WO2020194679A1 - テンショナーリフター - Google Patents

テンショナーリフター Download PDF

Info

Publication number
WO2020194679A1
WO2020194679A1 PCT/JP2019/013659 JP2019013659W WO2020194679A1 WO 2020194679 A1 WO2020194679 A1 WO 2020194679A1 JP 2019013659 W JP2019013659 W JP 2019013659W WO 2020194679 A1 WO2020194679 A1 WO 2020194679A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive shaft
shaft
axis
thrust
propulsion
Prior art date
Application number
PCT/JP2019/013659
Other languages
English (en)
French (fr)
Inventor
勝弘 中道
杉田 治臣
匠 古戸
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2021508611A priority Critical patent/JP7128956B2/ja
Priority to CN201980091364.6A priority patent/CN113412380B/zh
Priority to PCT/JP2019/013659 priority patent/WO2020194679A1/ja
Publication of WO2020194679A1 publication Critical patent/WO2020194679A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/08Means for varying tension of belts, ropes, or chains

Definitions

  • the present invention includes a drive shaft that is rotatably supported around an axis and has a male screw engraved on the shaft body, and a thrust member that supports the shaft end of the drive shaft in the thrust direction while restraining the displacement of the drive shaft in the radial direction.
  • a propulsion body having a female screw that meshes with the male screw on the inner surface, which is restrained relative to the thrust member in a relative non-rotatable manner around the axis, and an elastic force that drives the drive shaft around the axis are generated according to the meshing of the male screw and the female screw.
  • the present invention relates to a tensioner lifter provided with a spring that applies a propulsive force to the propulsion body in a direction away from the thrust member.
  • Patent Document 1 discloses a tensioner lifter having a female screw that meshes with a male screw of a drive shaft, and including a propulsion body that advances according to the mesh of the male screw and the female screw of a rotating drive shaft.
  • the drive shaft is received by the thrust member at the shaft end.
  • a stepped surface is formed to receive the friction member of the annular plate pressed against the thrust member.
  • the friction member imparts a resistance force to the rotation of the drive shaft around the axis according to the friction torque with the drive shaft.
  • the rotation of the drive shaft is moderately constrained. Therefore, the propulsive force of the propulsion body is stabilized.
  • the string-wound spring presses the friction member against the stepped surface. At this time, the string winding spring is pressed against the friction member on the outer side in the radial direction from the stepped surface. Since the diameter of the shaft end of the drive shaft is smaller than the diameter of the string-wound spring, there is a concern that the drive shaft is unstablely supported by the thrust member. The generation of good friction torque cannot be realized. On the other hand, if a large spring load is applied to the string-wound spring to stabilize the friction torque, there is a concern that the pressing force applied to the cam chain becomes too high.
  • the present invention has been made in view of the above circumstances, and provides a tensioner lifter capable of generating stable friction torque with respect to the drive shaft and avoiding excessive load on the cam chain. With the goal.
  • a drive shaft having a male screw that is rotatably supported around an axis and is engraved on the shaft body, and the drive shaft in the thrust direction while restraining the displacement of the drive shaft in the radial direction.
  • a thrust member that supports the shaft end, a propulsion body that is restrained relative to the thrust member so as not to rotate relative to the shaft end and has a female screw that meshes with the male screw on the inner surface, and drives the drive shaft around the shaft line.
  • the shaft end of the drive shaft Is formed with a large-diameter shaft that is coaxial with the axis and extends outward from the virtual cylindrical surface inscribed in the point of action of the elastic member with respect to the friction member and is received by the thrust member.
  • a drive shaft having a male screw rotatably supported around an axis and engraved on the shaft body, and the drive shaft in the thrust direction while restraining the displacement of the drive shaft in the radial direction.
  • a thrust member that supports the shaft end, a propulsion body that is restrained relative to the thrust member so as not to rotate relative to the shaft end and has a female screw that meshes with the male screw on the inner surface, and drives the drive shaft around the shaft line.
  • the drive shaft is the thrust.
  • the male screw is formed to have a smaller diameter than the large diameter shaft.
  • the elastic member is provided so as to be rotatable relative to the friction member.
  • the tensioner lifter surrounds the propulsion body and has one end located on the friction member side of the propulsion body in the axial direction.
  • the elastic member is sandwiched between the one end of the collar member and the friction member on the friction member side of the propulsion body in the axial direction.
  • a boss that regulates the displacement of the elastic member in the radial direction is formed on the friction member or the collar member.
  • a drive shaft having a male screw rotatably supported around an axis and carved on the shaft body, and the drive shaft in the thrust direction while restraining the displacement of the drive shaft in the radial direction.
  • a thrust member that supports the shaft end, a propulsion body that is restrained relative to the thrust member so as not to rotate relative to the shaft end and has a female screw that meshes with the male screw on the inner surface, and drives the drive shaft around the shaft line.
  • the propulsion body is surrounded by the above.
  • the elastic member includes a collar member having one end located on the friction member side of the propulsion body in the axial direction, and the elastic member has the one end of the collar member and the elastic member on the friction member side of the propulsion body in the axial direction. It is sandwiched between the friction member.
  • a drive shaft having a male screw rotatably supported around an axis and engraved on the shaft body, and the drive shaft in the thrust direction while restraining the displacement of the drive shaft in the radial direction.
  • a tensioner lifter including a spring that generates an elastic force and applies a propulsive force to the propulsion body in a direction away from the thrust member according to the engagement of the male screw and the female screw, the tensioner lifter is pressed against the drive shaft in the axial direction.
  • An elastic member that applies a pressing force to the drive shaft toward the thrust member is provided.
  • the tensioner lifter comprises a collar member that surrounds the propulsion body and is non-displaceably constrained in a direction away from the thrust member.
  • the elastic member is arranged between the drive shaft and the drive shaft.
  • a driving force is applied to the drive shaft around the axis by the action of the spring.
  • the drive shaft rotates, propulsive force is applied to the propulsion body according to the engagement of the male and female threads.
  • the friction member applies a resistance force to the rotation of the drive shaft around the axis according to the friction torque with the drive shaft.
  • the rotation of the drive shaft is moderately constrained. Therefore, the propulsive force of the propulsion body is stabilized. Since the drive shaft is received by the thrust member by a large-diameter shaft that extends outward from the point of action of the elastic member, the drive shaft can be stably supported by the thrust member. Friction torque can be satisfactorily generated between the thrust member and the large-diameter shaft.
  • a driving force is applied to the drive shaft around the axis by the action of the spring.
  • the drive shaft rotates, propulsive force is applied to the propulsion body according to the engagement of the male and female threads.
  • the friction member applies a resistance force to the rotation of the drive shaft around the axis according to the friction torque with the drive shaft.
  • the rotation of the drive shaft is moderately constrained. Therefore, the propulsive force of the propulsion body is stabilized. Since the drive shaft is received by the thrust member by a large-diameter shaft that extends outward from the medium-diameter shaft, the drive shaft can be stably supported by the thrust member. Friction torque can be satisfactorily generated between the thrust member and the large-diameter shaft.
  • the male screw is formed to have a smaller diameter than the large diameter shaft, so that the drive shaft can be stably supported by the thrust member.
  • the elastic member can appropriately exert an elastic force on the friction member.
  • the collar member can realize the shortening of the elastic member in the axial direction. Therefore, the behavior of the elastic member can be stabilized. Since the collar member is partially replaced with the elastic member, it is possible to reduce the use of the relatively expensive elastic member and reduce the manufacturing cost.
  • the elastic member since the position of the elastic member is set in the radial direction with respect to the friction member, the elastic member can act on the friction member with a force balanced in the circumferential direction. Friction torque can be satisfactorily generated between the thrust member and the large-diameter shaft.
  • the collar member can realize the shortening of the elastic member in the axial direction. Therefore, the behavior of the elastic member can be stabilized. Since the collar member is partially replaced with the elastic member, it is possible to reduce the use of the relatively expensive elastic member and reduce the manufacturing cost.
  • the number of parts can be reduced as compared with the case where another member is interposed between the elastic member and the drive shaft. As the number of parts is reduced, the number of connected parts between parts is reduced, so that the risk of malfunction can be reduced.
  • the collar member can realize the shortening of the elastic member in the axial direction. Therefore, the behavior of the elastic member can be stabilized. Since the collar member is partially replaced with the elastic member, it is possible to reduce the use of the relatively expensive elastic member and reduce the manufacturing cost.
  • FIG. 1 is a longitudinal side view of an internal combustion engine according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of the tensioner lifter according to the first embodiment observed on the cut surface including the axis.
  • FIG. 3 is a three-arrow view of FIG.
  • FIG. 4 is a four-arrow view of FIG.
  • FIG. 5 corresponds to a partially enlarged view of FIG. 2, and is a conceptual diagram schematically showing a stopper inserted into the drive shaft.
  • FIG. 6 is an enlarged cross-sectional view of the tensioner lifter according to the second embodiment observed on the cut surface including the axis.
  • FIG. 7 is an enlarged cross-sectional view of the tensioner lifter according to the third embodiment observed on the cut surface including the axis.
  • FIG. 8 is an enlarged cross-sectional view of the tensioner lifter according to the fourth embodiment observed on the cut surface including the axis.
  • FIG. 9 is an enlarged cross-sectional view of the tensioner lifter according to the fifth embodiment observed on the cut surface including the axis.
  • FIG. 1 schematically shows an internal combustion engine according to an embodiment of the present invention.
  • the internal combustion engine 11 guides a linear reciprocating motion of a piston that is coupled to the crankcase 13 and is connected to the crankshaft 12 by a connecting rod and a crankcase 13 that rotatably supports the crankshaft 12 around the rotation axis Rx.
  • a head cover 16 for accommodating a valve mechanism is provided. When the piston descends and the intake valve opens, the air-fuel mixture is introduced into the combustion chamber.
  • the internal combustion engine 11 incorporates a valve operating mechanism 17 that realizes opening and closing operations of the intake valve and the exhaust valve at a predetermined timing according to the linear reciprocating motion of the piston.
