WO2020188943A1 - 作業車両 - Google Patents

作業車両 Download PDF

Info

Publication number
WO2020188943A1
WO2020188943A1 PCT/JP2019/050788 JP2019050788W WO2020188943A1 WO 2020188943 A1 WO2020188943 A1 WO 2020188943A1 JP 2019050788 W JP2019050788 W JP 2019050788W WO 2020188943 A1 WO2020188943 A1 WO 2020188943A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
vehicle body
obstacle
controller
vehicle
Prior art date
Application number
PCT/JP2019/050788
Other languages
English (en)
French (fr)
Inventor
田中 哲二
幸次 兵藤
祐樹 抜井
正太 岡▲崎▼
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Publication of WO2020188943A1 publication Critical patent/WO2020188943A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • F16H61/421Motor capacity control by electro-hydraulic control means, e.g. using solenoid valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • F16H61/431Pump capacity control by electro-hydraulic control means, e.g. using solenoid valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/44Signals to the control unit of auxiliary gearing

Definitions

  • the present invention relates to an HST drive type work vehicle.
  • an HST drive system As a general traveling drive system for a work vehicle such as a wheel loader, an HST drive system is known in which the hydraulic pressure generated by driving a hydraulic pump with an engine is converted into a rotational force by a hydraulic motor and used as a traveling driving force. ..
  • the vehicle can be decelerated by controlling the capacity of the hydraulic pump and the capacity of the hydraulic motor using an inching valve that is opened when the operator depresses the inching pedal (inching technology).
  • Patent Document 1 discloses an HST drive type wheel loader including an inching pedal that also operates a hydraulic brake device.
  • a brake valve that controls the supply of hydraulic oil to the hydraulic brake device is connected to the inching valve, and when the operating amount of the inching pedal reaches a predetermined amount, the operation of the brake valve is started to operate the inching pedal.
  • the braking force of the hydraulic brake device is controlled according to the amount of operation.
  • the body of the work vehicle is larger than that of a general passenger car, and since the body is equipped with various devices, it is difficult for the operator in the driver's cab to see the rear and notice obstacles in the rear. There is a possibility of going backward without it. Therefore, when operating the automatic brake, it is necessary to alert the operator to be aware of the possibility of collision with an obstacle.
  • an object of the present invention is to provide a work vehicle capable of reducing the cost of installing the automatic braking system while being able to alert the operator when the automatic braking is activated.
  • the present invention comprises a vehicle body having a plurality of wheels, an engine mounted on the vehicle body, a variable displacement hydraulic pump driven by the engine, and the traveling hydraulic pump.
  • a work vehicle equipped with a variable displacement hydraulic motor for traveling that is connected to a pump in a closed circuit and transmits the driving force of the engine to the plurality of wheels, and a forward / backward switching device that switches the forward / backward movement of the vehicle body.
  • the rear monitoring device which is attached to the rear part of the vehicle body to detect an obstacle behind the vehicle body and measures the distance between the vehicle body and the obstacle, and the traveling hydraulic pump or the above.
  • a controller that controls a traveling hydraulic motor to limit the maximum vehicle speed of the vehicle body is provided, and the controller is switched to a reverse position in which the forward / backward switching device reverses the vehicle body, and the vehicle body becomes an obstacle.
  • the measurement distance measured by the rear monitoring device is the sum of the predetermined braking distance from the start of the braking operation on the vehicle body to the stop of the vehicle body and the predetermined stop margin distance. It is determined whether or not the braking start distance has been reached, and when it is determined that the measured distance has reached the braking start distance, as the distance between the vehicle body and the obstacle becomes shorter, the traveling vehicle is used.
  • the tilt is controlled so that the maximum push-out volume of the hydraulic pump is small or the minimum push-out volume of the traveling hydraulic motor is large, and the tilt is controlled.
  • the rate of change in the maximum push-out volume of the traveling hydraulic pump or the rate of change in the minimum push-out volume of the traveling hydraulic motor with respect to the change in the distance between the vehicle body and the obstacle is compared with the change rate in the subsequent stage.
  • the feature is that it is set large.
  • (A) is a graph showing the relationship between the engine speed and the push-out volume of the HST pump
  • (b) is a graph showing the relationship between the engine speed and the input torque of the HST pump
  • (c) is the engine speed and the HST pump.
  • FIG. 1 is a side view showing the appearance of the wheel loader 1 according to the embodiment of the present invention.
  • the wheel loader 1 is an articulated work vehicle that is steered by bending the vehicle body near the center. Specifically, the front frame 1A, which is the front part of the vehicle body, and the rear frame 1B, which is the rear part of the vehicle body, are rotatably connected in the left-right direction by the center joint 10, and the front frame 1A is connected to the rear frame 1B. On the other hand, it bends in the left-right direction.
  • the front frame 1A is provided with a pair of left and right front wheels 11A
  • the rear frame 1B is provided with a pair of left and right rear wheels 11B
  • the entire vehicle body is provided with four wheels. Note that, of the four wheels, only the left front wheel 11A and the left rear wheel 11B are shown in FIG.
  • the wheel loader 1 is a work vehicle that performs cargo handling work such as excavating earth and sand, minerals, etc. using the cargo handling work device 2 attached to the front frame 1A in an open pit mine or the like and loading them onto a dump truck or the like.
  • cargo handling work such as excavating earth and sand, minerals, etc.
  • the cargo handling work device 2 includes a lift arm 21 attached to the front frame 1A, two lift arm cylinders 22 that rotate the lift arm 21 in the vertical direction with respect to the front frame 1A by expanding and contracting, and a lift arm 21.
  • It has a bell crank 25 that constitutes a link mechanism with the 24, and a plurality of pipes (not shown) that guide pressure oil to the two lift arm cylinders 22 and the bucket cylinder 24.
  • FIG. 1 of the two lift arm cylinders 22 arranged in the left-right direction of the vehicle body, only the lift arm cylinder 22 arranged on the left side is shown by a broken line.
  • the lift arm 21 is supplied with hydraulic oil to the bottom chambers of the two lift arm cylinders 22 and rotates upward by extending the rod 220, and the hydraulic oil is supplied to the rod chambers of the two lift arm cylinders 22. As the rod 220 contracts, it rotates downward.
  • the bucket 23 is tilted (rotated upward with respect to the lift arm 21) by supplying hydraulic oil to the bottom chamber of the bucket cylinder 24 and extending the rod 240, and enters the rod chamber of the bucket cylinder 24.
  • the hydraulic oil is supplied and the rod 240 contracts, it dumps (rotates downward with respect to the lift arm 21).
  • the bucket 23 can be replaced with various attachments such as blades, and in addition to the excavation work using the bucket 23, various work such as soil pushing work and snow removal work can also be performed.
  • the rear frame 1B includes a driver's cab 12 on which the operator rides, a machine room 13 for accommodating various devices such as an engine, a controller, and a hydraulic pump, which will be described later, and a cargo handling work device 2 so that the vehicle body does not tilt.
  • a counter weight 14 and a counter weight 14 for maintaining the balance between the two are provided.
  • the driver's cab 12 is arranged at the front
  • the counterweight 14 is arranged at the rear
  • the machine room 13 is arranged between the driver's cab 12 and the counterweight 14.
  • This wheel loader 1 is equipped with a so-called automatic braking system that automatically brakes the vehicle speed to prevent collision with obstacles when traveling backward.
  • a millimeter-wave radar 31 is attached to the rear portion of the vehicle body (the rear end portion of the rear frame 1B in FIG. 1), and the millimeter-wave radar 31 detects an obstacle behind the vehicle body and detects the vehicle body. When the vehicle approaches an obstacle and the distance to the obstacle reaches a predetermined distance, the vehicle body automatically stops traveling backward.
  • the "obstacle” includes, for example, other work vehicles, installation equipment, and workers existing around the wheel loader 1, and can be an obstacle to the movement of the wheel loader 1.
  • the detailed configuration of the automatic braking system in the wheel loader 1 will be described later.
  • FIG. 2 is a diagram showing a drive system configuration of the wheel loader 1.
  • FIG. 3 is a graph showing the relationship between the accelerator pedal depression amount V and the target engine speed NT.
  • FIG. 4A is a graph showing the relationship between the engine speed N and the push-out volume q1 of the HST pump 41, and
  • FIG. 4B shows the relationship between the engine speed N and the input torque T of the HST pump 41.
  • the graph, FIG. 4C is a graph showing the relationship between the engine speed N and the discharge flow rate Q of the HST pump 41.
  • the wheel loader 1 includes a traveling hydraulic circuit HC1 which is a hydraulic circuit for driving the vehicle body and a cargo handling hydraulic circuit HC2 which is a hydraulic circuit for driving the cargo handling work device 2.
  • the HST pump 41, the HST charge pump 41A for supplying hydraulic oil for controlling the HST pump 41, and the cargo handling hydraulic pump 42 for supplying hydraulic oil to the cargo handling work device 2 are driven by a common engine 4. Has been done.
  • the cargo handling hydraulic pump 42 sucks hydraulic oil from the hydraulic oil tank 40 and discharges it to the cargo handling hydraulic circuit HC2.
  • the hydraulic oil discharged from the cargo handling hydraulic pump 42 is supplied to the two lift arm cylinders 22 and the bucket cylinder 24, respectively, via the cargo handling hydraulic circuit HC2.
