WO2020195013A1 - 作業車両 - Google Patents

作業車両 Download PDF

Info

Publication number
WO2020195013A1
WO2020195013A1 PCT/JP2020/000689 JP2020000689W WO2020195013A1 WO 2020195013 A1 WO2020195013 A1 WO 2020195013A1 JP 2020000689 W JP2020000689 W JP 2020000689W WO 2020195013 A1 WO2020195013 A1 WO 2020195013A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling fan
rotation
temperature
cooling
heat exchanger
Prior art date
Application number
PCT/JP2020/000689
Other languages
English (en)
French (fr)
Inventor
祐樹 抜井
正規 吉川
田中 哲二
宏直 鈴木
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Publication of WO2020195013A1 publication Critical patent/WO2020195013A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/16Indicating devices; Other safety devices concerning coolant temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/04Pump-driving arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio

Definitions

  • the present invention relates to a work vehicle provided with a heat exchanger such as a radiator that cools engine cooling water and an oil cooler that cools hydraulic oil for driving a cargo handling work machine.
  • a heat exchanger such as a radiator that cools engine cooling water and an oil cooler that cools hydraulic oil for driving a cargo handling work machine.
  • Cooling fan that takes in outside air and blows it to the cooling device.
  • the cooling fan collects dust and the like together with the outside air. It will be taken inside. If dust or the like is sent to the heat exchanger, the heat exchanger may be clogged and the hydraulic oil or engine cooling water may overheat. Therefore, in order to prevent clogging of the heat exchanger, a method of removing dust and the like by rotating the cooling fan in the reverse direction is known.
  • Patent Document 1 includes a changeover switch for switching the rotation direction of the cooling fan, and by operating the changeover switch to the reverse side when the cooling fan is rotating in the forward direction, the direction changeover valve is switched.
  • a cooling fan control device that controls the flow direction of pressure oil to a hydraulic motor that drives a cooling fan in the opposite direction is disclosed.
  • the cooling fan is automatically switched by the controller at predetermined interval time intervals. There is an automatic switching that switches the rotation direction of.
  • an object of the present invention is to provide a work vehicle capable of extending the life of various parts for driving a cooling fan while effectively eliminating clogging of the heat exchanger.
  • the present invention comprises an engine, a cooling fan that takes in outside air to generate cooling air, a cooling fan drive device that is driven by the engine to rotate the cooling fan, and the cooling fan.
  • a cooling fan that takes in outside air to generate cooling air
  • a cooling fan drive device that is driven by the engine to rotate the cooling fan
  • the cooling fan In a work vehicle including a heat exchanger unit to which the cooling air is blown, and a controller that controls the cooling fan drive device so that the cooling fan repeatedly rotates forward and reverse at a predetermined interval time, the controller is provided. .
  • the controller is provided in a work vehicle including a heat exchanger unit to which the cooling air is blown, and a controller that controls the cooling fan drive device so that the cooling fan repeatedly rotates forward and reverse at a predetermined interval time.
  • the cooling fan drive device is controlled so that the rotation direction of the cooling fan is switched from forward rotation to reverse rotation at the interval time of the above, and the temperatures of water and oil cooled by the heat exchanger unit are both the engine.
  • the thermostat provided between the heat exchanger unit and the heat exchanger unit falls below the cooling temperature threshold at which the thermostat is fully opened, the second interval time is changed to the first interval time and the rotation starts from the forward rotation. It is characterized in that the cooling fan driving device is controlled so that the rotation direction of the cooling fan is switched to the reverse rotation.
  • the life of various parts for driving the cooling fan can be extended while effectively eliminating the clogging of the heat exchanger. Issues, configurations and effects other than those described above will be clarified by the description of the following embodiments.
  • It is a flowchart which shows the flow of the clogging detection determination process executed by the controller which concerns on 1st Embodiment.
  • FIG. 1 is a side view showing the appearance of the wheel loader 1 according to each embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing an outline of the drive system configuration of the wheel loader 1.
  • the wheel loader 1 is an articulated work vehicle provided with a plurality of wheels 11 and steered by the vehicle body bending in the middle near the center.
  • the front frame 1A which is the front part of the vehicle body
  • the rear frame 1B which is the rear part of the vehicle body
  • the front frame 1A is connected to the rear frame 1B.
  • the wheel loader 1 includes a pair of left and right front wheels 11 and a pair of left and right rear wheels 11 for a total of four wheels 11. Note that, of the four wheels 11, only the left front wheel 11 and the left rear wheel 11 are shown in FIG.
  • a hydraulically driven cargo handling work machine 2 used for cargo handling work is attached to the front part of the front frame 1A.
  • the cargo handling work machine 2 includes a lift arm 21 having a base end attached to the front frame 1A, two lift arm cylinders 22 for driving the lift arm 21, and a bucket 23 attached to the tip of the lift arm 21.
  • the bell crank 25 that is rotatably connected to the lift arm 21 to form a link mechanism between the bucket 23 and the bucket cylinder 24, and the two lift arm cylinders 22 and the bucket cylinder 24. It has a plurality of pipes (not shown) that guide the pressure oil.
  • the two lift arm cylinders 22 and the bucket cylinder 24 correspond to the hydraulic cylinders that drive the cargo handling work machine 2, respectively.
  • the two lift arm cylinders 22 and the bucket cylinder 24 are collectively referred to as “hydraulic cylinder 22”. , 24 ”may be used.
  • Each of the two lift arm cylinders 22 rotates the lift arm 21 in the vertical direction with respect to the front frame 1A as the hydraulic oil flows in and out and the rod 220 expands and contracts.
  • the lift arm 21 is supplied with hydraulic oil to the bottom chambers of the two lift arm cylinders 22 and rotates upward by extending the rod 220, and the hydraulic oil is supplied to the rod chambers of the two lift arm cylinders 22. As the rod 220 contracts, it rotates downward.
  • FIG. 1 of the two lift arm cylinders 22 arranged in the left-right direction of the vehicle body only the lift arm cylinder 22 arranged on the left side is shown by a broken line.
  • the bucket cylinder 24 rotates the bucket 23 in the vertical direction with respect to the lift arm 21 as the hydraulic oil flows in and out and the rod 240 expands and contracts.
  • the bucket 23 is tilted (rotated upward with respect to the lift arm 21) by supplying hydraulic oil to the bottom chamber of the bucket cylinder 24 and extending the rod 240, and the hydraulic oil is supplied to the rod chamber of the bucket cylinder 24.
  • the bucket 23 can be replaced with various attachments such as blades, and can perform various operations such as soil pushing work and snow removal work in addition to excavation work using the bucket 23.
  • a counter weight 14 and a counter weight 14 for maintaining the above speed are provided.
  • the driver's cab 12 is arranged at the front
  • the counterweight 14 is arranged at the rear
  • the machine room 13 is arranged between the driver's cab 12 and the counterweight 14.
  • the running of the vehicle body is controlled by a torque converter type running drive system, and as shown in FIG. 2, the engine 30 and the torque converter 31 connected to the output shaft of the engine 30 (hereinafter, “torque converter”). 31 ”) and a transmission 32 connected to the output shaft of the torque converter 31.
  • torque converter type running drive system
  • the engine 30 is started by the operator operating the ignition switch 121 to ON in the driver's cab 12, and is further rotated by depressing the accelerator pedal 122.
  • the rotation speed of the engine 30 (hereinafter, simply referred to as "engine rotation speed") is proportional to the depression amount of the accelerator pedal 122, and the engine rotation speed increases as the depression amount of the accelerator pedal 122 increases.
  • the cooling water of the engine 30 is cooled by the radiator 40. Specifically, the cooling water of the engine 30 flows into the radiator 40 via the thermostat 30A provided between the engine 30 and the radiator 40, is cooled by the radiator 40, and then returns to the engine 30 again.
  • the cooling water temperature TWn of the engine 30 (hereinafter, simply referred to as “cooling water temperature TWn”) is detected by the cooling water temperature sensor 40A provided on the inlet side of the radiator 40 and input to the controller 5.
  • the torque converter 31 is a fluid clutch composed of an impeller, a turbine, and a stator, and transmits the driving force of the engine 30 to the transmission 32 via the torque converter oil as a working fluid.
  • the torque converter oil of the torque converter 31 flows from the torque converter 31 into the torque converter oil cooler 41 as a working fluid cooler, is cooled by the torque converter oil cooler 41, and then returns to the torque converter 31 again.
  • the torque converter oil temperature TCn (hereinafter, simply referred to as “torque converter oil temperature TCn”) is detected by the torque converter oil temperature sensor 41A as a working fluid temperature sensor provided on the inlet side of the torque converter oil cooler 41 and input to the controller 5. Will be done.
  • the transmission 32 has a forward clutch and a reverse clutch, a plurality of speed stage clutches, and a plurality of electromagnetic valves for controlling these clutches, and has an output shaft of the Torcon 31 in each of the forward travel and the reverse travel. It is an automatic transmission that shifts the rotation speed to a speed corresponding to any of the 1st to 4th speed stages.
  • the plurality of solenoid valves control the engagement state (combination) of the forward clutch and the reverse clutch and the plurality of speed stage clutches based on the command signal output from the controller 5.
  • the rotational force shifted by the transmission 32 is transmitted to the plurality of wheels 11 via the propeller shaft 15 and the axle 16, respectively, whereby the wheel loader 1 travels.
  • the traveling direction of the wheel loader 1, that is, switching between forward and reverse, is performed by operating the forward / backward switching lever 123 as a forward / backward switching device provided in the driver's cab 12.
  • the forward / backward switching lever 123 switches to a forward position F for moving the vehicle body forward, a neutral position N for stopping the vehicle body, and a reverse position R for moving the vehicle body backward.
  • the forward / backward switching lever 123 is switched to the forward position F, the forward clutch of the transmission 32 is engaged, and when the forward / backward switching lever 123 is switched to the reverse position R, the reverse clutch of the transmission 32 is engaged.
  • the forward / backward switching lever 123 is switched to the neutral position N, both the forward clutch and the reverse clutch are released.
  • the operator When parking the wheel loader 1, the operator operates the parking brake switch 124 provided in the driver's cab 12 to operate the parking brake.
  • the parking brake switch 124 When the parking brake switch 124 is turned on, the vehicle body does not move forward or backward even if the forward / backward switching lever 123 is switched to the forward position F or the reverse position R, so that the forward / backward switching lever 123 is switched to the neutral position N.
  • the neutral position N Corresponds to the same state as the state.
  • the wheel loader 1 includes a cargo handling hydraulic pump 20 driven by the engine 30 and a directional control valve 26 provided between the cargo handling hydraulic pump 20 and the hydraulic cylinders 22 and 24.
  • the cargo handling hydraulic pump 20 supplies the hydraulic oil sucked from the hydraulic oil tank 27 to each of the hydraulic cylinders 22 and 24.
  • the cargo handling hydraulic pump 20 is a swash plate type or sloping shaft type variable displacement hydraulic pump in which the push-out volume is controlled according to the tilt angle, but it is not necessarily a variable displacement hydraulic pump. Instead, a fixed capacity hydraulic pump may be used.
  • the directional control valve 26 controls the flow (direction and flow rate) of the hydraulic oil discharged from the cargo handling hydraulic pump 20 and flowing into the hydraulic cylinders 22 and 24.
  • the hydraulic oil for driving the cargo handling work machine 2 is sucked up from the hydraulic oil tank 27 by the cargo handling hydraulic pump 20 and discharged, flows into the oil cooler 42 via the directional control valve 26, and is cooled by the oil cooler 42. After that, it returns to the hydraulic oil tank 27 again.
  • the hydraulic oil temperature TOn (hereinafter, simply referred to as “hydraulic oil temperature TOn”) is detected by the hydraulic oil temperature sensor 42A provided on the inlet side of the oil cooler 42 and input to the controller 5.
  • a cooling unit 400 for cooling the hydraulic oil of the above is mounted on the rear side (indicated by a broken line in FIG. 1).
  • the cooling unit 400 includes a heat exchanger unit 4, a cooling fan 44 that takes in outside air to generate cooling air and blows the air to the heat exchanger unit 4, and a cooling fan driving device 45 that drives the cooling fan 44. ing.
  • the heat exchanger unit 4 includes the radiator 40, the torque converter oil cooler 41, and the oil cooler 42 described above.
  • the cooling fan drive device 45 includes a fan hydraulic pump 451 driven by an engine 30, a fan hydraulic motor 452 that rotates the cooling fan 44, a relief valve 453 that controls the rotation speed of the fan hydraulic motor 452, and a fan.
  • a direction switching valve 454 for switching the flow direction of the hydraulic oil supplied from the hydraulic pump 451 to the fan hydraulic motor 452 is provided.
  • the fan hydraulic pump 451 supplies hydraulic oil to the fan hydraulic motor 452.
  • the hydraulic pump 451 for a fan uses a fixed-capacity hydraulic pump, but the present invention is not limited to this, and a variable-capacity hydraulic pump may be used.
  • a discharge pressure sensor 451A for detecting the discharge pressure of the fan hydraulic pump 451 is mounted on the discharge pipe 45A of the fan hydraulic pump 451. The discharge pressure detected by the discharge pressure sensor 451A is input to the controller 5 and used when controlling the rotation speed of the fan hydraulic motor 452.
  • the relief valve 453 is an electromagnetic variable relief valve, and is provided between the discharge pipe line 45A and the discharge pipe line 45B that connects the fan hydraulic motor 452 and the hydraulic oil tank 27.
  • the relief valve 453 defines the maximum pressure of the hydraulic oil supplied from the fan hydraulic pump 451 to the fan hydraulic motor 452 according to the control signal output from the controller 5, and the pressure in the discharge line 45A (fan hydraulic pressure).
  • the pressure on the discharge side of the pump 451) is controlled.
  • the rotation speed of the fan hydraulic motor 452 is controlled to adjust the rotation speed of the cooling fan 44.
  • the directional control valve 454 is an electromagnetic directional switching valve, and is provided between the fan hydraulic pump 451 and the fan hydraulic motor 452. Specifically, the direction switching valve 454 is connected to the discharge port of the fan hydraulic pump 451 by the discharge pipe 45A, and to the outflow port of the fan hydraulic motor 452 by the pair of connection pipes 45C and 45D, respectively. .. Further, the direction switching valve 454 is connected to the hydraulic oil tank 27 by the discharge pipe line 45B.
  • the direction switching valve 454 has a predetermined interval time between the forward rotation position L for rotating the fan hydraulic motor 452 in the forward direction and the reverse rotation position M for the reverse rotation of the fan hydraulic motor 452 according to the command signal output from the controller 5. Switch with. As a result, the cooling fan 44 connected to the fan hydraulic motor 452 via the output shaft 452A of the fan hydraulic motor 452 repeatedly rotates forward and reverse at predetermined interval times.
