、高抵抗シリコンカーバイドおよび低抵抗シリコンカーバイドの含有率は、上述の粉末X線回折法により測定した。X線回折装置としては、封入管式X線回折装置(ブルカー・エイエックスエス株式会社製 D8-ADVANCE)を使用した。測定条件はCuKα,40kV,40mA,2θ=5~70°とし、測定のステップ幅は0.002°とした。また、表1で示される各実施例および各比較例で用いた、高抵抗シリコンカーバイドの体積抵抗率は1000kΩ・cmであり、低抵抗シリコンカーバイドの体積抵抗率は1Ω・cmであった。
表2中に示すシリコン粒子の平均粒径は、上述の方法により求めた。また、ハニカム構造体2の気孔率および平均気孔径は、上述のように、水銀ポロシメータを用いて水銀圧入法(JIS R1655)により測定した。
表2中の体積抵抗率は、上述の初期抵抗率であり、四端子法(JIS C2525)により測定した。抵抗変化率は、上述の方法により求めた。具体的には、ハニカム構造体2の隔壁22から切り出された試験片を950℃の大気中に50時間曝露した後、当該試験片の体積抵抗率(以下、「曝露後抵抗率」とも呼ぶ。)を四端子法により測定した。そして、曝露後抵抗率を初期抵抗率により除算した値から、1を減算した結果を百分率で表したものを抵抗変化率とした。表2中の焼成収縮率は、上述の方法により求めた。
実施例1では、上述のステップS11~S13によりハニカム構造体2を製造した。ステップS11では、原料粉末におけるシリコン原料とコージェライト原料と高抵抗シリコンカーバイド原料との質量比は、36:39:25である。シリコン原料の平均粒径(すなわち、体積基準のメジアン径(D50))は、1.8μmである。コージェライト原料の平均粒径は、8.0μmである。高抵抗シリコンカーバイド原料の平均粒径は、9.3μmである。ステップS11では、主原料(すなわち、シリコン、コージェライトおよび高抵抗シリコンカーバイド)100質量部に対し、バインダ12質量部と、造孔剤3質量部と、助剤6質量部とを添加している。なお、助剤は添加していない。ステップS12では、ハニカム成形体の焼成温度および焼成時間は、1375℃および2時間である。ステップS13では、予備酸化処理温度および予備酸化処理時間は、1300℃および1時間である。
実施例1では、ハニカム構造体2におけるシリコン、コージェライトおよび高抵抗シリコンカーバイドの含有率はそれぞれ、34質量%、42質量%および24質量%であった。ハニカム構造体2のシリコン相におけるシリコン粒子の平均粒径は、10.4μmであった。ハニカム構造体2の気孔率および平均気孔径はそれぞれ、33%および2.9μmであった。ハニカム構造体2の体積抵抗率は、12Ω・cmであった。ハニカム構造体2の抵抗変化率は、5%であった。ハニカム構造体2の焼成収縮率は、5.5%であった。
図3は、実施例1のハニカム構造体2の研磨断面を示すSEM画像である。図3中の白色部81はシリコンであり、黒色部84は気孔である。また、灰色部82はコージェライトまたは高抵抗シリコンカーバイドである。
実施例2~5では、ハニカム構造体2の組成が表1に示す組成となるように、原料粉末における各原料の質量比や各原料の平均粒径、および/または、造孔剤の添加量等を微調整した点を除き、実施例1と略同様の製造方法にてハニカム構造体2を製造した。比較例1~3におけるハニカム構造体の製造についても略同様である。なお、比較例1~3では、原料粉末は高抵抗シリコンカーバイド原料を含んでおらず、ハニカム構造体は高抵抗シリコンカーバイド相を備えていない。また、比較例4におけるハニカム構造体の製造についても、原料粉末が高抵抗シリコンカーバイド原料に代えて低抵抗シリコンカーバイド原料(平均粒径10.8μm)を含む点、および、焼成温度が1450℃である点を除き、略同様である。
実施例2では、ハニカム構造体2におけるシリコン、コージェライトおよび高抵抗シリコンカーバイドの含有率はそれぞれ、43質量%、32質量%および26質量%であった。ハニカム構造体2のシリコン相におけるシリコン粒子の平均粒径は、11.8μmであった。ハニカム構造体2の気孔率および平均気孔径はそれぞれ、36%および3.4μmであった。ハニカム構造体2の体積抵抗率は、2Ω・cmであった。ハニカム構造体2の抵抗変化率は、3%であった。ハニカム構造体2の焼成収縮率は、5.5%であった。
