WO2020194376A1 - 電極、電池、及び電池パック - Google Patents

電極、電池、及び電池パック Download PDF

Info

Publication number
WO2020194376A1
WO2020194376A1 PCT/JP2019/012072 JP2019012072W WO2020194376A1 WO 2020194376 A1 WO2020194376 A1 WO 2020194376A1 JP 2019012072 W JP2019012072 W JP 2019012072W WO 2020194376 A1 WO2020194376 A1 WO 2020194376A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
positive electrode
active material
negative electrode
current collector
Prior art date
Application number
PCT/JP2019/012072
Other languages
English (en)
French (fr)
Inventor
具道 中
大 山本
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to JP2021508359A priority Critical patent/JP7196283B2/ja
Priority to PCT/JP2019/012072 priority patent/WO2020194376A1/ja
Priority to CN201980079091.3A priority patent/CN113169298B/zh
Publication of WO2020194376A1 publication Critical patent/WO2020194376A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Embodiments of the present invention relate to electrodes, batteries, and battery packs.
  • An electrode contained in a battery such as a lithium ion battery is provided with a member exhibiting electrical insulation such as a separator between the electrode and a counter electrode (for example, a positive electrode and a negative electrode), and is wound to obtain a winding type.
  • a counter electrode for example, a positive electrode and a negative electrode
  • Some of the electrodes are included in the battery.
  • an electrode is manufactured as follows, and the manufactured electrode is processed.
  • An electrode coating liquid for example, a slurry in which an electrode material is suspended in a solvent
  • the produced electrode is cut to have an arbitrary size, rolled by a roll press or the like, and the electrode is processed so as to have a predetermined density.
  • a coil for a battery (a winding type electrode group) can be manufactured by sandwiching a separator between the processed electrodes, for example, between a positive electrode and a negative electrode, and winding the separator.
  • an electrode including a current collector and an active material-containing layer is provided.
  • the current collector has a main surface that includes a first end along a first direction.
  • the active material-containing layer is provided on the main surface of the current collector, has a second end portion along the first direction, and contains the electrode active material. At least a part of the second end portion of the active material-containing layer is provided with a plurality of grooves extending inward from the second end portion and recessed in a direction orthogonal to the main surface. The plurality of grooves are adjacent to each other along the first direction and are attenuated inward.
  • a battery including a positive electrode and a negative electrode is provided. At least one of the positive electrode and the negative electrode includes the electrode according to the above embodiment.
  • a battery pack including the battery according to the above embodiment is provided.
  • FIG. 1 is a plan view schematically showing an example electrode according to the embodiment.
  • FIG. 2 is a cross-sectional view of the electrode shown in FIG. 1 along the line II-II.
  • FIG. 3 is a cross-sectional view of the electrode shown in FIG. 1 along the line III-III.
  • FIG. 4 is an explanatory diagram schematically showing an example of manufacturing the electrode according to the embodiment.
  • FIG. 5 is a cross-sectional view taken along the line VV shown in FIG.
  • FIG. 6 is a cross-sectional view taken along the line VI-VI shown in FIG.
  • FIG. 7 is a cross-sectional view schematically showing a modified example of manufacturing the electrode according to the embodiment.
  • FIG. 5 is a cross-sectional view taken along the line VV shown in FIG.
  • FIG. 6 is a cross-sectional view taken along the line VI-VI shown in FIG.
  • FIG. 7 is a cross-sectional view schematically showing a modified example of manufacturing the electrode according to the embodiment.
  • FIG. 8 is a diagram showing the measurement result of the displacement amount in the long direction of the end portion of the electrode of the example.
  • FIG. 9 is a graph showing a profile along the line segment L1 in the measurement result shown in FIG.
  • FIG. 10 is a diagram showing the measurement result of the displacement amount in the short direction of the end portion of the electrode of the example.
  • FIG. 11 is a graph showing a profile in a direction parallel to the line segment W1 in the measurement result shown in FIG.
  • FIG. 12 is a diagram showing the measurement result of the displacement amount in the long direction of the end portion of the electrode of another example.
  • FIG. 13 is a graph showing a profile along the line segment L2 in the measurement result shown in FIG. FIG.
  • FIG. 14 is a diagram showing the measurement result of the displacement amount in the short direction of the end portion of the electrode of another example.
  • FIG. 15 is a graph showing a profile in a direction parallel to the line segment W2 in the measurement result shown in FIG.
  • FIG. 16 is a perspective view schematically showing an example electrode group according to the embodiment.
  • FIG. 17 is a perspective view schematically showing a state in which the electrode group is partially expanded.
  • FIG. 18 is a schematic cross-sectional view of an example flat battery according to the embodiment.
  • FIG. 19 is an enlarged cross-sectional view of part A in FIG.
  • FIG. 20 is a schematic exploded perspective view of an example battery pack according to the embodiment.
  • FIG. 21 is a block diagram showing an electric circuit of the battery pack of FIG. 20.
  • FIG. 22 is an explanatory diagram schematically showing the production of the electrode in Comparative Example 1.
  • FIG. 23 is a schematic cross-sectional view of the production of the electrode shown in FIG. 22 as viewed from another direction.
  • FIG. 24 is an explanatory diagram schematically showing the production of the electrode in Comparative Example 2.
  • One of the means to improve the battery capacity is to increase the density of the electrodes.
  • the density of the electrodes is too high, the impregnation property of the electrolyte (for example, a liquid electrolyte) into the electrodes may decrease. Since the portion of the electrode where the electrolyte does not permeate is unlikely to contribute to charging / discharging, the actual capacity of the obtained battery may be lower than the design capacity of the battery estimated from the electrode design.
  • the shape of the electrode is inappropriate, it may not be possible to wind it and form a coil (turning type electrode group). Even if the coil can be manufactured, there are problems such as a decrease in capacity due to the difficulty in impregnating the coil with the electrolyte.
  • each figure is a schematic view for explaining the embodiment and promoting its understanding, and there are some differences in its shape, dimensions, ratio, etc. from the actual device, but these are described below and known techniques. The design can be changed as appropriate by taking into consideration.
  • the electrode according to the first embodiment includes a current collector and an active material-containing layer.
  • the current collector has a main surface that includes a first end along a first direction.
  • the active material-containing layer is provided on the main surface of the current collector.
  • the active material-containing layer has a second end along the first direction.
  • the active material-containing layer contains the electrode active material.
  • a plurality of grooves are provided in at least a part of the second end portion of the active material-containing layer.
  • the plurality of grooves extend inward from the second end.
  • the plurality of grooves are grooves that are recessed in a direction orthogonal to the main surface.
  • the plurality of grooves are adjacent to each other along the first direction.
  • the plurality of grooves are attenuated inward from the second end.
  • the electrode has a corrugated structure along the electrode end portion, and the corrugated shape gradually subsides inward from the electrode end portion, and may be, for example, a structure that settles into a planar shape.
  • the efficiency of coil production by winding can be increased.
  • impregnation of the electrolyte can be promoted along a corrugated shape that continues while decreasing inward from the electrode end. Therefore, it is possible to suppress a decrease in the impregnation rate of the electrolyte in the electrode group and reduce a decrease in capacity.
  • the electrode can be either the positive electrode or the negative electrode of the battery. That is, the electrode can be a battery electrode.
  • the current collector may have one or more main surfaces, for example, a thin plate shape having a first main surface and a second main surface located on the back side thereof.
  • the main surface of the current collector includes a first end along a first direction.
  • the current collector can be, for example, a strip of foil. It is desirable to use a foil containing aluminum as a current collector.
  • the foil containing aluminum includes, for example, a metal foil made of aluminum or an aluminum alloy foil.
  • the first direction can be, for example, the long direction of the band-shaped current collector.
  • the first end may be an edge along the longitudinal direction of the strip-shaped current collector.
  • the active material-containing layer is provided on the main surface of the current collector.
  • the active material-containing layer may be provided on one main surface of a thin plate-shaped current collector.
  • the active material-containing layer may be provided on both front and back main surfaces (both the first main surface and the second main surface) of the thin plate-shaped current collector. That is, the active material-containing layer can be provided on one side or both sides of the current collector.
  • the second end of the active material-containing layer is along the first direction.
  • the second end may overlap the first end of the current collector.
  • the second end of the active material-containing layer is an edge of the active material-containing layer along the longitudinal direction of the band-shaped electrode. Can be a department.
  • the active material-containing layer contains the electrode active material.
  • the electrode active material include compounds that can be used as an active material for batteries.
  • the electrode active material can be appropriately selected depending on the design of the electrode and its counter electrode (for example, the positive electrode and the negative electrode as the counter electrode thereof, or the negative electrode and the positive electrode as the counter electrode thereof) in the battery. Details of the electrode active material (positive electrode active material or negative electrode active material) will be described later.
  • the active material-containing layer may further contain a conductive agent, a binder, or both a conductive agent and a binder in addition to the electrode active material.
  • a plurality of grooves are provided in at least a part of the second end of the active material-containing layer. These grooves extend inward from the second end portion and are recessed in the direction orthogonal to the main surface of the current collector, that is, in the thickness direction of the electrode. Each groove may, for example, be along a second direction that intersects the first direction and is parallel to the main surface of the current collector. The second direction along which each groove follows can be a direction orthogonal to the first direction.
  • a plurality of active material-containing layers are provided at the second ends of both active material-containing layers provided on both main surfaces. It is desirable that a groove is provided. It can be said that the grooves on both sides of the electrode are recessed toward the current collector.
  • the current collector may have a shape including undulations at the first end portion in accordance with the shape of the groove.
  • the first end of the current collector may have a corrugated shape, and each groove may be arranged in a recess in the corrugated shape of the first end.
  • a winding type electrode group that is, a coil for a battery
  • a plurality of grooves are arranged in and around a curved portion when the electrodes are wound.
  • the portion where the electrode is curved and its periphery are the portions where the density is relatively high in the winding coil. Therefore, the effect of promoting the impregnation property of the electrolyte appears more remarkably.
  • the groove is recessed in the direction orthogonal to the contact surface with respect to the curved surface of the surface of the active material-containing layer. It is more desirable that the groove is provided over the entire area of the second end.
  • a plurality of grooves are adjacent to each other along the first direction. Not all the grooves provided at the second end need to be connected, and there is one or more groups of a plurality of grooves adjacent to each other along the first direction at one or more portions at the second end. Can be. For example, one group of a plurality of grooves adjacent along the first direction is provided in a part of the second end portion, and another group of a plurality of grooves adjacent along the first direction is provided. It may be provided on another part of the second end.
  • a group of a plurality of adjacent grooves referred to here is a series of grooves in which a substantially flat portion does not exist between one groove and the next groove provided side by side in the first direction. Means. Further, in one group, a plurality of grooves may be arranged according to a certain rule to form, for example, a corrugated shape.
  • Each groove is attenuated inward from the second end of the active material-containing layer.
  • Each groove is deepest near the second end and becomes shallower away from the end. In other words, the bottom of each groove forms an inclination starting from the second end and rising toward the surface of the active material-containing layer. At a certain distance inward from the second end, the groove disappears and the active material-containing layer becomes substantially flat.
  • An electrode having a groove that attenuates inward from the end of the electrode has high productivity of the wound electrode group.
  • the groove causes a capillary phenomenon and the electrolyte is sucked up from the end of the electrode, so that the impregnation rate of the electrolyte into the electrode group is promoted.
  • the electrode can realize a high-capacity battery.
  • the electrode group is highly impregnated with the electrolyte, but it may be difficult to wind the electrode.
  • the groove is not gradually attenuated, but the groove is provided only near the end of the electrode. For example, even in the case of an electrode having a structure such as a stepped shape in which the groove suddenly disappears, it is difficult to wind the coil. Gender is restricted.
  • the density of the active material-containing layer is 1.5 g / cm 3 or more and 4.0 g / cm 3 or less. Since the active material-containing layer has a high density, a battery having an excellent energy density can be obtained. Further, since a plurality of grooves are provided from the end of the electrode to the inside, the active material-containing layer is highly impregnated with the electrolyte even if the density is high.
  • the electrode may include a portion where no active material-containing layer is provided on any main surface of the current collector.
  • the portion of the current collector that is not provided with the active material-containing layer can function as a current collector tab.
  • the active material-containing layer non-holding portion formed parallel to one side of the current collector can function as a current collector tab.
  • the current collector tab is not limited to one side of the current collector without supporting the active material-containing layer.
  • a plurality of strips protruding from one side surface of the current collector can be used as a current collector tab.
  • the current collector tab may be made of the same material as the current collector.
  • a current collector tab may be prepared separately from the current collector and connected to at least one end surface of the current collector by welding or the like.
  • FIG. 1 is a plan view schematically showing an example electrode according to the embodiment.
  • the electrode shown here is an example of a positive electrode.
  • FIG. 2 is a cross-sectional view of the electrode shown in FIG. 1 along the line II-II.
  • FIG. 3 is a cross-sectional view of the electrode shown in FIG. 1 along the line III-III.
  • the positive electrode 4 includes a positive electrode current collector 4a and a positive electrode active material-containing layer 4b.
  • the positive electrode active material-containing layer 4b is supported on both the front and back surfaces of the positive electrode current collector 4a.
  • the positive electrode current collector 4a includes a positive electrode current collector tab 4c, which is a portion on one side thereof where the positive electrode active material-containing layer 4b is not supported on any surface.
  • FIG. 2 shows a cross section parallel to the second end portion 4e in the vicinity of the second end portion 4e of the positive electrode active material-containing layer 4b.
  • a plurality of grooves are provided in each of the positive electrode active material-containing layers 4b on both sides of the positive electrode current collector 4a.
  • the plurality of grooves are in a direction parallel to the first end portion 4d of the positive electrode current collector 4a and the second end portion 4e of the positive electrode active material-containing layer 4b (first direction), that is, parallel to the line II-II in FIG. Adjacent along the direction.
  • the plurality of grooves are recessed in the direction orthogonal to the main surface of the positive electrode current collector 4a, that is, in the direction orthogonal to the paper surface in FIG.
  • FIG. 3 shows a cross-sectional view along one of the plurality of grooves.
  • the groove extends inward from the electrode end (first end 4d and second end 4e).
  • the groove depth D decreases from the end of the electrode toward the inside.
  • the second depth can be a depth attenuated by 20% with respect to the depth (reference 100%).
  • the third depth is attenuated by 50% with respect to the first depth. It can be.
  • the fourth depth is 90% attenuated with respect to the first depth. It can be.
  • the groove may be substantially eliminated.
  • the groove depth D (eg, first depth, second depth, third depth, or fourth depth) in the above description is based on an essentially flat electrode having virtually no undulations. It is the depth.
  • the depth of the groove is considered to be a deformation of the flat electrode so that a recess is formed at the end of the electrode, and corresponds to the moving distance with respect to the electrode surface (the surface of the active material-containing layer) before the deformation.
  • the positive electrode active material-containing layer 4b near the positive electrode current collecting tab 4c is substantially flat.
  • the groove depth D is determined with reference to the surface of the positive electrode active material-containing layer 4b near the positive electrode current collecting tab 4c. The detailed measurement method of the groove depth will be described later.
  • the average of the depths D of the plurality of grooves in the second end 4e that is, the average of the above-mentioned first depths of the plurality of grooves is 0.1 mm or more and 1.6 mm or less.
  • the average of the first depths is more preferably 0.1 mm or more and 0.4 mm or less, and further preferably 0.1 mm or more and 0.3 mm or less.
  • the preferred range of the average of the first depth varies depending on the type of electrode active material.