  • the valve operating mechanism 17 is driven by a drive sprocket 18 fixed to the crankshaft 12 and rotating around the rotation axis Rx, a driven sprocket 21 fixed to the camshaft 19 and rotating around the rotation axis Xc of the camshaft 19.
  • the sprocket 18 and the annular cam chain 22 wound around the driven sprocket 21 are provided.
  • the rotation of the crankshaft 12 is transmitted to the camshaft 19 by the action of the cam chain 22.
  • the cam chain 22 becomes tense in the region pulled from the driven sprocket 21 to the driven sprocket 18 and relaxes in the region returning from the driven sprocket 18 to the driven sprocket 21.
  • the valve operating mechanism 17 includes a chain guide 23 that contacts the cam chain 22 on the tension side of the cam chain 22 and a tensioner 24 that contacts the cam chain 22 on the loose side of the cam chain 22 and applies tension to the cam chain 22.
  • the chain guide 23 extends linearly from the position outside the driven sprocket 21 in the centrifugal direction to the position outside the driven sprocket 18 in the centrifugal direction along the trajectory of the cam chain 22 on the tension side.
  • the tensioner 24 extends from the position outside the drive sprocket 18 in the centrifugal direction to the position outside the drive sprocket 21 in the centrifugal direction along the trajectory of the cam chain 22 on the relaxation side.
  • the tensioner 24 is curved so as to bulge toward the trajectory of the cam chain 22 on the tension side.
  • a pressing pressure acts on the cam chain 22 on the relaxation side from the tensioner 24 toward the trajectory of the cam chain 22 on the tension side.
  • a predetermined tension can be maintained in the cam chain 22 on the relaxation side by the action of the pressing pressure applied from the tensioner 24.
  • the tensioner 24 is swingably connected to the crankcase 13 around the swing axis Sx on the outside of the track of the cam chain 22 on the relaxation side.
  • the swing axis Sx is located parallel to the rotation axis Rx of the crankshaft 12.
  • a tensioner lifter 25 that exerts a driving force on the tensioner 24 in a tangential direction around the swing axis Sx is connected to the tensioner 24 at a position away from the swing axis Sx.
  • the tensioner 24 can apply tension to the cam chain 22 on the relaxation side according to the driving force of the tensioner lifter 25.
  • the tensioner lifter 25 includes a casing 26 that is coupled to the cylinder block 14 and a propulsion body 28 that projects from the casing 26 so as to be displaceable in the axis 27 direction and is pressed against the tensioner 24 at the tip.
  • the axis 27 is located tangentially around the swing axis Sx and intersects the trajectory of the cam chain 22 on the relaxation side.
  • the cylinder block 14 is formed with a mounting seat 32 that surrounds the mounting hole 29 and receives the casing 26 on a seating surface 31 orthogonal to the axis 27.
  • the casing 26 closes the mounting hole 29 from the outside of the cylinder block 14, and has a thrust member 26a that is fastened to the mounting seat 32 with two bolts 33 and an enclosure wall 26b that extends from the thrust member 26a in a cylindrical shape in the axial direction. Be prepared. A plug member 34 coaxial with the axis 27 is screwed into the thrust member 26a from the outside of the cylinder block 14.
  • the tensioner lifter 25 includes a drive shaft 38 that is rotatably supported by a thrust member 26a around an axis 27 and has a male screw 37 engraved on the shaft body 36.
  • the drive shaft 38 has a large-diameter shaft 41 formed of a cylindrical body coaxial with the axis 27 and received in a recess 39 formed in the thrust member 26a, and a cylindrical body coaxial with the axis 27 and having a diameter smaller than that of the large-diameter shaft 41.
  • the shaft body 36 is formed of a cylindrical body having a diameter smaller than that of the medium diameter shaft 43, and is coupled to the medium diameter shaft 43 in the axial direction.
  • the shaft body 36 forms a second stepped surface 44 with the medium diameter shaft 43.
  • the drive shaft 38 is formed from, for example, a metal material.
  • a cup washer 45 is attached to the large diameter shaft 41 of the drive shaft 38.
  • the cup washer 45 covers the end surface of the large-diameter shaft 41 along the outer circumference and covers the outer peripheral surface of the large-diameter shaft 41.
  • the cup washer 45 is fitted into the recess 39 of the thrust member 26a.
  • the recess 39 constrains the displacement of the drive shaft 38 in the radial direction.
  • the cup washer 45 is sandwiched between the thrust member 26a and the large-diameter shaft 41 by the recess 39, and functions to prevent the large-diameter shaft 41 from rattling with respect to the recess 39.
  • a mainspring 46 is mounted on the outer circumference of the medium diameter shaft 43 of the drive shaft 38.
  • the mainspring 46 generates an elastic force that drives the drive shaft 38 around the axis 27.
  • the mainspring 46 exerts an elastic force for driving the drive shaft 38 in the direction of rotation protruding from the female screw.
  • the propulsion body 28 is attached to the shaft body 36 from the tip (release end).
  • the propulsion body 28 includes a tubular body 28a that coaxially divides the through hole 47 with the shaft body 36, and a cap 28b that closes the through hole 47 at the open end of the tubular body 28a and is pressed against the tensioner 24.
  • the cylinder body 28a and the cap 28b are each formed from, for example, a metal material.
  • a female screw 48 that meshes with the male screw 37 of the shaft body 36 is engraved on the inner surface of the through hole 47.
  • the propulsion body 28 is restrained so as not to rotate relative to the thrust member 26a around the axis 27.
  • the propulsion body 28 advances in a direction away from the thrust member 26a according to the engagement of the male screw 37 and the female screw 48.
  • the propulsion body 28 retracts so as to approach the thrust member 26a according to the engagement of the male screw 37 and the female screw 48.
  • the propulsion body 28 penetrates the guide 51 coupled to the enclosure wall 26b of the casing 26.
  • the guide 51 is formed with an opening 51a for receiving the propulsion body 28 so as to be displaced in the axial direction.
  • the opening 51a is partitioned by a contour other than a circle.
  • the opening 51a partitions a cylindrical space that partially partitions a plane.
  • the opening 51a constrains the relative rotation of the propulsion body 28 with respect to the guide 51 around the axis 27.
  • the guide 51 is formed from, for example, a metal material.
  • the guide 51 is formed with arm pieces 52 extending in four directions in the radial direction.
  • the individual arm pieces 52 are received by a notch 53 formed at the tip of the enclosure wall 26b.
  • the arm piece 52 restrains the rotation of the guide 51 around the axis 27.
  • the guide 51 functions as a detent for the propulsion body 28 around the axis 27 while allowing the propulsion body 28 to be displaced in the axial direction.
  • the individual arm pieces 52 are constrained within the notch 53 by a C-clip 54 mounted on the outer peripheral surface of the enclosure wall 26b.
  • the friction member 55 is received from the axial direction on the second step surface 44.
  • the friction member 55 is formed of an annular flat plate surrounding the shaft body 36.
  • the friction member 55 is formed from, for example, a metal material. The friction member 55 is pressed against the second stepped surface 44 in the axial direction.
  • a collar member 56 is mounted on the outer circumference of the propulsion body 28 between the guide 51 and the friction member 55 in the axial direction.
  • the collar member 56 is formed in a cylindrical shape surrounding the propulsion body 28, and has one end 56a located on the friction member 55 side of the propulsion body 28 in the axial direction.
  • a flange 57 extending radially outward is formed at one end 56a of the collar member 56.
  • the color member 56 is molded from, for example, a resin material or a metal material.
  • a disc spring (elastic member) 58 is sandwiched between the flange 57 of the collar member 56 and the friction member 55 on the friction member 55 side of the propulsion body 28 in the axial direction. Since the other end 56b of the collar member 56 is restrained by the guide 51, the disc spring 58 exerts an elastic force that applies a pressing force to the friction member 55 toward the thrust member 26a in the axial direction. The disc spring 58 is received by the friction member 55 so as to be relatively rotatable.
  • a boss 59 is formed on the inner circumference of the friction member 55, which rises away from the thrust member 26a and regulates the displacement of the disc spring 58 in the radial direction.
  • the large-diameter shaft 41 extends outward from the virtual cylindrical surface 62 that is coaxial with the axis 27 and is inscribed in the action point 61 of the disc spring 58 with respect to the friction member 55. Further, the large-diameter shaft 41 extends outward from the virtual cylindrical surface 63 coaxial with the axis 27 and inscribed by the disc spring 55.
  • a grind 64 is formed on the large diameter shaft 41 of the drive shaft 38 along a virtual plane including the axis 27.
  • the thrust member 26a is formed with a through hole 65 that opens in the recess 39 and is closed by the plug member 34.
  • the through hole 65 partitions the cylindrical space coaxially with the axis 27.
  • a groove 66 extending on a three-diameter line is formed on the outer surface of the thrust member 26a around the through hole 65.
  • a stopper 67 is inserted into the slit 64 through the through hole 65 prior to closing the plug member 34.
  • the mainspring 46 can be wound according to the rotation of the stopper 67.
  • the elastic force is accumulated in the mainspring 46 by being wound.
  • the stopper 67 can be fitted into the groove 66 at a specific rotation position. In this way, the rotational position of the drive shaft 38 can be constrained by the action of the stopper 67.
  • the through hole 65 is closed with the plug member 34.
  • a driving force is applied to the drive shaft 38 around the axis 27 by the action of the mainspring 46.
  • a propulsive force is applied to the propulsion body 28 according to the engagement of the male screw 37 and the female screw 48.
  • the friction member 55 applies a resistance force to the rotation of the drive shaft 38 around the axis 27 according to the friction torque with the drive shaft 38.
  • the large-diameter shaft 41 imparts resistance to the rotation of the drive shaft 38 around the axis 27 according to the friction torque with the cup washer 45. In this way, the rotation of the drive shaft 38 is appropriately restrained. Therefore, the propulsive force of the propulsion body 28 is stabilized.
  • the drive shaft 38 Since the drive shaft 38 is received by the thrust member 26a by the large-diameter shaft 41 having a diameter larger than that of the medium-diameter shaft 43 that spreads outward from the action point 61 of the disc spring 58 and receives the mainspring 46, the drive shaft 38 is received by the thrust member 26a.
  • the drive shaft 38 can be stably supported. Friction torque can be satisfactorily generated between the thrust member 26a and the large-diameter shaft 41.
  • the disc spring 58 is sandwiched between one end 56a of the collar member 56 and the friction member 55 on the friction member 55 side of the propulsion body 28 in the axial direction.
  • the collar member 58 realizes a shortening of the elastic member that exerts the pressing force of the friction member 55, and realizes the adoption of the disc spring 58 instead of the long string-wound spring.
  • the behavior of the elastic member stabilizes. Since the collar member 58 is partially replaced with an elastic member, it is possible to reduce the use of a relatively expensive elastic member and reduce the manufacturing cost.
  • the friction member 55 is formed with a boss 59 that regulates the displacement of the disc spring 58 in the radial direction. Since the position of the disc spring 58 is set in the radial direction with respect to the friction member 55, the disc spring 58 can act on the friction member 55 with a force balanced in the circumferential direction. Friction torque can be satisfactorily generated between the thrust member 26a and the large-diameter shaft 41.
  • the tensioner lifter 25a includes a friction member 71 that is received by the second stepped surface 44 from the axial direction.
  • the friction member 71 is formed of an annular flat plate surrounding the shaft body 36.