実施例3では、ハニカム構造体2におけるシリコン、コージェライトおよび高抵抗シリコンカーバイドの含有率はそれぞれ、32質量%、20質量%および48質量%であった。ハニカム構造体2のシリコン相におけるシリコン粒子の平均粒径は、9.5μmであった。ハニカム構造体2の気孔率および平均気孔径はそれぞれ、41%および3.3μmであった。ハニカム構造体2の体積抵抗率は、83Ω・cmであった。ハニカム構造体2の抵抗変化率は、80%であった。ハニカム構造体2の焼成収縮率は、3.2%であった。
実施例4では、ハニカム構造体2におけるシリコン、コージェライトおよび高抵抗シリコンカーバイドの含有率はそれぞれ、36質量%、15質量%および49質量%であった。ハニカム構造体2のシリコン相におけるシリコン粒子の平均粒径は、10.5μmであった。ハニカム構造体2の気孔率および平均気孔径はそれぞれ、41%および3.4μmであった。ハニカム構造体2の体積抵抗率は、11Ω・cmであった。ハニカム構造体2の抵抗変化率は、2%であった。ハニカム構造体2の焼成収縮率は、2.9%であった。
実施例5では、ハニカム構造体2におけるシリコン、コージェライトおよび高抵抗シリコンカーバイドの含有率はそれぞれ、40質量%、12質量%および48質量%であった。ハニカム構造体2のシリコン相におけるシリコン粒子の平均粒径は、11.2μmであった。ハニカム構造体2の気孔率および平均気孔径はそれぞれ、41%および3.6μmであった。ハニカム構造体2の体積抵抗率は、6Ω・cmであった。ハニカム構造体2の抵抗変化率は、2%であった。ハニカム構造体2の焼成収縮率は、3.0%であった。
比較例1では、ハニカム構造体におけるシリコン、コージェライトおよび高抵抗シリコンカーバイドの含有率はそれぞれ、31質量%、69質量%および0質量%であった。ハニカム構造体のシリコン相におけるシリコン粒子の平均粒径は、7.3μmであった。ハニカム構造体の気孔率および平均気孔径はそれぞれ、31%および2.2μmであった。ハニカム構造体の体積抵抗率は、16Ω・cmであった。ハニカム構造体の抵抗変化率は、300%であった。ハニカム構造体の焼成収縮率は、7.9%であった。
図4は、比較例1のハニカム構造体の研磨断面を示すSEM画像である。図4中の白色部81はシリコンであり、黒色部84は気孔である。また、灰色部82はコージェライトである。図4中のシリコン粒子81の平均粒径は、図3中のシリコン粒子81の平均粒径よりも明らかに小さいことが分かる。
比較例2では、ハニカム構造体におけるシリコン、コージェライトおよび高抵抗シリコンカーバイドの含有率はそれぞれ、27質量%、73質量%および0質量%であった。ハニカム構造体のシリコン相におけるシリコン粒子の平均粒径は、7.5μmであった。ハニカム構造体の気孔率および平均気孔径はそれぞれ、33%および2.2μmであった。ハニカム構造体の体積抵抗率は、1000Ω・cmよりも大きかった。ハニカム構造体の体積抵抗率が過大であったため、ハニカム構造体の抵抗変化率は測定しなかった。ハニカム構造体の焼成収縮率は、7.9%であった。
比較例3では、ハニカム構造体におけるシリコン、コージェライトおよび高抵抗シリコンカーバイドの含有率はそれぞれ、59質量%、41質量%および0質量%であった。ハニカム構造体のシリコン相は連なって繋がっておりシリコン粒径を測定することはできなかった。ハニカム構造体の気孔率および平均気孔径はそれぞれ、26%および2.6μmであった。ハニカム構造体の体積抵抗率は、0.2Ω・cmであった。ハニカム構造体の体積抵抗率が過小であったため、ハニカム構造体の抵抗変化率は測定しなかった。ハニカム構造体の焼成収縮率は、8.9%であった。
実施例1~5と比較例1~3とを比較すると、実施例1~5のハニカム構造体2では、高抵抗シリコンカーバイドの含有率が20質量%以上かつ50質量%以下であるのに対し、比較例1~3のハニカム構造体では、高抵抗シリコンカーバイドの含有率は20質量%未満である。上述のように、複合焼結体における高抵抗シリコンカーバイド相は、シリコン粒子間の導通パスを分断して複合焼結体の体積抵抗率を増大させ、一方で、シリコン粒子を粗大化して導通パスを太くすることにより複合焼結体の体積抵抗率を低減させる。これにより、複合焼結体の体積抵抗率が好適な範囲に収まる。また、高抵抗シリコンカーバイド相は、シリコン粒子を粗大化することにより、シリコン粒子同士の結合部の酸化による導電パスの遮断を抑制し、複合焼結体の耐酸化性向上(すなわち、高温酸化雰囲気に曝された場合の抵抗変化率の低減)を実現する。さらには、高抵抗シリコンカーバイド相は、シリコン粒子を粗大化することにより、平均気孔径を増大させて複合焼結体のヤング率を低減し、複合焼結体の耐熱衝撃性を向上させる。また、高抵抗シリコンカーバイド相は、複合焼結体の焼成収縮率を低減させる。