  • the grooves are provided adjacent to each other along the first direction.
  • the wave pitch (period) P when the electrode cross section parallel to the first direction is represented as a corrugated shape is 10 mm or less.
  • the width of each groove in the first direction is narrow and the arrangement of the grooves is dense in order to manufacture the winding coil. The detailed measurement method of the pitch in the plurality of grooves will be described later.
  • the average height H of the inner walls in the plurality of grooves is 0.2 mm or less.
  • the height H of the inner wall of each groove at the second end 4e corresponds to the height difference between the lowest position and the highest position of each groove. If the groove is likened to a valley, the height H of the inner wall corresponds to the difference in altitude from the bottom of the valley to the edge of the valley.
  • the positive electrode current collector 4a and the positive electrode active material-containing layers 4b on both the front and back surfaces thereof are formed in a corrugated shape. Further, in this example, the position of the groove provided in the positive electrode active material-containing layer 4b on one surface of the positive electrode current collector 4a and the positive electrode active material content on the other surface (back surface) of the positive electrode current collector 4a. The positions of the grooves provided in the layer 4b do not match.
  • the form of the groove in the electrode according to the embodiment is not limited to the structure shown in FIG.
  • the cross-sectional shape near the end is not limited to the wavy shape.
  • the plurality of grooves may be provided in the positive electrode active material-containing layer 4b, and the positive electrode current collector 4a may have a shape having substantially no undulation even in the vicinity of the first end portion 4d.
  • FIG. 2 is a cross-sectional view of the positive electrode current collector 4a along the line II-II parallel to one side that functions as the positive electrode current collector tab 4c. That is, the direction (first direction) along the end (second end) where the plurality of grooves are provided is parallel to one side where the positive electrode current collecting tab 4c is located. Each groove extends from the electrode ends (first end 4d and second end 4e) toward the positive electrode current collecting tab 4c and approaches the positive electrode current collecting tab 4c as shown in FIG. It is fading as it goes on.
  • the plurality of grooves may be provided adjacent to each other along the other end, and for example, the direction in which the positive electrode active material-containing layer 4b intersects one side of the positive electrode current collector 4a, which is the positive electrode current collector tab 4c, is first.
  • a plurality of grooves may be provided with the direction and the end along this direction as the second end.
  • the end portion provided with the plurality of grooves is not limited to one side, and the plurality of end portions may be the second end portion with one electrode.
  • a plurality of grooves may be provided at any end of one or more sides of the main surface of the electrode.
  • the electrode may be a negative electrode as described above.
  • the positive electrode current collector, the positive electrode active material-containing layer, and the positive electrode current collecting tab for the positive electrode correspond to the negative electrode current collector, the negative electrode active material-containing layer, and the negative electrode current collecting tab, respectively.
  • the positive electrode can include a positive electrode current collector and a positive electrode active material-containing layer formed on both sides or one side of the positive electrode current collector.
  • the positive electrode current collector can include a portion on which the positive electrode active material-containing layer is not formed on the surface, and this portion can function as a positive electrode current collector tab.
  • the positive electrode current collector takes in electrons from the positive electrode active material-containing layer and transfers electrons to the positive electrode active material-containing layer.
  • the positive electrode current collector has a role of moving electrons. Therefore, the positive electrode current collector is preferably formed from a material that is electrochemically stable. Examples of such materials include copper, nickel, stainless steel, aluminum, and aluminum alloys.
  • the aluminum alloy preferably contains one or more selected from the group consisting of Mg, Ti, Zn, Mn, Fe, Cu, and Si.
  • the positive electrode active material-containing layer can contain the positive electrode active material.
  • the positive electrode active material is not particularly limited, but it is preferable to use a positive electrode active material in which the volume change of the active material is small during charging and discharging. By using such a positive electrode active material, twisting of the positive electrode during charging and discharging can be reduced, so that the cycle performance is improved.
  • a compound containing one or more selected from the group consisting of Li, Fe, Ni, Mn, and Co can be mentioned.
  • the positive electrode active material is a lithium-containing nickel cobalt manganese oxide (for example, Li 1-x Ni 1-abc Co a Mn b M1 c O 2 (in the formula, M1 is Mg, Al, Si, Ti, Zn, Zr, Ca).
  • lithium-containing cobalt oxide for example, LiCoO 2
  • manganese dioxide for example, LiMn 2 O 4 , LiMnO 2
  • lithium-containing nickel oxide for example, LiMnO 2
  • LiNiO 2 lithium-containing nickel-cobalt oxide (eg, LiNi 0.8 Co 0.2 O 2 ), lithium-containing iron oxide, lithium-containing vanadium oxide, and chalcogen compounds such as titanium disulfide and molybdenum disulfide. You may.
  • the type of positive electrode active material used can be one or more.
  • the positive electrode active material-containing layer can further contain a conductive agent and a binder, if necessary.
  • the conductive agent is blended as necessary in order to improve the current collecting performance and suppress the contact resistance between the positive electrode active material and the positive electrode current collector.
  • the conductive agent in the positive electrode active material-containing layer for example, acetylene black, carbon black, artificial graphite, natural graphite and the like can be used.
  • the binder has a function of binding the positive electrode active material and the positive electrode current collector.
  • the binder in the positive electrode active material-containing layer include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and modified PVdF in which at least one of hydrogen or fluorine of PVdF is substituted with another substituent.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • modified PVdF in which at least one of hydrogen or fluorine of PVdF is substituted with another substituent.
  • a copolymer of vinylidene fluoride-6 propylene fluoride, a ternary copolymer of polyvinylidene fluoride-tetrafluoroethylene-6 propylene fluoride, or the like can be used.
  • the blending ratio of the positive electrode active material, the conductive agent and the binder in the positive electrode active material-containing layer is 75% by mass or more and 96% by mass or less of the positive electrode active material, 3% by mass or more and 20% by mass or less of the conductive agent, and 1% by mass of the binder. It is preferably within the range of 7% by mass or less.
  • the negative electrode can include a negative electrode current collector and a negative electrode active material-containing layer formed on both sides or one side of the negative electrode current collector.
  • the negative electrode current collector can include a portion on which the negative electrode active material-containing layer is not formed on the surface, and this portion can function as a negative electrode current collector tab.
  • the negative electrode current collector is preferably formed of a material that is electrochemically stable in the potential range in which lithium ions are stored and released in the negative electrode active material-containing layer.
  • examples of such materials include copper, nickel, stainless steel, aluminum, and aluminum alloys.
  • the aluminum alloy preferably contains one or more selected from the group consisting of Mg, Ti, Zn, Mn, Fe, Cu, and Si.
  • the negative electrode active material-containing layer can contain a negative electrode active material.
  • the negative electrode active material contains a compound having an operating potential of 1 V (vs. Li / Li + ) or more.
  • the compound is preferably absorbing and releasing potential of Li is less than 1.0V with respect to the redox potential of lithium (vs.Li/Li +) or 2.3V (vs.Li/Li +).
  • Such negative electrode active materials include, for example, lithium titanium composite oxides (eg, spinel-type lithium titanate such as Li 4 Ti 5 O 12 , monoclinic niobium-titanium composite oxides, and orthorhombic). Titanium-containing composite oxide), orthorhombic titanium dioxide, and the like. It preferably contains a lithium titanium composite oxide.
  • Examples of the monoclinic niobium-titanium composite oxide include compounds represented by Li x Ti 1-y M1 y Nb 2-z M2 z O 7 + ⁇ .
  • M1 is at least one selected from the group consisting of Zr, Si, and Sn.
  • M2 is at least one selected from the group consisting of V, Ta, and Bi.
  • Each subscript in the composition formula is 0 ⁇ x ⁇ 5, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 2, ⁇ 0.3 ⁇ ⁇ ⁇ 0.3.
  • Specific examples of the monoclinic niobium-titanium composite oxide include Li x Nb 2 TiO 7 (0 ⁇ x ⁇ 5).
  • M3 is at least one selected from Mg, Fe, Ni, Co, W, Ta, and Mo.
  • Each subscript in the composition formula is 0 ⁇ x ⁇ 5, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 2, ⁇ 0.3 ⁇ ⁇ ⁇ 0.3.
  • orthorhombic titanium-containing composite oxides examples include compounds represented by Li 2 + a M (I) 2-b Ti 6-c M (II) d O 14 + ⁇ .
  • M (I) is at least one selected from the group consisting of Sr, Ba, Ca, Mg, Na, Cs, Rb and K.
  • M (II) is at least one selected from the group consisting of Zr, Sn, V, Nb, Ta, Mo, W, Y, Fe, Co, Cr, Mn, Ni, and Al.
  • Each subscript in the composition formula is 0 ⁇ a ⁇ 6, 0 ⁇ b ⁇ 2, 0 ⁇ c ⁇ 6, 0 ⁇ d ⁇ 6, ⁇ 0.5 ⁇ ⁇ ⁇ 0.5.
  • Specific examples of the orthorhombic titanium-containing composite oxide include Li 2 + a Na 2 Ti 6 O 14 (0 ⁇ a ⁇ 6).
  • graphite or carbonaceous materials for example, graphite, coke, carbon fiber, spherical carbon, pyrolysis vapor phase carbonaceous material, calcined resin, etc.
  • chalcogen compounds for example, titanium disulfide, molybdenum disulfide, selenium, etc.
  • a light metal for example, aluminum, aluminum alloy, magnesium alloy, lithium, lithium alloy, etc.
  • the type of the negative electrode active material to be used can be one type or two or more types, but it is preferable that the operating potential of the negative electrode is noble than 1.0 V (vs. Li / Li + ) in terms of battery design.
  • the negative electrode active material for example, a metal composite oxidation containing Ti and at least one element selected from the group consisting of P, V, Sn, Cu, Ni, Nb and Fe.
  • metal oxides such as amorphous tin oxides such as SnB 0.4 P 0.6 O 3.1 , tin silicon oxides such as SnSiO 3 , and tungsten oxides such as WO 3 .
  • metal sulfide and metal nitride can be used as the negative electrode active material.
  • Examples of the metal composite oxide containing Ti and at least one element selected from the group consisting of P, V, Sn, Cu, Ni, Nb and Fe include TiO 2- P 2 O 5 and TiO 2. -V 2 O 5 , TiO 2- P 2 O 5 -SnO 2 , TiO 2 -P 2 O 5- MeO (Me is at least one element selected from the group consisting of Cu, Ni and Fe). And so on.
  • This metal composite oxide preferably has a low crystallinity and has a microstructure in which a crystalline phase and an amorphous phase coexist or the amorphous phase alone exists. With such a microstructure, the cycle performance can be significantly improved.
  • metal sulfide examples include titanium sulfide such as TiS 2 , molybdenum sulfide such as MoS 2 , FeS, FeS 2 , and Li u FeS 2 (subscript u is 0.9 ⁇ u ⁇ 1.2). Such as iron sulfide.
  • lithium cobalt nitride e.g., Li v Co w N, where a 0 ⁇ v ⁇ 4, 0 ⁇ w ⁇ 0.5
  • lithium nitrides such as is ..
  • the negative electrode active material-containing layer can further contain a conductive agent and a binder, if necessary.
  • the conductive agent is blended as necessary in order to improve the current collecting performance and suppress the contact resistance between the negative electrode active material and the negative electrode current collector.
  • a carbon material can be used as the conductive agent in the negative electrode active material-containing layer.
  • the carbon material include acetylene black, carbon black, coke, carbon fiber, graphite and the like.
  • the binder has a function of binding the negative electrode active material and the negative electrode current collector.
  • the binder in the negative electrode material layer include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), and carboxymethyl cellulose (SBR). CMC) and the like can be used.
  • the negative electrode active material, the conductive agent and the binder in the negative electrode active material-containing layer are blended in a proportion of 70% by mass or more and 96% by mass or less, 2% by mass or more and 20% by mass or less, and 2% by mass or more and 10% by mass or less, respectively. Is preferable.
  • the amount of the conductive agent By setting the amount of the conductive agent to 2% by mass or more, the current collecting performance of the negative electrode active material-containing layer can be improved.
  • the amount of the binder to 1% by mass or more, the binding property between the negative electrode active material-containing layer and the negative electrode current collector can be enhanced, and excellent cycle performance can be expected.
  • the conductive agent and the binder are each 16% by mass or less in order to increase the capacity.
  • the electrodes described above can be produced, for example, as follows.
  • a current collector for example, a foil made of the material described above can be used.
  • the electrode active material, the conductive agent, and the binder are dispersed in an organic solvent.
  • an organic solvent for example, a general-purpose solvent such as N-methylpyrrolidone (NMP) can be used.
  • NMP N-methylpyrrolidone
  • the blending ratio of the electrode active material, the conductive agent, and the binder in the coating liquid includes the electrode active material (positive electrode active material) described above for the active material-containing layer (positive electrode active material-containing layer or negative electrode active material-containing layer).
  • a compounding ratio of a substance or a negative electrode active material), a conductive agent, and a binder can be adopted.
  • the prepared coating liquid is applied to the prepared current collector, for example, by die coating using a die head.
  • the applied coating liquid is dried to form an active material-containing layer.
  • the active material-containing layer may be formed on one surface of the current collector, or may be formed on both the front and back surfaces of the current collector. Further, it is possible to obtain an uncoated portion as a current collector tab by leaving a portion of the current collector that is not coated with the coating liquid.
  • the laminated sheet of the current collector and the active material-containing layer obtained in this way is cut into dimensions suitable for the battery design. Further, for example, the density of the active material-containing layer is adjusted by rolling using a roll press. At this time, the electrode density can be calculated from the thickness of the electrode and the basis weight of the coating liquid.
  • the active material-containing layer or the active material-containing layer and the current collector are deformed by appropriately controlling the rolling conditions, and a plurality of grooves are formed at an arbitrary electrode end (second end).
  • the basis weight of the coating liquid at the end to be deformed is increased as compared with the basis weight of other portions, and the press pressure during rolling is made even in the plane direction.
  • the press pressure on the end side to be deformed is made higher than other parts.
  • a roll press having a protruding rolled portion such as a stepped roller can be used to concentrate the pressing pressure on the end portion to be deformed, or the deformation can be performed by pressing only the end portion.
  • the end portion may be deformed by pressing the end portion with the uneven portion by using a roll press in which the uneven portion is formed and the step portion that protrudes radially is provided as the rolling portion.
  • FIG. 4 is an explanatory diagram schematically showing an example of manufacturing the electrode according to the embodiment.
  • FIG. 5 is a cross-sectional view taken along the line VV shown in FIG.
  • FIG. 6 is a cross-sectional view taken along the line VI-VI shown in FIG.
  • an example of processing the positive electrode will be described.
  • the processing roller 40 has a small diameter portion 41 and a large diameter portion 42 arranged along the axial direction.
  • the small diameter portion 41 has a cylindrical shape.
  • the small diameter portion 41 has a retracting surface 41a which is a side surface of the cylinder.
  • the large diameter portion 42 includes a cylindrical portion.
  • the small diameter portion 41 and the large diameter portion 42 are connected on the same axis of each cylindrical shape.
  • the large diameter portion 42 has a protruding surface 42a that corresponds to the side surface of the cylinder.
  • the large diameter portion 42 may have a flank surface 43 as shown in addition to the projecting surface 42a.
  • the flank 43 may be, for example, a surface formed by chamfering the outer periphery of the end surface of the large diameter portion 42.
  • the flank 43 may be omitted.
  • the diameter r1 of the small diameter portion 41 and the diameter r2 of the large diameter portion 42 satisfy the relationship of r1 ⁇ r2.