  • the friction member 71 is formed from, for example, a metal material. The friction member 71 is pressed against the second stepped surface 44 in the axial direction.
  • a collar member 72 is mounted on the outer circumference of the propulsion body 28 between the guide 51 and the friction member 71 in the axial direction.
  • the collar member 72 is formed in a cylindrical shape surrounding the propulsion body 28, and has one end 72a located on the friction member 71 side of the propulsion body 28 in the axial direction.
  • a flange 73 extending radially outward is formed at one end 72a of the collar member 72.
  • the color member 72 is molded from, for example, a resin material or a metal material.
  • the propulsion body 28 is formed with a positioning piece 74 inscribed in the collar member 72 and restrains the displacement of the collar member 72 in the radial direction.
  • An O-ring (elastic member) 75 is sandwiched between the flange 73 of the collar member 72 and the friction member 71 on the friction member 71 side of the propulsion body 28 in the axial direction. Since the other end 72b of the collar member 72 is restrained by the guide 51, the O-ring 75 exerts an elastic force that applies a pressing force to the friction member 71 toward the thrust member 26a in the axial direction. The O-ring 75 is received by the friction member 71 so as to be relatively rotatable. On the inner circumference of the friction member 71, a boss 76 is formed which rises away from the thrust member 26a and regulates the displacement of the O-ring 75 in the radial direction.
  • the large-diameter shaft 41 of the drive shaft 38 extends outward from the virtual cylindrical surface 78 that is coaxial with the axis 27 and is inscribed in the action point 77 of the O-ring 75 with respect to the friction member 71. Further, the large-diameter shaft 41 extends outward from the virtual cylindrical surface 79 that is coaxial with the axis 27 and inscribed by the O-ring 75.
  • Other configurations are the same as those of the tensioner lifter 25 described above.
  • a driving force is applied to the drive shaft 38 around the axis 27 by the action of the mainspring 46.
  • a propulsive force is applied to the propulsion body 28 according to the engagement of the male screw 37 and the female screw 48.
  • the friction member 71 applies a resistance force to the rotation of the drive shaft 38 around the axis 27 according to the friction torque with the drive shaft 38.
  • the large-diameter shaft 41 imparts resistance to the rotation of the drive shaft 38 around the axis 27 according to the friction torque with the cup washer 45. In this way, the rotation of the drive shaft 38 is appropriately restrained. Therefore, the propulsive force of the propulsion body 28 is stabilized.
  • the drive shaft 38 is received by the thrust member 26a by the large-diameter shaft 41 having a diameter larger than that of the medium-diameter shaft 43 that extends outward from the action point 77 of the O-ring 75 and receives the mainspring 46, the drive shaft 38 is received by the thrust member 26a with respect to the thrust member 26a.
  • the drive shaft 38 can be stably supported. Friction torque can be satisfactorily generated between the thrust member 26a and the large-diameter shaft 41.
  • the O-ring 75 is sandwiched between one end 72a of the collar member 72 and the friction member 71 on the friction member 71 side of the propulsion body 28 in the axial direction.
  • the collar member 72 realizes a shortening of the elastic member that exerts the pressing force of the friction member 71, and realizes the adoption of the O-ring 75 instead of the long string-wound spring.
  • the behavior of the elastic member stabilizes. Since the collar member 72 is partially replaced with the elastic member, the use of the relatively expensive elastic member can be reduced and the manufacturing cost can be reduced.
  • the friction member 71 is formed with a boss 76 that regulates the displacement of the O-ring 75 in the radial direction. Since the position of the O-ring 75 is set in the radial direction with respect to the friction member 71, the O-ring 75 can act on the friction member 71 with a force balanced in the circumferential direction. Friction torque can be satisfactorily generated between the thrust member 26a and the large-diameter shaft 41.
  • the tensioner lifter 25b includes a washer 80 which is mounted on the outer circumference of the medium diameter shaft 43 and is received by the mainspring 46 from the axial direction.
  • the washer 80 is molded from, for example, a metal material.
  • a collar member 81 is mounted on the outer circumference of the propulsion body 28 between the guide 51 and the washer 80 in the axial direction.
  • the collar member 81 is formed in a cylindrical shape surrounding the propulsion body 28, and is sandwiched between the guide 51 and the washer 80 in the axial direction.
  • the color member 81 is formed from, for example, a resin material or a metal material.
  • a string-wound spring (elastic member) 82 is arranged between the guide 51 and the second step surface 44 in the axial direction inside the collar member 81.
  • the string-wound spring 82 is sandwiched between the guide 51 and the second step surface 44 in a compressed state.
  • the string winding spring 82 is continuous from the equal diameter body 82a having a constant winding diameter around the propulsion body 28, and the second step surface between the propulsion body 28 and the second step surface 44 in the axial direction. It has a reduced diameter body 82b having a diameter that gradually shrinks toward 44.
  • the string winding spring 82 is received by the second step surface 44 at the tip of the reduced diameter body 82b.
  • the large-diameter shaft 41 of the drive shaft 38 extends outward from the virtual cylindrical surface 84 that is coaxial with the axis 27 and inscribes in the action point 83 of the string-wound spring 82 with respect to the second step surface 44. Further, the large-diameter shaft 41 extends outward from the virtual cylindrical surface 85 that is coaxial with the axis 27 and is inscribed by the string-wound spring 82.
  • Other configurations are the same as those of the tensioner lifter 25 described above.
  • the tensioner lifter 25b since the string-wound spring 82 is directly pressed against the drive shaft 38, the number of parts is reduced as compared with the case where another member is interposed between the string-wound spring 82 and the drive shaft 38. Will be done. As the number of parts is reduced, the number of connected parts between parts is reduced, so that the risk of malfunction is reduced.
  • the tensioner lifter 25c includes a collar member 91 mounted on the propulsion body 28 between the guide 51 and the thrust member 26a.
  • the collar member 91 is formed in a cylindrical shape surrounding the propulsion body 28, and has one end 91a located on the thrust member 26a side of the propulsion body 28 in the axial direction.
  • a flange 92 extending radially outward is formed at one end 91a of the collar member 91.
  • a cylindrical positioning piece 93 projecting toward the thrust member 26a is formed on the outer periphery of the flange 92.
  • the color member 91 is molded from, for example, a resin material or a metal material.
  • a disc spring (elastic member) 94 is sandwiched between the flange 92 of the collar member 91 and the second stepped surface 44 of the drive shaft 38 in the axial direction. Since the other end 91b of the collar member 91 is restrained by the guide 51, the disc spring 94 exerts an elastic force that applies a pressing force to the second stepped surface 44 toward the thrust member 26a in the axial direction.
  • the disc spring 94 is fitted inside the positioning piece 93.
  • the positioning piece 93 regulates the displacement of the disc spring 94 in the radial direction.
  • the large-diameter shaft 41 of the drive shaft 38 extends outward from the virtual cylindrical surface 96 that is coaxial with the axis 27 and is inscribed in the action point 95 of the disc spring 94 with respect to the second step surface 44. Further, the large-diameter shaft 41 extends outward from the virtual cylindrical surface 97 which is coaxial with the axis 27 and inscribed by the disc spring 94.
  • Other configurations are the same as those of the tensioner lifter 25 described above.
  • the disc spring 94 is directly pressed against the drive shaft 38, the number of parts is reduced as compared with the case where another member is interposed between the disc spring 94 and the drive shaft 38. Will be done. As the number of parts is reduced, the number of connected parts between parts is reduced, so that the risk of malfunction is reduced. Moreover, since the disc spring 94 is arranged between the collar member 91 and the drive shaft 38, the collar member 91 realizes a shortening of the elastic member that exerts the pressing force of the drive shaft 38 in the axial direction, and also shortens the elastic member. A disc spring 94 is used instead of the long string-wound spring. Therefore, the behavior of the elastic member is stabilized. Since the collar member 91 is partially replaced with the elastic member, it is possible to reduce the use of the relatively expensive elastic member and reduce the manufacturing cost.
  • the tensioner lifter 25d includes a friction member 101 that is received by the second step surface 44 from the axial direction.
  • the friction member 101 is formed of an annular flat plate surrounding the shaft body 36.
  • the friction member 101 is formed from, for example, a metal material. The friction member 101 is pressed against the second stepped surface 44 in the axial direction.
  • a collar member 102 is mounted on the outer circumference of the propulsion body 28 between the guide 51 and the friction member 101 in the axial direction.
  • the collar member 102 is formed in a cylindrical shape surrounding the propulsion body 28, and has one end 102a located on the friction member 101 side of the propulsion body 28 in the axial direction.
  • the color member 102 is formed from, for example, a resin material or a metal material.
  • the propulsion body 28 inscribes in the collar member 102 and restrains the displacement of the collar member 102 in the radial direction.
  • the collar member 102 may come into contact with the friction member 101 or the guide 51 at least at one of the one end 102a and the other end 102b.
  • a string-wound spring (elastic member) 103 is mounted on the outer circumference of the collar member 102.
  • a string-wound spring (elastic member) 103 is sandwiched between the guide 51 and the friction member 101 in the axial direction.
  • the string-wound spring 103 exerts an elastic force that applies a pressing force to the friction member 101 toward the thrust member 26a in the axial direction.
  • the string-wound spring 103 is received by the friction member 101 so as to be relatively rotatable.
  • the large-diameter shaft 41 of the drive shaft 38 extends outward from the virtual cylindrical surface 105 that is coaxial with the axis 27 and inscribes at the point of action 104 of the string-wound spring 103 with respect to the friction member 101.
  • the large-diameter shaft 41 extends outward from the virtual cylindrical surface 106 which is coaxial with the axis 27 and is circumscribed by the string-wound spring 103.
  • Other configurations are the same as those of the tensioner lifter 25 described above.
  • a driving force is applied to the drive shaft 38 around the axis 27 by the action of the mainspring 46.
  • a propulsive force is applied to the propulsion body 28 according to the engagement of the male screw 37 and the female screw 48.
  • the friction member 101 applies a resistance force to the rotation of the drive shaft 38 around the axis 27 according to the friction torque with the drive shaft 38.
  • the large-diameter shaft 41 imparts resistance to the rotation of the drive shaft 38 around the axis 27 according to the friction torque with the cup washer 45. In this way, the rotation of the drive shaft 38 is appropriately restrained. Therefore, the propulsive force of the propulsion body 28 is stabilized.
  • the drive shaft 38 is received by the thrust member 26a by the large-diameter shaft 41 having a diameter larger than that of the relay shaft 43 that spreads outward from the action point 104 of the string-wound spring 103 and receives the mainspring 46, the drive shaft 38 is received by the thrust member 26a.
  • the drive shaft 38 can be stably supported. Friction torque can be satisfactorily generated between the thrust member 26a and the large-diameter shaft 41.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)