  • the cargo handling hydraulic pump 42 is a fixed-capacity hydraulic pump, and the flow rate of hydraulic oil supplied to each of the two lift arm cylinders 22 and the bucket cylinder 24 is in the cab 12 (see FIG. 1). It is adjusted by a cargo handling operation lever (not shown) provided in.
  • the cargo handling hydraulic pump 42 does not necessarily have to be a fixed-capacity hydraulic pump, but may be a variable-capacity hydraulic pump.
  • the traveling hydraulic circuit HC1 is provided with an HST pump 41, an HST charge pump 41A, and an HST motor 43 as a traveling hydraulic motor, and the wheel loader 1 is driven by an HST drive system.
  • the HST pump 41 and the HST motor 43 are connected in a closed circuit manner via a pair of connection pipelines 400A and 400B, and are controlled by the controller 5.
  • the HST pump 41 is a swash plate type or sloping shaft type variable displacement hydraulic pump whose push-out volume is controlled according to the amount of tilt (tilt angle).
  • the tilt amount is adjusted by controlling the first proportional control valve 61 in the regulator based on the command signal output from the controller 5.
  • the HST motor 43 is a swash plate type or sloping shaft type variable displacement hydraulic motor in which the push-out volume is controlled according to the amount of tilt (tilt angle).
  • the tilt amount is adjusted by controlling the second proportional control valve 62 in the regulator based on the command signal output from the controller 5.
  • the HST drive system first, when the operator depresses the accelerator pedal 32 provided in the driver's cab 12 (see FIG. 1), the engine 4 rotates, and the HST pump 41 is driven by the driving force of the engine 4. Then, the HST motor 43 is rotated by the pressure oil discharged from the HST pump 41, and the output torque from the HST motor 43 is transmitted to the pair of left and right front wheels 11A and the pair of left and right rear wheels 11B via the axle 15.
  • the wheel loader 1 runs.
  • the depression amount V of the accelerator pedal 32 (hereinafter, simply referred to as “accelerator pedal depression amount V”) is detected by the depression amount sensor 63 attached to the accelerator pedal 32, and the detected accelerator pedal.
  • the depression amount V is input to the controller 5.
  • a command signal related to the target engine speed NT according to the input accelerator pedal depression amount V is output from the controller 5 to the engine 4.
  • the engine 4 is controlled to a rotation speed according to the target engine rotation speed NT.
  • the engine speed N (hereinafter, may be simply referred to as “engine speed N”) is detected by an engine speed sensor 64 provided on the output shaft of the engine 4.
  • the accelerator pedal depression amount V and the target engine rotation speed NT are in a proportional relationship, and the target engine rotation speed NT increases as the accelerator pedal depression amount V increases. Then, when the accelerator pedal depression amount reaches V2, the target engine speed NT becomes the maximum speed NTmax. In the range where the accelerator pedal depression amount V is 0 to V1 (for example, in the range of 0% to 20 or 30%), the target engine speed NT becomes constant at a predetermined minimum rotation speed NTmin regardless of the accelerator pedal depression amount V. It is set as a dead zone.
  • the engine speed N is from N1 to N2 (> N1)
  • the engine speed N and the push-out volume q1 of the HST pump 41 are in a proportional relationship, and the engine speed N As it increases from N1 to N2, the push-out volume q1 increases from 0 to the maximum value q1max.
  • the push-out volume q1 of the HST pump 41 is constant at the maximum value q1max regardless of the engine speed N.
  • the vehicle speed is controlled (shifted) by continuously increasing or decreasing the discharge flow rate Q of the HST pump 41, so that the wheel loader 1 can start smoothly, decelerate, and stop with less impact. Become.
  • the wheel loader is caused by causing the controller 5 to perform an automatic braking process. 1 can be automatically braked.
  • an alarm buzzer 34 (see FIG. 2) is provided in the driver's cab 12 (see FIG. 1), and it is possible to alert the operator in advance when operating the automatic braking system. is there.
  • the forward / backward movement of the vehicle body is switched by the forward / backward switching lever 33 as the forward / backward switching device provided in the driver's cab 12 (see FIG. 1).
  • a switching signal indicating forward movement is input to the controller 5.
  • An electromagnetic forward / backward switching valve (not shown) is connected to the HST pump 41, and the controller 5 outputs a switching signal indicating forward movement to the forward / backward switching valve.
  • a switching signal indicating reverse movement is input to the controller 5. Then, the controller 5 outputs a switching signal indicating reverse movement to the forward / backward switching valve. As a result, the pressure oil discharged from the HST pump 41 is guided to the HST motor 43 via the other connection line 400B, the HST motor 43 is reversed, and the vehicle body moves backward.
  • FIG. 5 is a functional block diagram showing the functions of the controller 5.
  • FIG. 6 is an explanatory diagram illustrating a distance L between the vehicle body and an obstacle.
  • FIG. 7 is a graph showing the relationship (first control characteristic) between the distance L between the vehicle body and the obstacle and the maximum push-out volume q1max of the HST pump 41.
  • FIG. 8 is a graph showing the relationship (second control characteristic) between the distance L between the vehicle body and the obstacle and the minimum push-out volume q2min of the HST motor 43.
  • FIG. 9 is a graph showing the relationship (third control characteristic) between the distance L between the vehicle body and the obstacle and the engine speed N.
  • the controller 5 is configured by connecting the CPU, RAM, ROM, HDD, input I / F, and output I / F to each other via a bus. Then, various operating devices such as the forward / backward switching lever 33 and various sensors such as the millimeter wave radar 31 are connected to the input I / F, and the alarm buzzer 34, the first proportional control valve 61, and the second proportional control valve 62, The engine 4 and the like are connected to the output I / F.
  • a CPU reads an arithmetic program (software) stored in a recording medium such as a ROM, HDD, or optical disk, expands it on a RAM, and executes the expanded arithmetic program to perform arithmetic operations.
  • arithmetic program software stored in a recording medium such as a ROM, HDD, or optical disk
  • a RAM random access memory
  • the program and the hardware work together to realize the function of the controller 5.
  • the controller 5 is described as a computer configured by a combination of software and hardware, but the present invention is not limited to this, and for example, as an example of the configuration of another computer, the wheel loader 1 side.
  • An integrated circuit that realizes the function of the controller to be executed may be used.
  • the controller 5 includes a data acquisition unit 51, a determination unit 52, a calculation unit 53, a storage unit 54, and a command signal output unit 55.
  • the data acquisition unit 51 has an obstacle detection signal output from the millimeter wave radar 31, a distance L between the vehicle body and the obstacle measured by the millimeter wave radar 31 (hereinafter, simply “distance L to the obstacle” or “distance L to the obstacle” or “Measurement distance L” may be used), and data related to the switching signal output from the forward / backward switching lever 33 are acquired.
  • the millimeter wave radar 31 is used as a rear monitoring device that detects an obstacle behind the vehicle body and measures the distance L between the vehicle body and the obstacle.
  • the rear monitoring device is not limited to the millimeter wave radar 31, and for example, a stereo camera or the like can be used.
  • the determination unit 52 includes a progress determination unit 52A, an approach determination unit 52B, and a distance determination unit 52C.
  • the progress determination unit 52A determines which of the forward / backward switching lever 33 is switched to the forward position, the reverse position, and the neutral position based on the switching signal acquired by the data acquisition unit 51.
  • the approach determination unit 52B causes an obstacle to the vehicle body based on the transition of the measurement distance L acquired by the data acquisition unit 51. Determine if you are approaching an object.
  • the distance determination unit 52C determines that the measurement distance L acquired by the data acquisition unit 51 is the braking start distance L1 and the notification start distance L2, respectively. Is determined.
  • stop margin distance is the distance between the vehicle body and the obstacle so that the vehicle body does not come into contact with the obstacle when the vehicle body stops.
  • the "idle running distance” corresponds to, for example, the distance traveled by the vehicle body until the operator notices an obstacle and the body reacts to step on the brake pedal.
  • the distance determination unit 52C does not operate the braking device (steps on the brake pedal). The distance is determined based on the notification start distance L2 in consideration of.
  • the braking start distance L1 and the notification start distance L2 can be set in advance, and the set values can be appropriately changed according to the specifications of the wheel loader 1, the operator's preference, and the work site environment. It is possible.
  • the calculation unit 53 includes a push-out volume calculation unit 53A and an engine speed calculation unit 53B.
  • the push-out volume calculation unit 53A determines that the maximum push-out volume q1max of the HST pump 41 and the HST motor according to the distance L to the obstacle.
  • the minimum push-out volume q2min of 43 is calculated respectively.
  • the maximum push-out volume q1max of the HST pump 41 is calculated according to the first control characteristic shown in FIG.
  • the first control characteristic is a control characteristic in which the maximum push-out volume q1max of the HST pump 41 decreases as the distance L to the obstacle becomes shorter than the braking start distance L1, that is, as the vehicle body approaches the obstacle.
  • the maximum push-out volume q1max of the pump 41 is controlled in two stages, a pre-stage and a post-stage.