  • the diameter r1 of the small diameter portion 41 corresponds to the distance from the central axis of the cylindrical shape to the retracting surface 41a.
  • the diameter r2 of the large diameter portion 42 corresponds to the distance from the central axis of the cylindrical shape to the protruding surface 42a.
  • the large diameter portion 42 projects in the radial direction with respect to the small diameter portion 41, and the protruding surface 42a is located at an outer position than the retracting surface 41a.
  • FIGS. 4 to 6 only the electrode ends (the first end 4d of the positive electrode current collector 4a and the second end 4e of the positive electrode active material-containing layer 4b) on the opposite side of the positive electrode current collector tab 4c in the positive electrode 4 are shown.
  • An example of pressing is shown.
  • the vertical direction of FIG. 4 corresponds to the first direction.
  • the positional relationship between the processing roller 40 and the positive electrode 4 in the axial direction is shown in FIG.
  • the position is adjusted so that the protruding surface 42a of the large diameter portion 42 and the second end portion 4e of the positive electrode active material-containing layer 4b and its vicinity overlap.
  • the retracted surface 41a does not come into contact with the positive electrode 4, and corresponds to the width W of the portion of the positive electrode 4 where the protruding surface 42a and the positive electrode active material-containing layer 4b overlap in the large diameter portion 42. Only the part to be pressed can be pressed.
  • the structure of the groove generated by deformation can be controlled by appropriately adjusting the step S in the large diameter portion 42 of the processing roller 40, the width W overlapping the positive electrode 4 in the large diameter portion 42, the press pressure, and the like.
  • the cross section of the large diameter portion 42 of the processing roller 40 was circular, whereas the peripheral edge was formed by a step portion in which the roller used for processing radiates out.
  • the modified example differs in that it has a rolled portion in which an uneven portion is formed in the portion.
  • the processing roller 40 in the modified example has the cross-sectional shape shown in FIG. 7 instead of the cross-sectional shape shown in FIG. Except for the shape of the cross section intersecting the axial direction, the processing roller 40 in the modified example can have the same structure as the processing roller 40 in the example described above. That is, the machining roller 40 of the modified example can be described with reference to FIGS. 4, 5 and 7 by regarding FIG. 7 as a cross-sectional view taken along the line VI-VI shown in FIG.
  • the processing roller 40 of the modified example has a small diameter portion 41 and a large diameter portion 42 arranged along the axial direction. Similar to the above-mentioned example, the small diameter portion 41 of the processing roller 40 has a cylindrical shape and has a retracting surface 41a. On the other hand, as shown in FIG. 7, the shape of the large diameter portion 42 is different from the previous example.
  • the large diameter portion 42 includes a plurality of protruding surfaces 42a located outside the retracting surface 41a of the small diameter portion 41. Further, a plurality of recesses 42b are formed on the peripheral edge of the large diameter portion 42. Protruding surfaces 42a and recesses 42b are alternately arranged along the peripheral edge of the large diameter portion 42, and an uneven shape is formed along the outer periphery of the large diameter portion 42.
  • the diameter r2 of the circle connecting the protruding surface 42a and the diameter r3 of the circle connecting the bottom surface 42c of the recess 42b satisfy the relationship of r2> r3.
  • the diameter r2 corresponds to the distance from the central axis of the cylindrical shape to the protruding surface 42a.
  • the diameter r3 corresponds to the distance from the central axis of the cylindrical shape to the bottom surface 42c of the recess 42b.
  • the diameter r3 from the central axis to the bottom surface 42c and the diameter r1 of the small diameter portion 41 are equal.
  • the diameter r3 and the diameter r1 may be different.
  • the large-diameter portion 42 has a plurality of stepped portions that project radially from the small-diameter portion 41, and the upper surface of each stepped portion, that is, the protruding surface 42a is located outside the retracting surface 41a and the bottom surface 42c. is there.
  • the distance I1 between the protruding surfaces 42a arranged in the circumferential direction across the concave portion 42b and the arc width I2 in the circumferential direction of the protruding surface 42a between the concave portions 42b are arranged along the circumference of the large diameter portion 42. It can be appropriately changed by adjusting the number of recesses 42b and steps, and the diameters r2 and r3 of the large diameter portion 42.
  • the interval I1 may correspond to the circumferential arc width of the bottom surface 42c of the recess 42b.
  • the cross-sectional shape shown in FIG. 6 is circular, and the cross-sectional shape shown in FIG. 7 is a shape like a gear, but the cross-sectional shape of the processing roller is not limited to these shapes.
  • a processing roller having a cross-sectional shape in which the periphery of the cross section is gently wavy can also be used.
  • ⁇ Measurement method> The presence or absence of a groove in the electrode can be confirmed by measuring the amount of displacement in the electrode using a laser displacement meter. Specifically, the groove depth can be estimated from the displacement amount at the electrode.
  • the laser displacement meter irradiates the object to be measured with laser light, collects the light reflected from the object with a light receiving lens, and forms an image on the light receiving element.
  • the distance between the light emitting part of the laser and the part including the light receiving lens, for example, the head and the object changes, the angle of the reflected light collected changes, and the imaging position on the light receiving element changes accordingly. .. Since the change in the imaging position is proportional to the change in the distance to the target, the change in the distance is calculated.
  • the target electrode is included in the battery as an electrode group, take out the entire electrode group.
  • the removed electrode group is washed with an appropriate solvent. After cleaning, the electrode group is dried.
  • the electrode group after drying is used as a measurement sample.
  • the electrode or electrode group as a measurement sample is subjected to measurement with a laser displacement meter with a tension of 40 N / m applied.
  • tension is applied to the coil to extend the shape change that occurs in the electrode during coil molding, and only the shape of the electrode end can be observed.
  • first depth, second depth, third depth, and fourth depth for the groove, respectively.
  • the first to fourth depths are obtained for at least 10 grooves, and the average value of each of the first to fourth depths is calculated.
  • the average depth attenuation rate [(average value of the first depth-average value of the second depth) / average value of the first depth]) is calculated.
  • the period of the plurality of grooves that is, the pitch when the cross-sectional shape of the electrode end is expressed as a wave (pitch P shown in FIG. 2) can be confirmed as follows.
  • a spectrum along the electrode end (second end) for example, a spectrum measured along the edge of the end can be used.
  • the height of the inner wall of the groove (height H shown in FIG. 2) can be confirmed as follows.
  • a spectrum along the electrode end (second end) for example, a spectrum measured along the edge of the end can be used.
  • the position where the displacement amount becomes the maximum value on both sides of the target groove can correspond to the position of the apex of the inner wall of the groove. Find the maximum value of the difference in displacement in the target groove with respect to the maximum value of the positions on both sides. If the amount of displacement obtained differs between the maximum values on both sides of the groove, the value based on the maximum value of the higher displacement amount is adopted as the height of the inner wall of the groove. The maximum value is obtained for at least 10 grooves, and the average value of the obtained maximum values is calculated. The calculated average value is converted into a length to obtain the average height of the inner wall of the groove in the spectrum used.
  • FIG. 8 shows a diagram showing the measurement result of the displacement amount in the long direction (vertical direction of FIG. 8) of the end portion of the electrode of one example.
  • FIG. 9 shows a graph showing a profile along the line segment L1 in FIG. That is, FIG. 9 shows a displacement amount spectrum measured along a direction parallel to the electrode end at the position of the line segment L1 shown in FIG.
  • FIG. 10 shows a diagram showing the measurement result of the displacement amount in the short direction (horizontal direction of FIG. 10) of the end portion of the electrode of this example.
  • FIG. 11 shows a graph showing a profile in a direction parallel to the line segment W1 in the measurement result shown in FIG. That is, FIG. 11 shows a displacement amount spectrum measured inward from the end of the electrode.
  • the plurality of spectra shown in FIG. 11 represent displacements measured at various positions along a direction parallel to the line segment W1.
  • the electrode of this example has a corrugated shape at the end, specifically at the position indicated by the line segment L1 in FIG. As shown in FIG. 11, the corrugated shape decreases and the groove becomes shallower from the end to the inside.
  • the electrodes shown in the measurement results in FIGS. 8 to 11 have a waveform pitch of about 10 mm-30 mm and a displacement amount at the end (position of the line segment L1), that is, a groove depth of 200 ⁇ m or more. This is an example in which the waveform shape continues to a position that advances inward by about 6 mm to 8 mm from the end.
  • FIG. 12 shows a diagram showing the measurement result of the displacement amount in the long direction of the end portion of the electrode of another example.
  • FIG. 13 shows a graph showing a profile along the line segment L2 in FIG. That is, FIG. 13 shows a displacement spectrum measured along a direction parallel to the electrode end at the position of the line segment L2 shown in FIG.
  • FIG. 14 shows a diagram showing the measurement result of the displacement amount in the short direction of the end portion of the electrode of this example.
  • FIG. 15 shows a graph showing a profile in a direction parallel to the line segment W2 in the measurement result shown in FIG. That is, FIG. 15 shows a displacement spectrum measured along the line segment W2 shown in FIG.
  • the plurality of spectra shown in FIG. 15 represent displacements measured at various positions along a direction parallel to the line segment W2.
  • the electrode of this example also has a corrugated shape at the end, specifically at the position indicated by the line segment L2 in FIG. As shown in FIG. 15, the corrugated shape decreases and the groove becomes shallower from the end to the inside.
  • the electrodes whose measurement results are shown in FIGS. 12 to 15 have a shorter waveform cycle and shallower grooves than the electrodes described in FIGS. 8 to 11.
  • the pitch of the waveform is 10 mm or less
  • the displacement amount at the end is 200 ⁇ m or less.
  • the electrodes described with reference to FIGS. 12 to 15 have smaller electrode misalignment due to electrode overlap during winding. Therefore, as the electrodes used in the winding type electrode group, the electrodes of FIGS. 12 to 15 are preferable to the electrodes of FIGS. 8 to 11.
  • the electrode according to the first embodiment includes a current collector and an active material-containing layer.
  • the current collector has a main surface that includes a first end along a first direction.
  • the active material-containing layer is provided on the main surface of the current collector, has a second end portion along the first direction, and contains the electrode active material.
  • a plurality of grooves are provided in at least a part of the second end portion of the active material-containing layer. The plurality of grooves extend inward from the second end.
  • the plurality of grooves are grooves that are recessed in a direction orthogonal to the main surface.
  • the plurality of grooves are adjacent to each other along the first direction.
  • the plurality of grooves are attenuated inward from the second end.
  • the electrode can realize a high-capacity battery.
  • the electrode group according to the second embodiment includes a positive electrode and a negative electrode. At least one of the positive electrode and the negative electrode includes the electrode according to the first embodiment.
  • the electrode group can further include a separator.
  • the separator is provided between the positive electrode and the negative electrode, and can electrically insulate the positive electrode and the negative electrode.
  • the electrodes according to the first embodiment (the form of the positive electrode and the form of the negative electrode, respectively) as at least one of the positive electrode and the negative electrode, when the winding type electrode group (coil) is manufactured, it is possible to perform winding.
  • the deviation of the overlap of the electrodes can be reduced. Since the groove provided at the end of the electrode has a high impregnation property of the electrolyte, a high capacity can be exhibited. It is preferable that both the positive electrode and the negative electrode are the electrodes according to the first embodiment.
  • the electrode group may have a wound structure in which a laminated body including a positive electrode and a negative electrode is wound so that the center is located in a direction orthogonal to the first direction described above.
  • the end portion provided with the groove in the electrode can be exposed at the end face orthogonal to the winding center of the electrode group.
  • the positive electrode and the negative electrode can be curved in an arc shape, for example.
  • the density is relatively high in and around the curved portion. Therefore, it is desirable that grooves are arranged in those portions.
  • the electrode group may have a flat wound structure including a curved portion in which the laminated body including the positive electrode and the negative electrode is curved in an arc shape and a flat portion in which the laminated body is flat.
  • the electrode end portion (second end portion) provided with the groove is located on the end face of the electrode group, and at least the portion corresponding to the curved portion of the electrode end portion. It is desirable that the groove is located in. The density is relatively higher in the curved portion and its surroundings than in the flat portion. Therefore, it is desirable that grooves are arranged in those portions. Since the permeation of the electrolyte into the electrode group can be promoted even if the groove is provided in the flat portion, the groove must be provided over the entire area of the electrode end portion (second end portion) regardless of the curved portion and the flat portion. More preferred.
  • the electrode group according to the embodiment will be described with reference to FIGS. 16 and 17.
  • FIG. 16 is a perspective view schematically showing an example electrode group according to the embodiment.
  • FIG. 17 is a perspective view schematically showing a state in which the electrode group is partially expanded.
  • the electrode group 3 has a flat shape and includes a positive electrode 4, a negative electrode 5, and a separator 6 arranged between the positive electrode 4 and the negative electrode 5.
  • the positive electrode 4 is, for example, a positive electrode except for a band-shaped positive electrode current collector made of foil, a positive electrode current collector tab 4c having one end parallel to the long side of the positive electrode current collector, and at least a portion of the positive electrode current collector tab 4c. It includes a positive electrode active material-containing layer 4b formed on the current collector.
  • the negative electrode 5 excludes, for example, a strip-shaped negative electrode current collector made of foil, a negative electrode current collector tab 5c having one end parallel to the long side of the negative electrode current collector, and at least a portion of the negative electrode current collector tab 5c.
  • the negative electrode active material-containing layer 5b formed on the negative electrode current collector is included.
  • the positive electrode active material-containing layer 4b of the positive electrode 4 and the negative electrode active material-containing layer 5b of the negative electrode 5 face each other via the separator 6, and the positive electrode current collecting tab is on one side of the winding shaft C of the electrode group 3.
  • the positive electrode 4, separator 6 and negative electrode 5 are wound in a flat shape so that 4c protrudes from the negative electrode 5 and the separator 6 and the negative electrode current collecting tab 5c protrudes from the positive electrode 4 and the separator 6 on the other side. That is, it is a flat winding type electrode group. Therefore, in the electrode group 3, the positive electrode current collecting tab 4c wound in a flat spiral shape is located on the first end surface orthogonal to the winding axis C. Further, the negative electrode current collecting tab 5c wound in a flat spiral shape is located on the second end surface orthogonal to the winding axis C.
  • the groove is formed along the second end surface of the electrode group 3.
  • the long side direction of the positive electrode 4 before winding is set as the first direction
  • the long side on the opposite side of the positive electrode current collecting tab 4c along this first direction is set as the second end portion 4e of the positive electrode 4.
  • the laminated body including the positive electrode 4 and the negative electrode 5 is orthogonal to the first direction and parallel to the main surface of the positive electrode current collector. It is wound so that the center is located at, that is, it is wound around the winding axis C. In this way, the second end portion 4e provided with the groove can be positioned on the second end surface side of the electrode group 3.
  • the groove is provided along the first end surface of the electrode group 3.
  • Grooves can be arranged. Specifically, the long side direction of the negative electrode 5 before winding is set as the first direction, and the long side on the opposite side of the negative electrode current collecting tab 5c along the first direction is set as the second end portion 5e of the negative electrode 5.
  • the laminated body including the positive electrode 4 and the negative electrode 5 is orthogonal to the first direction and parallel to the main surface of the negative electrode current collector. It is wound so that the center is located at, that is, it is wound around the winding axis C. In this way, the grooved second end portion 5e can be positioned on the first end surface side of the electrode group 3.
  • the positive electrode lead 17 and the negative electrode lead 18 can be electrically connected to the electrode group 3, or the insulating sheet 10 can be provided on the electrode group 3. ..