  • the hydraulic oil discharged from the fan hydraulic pump 451 is hydraulic pressure for the fan via the discharge pipe 45A and one of the connecting pipes 45C.
  • the hydraulic oil supplied to the motor 452 and supplied to the fan hydraulic motor 452 is discharged to the hydraulic oil tank 27 via the other connection line 45D and the discharge line 45B.
  • the fan hydraulic motor 452 rotates in the positive direction.
  • the hydraulic oil discharged from the fan hydraulic pump 451 is supplied to the fan hydraulic motor 452 via the discharge pipe 45A and the other connection pipe 45D.
  • the hydraulic oil supplied to the fan hydraulic motor 452 is discharged to the hydraulic oil tank 27 via one of the connecting pipes 45C and the discharge pipe 45B.
  • the hydraulic motor 452 for the fan rotates in the opposite direction.
  • the wheel loader 1 is often used at a work site where dust and the like are likely to fly, and the cooling fan 44 takes in the dust and the like into the machine room 13 together with the outside air. Therefore, the heat exchanger unit 4 is provided with a dustproof filter (not shown) for preventing the intrusion of dust and the like on the side facing the cooling fan 44. If the dust filter is clogged, the cooling performance deteriorates, and the water or oil (cooling water, hydraulic oil, torcon oil) cooled by the heat exchanger unit 4 may overheat.
  • the direction switching valve 454 is controlled by the controller 5 to automatically rotate the cooling fan 44 in the forward and reverse directions repeatedly at a predetermined interval time to remove dust and the like clogged in the dust filter.
  • the "predetermined interval time” is, for example, in the case of the normal interval time as the initially set first interval time, the duration of forward rotation (normal normal rotation duration) is set to 30 minutes, and vice versa. The duration of rotation (reverse rotation continuation setting time) is set to 1 minute.
  • the controller 5 detects clogging of the heat exchanger unit 4 based on the input cooling water temperature TWn, hydraulic oil temperature TOn, and torque converter oil temperature TCn, and the clogging is eliminated when the clogging is detected.
  • the cooling fan drive device 45 is controlled so that a predetermined interval time for rotating the cooling fan 44 in the forward and reverse directions changes depending on the case.
  • the functional configuration of the controller 5 will be described for each embodiment.
  • FIG. 3 is a functional block diagram showing the functions of the controller 5 according to the first embodiment.
  • the controller 5 is configured by connecting the CPU, RAM, ROM, HDD, input I / F, and output I / F to each other via a bus. Then, various operating devices such as the ignition switch 121, various sensors such as the cooling water temperature sensor 40A, the torque converter oil temperature sensor 41A, and the hydraulic oil temperature sensor 42A are connected to the input I / F, and the direction switching valve 454 and the like are output. It is connected to the I / F.
  • the CPU reads a control program (software) stored in a recording medium such as a ROM, HDD, or optical disk, expands it on the RAM, and executes the expanded control program for control.
  • a control program software stored in a recording medium such as a ROM, HDD, or optical disk
  • the program and the hardware work together to realize the function of the controller 5.
  • the controller 5 is described as a computer configured by a combination of software and hardware, but the present invention is not limited to this, and for example, as an example of the configuration of another computer, the wheel loader 1 side.
  • An integrated circuit that realizes the function of the controller to be executed may be used.
  • the controller 5 includes a data acquisition unit 50, an engine state determination unit 51, a rotation direction determination unit 52, an increase rate calculation unit 53, a clogging determination unit 54, a duration measurement unit 55, and a duration determination unit 56.
  • a storage unit 57, a command signal output unit 58, and an interval time reset unit 59 are included.
  • the data acquisition unit 50 detects the operation signal output from the ignition switch 121, the cooling water temperature TWn detected by the cooling water temperature sensor 40A, the torque converter oil temperature TCn detected by the torque converter oil temperature sensor 41A, and the hydraulic oil temperature sensor 42A. Data on the hydraulic oil temperature TOn is acquired.
  • the engine state determination unit 51 determines the ON state or OFF state of the ignition switch 121, that is, the operating state of the engine 30, based on the operation signal from the ignition switch 121 acquired by the data acquisition unit 50.
  • the rotation direction determination unit 52 determines whether the rotation direction of the cooling fan 44, that is, the rotation direction of the fan hydraulic motor 452 is the forward direction or the reverse direction.
  • the rotation direction of the cooling fan 44 at the time of initial setting is the positive direction.
  • the rate of increase calculation unit 53 includes cooling water temperature TWn, torque converter oil temperature TCn, and hydraulic oil temperature TOn acquired by the data acquisition unit 50, and cooling water temperature TWn-t and torque converter acquired by the data acquisition unit 50 t seconds ago. Based on the oil temperature TCn-t and the hydraulic oil temperature TOn-t, the rate of increase in the cooling water temperature (TWn-TWn-t) / t, the rate of increase in the torque converter oil temperature (TCn-TCn-t) / t, And the rate of increase in hydraulic oil temperature (TOn-TOn-t) / t are calculated respectively.
  • the clogging determination unit 54 determines whether or not the increase rate of the cooling water temperature calculated by the increase rate calculation unit 53 is equal to or higher than the predetermined cooling water temperature increase rate threshold value RW, and determines whether or not the torcon oil temperature calculated by the increase rate calculation unit 53. Whether or not the rate of increase is equal to or higher than the predetermined Torcon oil temperature increase rate threshold RC, or whether or not the rate of increase in hydraulic oil temperature calculated by the rate of increase calculation unit 53 is equal to or greater than the predetermined hydraulic oil temperature increase rate threshold RO. That is, it is determined whether or not the temperature of the water or oil cooled by the heat exchanger unit 4 has risen in a time shorter than the preset set time, and the presence or absence of clogging detection of the heat exchanger unit 4 is determined. judge.
  • the detection of clogging is determined by comparing the magnitude with a predetermined temperature threshold.
  • the timing at which the heat exchanger unit 4 is clogged can be detected accurately and accurately as compared with the case where the heat exchanger unit 4 is clogged.
  • the cooling water temperature TWn acquired by the data acquisition unit 50 is equal to or less than a predetermined first cooling temperature threshold TW1
  • the hydraulic oil temperature TOn acquired by the data acquisition unit 50 is a predetermined first. 2 It is determined whether or not the cooling temperature threshold TO1 or less and the Torcon oil temperature TCn acquired by the data acquisition unit 50 is equal to or less than the predetermined third cooling temperature threshold TC1. That is, in the clogging determination unit 54, whether or not the temperatures of water and oil (cooling water temperature, torque converter oil temperature, and hydraulic oil temperature) cooled by the heat exchanger unit 4 are all equal to or lower than the corresponding cooling temperature threshold value. Is determined.
  • first cooling temperature threshold TW1 is the temperature at which the thermostat 30A is fully opened
  • second cooling temperature threshold TO1 is the temperature corresponding to the first cooling temperature threshold TW1 at the torcon oil temperature
  • third cooling temperature threshold TC1 is a temperature corresponding to the first cooling temperature threshold TW1 at the hydraulic oil temperature.
  • the clogging determination unit 54 compares the cooling water temperature TWn acquired by the data acquisition unit 50 with the first cooling temperature threshold TW1, and the hydraulic oil temperature TOn acquired by the data acquisition unit 50 and the second cooling temperature threshold. It is compared with TO1 and the Torcon oil temperature TCn acquired by the data acquisition unit 50 is compared with the third cooling temperature threshold TC1 to determine whether or not the clogging of the heat exchanger unit 4 is cleared.
  • the duration measuring unit 55 determines the duration Ta of the forward rotation of the cooling fan 44 (hereinafter, simply referred to as “forward rotation duration Ta”) and the duration Tb of reverse rotation (hereinafter, simply “reverse rotation duration Tb”). ) Is measured.
  • the duration determination unit 56 determines whether or not the normal rotation duration Tf1 (for example, 30 minutes) in which the normal rotation duration Ta measured by the duration measurement unit 55 has elapsed has elapsed. Further, the duration determination unit 56 determines whether or not the reverse rotation continuation set time Tr (for example, 1 minute) measured in the duration measurement unit 55 has elapsed in advance.
  • the storage unit 57 includes a cooling water temperature rise rate threshold RW, a torcon oil temperature rise rate threshold RC, a hydraulic oil temperature rise rate threshold RO, a first cooling temperature threshold TW1, a second cooling temperature threshold TO1, a third cooling temperature threshold TC1, and normal.
  • the hourly forward rotation duration Tf1 and the reverse rotation continuation set time Tr are stored, respectively.
  • the command signal output unit 58 outputs a command signal for switching the cooling fan 44 from forward rotation to reverse rotation when the duration determination unit 56 determines that the normal rotation duration Ta has passed the normal normal rotation duration Tf1. Then, when the continuation time determination unit 56 determines that the reverse rotation continuation time Tb has elapsed the reverse rotation continuation set time Tr, a command signal for switching the cooling fan 44 from the reverse rotation to the forward rotation is output.
  • the command signal output unit 58 determines that the clogging determination unit 54 has detected the clogging of the heat exchanger unit 4, the forward rotation duration Ta elapses from the normal normal rotation continuation time Tf1. Even if it is not, a command signal for switching the cooling fan 44 from the forward rotation to the reverse rotation is output to the directional control valve 454. In the present embodiment, the command signal output unit 58 outputs a command signal related to reverse rotation to the direction switching valve 454 as soon as the clogging determination unit 54 detects the clogging of the heat exchanger unit 4. However, this is not always necessary.
  • the duration determination unit 56 determines that the normal rotation duration Ta is the normal rotation. After it is determined that the duration Tf1 has elapsed, a command signal for switching the cooling fan 44 from the reverse rotation to the forward rotation is output to the directional control valve 454.
  • the second interval time is set shorter than the default normal interval time for rotating the cooling fan 44 in the forward and reverse directions.
  • the direction switching valve 454 is controlled so that the rotation direction of the cooling fan 44 can be switched from the forward rotation to the reverse rotation in the shortened interval time, and the clogging of the heat exchanger unit 4 is cleared, the shortened interval time is usually increased.
  • the direction switching valve 454 is controlled so that the rotation direction of the cooling fan 44 can be switched from the forward rotation to the reverse rotation by changing the interval time.
  • the controller 5 shortens the interval time for rotating the cooling fan 44 in the forward and reverse directions at the timing when the heat exchanger unit 4 is clogged, and causes the cooling fan 44 when the clogging of the heat exchanger unit 4 is cleared.
  • the interval time for forward and reverse rotation By returning the interval time for forward and reverse rotation to normal, the number of times the cooling fan 44 is rotated in the reverse direction is not increased more than necessary. Therefore, the cooling fan 44 can be operated while effectively clearing the clogging of the heat exchanger unit 4.
  • the life of various parts for driving (hydraulic motor 452 for fan, direction switching valve 454, etc.) can be extended.
  • the interval time reset unit 59 rotates the cooling fan 44 in the forward and reverse directions when the engine state determination unit 51 determines that the engine 30 has stopped after the clogging determination unit 54 determines that the clogging has been detected. Reset the time from the shortened interval time to the normal interval time. This is because, when it is determined that the clogging determination unit 54 has detected the clogging, the operator turns off the ignition switch 121 to stop the engine 30, and the operator or the worker causes the clogging of the heat exchanger unit 4 to be clogged. It is useful when you have solved the problem.
  • FIG. 4 is a flowchart showing the flow of the entire process executed by the controller 5 according to the first embodiment.
  • FIG. 5 is a flowchart showing the flow of the clogging detection determination process (step S503) executed by the controller 5 according to the first embodiment.
  • the engine state determination unit 51 determines whether or not the engine 30 has started based on the operation signal from the ignition switch 121 acquired by the data acquisition unit 50 (step S501). ).
  • step S501 When it is determined in step S501 that the engine 30 has started (step S501 / YES), the rotation direction determination unit 52 determines whether or not the cooling fan 44 is in normal rotation (step S502). If it is not determined in step S501 that the engine 30 has started (step S501), the process does not proceed to step S502 or later until the engine 30 starts.
  • step S503 If it is determined in step S502 that the cooling fan 44 is rotating in the forward direction (step S502 / YES), the process proceeds to the clogging detection determination process (step S503).
  • the clogging detection determination process (step S503) will be described later.
  • step S502 since the rotation direction of the cooling fan 44 at the time of initial setting is forward rotation, step S502 becomes YES and proceeds to step S503 whenever the process proceeds from step S501 to step S502.
  • step S503 When the clogging of the heat exchanger unit 4 is detected by the clogging detection determination process (step S503) (step S504 / YES), the engine state determination unit 51 is transmitted from the ignition switch 121 acquired by the data acquisition unit 50. Based on the operation signal, it is determined whether or not the engine 30 is continuously operating (step S505).
  • step S505 When it is determined in step S505 that the engine 30 is continuously operating (step S505 / YES), the command signal output unit 58 outputs a command signal for switching the cooling fan 44 from forward rotation to reverse rotation (step S505). S506).
  • step S505 determines whether the engine 30 is continuously operating. If it is not determined in step S505 that the engine 30 is continuously operating, that is, if it is determined that the engine 30 has stopped (step S505 / NO), the interval time reset unit 59 resets the cooling fan 44. The interval time for forward / reverse rotation is reset from the shortened interval time to the normal interval time (step S507), and the controller 5 ends the process.
  • the duration determination unit 56 is the cooling fan 44 measured by the duration measurement unit 55. It is determined whether or not the normal rotation duration Ta has passed the normal normal rotation duration Tf1 (step S508).
  • step S508 If it is determined in step S508 that the normal rotation duration Ta of the cooling fan 44 has passed the normal normal rotation duration Tf1 (Ta ⁇ Tf1) (step S508 / YES), the process proceeds to step S506. On the other hand, when it is determined in step S508 that the normal rotation duration Ta of the cooling fan 44 does not elapse the normal normal rotation duration Tf1 (Ta ⁇ Tf1) (step S508 / NO), the clogging detection determination process (step S508 / NO) Return to step S503).