  • the first control characteristic is that, in the stage immediately before the controller 5 starts braking, the rate of change in the maximum push-out volume q1max of the HST pump 41 with respect to the change in the distance L to the obstacle is later. It is set larger than the rate of change in stages. Therefore, the controller 5 suddenly reduces the maximum push-out volume q1max of the HST pump 41 when the braking operation is started in the wheel loader 1, and then gently reduces the maximum push-out volume q1max of the HST pump 41 with respect to the change in the distance L between the HST pump 41 and the obstacle. The tilt of the HST pump 41 is controlled so as to reduce the maximum push-out volume q1max of the 41.
  • the minimum push-out volume q2min of the HST motor 43 is calculated according to the second control characteristic shown in FIG.
  • the second control characteristic is a control characteristic in which the minimum push-out volume q2min of the HST motor 43 increases as the distance L to the obstacle becomes shorter than the braking start distance L1, that is, as the vehicle body approaches the obstacle.
  • the minimum push-out volume q2min of the motor 43 is controlled in two stages, a pre-stage and a post-stage, similarly to the maximum push-out volume q1max of the HST pump 41.
  • the rate of change in the minimum push-out volume q2min of the HST motor 43 with respect to the change in the distance L to the obstacle is after. It is set larger than the rate of change in stages. Therefore, the controller 5 suddenly increases the minimum push-out volume q2min of the HST motor 43 when the braking operation is started in the wheel loader 1, and then gently increases the HST motor with respect to the change in the distance L between the HST motor 43 and the obstacle.
  • the tilt of the HST motor 43 is controlled so as to increase the minimum push-out volume q2min of the 43.
  • the engine speed calculation unit 53B calculates the maximum speed Nmax of the engine 4 (hereinafter, simply referred to as "maximum engine speed Nmax") according to the distance L from the obstacle. Specifically, the maximum engine speed Nmax is calculated according to the third control characteristic shown in FIG. Similar to the first control characteristic, the third control characteristic is a control in which the maximum engine speed Nmax decreases as the distance L to the obstacle becomes shorter than the braking start distance L1, that is, as the vehicle body approaches the obstacle. As a characteristic, the maximum engine speed Nmax is controlled in two stages, a pre-stage and a post-stage.
  • the third control characteristic is that in the pre-stage (pre-control stage) immediately after the controller 5 starts braking, the rate of change in the maximum engine speed Nmax with respect to the change in the distance L to the obstacle is in the post-stage (after control). It is set larger than the rate of change in stage). Therefore, the controller 5 suddenly reduces the maximum engine speed Nmax when the braking operation is started in the wheel loader 1, and then gently reduces the maximum engine speed Nmax with respect to a change in the distance L between the wheel loader 1 and the obstacle.
  • the maximum rotation speed of the engine 4 is controlled so as to reduce the number of revolutions.
  • the vehicle body becomes an obstacle. As the vehicle approaches, the vehicle speed brakes, and the vehicle body automatically stops.
  • the maximum push-out volume q1max of the HST pump 41, the minimum push-out volume q2min of the HST motor 43, and the maximum engine speed Nmax are all controlled according to the distance L to the obstacle, and the control characteristics are controlled in the pre-control stage. Since the inclination (change rate) of is larger than the inclination (change rate) in the subsequent stage, the controller 5 can make the operator feel that the automatic braking force is applied to the wheel loader 1, and the vehicle body becomes an obstacle. It is possible to call attention to the possibility of collision with.
  • the inclination (change rate) of the control characteristics is smaller than the inclination (change rate) in the previous stage, so that the reverse running of the vehicle body can be stopped smoothly, and the impact generated by braking can be stopped. Can be alleviated.
  • At least the maximum push-out volume q1max of the HST pump 41 may be reduced, or the minimum push-out volume q2min of the HST motor 43 may be increased.
  • both are controlled and the engine is used.
  • the storage unit 54 stores the preset braking start distance L1 and notification start distance L2, and the first control characteristic shown in FIG. 7, the second control characteristic shown in FIG. 8, and the third control characteristic shown in FIG. 9, respectively. are doing.
  • the command signal output unit 55 outputs a command signal based on the maximum push-out volume q1max of the HST pump 41 calculated by the push-out volume calculation unit 53A to the first proportional control valve 61, and is calculated by the push-out volume calculation unit 53A.
  • a command signal based on the minimum push-out volume q2min of the HST motor 43 is output to the second proportional control valve 62, and a command signal based on the maximum engine speed Nmax calculated by the engine speed calculation unit 53B is sent to the engine 4. Output.
  • the maximum vehicle speed of the wheel loader 1 is limited.
  • the command signal output unit 55 outputs a notification command signal for commanding notification to the alarm buzzer 34 when the distance determination unit 52C determines that the measurement distance L has reached the notification start distance L2.
  • the operator can recognize in advance the start of the braking operation process by the controller 5 at the time of the notification start distance L2, which is farther from the obstacle by the free running distance than the braking start distance L1.
  • the alarm buzzer 34 is an aspect of the notification device that notifies the operator in advance of the limitation of the maximum vehicle speed of the vehicle body by the controller 5.
  • the notification device is not limited to the alarm buzzer 34, and may be a display device such as a monitor.
  • the alarm buzzer 34 may notify at least when the distance L to the obstacle reaches the notification start distance L2, but depending on the specifications, the distance longer than the notification start distance L2, that is, the obstacle further than the notification start distance L2. You may notify at a point away from the object.
  • FIG. 10 is a flowchart showing the flow of processing executed by the controller 5.
  • the progress determination unit 52A determines whether or not the forward / backward switching lever 33 has been switched to the reverse position based on the switching signal from the forward / backward switching lever 33 acquired by the data acquisition unit 51 (step S501). ).
  • step S501 When it is determined in step S501 that the forward / backward switching lever 33 has been switched to the reverse position (step S501 / YES), the data acquisition unit 51 acquires the distance L from the obstacle measured by the millimeter wave radar 31. (Step S502).
  • step S501 When it is determined in step S501 that the forward / backward switching lever 33 has not been switched to the reverse position, that is, when the forward / backward switching lever 33 has been switched to the forward position or the neutral position (step S501 / NO), the controller 5 End the process.
  • the approach determination unit 52B determines whether or not the vehicle body is approaching an obstacle based on the measurement distance L acquired in step S502 (step S503).
  • the distance determination unit 52C determines whether or not the measurement distance L has reached the notification start distance L2, that is, the measurement distance L is determined. It is determined whether or not the notification start distance is L2 or less (step S504).
  • “approaching” is displayed on a monitor or the like provided in the driver's cab 12 (see FIG. 1). Is also good.
  • step S504 When it is determined in step S504 that the measurement distance L has reached the notification start distance L2 (L ⁇ L2) (step S504 / YES), the command signal output unit 55 outputs a notification command signal to the alarm buzzer 34. (Step S505).
  • the distance determination unit 52C determines whether or not the measurement distance L has reached the braking start distance L1, that is, whether or not the measurement distance L is equal to or less than the braking start distance L1 (step S506).
  • the calculation unit 53 determines the maximum push-out volume q1max of the HST pump 41 according to the first control characteristic.
  • the minimum push-out volume q2min of the HST motor 43 is calculated according to the second control characteristic, and the maximum engine speed Nmax is calculated according to the third control characteristic (step S507).
  • the command signal output unit 55 outputs a command signal based on the maximum push-out volume q1max of the HST pump 41 calculated in step S507 to the first proportional control valve 61, and the HST motor 43 calculated in step S507.
  • a command signal based on the minimum push-out volume q2min is output to the second proportional control valve 62, and a command signal based on the maximum engine speed Nmax calculated in step S507 is output to the engine 4 (step S508).
  • step S508 the controller 5 returns to step S501 and repeats the process until the reverse traveling of the vehicle body stops.
  • step S501 and the forward / backward switching lever 33 is switched to the neutral position
  • the controller 5 ends the process and releases the limitation on the maximum vehicle speed of the vehicle body. If the limit on the maximum vehicle speed of the vehicle body is not released by the controller 5, the wheel loader 1 cannot move forward even if the forward / backward switching lever 33 is switched to the forward position, but the forward / backward switching lever 33 is moved to the reverse position. Such a situation can be avoided by switching from the position to the forward position via the neutral position.
  • step S503 when it is determined in step S503 that the vehicle body is not approaching an obstacle (step S503 / NO), and when it is determined in step S504 that the measurement distance L has not reached the notification start distance L2 (L> L2).
  • step S504 / NO when it is determined in step S506 that the measurement distance L has not reached the braking start distance L1 (L2> L> L1) (step S506 / NO), the controller 5 processes. finish.
  • the wheel loader has been described as one aspect of the work vehicle, but the present invention is not limited to this, and the present invention can be applied to, for example, a wheel type work vehicle such as a forklift or a tractor.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Fluid Gearings (AREA)
  • Control Of Transmission Device (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