  • the positive electrode lead 17 is electrically connected to the positive electrode current collecting tab 4c.
  • the negative electrode lead 18 is electrically connected to the negative electrode current collecting tab 5c.
  • the insulating sheet 10 covers, for example, the outermost periphery of the electrode group 3 except for the positive electrode current collecting tab 4c and the negative electrode current collecting tab 5c.
  • the electrode group 3 mounted on the battery can hold an electrolyte (not shown).
  • the form of the electrode according to the first embodiment as the positive electrode and the form as the negative electrode can be used, respectively. Since the description is duplicated, the details of the positive electrode and the negative electrode are omitted.
  • the electrode group according to the second embodiment also includes an embodiment in which only one of the positive electrode and the negative electrode contains the electrode of the first embodiment, and the other electrode does not have a second end portion provided with a plurality of grooves. obtain. Since the description is duplicated except for the details regarding the groove at the second end, the details of the other electrode will be omitted.
  • the separator is, for example, a porous film containing polyethylene (PE), polypropylene (PP), cellulose, or polyvinylidene fluoride (PVdF), or polyethylene (PE), polypropylene (polypropylene; PP). ), Or a synthetic resin non-woven material containing polyvinylidene fluoride (PVdF), or a polyethylene non-woven material. From the viewpoint of safety, it is preferable to use a porous film made of polyethylene or polypropylene. This is because these porous films can be melted at a constant temperature to cut off an electric current.
  • a laminated body is obtained by laminating a positive electrode, a negative electrode, and a separator.
  • the electrodes according to the first embodiment are used for at least one of the positive electrode and the negative electrode.
  • the structure is such that the positive electrode and the negative electrode do not come into direct contact with each other.
  • a wound electrode group that is, a battery coil can be manufactured.
  • a flat coil can be produced by pressing the wound laminated body.
  • the laminated body before winding may be used as it is as a laminated electrode group.
  • ⁇ Measurement method> As described above, as a measurement sample for measurement using a laser displacement meter, a group of electrodes taken out of a battery and washed can be used. Since it overlaps with the above description, details are omitted.
  • the electrode group according to the second embodiment includes a positive electrode and a negative electrode, and at least one of the positive electrode and the negative electrode includes the electrode according to the first embodiment.
  • the electrode group can realize a high-capacity battery.
  • the battery according to the third embodiment includes a positive electrode and a negative electrode. At least one of the positive electrode and the negative electrode includes the electrode according to the first embodiment.
  • the battery according to the third embodiment may include the electrode group according to the second embodiment.
  • the form of the electrode according to the first embodiment as the positive electrode and the form as the negative electrode can be used, respectively. Since the description is duplicated, the details of the positive electrode and the negative electrode are omitted.
  • the battery according to the third embodiment may include an embodiment in which only one of the positive electrode and the negative electrode contains the electrode of the first embodiment, and the other electrode does not have a second end portion provided with a plurality of grooves. .. Since the description is duplicated except for the details regarding the groove at the second end, the details of the other electrode will be omitted.
  • the battery according to the embodiment can further include an electrolyte.
  • the electrolyte can be retained, for example, in a group of electrodes.
  • the battery according to the embodiment can further include, for example, an electrode group and an exterior member accommodating an electrolyte.
  • the battery according to the embodiment can further include a negative electrode terminal electrically connected to the negative electrode and a positive electrode terminal electrically connected to the positive electrode.
  • the battery according to the embodiment can be, for example, a lithium ion secondary battery. Further, the battery includes, for example, a non-aqueous electrolyte battery containing a non-aqueous electrolyte as an electrolyte.
  • electrolyte for example, a liquid non-aqueous electrolyte or a gel-like non-aqueous electrolyte can be used.
  • the liquid non-aqueous electrolyte is prepared by dissolving an electrolyte salt as a solute in an organic solvent.
  • concentration of the electrolyte salt is preferably 0.5 mol / L or more and 2.5 mol / L or less.
  • electrolyte salts examples include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), and trifluoromethane.
  • lithium salts such as lithium sulfonate (LiCF 3 SO 3 ) and bistrifluoromethylsulfonylimide lithium (LiN (CF 3 SO 2 ) 2 ), and mixtures thereof.
  • the electrolyte salt is preferably one that is difficult to oxidize even at a high potential, and LiPF 6 is most preferable.
  • organic solvents examples include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), vinylene carbonate (VC); diethyl carbonate (DEC), dimethyl carbonate. (Dimethylcarbonate; DMC), chain carbonates such as methylethylcarbonate (MEC); tetrahydrofuran (tetrahydrofuran; THF), dimethyltetrahydrofuran (2MeTHF), dioxolane (DOX) Cyclic ethers such as; chain ethers such as dimethoxyethane (DME), diethoxyethane (DEE); ⁇ -butyrolactone (GBL), acetonitrile (acetonitrile; AN), and sulfolanes. (Sulfolane; SL) is included. These organic solvents can be used alone or as a mixed solvent.
  • PC propylene carbonate
  • EC ethylene carbonate
  • VC vinylene carbonate
  • DEC diethy
  • the gel-like non-aqueous electrolyte is prepared by combining a liquid non-aqueous electrolyte and a polymer material.
  • polymeric materials include polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyethylene oxide (PEO), or mixtures thereof.
  • non-aqueous electrolyte in addition to the liquid non-aqueous electrolyte and the gel-like non-aqueous electrolyte, a room temperature molten salt (ionic melt) containing lithium ions, a polymer solid electrolyte, and the like may be used.
  • a room temperature molten salt (ionic melt) containing lithium ions in addition to the liquid non-aqueous electrolyte and the gel-like non-aqueous electrolyte, a room temperature molten salt (ionic melt) containing lithium ions, a polymer solid electrolyte, and the like may be used.
  • the room temperature molten salt refers to a compound that can exist as a liquid at room temperature (15 ° C. or higher and 25 ° C. or lower) among organic salts composed of a combination of an organic cation and an anion.
  • the room temperature molten salt includes a room temperature molten salt that exists as a liquid by itself, a room temperature molten salt that becomes a liquid when mixed with an electrolyte salt, a room temperature molten salt that becomes a liquid when dissolved in an organic solvent, or a mixture thereof. Is done.
  • the melting point of a room temperature molten salt used in a secondary battery is 25 ° C. or lower.
  • the organic cation generally has a quaternary ammonium skeleton.
  • Polymer solid electrolyte is prepared by dissolving an electrolyte salt in a polymer material and solidifying it.
  • an inorganic solid electrolyte or the like can be used together as a non-aqueous electrolyte.
  • the inorganic solid electrolyte is a solid substance having Li ion conductivity.
  • Exterior member for example, a container made of a laminated film or a metal container can be used.
  • the thickness of the laminated film is, for example, 0.5 mm or less, preferably 0.2 mm or less.
  • the laminate film a multilayer film containing a plurality of resin layers and a metal layer interposed between these resin layers is used.
  • the resin layer contains, for example, a polymer material such as polypropylene (PP), polyethylene (PE), nylon, and polyethylene terephthalate (PET).
  • the metal layer is preferably made of an aluminum foil or an aluminum alloy foil for weight reduction.
  • the laminated film can be molded into the shape of an exterior member by sealing by heat fusion.
  • the wall thickness of the metal container is, for example, 1 mm or less, more preferably 0.5 mm or less, and further preferably 0.2 mm or less.
  • the metal container is made of, for example, aluminum, aluminum alloy, stainless steel, or the like.
  • the aluminum alloy preferably contains elements such as magnesium, zinc, and silicon.
  • the aluminum alloy contains a transition metal such as iron, copper, nickel, and chromium, the content thereof is preferably 100 mass ppm or less.
  • the shape of the exterior member is not particularly limited.
  • the shape of the exterior member may be, for example, a flat type (thin type), a square type, a cylindrical type, a coin type, a button type, or the like.
  • the exterior member can be appropriately selected according to the battery size and the application of the battery.
  • the negative electrode terminal can be formed from a material that is electrochemically stable and has conductivity at the Li storage / release potential of the above-mentioned negative electrode active material.
  • a material that is electrochemically stable and has conductivity at the Li storage / release potential of the above-mentioned negative electrode active material Specifically, as the material of the negative electrode terminal, copper, nickel, stainless steel or aluminum, or an aluminum alloy containing at least one selected from the group consisting of Mg, Ti, Zn, Mn, Fe, Cu, and Si. Can be mentioned.
  • the material of the negative electrode terminal it is preferable to use aluminum or an aluminum alloy.
  • the negative electrode terminal is preferably made of the same material as the negative electrode current collector in order to reduce the contact resistance with the negative electrode current collector.
  • the positive electrode terminal can be formed of a material that is electrically stable and has conductivity in a potential range (vs. Li / Li + ) of 3 V or more and 4.5 V or less with respect to the redox potential of lithium.
  • Examples of the material of the positive electrode terminal include aluminum or an aluminum alloy containing at least one selected from the group consisting of Mg, Ti, Zn, Mn, Fe, Cu and Si.
  • the positive electrode terminal is preferably formed of the same material as the positive electrode current collector in order to reduce the contact resistance with the positive electrode current collector.
  • FIG. 18 is a schematic cross-sectional view of an example flat battery according to the embodiment.
  • FIG. 19 is an enlarged cross-sectional view of part A in FIG.
  • the battery 1 shown in FIGS. 18 and 19 includes the flat wound electrode group 3 shown in FIG.
  • the flat wound electrode group 3 is housed in a bag-shaped exterior member 2 made of a laminated film including a metal layer and two resin films sandwiching the metal layer.
  • the flat spiral electrode group 3 is formed by spirally winding a laminated body in which the negative electrode 5, the separator 6, the positive electrode 4, and the separator 6 are laminated in this order from the outside and press-molding. It has a formed structure.
  • the outermost portion of the negative electrode 5 forms a negative electrode active material-containing layer 5b containing a negative electrode active material on one surface of the negative electrode current collector 5a on the inner surface side.
  • negative electrode active material-containing layers 5b are formed on both surfaces of the negative electrode current collector 5a.
  • positive electrode active material-containing layers 4b are formed on both sides of the positive electrode current collector 4a.
  • the negative electrode terminal 8 is connected to the negative electrode current collector 5a in the outermost layer of the negative electrode 5 in the vicinity of the outer peripheral end of the wound electrode group 3, and the positive electrode terminal 7 is the positive electrode of the positive electrode 4 located inside. It is connected to the current collector 4a.
  • These negative electrode terminals 8 and positive electrode terminals 7 extend outward from the opening of the bag-shaped exterior member 2.
  • the second end portion in which the groove is provided in each of the positive electrode 4 and the negative electrode 5 is the end portion of the winding type electrode group 3 in the winding axis direction, that is, the end portion in the direction orthogonal to the paper surface in FIG. It is desirable that it is provided. In other words, it is desirable that the second end portion provided with the groove is along the plane parallel to the paper surface in FIG.
  • the flat wound electrode group 3 shown in FIG. 18 includes two curved portions 11 and a flat portion 12 located between the two curved portions 11.
  • the laminated body of the positive electrode 4, the negative electrode 5, and the separator 6 is curved in an arc shape.
  • the laminated body has a flat shape.
  • the curved portion 11 and the flat portion 12 extend in the winding axis direction of the winding type electrode group 3, that is, in the direction orthogonal to the paper surface in FIG. As described above, the density of the curved portion 11 is relatively high as compared with the flat portion 12.
  • each of the positive electrode 4 and the negative electrode 5 is provided with a groove over the entire second end portion regardless of the curved portion 11 and the flat portion 12.
  • the battery 1 shown in FIGS. 18 and 19 further includes an electrolyte (not shown).
  • the electrolyte is housed in the exterior member 2 in a state of being impregnated in the electrode group 3.
  • the battery according to the third embodiment includes the electrodes according to the first embodiment. Therefore, the capacity of the battery is high.
  • a battery pack is provided.
  • This battery pack comprises the battery according to the third embodiment.
  • the battery pack according to the embodiment may include a plurality of batteries. Multiple batteries can be electrically connected in series or electrically in parallel. Alternatively, a plurality of batteries can be connected in series and in parallel.
  • the battery pack may include five batteries according to the third embodiment. These batteries can be connected in series. Further, the batteries connected in series can form an assembled battery. That is, the battery pack according to the embodiment may also include an assembled battery.
  • the battery pack according to the embodiment can include a plurality of assembled batteries.
  • a plurality of assembled batteries can be connected in series, in parallel, or in a combination of series and parallel.
  • the battery pack according to the embodiment will be described in detail with reference to FIGS. 20 and 21.
  • the cell for example, the flat batteries shown in FIGS. 18 and 19 can be used.
  • FIG. 20 is an exploded perspective view schematically showing an example of the battery pack according to the embodiment.
  • FIG. 21 is a block diagram showing an example of the electric circuit of the battery pack 20 shown in FIG.
  • the plurality of cells 21 composed of the flat batteries shown in FIGS. 18 and 19 described above are laminated so that the negative electrode terminals 8 and the positive electrode terminals 7 extending to the outside are aligned in the same direction, and are formed by the adhesive tape 22.
  • the assembled battery 23 is formed by fastening the batteries. As shown in FIG. 21, these cell cells 21 are electrically connected in series with each other.
  • the printed wiring board 24 is arranged so as to face the side surface of the cell 21 on which the negative electrode terminal 8 and the positive electrode terminal 7 extend. As shown in FIG. 21, the printed wiring board 24 is equipped with a thermistor 25, a protection circuit 26, and a terminal 27 for energizing an external device. An insulating plate (not shown) is attached to the surface of the printed wiring board 24 facing the assembled battery 23 in order to avoid unnecessary connection with the wiring of the assembled battery 23.
  • the positive electrode side lead 28 is connected to the positive electrode terminal 7 located at the bottom layer of the assembled battery 23, and the tip thereof is inserted into the positive electrode side connector 29 of the printed wiring board 24 and electrically connected.
  • the negative electrode side lead 30 is connected to the negative electrode terminal 8 located on the uppermost layer of the assembled battery 23, and the tip thereof is inserted into the negative electrode side connector 31 of the printed wiring board 24 and electrically connected. These connectors 29 and 31 are connected to the protection circuit 26 through the wiring 32 and the wiring 33 formed on the printed wiring board 24.
  • the thermistor 25 detects the temperature of the cell 21 and the detection signal is transmitted to the protection circuit 26.
  • the protection circuit 26 can cut off the positive side wiring 34a and the negative side wiring 34b between the protection circuit 26 and the energizing terminal 27 to the external device under predetermined conditions.
  • the predetermined condition is, for example, when the detection temperature of the thermistor 25 becomes equal to or higher than the predetermined temperature. Further, the predetermined condition is when overcharge, overdischarge, overcurrent, etc. of the cell 21 are detected.
  • the detection of overcharging or the like is performed for each individual cell 21 or the entire assembled battery 23. When detecting the individual cell 21, the battery voltage may be detected, or the positive electrode potential or the negative electrode potential may be detected.
  • a lithium electrode used as a reference electrode is inserted into each cell 21.
  • a wiring 35 for voltage detection is connected to each of the cell 21s, and a detection signal is transmitted to the protection circuit 26 through these wirings 35.
  • Protective sheets 36 made of rubber or resin are arranged on the three side surfaces of the assembled battery 23 except for the side surfaces on which the positive electrode terminal 7 and the negative electrode terminal 8 protrude.