  • step S502 when it is determined in step S502 that the cooling fan 44 is not rotating in the forward direction, that is, in the reverse rotation (step S502 / NO), the duration determination unit 56 performs the reverse rotation measured by the duration measurement unit 55. It is determined whether or not the duration Tb has elapsed the reverse rotation continuation set time Tr (step S509).
  • step S509 When it is determined in step S509 that the reverse rotation continuation time Tb has passed the reverse rotation continuation set time Tr (Tb ⁇ Tr) (step S509 / YES), the command signal output unit 58 shifts the cooling fan 44 from the reverse rotation to the positive. A command signal for switching to rotation is output to the direction switching valve 454 (step S510).
  • step S509 when it is determined in step S509 that the reverse rotation continuation time Tb does not elapse the reverse rotation continuation set time Tr (Tb ⁇ Tr) (step S509 / NO), the reverse rotation continuation time Tb continues the reverse rotation. The process does not proceed to step S510 until the set time Tr has elapsed.
  • the engine state determination unit 51 uses the operation signal from the ignition switch 121 acquired by the data acquisition unit 50 to obtain the engine state determination unit 51. It is determined whether or not the engine 30 has stopped (step S511).
  • step S511 When it is determined in step S511 that the engine 30 has stopped (step S511 / YES), the controller 5 ends the process. On the other hand, if it is determined in step S511 that the engine 30 is not stopped, that is, it is operating (step S511 / NO), the process returns to step S502 and the process is repeated.
  • step S503 the clogging detection determination process (step S503) will be specifically described with reference to FIG.
  • the data acquisition unit 50 obtains the cooling water temperature TWn detected by the cooling water temperature sensor 40A, the hydraulic oil temperature TOn detected by the hydraulic oil temperature sensor 42A, and the torque converter oil temperature TCn detected by the torque converter oil temperature sensor 41A, respectively. Acquire (step S531). In step S531, each detected temperature is acquired at any time, and the previous value is stored in the storage unit 57.
  • the clogging determination unit 54 determines whether or not the clogging of the heat exchanger unit 4 has been detected, that is, whether or not the clogging is being cleared (step S532).
  • the rate of increase calculation unit 53 determines the cooling water temperatures TWn-t, TWn, and hydraulic oil temperature TOn- acquired in step S531. Cooling water temperature rise rate (TWn-TWn-t) / t, hydraulic oil temperature rise rate (TOn-TOn-t) / t, and torque converter oil temperature rise based on t, TOn, and torque converter oil temperature TCn-t, TCn.
  • the rate (TCn-TCn-t) / t is calculated respectively (step S533).
  • the clogging determination unit 54 determines whether or not the cooling water temperature rise rate (TWn-TWn-t) / t calculated in step S533 is equal to or higher than the cooling water temperature rise rate threshold value RW, and the operation calculated in step S533. Whether or not the oil temperature rise rate (TOn-TOn-t) / t is equal to or higher than the hydraulic oil temperature rise rate threshold RO, or the torque converter oil temperature rise rate (TCn-TCn-t) / t is the torque converter oil temperature rise rate threshold value. It is determined whether or not it is RC or higher (step S534).
  • step S534 clogging detection determination of the heat exchanger unit 4 is performed using at least one of the cooling water temperature rise rate, the hydraulic oil temperature rise rate, and the torque converter oil temperature rise rate calculated in step S533. You just have to do.
  • the clogging detection determination of the heat exchanger unit 4 is performed using the torque converter oil temperature increase rate, it is preferable to perform the determination in combination with the cooling water temperature increase rate or the hydraulic oil temperature increase rate.
  • the torque converter oil temperature falls into a stall state in which the brake is operated while depressing the accelerator pedal, the torque converter oil temperature rises sharply above the normal temperature at which the heat generation temperature and the cooling temperature are balanced at normal times. Since this occurs regardless of the clogging of the heat exchanger unit 4, in order to avoid erroneous determination, the cooling water temperature rise rate or the hydraulic oil temperature rise rate is added in addition to the torque converter oil temperature rise rate. The clogging detection of the heat exchanger unit 4 can be accurately determined.
  • the cooling water temperature rise rate threshold RW and the hydraulic oil temperature rise rate threshold RO are higher than the torque converter oil temperature rise rate threshold RC, respectively. It may be set to a low value (RW ⁇ RC, RO ⁇ RC).
  • step S534 the cooling water temperature rise rate (TWn-TWn-t) / t is equal to or higher than the cooling water temperature rise rate threshold value RW ((TWn-TWn-t) / t ⁇ RW), or the hydraulic oil temperature rise rate (TON-TON).
  • -T) / t is equal to or higher than the hydraulic oil temperature rise threshold value RO ((TOn-TOn-t) / t ⁇ RO), or Torcon oil temperature rise rate (TCn-TCn-t) / t is the Torcon oil temperature rise.
  • the clogging determination unit 54 detects clogging of the heat exchanger unit 4. After making a determination (step S535), the controller 5 ends the clogging detection determination process.
  • step S534 the cooling water temperature rise rate (TWn-TWn-t) / t is less than the cooling water temperature rise rate threshold value RW ((TWn-TWn-t) / t ⁇ RW), and the hydraulic oil temperature rise rate (TOn).
  • -TOn-t) / t is less than the hydraulic oil temperature rise threshold value RO ((TOn-TOn-t) / t ⁇ RO), and the torcon oil temperature rise rate (TCn-TCn-t) / t is torcon oil.
  • the controller 5 ends the clogging detection determination process.
  • the clogging determination unit 54 has the cooling water temperature TWn acquired in step S531 as the first. 1 Cooling temperature threshold TW1 or less, and hydraulic oil temperature TOn acquired in step S531 is equal to or less than the second cooling temperature threshold TO1, and Torcon oil temperature TCn acquired in step S531 is equal to or less than the third cooling temperature threshold TC1. It is determined whether or not it is (step S536).
  • step S536 the cooling water temperature TWn is equal to or less than the first cooling temperature threshold TW1 (TWn ⁇ TW1), the hydraulic oil temperature TOn is equal to or less than the second cooling temperature threshold TO1 (TOn ⁇ TO1), and the torcon oil temperature TCn is the first. 3
  • the clogging determination unit 54 determines that the clogging of the heat exchanger unit 4 has been cleared (step S537). , The controller 5 ends the clogging detection determination process.
  • step S536 the cooling water temperature TWn is higher than the first cooling temperature threshold TW1 (TWn> TW1), the hydraulic oil temperature TOn is higher than the second cooling temperature threshold TO1 (TOn> TO1), or the Torcon oil temperature TCn is the third cooling.
  • the controller 5 ends the clogging detection determination process.
  • FIGS. 6 and 7 the same components as those described for the controller 5 according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted. The same shall apply hereinafter to the third embodiment and the fourth embodiment.
  • FIG. 6 is a functional block diagram showing the functions of the controller 5A according to the second embodiment.
  • FIG. 7 is a flowchart showing the flow of the clogging detection determination process executed by the controller 5A according to the second embodiment.
  • the controller 5A further includes a warm-up determination unit 61.
  • the cooling water temperature TWn acquired by the data acquisition unit 50 is equal to or higher than the first normal temperature threshold TW2, and the hydraulic oil temperature TOn acquired by the data acquisition unit 50 is the second normal temperature threshold. It is determined whether or not the temperature is TO2 or higher and the Torcon oil temperature TCn acquired by the data acquisition unit 50 is equal to or higher than the third normal temperature threshold TC2. That is, in the warm-up determination unit 61, whether the temperatures of water and oil cooled by the heat exchanger unit 4 (cooling water temperature, hydraulic oil temperature, and torque converter oil temperature) are all equal to or higher than the corresponding normal temperature threshold value. Judge whether or not.
  • first normal temperature threshold TW2 the "second normal temperature threshold TO2”, and the “third normal temperature threshold TC2” are the heat generation temperatures when a predetermined load is applied to the vehicle body, respectively. It is a temperature that is balanced with the cooling temperature. Further, the "predetermined load” is neither a heavy load nor a light load, and is the magnitude of the load applied during the work normally performed by the wheel loader 1 (for example, during excavation).
  • the controller 5A determines that the heat exchanger unit 4 is clogged (corresponding to step S534 shown in FIG. 7) while the vehicle body is not warmed up, the cooling water temperature, hydraulic oil temperature, and torque converter oil during warming up are performed. Since there is a possibility that the rise in temperature is erroneously determined as clogging of the heat exchanger unit 4, the warm-up determination unit 61 determines whether or not the vehicle body has been warmed up before performing the clogging detection determination. As a result, the controller 5A can more accurately determine the clogging detection of the heat exchanger unit 4.
  • step S532 when it is determined that clogging is not detected in step S532 (step S532 / YES), whether or not the warm-up determination unit 61 has been warmed up before proceeding to step S533. Is determined (step S538).
  • step S538 the cooling water temperature TWn is equal to or higher than the first normal temperature threshold TW2 (TWn ⁇ TW2), the hydraulic oil temperature TOn is equal to or higher than the second normal temperature threshold TO2 (TOn ⁇ TO2), and the torcon oil temperature TCn. Is determined to be equal to or higher than the third normal temperature threshold value TC2 (TCn ⁇ TC2) (step S538 / YES), the process proceeds to step S533.
  • step S538 the cooling water temperature TWn is less than the first normal temperature threshold TW2 (TWn ⁇ TW2), or the hydraulic oil temperature TOn is less than the second normal temperature threshold TO2 (TOn ⁇ TO2), or torcon oil.
  • TWn ⁇ TW2 the first normal temperature threshold
  • TOn ⁇ TO2 the hydraulic oil temperature TOn is less than the second normal temperature threshold TO2 (TOn ⁇ TO2), or torcon oil.
  • the controller 5A ends the clogging detection determination process.
  • FIG. 8 is a flowchart showing the flow of the entire process executed by the controller 5B according to the third embodiment.
  • the duration determination unit 56 determines whether or not the forward rotation duration Ta measured by the duration measurement unit 55 has elapsed the shortened forward rotation duration Tf2 (step S512).
  • the "shortened forward rotation duration Tf2" is a predetermined time shorter than the normal normal rotation duration Tf1 (Tf2 ⁇ Tf1), and is, for example, about 10 minutes.
  • step S512 If it is determined in step S512 that the forward rotation duration Ta has passed the shortened normal rotation duration Tf2 (Ta ⁇ Tf2) (step S512 / YES), the process proceeds to step S506. On the other hand, if it is determined in step S512 that the forward rotation duration Ta does not elapse the forward rotation duration Tf2 when shortened (Ta ⁇ Tf2) (step S512 / NO), the forward rotation duration Ta is forward rotation when shortened. The process does not proceed to step S506 until the duration Tf2 has elapsed.
  • step S506 When clogging of the heat exchanger unit 4 is detected (step S504 / YES), if the cooling fan 44 is immediately switched from forward rotation to reverse rotation (step S506), the interval at which the cooling fan 44 is rotated in the forward and reverse directions. The time is shortened, the rotation direction of the cooling fan 44 is frequently switched, and the life of various parts (hydraulic motor 452 for fan, direction switching valve 454, etc.) for driving the cooling fan 44 may be shortened. Will increase.
  • the forward rotation duration Ta waits for the shortened normal rotation duration Tf2 to elapse (step S512 / YES).
  • the life of various parts for driving the cooling fan 44 can be extended.
  • FIG. 9 is a functional block diagram showing the functions of the controller 5C according to the fourth embodiment.
  • FIG. 10 is a flowchart showing the flow of the entire process executed by the controller 5C according to the fourth embodiment.
  • the controller 5C includes the vehicle body state determination unit 62.
  • the vehicle body condition determination unit 62 has elapsed a predetermined duration Td in which the forward / backward switching lever 123 is switched to the neutral position N based on the operation signal from the forward / backward switching lever 123 acquired by the data acquisition unit 50. It is determined whether or not the parking brake switch 124 has been turned ON based on the operation signal from the parking brake switch 124 acquired by the data acquisition unit 50.
  • the cooling fan 44 When the cooling fan 44 is rotated in the reverse direction, the air direction and the air volume are different from those in the case of the forward rotation, so that the cooling performance of the heat exchanger unit 4 may deteriorate. Therefore, if the cooling fan 44 is rotated in the reverse direction while the wheel loader 1 is performing a high-load work, at least one of the cooling water temperature, the hydraulic oil temperature, and the torque converter oil temperature rises during the reverse rotation. There is a possibility that the vehicle body will overheat momentarily. Therefore, in the controller 5C, when the clogging of the heat exchanger unit 4 is detected and the wheel loader 1 is stopped, the cooling fan 44 is switched from the forward rotation to the reverse rotation (step S506).
  • step S503 when the clogging of the heat exchanger unit 4 is detected by the clogging detection determination process (step S503) (step S504 / YES), the vehicle body condition determination unit 62 has the forward / backward switching lever 123. It is determined whether or not the predetermined duration Td has elapsed after switching to the neutral position N, or whether or not the parking brake switch 124 has been turned ON (step S513).
  • step S513 When it is determined in step S513 that the forward / backward switching lever 123 is switched to the neutral position N and the predetermined duration Td has elapsed, or it is determined that the parking brake switch 124 has been turned ON (step S513 / YES). , Step S506.
  • step S513 it is determined that the forward / backward switching lever 123 is switched to the neutral position N and the predetermined duration Td has not elapsed, and the parking brake switch 124 is not turned on (in the OFF state). If it is determined (step S513 / NO), the process proceeds to step S508.
  • the embodiment of the present invention has been described above.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
  • it is possible to replace a part of the configuration of the present embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of the present embodiment.
  • the wheel loader 1 has been described as one aspect of the work vehicle, but the present invention is not limited to this, and the present invention can be applied to other work vehicles such as a hawk lift and a dump truck. ..
  • the wheel loader 1 is equipped with a torque converter drive type travel drive system, but the present invention is not limited to this, and for example, an HST drive type drive system or the like may be used, and the system of the travel drive system may be used. There are no particular restrictions on.
  • the cooling fan drive device 45 is a hydraulic drive type, but the present invention is not limited to this, and the controllers 5 and 5A directly output a command signal to the electric motor using an electric motor to rotate in the rotation direction. May be switched.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