自動ブレーキの作動時にオペレータへ注意喚起を促すことを可能としながら、自動ブレーキシステムの搭載にかかるコストを削減することができる作業車両を提供する。 HST駆動方式のホイールローダ(1)において、コントローラ(5)は、車体が後進して障害物に接近中であり、ミリ波レーダ(31)で測定された測定距離(L)が制動開始距離(L1)に達したと判定された場合に、車体と障害物との間の距離(L)が短くなるにつれて、HSTポンプ(41)の最大押しのけ容積(q1max)が小さくなるように、またはHSTモータ(43)の最小押しのけ容積(q2min)が大きくなるように傾転を制御し、傾転を制御する前段階および後段階のうち前段階では、車体と障害物との間の距離Lの変化に対するHSTポンプ(41)の最大押しのけ容積(q1max)の変化割合またはHSTモータ(43)の最小押しのけ容積(q2min)の変化割合が後段階における変化割合に比べて大きく設定した。

Description

作業車両
 本発明は、HST駆動方式の作業車両に関する。
 ホイールローダ等の作業車両の一般的な走行駆動方式として、エンジンで油圧ポンプを駆動させることによって発生した油圧を油圧モータで回転力に変換して走行駆動力とするHST駆動方式が知られている。このHST駆動方式では、オペレータがインチングペダルを踏み込むことで開放するインチング弁を用いて油圧ポンプの容量や油圧モータの容量を制御することにより車両を減速させることができる(インチング技術)。
 例えば、特許文献1には、油圧ブレーキ装置の操作を兼ねたインチングペダルを備えたHST駆動方式のホイールローダが開示されている。このホイールローダでは、油圧ブレーキ装置への作動油の供給を制御するブレーキ弁がインチング弁に連結されており、インチングペダルの操作量が所定量に達するとブレーキ弁の操作が開始されてインチングペダルの操作量に応じて油圧ブレーキ装置の制動力が制御される。
 近年、一般的な乗用車等では、周囲の障害物との衝突を未然に防止するため、センサ等を用いて障害物の接近を検知し、電磁弁等から構成されるアクチュエータをコントローラにより自動的に作動させてブレーキを駆動する自動ブレーキシステムが採用されている。そして、作業車両においても、このような自動ブレーキシステムを搭載することが求められている。
特許第5072926号公報
 多くの作業車両では、ブレーキペダルの踏込力でブレーキ弁を開閉する純油圧式のブレーキシステムが採用されているため、作業車両に自動ブレーキシステムを搭載する場合においても特許文献1に記載のホイールローダと同様に、ブレーキ弁に対して何らかのハード機構の追加が必要となり、コストの大幅な増加につながる。
 また、作業車両は一般的な乗用車よりも車体が大型であり、さらに、車体には種々の機器が搭載されていることから、運転室内のオペレータは後方が見えにくく、後方にある障害物に気づかないまま後進する可能性がある。したがって、自動ブレーキの作動にあたってはオペレータに対して障害物との衝突の可能性を気づかせるための注意喚起を行う必要がある。
 そこで、本発明の目的は、自動ブレーキの作動時にオペレータへ注意喚起を促すことを可能としながら、自動ブレーキシステムの搭載にかかるコストを削減することができる作業車両を提供することにある。
 上記の目的を達成するために、本発明は、複数の車輪を有する車体と、前記車体に搭載されたエンジンと、前記エンジンにより駆動される可変容量型の走行用油圧ポンプと、前記走行用油圧ポンプと閉回路状に接続されて前記エンジンの駆動力を前記複数の車輪に伝達する可変容量型の走行用油圧モータと、前記車体の前後進を切り換える前後進切換装置と、を備えた作業車両において、前記車体の後部に取り付けられて、前記車体の後方にある障害物を検知すると共に、前記車体と前記障害物との間の距離を測定する後方監視装置と、前記走行用油圧ポンプまたは前記走行用油圧モータを制御して前記車体の最高車速を制限するコントローラと、を備え、前記コントローラは、前記前後進切換装置が前記車体を後進させる後進位置に切り換えられ、前記車体が前記障害物に接近中である場合に、前記後方監視装置で測定された測定距離が、前記車体において制動動作を開始してから前記車体が停止するまでの所定の制動距離に所定の停止余裕距離を足し合わせた制動開始距離に達しているか否かを判定し、前記測定距離が前記制動開始距離に達したと判定された場合に、前記車体と前記障害物との間の距離が短くなるにつれて、前記走行用油圧ポンプの最大押しのけ容積が小さくなるように、または前記走行用油圧モータの最小押しのけ容積が大きくなるように傾転を制御し、前記傾転を制御する前段階および後段階のうち前段階では、前記車体と前記障害物との間の距離の変化に対する前記走行用油圧ポンプの最大押しのけ容積の変化割合または前記走行用油圧モータの最小押しのけ容積の変化割合を、前記後段階の変化割合に比べて大きく設定したことを特徴とする。
 本発明によれば、自動ブレーキの作動時にオペレータへ注意喚起を促すことを可能としながら、自動ブレーキシステムの搭載にかかるコストを削減することができる。上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
本発明の実施形態に係るホイールローダの外観を示す側面図である。 ホイールローダの駆動システム構成を示す図である。 アクセルペダル踏込量と目標エンジン回転数との関係を示すグラフである。 (a)はエンジン回転数とHSTポンプの押しのけ容積との関係を示すグラフ、(b)はエンジン回転数とHSTポンプの入力トルクとの関係を示すグラフ、(c)はエンジン回転数とHSTポンプの吐出流量との関係を示すグラフである。 コントローラが有する機能を示す機能ブロック図である。 車体と障害物との間の距離について説明する説明図である。 車体と障害物との間の距離とHSTポンプの最大押しのけ容積との関係(第1制御特性)を示すグラフである。 車体と障害物との間の距離とHSTモータの最小押しのけ容積との関係(第2制御特性)を示すグラフである。 車体と障害物との間の距離とエンジンの回転数との関係(第3制御特性)を示すグラフである。 コントローラで実行される処理の流れを示すフローチャートである。
 以下、本発明の実施形態に係る作業車両の一態様として、ホイールローダについて説明する。
(ホイールローダ1の全体構成)
 まず、本発明の実施形態に係るホイールローダ1の全体構成について、図1を参照して説明する。
 図1は、本発明の実施形態に係るホイールローダ1の外観を示す側面図である。
 ホイールローダ1は、車体が中心付近で中折れすることにより操舵するアーティキュレート式の作業車両である。具体的には、車体の前部となる前フレーム1Aと車体の後部となる後フレーム1Bとが、センタジョイント10によって左右方向に回動自在に連結されており、前フレーム1Aが後フレーム1Bに対して左右方向に屈曲する。
 前フレーム1Aには左右一対の前輪11Aが、後フレーム1Bには左右一対の後輪11Bが、それぞれ設けられており、車体全体で4つの車輪を備える。なお、図1では、4つの車輪のうち、左側の前輪11Aおよび左側の後輪11Bのみを示している。
 ホイールローダ1は、例えば露天掘り鉱山等において、前フレーム1Aに取り付けられた荷役作業装置2を用いて土砂や鉱物等を掘削してダンプトラック等へ積み込む荷役作業を行う作業車両である。
 荷役作業装置2は、前フレーム1Aに取り付けられたリフトアーム21と、伸縮することによりリフトアーム21を前フレーム1Aに対して上下方向に回動させる2つのリフトアームシリンダ22と、リフトアーム21の先端部に取り付けられたバケット23と、伸縮することによりバケット23をリフトアーム21に対して上下方向に回動させるバケットシリンダ24と、リフトアーム21に回動可能に連結されてバケット23とバケットシリンダ24とのリンク機構を構成するベルクランク25と、2つのリフトアームシリンダ22やバケットシリンダ24へ圧油を導く複数の配管(不図示)と、を有している。なお、図1では、車体の左右方向に並ぶ2つのリフトアームシリンダ22のうち、左側に配置されたリフトアームシリンダ22のみを破線で示している。
 リフトアーム21は、2つのリフトアームシリンダ22それぞれのボトム室に作動油が供給されてロッド220が伸びることにより上方向に回動し、2つのリフトアームシリンダ22それぞれのロッド室に作動油が供給されてロッド220が縮むことにより下方向に回動する。