  • the assembled battery 23 is stored in the storage container 37 together with the protective sheet 36 and the printed wiring board 24. That is, the protective sheet 36 is arranged on both inner side surfaces in the long side direction and the inner side surface in the short side direction of the storage container 37, and the printed wiring board 24 is arranged on the inner side surface on the opposite side in the short side direction.
  • the assembled battery 23 is located in a space surrounded by the protective sheet 36 and the printed wiring board 24.
  • the lid 38 is attached to the upper surface of the storage container 37.
  • a heat-shrinkable tape may be used instead of the adhesive tape 22 to fix the assembled battery 23.
  • protective sheets are arranged on both side surfaces of the assembled battery, the heat-shrinkable tape is circulated, and then the heat-shrinkable tape is heat-shrinked to bind the assembled battery.
  • FIGS. 20 and 21 show a form in which the cells 21 are connected in series, they may be connected in parallel in order to increase the battery capacity.
  • the assembled battery packs can also be connected in series and / or in parallel.
  • the battery pack according to the fourth embodiment includes the battery according to the third embodiment. Therefore, the capacity of the battery pack is high.
  • Example 1 In Example 1, a non-aqueous electrolyte battery was produced by the following procedure.
  • non-aqueous electrolyte Ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 2 to prepare a non-aqueous solvent.
  • a non-aqueous electrolyte was prepared by dissolving LiPF 6 as an electrolyte salt in a non-aqueous solvent so as to have a concentration of 1.0 mol / L.
  • Example 1 Battery assembly Terminals were attached to the positive electrode and the negative electrode of the wound electrode group obtained as described above, and the electrode group was placed in a container made of a laminated film. The above-mentioned non-aqueous electrolyte was injected into this container to obtain a non-aqueous electrolyte battery.
  • no processing roller was used for producing the LTO negative electrode.
  • Example 2 A negative electrode was prepared in the same manner as in Example 1 except that a monoclinic niobium-titanium oxide Nb 2 TiO 7 (NTO) was used as the negative electrode active material instead of lithium titanate having a spinel-type structure.
  • NTO monoclinic niobium-titanium oxide
  • a non-aqueous electrolyte battery was produced in the same procedure as in Example 1 except that the above negative electrode was used.
  • step S 0.2 mm
  • Example 4 A positive electrode was prepared in the same manner as in Example 1 except that lithium cobalt oxide LiCoO 2 (LCO) was used as the positive electrode active material instead of lithium manganese oxide.
  • a non-aqueous electrolyte battery was produced in the same procedure as in Example 1 except that the above positive electrode was used.
  • Example 5 A positive electrode was produced in the same procedure as in Example 1 except that rolling using a processing roller was omitted.
  • a negative electrode was prepared in the same procedure as in Example 1. Subsequently, a processing roller having a large diameter portion having a protruding width (step S shown in FIG. 5) of 0.2 mm is used, and the width 6.0 mm opposite to the uncoated portion of the negative electrode in the width direction. Only the end portion (overlapping width W shown in FIG. 5) was rolled over the entire area in the length direction.
  • Example 6 A negative electrode was prepared in the same manner as in Example 5, except that a monoclinic niobium-titanium oxide Nb 2 TiO 7 (NTO) was used as the negative electrode active material instead of lithium titanate having a spinel-type structure.
  • NTO monoclinic niobium-titanium oxide
  • a non-aqueous electrolyte battery was produced in the same procedure as in Example 5 except that the above negative electrode was used.
  • LNT rectangular titanium-containing composite oxide Li 2 Na 1.6 Ti 5.6 Nb 0.4 O 14
  • Example 8 A positive electrode was prepared in the same manner as in Example 5 except that lithium cobalt oxide LiCoO 2 (LCO) was used as the positive electrode active material instead of lithium manganese oxide.
  • a non-aqueous electrolyte battery was produced in the same procedure as in Example 5 except that the above positive electrode was used.
  • Example 9 A negative electrode was produced in the same manner as in Example 5.
  • a non-aqueous electrolyte battery was produced in the same procedure as in Example 1 except that the above negative electrode was used.
  • Example 12 A negative electrode was produced in the same manner as in Example 5.
  • a non-aqueous electrolyte battery was produced in the same procedure as in Example 4 except that the above negative electrode was used.
  • Example 23 A positive electrode was produced in the same manner as in Example 15. A negative electrode was produced in the same manner as in Example 19. A non-aqueous electrolyte battery was produced in the same procedure as in Example 1 except that the positive electrode and the negative electrode were used.
  • Example 25 The non-aqueous electrolyte battery was prepared in the same procedure as in Example 1 except that the processing roller used for producing the positive electrode was changed to a processing roller having a large diameter portion having a protruding width (step S shown in FIG. 5) of 0.7 mm. Was produced.
  • Example 26 The non-aqueous electrolyte battery was prepared in the same procedure as in Example 2 except that the processing roller used for producing the positive electrode was changed to a processing roller having a large diameter portion having a protruding width (step S shown in FIG. 5) of 0.7 mm. Was produced.
  • Example 27 The non-aqueous electrolyte battery was prepared in the same procedure as in Example 3 except that the processing roller used for producing the positive electrode was changed to a processing roller having a large diameter portion having a protruding width (step S shown in FIG. 5) of 0.7 mm. Was produced.
  • Example 28 The non-aqueous electrolyte battery was prepared in the same procedure as in Example 4 except that the processing roller used for producing the positive electrode was changed to a processing roller having a large diameter portion having a protruding width (step S shown in FIG. 5) of 0.7 mm. Was produced.
  • Example 29 The non-aqueous electrolyte battery was prepared in the same procedure as in Example 5 except that the processing roller used for manufacturing the negative electrode was changed to a processing roller having a large diameter portion having a protruding width (step S shown in FIG. 5) of 0.7 mm. Was produced.
  • Example 30 The non-aqueous electrolyte battery was prepared in the same procedure as in Example 6 except that the processing roller used for manufacturing the negative electrode was changed to a processing roller having a large diameter portion having a protruding width (step S shown in FIG. 5) of 0.7 mm. Was produced.
  • Example 31 The non-aqueous electrolyte battery was prepared in the same procedure as in Example 7 except that the processing roller used for manufacturing the negative electrode was changed to a processing roller having a large diameter portion having a protruding width (step S shown in FIG. 5) of 0.7 mm. Was produced.
  • Example 32 The non-aqueous electrolyte battery was prepared in the same procedure as in Example 8 except that the processing roller used for manufacturing the negative electrode was changed to a processing roller having a large diameter portion having a protruding width (step S shown in FIG. 5) of 0.7 mm. Was produced.
  • Example 33 A positive electrode was produced in the same manner as in Example 25. A negative electrode was produced in the same manner as in Example 29. A non-aqueous electrolyte battery was produced in the same procedure as in Example 1 except that the positive electrode and the negative electrode were used.
  • Example 34 A positive electrode was produced in the same manner as in Example 26. A negative electrode was produced in the same manner as in Example 30. A non-aqueous electrolyte battery was produced in the same procedure as in Example 1 except that the positive electrode and the negative electrode were used.
  • Example 36 A positive electrode was produced in the same manner as in Example 28. A negative electrode was produced in the same manner as in Example 29. A non-aqueous electrolyte battery was produced in the same procedure as in Example 1 except that the positive electrode and the negative electrode were used.
  • Example 1 The positive electrode was produced in the same manner as in Example 1 except that the processing roller used when producing the positive electrode was changed to the grooved processing roller of the following design.
  • FIG. 22 is an explanatory view schematically showing the production of a positive electrode using a grooved processing roller.
  • FIG. 22 is a cross section of the grooved processing roller along the roll axis.
  • FIG. 23 is a schematic cross-sectional view of the production of the positive electrode as viewed from another direction.
  • FIG. 23 shows a cross section orthogonal to the axial direction of the grooved processing roller. This cross section is a cross section including a large diameter portion of the grooved processing roller.
  • the grooved processing roller 50 had a small diameter portion 51 and a large diameter portion 52 arranged along the axial direction. Similar to the small diameter portion 41 of the processing roller 40 described with reference to FIG. 5, the small diameter portion 51 of the grooved processing roller 50 has a cylindrical shape and has a retracting surface 51a. The width of the large-diameter portion 52 along the axial direction is the end portion (first end portion 4d and second end) opposite to the uncoated portion (positive electrode current collecting tab 4c) of the positive electrode 4 to be rolled. It was over the distance to part 4e). The large diameter portion 52 had a protruding surface 52a and an escape surface 53 located outside the retracting surface 51a of the small diameter portion 51.
  • the protruding width of the large diameter portion 52 was 0.2 mm.
  • a plurality of recesses were formed in the large diameter portion 52. Each recess extends over the entire axial direction of the large diameter portion 52, and in each recess portion, the large diameter portion 52 is dented toward the roller shaft up to the retracting surface 51a of the small diameter portion 51. That is, the diameter r1 of the recessed portion was equal to the diameter r1 of the small diameter portion 51.
  • the distance I1 between the protruding surfaces 52a arranged in the circumferential direction across the recess was 0.05 mm. Further, the arc width I2 in the circumferential direction of the protruding surface between the recesses was 0.05 mm.
  • the roller and the positive electrode active material-containing layer 4b are provided so that the overlapping width W between the protruding surface 52a of the roller and the positive electrode active material-containing layer 4b is equal to the width of the positive electrode active material-containing layer 4b. Adjusted the positional relationship with. With the positional relationship of the electrodes in the width direction adjusted in this way, they are parallel to the edges of the electrode ends (first end 4d and second end 4e) and uncoated parts (positive electrode current collecting tab 4c). The positive electrode 4 was rolled over the entire length direction.
  • a non-aqueous electrolyte battery was prepared in the same procedure as in Example 1 except that the positive electrode was prepared as described above.
  • a processing roller was not used for manufacturing the negative electrode.
  • Example 2 The positive electrode was produced in the same manner as in Example 1 except that the processing roller used when producing the positive electrode was changed to the inclined roller of the following design.
  • FIG. 24 is an explanatory view schematically showing the production of a positive electrode using a tilted roller.
  • FIG. 24 is a cross section of the inclined roller along the roll axis.
  • the inclined roller 60 had a small diameter portion 61 and a large diameter portion 62 arranged along the axial direction. Similar to the small diameter portion 41 of the processing roller 40 described with reference to FIG. 5, the small diameter portion 61 of the inclined roller 60 has a cylindrical shape and has a retracting surface 61a.
  • the width of the large-diameter portion 62 along the axial direction is the end portion (first end portion 4d and second end) opposite to the uncoated portion (positive electrode current collecting tab 4c) of the positive electrode 4 to be rolled in the width direction. It was over the distance to part 4e).
  • the large diameter portion 62 had a protruding surface 62a located outside the retracting surface 61a of the small diameter portion 61.
  • the large diameter portion 62 was inclined from one end to the other. At one end, the large diameter portion 62 protruded most from the retracting surface 61a, and the protruding width of this portion (step S MAX shown in FIG. 24) was 0.2 mm.
  • the protruding width (step S MAX) was equal to the difference between the diameter r1 of a maximum diameter r MAX and the small diameter portion 61 of the large diameter portion 62.
  • the protruding width of the large diameter portion 62 decreased toward the other end. The degree of this decrease is the damping factor (100% ⁇ [S) of the protrusion width (step S 1 shown in FIG. 24) at the position advanced by the distance E with respect to the protrusion width (step S 0 shown in FIG. 24) at the reference point. Expressed as 1- S 0 ] / S 0 ), the damping factor for every 10 mm was 10%.
  • the direction in which the protrusion width is 0.2 mm from the end portion to the other end portion (the end portion where the protrusion width is attenuated) along the axial direction and the uncoated portion Align the direction from (positive electrode current collecting tab 4c) toward the positive electrode end side (the side where the first end portion 4d and the second end portion 4e are located) on the opposite side of the uncoated portion along the width direction of the positive electrode 4. It was. That is, the direction of the processing roller was adjusted so that the portion of the large diameter portion 62 in contact with the uncoated portion side of the positive electrode 4 had a larger diameter.
  • the positive electrode extends over the entire length direction parallel to the edges of the positive electrode end (first end 4d and second end 4e) and the uncoated portion (positive electrode current collecting tab 4c). 4 was rolled. At this time, the overlapping width W between the protruding surface of the roller and the positive electrode active material-containing layer 4b became equal to the width of the positive electrode active material-containing layer 4b.
  • a non-aqueous electrolyte battery was prepared in the same procedure as in Example 1 except that the positive electrode was prepared as described above.
  • a processing roller was not used for manufacturing the negative electrode.
  • Example 3 A negative electrode was produced in the same manner as in Example 5, except that the processing roller used when producing the negative electrode was changed to the grooved roller used in Comparative Example 1.
  • the positional relationship between the roller and the active material-containing layer is adjusted so that the overlapping width (W) between the protruding surface of the roller and the active material-containing layer becomes equal to the width of the active material-containing layer. It was adjusted. With the positional relationship of the electrodes in the width direction adjusted in this way, the electrodes were rolled over the entire area in the length direction parallel to the edges of the electrode ends and the uncoated portions.
  • a non-aqueous electrolyte battery was prepared in the same procedure as in Example 5 except that the negative electrode was prepared as described above. In Comparative Example 3, a processing roller was not used for producing the positive electrode.
  • Example 4 A negative electrode was produced in the same manner as in Example 5, except that the processing roller used when producing the negative electrode was changed to the inclined roller used in Comparative Example 2.
  • the direction from the end where the protrusion width is 0.2 mm to the other end (the end where the protrusion width is attenuated) along the axial direction and from the uncoated part Along the width direction of the electrode the direction toward the electrode end side on the opposite side of the uncoated portion was aligned. With the orientation aligned in this way, the electrode was rolled over the entire length direction parallel to the edge of the electrode end and the uncoated portion. At this time, the overlapping width (W) between the protruding surface of the roller and the active material-containing layer became equal to the width of the active material-containing layer.
  • a non-aqueous electrolyte battery was produced in the same procedure as in Example 5 except that the above negative electrode was used.
  • a processing roller was not used for producing the positive electrode.
  • Example 5 A non-aqueous electrolyte battery was produced in the same procedure as in Example 1 except that neither the positive electrode nor the negative electrode was subjected to the roll press treatment using the processing roller.
  • the composition of the electrode active material whether or not the groove attenuates inward from the electrode end, the average of the first depth, and the second to fourth depths with respect to the first depth described above, respectively.
  • Table 4-6 summarizes the average damping factor, the pitch of the groove in the first direction, and the average height of the inner wall of the groove at the second end.
  • the symbol "-" in the table means "not applicable" to the target item.
  • the reference capacity referred to here is a theoretical capacity obtained based on the type of active material or the like.
  • lithium-containing nickel-cobalt-manganese composite oxide LiNi 0.4 Co 0.4 Mn 0.4 O 2 was used as the positive electrode active material, respectively.
  • NCM nickel-cobalt-manganese composite oxide
  • LTO lithium titanate Li 4 Ti 5 O 12 having a spinel structure
  • the same combination of the positive electrode active material and the negative electrode active material was used for the non-aqueous electrolyte batteries produced in Comparative Examples 1 to 5.
  • the non-aqueous electrolyte batteries prepared in these Examples and Comparative Examples had a reference capacity of 22 Ah.
  • the non-aqueous electrolyte batteries produced in the examples obtained a higher practical amount than the non-aqueous electrolyte batteries in the comparative examples.
  • the non-aqueous electrolyte battery of the example at least one of the positive electrode and the negative electrode had a plurality of grooves that attenuated inward from the electrode end. It is considered that the non-aqueous electrolyte battery of the example exhibited a high practical amount by using such an electrode.