熱交換器の目詰まりを効果的に解消しながらも、冷却ファンを駆動するための各種部品の寿命を延ばすことが可能な作業車両を提供する。 冷却ファン44が繰り返し正逆回転するように冷却ファン駆動装置45を制御するコントローラ5を備えたホイールローダ1において、コントローラ5は、熱交換器ユニット4によって冷却される油水温度が初期設定時間よりも短い時間で上昇した場合に、初期設定された通常間隔時間に比べて短く設定された短縮間隔時間で正回転から逆回転へ冷却ファン44の回転方向が切り換えられるように冷却ファン駆動装置45を制御し、熱交換器ユニット4によって冷却される油水温度が、サーモスタット30Aが全開に開放される冷却温度閾値以下になった場合に、短縮間隔時間から通常間隔時間に変更して正回転から逆回転へ冷却ファン44の回転方向が切り換えられるように冷却ファン駆動装置45を制御する。

Description

作業車両
 本発明は、エンジンの冷却水を冷却するラジエータや荷役作業機を駆動するための作動油を冷却するオイルクーラ等の熱交換器を備える作業車両に関する。
 ホイールローダ等の作業車両には、外気を取り込んで冷却装置に送風する冷却ファンが搭載されているが、作業車両が用いられる現場は塵埃等が舞いやすいため、冷却ファンは外気と共に塵埃等を車体内部に取り込んでしまう。塵埃等が熱交換器に送り込まれると熱交換器が目詰まりを起こし、作動油やエンジンの冷却水がオーバーヒートする可能性がある。そこで、熱交換器の目詰まりを防止するため、冷却ファンを逆回転させることによって塵埃等を取り除く方法が知られている。
 例えば、特許文献1には、冷却ファンの回転方向を切り換えるための切換スイッチを備え、冷却ファンが正回転しているときに切換スイッチを逆転側に操作することにより、方向切換弁を切り換えて、冷却ファンを駆動する油圧モータへの圧油の流れ方向を逆方向に制御する冷却ファン制御装置が開示されている。冷却ファンの回転方向の切り換え手段としては、特許文献1のようにオペレータが任意のタイミングで切換スイッチを操作することにより行う手動切換の他に、コントローラによって所定の間隔時間経過ごとに自動で冷却ファンの回転方向を切り換える自動切換がある。
 ホイールローダが使用される産廃現場や木材チップを扱う作業現場等では、塵埃等が特に舞いやすいため、熱交換器の目詰まりが多発してしまう。そこで、特許文献1のように冷却ファンの切換が手動切換の場合にはオペレータが切換スイッチを頻繁に操作することにより、また、冷却ファンの切換が自動切換の場合には冷却ファンの回転方向の切換間隔時間を短く設定することにより、冷却ファンを頻繁に逆回転させ、熱交換器の目詰まりが発生する前に塵埃等を取り除くことが考えられる。
特開2013-104386号公報
 しかしながら、冷却ファンの回転方向を切り換える際は、モータをこれまでの回転方向に逆らって回転させることになるため、サージ圧が発生しやすく、また、モータのシャフトに応力が掛かりやすくなる。そのため、モータやシャフトといった冷却ファンを駆動するための各種部品の寿命が短くなってしまう。
 そこで、本発明の目的は、熱交換器の目詰まりを効果的に解消しながらも、冷却ファンを駆動するための各種部品の寿命を延ばすことが可能な作業車両を提供することにある。
 上記の目的を達成するために、本発明は、エンジンと、外気を取り込んで冷却風を生成する冷却ファンと、前記エンジンにより駆動されて前記冷却ファンを回転させる冷却ファン駆動装置と、前記冷却ファンの冷却風が送風される熱交換器ユニットと、前記冷却ファンが所定の間隔時間で繰り返し正逆回転するように前記冷却ファン駆動装置を制御するコントローラと、を備えた作業車両において、前記コントローラは、前記熱交換器ユニットによって冷却される水または油の温度が予め設定された設定時間よりも短い時間で上昇した場合に、初期設定された第1の間隔時間に比べて短く設定された第2の間隔時間で正回転から逆回転へ前記冷却ファンの回転方向が切り換えられるように前記冷却ファン駆動装置を制御し、前記熱交換器ユニットによって冷却される水および油の温度がいずれも、前記エンジンと前記熱交換器ユニットとの間に設けられたサーモスタットが全開に開放される冷却温度閾値以下になった場合に、前記第2の間隔時間から前記第1の間隔時間に変更して正回転から逆回転へ前記冷却ファンの回転方向が切り換えられるように前記冷却ファン駆動装置を制御することを特徴とする。
 本発明によれば、熱交換器の目詰まりを効果的に解消しながらも、冷却ファンを駆動するための各種部品の寿命を延ばすことができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の各実施形態に係るホイールローダの外観を示す側面図である。 ホイールローダの駆動システム構成の概略を示す回路図である。 第1実施形態に係るコントローラが有する機能を示す機能ブロック図である。 第1実施形態に係るコントローラで実行される全体処理の流れを示すフローチャートである。 第1実施形態に係るコントローラで実行される目詰まり検出判定処理の流れを示すフローチャートである。 第2実施形態に係るコントローラが有する機能を示す機能ブロック図である。 第2実施形態に係るコントローラで実行される目詰まり検出判定処理の流れを示すフローチャートである。 第3実施形態に係るコントローラで実行される全体処理の流れを示すフローチャートである。 第4実施形態に係るコントローラが有する機能を示す機能ブロック図である。 第4実施形態に係るコントローラで実行される全体処理の流れを示すフローチャートである。
 以下、本発明の各実施形態に係る作業車両の一態様として、土砂や鉱物、木材チップ等の作業対象物を掘削してダンプトラック等へ積み込む荷役作業を行うホイールローダについて説明する。
<ホイールローダ1の構成>
 まず、ホイールローダ1の構成について、図1および図2を参照して説明する。
 図1は、本発明の各実施形態に係るホイールローダ1の外観を示す側面図である。図2は、ホイールローダ1の駆動システム構成の概略を示す回路図である。
 ホイールローダ1は、複数の車輪11を備え、車体が中心付近で中折れすることにより操舵されるアーティキュレート式の作業車両である。具体的には、車体の前部となる前フレーム1Aと車体の後部となる後フレーム1Bとが、センタジョイント10によって左右方向に回動自在に連結されており、前フレーム1Aが後フレーム1Bに対して左右方向に屈曲する。本実施形態では、ホイールローダ1は、左右一対の前輪11および左右一対の後輪11の計4つの車輪11を備えている。なお、図1では、4つの車輪11のうち、左側の前輪11および左側の後輪11のみを示している。
 前フレーム1Aの前部には、荷役作業に用いる油圧駆動の荷役作業機2が取り付けられている。荷役作業機2は、前フレーム1Aに基端部が取り付けられたリフトアーム21と、リフトアーム21を駆動する2つのリフトアームシリンダ22と、リフトアーム21の先端部に取り付けられたバケット23と、バケット23を駆動するバケットシリンダ24と、リフトアーム21に回動可能に連結されてバケット23とバケットシリンダ24とのリンク機構を構成するベルクランク25と、2つのリフトアームシリンダ22やバケットシリンダ24へ圧油を導く複数の配管(不図示)と、を有している。
 なお、2つのリフトアームシリンダ22およびバケットシリンダ24はそれぞれ、荷役作業機2を駆動する油圧シリンダに相当し、以下の説明において、2つのリフトアームシリンダ22およびバケットシリンダ24をまとめて「油圧シリンダ22,24」とする場合がある。
 2つのリフトアームシリンダ22はそれぞれ、作動油が流出入してロッド220が伸縮することにより、リフトアーム21を前フレーム1Aに対して上下方向に回動させる。リフトアーム21は、2つのリフトアームシリンダ22それぞれのボトム室に作動油が供給されてロッド220が伸びることにより上方向に回動し、2つのリフトアームシリンダ22それぞれのロッド室に作動油が供給されてロッド220が縮むことにより下方向に回動する。なお、図1では、車体の左右方向に並ぶ2つのリフトアームシリンダ22のうち、左側に配置されたリフトアームシリンダ22のみを破線で示している。
 バケットシリンダ24は、作動油が流出入してロッド240が伸縮することにより、バケット23をリフトアーム21に対して上下方向に回動させる。バケット23は、バケットシリンダ24のボトム室に作動油が供給されてロッド240が伸びることによりチルト(リフトアーム21に対して上方向に回動)し、バケットシリンダ24のロッド室に作動油が供給されてロッド240が縮むことによりダンプ(リフトアーム21に対して下方向に回動)する。なお、バケット23は、例えばブレード等の各種アタッチメントに交換することができ、バケット23を用いた掘削作業の他に、押土作業や除雪作業等の各種作業を行うことが可能である。
 後フレーム1Bには、オペレータが搭乗する運転室12と、ホイールローダ1の駆動システムを構成する各機器が内部に収容された機械室13と、車体が傾倒しないように荷役作業機2とのバランスを保つためのカウンタウェイト14と、が設けられている。後フレーム1Bにおいて、運転室12は前部に、カウンタウェイト14は後部に、機械室13は運転室12とカウンタウェイト14との間に、それぞれ配置されている。
 ホイールローダ1は、トルクコンバータ式の走行駆動システムによって車体の走行が制御されており、図2に示すように、エンジン30と、エンジン30の出力軸に連結されたトルクコンバータ31(以下、「トルコン31」とする)と、トルコン31の出力軸に連結されたトランスミッション32と、を備えている。
 エンジン30は、運転室12内においてオペレータがイグニッションスイッチ121をONに操作することにより始動し、さらにアクセルペダル122を踏み込むことにより回転する。エンジン30の回転数(以下、単に「エンジン回転数」とする)はアクセルペダル122の踏込量に比例しており、アクセルペダル122の踏込量が大きくなるにつれてエンジン回転数も増加する。
 エンジン30の冷却水は、ラジエータ40によって冷却される。具体的には、エンジン30の冷却水は、エンジン30とラジエータ40との間に設けられたサーモスタット30Aを経由してラジエータ40へ流れ込み、ラジエータ40で冷却された後、再びエンジン30へ戻る。エンジン30の冷却水の温度TWn(以下、単に「冷却水温TWn」とする)は、ラジエータ40の入口側に設けられた冷却水温センサ40Aで検出されてコントローラ5に入力される。
 トルコン31は、インペラ、タービン、およびステータで構成された流体クラッチであり、作動流体としてのトルコン油を介してエンジン30の駆動力をトランスミッション32に伝達する。トルコン31は、入力トルクに対して出力トルクを増大させる機能、すなわちトルク比(=出力トルク/入力トルク)を1以上とする機能を有する。このトルク比は、トルコン31の入力軸の回転速度と出力軸の回転速度の比であるトルコン速度比(=出力軸回転速度/入力軸回転速度)が大きくなるにつれて小さくなる。これにより、エンジン30の回転力は、トルコン31を介して回転速度が変速された上でトランスミッション32に伝達される。
 トルコン31のトルコン油は、トルコン31から作動流体クーラとしてのトルコン油クーラ41へ流れ込み、トルコン油クーラ41で冷却された後に、再びトルコン31へ戻る。トルコン油の温度TCn(以下、単に「トルコン油温TCn」とする)は、トルコン油クーラ41の入口側に設けられた作動流体温センサとしてのトルコン油温センサ41Aで検出されてコントローラ5に入力される。
 トランスミッション32は、前進クラッチおよび後進クラッチと、複数の速度段クラッチと、これらのクラッチを制御する複数の電磁弁と、を有しており、前進走行および後進走行のそれぞれにおいてトルコン31の出力軸の回転速度を1~4速度段のいずれかに対応した速度に変速する自動変速機である。複数の電磁弁は、コントローラ5から出力された指令信号に基づいて前進クラッチおよび後進クラッチと複数の速度段クラッチとの係合状態(組合せ)を制御する。トランスミッション32で変速された回転力は、プロペラシャフト15、およびアクスル16を介して複数の車輪11にそれぞれ伝達され、これによりホイールローダ1が走行する。