Abstract

テンショナーリフター(25)は、軸線方向に駆動軸(38)に押し当てられて、駆動軸(38)との摩擦トルクに応じて軸線(27)回りに駆動軸(38)の回転に抵抗力を付与する摩擦部材(55)と、軸線方向にスラスト部材(26a)に向かって摩擦部材(55)に押し当て力を付与する弾性部材(58)とを備える。駆動軸(38)の軸端には、軸線(27)に同軸であって摩擦部材(55)に対する弾性部材(58)の作用点に内接する仮想円筒面(62)よりも外側に広がり、スラスト部材(26a)に受け止められる大径軸(41)が形成される。これにより駆動軸に対して安定した摩擦トルクを生成することができるテンショナーリフターを提供する。

Description

テンショナーリフター
 本発明は、軸線回りで回転自在に支持され、軸体に刻まれる雄ねじを有する駆動軸と、径方向に駆動軸の変位を拘束しながらスラスト方向に駆動軸の軸端を支持するスラスト部材と、スラスト部材に対して軸線回りで相対回転不能に拘束されて、内面に雄ねじに噛み合う雌ねじを有する推進体と、軸線回りに駆動軸を駆動する弾性力を生成し、雄ねじおよび雌ねじの噛み合いに応じてスラスト部材から遠ざかる向きに推進体に推進力を付与するばねとを備えるテンショナーリフターに関する。
 特許文献1は、駆動軸の雄ねじに噛み合う雌ねじを有して、回転する駆動軸の雄ねじおよび雌ねじの噛み合いに応じて前進する推進体を備えるテンショナーリフターを開示する。テンショナーリフターでは駆動軸は軸端でスラスト部材に受け止められる。駆動軸の軸端には、スラスト部材に向かって押し当てられる環状板の摩擦部材を受け止める段差面が形成される。摩擦部材は、駆動軸との摩擦トルクに応じて軸線回りに駆動軸の回転に抵抗力を付与する。駆動軸の回転は適度に拘束される。したがって、推進体の推進力は安定化する。
日本特許第4934816号公報
 摩擦トルクの発生にあたって弦巻ばねは段差面に摩擦部材を押し付ける。このとき、摩擦部材には段差面よりも径方向に外側で弦巻ばねが押し当てられる。弦巻ばねの径に比べて駆動軸の軸端の径は小さいことから、スラスト部材に対して駆動軸は不安定に支持されることが懸念される。良好な摩擦トルクの生成は実現されることができない。その一方で、摩擦トルクが安定化の為に弦巻ばねに大きなばね荷重を加えると、カムチェーンに加わる押し付け力が高くなりすぎてしまうことが懸念される。
 本発明は、上記実状に鑑みてなされたもので、駆動軸に対して安定した摩擦トルクを生成することができ、カムチェーンへの負荷のかけ過ぎを回避することができるテンショナーリフターを提供することを目的とする。
 本発明の第1側面によれば、軸線回りで回転自在に支持され、軸体に刻まれる雄ねじを有する駆動軸と、径方向に前記駆動軸の変位を拘束しながらスラスト方向に前記駆動軸の軸端を支持するスラスト部材と、前記スラスト部材に対して前記軸線回りで相対回転不能に拘束されて、内面に前記雄ねじに噛み合う雌ねじを有する推進体と、前記軸線回りに前記駆動軸を駆動する弾性力を生成し、前記雄ねじおよび前記雌ねじの噛み合いに応じて前記スラスト部材から遠ざかる向きに前記推進体に推進力を付与するばねと、軸線方向に前記駆動軸に押し当てられて、前記軸線回りに前記駆動軸との間に摩擦力を発生させる摩擦部材と、前記摩擦部材を前記スラスト部材に向かけて前記軸線方向に付勢する弾性部材とを備えるテンショナーリフターにおいて、前記駆動軸の軸端には、前記軸線に同軸であって前記摩擦部材に対する前記弾性部材の作用点に内接する仮想円筒面よりも外側に広がり、前記スラスト部材に受け止められる大径軸が形成される。
 本発明の第2側面によれば、軸線回りで回転自在に支持され、軸体に刻まれる雄ねじを有する駆動軸と、径方向に前記駆動軸の変位を拘束しながらスラスト方向に前記駆動軸の軸端を支持するスラスト部材と、前記スラスト部材に対して前記軸線回りで相対回転不能に拘束されて、内面に前記雄ねじに噛み合う雌ねじを有する推進体と、前記軸線回りに前記駆動軸を駆動する弾性力を生成し、前記雄ねじおよび前記雌ねじの噛み合いに応じて前記スラスト部材から遠ざかる向きに前記推進体に推進力を付与するばねと、軸線方向に前記駆動軸に押し当てられて、前記軸線回りに前記駆動軸との間に摩擦力を発生させる摩擦部材と、前記摩擦部材を前記スラスト部材に向けて前記軸線方向に付勢する弾性部材とを備えるテンショナーリフターにおいて、前記駆動軸は、前記スラスト部材に形成される凹部に受け入れられる大径軸と、前記軸線に同軸且つ大径軸よりも小径の円柱体で形成され、前記軸線方向に前記大径軸に結合され前記大径軸との間に第1段差面を形成する中径軸とを備える。
 第3側面によれば、第2側面の構成に加えて、前記雄ねじは前記大径軸より小径に形成される。
 第4側面によれば、第1~第3側面のいずれか1の構成に加えて、前記弾性部材は前記摩擦部材に対して相対回転可能に設けられる。
 第5側面によれば、第1~第4側面のいずれか1の構成に加えて、テンショナーリフターは、前記推進体を囲んで軸線方向に前記推進体よりも前記摩擦部材側に位置する一端を有するカラー部材を備え、前記弾性部材は、軸線方向に前記推進体よりも前記摩擦部材側で前記カラー部材の前記一端と前記摩擦部材との間に挟まれる。
 第6側面によれば、第5側面の構成に加えて、前記摩擦部材または前記カラー部材には径方向に前記弾性部材の変位を規制するボスが形成される。
 本発明の第7側面によれば、軸線回りで回転自在に支持され、軸体に刻まれる雄ねじを有する駆動軸と、径方向に前記駆動軸の変位を拘束しながらスラスト方向に前記駆動軸の軸端を支持するスラスト部材と、前記スラスト部材に対して前記軸線回りで相対回転不能に拘束されて、内面に前記雄ねじに噛み合う雌ねじを有する推進体と、前記軸線回りに前記駆動軸を駆動する弾性力を生成し、前記雄ねじおよび前記雌ねじの噛み合いに応じて前記スラスト部材から遠ざかる向きに前記推進体に推進力を付与するばねと、軸線方向に前記駆動軸に押し当てられて、前記軸線回りに前記駆動軸との間に摩擦力を発生させる摩擦部材と、前記摩擦部材を前記スラスト部材に向けて前記軸線方向に付勢する弾性部材とを備えるテンショナーリフターにおいて、前記推進体を囲んで前記軸線方向に前記推進体よりも前記摩擦部材側に位置する一端を有するカラー部材を備え、前記弾性部材は、前記軸線方向に前記推進体よりも前記摩擦部材側で前記カラー部材の前記一端と前記摩擦部材との間に挟まれる。
 本発明の第8側面によれば、軸線回りで回転自在に支持され、軸体に刻まれる雄ねじを有する駆動軸と、径方向に前記駆動軸の変位を拘束しながらスラスト方向に前記駆動軸の軸端を支持するスラスト部材と、前記スラスト部材に対して前記軸線回りで相対回転不能に拘束されて、内面に前記雄ねじに噛み合う雌ねじを有する推進体と、前記軸線回りに前記駆動軸を駆動する弾性力を生成し、前記雄ねじおよび前記雌ねじの噛み合いに応じて前記スラスト部材から遠ざかる向きに前記推進体に推進力を付与するばねとを備えるテンショナーリフターにおいて、軸線方向に前記駆動軸に押し当てられ、前記スラスト部材に向かって前記駆動軸に押し当て力を付与する弾性部材を備える。
 第9側面によれば、第8側面の構成に加えて、テンショナーリフターは、前記推進体を囲んで、前記スラスト部材から遠ざかる向きに変位不能に拘束されるカラー部材を備え、前記カラー部材と前記駆動軸との間に前記弾性部材は配置される。
 第1側面によれば、ばねの作用で駆動軸には軸線回りに駆動力が付与される。駆動軸が回転すると、雄ねじおよび雌ねじの噛み合いに応じて推進体に推進力が付与される。このとき、摩擦部材は駆動軸との摩擦トルクに応じて軸線回りで駆動軸の回転に抵抗力を付与する。駆動軸の回転は適度に拘束される。したがって、推進体の推進力は安定化する。駆動軸は、弾性部材の作用点よりも外側に広がる大径軸でスラスト部材に受け止められるので、スラスト部材に対して駆動軸は安定に支持されることができる。スラスト部材と大径軸との間で良好に摩擦トルクは生成されることができる。
 第2側面によれば、ばねの作用で駆動軸には軸線回りに駆動力が付与される。駆動軸が回転すると、雄ねじおよび雌ねじの噛み合いに応じて推進体に推進力が付与される。このとき、摩擦部材は駆動軸との摩擦トルクに応じて軸線回りで駆動軸の回転に抵抗力を付与する。駆動軸の回転は適度に拘束される。したがって、推進体の推進力は安定化する。駆動軸は、中径軸よりも外側に広がる大径軸でスラスト部材に受け止められるので、スラスト部材に対して駆動軸は安定に支持されることができる。スラスト部材と大径軸との間で良好に摩擦トルクは生成されることができる。
 第3側面によれば、雄ねじは大径軸よりも小径に形成されるので、スラスト部材に対して駆動軸は安定に支持されることができる。
 第4側面によれば、弾性部材および摩擦部材の間で相対回転が許容されるので、弾性部材の捻れは防止されることができる。弾性部材は適確に摩擦部材に対して弾性力を作用することができる。
 第5側面によれば、カラー部材は軸線方向に弾性部材の短縮化を実現することができる。したがって、弾性部材の挙動は安定化することができる。カラー部材は弾性部材に部分的に置き換わることから、比較的に高価な弾性部材の使用を減らして製造コストの低減を実現することができる。
 第6側面によれば、摩擦部材に対して径方向に弾性部材の位置が設定されるので、弾性部材は周方向にバランスされた力で摩擦部材に作用することができる。スラスト部材と大径軸との間で良好に摩擦トルクは生成されることができる。
 第7側面によれば、カラー部材は軸線方向に弾性部材の短縮化を実現することができる。したがって、弾性部材の挙動は安定化することができる。カラー部材は弾性部材に部分的に置き換わることから、比較的に高価な弾性部材の使用を減らして製造コストの低減を実現することができる。
 第8側面によれば、弾性部材は直接に駆動軸に押し当てられるので、弾性部材と駆動軸との間に他部材が介在する場合に比べて、部品点数は削減されることができる。部品点数の削減に伴って部品同士の連結部分が減少するので、動作不良のリスクは軽減されることができる。
 第9側面によれば、カラー部材は軸線方向に弾性部材の短縮化を実現することができる。したがって、弾性部材の挙動は安定化することができる。カラー部材は弾性部材に部分的に置き換わることから、比較的に高価な弾性部材の使用を減らして製造コストの低減を実現することができる。
図1は本発明の一実施形態に係る内燃機関の縦断側面図である。(第1の実施の形態) 図2は軸心を含む切断面で観察される第1実施形態に係るテンショナーリフターの拡大断面図である。(第1の実施の形態) 図3は図2の3矢視図である。(第1の実施の形態) 図4は図2の4矢視図である。(第1の実施の形態) 図5は図2の部分拡大図に相当し、駆動軸に差し込まれるストッパーを概略的に示す概念図である。(第1の実施の形態) 図6は軸心を含む切断面で観察される第2実施形態に係るテンショナーリフターの拡大断面図である。(第2の実施の形態) 図7は軸心を含む切断面で観察される第3実施形態に係るテンショナーリフターの拡大断面図である。(第3の実施の形態) 図8は軸心を含む切断面で観察される第4実施形態に係るテンショナーリフターの拡大断面図である。(第4の実施の形態) 図9は軸心を含む切断面で観察される第5実施形態に係るテンショナーリフターの拡大断面図である。(第5の実施の形態)