  • Comparative Example 1 although the positive electrode had a groove, this groove existed without being attenuated over the entire width from the electrode end portion to the uncoated portion. Similarly, in Comparative Example 3, although the negative electrode had a groove, the groove existed without being attenuated over the entire width from the electrode end portion to the uncoated portion. In Comparative Example 2, although the positive electrode had a groove, the depth of the groove increased from the electrode end portion toward the uncoated portion. Similarly, in Comparative Example 4, although the negative electrode had a groove, the depth of the groove increased from the electrode end portion toward the uncoated portion. In the non-aqueous electrolyte batteries of these comparative examples, it is considered that the electrode group was misaligned during production, and the actual capacity was reduced due to this.
  • non-aqueous electrolyte batteries prepared in Examples 2, 6, 10, 14, 18, 22, 26, 30, and 34 the above NCM was used as the positive electrode active material, and monooblique niobium-titanium oxide was used as the negative electrode active material. Nb 2 TiO 7 (NTO) was used.
  • the non-aqueous electrolyte batteries prepared in these examples had a reference capacity of 22 Ah. In these examples, the same actual capacity as in the above-mentioned examples in which the combination of the NCM positive electrode and the LTO negative electrode was used was obtained.
  • non-aqueous electrolyte batteries produced in Examples 3, 7, 11, 15, 19, 23, 27, 31, and 35 the above NCM was used as the positive electrode active material, and rectangular titanium-containing composite oxidation was used as the negative electrode active material.
  • the product Li 2 Na 1.6 Ti 5.6 Nb 0.4 O 14 (LNT) was used.
  • the non-aqueous electrolyte batteries prepared in these examples had a reference capacity of 10 Ah. In these examples, good actual capacity could be maintained.
  • lithium cobalt oxide LiCoO 2 (LCO) was used as the positive electrode active material, and the above was used as the negative electrode active material. LTO was used.
  • the non-aqueous electrolyte batteries prepared in these examples had a reference capacity of 14 Ah. In these examples, good actual capacity could be maintained.
  • the electrodes according to at least one embodiment and the above-described embodiment include a current collector and an active material-containing layer.
  • the current collector has a main surface that includes a first end along a first direction.
  • the active material-containing layer is provided on the main surface of the current collector.
  • the active material-containing layer has a second end along the first direction.
  • the active material-containing layer contains the electrode active material.
  • a plurality of grooves are provided in at least a part of the second end portion of the active material-containing layer.
  • the plurality of grooves extend inward from the second end.
  • the plurality of grooves are grooves that are recessed in a direction orthogonal to the main surface.
  • the plurality of grooves are adjacent to each other along the first direction.
  • the plurality of grooves are attenuated inward from the second end.
  • the electrode can realize a high-capacity battery and a battery pack including the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

実施形態によれば、集電体と活物質含有層とを具備する電極が提供される。集電体は、第1方向に沿う第1端部を含む主面を有する。活物質含有層は、集電体の主面の上に設けられ、第1方向に沿う第2端部を有し、電極活物質を含有する。活物質含有層の第2端部の少なくとも一部に、第2端部から内側方向へ延び且つ主面に直交する方向へ向かって凹んでいる複数の溝が設けられている。複数の溝は第1方向に沿って隣接し、且つ内側方向へ向かって減衰している。

Description

電極、電池、及び電池パック
 本発明の実施形態は、電極、電池、及び電池パックに関する。
 リチウムイオン電池などの電池に含まれている電極には、該電極および対極(例えば、正極および負極)の間にセパレータなどの電気的絶縁性を示す部材を設け、捲回して得られる捲回型の電極群として電池に含まれているものがある。例えば、電池の製造工程において、次のとおり電極を作製し、作製した電極を加工する。集電箔上に電極塗液(例えば、電極材料を溶媒に懸濁させたスラリー)を、例えば、ダイヘッドを用いたダイコートによって塗工して電極を作製する。作製した電極を裁断することで任意の寸法に揃え、ロールプレスなどにより圧延して所定の密度となるように電極を加工する。加工した電極の間、例えば、正極と負極との間にセパレータを挟み、捲回することで電池用のコイル(捲回型の電極群)を製造できる。
日本国特開2015- 90805号公報
 高容量な電池を実現できる電極、高容量な電池、及びこの電池を具備する電池パックを提供することを目的とする。
 実施形態によれば、集電体と活物質含有層とを具備する電極が提供される。集電体は、第1方向に沿う第1端部を含む主面を有する。活物質含有層は、集電体の主面の上に設けられ、第1方向に沿う第2端部を有し、電極活物質を含有する。活物質含有層の第2端部の少なくとも一部に、第2端部から内側方向へ延び且つ主面に直交する方向へ向かって凹んでいる複数の溝が設けられている。複数の溝は第1方向に沿って隣接し、且つ内側方向へ向かって減衰している。
 他の実施形態によれば、正極と負極とを具備する電池が提供される。正極および負極の少なくとも一方は、上記実施形態に係る電極を含む。
 更に他の実施形態によれば、上記実施形態に係る電池を具備する電池パックが提供される。
図1は、実施形態に係る一例の電極を概略的に示す平面図である。 図2は、図1に示す電極のII-II線に沿った断面図である。 図3は、図1に示す電極のIII-III線に沿った断面図である。 図4は、実施形態に係る電極の製造の一例を概略的に示す説明図である。 図5は、図4に示すV-V線に沿った断面図である。 図6は、図4に示すVI-VI線に沿った断面図である。 図7は、実施形態に係る電極の製造の変形例を概略的に示す断面図である。 図8は、一例の電極の端部の長尺方向における変位量の測定結果を表す図である。 図9は、図8に示す測定結果における線分L1に沿うプロファイルを表すグラフである。 図10は、一例の電極の端部の短尺方向における変位量の測定結果を表す図である。 図11は、図10に示す測定結果における線分W1に平行な方向へのプロファイルを表すグラフである。 図12は、他の例の電極の端部の長尺方向における変位量の測定結果を表す図である。 図13は、図12に示す測定結果における線分L2に沿うプロファイルを表すグラフである。 図14は、他の例の電極の端部の短尺方向における変位量の測定結果を表す図である。 図15は、図14に示す測定結果における線分W2に平行な方向へのプロファイルを表すグラフである。 図16は、実施形態に係る一例の電極群を概略的に示す斜視図である。 図17は、電極群を部分的に展開した状態を概略的に示す斜視図である 図18は、実施形態に係る一例の扁平型電池の概略断面図である。 図19は、図18のA部の拡大断面図である。 図20は、実施形態に係る一例の電池パックの概略分解斜視図である。 図21は、図20の電池パックの電気回路を示すブロック図である。 図22は、比較例1における電極の製造を概略的に示す説明図である。 図23は、図22に示す電極の製造を他の方向から見た概略断面図である。 図24は、比較例2における電極の製造を概略的に示す説明図である。
実施形態
 電池容量を向上させる手段の一つとして、電極の密度を高くすることが挙げられる。一方で電極の密度が高すぎると、電極への電解質(例えば、液状の電解質)の含浸性が低下し得る。電極のうち電解質が浸透していない部分は充放電に寄与しにくいため、電極設計から見積もられる電池の設計容量と比較して、得られる電池の実容量が低下し得る。
 また、電極の形状が不適切である場合、捲回することができずにコイル(捲回型の電極群)を形成できない場合がある。コイルを作製できた場合でも、コイルに電解質が含浸しにくいことに起因する容量低下などといった問題が生じる。
 以下に、実施の形態について図面を参照しながら説明する。なお、実施の形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略する。また、各図は実施の形態の説明とその理解を促すための模式図であり、その形状や寸法、比などは実際の装置と異なる個所があるが、これらは以下の説明と公知の技術とを参酌して、適宜設計変更することができる。
 [第1の実施形態]
 第1の実施形態に係る電極は、集電体と活物質含有層とを具備する。集電体は、第1方向に沿う第1端部を含む主面を有する。活物質含有層は、集電体の主面の上に設けられている。活物質含有層は、第1方向に沿う第2端部を有している。活物質含有層は、電極活物質を含有する。活物質含有層の第2端部の少なくとも一部に複数の溝が設けられている。複数の溝は、第2端部から内側方向へ延びている。複数の溝は、主面に直交する方向へ向かって凹んでいる溝である。複数の溝は第1方向に沿って隣接している。複数の溝は、第2端部から内側方向へ向かって減衰している。
 上記電極は、電極端部に沿って波形形状の構造を有し、電極端部から内側へ向かって波形形状が徐々に治まり、例えば、平面形状に落ち着く構造体であり得る。このような構造の電極を用いると、捲回によるコイル作製の効率を高くできる。またこのような電極では、電極端部から内側へ減少しながらも続く波形形状に沿って電解質の含浸を促進できる。そのため、電極群への電解質の含浸速度の低下を抑制し、容量低下を低減することができる。
 電極は、電池の正極および負極のいずれでもあり得る。つまり電極は、電池用電極であり得る。
 集電体は、1以上の主面を有し、例えば、第1の主面とその裏側に位置する第2の主面を有する薄板形状を有し得る。集電体の主面は、第1方向に沿う第1端部を含む。集電体は、例えば、帯状の箔であり得る。アルミニウムを含んだ箔を集電体として用いることが望ましい。アルミニウムを含んだ箔は、例えば、アルミニウムからなる金属箔、又はアルミニウム合金箔を含む。
 第1方向は、例えば、帯状の集電体の長尺方向であり得る。第1端部は、帯状の集電体の長尺方向に沿う縁部であり得る。
 活物質含有層は、集電体の主面の上に設けられている。例えば、活物質含有層は、薄板形状の集電体の一方の主面の上に設けられ得る。或いは、活物質含有層は、薄板形状の集電体の表裏の両方の主面(第1の主面および第2の主面の両方)の上に設けられ得る。つまり、活物質含有層は、集電体の片面または両面に設けられ得る。
 活物質含有層の第2端部は、第1方向に沿っている。第2端部は、集電体の第1端部と重なり得る。例えば、帯状の集電体の上に活物質含有層が設けられてなる帯状の電極では、活物質含有層の第2端部は、帯状の電極の長尺方向に沿う活物質含有層の縁部であり得る。
 活物質含有層は、電極活物質を含有する。電極活物質としては、例えば、電池用活物質として用いることのできる化合物を挙げることができる。電極活物質は、例えば、電池における電極およびその対極(例えば、正極およびその対極としての負極、或いは負極およびその対極としての正極)の設計に応じて適宜選択できる。電極活物質(正極活物質、又は負極活物質)の詳細は、後述する。 
 活物質含有層は、電極活物質に加え、導電剤、結着剤、又は導電剤および結着剤の両方を更に含み得る。
 活物質含有層の第2端部の少なくとも一部に複数の溝が設けられている。これらの溝は、第2端部から内側方向へ延びており、且つ、集電体の主面に直交する方向、つまり電極の厚さ方向に向かって凹んでいる溝である。各々の溝は、例えば、第1方向と交差し且つ集電体の主面に平行な第2方向に沿い得る。各々の溝が沿う第2方向は、第1方向に直交する方向であり得る。
 集電体の表裏両方の主面の上に活物質含有層が設けられている場合、両方の主面上に各々設けられている両方の活物質含有層のそれぞれの第2端部に複数の溝が設けられていることが望ましい。電極の両面の溝は、集電体へ向かって凹んでいるといえる。集電体は、第1端部にて溝の形状に合わせて起伏を含んだ形状を有し得る。例えば、集電体の第1端部が波形形状を有し、第1端部の波形形状における凹部に各々の溝が配置され得る。
 第2端部において複数の溝が設けられている位置は、電極を用いて作製する電極群の設計に応じて適宜調整することが望ましい。例えば、捲回型電極群、即ち電池用コイルを作製する場合は、電極を捲回する際湾曲する部分およびその周辺に複数の溝が配置されることが望ましい。電極が湾曲している部分およびその周辺は、捲回コイルにおいて密度が相対的に高い部位である。そのため、電解質の含浸性を促進させる効果がより顕著に現れる。なお、捲回後の電極において、例えば、円弧を描くように湾曲している部分では、活物質含有層の表面の曲面に対する接面に直交する方向に溝が凹んでいると見なせる。第2端部の全域に亘って溝が設けられていることがより望ましい。