 ホイールローダ1の進行方向、すなわち前進または後進の切り換えは、運転室12内に設けられた前後進切換装置としての前後進切換レバー123を操作することにより行われる。前後進切換レバー123は、車体を前進させる前進位置F、車体を停止させる中立位置N、および車体を後進させる後進位置Rのそれぞれに切り換わる。前後進切換レバー123が前進位置Fに切り換わるとトランスミッション32の前進クラッチが係合状態となり、前後進切換レバー123が後進位置Rに切り換わるとトランスミッション32の後進クラッチが係合状態となる。また、前後進切換レバー123が中立位置Nに切り換わると前進クラッチおよび後進クラッチはいずれも解放状態となる。
 ホイールローダ1を駐車させる際には、オペレータは、運転室12内に設けられたパーキングブレーキスイッチ124をオン操作してパーキングブレーキを作動させる。パーキングブレーキスイッチ124がオン操作されている場合、前後進切換レバー123を前進位置Fまたは後進位置Rに切り換えても車体は前進または後進しないため、前後進切換レバー123が中立位置Nに切り換わった状態と同じ状態に相当する。
 ホイールローダ1は、エンジン30により駆動される荷役用油圧ポンプ20と、荷役用油圧ポンプ20と油圧シリンダ22,24との間に設けられた方向制御弁26と、を備える。
 荷役用油圧ポンプ20は、作動油タンク27から吸入した作動油を油圧シリンダ22,24のそれぞれに供給する。図2では、荷役用油圧ポンプ20は、傾転角に応じて押し退け容積が制御される斜板式あるいは斜軸式の可変容量型の油圧ポンプであるが、必ずしも可変容量型の油圧ポンプである必要はなく、固定容量型の油圧ポンプを用いてもよい。方向制御弁26は、荷役用油圧ポンプ20から吐出されて油圧シリンダ22,24に流入する作動油の流れ(方向および流量)を制御する。
 荷役作業機2を駆動するための作動油は、作動油タンク27から荷役用油圧ポンプ20で吸い上げられて吐出され、方向制御弁26を経由してオイルクーラ42へ流れ込み、オイルクーラ42で冷却された後、再び作動油タンク27へ戻る。作動油の温度TOn(以下、単に「作動油温TOn」とする)は、オイルクーラ42の入口側に設けられた作動油温センサ42Aで検出されてコントローラ5に入力される。
 機械室13内には、走行駆動システムや荷役作業機2の駆動システムといったホイールローダ1の駆動システムを構成する機器の他に、エンジン30の冷却水やトルコン31のトルコン油、および荷役作業機2の作動油を冷却するための冷却ユニット400が後側に搭載されている(図1において破線で示す)。
 冷却ユニット400は、熱交換器ユニット4と、外気を取り込んで冷却風を生成して熱交換器ユニット4に送風する冷却ファン44と、冷却ファン44を駆動する冷却ファン駆動装置45と、を備えている。
 熱交換器ユニット4は、前述したラジエータ40、トルコン油クーラ41、およびオイルクーラ42を含んで構成されている。冷却ファン駆動装置45は、エンジン30により駆動されるファン用油圧ポンプ451と、冷却ファン44を回転させるファン用油圧モータ452と、ファン用油圧モータ452の回転速度を制御するリリーフ弁453と、ファン用油圧ポンプ451からファン用油圧モータ452へ供給される作動油の流れる方向を切り換える方向切換弁454と、を備えている。
 ファン用油圧ポンプ451は、ファン用油圧モータ452に作動油を供給する。図2では、ファン用油圧ポンプ451は、固定容量型の油圧ポンプを用いているが、これに限らず、可変容量型の油圧ポンプを用いてもよい。ファン用油圧ポンプ451の吐出管路45A上には、ファン用油圧ポンプ451の吐出圧を検出する吐出圧センサ451Aが取り付けられている。吐出圧センサ451Aで検出された吐出圧は、コントローラ5に入力されてファン用油圧モータ452の回転速度を制御する際に用いられる。
 リリーフ弁453は、電磁式の可変リリーフ弁であり、吐出管路45Aと、ファン用油圧モータ452と作動油タンク27とを接続する排出管路45Bとの間に設けられている。リリーフ弁453は、コントローラ5から出力された制御信号にしたがって、ファン用油圧ポンプ451からファン用油圧モータ452へ供給される作動油の最高圧を規定し、吐出管路45Aの圧力(ファン用油圧ポンプ451の吐出側の圧力)を制御する。これにより、ファン用油圧モータ452の回転速度を制御して、冷却ファン44の回転速度を調整している。
 方向切換弁454は、電磁式の方向切換弁であり、ファン用油圧ポンプ451とファン用油圧モータ452との間に設けられている。具体的には、方向切換弁454は、吐出管路45Aによりファン用油圧ポンプ451の吐出口に、一対の接続管路45C,45Dによりファン用油圧モータ452の流出入口に、それぞれ接続されている。また、方向切換弁454は、排出管路45Bにより作動油タンク27に接続されている。
 方向切換弁454は、コントローラ5から出力された指令信号にしたがって、ファン用油圧モータ452を正回転させる正回転位置Lとファン用油圧モータ452を逆回転させる逆回転位置Mとが所定の間隔時間で切り換わる。これにより、ファン用油圧モータ452の出力軸452Aを介してファン用油圧モータ452に接続された冷却ファン44が所定の間隔時間で繰り返し正逆回転する。
 方向切換弁454が正回転位置Lに切り換わると(図2に示す状態)、ファン用油圧ポンプ451から吐出された作動油は吐出管路45Aおよび一方の接続管路45Cを介してファン用油圧モータ452に供給され、ファン用油圧モータ452に供給された作動油は他方の接続管路45Dおよび排出管路45Bを介して作動油タンク27に排出される。これにより、ファン用油圧モータ452は正方向に回転する。
 他方、方向切換弁454が逆回転位置Mに切り換わると、ファン用油圧ポンプ451から吐出された作動油は吐出管路45Aおよび他方の接続管路45Dを介してファン用油圧モータ452に供給され、ファン用油圧モータ452に供給された作動油は一方の接続管路45Cおよび排出管路45Bを介して作動油タンク27に排出される。これにより、ファン用油圧モータ452は逆方向に回転する。
 ホイールローダ1は、塵埃等が舞いやすい作業現場で使用されることが多く、冷却ファン44は、外気と共に塵埃等を機械室13内に取り込んでしまう。そこで、熱交換器ユニット4には、塵埃等の侵入を防止するための防塵フィルタ(不図示)が冷却ファン44に対向する側に設けられている。防塵フィルタが目詰まりを起こすと冷却性能が低下し、熱交換器ユニット4で冷却される水や油(冷却水や作動油、トルコン油)がオーバーヒートする可能性がある。
 そこで、ホイールローダ1では、コントローラ5により方向切換弁454を制御して冷却ファン44を所定の間隔時間で繰り返し自動で正逆回転させて、防塵フィルタに詰まった塵埃等を除去している。ここで、「所定の間隔時間」は、例えば初期設定された第1の間隔時間としての通常間隔時間の場合、正回転している継続時間(通常時正回転継続時間)を30分とし、逆回転している継続時間(逆回転継続設定時間)を1分としている。
 コントローラ5は、入力された冷却水温TWn、作動油温TOn、およびトルコン油温TCnに基づいて熱交換器ユニット4の目詰まりを検出し、目詰まりが検出された場合と目詰まりが解消されている場合とで冷却ファン44を正逆回転させる所定の間隔時間が変わるように冷却ファン駆動装置45を制御している。以下、コントローラ5の機能構成について実施形態ごとに説明する。
<第1実施形態>
 本発明の第1実施形態に係るコントローラ5の機能構成について、図3~5を参照して説明する。
(コントローラ5の構成)
 まず、コントローラ5の構成について、図3を参照して説明する。
 図3は、第1実施形態に係るコントローラ5が有する機能を示す機能ブロック図である。
 コントローラ5は、CPU、RAM、ROM、HDD、入力I/F、および出力I/Fがバスを介して互いに接続されて構成される。そして、イグニッションスイッチ121といった各種の操作装置、および冷却水温センサ40A、トルコン油温センサ41A、および作動油温センサ42Aといった各種のセンサ等が入力I/Fに接続され、方向切換弁454等が出力I/Fに接続されている。
 このようなハードウェア構成において、ROMやHDD若しくは光学ディスク等の記録媒体に格納された制御プログラム(ソフトウェア)をCPUが読み出してRAM上に展開し、展開された制御プログラムを実行することにより、制御プログラムとハードウェアとが協働して、コントローラ5の機能を実現する。
 なお、本実施形態では、コントローラ5をソフトウェアとハードウェアとの組み合わせによって構成されるコンピュータとして説明しているが、これに限らず、例えば他のコンピュータの構成の一例として、ホイールローダ1の側で実行される制御プログラムの機能を実現する集積回路を用いてもよい。
 コントローラ5は、データ取得部50と、エンジン状態判定部51と、回転方向判定部52と、上昇率算出部53と、目詰まり判定部54と、継続時間計測部55と、継続時間判定部56と、記憶部57と、指令信号出力部58と、間隔時間リセット部59と、を含む。
 データ取得部50は、イグニッションスイッチ121から出力された操作信号、冷却水温センサ40Aで検出された冷却水温TWn、トルコン油温センサ41Aで検出されたトルコン油温TCn、および作動油温センサ42Aで検出された作動油温TOnに関するデータをそれぞれ取得する。
 エンジン状態判定部51は、データ取得部50で取得されたイグニッションスイッチ121からの操作信号に基づいて、イグニッションスイッチ121のON状態またはOFF状態、すなわちエンジン30の動作状態を判定する。
 回転方向判定部52は、冷却ファン44の回転方向、すなわちファン用油圧モータ452の回転方向が正方向および逆方向のどちらであるかについて判定する。なお、初期設定時の冷却ファン44の回転方向は正方向である。
 上昇率算出部53は、データ取得部50で取得される冷却水温TWn、トルコン油温TCn、および作動油温TOnと、t秒前にデータ取得部50で取得された冷却水温TWn-t、トルコン油温TCn-t、および作動油温TOn-tと、に基づいて、冷却水温の上昇率(TWn-TWn-t)/t、トルコン油温の上昇率(TCn-TCn-t)/t、および作動油温の上昇率(TOn-TOn-t)/tをそれぞれ算出する。
 目詰まり判定部54は、上昇率算出部53で算出された冷却水温の上昇率が所定の冷却水温上昇率閾値RW以上であるか否か、上昇率算出部53で算出されたトルコン油温の上昇率が所定のトルコン油温上昇率閾値RC以上であるか否か、または上昇率算出部53で算出された作動油温の上昇率が所定の作動油温上昇率閾値RO以上であるか否か、すなわち熱交換器ユニット4によって冷却される水または油の温度が予め設定された設定時間よりも短い時間で上昇したか否かを判定し、熱交換器ユニット4の目詰まり検出の有無を判定する。
 このように、熱交換器ユニット4によって冷却される水または油の温度の上昇率の高さから目詰まりの検出を判定することにより、所定の温度閾値との大小比較から目詰まりの検出を判定する場合と比べて、熱交換器ユニット4が目詰まりしたタイミングを精度良く的確に検出することができる。
 また、目詰まり判定部54は、データ取得部50で取得される冷却水温TWnが所定の第1冷却温度閾値TW1以下であり、かつデータ取得部50で取得される作動油温TOnが所定の第2冷却温度閾値TO1以下であり、かつデータ取得部50で取得されるトルコン油温TCnが所定の第3冷却温度閾値TC1以下であるか否かについて判定する。すなわち、目詰まり判定部54は、熱交換器ユニット4によって冷却される水および油の温度(冷却水温、トルコン油温、および作動油温)がいずれも、対応する冷却温度閾値以下であるか否かについて判定する。