25…テンショナーリフター
25a…テンショナーリフター
25b…テンショナーリフター
25c…テンショナーリフター
26a…スラスト部材
27…軸線
28…推進体
36…軸体
37…雄ねじ
38…駆動軸
41…大径軸
43…中径軸
46…ばね(ぜんまいばね)
48…雌ねじ
55…摩擦部材
56…カラー部材
56a…一端
58…弾性部材(皿ばね)
59…ボス
62…仮想円筒面
71…摩擦部材
72…カラー部材
72a…一端
75…弾性部材(Oリング)
76…ボス
78…仮想円筒面
82…弾性部材(弦巻ばね)
91…カラー部材
94…弾性部材(皿ばね)
101…摩擦部材
103…弾性部材(弦巻ばね)
105…仮想円筒面
 以下、添付図面を参照しつつ本発明の実施形態を説明する。
第1の実施の形態
 図1は本発明の実施形態に係る内燃機関を概略的に示す。内燃機関11は、回転軸線Rx回りで回転自在にクランクシャフト12を支持するクランクケース13と、クランクケース13に結合されて、クランクシャフト12にコネクティングロッドで連結されるピストンの線形往復運動を案内するシリンダーブロック14と、シリンダーブロック14に結合されて、ピストンとの間に燃焼室を区画するシリンダーヘッド15と、シリンダーヘッド15に結合されて、燃焼室に臨む吸気弁および排気弁の開閉を司る動弁機構を収容するヘッドカバー16とを備える。ピストンが下降するとともに吸気弁が開くと、燃焼室に混合気が導入される。吸気弁が閉じてピストンが上昇すると、燃焼室で混合気は圧縮される。燃焼室内で混合気が点火されると、混合気は燃焼し、燃焼室の容積は拡大する。それに伴ってピストンは下降し、続くピストンの上昇とともに排気弁が開くと、燃焼室から排ガスは排出される。こうしてクランクシャフト12から動力は取り出される。
 内燃機関11には、ピストンの線形往復運動に合わせて規定のタイミングで吸気弁および排気弁の開閉動作を実現する動弁機構17が組み込まれる。動弁機構17は、クランクシャフト12に固定されて回転軸線Rx回りで回転する駆動スプロケット18と、カムシャフト19に固定されて、カムシャフト19の回転軸線Xc回りで回転する従動スプロケット21と、駆動スプロケット18および従動スプロケット21に巻き掛けられる環状のカムチェーン22とを備える。クランクシャフト12の回転はカムチェーン22の働きでカムシャフト19に伝達される。カムチェーン22は、従動スプロケット21から駆動スプロケット18に引っ張られる領域で緊張し、駆動スプロケット18から従動スプロケット21に戻る領域で弛緩する。
 動弁機構17には、カムチェーン22の緊張側でカムチェーン22に接触するチェーンガイド23と、カムチェーン22の弛緩側でカムチェーン22に接触し、カムチェーン22に張力を付与するテンショナー24とが組み合わせられる。チェーンガイド23は、緊張側のカムチェーン22の軌道に沿って、従動スプロケット21の遠心方向外側の位置から駆動スプロケット18の遠心方向外側の位置まで線形に延びる。テンショナー24は、弛緩側のカムチェーン22の軌道に沿って、駆動スプロケット18の遠心方向外側の位置から従動スプロケット21の遠心方向外側の位置まで延びる。テンショナー24は緊張側のカムチェーン22の軌道に向かって膨らむように湾曲する。弛緩側のカムチェーン22には緊張側のカムチェーン22の軌道に向かってテンショナー24から押し付け圧が作用する。テンショナー24から付与される押し付け圧の働きで弛緩側のカムチェーン22では決められた張力が維持されることができる。
 テンショナー24は、弛緩側のカムチェーン22の軌道の外側で、揺動軸線Sx回りに揺動自在にクランクケース13に連結される。揺動軸線Sxはクランクシャフト12の回転軸線Rxに平行に位置する。テンショナー24には、揺動軸線Sxから離れた位置で、揺動軸線Sx回りに接線方向にテンショナー24に駆動力を作用するテンショナーリフター25が接続される。テンショナーリフター25の駆動力に応じてテンショナー24は弛緩側のカムチェーン22に張力を付与することができる。
 テンショナーリフター25は、シリンダーブロック14に結合されるケーシング26と、軸線27方向に変位自在にケーシング26から突出し、先端でテンショナー24に押し当てられる推進体28とを備える。軸線27は、揺動軸線Sx回りに接線方向に位置し、弛緩側のカムチェーン22の軌道に交差する。シリンダーブロック14には、取り付け孔29を囲んで、軸線27に直交する座面31でケーシング26を受け止める取り付け座32が形成される。
 ケーシング26は、シリンダーブロック14の外側から取り付け孔29を塞いで、2つのボルト33で取り付け座32に締結されるスラスト部材26aと、スラスト部材26aから軸線方向に円筒形状に延びる囲い壁26bとを備える。スラスト部材26aには、シリンダーブロック14の外側から軸線27に同軸の栓部材34がねじ込まれる。
 図2に示されるように、第1実施形態に係るテンショナーリフター25は、軸線27回りで回転自在にスラスト部材26aに支持され、軸体36に刻まれる雄ねじ37を有する駆動軸38を備える。駆動軸38は、軸線27に同軸の円柱体で形成されて、スラスト部材26aに形成される凹部39に受け入れられる大径軸41と、軸線27に同軸に大径軸41よりも小径の円柱体で形成されて、軸線方向に大径軸41に結合され大径軸41との間に第1段差面42を形成する中径軸43とを備える。軸体36は、中径軸43よりも小径の円柱体で形成され、軸線方向に中径軸43に結合される。軸体36は中径軸43との間に第2段差面44を形成する。駆動軸38は例えば金属材から成形される。
 駆動軸38の大径軸41にはカップワッシャー45が装着される。カップワッシャー45は、外周に沿って大径軸41の端面を覆うとともに大径軸41の外周面を覆う。カップワッシャー45はスラスト部材26aの凹部39に嵌め込まれる。凹部39は径方向に駆動軸38の変位を拘束する。カップワッシャー45は凹部39でスラスト部材26aおよび大径軸41の間に挟まれて凹部39に対して大径軸41のがたつきを防止する機能を果たす。
 駆動軸38の中径軸43の外周にはぜんまいばね46が装着される。ぜんまいばね46は軸線27回りに駆動軸38を駆動する弾性力を生成する。ぜんまいばね46は雌ねじに対して突出する回転方向に駆動軸38を駆動する弾性力を発揮する。
 軸体36には先端(解放端)から推進体28が装着される。推進体28は、軸体36に同軸に通孔47を区画する筒体28aと、筒体28aの解放端で通孔47を塞ぎ、テンショナー24に押し当てられるキャップ28bとを備える。筒体28aおよびキャップ28bはそれぞれ例えば金属材から成形される。
 通孔47の内面には軸体36の雄ねじ37に噛み合う雌ねじ48が刻まれる。推進体28は、スラスト部材26aに対して軸線27回りで相対回転不能に拘束される。ぜんまいばね46の弾性力に応じて駆動軸38が回転すると、雄ねじ37および雌ねじ48の噛み合いに応じて、推進体28はスラスト部材26aから遠ざかる向きに前進する。ぜんまいばね46の弾性力に抗して反対向きに駆動軸38が回転すると、雄ねじ37および雌ねじ48の噛み合いに応じて推進体28はスラスト部材26aに近づくように後退する。
 推進体28は、ケーシング26の囲い壁26bに結合されるガイド51を貫通する。ガイド51には、軸方向変位自在に推進体28を受け入れる開口51aが形成される。図3に示されるように、開口51aは円形以外の輪郭で仕切られる。ここでは、開口51aは、部分的に平面を区画する円柱形状の空間を区画する。開口51aは、軸線27回りにガイド51に対して推進体28の相対回転を拘束する。ガイド51は例えば金属材から成形される。
 ガイド51には径方向に4方向に延びる腕片52が形成される。個々の腕片52は、囲い壁26bの先端に形成される切り欠き53に受け入れられる。腕片52は軸線27回りでガイド51の回転を拘束する。こうしてガイド51は軸線方向に推進体28の変位を許容しながら軸線27回りで推進体28の回り止めとして機能する。個々の腕片52は、囲い壁26bの外周面に装着されるCクリップ54で切り欠き53内に拘束される。
 図2に示されるように、第2段差面44には軸線方向から摩擦部材55が受け止められる。摩擦部材55は、軸体36を囲む環状の平板で形成される。摩擦部材55は例えば金属材から成形される。摩擦部材55は軸線方向に第2段差面44に押し当てられる。
 軸線方向にガイド51と摩擦部材55との間で推進体28の外周にはカラー部材56が装着される。カラー部材56は、推進体28を囲む円筒形に形成されて、軸線方向に推進体28よりも摩擦部材55側に位置する一端56aを有する。カラー部材56の一端56aには径方向外側に広がるフランジ57が形成される。カラー部材56は例えば樹脂材または金属材から成形される。
 軸線方向に推進体28よりも摩擦部材55側でカラー部材56のフランジ57と摩擦部材55との間に皿ばね(弾性部材)58が挟まれる。カラー部材56の他端56bはガイド51で拘束されることから、皿ばね58は、軸線方向にスラスト部材26aに向かって摩擦部材55に押し当て力を付与する弾性力を発揮する。皿ばね58は摩擦部材55に相対回転可能に受け止められる。摩擦部材55の内周には、スラスト部材26aから遠ざかる向きに立ち上がって、径方向に皿ばね58の変位を規制するボス59が形成される。ここでは、大径軸41は、軸線27に同軸であって摩擦部材55に対する皿ばね58の作用点61に内接する仮想円筒面62よりも外側に広がる。さらに、大径軸41は、軸線27に同軸であって皿ばね55によって内接される仮想円筒面63よりも外側に広がる。
 駆動軸38の大径軸41には軸線27を含む仮想平面に沿ってすり割り64が形成される。スラスト部材26aには、凹部39に開口して栓部材34で閉じられる貫通孔65が形成される。貫通孔65は軸線27に同軸に円柱空間を仕切る。図4に示されるように、貫通孔65の周囲でスラスト部材26aの外面には3直径線上で延びる溝66が形成される。
 図5に示されるように、栓部材34の閉塞に先立って、すり割り64には貫通孔65からストッパー67が差し込まれる。ストッパー67の回転に応じてぜんまいばね46は巻かれることができる。巻かれることでぜんまいばね46には弾性力が蓄積される。ストッパー67は、特定の回転位置で溝66に嵌め込まれることができる。こうして駆動軸38の回転位置はストッパー67の働きで拘束されることができる。ストッパー67が取り外された後に貫通孔65は栓部材34で塞がれる。
 ぜんまいばね46の作用で駆動軸38には軸線27回りに駆動力が付与される。駆動軸38が回転すると、雄ねじ37および雌ねじ48の噛み合いに応じて推進体28に推進力が付与される。このとき、摩擦部材55は駆動軸38との摩擦トルクに応じて軸線27回りで駆動軸38の回転に抵抗力を付与する。同様に、大径軸41はカップワッシャー45との摩擦トルクに応じて軸線27回りで駆動軸38の回転に抵抗力を付与する。こうして駆動軸38の回転は適度に拘束される。したがって、推進体28の推進力は安定化する。駆動軸38は、皿ばね58の作用点61よりも外側に広がってぜんまいばね46を受ける中径軸43よりも大径の大径軸41でスラスト部材26aに受け止められるので、スラスト部材26aに対して駆動軸38は安定に支持されることができる。スラスト部材26aと大径軸41との間で良好に摩擦トルクは生成されることができる。