実施例1~5では、高抵抗シリコンカーバイドの含有率を20質量%以上かつ50質量%以下とすることにより、ハニカム構造体2におけるシリコン粒子の平均粒径が9μm以上と大きくなった。ハニカム構造体2の気孔率は30%以上かつ50%以下であり、平均気孔径は2.5μm以上かつ4.0μm以下であった。また、ハニカム構造体2の体積抵抗率は、1.0Ω・cm以上かつ100Ω・cm以下と好適な範囲に収まり、ハニカム構造体2の抵抗変化率は、100%以下と小さかった。さらに、ハニカム構造体2の焼成収縮率は、7%以下と小さかった。
一方、比較例1~3では、高抵抗シリコンカーバイドの含有率が20質量%未満であるため、ハニカム構造体2におけるシリコン粒子の平均粒径は9μm未満と小さかった。比較例3では、気孔率は30%未満と小さく、比較例1~2では、平均気孔径は2.5μm未満と小さかった。比較例2では、体積抵抗率は100Ω・cmよりも大きく、比較例3では、体積抵抗率は1.0Ω・cm未満と小さかった。比較例1では、抵抗変化率は300%と大きかった。比較例2では、抵抗変化率は測定していないが、平均気孔径が比較例1と同様に小さいため、抵抗変化率は比較例1と同様に大きいと考えられる。比較例1~3では、焼成収縮率は7%よりも大きかった。
比較例4では、低抵抗シリコンカーバイドを69質量%含んでいるため、体積抵抗率が10Ω・cm未満と小さかった。また、比較例4では、正特性サーミスタであるシリコン相、および、負特性サーミスタである低抵抗シリコンカーバイド相に電流が流れるため、ハニカム構造体全体のサーミスタ特性が負になる可能性がある。一方、実施例1~5では、正特性サーミスタであるシリコン相のみに電流が流れるため、ハニカム構造体2全体のサーミスタ特性は正になる。電気加熱触媒1では、ハニカム構造体2の温度均一性を向上するという観点から、低温部ほど低抵抗で電流が流れやすく発熱量が大きくなるように、サーミスタ特性は正であることが好ましい。したがって、実施例1~5のハニカム構造体2は、比較例4のハニカム構造体に比べて、電気加熱触媒1に適している。
実施例1~2,4~5と実施例3とを比較すると、実施例1~2,4~5のシリコン粒子の平均粒径は10.4μm~11.8μmであり、実施例3のシリコン粒子の平均粒径は9.5μmであった。また、実施例1~2,4~5の抵抗変化率は2~5%であり、実施例3の抵抗変化率は80%であった。したがって、抵抗変化率をさらに低減する(例えば、50%以下にする)という観点からは、シリコン粒子の平均粒径は10μm以上であることが好ましい。
以上に説明したように、複合焼結体は、シリコン相と、コージェライト相と、高抵抗シリコンカーバイド相とを含む。当該複合焼結体におけるシリコンの含有率は当該複合焼結体に対して30質量%以上かつ50質量%以下である。当該複合焼結体におけるコージェライトの含有率は当該複合焼結体に対して10質量%以上かつ50質量%以下である。当該複合焼結体における高抵抗シリコンカーバイドの含有率は当該複合焼結体に対して20質量%以上かつ50質量%以下である。これにより、上述のように、シリコン粒子を粗大化することができる。その結果、複合焼結体の体積抵抗率を好適な範囲に収めることができるとともに、複合焼結体の耐酸化性を向上することができる。さらに、複合焼結体の耐熱衝撃性を向上することもできる。その上、複合焼結体の焼成収縮率を低減することもできる。
上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。
本発明は、自動車等のエンジンからの排ガスの浄化処理に用いられる電気加熱触媒等に利用可能である。
1 電気加熱触媒
2 ハニカム構造体
21 外壁
22 隔壁
23 セル
41 電極端子
S11~S13 ステップ