 ここで、「第1冷却温度閾値TW1」は、サーモスタット30Aが全開に開放される温度であり、「第2冷却温度閾値TO1」は、トルコン油温における第1冷却温度閾値TW1に相当する温度であり、「第3冷却温度閾値TC1」は、作動油温における第1冷却温度閾値TW1に相当する温度である。
 したがって、目詰まり判定部54は、データ取得部50で取得される冷却水温TWnと第1冷却温度閾値TW1とを比較し、データ取得部50で取得される作動油温TOnと第2冷却温度閾値TO1とを比較し、データ取得部50で取得されるトルコン油温TCnと第3冷却温度閾値TC1とを比較して、熱交換器ユニット4の目詰まりが解消したか否かを判定する。
 継続時間計測部55は、冷却ファン44の正回転の継続時間Ta(以下、単に「正回転継続時間Ta」とする)、および逆回転の継続時間Tb(以下、単に「逆回転継続時間Tb」とする)を計測する。
 継続時間判定部56は、継続時間計測部55で計測された正回転継続時間Taが初期設定された通常時正回転継続時間Tf1(例えば30分)経過したか否かを判定する。また、継続時間判定部56は、継続時間計測部55で計測された逆回転継続時間Tbが予め設定された逆回転継続設定時間Tr(例えば1分)経過したか否かを判定する。
 記憶部57は、冷却水温上昇率閾値RW、トルコン油温上昇率閾値RC、作動油温上昇率閾値RO、第1冷却温度閾値TW1、第2冷却温度閾値TO1、第3冷却温度閾値TC1、通常時正回転継続時間Tf1、および逆回転継続設定時間Trをそれぞれ記憶している。
 指令信号出力部58は、継続時間判定部56で正回転継続時間Taが通常時正回転継続時間Tf1を経過したと判定された場合、冷却ファン44を正回転から逆回転に切り換える指令信号を出力し、継続時間判定部56で逆回転継続時間Tbが逆回転継続設定時間Trを経過したと判定された場合、冷却ファン44を逆回転から正回転に切り換える指令信号を出力する。
 また、指令信号出力部58は、目詰まり判定部54で熱交換器ユニット4の目詰まりが検出されたと判定された場合には、正回転継続時間Taが通常時正回転継続時間Tf1を経過していなくとも、冷却ファン44を正回転から逆回転に切り換える指令信号を方向切換弁454に対して出力する。本実施形態では、指令信号出力部58は、目詰まり判定部54で熱交換器ユニット4の目詰まりが検出されると即座に、逆回転に係る指令信号を方向切換弁454に対して出力するが、必ずしもその必要はなく、例えば、目詰まり判定部54で熱交換器ユニット4の目詰まりが検出されてから数秒経過後に逆回転に係る指令信号を方向切換弁454に対して出力してもよい。この場合、目詰まり判定部54における誤判定(目詰まりの誤検出)の防止につながる。
 他方、指令信号出力部58は、目詰まり判定部54で熱交換器ユニット4の目詰まりが解消されたと判定された場合には、継続時間判定部56で正回転継続時間Taが通常時正回転継続時間Tf1を経過したと判定された後に、冷却ファン44を逆回転から正回転に切り換える指令信号を方向切換弁454に対して出力する。
 したがって、コントローラ5は、熱交換器ユニット4の目詰まりが検出されると、冷却ファン44を正逆回転させる間隔時間が初期設定された通常間隔時間に比べて短く設定された第2の間隔時間としての短縮間隔時間で正回転から逆回転へ冷却ファン44の回転方向が切り換えられるように方向切換弁454を制御し、熱交換器ユニット4の目詰まりが解消されると、短縮間隔時間から通常間隔時間に変更して正回転から逆回転へ冷却ファン44の回転方向が切り換えられるように方向切換弁454を制御する。
 このように、コントローラ5は、熱交換器ユニット4が目詰まりしたタイミングで冷却ファン44を正逆回転させる間隔時間を短縮させ、熱交換器ユニット4の目詰まりが解消した時点で冷却ファン44を正逆回転させる間隔時間を通常に戻すことで、冷却ファン44を逆回転させる回数を必要以上に増やさないため、熱交換器ユニット4の目詰まりを効果的に解消しながらも、冷却ファン44を駆動するための各種部品(ファン用油圧モータ452や方向切換弁454等)の寿命を延ばすことができる。
 間隔時間リセット部59は、目詰まり判定部54で目詰まりを検出したと判定された後にエンジン状態判定部51でエンジン30が停止したと判定された場合に、冷却ファン44を正逆回転させる間隔時間を短縮間隔時間から通常間隔時間にリセットする。これは、目詰まり判定部54で目詰まりを検出したと判定された場合に、オペレータがイグニッションスイッチ121をOFF操作してエンジン30を停止させ、オペレータもしくは作業員により熱交換器ユニット4の目詰まりを解消したようなときに有用である。
(コントローラ5内での処理)
 次に、コントローラ5内で実行される具体的な処理の流れについて、図4および図5を参照して説明する。
 図4は、第1実施形態に係るコントローラ5で実行される全体処理の流れを示すフローチャートである。図5は、第1実施形態に係るコントローラ5で実行される目詰まり検出判定処理(ステップS503)の流れを示すフローチャートである。
 図4に示すように、まず、エンジン状態判定部51は、データ取得部50で取得されたイグニッションスイッチ121からの操作信号に基づいて、エンジン30が始動しているか否かを判定する(ステップS501)。
 ステップS501においてエンジン30が始動したと判定されると(ステップS501/YES)、回転方向判定部52は、冷却ファン44が正回転中か否かを判定する(ステップS502)。なお、ステップS501においてエンジン30が始動したと判定されなかった場合(ステップS501)は、エンジン30が始動するまでステップS502以降に進まない。
 ステップS502において冷却ファン44が正回転中であると判定されると(ステップS502/YES)、目詰まり検出判定処理(ステップS503)に進む。目詰まり検出判定処理(ステップS503)については後述する。なお、ステップS502に関し、冷却ファン44の初期設定時における回転方向は正回転であるため、ステップS501からステップS502に進んだ場合には必ず、ステップS502はYESとなってステップS503に進む。
 目詰まり検出判定処理(ステップS503)により熱交換器ユニット4の目詰まりが検出されると(ステップS504/YES)、エンジン状態判定部51は、データ取得部50で取得されたイグニッションスイッチ121からの操作信号に基づいて、エンジン30が継続して作動中であるか否かを判定する(ステップS505)。
 ステップS505においてエンジン30が継続して作動中であると判定されると(ステップS505/YES)、指令信号出力部58は、冷却ファン44を正回転から逆回転に切り換える指令信号を出力する(ステップS506)。
 一方、ステップS505においてエンジン30が継続して作動中であると判定されなかった場合、すなわちエンジン30が停止したと判定された場合(ステップS505/NO)、間隔時間リセット部59は冷却ファン44を正逆回転させる間隔時間を短縮間隔時間から通常間隔時間にリセットし(ステップS507)、コントローラ5は処理を終了する。
 目詰まり検出判定処理(ステップS503)において熱交換器ユニット4の目詰まりが検出されなかった場合(ステップS504/NO)、継続時間判定部56は、継続時間計測部55で計測された冷却ファン44の正回転継続時間Taが通常時正回転継続時間Tf1を経過したか否かを判定する(ステップS508)。
 ステップS508において冷却ファン44の正回転継続時間Taが通常時正回転継続時間Tf1を経過した(Ta≧Tf1)と判定されると(ステップS508/YES)、ステップS506に進む。一方、ステップS508において冷却ファン44の正回転継続時間Taが通常時正回転継続時間Tf1を経過していない(Ta<Tf1)と判定された場合(ステップS508/NO)、目詰まり検出判定処理(ステップS503)に戻る。
 また、ステップS502において冷却ファン44が正回転中でない、すなわち逆回転中であると判定されると(ステップS502/NO)、継続時間判定部56は、継続時間計測部55で計測された逆回転継続時間Tbが逆回転継続設定時間Trを経過したか否かを判定する(ステップS509)。
 ステップS509において逆回転継続時間Tbが逆回転継続設定時間Trを経過した(Tb≧Tr)と判定されると(ステップS509/YES)、指令信号出力部58は、冷却ファン44を逆回転から正回転に切り換える指令信号を方向切換弁454に対して出力する(ステップS510)。一方、ステップS509において逆回転継続時間Tbが逆回転継続設定時間Trを経過していない(Tb<Tr)と判定された場合には(ステップS509/NO)、逆回転継続時間Tbが逆回転継続設定時間Trを経過するまでステップS510に進まない。
 ステップS506またはステップS510において指令信号出力部が方向切換弁454に対して指令信号を出力すると、エンジン状態判定部51は、データ取得部50で取得されたイグニッションスイッチ121からの操作信号に基づいて、エンジン30が停止したか否かを判定する(ステップS511)。
 ステップS511においてエンジン30が停止したと判定されると(ステップS511/YES)、コントローラ5は処理を終了する。一方、ステップS511においてエンジン30が停止していない、すなわち作動中であると判定されると(ステップS511/NO)、ステップS502に戻って処理を繰り返す。
 ここで、目詰まり検出判定処理(ステップS503)について、図5を参照して具体的に説明する。
 まず、データ取得部50は、冷却水温センサ40Aで検出された冷却水温TWn、作動油温センサ42Aで検出された作動油温TOn、およびトルコン油温センサ41Aで検出されたトルコン油温TCnをそれぞれ取得する(ステップS531)。なお、ステップS531では、各検出温度を随時取得しており、前回値は記憶部57で記憶されている。
 次に、目詰まり判定部54は、熱交換器ユニット4の目詰まりが検出されていないか、すなわち目詰まり解消中であるか否かを判定する(ステップS532)。ステップS532において熱交換器ユニット4の目詰まりが検出されていない場合(ステップS532/YES)、上昇率算出部53は、ステップS531において取得された冷却水温TWn-t,TWn、作動油温TOn-t,TOn、およびトルコン油温TCn-t,TCnに基づいて冷却水温上昇率(TWn-TWn-t)/t、作動油温上昇率(TOn-TOn-t)/t、およびトルコン油温上昇率(TCn-TCn-t)/tをそれぞれ算出する(ステップS533)。
 続いて、目詰まり判定部54は、ステップS533で算出された冷却水温上昇率(TWn-TWn-t)/tが冷却水温上昇率閾値RW以上であるか否か、ステップS533で算出された作動油温上昇率(TOn-TOn-t)/tが作動油温上昇率閾値RO以上であるか否か、またはトルコン油温上昇率(TCn-TCn-t)/tがトルコン油温上昇率閾値RC以上であるか否かを判定する(ステップS534)。
 このように、ステップS534では、少なくともステップS533において算出された冷却水温上昇率、作動油温上昇率、およびトルコン油温上昇率のうちのいずれかを用いて熱交換器ユニット4の目詰まり検出判定を行えばよい。
 ただし、トルコン油温上昇率を用いて熱交換器ユニット4の目詰まり検出判定を行う場合には、冷却水温上昇率または作動油温上昇率と組み合わせて判定を行った方が好ましい。トルコン油温は、アクセルペダルを踏み込みながらブレーキを作動させるストール状態に陥ると、通常時に発熱温度と冷却温度とがバランスする通常時温度以上に急上昇する。これは、熱交換器ユニット4の目詰まりとは関係なく発生するものであるため、誤判定を避けるには、トルコン油温上昇率の他に、冷却水温上昇率または作動油温上昇率を加えて判定した方が熱交換器ユニット4の目詰まり検出を正確に判定することができる。
 なお、冷却水温および作動油温については、トルコン油温と比べて温度が上昇しにくいため、冷却水温上昇率閾値RWおよび作動油温上昇率閾値ROはそれぞれ、トルコン油温上昇率閾値RCよりも低い値に設定してもよい(RW<RC、RO<RC)。