 同様にして、バケット23は、バケットシリンダ24のボトム室に作動油が供給されてロッド240が伸びることによりチルト(リフトアーム21に対して上方向に回動)し、バケットシリンダ24のロッド室に作動油が供給されてロッド240が縮むことによりダンプ(リフトアーム21に対して下方向に回動)する。なお、バケット23は、例えばブレード等の各種アタッチメントに交換することが可能であり、バケット23を用いた掘削作業の他に、押土作業や除雪作業等の各種作業を行うこともできる。
 また、後フレーム1Bには、オペレータが搭乗する運転室12と、後述するエンジンやコントローラ、油圧ポンプ等の各機器を内部に収容する機械室13と、車体が傾倒しないように荷役作業装置2とのバランスを保つためのカウンタウェイト14と、が設けられている。後フレーム1Bにおいて、運転室12は前部に、カウンタウェイト14は後部に、機械室13は運転室12とカウンタウェイト14との間に、それぞれ配置されている。
 このホイールローダ1には、自動的に車速を制動させるいわゆる自動ブレーキシステムが搭載されており、後進走行時における障害物との衝突を未然に防止している。具体的には、車体の後部(図1では、後フレーム1Bの後端部)にミリ波レーダ31が取り付けられており、このミリ波レーダ31が車体の後方にある障害物を検知し、車体が障害物に接近して障害物との間の距離が所定の距離に達すると、車体の後進走行が自動的に停止する。
 ここで、「障害物」とは、例えばホイールローダ1の周囲に存在する他の作業車両や設置機器、作業員が含まれ、ホイールローダ1の動きに対して障害の対象となり得るものである。ホイールローダ1における自動ブレーキシステムの詳しい構成については後述する。
(ホイールローダ1の駆動システム)
 次に、ホイールローダ1の駆動システムについて、図2~4を参照して説明する。
 図2は、ホイールローダ1の駆動システム構成を示す図である。図3は、アクセルペダル踏込量Vと目標エンジン回転数NTとの関係を示すグラフである。図4(a)は、エンジン回転数NとHSTポンプ41の押しのけ容積q1との関係を示すグラフ、図4(b)は、エンジン回転数NとHSTポンプ41の入力トルクTとの関係を示すグラフ、図4(c)は、エンジン回転数NとHSTポンプ41の吐出流量Qとの関係を示すグラフである。
 ホイールローダ1は、車体を走行駆動させるための油圧回路である走行用油圧回路HC1と、荷役作業装置2を駆動させるための油圧回路である荷役用油圧回路HC2と、を備え、走行用油圧ポンプとしてのHSTポンプ41と、HSTポンプ41を制御するための作動油を補給するHSTチャージポンプ41Aと、荷役作業装置2に作動油を供給する荷役用油圧ポンプ42と、が共通のエンジン4により駆動されている。
 荷役用油圧ポンプ42は、作動油タンク40から作動油を吸入して荷役用油圧回路HC2へ吐出する。荷役用油圧ポンプ42から吐出された作動油は、荷役用油圧回路HC2を介して2つのリフトアームシリンダ22およびバケットシリンダ24にそれぞれ供給される。本実施形態では、荷役用油圧ポンプ42は固定容量型の油圧ポンプであり、2つのリフトアームシリンダ22およびバケットシリンダ24のそれぞれに供給される作動油の流量は運転室12(図1参照)内に設けられた荷役用操作レバー(不図示)によって調整される。なお、荷役用油圧ポンプ42は、必ずしも固定容量型の油圧ポンプでなくてよく、可変容量型の油圧ポンプであってもよい。
 走行用油圧回路HC1には、HSTポンプ41と、HSTチャージポンプ41Aと、走行用油圧モータとしてのHSTモータ43と、が設けられており、ホイールローダ1はHST駆動方式により走行駆動する。HSTポンプ41とHSTモータ43とは、一対の接続管路400A,400Bを介して閉回路状に接続され、コントローラ5により制御されている。
 HSTポンプ41は、傾転量(傾転角)に応じて押しのけ容積が制御される斜板式あるいは斜軸式の可変容量型の油圧ポンプである。傾転量は、コントローラ5から出力された指令信号に基づいて、レギュレータ内の第1比例制御弁61が制御されることにより調整される。
 HSTモータ43は、傾転量(傾転角)に応じて押しのけ容積が制御される斜板式あるいは斜軸式の可変容量型の油圧モータである。傾転量は、コントローラ5から出力された指令信号に基づいて、レギュレータ内の第2比例制御弁62が制御されることにより調整される。
 HST駆動方式では、まず、運転室12(図1参照)内に設けられたアクセルペダル32をオペレータが踏み込むとエンジン4が回転し、エンジン4の駆動力によりHSTポンプ41が駆動する。そして、HSTポンプ41から吐出した圧油によりHSTモータ43が回転し、HSTモータ43からの出力トルクがアクスル15を介して左右一対の前輪11Aおよび左右一対の後輪11Bに伝達されることにより、ホイールローダ1が走行する。
 より具体的には、まず、アクセルペダル32に取り付けられた踏込量センサ63によりアクセルペダル32の踏込量V(以下、単に「アクセルペダル踏込量V」とする)が検出され、検出されたアクセルペダル踏込量Vがコントローラ5に入力される。次に、入力されたアクセルペダル踏込量Vに応じた目標エンジン回転数NTに係る指令信号が、コントローラ5からエンジン4に対して出力される。そして、エンジン4は、この目標エンジン回転数NTにしたがった回転数に制御される。エンジン4の回転数N(以下、単に「エンジン回転数N」とする場合がある)は、エンジン4の出力軸に設けられたエンジン回転数センサ64で検出される。
 図3に示すように、アクセルペダル踏込量Vと目標エンジン回転数NTとは比例関係にあり、アクセルペダル踏込量Vが大きくなると目標エンジン回転数NTは増加する。そして、アクセルペダル踏込量がV2に達すると目標エンジン回転数NTが最高回転数NTmaxとなる。アクセルペダル踏込量Vが0~V1の範囲(例えば0%~20あるいは30%の範囲)は、アクセルペダル踏込量Vにかかわらず、目標エンジン回転数NTが所定の最低回転速度NTminで一定となる不感帯として設定されている。
 図4(a)に示すように、エンジン回転数NがN1からN2(>N1)までの間では、エンジン回転数NとHSTポンプ41の押しのけ容積q1とは比例関係にあり、エンジン回転数NがN1からN2になるまで増加するにつれて、押しのけ容積q1は0から最大値q1maxまで大きくなる。エンジン回転数NがN2以上では、HSTポンプ41の押しのけ容積q1は、エンジン回転数Nにかかわらず最大値q1maxで一定となる。
 次に、図4(b)に示すように、エンジン回転数NがN1からN2までの間では、エンジン回転数NとHSTポンプ41の入力トルクTとは比例関係にあり、エンジン回転数NがN1からN2になるまで増加するにつれて、入力トルクは0から最大値Tcまで大きくなる。エンジン回転数NがN2以上では、HSTポンプ41の入力トルクは、エンジン回転数Nにかかわらず最大値Tcで一定となる。
 そして、図4(c)に示すように、エンジン回転数NがN1からN2までの間では、HSTポンプ41の吐出流量Qとエンジン回転数Nとは二次の比例関係にあり、エンジン回転数NがN1からN2になるまで増加するにつれて、HSTポンプ41の吐出流量Qは0からQ1まで増加する。エンジン回転数NがN2以上では、エンジン回転数NとHSTポンプ41の吐出流量Qとは一次の比例関係となる。
 したがって、エンジン回転数Nが増大するとHSTポンプ41の吐出流量Qが増え、HSTポンプ41からHSTモータ43に流入する圧油の流量が増えるため、HSTモータ43の回転数が増大し、ホイールローダ1の車速が速くなる。
 反対に、エンジン回転数Nが減少するとHSTポンプ41の吐出流量Qが減り、HSTポンプ41からHSTモータ43に流入する圧油の流量が減るため、HSTモータ43の回転数が減少し、ホイールローダ1の車速が制限される。なお、このとき、HSTモータ43の押しのけ容積を大きくするとHSTモータ43の出力トルクが小さくなるため、ホイールローダ1の車速をより制限することができる。
 このように、HST駆動方式では、HSTポンプ41の吐出流量Qを連続的に増減させることにより車速を制御(変速)するため、ホイールローダ1は滑らかな発進や減速、衝撃の少ない停止が可能となる。
 ここで、コントローラ5によってエンジン4、HSTポンプ41、およびHSTモータ43をそれぞれ制御することで車速を制限することが可能であることを利用すると、コントローラ5に自動制動処理を実行させることによりホイールローダ1を自動で制動させることができる。これにより、ホイールローダ1のブレーキ機構に対して追加でハード機構を設ける必要がないため、ホイールローダ1に自動ブレーキシステムを搭載するにあたってコストの削減を図ることができる。なお、本実施形態では、運転室12(図1参照)内に警報ブザー34(図2参照)が設けられており、自動ブレーキシステムの作動にあたっては事前にオペレータに注意喚起を促すことが可能である。