Claims (11)

  1. 複合焼結体であって、
    シリコン相と、
    コージェライト相と、
    高抵抗シリコンカーバイド相と、
    を含み、
    前記複合焼結体におけるシリコンの含有率は前記複合焼結体に対して30質量%以上かつ50質量%以下であり、
    前記複合焼結体におけるコージェライトの含有率は前記複合焼結体に対して10質量%以上かつ50質量%以下であり、
    前記複合焼結体における高抵抗シリコンカーバイドの含有率は前記複合焼結体に対して20質量%以上かつ50質量%以下である、複合焼結体。
  2. 前記複合焼結体におけるシリコン粒子の体積基準のメジアン径は9μm以上である、請求項1に記載の複合焼結体。
  3. 前記複合焼結体の気孔率は30%以上かつ50%以下である、請求項1または2に記載の複合焼結体。
  4. 前記複合焼結体の平均気孔径は2.5μm以上かつ4.0μm以下である、請求項1から3のいずれか一項に記載の複合焼結体。
  5. 前記複合焼結体の20℃における体積抵抗率は、1.0Ω・cm以上かつ100Ω・cm以下である、請求項1から4のいずれか一項に記載の複合焼結体。
  6. 前記複合焼結体を950℃の大気中に50時間曝露した後の曝露後の複合焼結体の体積抵抗率の変化率は100%以下である、請求項1から5のいずれか一項に記載の複合焼結体。
  7. 前記複合焼結体における低抵抗シリコンカーバイドの含有率は前記複合焼結体に対して1質量%以下である、請求項1から6のいずれか一項に記載の複合焼結体。
  8. ハニカム構造体であって、
    筒状の外壁と、
    前記外壁の内部を複数のセルに仕切る格子状の隔壁と、
    を備え、
    前記外壁および前記隔壁は、請求項1から7のいずれか一項に記載の複合焼結体を含んで構成される、ハニカム構造体。
  9. エンジンから排出される排ガスの浄化処理を行う電気加熱触媒であって、
    請求項8に記載のハニカム構造体と、
    前記ハニカム構造体の外側面に固定されて前記ハニカム構造体に電流を付与する一対の電極端子と、
    を備える、電気加熱触媒。
  10. 複合焼結体の製造方法であって、
    a)シリコン原料、コージェライト原料および高抵抗シリコンカーバイド原料を含む原料粉末を成形して成形体を得る工程と、
    b)前記成形体を焼成して複合焼結体を得る工程と、
    を備え、
    前記複合焼結体は、
    シリコン相と、
    コージェライト相と、
    高抵抗シリコンカーバイド相と、
    を含み、
    前記複合焼結体におけるシリコンの含有率は30質量%以上かつ50質量%以下であり、
    前記複合焼結体におけるコージェライトの含有率は10質量%以上かつ50質量%以下であり、
    前記複合焼結体における高抵抗シリコンカーバイドの含有率は20質量%以上かつ50質量%以下である、複合焼結体の製造方法。
  11. 前記成形体に対する前記複合焼結体の焼成収縮率は7%以下である、請求項10に記載の複合焼結体の製造方法。
JP2022040159A 2022-03-15 2022-03-15 複合焼結体、ハニカム構造体、電気加熱触媒および複合焼結体の製造方法 Pending JP2023135116A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022040159A JP2023135116A (ja) 2022-03-15 2022-03-15 複合焼結体、ハニカム構造体、電気加熱触媒および複合焼結体の製造方法
US18/162,786 US20230294082A1 (en) 2022-03-15 2023-02-01 Composite sintered body, honeycomb structure, electrically heating catalyst, and method of manufacturing composite sintered body
DE102023200885.8A DE102023200885A1 (de) 2022-03-15 2023-02-03 Gesinterter verbundkörper, wabenstruktur, elektrisch beheizter katalysator, und verfahren zum herstellen eines gesinterten verbundkörpers
CN202310127910.5A CN116768647A (zh) 2022-03-15 2023-02-17 复合烧结体、蜂窝结构体、电加热催化器及复合烧结体的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022040159A JP2023135116A (ja) 2022-03-15 2022-03-15 複合焼結体、ハニカム構造体、電気加熱触媒および複合焼結体の製造方法