 ステップS534において冷却水温上昇率(TWn-TWn-t)/tが冷却水温上昇率閾値RW以上である((TWn-TWn-t)/t≧RW)、または作動油温上昇率(TOn-TOn-t)/tが作動油温上昇率閾値RO以上である((TOn-TOn-t)/t≧RO)、またはトルコン油温上昇率(TCn-TCn-t)/tがトルコン油温上昇率閾値RC以上である((TCn-TCn-t)/t≧RC)と判定された場合(ステップS534/YES)、目詰まり判定部54は、熱交換器ユニット4の目詰まりを検出したと判定して(ステップS535)、コントローラ5は目詰まり検出判定処理を終了する。
 一方、ステップS534において冷却水温上昇率(TWn-TWn-t)/tが冷却水温上昇率閾値RW未満であり((TWn-TWn-t)/t<RW)、かつ作動油温上昇率(TOn-TOn-t)/tが作動油温上昇率閾値RO未満であり((TOn-TOn-t)/t<RO)、かつトルコン油温上昇率(TCn-TCn-t)/tがトルコン油温上昇率閾値RC未満である((TCn-TCn-t)/t<RC)と判定された場合(ステップS534/NO)、コントローラ5は目詰まり検出判定処理を終了する。
 また、ステップS532において目詰まりが検出されている、すなわち目詰まり検出中であると判定された場合(ステップS532/NO)、目詰まり判定部54は、ステップS531で取得された冷却水温TWnが第1冷却温度閾値TW1以下であり、かつステップS531で取得された作動油温TOnが第2冷却温度閾値TO1以下であり、かつステップS531で取得されたトルコン油温TCnが第3冷却温度閾値TC1以下であるか否かを判定する(ステップS536)。
 ステップS536において冷却水温TWnが第1冷却温度閾値TW1以下であり(TWn≦TW1)、かつ作動油温TOnが第2冷却温度閾値TO1以下であり(TOn≦TO1)、かつトルコン油温TCnが第3冷却温度閾値TC1以下である(TCn≦TC1)と判定された場合(ステップS536/YES)、目詰まり判定部54は熱交換器ユニット4の目詰まりが解消したと判定して(ステップS537)、コントローラ5は目詰まり検出判定処理を終了する。
 ステップS536において冷却水温TWnが第1冷却温度閾値TW1より高く(TWn>TW1)、または作動油温TOnが第2冷却温度閾値TO1より高く(TOn>TO1)、またはトルコン油温TCnが第3冷却温度閾値TC1より高い(TCn>TC1)場合(ステップS536/NO)、コントローラ5は目詰まり検出判定処理を終了する。
<第2実施形態>
 次に、本発明の第2実施形態に係るコントローラ5Aの機能構成について、図6および図7を参照して説明する。図6および図7において、第1実施形態に係るコントローラ5について説明したものと共通する構成要素については、同一の符号を付してその説明を省略する。なお、以下、第3実施形態および第4実施形態についても同様とする。
 図6は、第2実施形態に係るコントローラ5Aが有する機能を示す機能ブロック図である。図7は、第2実施形態に係るコントローラ5Aで実行される目詰まり検出判定処理の流れを示すフローチャートである。
 本実施形態に係るコントローラ5Aは、図6に示すように、暖機判定部61をさらに含む。暖機判定部61は、データ取得部50で取得された冷却水温TWnが第1通常時温度閾値TW2以上であり、かつデータ取得部50で取得された作動油温TOnが第2通常時温度閾値TO2以上であり、かつデータ取得部50で取得されたトルコン油温TCnが第3通常時温度閾値TC2以上であるか否かを判定する。すなわち、暖機判定部61は、熱交換器ユニット4によって冷却される水および油の温度(冷却水温、作動油温、およびトルコン油温)がいずれも、対応する通常時温度閾値以上であるか否かを判定する。
 ここで、「第1通常時温度閾値TW2」、「第2通常時温度閾値TO2」、および「第3通常時温度閾値TC2」はそれぞれ、車体に所定の負荷が掛かっている場合において発熱温度と冷却温度とがバランスする温度である。また、「所定の負荷」とは、重負荷でもなく軽負荷でもなく、ホイールローダ1が通常行う作業時(例えば、掘削時)に掛かる負荷の大きさである。
 車体が暖機されていない状態でコントローラ5Aが熱交換器ユニット4の目詰まり検出判定(図7に示すステップS534に相当)を行うと、暖機途中における冷却水温、作動油温、およびトルコン油温の上昇を熱交換器ユニット4の目詰まりと誤判定する可能性があるため、目詰まり検出判定を行う前に暖機判定部61で車体が暖機済みか否かを判定する。これにより、コントローラ5Aは、熱交換器ユニット4の目詰まり検出判定をより正確に行うことが可能となる。
 したがって、図7に示すように、ステップS532において目詰まりが検出されていないと判定された場合(ステップS532/YES)、ステップS533に進む前に、暖機判定部61が暖機済みか否かを判定する(ステップS538)。
 ステップS538において冷却水温TWnが第1通常時温度閾値TW2以上であり(TWn≧TW2)、かつ作動油温TOnが第2通常時温度閾値TO2以上であり(TOn≧TO2)、かつトルコン油温TCnが第3通常時温度閾値TC2以上である(TCn≧TC2)と判定された場合(ステップS538/YES)、ステップS533に進む。
 一方、ステップS538において冷却水温TWnが第1通常時温度閾値TW2未満である(TWn<TW2)、または作動油温TOnが第2通常時温度閾値TO2未満である(TOn<TO2)、またはトルコン油温TCnが第3通常時温度閾値TC2未満である(TCn<TC2)と判定された場合(ステップS538/NO)、コントローラ5Aは目詰まり検出判定処理を終了する。
<第3実施形態>
 次に、本発明の第3実施形態に係るコントローラ5Bの機能構成について、図8を参照して説明する。
 図8は、第3実施形態に係るコントローラ5Bで実行される全体処理の流れを示すフローチャートである。
 本実施形態に係るコントローラ5Bでは、第1実施形態に係るコントローラ5と異なり、目詰まり検出判定処理(ステップS503)により熱交換器ユニット4の目詰まりが検出された場合(ステップS504/YES)、継続時間判定部56は、継続時間計測部55で計測された正回転継続時間Taが短縮時正回転継続時間Tf2を経過したか否かを判定する(ステップS512)。なお、「短縮時正回転継続時間Tf2」とは、通常時正回転継続時間Tf1よりも短い所定の時間であり(Tf2<Tf1)、例えば10分程度である。
 ステップS512において正回転継続時間Taが短縮時正回転継続時間Tf2を経過した(Ta≧Tf2)と判定されると(ステップS512/YES)、ステップS506に進む。一方、ステップS512において正回転継続時間Taが短縮時正回転継続時間Tf2を経過していない(Ta<Tf2)と判定されると(ステップS512/NO)、正回転継続時間Taが短縮時正回転継続時間Tf2を経過するまでステップS506に進まない。
 熱交換器ユニット4の目詰まりが検出された場合に(ステップS504/YES)、即座に冷却ファン44を正回転から逆回転に切り換えてしまうと(ステップS506)冷却ファン44を正逆回転させる間隔時間が短くなってしまい、冷却ファン44の回転方向を頻繁に切り換えることとなり、冷却ファン44を駆動するための各種部品(ファン用油圧モータ452や方向切換弁454等)の寿命が短くなる可能性が高まる。
 そこで、熱交換器ユニット4の目詰まりが検出された場合に(ステップS504/YES)、正回転継続時間Taが短縮時正回転継続時間Tf2を経過するのを待ってから(ステップS512/YES)冷却ファン44を正回転から逆回転に切り換えることにより(ステップS506)、冷却ファン44を駆動するための各種部品の寿命を延ばすことができる。
<第4実施形態>
 次に、本発明の第4実施形態に係るコントローラ5Cの機能構成について、図9および図10を参照して説明する。
 図9は、第4実施形態に係るコントローラ5Cが有する機能を示す機能ブロック図である。図10は、第4実施形態に係るコントローラ5Cで実行される全体処理の流れを示すフローチャートである。
 本実施形態に係るコントローラ5Cは、図9に示すように、車体状態判定部62を含む。車体状態判定部62は、データ取得部50で取得された前後進切換レバー123からの操作信号に基づいて、前後進切換レバー123が中立位置Nに切り換わった状態が所定の継続時間Td経過したか否か、またはデータ取得部50で取得されたパーキングブレーキスイッチ124からの操作信号に基づいて、パーキングブレーキスイッチ124がON操作されたか否かを判定する。
 冷却ファン44を逆回転させた場合には、風向きや風量が正回転の場合と変わるため、熱交換器ユニット4の冷却性能が低下してしまうことがある。したがって、ホイールローダ1が負荷の高い作業を行っている際中に冷却ファン44を逆回転させると、逆回転中に少なくとも冷却水温、作動油温、およびトルコン油温のうちのいずれかが上昇して瞬間的に車体がオーバーヒート状態に陥る可能性がある。そこで、コントローラ5Cでは、熱交換器ユニット4の目詰まりが検出され、かつホイールローダ1が停止した状態である場合に、冷却ファン44を正回転から逆回転に切り換える(ステップS506)。
 図10に示すように、目詰まり検出判定処理(ステップS503)により熱交換器ユニット4の目詰まりが検出された場合(ステップS504/YES)、車体状態判定部62は、前後進切換レバー123が中立位置Nに切り換わって所定の継続時間Tdを経過したか否か、またはパーキングブレーキスイッチ124がON操作されたか否かを判定する(ステップS513)。
 ステップS513において前後進切換レバー123が中立位置Nに切り換わって所定の継続時間Tdを経過したと判定されるか、またはパーキングブレーキスイッチ124がON操作されたと判定された場合(ステップS513/YES)、ステップS506に進む。
 一方、ステップS513において前後進切換レバー123が中立位置Nに切り換わって所定の継続時間Tdを経過したと判定されず、かつパーキングブレーキスイッチ124がON操作されていない(OFFの状態である)と判定された場合(ステップS513/NO)、ステップS508に進む。
 以上、本発明の実施形態について説明した。なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、本実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、本実施形態の構成に他の実施形態の構成を加えることも可能である。またさらに、本実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 例えば、上記実施形態では、作業車両の一態様としてホイールローダ1について説明したが、これに限らず、例えばホークリフトやダンプトラック等の他の作業車両についても本発明を適用することが可能である。
 また、上記実施形態では、ホイールローダ1は、トルコン駆動式の走行駆動システムが搭載されていたが、これに限らず、例えばHST駆動式の駆動システム等であってもよく、走行駆動システムの方式については特に制限はない。
 また、上記実施形態では、冷却ファン駆動装置45は油圧駆動式であったが、これに限らず、電動モータを用いてコントローラ5,5Aが直接的に電動モータに指令信号を出力して回転方向を切り換えてもよい。
1:ホイールローダ(作業車両)
2:荷役作業機
4:熱交換器ユニット
5,5A,5B,5C:コントローラ
30:エンジン
30A:サーモスタット
31:トルクコンバータ
40A:冷却水温センサ
41A:トルコン油温センサ
42A:作動油温センサ
44:冷却ファン
45:冷却ファン駆動装置
123:前後進切換レバー(前後進切換装置)
124:パーキングブレーキスイッチ
N:中立位置
TC1:第3冷却温度閾値(冷却温度閾値)
TO1:第2冷却温度閾値(冷却温度閾値)
TW1:第1冷却温度閾値(冷却温度閾値)
TC2:第3通常時温度閾値(通常時温度閾値)
TO2:第2通常時温度閾値(通常時温度閾値)
TW2:第3通常時温度閾値(通常時温度閾値)