 車体の前後進の切り換えは、運転室12(図1参照)内に設けられた前後進切換装置としての前後進切換レバー33によって行う。前後進切換レバー33が車体を前進させる前進位置に切り換わると、前進を示す切換信号がコントローラ5に入力される。HSTポンプ41には電磁式の前後進切換弁(不図示)が接続されており、コントローラ5は、この前後進切換弁に前進を示す切換信号を出力する。これにより、HSTポンプ41から吐出された圧油が一方の接続管路400Aを介してHSTモータ43に導かれ、HSTモータ43が正転して車体が前進する。
 他方、前後進切換レバー33が車体を後進させる後進位置に切り換わると、後進を示す切換信号がコントローラ5に入力される。そして、コントローラ5は、前後進切換弁に後進を示す切換信号を出力する。これにより、HSTポンプ41から吐出された圧油が他方の接続管路400Bを介してHSTモータ43に導かれ、HSTモータ43が反転して車体が後進する。
(コントローラ5の構成)
 次に、コントローラ5の構成について、図5~9を参照して説明する。
 図5は、コントローラ5が有する機能を示す機能ブロック図である。図6は、車体と障害物との間の距離Lについて説明する説明図である。図7は、車体と障害物との間の距離LとHSTポンプ41の最大押しのけ容積q1maxとの関係(第1制御特性)を示すグラフである。図8は、車体と障害物との間の距離LとHSTモータ43の最小押しのけ容積q2minとの関係(第2制御特性)を示すグラフである。図9は、車体と障害物との間の距離Lとエンジン回転数Nとの関係(第3制御特性)を示すグラフである。
 コントローラ5は、CPU、RAM、ROM、HDD、入力I/F、および出力I/Fがバスを介して互いに接続されて構成される。そして、前後進切換レバー33といった各種の操作装置、およびミリ波レーダ31といった各種のセンサ等が入力I/Fに接続され、警報ブザー34や第1比例制御弁61および第2比例制御弁62、エンジン4等が出力I/Fに接続されている。
 このようなハードウェア構成において、ROMやHDD若しくは光学ディスク等の記録媒体に格納された演算プログラム(ソフトウェア)をCPUが読み出してRAM上に展開し、展開された演算プログラムを実行することにより、演算プログラムとハードウェアとが協働して、コントローラ5の機能を実現する。
 なお、本実施形態では、コントローラ5をソフトウェアとハードウェアとの組み合わせによって構成されるコンピュータとして説明しているが、これに限らず、例えば他のコンピュータの構成の一例として、ホイールローダ1の側で実行される制御プログラムの機能を実現する集積回路を用いてもよい。
 図5に示すように、コントローラ5は、データ取得部51と、判定部52と、算出部53と、記憶部54と、指令信号出力部55と、を含む。
 データ取得部51は、ミリ波レーダ31から出力された障害物検知信号、ミリ波レーダ31で測定された車体と障害物との間の距離L(以下、単に「障害物との距離L」または「測定距離L」とする場合がある)、および前後進切換レバー33から出力された切換信号に関するデータをそれぞれ取得する。本実施形態では、車体の後方にある障害物を検知すると共に、車体と障害物との間の距離Lを測定する後方監視装置としてミリ波レーダ31を用いている。なお、後方監視装置としては、ミリ波レーダ31に限らず、例えばステレオカメラ等を用いることも可能である。
 判定部52は、進行判定部52Aと、接近判定部52Bと、距離判定部52Cと、を含む。進行判定部52Aは、データ取得部51で取得された切換信号に基づいて、前後進切換レバー33が前進位置、後進位置、および中立位置のうちのいずれの位置に切り換わっているかを判定する。接近判定部52Bは、進行判定部52Aで前後進切換レバー33が後進位置に切り換わっていると判定された場合に、データ取得部51で取得された測定距離Lの推移に基づいて車体が障害物に接近中であるか否かを判定する。距離判定部52Cは、接近判定部52Bで車体が障害物に接近中であると判定された場合に、データ取得部51で取得された測定距離Lが制動開始距離L1および報知開始距離L2のそれぞれに達しているか否かを判定する。
 図6に示すように、「制動開始距離L1」とは、車体において制動動作を開始してから車体が停止するまでの所定の制動距離(以下、単に「制動距離」とする)に、所定の停止余裕距離(以下、単に「停止余裕距離」とする)を足し合わせた距離である(制動開始距離L1=制動距離+停止余裕距離)。なお、「停止余裕距離」とは、車体が停止した際に障害物と接触しないように車体と障害物との間に持たせた隙間分の距離である。
 また、「報知開始距離L2」とは、オペレータが障害物を認知して制動装置を動作させるまでの間に車体が走行する空走距離に相当する距離を制動開始距離L1に足し合わせた距離である(報知開始距離L2=空走距離+制動開始距離L1)。なお、「空走距離」は、例えば、オペレータが障害物に気づき体が反応してブレーキペダルを踏むまでの間に車体が走行する距離に相当する。本実施形態では、ホイールローダ1は自動で制動動作を開始するため、オペレータが障害物に気づいて制動装置を作動させる(ブレーキペダルを踏む)わけではないが、距離判定部52Cでは、空走距離を考慮した報知開始距離L2を基準とした距離判定を行っている。
 なお、制動開始距離L1および報知開始距離L2はそれぞれ、予め設定しておくことが可能であり、ホイールローダ1の仕様やオペレータの好み、作業現場の環境に合わせて適宜設定値を変更することが可能である。
 算出部53は、押しのけ容積算出部53Aと、エンジン回転数算出部53Bと、を含む。押しのけ容積算出部53Aは、距離判定部52Cで測定距離Lが制動開始距離L1に達したと判定された場合に、障害物との距離Lに応じたHSTポンプ41の最大押しのけ容積q1maxおよびHSTモータ43の最小押しのけ容積q2minをそれぞれ算出する。
 HSTポンプ41の最大押しのけ容積q1maxは、図7に示す第1制御特性にしたがって算出される。第1制御特性は、障害物との間の距離Lが制動開始距離L1から短くなるにつれて、すなわち車体が障害物に近づくにつれて、HSTポンプ41の最大押しのけ容積q1maxが小さくなる制御特性であり、HSTポンプ41の最大押しのけ容積q1maxは、前段階および後段階の2段階で制御される。
 より具体的には、第1制御特性は、コントローラ5が制動を開始してすぐの前段階では、障害物との間の距離Lの変化に対するHSTポンプ41の最大押しのけ容積q1maxの変化割合が後段階の変化割合に比べて大きく設定されている。したがって、コントローラ5は、ホイールローダ1において制動動作が開始されると急激にHSTポンプ41の最大押しのけ容積q1maxを小さくし、その後、障害物との間の距離Lの変化に対して緩やかにHSTポンプ41の最大押しのけ容積q1maxを小さくするようにHSTポンプ41の傾転を制御する。
 HSTモータ43の最小押しのけ容積q2minは、図8に示す第2制御特性にしたがって算出される。第2制御特性は、障害物との間の距離Lが制動開始距離L1から短くなるにつれて、すなわち車体が障害物に近づくにつれて、HSTモータ43の最小押しのけ容積q2minが大きくなる制御特性であり、HSTモータ43の最小押しのけ容積q2minは、HSTポンプ41の最大押しのけ容積q1maxと同様に、前段階および後段階の2段階で制御される。
 より具体的には、第2制御特性は、コントローラ5が制動を開始してすぐの前段階では、障害物との間の距離Lの変化に対するHSTモータ43の最小押しのけ容積q2minの変化割合が後段階の変化割合に比べて大きく設定されている。したがって、コントローラ5は、ホイールローダ1において制動動作が開始されると急激にHSTモータ43の最小押しのけ容積q2minを大きくし、その後、障害物との間の距離Lの変化に対して緩やかにHSTモータ43の最小押しのけ容積q2minを大きくするようにHSTモータ43の傾転を制御する。
 エンジン回転数算出部53Bは、障害物との距離Lに応じたエンジン4の最高回転数Nmax(以下、単に「エンジン最高回転数Nmax」とする)を算出する。具体的には、エンジン最高回転数Nmaxは、図9に示す第3制御特性にしたがって算出される。第3制御特性は、第1制御特性と同様に、障害物との間の距離Lが制動開始距離L1から短くなるにつれて、すなわち車体が障害物に近づくにつれて、エンジン最高回転数Nmaxが減少する制御特性であり、エンジン最高回転数Nmaxは、前段階および後段階の2段階で制御される。