Publications (1)

Publication Number Publication Date
JP2023135116A true JP2023135116A (ja) 2023-09-28

Family

ID=87849600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022040159A Pending JP2023135116A (ja) 2022-03-15 2022-03-15 複合焼結体、ハニカム構造体、電気加熱触媒および複合焼結体の製造方法

Country Status (4)

Country Link
US (1) US20230294082A1 (ja)
JP (1) JP2023135116A (ja)
CN (1) CN116768647A (ja)
DE (1) DE102023200885A1 (ja)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3681780B2 (ja) * 1995-02-08 2005-08-10 東京窯業株式会社 多孔質導電性炭化珪素焼結体とその製造方法及び用途
JP2001233673A (ja) * 1999-12-13 2001-08-28 Nippon Tungsten Co Ltd 静電気拡散性を有するセラミックス材料とその製造方法
AU2003220816A1 (en) * 2002-03-29 2003-10-13 Ngk Insulators, Ltd. Method for producing cordierite-based porous material
WO2011125226A1 (ja) * 2010-04-09 2011-10-13 イビデン株式会社 ハニカム構造体
CN103415490B (zh) * 2011-03-18 2015-12-09 日本碍子株式会社 碳化硅质多孔体、蜂窝结构体及电加热式催化剂载体
JP2012214364A (ja) * 2011-03-28 2012-11-08 Ngk Insulators Ltd ハニカム構造体、Si−SiC系複合材料、ハニカム構造体の製造方法及びSi−SiC系複合材料の製造方法
CN104185615B (zh) * 2012-03-28 2018-07-03 日本碍子株式会社 碳化硅质多孔体、蜂窝结构体及电加热式催化剂载体
KR101614325B1 (ko) * 2015-01-21 2016-04-21 한국세라믹기술원 바나듐 함유 탄화규소 분말의 제조방법 및 이에 의해 제조된 고저항 탄화규소 단결정
GB2557065B (en) 2015-08-27 2021-12-01 Illinois Tool Works Field splitter for three-dimensional strain measurement
JP7154139B2 (ja) * 2018-03-20 2022-10-17 日本碍子株式会社 流体加熱部品、流体加熱部品複合体、及び流体加熱部品の製造方法
JP7100478B2 (ja) * 2018-03-30 2022-07-13 日本碍子株式会社 セラミックス多孔体及びその製造方法、並びに集塵用フィルタ
JP2020161413A (ja) 2019-03-27 2020-10-01 株式会社デンソー 電気抵抗体、ハニカム構造体、および、電気加熱式触媒装置
JP7184707B2 (ja) * 2019-06-18 2022-12-06 日本碍子株式会社 ハニカム構造体、電気加熱式ハニカム構造体、電気加熱式担体及び排気ガス浄化装置

Also Published As

Publication number Publication date
US20230294082A1 (en) 2023-09-21
CN116768647A (zh) 2023-09-19
DE102023200885A1 (de) 2023-09-21

Similar Documents

Publication Publication Date Title
US8530030B2 (en) Honeycomb structure
US9585196B2 (en) Honeycomb structure
US11383228B2 (en) Conductive honeycomb structure
US20190368404A1 (en) Support for electric heating type catalyst
US20200157998A1 (en) Support for electric heating type catalyst and exhaust gas purifying device
CN112047738B (zh) SiC粉末及其制造方法、电加热式蜂窝结构体及其制造方法
US20190292963A1 (en) Support for electric heating type catalyst and exhaust gas purifying apparatus
CN115073177A (zh) 蜂窝结构体及电加热式载体
US20220287154A1 (en) Honeycomb structure, electrically heating support and exhaust gas purifying device
JP2023135116A (ja) 複合焼結体、ハニカム構造体、電気加熱触媒および複合焼結体の製造方法
CN115124347B (zh) 碳化硅质多孔体、蜂窝结构体、电加热催化器及碳化硅质多孔体的制造方法
JP2023128877A (ja) 複合焼結体、ハニカム構造体、電気加熱触媒および複合焼結体の製造方法
CN115124333B (zh) 复合烧结体、蜂窝结构体、电加热催化器及复合烧结体的制造方法
CN115126576A (zh) 蜂窝结构体、以及采用了该蜂窝结构体的电加热式载体及尾气处理装置
JP7320154B1 (ja) ハニカム構造体、電気加熱型担体及び排ガス浄化装置
US11986812B2 (en) Honeycomb structure and electric heating support using the honeycomb structure
US20240167411A1 (en) Electrically heating catalytic converter
JP2022144219A (ja) ハニカム構造体、電気加熱式担体及び排気ガス浄化装置
JP2022145495A (ja) ハニカム構造体および該ハニカム構造体を用いた電気加熱型担体
JP2022135885A (ja) ハニカム構造体、電気加熱式担体及び排気ガス浄化装置
JP2023128057A (ja) ハニカム構造体、電気加熱式触媒担体及び排気ガス浄化装置
JP2022158927A (ja) 電気加熱型担体及び排ガス浄化装置