Claims (6)

  1.  エンジンと、外気を取り込んで冷却風を生成する冷却ファンと、前記エンジンにより駆動されて前記冷却ファンを回転させる冷却ファン駆動装置と、前記冷却ファンの冷却風が送風される熱交換器ユニットと、前記冷却ファンが所定の間隔時間で繰り返し正逆回転するように前記冷却ファン駆動装置を制御するコントローラと、を備えた作業車両において、
     前記コントローラは、
     前記熱交換器ユニットによって冷却される水または油の温度が予め設定された設定時間よりも短い時間で上昇した場合に、初期設定された第1の間隔時間に比べて短く設定された第2の間隔時間で正回転から逆回転へ前記冷却ファンの回転方向が切り換えられるように前記冷却ファン駆動装置を制御し、
     前記熱交換器ユニットによって冷却される水および油の温度がいずれも、前記エンジンと前記熱交換器ユニットとの間に設けられたサーモスタットが全開に開放される冷却温度閾値以下になった場合に、前記第2の間隔時間から前記第1の間隔時間に変更して正回転から逆回転へ前記冷却ファンの回転方向が切り換えられるように前記冷却ファン駆動装置を制御する
    ことを特徴とする作業車両。
  2.  請求項1に記載の作業車両において、
     前記コントローラは、
     前記熱交換器ユニットによって冷却される水および油の温度がいずれも、車体に所定の負荷が掛かっている場合において発熱温度と冷却温度とがバランスする通常時温度閾値以上であって、かつ前記熱交換器ユニットによって冷却される水または油の温度が前記設定時間よりも短い時間で上昇した場合に、前記第2の間隔時間で正回転から逆回転へ前記冷却ファンの回転方向が切り換えられるように前記冷却ファン駆動装置を制御する
    ことを特徴とする作業車両。
  3.  請求項1に記載の作業車両において、
     前記コントローラは、
     前記熱交換器ユニットによって冷却される水または油の温度が前記設定時間よりも短い時間で上昇した場合であっても、前記エンジンが停止した場合には、前記第2の間隔時間から前記第1の間隔時間にリセットして正回転から逆回転へ前記冷却ファンの回転方向が切り換えられるように前記冷却ファン駆動装置を制御する
    ことを特徴とする作業車両。
  4.  請求項1に記載の作業車両において、
     前記コントローラは、
     前記熱交換器ユニットによって冷却される水または油の温度が前記設定時間よりも短い時間で上昇し、前記冷却ファンが前記第1の間隔時間で正逆回転しているときの正回転継続時間よりも短い所定の時間継続して正回転した場合に、前記第2の間隔時間で正回転から逆回転へ前記冷却ファンの回転方向が切り換えられるように前記冷却ファン駆動装置を制御する
    ことを特徴とする作業車両。
  5.  請求項1に記載の作業車両において、
     車体に取り付けられた油圧駆動の荷役作業機と、
     前記エンジンの駆動力を作動流体を介して複数の車輪に伝達するトルクコンバータと、を備え、
     前記コントローラは、
     少なくとも前記エンジンの冷却水および前記荷役作業機の作動油のうちのいずれかの温度と、前記トルクコンバータの作動流体の温度と、が前記設定時間よりも短い時間で上昇した場合に、前記第2の間隔時間で正回転から逆回転へ前記冷却ファンの回転方向が切り換えられるように前記冷却ファン駆動装置を制御する
    ことを特徴とする作業車両。
  6.  請求項1に記載の作業車両において、
     車体の前後進を切り換える前後進切換装置と、
     前記車体の駐車の操作を行うパーキングブレーキスイッチと、を備え、
     前記コントローラは、
     前記熱交換器ユニットによって冷却される水または油の温度が前記設定時間よりも短い時間で上昇し、かつ前記前後進切換装置が前記車体を停止させる中立位置に切り換えられた状態が所定の継続時間経過し、または前記パーキングブレーキスイッチがオン操作された場合に、前記第2の間隔時間で正回転から逆回転へ前記冷却ファンの回転方向が切り換えられるように前記冷却ファン駆動装置を制御する
    ことを特徴とする作業車両。
PCT/JP2020/000689 2019-03-25 2020-01-10 作業車両 WO2020195013A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019057186A JP7221756B2 (ja) 2019-03-25 2019-03-25 作業車両
JP2019-057186 2019-03-25

Publications (1)

Publication Number Publication Date
WO2020195013A1 true WO2020195013A1 (ja) 2020-10-01

Family

ID=72609729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000689 WO2020195013A1 (ja) 2019-03-25 2020-01-10 作業車両

Country Status (2)

Country Link
JP (1) JP7221756B2 (ja)
WO (1) WO2020195013A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112282916A (zh) * 2020-10-28 2021-01-29 广西玉柴机器股份有限公司 一种柴油机换向风扇的控制方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07224654A (ja) * 1994-02-08 1995-08-22 Kubota Corp ラジエータ用のファンの正逆転切換構造
JPH1068142A (ja) * 1996-08-28 1998-03-10 Shin Caterpillar Mitsubishi Ltd 建設機械の冷却装置
JPH11193719A (ja) * 1997-12-26 1999-07-21 Kubota Corp 作業機のエンジン冷却装置
JP2001065347A (ja) * 1999-08-27 2001-03-13 Kubota Corp 作業車のエンジン冷却装置
JP2004197682A (ja) * 2002-12-19 2004-07-15 Komatsu Ltd 建設機械
JP2006057600A (ja) * 2004-08-24 2006-03-02 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 建設機械の冷却装置
JP2007182710A (ja) * 2006-01-06 2007-07-19 Komatsu Ltd 油圧回路の制御装置
JP2010168857A (ja) * 2009-01-26 2010-08-05 Hitachi Constr Mach Co Ltd 建設機械の冷却装置
JP2013155719A (ja) * 2012-01-31 2013-08-15 Iseki & Co Ltd 作業車輌
JP2013181344A (ja) * 2012-03-02 2013-09-12 Sumitomo (Shi) Construction Machinery Co Ltd 建設機械
US20150017901A1 (en) * 2013-07-15 2015-01-15 Deere & Company Vehicle with selectively reversible cooling fan
JP2018173044A (ja) * 2017-03-31 2018-11-08 株式会社クボタ 作業機

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07224654A (ja) * 1994-02-08 1995-08-22 Kubota Corp ラジエータ用のファンの正逆転切換構造
JPH1068142A (ja) * 1996-08-28 1998-03-10 Shin Caterpillar Mitsubishi Ltd 建設機械の冷却装置
JPH11193719A (ja) * 1997-12-26 1999-07-21 Kubota Corp 作業機のエンジン冷却装置
JP2001065347A (ja) * 1999-08-27 2001-03-13 Kubota Corp 作業車のエンジン冷却装置
JP2004197682A (ja) * 2002-12-19 2004-07-15 Komatsu Ltd 建設機械
JP2006057600A (ja) * 2004-08-24 2006-03-02 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd 建設機械の冷却装置
JP2007182710A (ja) * 2006-01-06 2007-07-19 Komatsu Ltd 油圧回路の制御装置
JP2010168857A (ja) * 2009-01-26 2010-08-05 Hitachi Constr Mach Co Ltd 建設機械の冷却装置
JP2013155719A (ja) * 2012-01-31 2013-08-15 Iseki & Co Ltd 作業車輌
JP2013181344A (ja) * 2012-03-02 2013-09-12 Sumitomo (Shi) Construction Machinery Co Ltd 建設機械
US20150017901A1 (en) * 2013-07-15 2015-01-15 Deere & Company Vehicle with selectively reversible cooling fan
JP2018173044A (ja) * 2017-03-31 2018-11-08 株式会社クボタ 作業機

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112282916A (zh) * 2020-10-28 2021-01-29 广西玉柴机器股份有限公司 一种柴油机换向风扇的控制方法

Also Published As

Publication number Publication date
JP2020159243A (ja) 2020-10-01
JP7221756B2 (ja) 2023-02-14

Similar Documents

Publication Publication Date Title
JP5048068B2 (ja) 作業車両及び作業車両の作動油量制御方法
US7712309B2 (en) Arrangement and a method for controlling a work vehicle
KR101882404B1 (ko) 건설 기계
JP7038515B2 (ja) ホイールローダ
WO2019188415A1 (ja) 作業車両
JP7193288B2 (ja) 作業車両
US11401695B2 (en) Work machine
WO2020195013A1 (ja) 作業車両
JPWO2020065914A1 (ja) 荷役作業車両
JP4115994B2 (ja) 建設機械の制御装置および入力トルク演算方法
JP7038898B2 (ja) 荷役作業車両
JP6968308B2 (ja) 荷役作業車両
JP7253420B2 (ja) 作業車両
JP2021139204A (ja) 作業車両
JP7141974B2 (ja) ホイールローダ
WO2020188943A1 (ja) 作業車両
JP7297167B2 (ja) 作業車両
JP2005344766A (ja) 作業車両の油圧回路
WO2021182421A1 (ja) 作業車両
JP2023124250A (ja) ホイールローダ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20777393

Country of ref document: EP

Kind code of ref document: A1