 本実施形態では、皿ばね58は、軸線方向に推進体28よりも摩擦部材55側でカラー部材56の一端56aと摩擦部材55との間に挟まれる。カラー部材58は、摩擦部材55の押し付け力を発揮する弾性部材の短縮化を実現し、長尺の弦巻ばねに代えて皿ばね58の採用を実現する。弾性部材の挙動は安定化する。カラー部材58は弾性部材に部分的に置き換わることから、比較的に高価な弾性部材の使用を減らして製造コストの低減を実現することができる。
 摩擦部材55には径方向に皿ばね58の変位を規制するボス59が形成される。摩擦部材55に対して径方向に皿ばね58の位置が設定されるので、皿ばね58は周方向にバランスされた力で摩擦部材55に作用することができる。スラスト部材26aと大径軸41との間で良好に摩擦トルクは生成されることができる。
第2の実施の形態
 図6に示されるように、第2実施形態に係るテンショナーリフター25aは、軸線方向から第2段差面44に受け止められる摩擦部材71を備える。摩擦部材71は、軸体36を囲む環状の平板で形成される。摩擦部材71は例えば金属材から成形される。摩擦部材71は軸線方向に第2段差面44に押し当てられる。
 軸線方向にガイド51と摩擦部材71との間で推進体28の外周にはカラー部材72が装着される。カラー部材72は、推進体28を囲む円筒形に形成されて、軸線方向に推進体28よりも摩擦部材71側に位置する一端72aを有する。カラー部材72の一端72aには径方向外側に広がるフランジ73が形成される。カラー部材72は例えば樹脂材または金属材から成形される。推進体28には、カラー部材72に内接して径方向にカラー部材72の変位を拘束する位置決め片74が形成される。
 軸線方向に推進体28よりも摩擦部材71側でカラー部材72のフランジ73と摩擦部材71との間にOリング(弾性部材)75が挟まれる。カラー部材72の他端72bはガイド51で拘束されることから、Oリング75は、軸線方向にスラスト部材26aに向かって摩擦部材71に押し当て力を付与する弾性力を発揮する。Oリング75は摩擦部材71に相対回転可能に受け止められる。摩擦部材71の内周には、スラスト部材26aから遠ざかる向きに立ち上がって、径方向にOリング75の変位を規制するボス76が形成される。ここでは、駆動軸38の大径軸41は、軸線27に同軸であって摩擦部材71に対するOリング75の作用点77に内接する仮想円筒面78よりも外側に広がる。さらに、大径軸41は、軸線27に同軸であってOリング75によって内接される仮想円筒面79よりも外側に広がる。その他の構成は前述のテンショナーリフター25と同様である。
 ぜんまいばね46の作用で駆動軸38には軸線27回りに駆動力が付与される。駆動軸38が回転すると、雄ねじ37および雌ねじ48の噛み合いに応じて推進体28に推進力が付与される。このとき、摩擦部材71は駆動軸38との摩擦トルクに応じて軸線27回りで駆動軸38の回転に抵抗力を付与する。同様に、大径軸41はカップワッシャー45との摩擦トルクに応じて軸線27回りで駆動軸38の回転に抵抗力を付与する。こうして駆動軸38の回転は適度に拘束される。したがって、推進体28の推進力は安定化する。駆動軸38は、Oリング75の作用点77よりも外側に広がってぜんまいばね46を受ける中径軸43よりも大径の大径軸41でスラスト部材26aに受け止められるので、スラスト部材26aに対して駆動軸38は安定に支持されることができる。スラスト部材26aと大径軸41との間で良好に摩擦トルクは生成されることができる。
 本実施形態では、Oリング75は、軸線方向に推進体28よりも摩擦部材71側でカラー部材72の一端72aと摩擦部材71との間に挟まれる。カラー部材72は、摩擦部材71の押し付け力を発揮する弾性部材の短縮化を実現し、長尺の弦巻ばねに代えてOリング75の採用を実現する。弾性部材の挙動は安定化する。カラー部材72は弾性部材に部分的に置き換わることから、比較的に高価な弾性部材の使用を減らして製造コストの低減を実現することができる。
 摩擦部材71には径方向にOリング75の変位を規制するボス76が形成される。摩擦部材71に対して径方向にOリング75の位置が設定されるので、Oリング75は周方向にバランスされた力で摩擦部材71に作用することができる。スラスト部材26aと大径軸41との間で良好に摩擦トルクは生成されることができる。
第3の実施の形態
 図7に示されるように、第3実施形態に係るテンショナーリフター25bは、中径軸43の外周に装着されて軸線方向からぜんまいばね46に受け止められるワッシャー80を備える。ワッシャー80は例えば金属材から成形される。
 軸線方向にガイド51とワッシャー80との間で推進体28の外周にはカラー部材81が装着される。カラー部材81は、推進体28を囲む円筒形に形成されて、軸線方向にガイド51とワッシャー80との間に挟まれる。カラー部材81は例えば樹脂材または金属材から成形される。
 カラー部材81の内側で軸線方向にガイド51と第2段差面44との間には弦巻ばね(弾性部材)82が配置される。弦巻ばね82は圧縮された状態でガイド51と第2段差面44との間に挟まれる。弦巻ばね82は、推進体28回りで一定の巻き径を有する等径体82aと、等径体82aから連続し、軸線方向に推進体28と第2段差面44との間で第2段差面44に向かって徐々に縮小する径を有する縮径体82bとを有する。弦巻ばね82は縮径体82bの先端で第2段差面44に受け止められる。ここでは、駆動軸38の大径軸41は、軸線27に同軸であって第2段差面44に対する弦巻ばね82の作用点83に内接する仮想円筒面84よりも外側に広がる。さらに、大径軸41は、軸線27に同軸であって弦巻ばね82によって内接される仮想円筒面85よりも外側に広がる。その他の構成は前述のテンショナーリフター25と同様である。
 本実施形態に係るテンショナーリフター25bでは、弦巻ばね82は直接に駆動軸38に押し当てられるので、弦巻ばね82と駆動軸38との間に他部材が介在する場合に比べて、部品点数は削減される。部品点数の削減に伴って部品同士の連結部分が減少するので、動作不良のリスクは軽減される。
第4の実施の形態
 図8に示されるように、第4実施形態に係るテンショナーリフター25cは、ガイド51およびスラスト部材26aの間で推進体28に装着されるカラー部材91を備える。カラー部材91は、推進体28を囲む円筒形に形成されて、軸線方向に推進体28よりもスラスト部材26a側に位置する一端91aを有する。カラー部材91の一端91aには径方向外側に広がるフランジ92が形成される。フランジ92の外周にはスラスト部材26aに向かって突出する円筒形状の位置決め片93が形成される。カラー部材91は例えば樹脂材または金属材から成形される。
 軸線方向にカラー部材91のフランジ92と駆動軸38の第2段差面44との間には皿ばね(弾性部材)94が挟まれる。カラー部材91の他端91bはガイド51で拘束されることから、皿ばね94は、軸線方向にスラスト部材26aに向かって第2段差面44に押し当て力を付与する弾性力を発揮する。皿ばね94は位置決め片93の内側に嵌め込まれる。位置決め片93は径方向に皿ばね94の変位を規制する。ここでは、駆動軸38の大径軸41は、軸線27に同軸であって第2段差面44に対する皿ばね94の作用点95に内接する仮想円筒面96よりも外側に広がる。さらに、大径軸41は、軸線27に同軸であって皿ばね94によって内接される仮想円筒面97よりも外側に広がる。その他の構成は前述のテンショナーリフター25と同様である。
 本実施形態に係るテンショナーリフター25cでは、皿ばね94は直接に駆動軸38に押し当てられるので、皿ばね94と駆動軸38との間に他部材が介在する場合に比べて、部品点数は削減される。部品点数の削減に伴って部品同士の連結部分が減少するので、動作不良のリスクは軽減される。しかも、皿ばね94はカラー部材91と駆動軸38との間に配置されることから、カラー部材91は、軸線方向に駆動軸38の押し付け力を発揮する弾性部材の短縮化を実現するとともに、長尺の弦巻ばねに代えて皿ばね94の採用を実現する。したがって、弾性部材の挙動は安定化する。カラー部材91は弾性部材に部分的に置き換わることから、比較的に高価な弾性部材の使用を減らして製造コストの低減を実現することができる。
第5の実施の形態
 図9に示されるように、第5実施形態に係るテンショナーリフター25dは、軸線方向から第2段差面44に受け止められる摩擦部材101を備える。摩擦部材101は、軸体36を囲む環状の平板で形成される。摩擦部材101は例えば金属材から成形される。摩擦部材101は軸線方向に第2段差面44に押し当てられる。
 軸線方向にガイド51と摩擦部材101との間で推進体28の外周にはカラー部材102が装着される。カラー部材102は、推進体28を囲む円筒形に形成されて、軸線方向に推進体28よりも摩擦部材101側に位置する一端102aを有する。カラー部材102は例えば樹脂材または金属材から成形される。推進体28はカラー部材102に内接して径方向にカラー部材102の変位を拘束する。カラー部材102は少なくとも一端102aおよび他端102bのいずれか一方で摩擦部材101またはガイド51に接触すればよい。
 カラー部材102の外周には弦巻ばね(弾性部材)103が装着される。軸線方向にガイド51と摩擦部材101との間に弦巻ばね(弾性部材)103が挟まれる。弦巻ばね103は、軸線方向にスラスト部材26aに向かって摩擦部材101に押し当て力を付与する弾性力を発揮する。弦巻ばね103は摩擦部材101に相対回転可能に受け止められる。ここでは、駆動軸38の大径軸41は、軸線27に同軸であって摩擦部材101に対する弦巻ばね103の作用点104に内接する仮想円筒面105よりも外側に広がる。さらに、大径軸41は、軸線27に同軸であって弦巻ばね103によって外接される仮想円筒面106よりも外側に広がる。その他の構成は前述のテンショナーリフター25と同様である。
 ぜんまいばね46の作用で駆動軸38には軸線27回りに駆動力が付与される。駆動軸38が回転すると、雄ねじ37および雌ねじ48の噛み合いに応じて推進体28に推進力が付与される。このとき、摩擦部材101は駆動軸38との摩擦トルクに応じて軸線27回りで駆動軸38の回転に抵抗力を付与する。同様に、大径軸41はカップワッシャー45との摩擦トルクに応じて軸線27回りで駆動軸38の回転に抵抗力を付与する。こうして駆動軸38の回転は適度に拘束される。したがって、推進体28の推進力は安定化する。駆動軸38は、弦巻ばね103の作用点104よりも外側に広がってぜんまいばね46を受ける中継軸43よりも大径の大径軸41でスラスト部材26aに受け止められるので、スラスト部材26aに対して駆動軸38は安定に支持されることができる。スラスト部材26aと大径軸41との間で良好に摩擦トルクは生成されることができる。