 第3制御特性は、コントローラ5が制動を開始してすぐの前段階(制御前段階)では、障害物との間の距離Lの変化に対するエンジン最高回転数Nmaxの変化割合が後段階(制御後段階)の変化割合に比べて大きく設定されている。したがって、コントローラ5は、ホイールローダ1において制動動作が開始されると急激にエンジン最高回転数Nmaxを少なくし、その後、障害物との間の距離Lの変化に対して緩やかにエンジン最高回転数Nmaxを少なくするようにエンジン4の最高回転数を制御する。
 このように、障害物との距離Lに比例してHSTポンプ41の最大押しのけ容積q1max、HSTモータ43の最小押しのけ容積q2min、およびエンジン最高回転数Nmaxをそれぞれ制御することにより、車体が障害物に接近するにつれて車速が制動し、やがて車体は自動的に停止する。
 さらに、HSTポンプ41の最大押しのけ容積q1max、HSTモータ43の最小押しのけ容積q2min、およびエンジン最高回転数Nmaxはいずれも、障害物との距離Lに応じて制御され、制御の前段階では、制御特性の傾き(変化割合)が後段階における傾き(変化割合)よりも大きいため、コントローラ5によりホイールローダ1に自動制動力が掛かっていることをオペレータに体感で認識させることができ、車体が障害物と衝突する可能性を注意喚起することができる。
 他方、制御の後段階では、制御特性の傾き(変化割合)が前段階における傾き(変化割合)よりも小さいため、車体の後進走行を滑らかに停止させることができ、制動に伴って発生する衝撃を緩和することができる。
 なお、車速を制動させるには、少なくともHSTポンプ41の最大押しのけ容積q1maxを小さくする、またはHSTモータ43の最小押しのけ容積q2minを大きくすればよいが、本実施形態では、両者を制御すると共に、エンジン最高回転数Nmaxを少なくすることにより、障害物との距離Lに応じた車速の制動動作の精度を高めている。
 記憶部54は、予め設定された制動開始距離L1および報知開始距離L2、ならびに図7に示す第1制御特性、図8に示す第2制御特性、および図9に示す第3制御特性をそれぞれ記憶している。
 指令信号出力部55は、押しのけ容積算出部53Aで算出されたHSTポンプ41の最大押しのけ容積q1maxに基づく指令信号を第1比例制御弁61に対して出力し、押しのけ容積算出部53Aで算出されたHSTモータ43の最小押しのけ容積q2minに基づく指令信号を第2比例制御弁62に対して出力し、エンジン回転数算出部53Bで算出されたエンジン最高回転数Nmaxに基づく指令信号をエンジン4に対して出力する。これにより、ホイールローダ1の最高車速が制限される。
 また、指令信号出力部55は、距離判定部52Cで測定距離Lが報知開始距離L2に達したと判定された場合に、警報ブザー34に対して報知を指令する報知指令信号を出力する。これにより、オペレータは、少なくとも制動開始距離L1よりも空走距離分だけ障害物から遠い報知開始距離L2の時点で、コントローラ5による制動動作処理の開始を事前に認知することができる。すなわち、警報ブザー34は、コントローラ5による車体の最高車速の制限をオペレータに対して事前に報知する報知装置の一態様である。なお、報知装置は、警報ブザー34に限らず、例えばモニター等の表示装置であってもよい。
 警報ブザー34は、少なくとも障害物との距離Lが報知開始距離L2に達した場合に報知すればよいが、仕様によっては、報知開始距離L2よりも長い距離、すなわち報知開始距離L2よりもさらに障害物から離れた地点で報知してもよい。
(コントローラ5内での処理)
 次に、コントローラ5内で実行される具体的な処理の流れについて、図10を参照して説明する。
 図10は、コントローラ5で実行される処理の流れを示すフローチャートである。
 まず、進行判定部52Aは、データ取得部51で取得された前後進切換レバー33からの切換信号に基づいて、前後進切換レバー33が後進位置に切り換えられているか否かを判定する(ステップS501)。
 ステップS501において前後進切換レバー33が後進位置に切り換えられていると判定された場合(ステップS501/YES)、データ取得部51は、ミリ波レーダ31で測定された障害物との距離Lを取得する(ステップS502)。ステップS501において前後進切換レバー33が後進位置に切り換えられていないと判定された場合、すなわち前後進切換レバー33が前進位置または中立位置に切り換えられている場合(ステップS501/NO)、コントローラ5は処理を終了する。
 次に、接近判定部52Bは、ステップS502で取得された測定距離Lに基づいて、車体が障害物に接近中か否かを判定する(ステップS503)。ステップS503において車体が障害物に接近中であると判定された場合(ステップS503/YES)、距離判定部52Cは、測定距離Lが報知開始距離L2に達したか否か、すなわち測定距離Lが報知開始距離L2以下であるか否かを判定する(ステップS504)。なお、ステップS503において車体が障害物に接近中であると判定された場合(ステップS503/YES)、運転室12(図1参照)内に設けられたモニター等に「接近中」と表示しても良い。
 ステップS504において測定距離Lが報知開始距離L2に達した(L≦L2)と判定された場合(ステップS504/YES)、指令信号出力部55は、警報ブザー34に対して報知指令信号を出力する(ステップS505)。
 続いて、距離判定部52Cは、測定距離Lが制動開始距離L1に達したか否か、すなわち測定距離Lが制動開始距離L1以下であるか否かを判定する(ステップS506)。ステップS506において測定距離Lが制動開始距離L1に達した(L≦L1)と判定された場合(ステップS506/YES)、算出部53は、第1制御特性にしたがってHSTポンプ41の最大押しのけ容積q1maxを、第2制御特性にしたがってHSTモータ43の最小押しのけ容積q2minを、第3制御特性にしたがってエンジン最高回転数Nmaxを、それぞれ算出する(ステップS507)。
 そして、指令信号出力部55は、ステップS507で算出されたHSTポンプ41の最大押しのけ容積q1maxに基づく指令信号を第1比例制御弁61に対して出力し、ステップS507で算出されたHSTモータ43の最小押しのけ容積q2minに基づく指令信号を第2比例制御弁62に対して出力し、ステップS507で算出されたエンジン最高回転数Nmaxに基づく指令信号をエンジン4に対して出力する(ステップS508)。 
 コントローラ5は、ステップS508における処理を実行すると、ステップS501に戻って車体の後進走行が停止するまで処理を繰り返す。なお、ステップS501に戻って前後進切換レバー33が中立位置に切り換えられた場合は、コントローラ5は処理を終了して車体の最高車速の制限を解除する。コントローラ5による車体の最高車速の制限が解除されていない場合には前後進切換レバー33を前進位置に切り換えてもホイールローダ1は前進できないことになってしまうが、前後進切換レバー33を後進位置から中立位置を介して前進位置に切り換えることによりこのような事態を回避することができる。
 また、ステップS503において車体が障害物に接近中でないと判定された場合(ステップS503/NO)、ステップS504において測定距離Lが報知開始距離L2に達していない(L>L2)と判定された場合(ステップS504/NO)、およびステップS506において測定距離Lが制動開始距離L1に達していない(L2>L>L1)と判定された場合(ステップS506/NO)はいずれも、コントローラ5は処理を終了する。 
 以上、本発明の実施形態および変形例について説明した。なお、本発明は上記した実施形態や変形例に限定されるものではなく、様々な他の変形例が含まれる。例えば、上記した実施形態および変形例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、本実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、本実施形態の構成に他の実施形態の構成を加えることも可能である。またさらに、本実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 例えば、上記実施形態では、作業車両の一態様としてホイールローダについて説明したが、これに限らず、例えばフォークリフトやトラクター等のホイール式の作業車両についても本発明を適用することが可能である。
1:ホイールローダ(作業車両)
4:エンジン
5:コントローラ
11A:前輪(車輪)
11B:後輪(車輪)
31:ミリ波レーダ(後方監視装置)
33:前後進切換レバー(前後進切換装置)
34:警報ブザー(報知装置)
41:HSTポンプ(走行用油圧ポンプ)
43:HSTモータ(走行用油圧モータ)
L:測定距離
L1:制動開始距離
L2:報知開始距離