 また、複数の溝は第1方向に沿って隣接している。第2端部に設けられているすべての溝が連なっていなくてもよく、第2端部における1以上の部分にて第1方向に沿って隣接している複数の溝の群が1以上存在し得る。例えば、第1方向に沿って隣接している複数の溝の一つの群が第2端部の一部に設けられるとともに、第1方向に沿って隣接している複数の溝の他の一群が第2端部の他の一部に設けられ得る。ここでいう隣接している複数の溝の一つの群とは、一つの溝と第1方向に並んで次に設けられている溝との間に実質的に平坦な部分が存在しない一連の溝を意味する。また、一つの群において、一定の法則をもって複数の溝が配置されて、例えば、波形形状が形成され得る。
 各々の溝は、活物質含有層の第2端部から内側方向へ向かって減衰している。各々の溝は第2端部付近で最も深く、端部から離れるにつれ浅くなる。言い換えると各々の溝の底部は、第2端部から出発して活物質含有層の表面へ向かって上る傾斜を形成している。第2端部から内側方向へ一定距離にある位置で溝はなくなり、活物質含有層が実質的に平坦になる。電極端部から内側へ向かって減衰する溝を有する電極は、捲回型電極群の生産性が高い。また、溝によって毛細管現象が発現し電極端部から電解質が吸い上げられるため、電極群への電解質の含浸速度が促進される。そして当該電極は、高容量な電池を実現できる。
 溝が減衰しない、例えば、電極の全幅に亘って実質的な深さの変化がない溝を有する電極を用いた場合、電極群への電解質の含浸性が高いものの、捲回することが難しく得られる電極群の寸法や形状にバラツキが多いうえ、容量が高い電池が得られにくい。溝が徐々に減衰するのではなく電極端部の近方にのみ溝が設けられており、例えば、段形状など突然溝がなくなる構造を有する電極の場合でも、捲回することが難しくコイルの生産性が制限される。
 活物質含有層の密度が1.5 g/cm3以上4.0 g/cm3以下であることが望ましい。活物質含有層が高い密度を有することで、エネルギー密度に優れた電池を得ることができる。また、電極端部から内側へ向かう複数の溝が設けられているため、密度が高くても活物質含有層への電解質の含浸性が高い。
 電極は、集電体の何れの主面にも活物質含有層が設けられていない部分を含み得る。集電体のうち活物質含有層が設けられていない部分は、集電タブとして機能できる。例えば、集電体の一辺に平行に形成された活物質含有層非保持部が集電タブとして機能し得る。集電タブは、集電体における活物質含有層無担持の一辺に限られない。例えば、集電体の一側面から突出した複数の帯状部を集電タブとして使用可能である。集電タブは、集電体と同じ材料から形成されていても良い。または、集電体とは別に集電タブを用意し、これを集電体の少なくとも一端面に溶接等で接続してもよい。
 図1-図3を参照して、実施形態に係る電極を説明する。
 図1は、実施形態に係る一例の電極を概略的に示す平面図である。ここで示す電極は、正極の例である。図2は、図1に示す電極のII-II線に沿った断面図である。図3は、図1に示す電極のIII-III線に沿った断面図である。
 正極4は、正極集電体4a及び正極活物質含有層4bを含む。正極活物質含有層4bは、正極集電体4aの表裏両面に担持されている。正極集電体4aは、その一辺において、いずれの表面にも正極活物質含有層4bが担持されていない部分にあたる正極集電タブ4cを含む。
 図2は、正極活物質含有層4bの第2端部4e付近における、第2端部4eに平行な断面を示す。図2からわかるように、正極集電体4aの両面の正極活物質含有層4bのそれぞれに複数の溝が設けられている。複数の溝は、正極集電体4aの第1端部4d及び正極活物質含有層4bの第2端部4eに平行な方向(第1方向)、つまり図1のII-II線に平行な方向に沿って隣接している。正極活物質含有層4bの表面が平坦になる部分が各々の溝の間にない。また、複数の溝は、正極集電体4aの主面に直交する方向、つまり図1にて紙面に直交する方向へ向かって凹んでいる。
 図3は、複数の溝の一つに沿った断面図を示す。図示するとおり溝は、電極端部(第1端部4d及び第2端部4e)から内側方向へ延びている。また溝の深さDは、電極端部から内側方向へ向かうにつれて減少する。例えば、第2端部4eの位置(0 mm)での溝の深さを第1深さとし、内側方向へ向かって2 mmの位置での溝の深さを第2深さとしたとき、第1深さ(基準100 %)に対して第2深さは20 %減衰した深さであり得る。言い換えると、第2深さは第1深さと比較して80 %の値を有し得る(第2深さ=[第1深さ-(第1深さ×20 %)]=[第1深さ×80 %])。さらに、例えば、第2端部4eから内側方向へ向かって4 mmの位置での溝の深さを第3深さとしたとき、第1深さに対して第3深さは50 %減衰した深さであり得る。言い換えると、第3深さは第1深さと比較して50 %の値を有し得る(第3深さ=[第1深さ-(第1深さ×50 %)]=[第1深さ×50 %])。そして、例えば、第2端部4eから内側方向へ向かって7 mmの位置での溝の深さを第4深さとしたとき、第1深さに対して第4深さは90 %減衰した深さであり得る。言い換えると、第4深さは第1深さと比較して10 %の値を有し得る(第4深さ=[第1深さ-(第1深さ×90 %)]=[第1深さ×10 %])。第2端部4eから内側方向へ8 mmの位置よりも内側では、溝が実質的になくなっている状態にあり得る。
 上記説明における溝の深さD(例えば、第1深さ、第2深さ、第3深さ、又は第4深さ)とは、実質的な起伏がない本質的には平坦な電極を基準とした深さである。溝の深さは、電極端部に凹部が形成されるように平坦な電極が変形したものと見なし、変形前の電極表面(活物質含有層の表面)に対する移動距離に対応する。例えば、図3に示す例では、正極集電タブ4c付近の正極活物質含有層4bは実質的に平坦である。正極集電タブ4c付近の正極活物質含有層4bの表面を基準として、溝の深さDを求める。溝の深さの詳細な測定方法は後述する。
 第2端部4eにおける複数の溝の深さDの平均、つまり複数の溝についての上述した第1深さの平均は、0.1 mm以上1.6 mm以下であることが望ましい。第1深さの平均が0.1 mm以上0.4 mm以下であることがより好ましく、0.1 mm以上0.3 mm以下であることがさらに好ましい。第1深さの平均の好ましい範囲は、電極活物質の種類に応じて異なる。
 溝が第1方向に沿って隣接して設けられる頻度が高いことが望ましい。例えば、図2に示すように第1方向に平行な電極断面を波形形状として表したときの波のピッチ(周期)Pが10 mm以下であることが好ましい。各々の溝についての第1方向への幅が狭く、且つ、溝の配置が密集しているほうが、捲回コイルを作製するうえで好ましい。複数の溝におけるピッチの詳細な測定方法は後述する。
 第2端部4eにおいて、複数の溝における内壁の高さHの平均が0.2 mm以下であることが望ましい。第2端部4eでの各々の溝の内壁の高さHは、それぞれの溝の最も低い位置と最も高い位置との高低差に対応する。溝を谷に見立てると、内壁の高さHは谷の底から谷の縁までの高度の差に対応する。適切な凹み具合の溝が設けられていることで、例えば、コイル作製時に正極と負極との重なりのクリアランスを±2.00 mm以内に収めることができる。そうすることで捲きずれの発生をさらに低減できる。溝の内壁の高さの詳細な測定方法は後述する。
 図2の例では、正極集電体4aとその表裏両面の正極活物質含有層4bとが波形形状に形成されている。またこの例では、正極集電体4aの一方の面にある正極活物質含有層4bに設けられている溝の位置と、正極集電体4aの他方の面(裏面)にある正極活物質含有層4bに設けられている溝の位置とが一致していない。実施形態に係る電極における溝の形態は図2に示す構造に限られない。例えば、端部付近の断面形状は、波打ち形状に限られない。また、複数の溝は正極活物質含有層4bに設けられていればよく、正極集電体4aは第1端部4d付近でも実質的な起伏がない形状を有していてもよい。正極集電体4aの一方の面にある正極活物質含有層4bに設けられている溝の位置と、正極集電体4aの他方の面にある正極活物質含有層4bに設けられている溝の位置とが一致していてもよい。
 図2は、正極集電体4aのうち正極集電タブ4cとして機能する一辺に平行なII-II線に沿った断面図である。つまり、複数の溝が設けられている端部(第2端部)に沿う方向(第1方向)は、正極集電タブ4cがある一辺に平行である。各々の溝は、電極端部(第1端部4d及び第2端部4e)から正極集電タブ4cへ向かって延びており、且つ、図3に示したように正極集電タブ4cに近づくにつれ減衰している。
 複数の溝は他の端部に沿って隣接して設けられてもよく、例えば、正極活物質含有層4bにおいて正極集電タブ4cである正極集電体4aの一辺と交差する方向を第1方向とし、この方向に沿う端部を第2端部として複数の溝が設けられ得る。複数の溝が設けられる端部は一辺に限られず、一つの電極にて複数の端部が第2端部であり得る。例えば、集電体が集電タブを含まない電極では、電極の主面の一辺以上の何れの端部にも複数の溝が設けられ得る。
 電極が正極である例を説明したが、上述したとおり電極は負極であってもよい。負極である場合は、正極についての正極集電体、正極活物質含有層、及び正極集電タブは、それぞれ負極集電体、負極活物質含有層、及び負極集電タブに対応する。
 以下に、正極である形態、及び負極である形態をそれぞれ詳細に説明する。
 (正極)
 正極は、先に説明したように、正極集電体と、正極集電体上に、具体的にはその両面又は片面に形成された正極活物質含有層とを含むことができる。正極集電体は、表面に正極活物質含有層が形成されていない部分を含むことができ、この部分は正極集電タブとして働くことができる。
 正極集電体は、正極活物質含有層から電子を取り込んだり、正極活物質含有層に電子を受け渡したりする。また、正極集電体は電子を移動させる役割を持つ。そのため正極集電体は、電気化学的に安定である材料から形成されることが好ましい。そのような材料の例には、銅、ニッケル、ステンレス、アルミニウム、及びアルミニウム合金が含まれる。アルミニウム合金は、Mg、Ti、Zn、Mn、Fe、Cu、及びSiからなる群より選択される1以上を含むことが好ましい。
 正極活物質含有層は、正極活物質を含むことができる。
 正極活物質は、特に限定されるものではないが、充放電において活物質の体積変化が小さいものを用いることが好ましい。このような正極活物質を用いることで、充放電における正極の撚れを軽減することができるため、サイクル性能が向上する。例えば、Li, Fe, Ni, Mn, 及びCoからなる群より選択される1以上を含む化合物を挙げることができる。正極活物質は、リチウム含有ニッケルコバルトマンガン酸化物(例えば、Li1-xNi1-a-b-cCoaMnbM1c2(式中、M1はMg、Al、Si、Ti、Zn、Zr、Ca及びSnからなる群より選択される1以上であり、-0.2<x<0.5,0<a<0.5、0<b<0.5、0≦c<0.1、a+b+c<1である))を含むことが好ましい。その他に、種々の酸化物、例えば、リチウム含有コバルト酸化物(例えば、LiCoO2)、二酸化マンガン、リチウムマンガン複合酸化物(例えば、LiMn24、LiMnO2)、リチウム含有ニッケル酸化物(例えば、LiNiO2)、リチウム含有ニッケルコバルト酸化物(例えば、LiNi0.8Co0.22)、リチウム含有鉄酸化物、リチウムを含むバナジウム酸化物や、二硫化チタン、二硫化モリブデンなどのカルコゲン化合物などを含んでいてもよい。使用する正極活物質の種類は1種類または2種類以上にすることができる。
 正極活物質含有層は、必要に応じて、導電剤及び結着剤を更に含むことができる。
 導電剤は、集電性能を高め、且つ正極活物質と正極集電体との接触抵抗を抑えるために必要に応じて配合される。正極活物質含有層における導電剤としては、例えばアセチレンブラック、カーボンブラック、人工黒鉛、天然黒鉛等を用いることができる。
 結着剤は、正極活物質と正極集電体とを結着させる働きを有する。正極活物質含有層における結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、PVdFの水素もしくはフッ素のうち少なくとも1つを他の置換基で置換した変性PVdF、フッ化ビニリデン-6フッ化プロピレンの共重合体、ポリフッ化ビニリデン-テトラフルオロエチレン-6フッ化プロピレンの3元共重合体等を用いることができる。
 正極活物質含有層における正極活物質、導電剤及び結着剤の配合割合は、正極活物質75質量%以上96質量%以下、導電剤3質量%以上20質量%以下、結着剤1質量%以上7質量%以下の範囲内にすることが好ましい。
 (負極)
 負極は、正極と同様に、負極集電体と、負極集電体上に、具体的にはその両面又は片面に形成された負極活物質含有層とを含むことができる。負極集電体は、表面に負極活物質含有層が形成されていない部分を含むことができ、この部分は負極集電タブとして働くことができる。
 負極集電体としては、負極活物質含有層においてリチウムイオンの吸蔵及び放出が生じる電位範囲で電気化学的に安定である材料から形成されることが好ましい。そのような材料の例には、銅、ニッケル、ステンレス、アルミニウム、及びアルミニウム合金が含まれる。アルミニウム合金は、Mg、Ti、Zn、Mn、Fe、Cu、及びSiからなる群より選択される1以上を含むことが好ましい。
 負極活物質含有層は、負極活物質を含むことができる。負極活物質は、作動電位が1V(vs.Li/Li+)以上である化合物を含む。この化合物は、Liの吸蔵放出電位がリチウムの酸化還元電位に対し1.0V(vs.Li/Li+)以上2.3V(vs.Li/Li+)以下であることが好ましい。このような負極活物質としては、例えば、リチウムチタン複合酸化物(例えば、Li4Ti5O12等のスピネル型のチタン酸リチウム、単斜晶型ニオブチタン複合酸化物、及び直方晶型(orthorhombic)チタン含有複合酸化物)、及び単斜晶型二酸化チタン等が挙げられる。リチウムチタン複合酸化物を含むことが好ましい。
 単斜晶型ニオブチタン複合酸化物の例として、LixTi1-yM1yNb2-zM2z7+δで表される化合物が挙げられる。ここで、M1は、Zr,Si,及びSnからなる群より選択される少なくとも1つである。M2は、V,Ta,及びBiからなる群より選択される少なくとも1つである。組成式中のそれぞれの添字は、0≦x≦5、0≦y<1、0≦z<2、-0.3≦δ≦0.3である。単斜晶型ニオブチタン複合酸化物の具体例として、LixNb2TiO7(0≦x≦5)が挙げられる。
 単斜晶型ニオブチタン複合酸化物の他の例として、LixTi1-yM3y+zNb2-z7-δで表される化合物が挙げられる。ここで、M3は、Mg,Fe,Ni,Co,W,Ta,及びMoより選択される少なくとも1つである。組成式中のそれぞれの添字は、0≦x≦5、0≦y<1、0≦z<2、-0.3≦δ≦0.3である。
 直方晶型チタン含有複合酸化物の例として、Li2+aM(I)2-bTi6-cM(II)d14+σで表される化合物が挙げられる。ここで、M(I)は、Sr,Ba,Ca,Mg,Na,Cs,Rb及びKからなる群より選択される少なくとも1つである。M(II)はZr,Sn,V,Nb,Ta,Mo,W,Y,Fe,Co,Cr,Mn,Ni,及びAlからなる群より選択される少なくとも1つである。組成式中のそれぞれの添字は、0≦a≦6、0≦b<2、0≦c<6、0≦d<6、-0.5≦σ≦0.5である。直方晶型チタン含有複合酸化物の具体例として、Li2+aNa2Ti614(0≦a≦6)が挙げられる。
 その他に、黒鉛質材料もしくは炭素質材料(例えば、黒鉛、コークス、炭素繊維、球状炭素、熱分解気相炭素質物、樹脂焼成体など)、カルコゲン化合物(例えば、二硫化チタン、二硫化モリブデン、セレン化ニオブなど)、軽金属(例えば、アルミニウム、アルミニウム合金、マグネシウム合金、リチウム、リチウム合金など)等を10重量パーセント以下含んでいてもよい。使用する負極活物質の種類は1種類又は2種類以上にすることができるが、電池設計上、負極の作動電位が1.0V(vs.Li/Li+)より貴になることが好ましい。また、充放電において体積増減が少ない活物質を用いることが好ましい。このようにすることで、充放電における負極の撚れを軽減することができる、その結果サイクル性能を向上させることができる。
 負極活物質に用いることができるさらに他の例として、例えば、TiとP、V、Sn、Cu、Ni、Nb及びFeよりなる群から選択される少なくとも1種類の元素とを含有する金属複合酸化物、SnB0.40.63.1等のアモルファススズ酸化物、SnSiO等のスズ珪素酸化物、WO等のタングステン酸化物といった金属酸化物が挙げられる。他にも、金属硫化物や金属窒化物を負極活物質として用いることができる。