Claims (9)

  1.  軸線(27)回りで回転自在に支持され、軸体(36)に刻まれる雄ねじ(37)を有する駆動軸(38)と、
     径方向に前記駆動軸(38)の変位を拘束しながらスラスト方向に前記駆動軸(38)の軸端を支持するスラスト部材(26a)と、
     前記スラスト部材(26a)に対して前記軸線(27)回りで相対回転不能に拘束されて、内面に前記雄ねじ(37)に噛み合う雌ねじ(48)を有する推進体(28)と、
     前記軸線(27)回りに前記駆動軸(38)を駆動する弾性力を生成し、前記雄ねじ(37)および前記雌ねじ(48)の噛み合いに応じて前記スラスト部材(26a)から遠ざかる向きに前記推進体(28)に推進力を付与するばね(46)と、
     軸線(27)方向に前記駆動軸(38)に押し当てられて、前記軸線(27)回りに前記駆動軸(38)との間に摩擦力を発生させる摩擦部材(55;71)と、
     前記摩擦部材(55;71;101)を前記スラスト部材(26a)に向けて前記軸線(27)方向に付勢する弾性部材(58;75;103)と
    を備えるテンショナーリフター(25;25a;25d)において、
     前記駆動軸(38)の軸端には、前記軸線(27)に同軸であって前記摩擦部材(55;71;101)に対する前記弾性部材(58;75;103)の作用点に内接する仮想円筒面(62;78;105)よりも外側に広がり、前記スラスト部材(26a)に受け止められる大径軸(41)が形成される
    ことを特徴とするテンショナーリフター。
  2.  軸線(27)回りで回転自在に支持され、軸体(36)に刻まれる雄ねじ(37)を有する駆動軸(38)と、
     径方向に前記駆動軸(38)の変位を拘束しながらスラスト方向に前記駆動軸(38)の軸端を支持するスラスト部材(26a)と、
     前記スラスト部材(26a)に対して前記軸線(27)回りで相対回転不能に拘束されて、内面に前記雄ねじ(37)に噛み合う雌ねじ(48)を有する推進体(28)と、
     前記軸線(27)回りに前記駆動軸(38)を駆動する弾性力を生成し、前記雄ねじ(37)および前記雌ねじ(48)の噛み合いに応じて前記スラスト部材(26a)から遠ざかる向きに前記推進体(28)に推進力を付与するばね(46)と、
     軸線(27)方向に前記駆動軸(38)に押し当てられて、前記軸線(27)回りに前記駆動軸(38)との間に摩擦力を発生させる摩擦部材(55;71;101)と、
     前記摩擦部材(55;71;101)を前記スラスト部材(26a)に向けて前記軸線(27)方向に付勢する弾性部材(58;75;103)と
    を備えるテンショナーリフター(25;25a;25d)において、
     前記駆動軸(38)は、前記スラスト部材(26a)に形成される凹部(39)に受け入れられる大径軸(41)と、前記軸線(27)に同軸且つ大径軸(41)よりも小径の円柱体で形成され、前記軸線(27)方向に前記大径軸(41)に結合され前記大径軸(41)との間に第1段差面(42)を形成する中径軸(43)とを備える
    ことを特徴とするテンショナーリフター。
  3.  請求項2に記載のテンショナーリフターにおいて、前記雄ねじ(37)は前記大径軸(41)より小径に形成されることを特徴とするテンショナーリフター。
  4.  請求項1~3のいずれか1項に記載のテンショナーリフターにおいて、前記弾性部材(58;75;103)は前記摩擦部材(55;71;101)に対して相対回転可能に設けられることを特徴とするテンショナーリフター。
  5.  請求項1~4のいずれか1項に記載のテンショナーリフターにおいて、前記推進体(28)を囲んで軸線方向に前記推進体(28)よりも前記摩擦部材(55;71)側に位置する一端(56a;72a)を有するカラー部材(56;72)を備え、前記弾性部材(58;75)は、軸線方向に前記推進体(28)よりも前記摩擦部材(55;71)側で前記カラー部材(56;72)の前記一端(56a;72a)と前記摩擦部材(55;71)との間に挟まれることを特徴とするテンショナーリフター。
  6.  請求項5に記載のテンショナーリフターにおいて、前記摩擦部材(55;71)または前記カラー部材(56;72)には径方向に前記弾性部材(58;75)の変位を規制するボス(59;76)が形成されることを特徴とするテンショナーリフター。
  7.  軸線(27)回りで回転自在に支持され、軸体(36)に刻まれる雄ねじ(37)を有する駆動軸(38)と、
     径方向に前記駆動軸(38)の変位を拘束しながらスラスト方向に前記駆動軸(38)の軸端を支持するスラスト部材(26a)と、
     前記スラスト部材(26a)に対して前記軸線(27)回りで相対回転不能に拘束されて、内面に前記雄ねじ(37)に噛み合う雌ねじ(48)を有する推進体(28)と、
     前記軸線(27)回りに前記駆動軸(38)を駆動する弾性力を生成し、前記雄ねじ(37)および前記雌ねじ(48)の噛み合いに応じて前記スラスト部材(26a)から遠ざかる向きに前記推進体(28)に推進力を付与するばね(46)と、
     軸線(27)方向に前記駆動軸(38)に押し当てられて、前記軸線(27)回りに前記駆動軸(38)との間に摩擦力を発生させる摩擦部材(55;71)と、
     前記摩擦部材(55;71)を前記スラスト部材(26a)に向けて前記軸線(27)方向に付勢する弾性部材(58;75)と
    を備えるテンショナーリフター(25;25a)において、
     前記推進体(28)を囲んで前記軸線方向に前記推進体(28)よりも前記摩擦部材(55;71)側に位置する一端(56a;72a)を有するカラー部材(56;72)を備え、
     前記弾性部材(58;75)は、前記軸線方向に前記推進体(28)よりも前記摩擦部材(55;71)側で前記カラー部材(56;72)の前記一端(56a;72a)と前記摩擦部材(55;71)との間に挟まれる
    ことを特徴とするテンショナーリフター。
  8.  軸線(27)回りで回転自在に支持され、軸体(36)に刻まれる雄ねじ(37)を有する駆動軸(38)と、
     径方向に前記駆動軸(38)の変位を拘束しながらスラスト方向に前記駆動軸(38)の軸端を支持するスラスト部材(26a)と、
     前記スラスト部材(26a)に対して前記軸線(27)回りで相対回転不能に拘束されて、内面に前記雄ねじ(37)に噛み合う雌ねじ(48)を有する推進体(28)と、
     前記軸線(27)回りに前記駆動軸(38)を駆動する弾性力を生成し、前記雄ねじ(37)および前記雌ねじ(48)の噛み合いに応じて前記スラスト部材(26a)から遠ざかる向きに前記推進体(28)に推進力を付与するばね(46)と
    を備えるテンショナーリフター(25b;25c)において、
     軸線方向に前記駆動軸(38)に押し当てられ、前記スラスト部材(26a)に向かって前記駆動軸(38)に押し当て力を付与する弾性部材(82;94)を備える
    ことを特徴とするテンショナーリフター。
  9.  請求項7に記載のテンショナーリフターにおいて、前記推進体(28)を囲んで、前記スラスト部材(26a)から遠ざかる向きに変位不能に拘束されるカラー部材(91)を備え、前記カラー部材(91)と前記駆動軸(38)との間に前記弾性部材(94)は配置されることを特徴とするテンショナーリフター。
PCT/JP2019/013659 2019-03-28 2019-03-28 テンショナーリフター WO2020194679A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021508611A JP7128956B2 (ja) 2019-03-28 2019-03-28 テンショナーリフター
CN201980091364.6A CN113412380B (zh) 2019-03-28 2019-03-28 张紧调整器
PCT/JP2019/013659 WO2020194679A1 (ja) 2019-03-28 2019-03-28 テンショナーリフター