Claims (5)

  1.  複数の車輪を有する車体と、前記車体に搭載されたエンジンと、前記エンジンにより駆動される可変容量型の走行用油圧ポンプと、前記走行用油圧ポンプと閉回路状に接続されて前記エンジンの駆動力を前記複数の車輪に伝達する可変容量型の走行用油圧モータと、前記車体の前後進を切り換える前後進切換装置と、を備えた作業車両において、
     前記車体の後部に取り付けられて、前記車体の後方にある障害物を検知すると共に、前記車体と前記障害物との間の距離を測定する後方監視装置と、
     前記走行用油圧ポンプまたは前記走行用油圧モータを制御して前記車体の最高車速を制限するコントローラと、を備え、
     前記コントローラは、
     前記前後進切換装置が前記車体を後進させる後進位置に切り換えられ、前記車体が前記障害物に接近中である場合に、前記後方監視装置で測定された測定距離が、前記車体において制動動作を開始してから前記車体が停止するまでの所定の制動距離に所定の停止余裕距離を足し合わせた制動開始距離に達しているか否かを判定し、
     前記測定距離が前記制動開始距離に達したと判定された場合に、前記車体と前記障害物との間の距離が短くなるにつれて、前記走行用油圧ポンプの最大押しのけ容積が小さくなるように、または前記走行用油圧モータの最小押しのけ容積が大きくなるように傾転を制御し、
     前記傾転を制御する前段階および後段階のうち前段階では、前記車体と前記障害物との間の距離の変化に対する前記走行用油圧ポンプの最大押しのけ容積の変化割合または前記走行用油圧モータの最小押しのけ容積の変化割合を、前記後段階の変化割合に比べて大きく設定した
    ことを特徴とする作業車両。
  2.  請求項1に記載の作業車両において、
     前記コントローラによる前記車体の最高車速の制限をオペレータに対して事前に報知する報知装置を備え、
     前記コントローラは、
     前記前後進切換装置が前記後進位置に切り換わっており、前記車体が前記障害物に接近中である場合に、前記測定距離が、前記オペレータが前記障害物を認知して制動装置を動作させるまでの間に前記車体が走行する空走距離に相当する距離を前記制動開始距離に足し合わせた報知開始距離に達しているか否かを判定し、
     前記測定距離が前記報知開始距離に達したと判定された場合に、前記報知装置に対して報知を指令する報知指令信号を出力する
    ことを特徴とする作業車両。
  3.  請求項1に記載の作業車両において、
     前記コントローラは、
     前記測定距離が前記制動開始距離に達したと判定された場合に、前記車体と前記障害物との間の距離が短くなるにつれて、前記エンジンの最高回転数が少なくなるように前記エンジンの最高回転数を制御する
    ことを特徴とする作業車両。
  4.  請求項3に記載の作業車両において、
     前記コントローラは、
     前記エンジンの最高回転数の制御を制御前段階および制御後段階で行い、
     前記制御前段階では、前記車体と前記障害物との間の距離の変化に対する前記エンジンの最高回転数の変化割合を前記制御後段階の変化割合に比べて大きく設定した
    ことを特徴とする作業車両。
  5.  請求項1に記載の作業車両において、
     前記コントローラは、
     前記前後進切換装置が前記車体の進行を停止させる中立位置に切り換わった場合に、前記車体の最高車速の制限を解除する
    ことを特徴とする作業車両。
PCT/JP2019/050788 2019-03-18 2019-12-25 作業車両 WO2020188943A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019049620A JP2020153384A (ja) 2019-03-18 2019-03-18 作業車両
JP2019-049620 2019-03-18

Publications (1)

Publication Number Publication Date
WO2020188943A1 true WO2020188943A1 (ja) 2020-09-24

Family

ID=72519033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050788 WO2020188943A1 (ja) 2019-03-18 2019-12-25 作業車両

Country Status (2)

Country Link
JP (1) JP2020153384A (ja)
WO (1) WO2020188943A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4299953A1 (en) * 2022-06-28 2024-01-03 CNH Industrial Italia S.p.A. Method and control system of a hydraulic transmission of a work or agricultural vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10122363A (ja) * 1996-09-30 1998-05-15 Caterpillar Inc 超過速度制御装置
JP2000135957A (ja) * 1998-07-11 2000-05-16 Wabco Gmbh 後退走行の際に車両の運転者を支援する方法及び装置
JP2008223898A (ja) * 2007-03-13 2008-09-25 Tcm Corp 作業車両の走行制御装置
US20150315000A1 (en) * 2014-04-30 2015-11-05 Nacco Materials Handling Group, Inc. Vehicle control systems and methods
JP3219005U (ja) * 2018-09-10 2018-11-22 大成ロテック株式会社 建設車両
WO2019003760A1 (ja) * 2017-06-27 2019-01-03 株式会社小松製作所 作業車両及び作業車両の制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10122363A (ja) * 1996-09-30 1998-05-15 Caterpillar Inc 超過速度制御装置
JP2000135957A (ja) * 1998-07-11 2000-05-16 Wabco Gmbh 後退走行の際に車両の運転者を支援する方法及び装置
JP2008223898A (ja) * 2007-03-13 2008-09-25 Tcm Corp 作業車両の走行制御装置
US20150315000A1 (en) * 2014-04-30 2015-11-05 Nacco Materials Handling Group, Inc. Vehicle control systems and methods
WO2019003760A1 (ja) * 2017-06-27 2019-01-03 株式会社小松製作所 作業車両及び作業車両の制御方法
JP3219005U (ja) * 2018-09-10 2018-11-22 大成ロテック株式会社 建設車両

Also Published As

Publication number Publication date
JP2020153384A (ja) 2020-09-24

Similar Documents

Publication Publication Date Title
JP7002634B2 (ja) 作業車両
EP3660229B1 (en) Loading vehicle
US10947701B2 (en) Working vehicle
JP7374021B2 (ja) 作業車両
US20230287657A1 (en) Work machine and method for controlling work machine
JP5092059B1 (ja) 作業車両及び作業車両の制御方法
WO2020188943A1 (ja) 作業車両
US20220389684A1 (en) Work machine and method for controlling work machine
EP3795755B1 (en) Cargo handling work vehicle
US11286646B2 (en) Loading vehicle
WO2020194953A1 (ja) ホイールローダ
WO2021182421A1 (ja) 作業車両
JP7297167B2 (ja) 作業車両
US20230279642A1 (en) Work machine
EP4283053A1 (en) Work machine and method for controlling work machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919757

Country of ref document: EP

Kind code of ref document: A1