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013659 WO2020194679A1 (ja) 2019-03-28 2019-03-28 テンショナーリフター

Publications (1)

Publication Number Publication Date
WO2020194679A1 true WO2020194679A1 (ja) 2020-10-01

Family

ID=72611225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013659 WO2020194679A1 (ja) 2019-03-28 2019-03-28 テンショナーリフター

Country Status (3)

Country Link
JP (1) JP7128956B2 (ja)
CN (1) CN113412380B (ja)
WO (1) WO2020194679A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003184968A (ja) * 2001-12-18 2003-07-03 Nhk Spring Co Ltd テンショナー
JP2008082445A (ja) * 2006-09-27 2008-04-10 Honda Motor Co Ltd テンショナリフタ

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1083956C (zh) * 1995-12-21 2002-05-01 本田技研工业株式会社 推进力赋予装置
CA2263565C (en) * 1996-08-21 2005-10-11 Jacek Stepniak Belt tensioner for motor vehicle
JP4163364B2 (ja) * 2000-03-31 2008-10-08 本田技研工業株式会社 エンジン用送りねじ式テンショナー
JP3995439B2 (ja) * 2001-09-12 2007-10-24 本田技研工業株式会社 テンショナの推進力付与装置の検査方法
CN100501191C (zh) * 2001-12-03 2009-06-17 日本发条株式会社 张紧装置
JP3916973B2 (ja) * 2002-02-28 2007-05-23 三ツ星ベルト株式会社 オートテンショナ
JP2004132390A (ja) * 2002-10-08 2004-04-30 Bando Chem Ind Ltd オートテンショナ
FR2864184B1 (fr) * 2003-12-19 2006-03-03 Arvinmeritor Light Vehicle Sys Tendeur de cable
TWI283219B (en) * 2004-02-10 2007-07-01 Honda Motor Co Ltd Chain tension structure
JP4934816B2 (ja) * 2007-03-08 2012-05-23 日本発條株式会社 テンショナー
JP2009243480A (ja) * 2008-03-28 2009-10-22 Tsubakimoto Chain Co 油圧式テンショナ
CN102146991B (zh) * 2010-02-05 2013-06-26 盖茨优霓塔传动系统(苏州)有限公司 张紧器
DE102012222115B4 (de) * 2012-12-04 2020-11-12 Schaeffler Technologies AG & Co. KG Riemenspanner
CN104343907B (zh) * 2013-07-30 2017-04-12 本田技研工业株式会社 张紧器推顶装置
JP6162162B2 (ja) * 2014-02-18 2017-07-12 三ツ星ベルト株式会社 オートテンショナ
EP2955414A1 (en) * 2014-06-13 2015-12-16 Aktiebolaget SKF Tensioning device and method for assembling such a tensioning device
CN107387187B (zh) * 2017-09-18 2019-11-05 安徽江淮汽车集团股份有限公司 发动机传动设备
CN207777550U (zh) * 2018-01-29 2018-08-28 台州恒基汽车零部件有限公司 一种弹簧式涨紧器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003184968A (ja) * 2001-12-18 2003-07-03 Nhk Spring Co Ltd テンショナー
JP2008082445A (ja) * 2006-09-27 2008-04-10 Honda Motor Co Ltd テンショナリフタ

Also Published As

Publication number Publication date
JPWO2020194679A1 (ja) 2021-12-09
CN113412380A (zh) 2021-09-17
JP7128956B2 (ja) 2022-08-31
CN113412380B (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
JP4570977B2 (ja) 内燃機関のバルブタイミング制御装置及びその組付方法
JP5136628B2 (ja) バルブタイミング調整装置
JP5014181B2 (ja) エンジンのデコンプ装置
JP4549321B2 (ja) 内燃機関のデコンプ装置
EP1164256B1 (en) Valve timing regulation device
WO2012056874A1 (ja) 弁開閉時期制御装置
JP2006291944A (ja) 弁開閉時期制御装置
JP2009024722A (ja) フライホイール装置
JPH03286104A (ja) 弁開閉時期制御装置
WO2020194679A1 (ja) テンショナーリフター
JP5513339B2 (ja) 内燃機関の可変動弁装置
JP4680736B2 (ja) テンショナリフタ
WO2016068180A1 (ja) 弁開閉時期制御装置
JPH0953418A (ja) 内燃機関のバルブタイミング制御装置
US7322326B2 (en) Valve timing control apparatus
JP4562700B2 (ja) エンジンにおける位相可変装置の電磁ブレーキ取付構造
JP4324580B2 (ja) 自動車用エンジンにおけるカムシャフト位相可変装置
JP4925991B2 (ja) Egr装置
JP5826096B2 (ja) 内燃機関の可変動弁機構
JP7354048B2 (ja) 油路切換弁及びバルブタイミング変更装置
JPH02241914A (ja) 弁開閉時期制御装置
JP2011099422A (ja) 内燃機関の可変動弁装置
JP2011021643A (ja) チェーンテンショナ
CN107701259B (zh) 一种混合动力摩托车发动机的减压结构
JPH07305609A (ja) 内燃機関のバルブタイミング制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920669

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508611

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920669

Country of ref document: EP

Kind code of ref document: A1