 TiとP、V、Sn、Cu、Ni、Nb及びFeよりなる群から選択される少なくとも1種類の元素とを含有する金属複合酸化物としては、例えば、TiO-P、TiO-V、TiO-P-SnO、TiO-P-MeO(Meは、Cu、Ni及びFeよりなる群から選択される少なくとも1種類の元素である)などを挙げることができる。この金属複合酸化物は、結晶性が低く、結晶相とアモルファス相とが共存もしくは、アモルファス相単独で存在したミクロ構造であることが好ましい。このようなミクロ構造であることによりサイクル性能を大幅に向上させることができる。
 金属硫化物としては、例えば、TiSのような硫化チタン、MoSのような硫化モリブデン、FeS、FeS、及びLiFeS(添字uは、0.9≦u≦1.2)のような硫化鉄が挙げられる。
 金属窒化物としては、例えば、リチウムコバルト窒化物(例えば、LivCowN、ここで、0<v<4であり、0<w<0.5である)などのリチウム窒化物が挙げられる。
 負極活物質含有層は、必要に応じて、導電剤及び結着剤を更に含むことができる。
 導電剤は、集電性能を高め、且つ負極活物質と負極集電体との接触抵抗を抑えるために必要に応じて配合される。負極活物質含有層における導電剤としては、例えば炭素材料を用いることができる。炭素材料の例としては、例えば、アセチレンブラック、カーボンブラック、コークス、炭素繊維、黒鉛等を挙げることができる。
 結着剤は、負極活物質と負極集電体とを結着させる働きを有する。負極材料層における結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、エチレン-プロピレン-ジエン共重合体(EPDM)、スチレン-ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等を用いることができる。
 負極活物質含有層における負極活物質、導電剤及び結着剤は、それぞれ70質量%以上96質量%以下、2質量%以上20質量%以下及び2質量%以上10質量%以下の割合で配合することが好ましい。導電剤の量を2質量%以上とすることにより、負極活物質含有層の集電性能を向上させることができる。また、結着剤の量を1質量%以上とすることにより、負極活物質含有層と負極集電体との結着性を高めることができ、優れたサイクル性能を期待できる。一方、導電剤及び結着剤はそれぞれ16質量%以下にすることが高容量化を図る上で好ましい。
 <製造方法>
 以上説明した電極は、例えば、次のようにして作製できる。
 集電体を準備する。集電体としては、例えば、先に説明した材料からなる箔を用いることができる。
 電極活物質、導電剤、及び結着剤を有機溶媒中に分散させた塗液を調製する。有機溶媒としては、例えば、N-メチルピロリドン(NMP)等の汎用されている溶媒を用いることができる。塗液中の電極活物質、導電剤、及び結着剤の配合割合には、活物質含有層(正極活物質含有層、又は負極活物質含有層)について先に説明した電極活物質(正極活物質、又は負極活物質)、導電剤、及び結着剤の配合割合を採用できる。
 準備した集電体に調製した塗液を、例えば、ダイヘッドを用いたダイコートによって塗工する。塗工した塗液を乾燥させて活物質含有層を形成する。活物質含有層は、集電体の一方の面に形成してもよく、或いは、集電体の表裏の両面に形成してもよい。また、集電体の一部に塗液を塗工しない部分を残し、集電タブとしての未塗工部を得ることができる。
 このようにして得られた集電体と活物質含有層との積層シートを、電池設計に合わせた寸法に裁断する。また、例えば、ロールプレスを用いた圧延を行うことにより、活物質含有層の密度を調整する。このとき、電極の厚さと塗液の目付量から電極密度を算出することができる。
 圧延の際、圧延条件を適切に制御することで活物質含有層または活物質含有層および集電体が変形し、任意の電極端部(第2端部)に複数の溝が形成される。例えば、変形させる端部における塗液の目付量を他の部分の目付量と比較して多くし、圧延の際のプレス圧を平面方向に亘って均等にする。或いは、変形させる端部側のプレス圧を他の部分より高くする。その他、例えば、段付きローラーなど突出した圧延部を有するロールプレスを用い、変形させる端部に対しプレス圧を集中させたり、端部のみプレスすることで変形させたりすることができる。また、凹凸部が形成されており放射状に突出した段部を圧延部として有するロールプレスを用い、凹凸部で端部をプレスすることで端部を変形させてもよい。
 図4-図6を参照して、段付きローラーを用いた加工により電極端部を変形させる方法の一例を詳細に説明する。
 図4は、実施形態に係る電極の製造の一例を概略的に示す説明図である。図5は、図4に示すV-V線に沿った断面図である。図6は、図4に示すVI-VI線に沿った断面図である。ここで、正極を加工する例を説明する。
 図4-図6に示すように、加工ローラー40は、軸方向に沿って並ぶ小径部41及び大径部42を有している。小径部41は、円柱形状を有する。小径部41は、円柱の側面にあたる退避面41aを有する。大径部42は円柱形状の部分を含む。小径部41と大径部42とは、それぞれの円柱形状の同一軸上に連結されている。大径部42は、円柱の側面にあたる突出面42aを有する。大径部42は、突出面42aに加え図示するように逃げ面43を有し得る。逃げ面43は、例えば、大径部42の端面の外周が面取りされて形成された面であり得る。逃げ面43は、省略してもよい。
 小径部41の径r1と、大径部42の径r2とは、r1<r2の関係を満たしている。小径部41の径r1は、円柱形状の中心軸から退避面41aまでの距離に対応する。大径部42の径r2は、円柱形状の中心軸から突出面42aまでの距離に対応する。大径部42は小径部41に対し放射方向に突出しており、退避面41aよりも突出面42aの方が外側の位置にある。大径部42が突出する高さ、つまり突出面42aと退避面41aとの段差Sは、大径部42の径r2と小径部41の径r1との差に等しい(S=r2-r1)。
 図4-図6では、正極4における正極集電タブ4cの反対側にある電極端部(正極集電体4aの第1端部4d及び正極活物質含有層4bの第2端部4e)のみプレスする例を示す。ここでは、図4の縦方向が第1方向に対応する。
 加工ローラー40を用いて正極4の電極端部を変形させる際、加工ローラー40と正極4との加工ローラー40の軸方向(図5の横方向)への位置関係を、図5に示すように大径部42の突出面42aと正極活物質含有層4bの第2端部4e及びその付近とが重なる位置に調整する。この位置関係でプレスを実施することで、退避面41aが正極4に接触せず、正極4のうち大径部42において突出面42aと正極活物質含有層4bとが重なる部分の幅Wに対応する部分のみプレスできる。
 加工ローラー40の大径部42における段差S、大径部42のうち正極4と重なる幅W、プレス圧等を適宜調整することで、変形により生じる溝の構造を制御できる。
 図7を参照して、段付きローラーを用いた加工により電極端部を変形させる方法の変形例を詳細に説明する。具体的には、図4-図6を参照して説明した方法では加工ローラー40の大径部42の断面が円形であったことに対し、加工に用いるローラーが放射状に突出する段部により周縁部分に凹凸部が形成されている圧延部を有する点で当該変形例は異なる。
 該変形例における加工ローラー40は、図6で示した断面形状の代わりに図7に示す断面形状を有する。この軸方向と交差する断面の形状を除き、変形例における加工ローラー40は先に説明した例における加工ローラー40と同様の構造を有することができる。つまり、図7を図4に示すVI-VI線に沿った断面図と見なして図4、図5及び図7を参照して変形例の加工ローラー40を説明できる。
 変形例の加工ローラー40は、図4及び図5に示すように軸方向に沿って並ぶ小径部41及び大径部42を有している。先述した例と同様に、加工ローラー40の小径部41は円柱形状を有し退避面41aを有している。一方で、図7に示すとおり大径部42の形状は、先の例とは異なる。大径部42は小径部41の退避面41aよりも外側に位置する突出面42aを複数含む。また、大径部42の周縁には、複数の凹部42bが形成されている。大径部42の周縁に沿って突出面42a及び凹部42bが交互に配置されて、大径部42の外周に沿って凹凸形状が形成されている。
 大径部42において、突出面42aを結ぶ円の径r2と、凹部42bの底面42cを結ぶ円の径r3とは、r2>r3の関係を満たしている。径r2は、円柱形状の中心軸から突出面42aまでの距離に対応する。径r3は、円柱形状の中心軸から凹部42bの底面42cまでの距離に対応する。図示する例では、中心軸から底面42cまでの径r3と小径部41の径r1とは等しい。径r3と径r1とは、異なっていてもよい。大径部42は小径部41に対し放射状に突出する複数の段部を有しており、各々の段部の上面、即ち突出面42aの方が退避面41a及び底面42cよりも外側の位置にある。突出面42aが突出する高さ、つまり突出面42aと底面42cとの段差Sは、突出面42aまでの径r2と底面42cまでの径r3との差に等しい(S=r2-r3)。
 凹部42bを挟んで円周方向に並ぶ突出面42aの間の間隔I1、及び凹部42bの間の突出面42aの円周方向の円弧幅I2は、大径部42の円周に沿って配置されている凹部42b及び段部の数、並びに大径部42における径r2及び径r3を調整することで、適宜変更することができる。間隔I1は、凹部42bの底面42cの円周方向の円弧幅に対応し得る。
 図6に示す断面形状は円形であり図7に示す断面形状は歯車のような形状であるが、加工ローラーの断面形状はこれらの形状に限られない。例えば、断面の周辺が緩やかに波打っている形状の断面形状を有する加工ローラーを用いることもできる。
 <測定方法>
 電極における溝の有無は、レーザー変位計を用いて電極における変位量を測定することにより確認することができる。具体的には、電極における変位量から溝の深さを見積もることができる。
 レーザー変位計は、測定対象物にレーザー光を照射し、対象から反射した光を受光レンズで集光して受光素子上で結像する。レーザーの投光部および受光レンズを含んだ部位、例えば、ヘッドと対象物との距離が変わると、集光される反射光の角度が変わり、それに伴って受光素子上の結像位置が変化する。結像位置の変化が対象との距離の変化に比例していることから、距離の変化を算出する。
 レーザー変位計のヘッドと測定対象物とを相対的に平行に移動させながら対象にレーザーを照射し対象表面で反射するレーザーをモニタリングする。例えば、5 m/minの速度で測定対象物を移動させながら測定を行う。対象表面における起伏に伴う照射レーザーと反射レーザーの位相差を測定し、対象表面の変位量データを取得する。
 0.2 mm以上の幅に亘る変位量の変化が30 μm以下である領域には、実質的な起伏がないと判断する。このような領域を基準(ゼロ点)とし、溝の深さを測定する。一方で、0.2 mm以内の幅における変位量の変化が30 μmを超える場合は、溝が在ると判断できる。
 測定対象の電極が電池に組み込まれている場合は、次のようにして電極を採取する。
 先ず、観察対象の電極を含んだ電池を放電する。電池を解体し、電極を取り出す。取り出した電極を適切な溶媒を用いて洗浄する。洗浄に用いる溶媒としては、例えば、メチルエチルカーボネート(MEC)を挙げることができる。洗浄後、電極を乾燥させる。乾燥後の電極を測定試料とする。
 対象の電極が電極群として電池に含まれている場合は、電極群ごと取り出す。取り出した電極群を適切な溶媒を用いて洗浄する。洗浄後、電極群を乾燥させる。乾燥後の電極群を測定試料とする。
 測定試料としての電極または電極群に、40 N/mの張力をかけた状態でレーザー変位計による測定に供する。測定時に電極に張力をかけることで、たわみなどの影響を軽減し、電極端部の形状(例えば、波形形状)のみを観察することができる。測定試料が捲回型の電極群、即ちコイルである場合は、コイルに張力をかけることでコイル成形時に電極に生じた形状変化を引き延ばし、電極端部の形状のみを観察することができる。
 測定により変位量のスペクトルを取得し、次のように解析する。スペクトルから溝の有無、溝の配置、及び溝の形状を確認する。
 先に説明した基準(ゼロ点)に基づいて、端部(第2端部)からの各距離での溝の深さ(図3に示す深さD)を確認する。例えば、端部の位置(ゼロ距離)における第1深さ、端部から内側方向へ距離2 mmの位置での第2深さ、端部から内側方向へ距離4 mmの位置での第3深さ、端部から内側方向へ距離7 mmの位置での第4深さをそれぞれ確認する。ここで、溝に沿う方向にて測定したスペクトル、例えば、端部から内側方向へ向かう方向へのスペクトルを用いることができる。
 具体的には、分析対象の溝における端部から0 mmの位置、2 mmの位置、4 mmの位置、及び7 mmの位置での基準(ゼロ点)に対する変位量を確認する。対象の溝における端部からのそれぞれの距離(0 mm、2 mm、4 mm、及び7 mm)の位置について、各位置での基準(ゼロ点)に対する変位量の最大値を長さに換算し、その溝についての第1深さ、第2深さ、第3深さ、及び第4深さとしてそれぞれ記録する。少なくとも10箇所の溝について第1乃至第4深さを求め、第1乃至第4深さそれぞれの平均値を算出する。
 電極端部(第2端部)からの各距離での溝の平均深さ(第1乃至第4深さのそれぞれについての平均)に基づいて、溝の減衰の仕方を確認できる。複数の溝の第1深さの平均値および第2深さの平均値に基づいて、端部から内側へ向かって2 mmの距離までに溝が減衰した割合、つまり第1深さに対する第2深さの平均減衰率(=[(第1深さの平均値-第2深さの平均値)/第1深さの平均値])を算出する。同様に、第1深さに対する第3深さの平均減衰率(=[(第1深さの平均値-第3深さの平均値)/第1深さの平均値])、及び第1深さに対する第4深さの平均減衰率(=[(第1深さの平均値-第4深さの平均値)/第1深さの平均値])を算出する。
 複数の溝の周期、つまり電極端部の断面形状を波として表したときのピッチ(図2に示すピッチP)は、次のようにして確認できる。ここで、電極端部(第2端部)に沿うスペクトル、例えば、端部の縁に沿って測定したスペクトルを用いることができる。隣合う溝の位置を確認し、溝の間の距離を求める。具体的には、例えば、変位量が極小値となる位置を記録する。このような極小値がある位置は、溝における最も低い位置に対応し得る。極小値がある一つの位置と、スペクトルにてその次に極小値がある位置との間の距離を求める。こうして、隣り合う二つの溝の間の距離を求めることができる。少なくとも10組の溝の間の距離を求める。求めた距離の平均値を算出し、複数の溝のピッチを求める。
 溝の内壁の高さ(図2に示す高さH)は、次のようにして確認できる。ここで、電極端部(第2端部)に沿うスペクトル、例えば、端部の縁に沿って測定したスペクトルを用いることができる。分析対象の溝における最も低い位置と、この最も低い位置を起点に両側にそびえる内壁の頂点にあたる最も高い位置との高さの差(電極の厚み方向への位置の差)を確認する。
 具体的には、例えば、対象の溝の両側にて変位量が極大値となる位置を記録する。このような極大値がある位置は、溝の内壁の頂点の位置に対応し得る。両側の位置の極大値に対する、対象の溝における変位量の差の最大値を求める。溝の両側の極大値の間で得られる変位量が異なる場合は、変位量の値がより高くなる方の極大値に基づく値をその溝の内壁の高さとして採用する。少なくとも10箇所の溝について最大値を求め、求めた最大値の平均値を算出する。算出した平均値を長さに換算して、用いたスペクトルにおける溝の内壁の高さの平均を求める。
 図8に、一例の電極の端部の長尺方向(図8の縦方向)における変位量の測定結果を表す図を示す。図9に、図8における線分L1に沿うプロファイルを表すグラフを示す。つまり図9は、図8に示す線分L1の位置で電極端部に平行な方向に沿って測定された変位量スペクトルを示す。
 図10に、この例の電極の端部の短尺方向(図10の横方向)における変位量の測定結果を表す図を示す。図11に、図10に示す測定結果における線分W1に平行な方向へのプロファイルを表すグラフを示す。つまり図11は、電極端部から内側方向へ向かって測定された変位量スペクトルを示す。図11に示す複数のスペクトルは、様々な位置で線分W1に平行な方向に沿って測定した変位を表す。
 図9が示すとおり、この例の電極は端部、具体的には図8の線分L1で示す位置に波形形状を有する。図11が示すとおり、端部から内側へ進むにつれて波形形状が減少し、溝が浅くなる。
 図8-図11にて測定結果を示した電極は、波形のピッチが10 mm - 30 mm程度、端部(線分L1の位置)での変位量、即ち溝の深さが200 μm以上で、端部から6 mm - 8 mm程度内側へ進んだ位置まで波形形状が続く例である。
 図12に、他の例の電極の端部の長尺方向における変位量の測定結果を表す図を示す。図13に、図12における線分L2に沿うプロファイルを表すグラフを示す。つまり図13は、図12に示す線分L2の位置で電極端部に平行な方向に沿って測定された変位量スペクトルを示す。
 図14に、この例の電極の端部の短尺方向における変位量の測定結果を表す図を示す。図15に、図14に示す測定結果における線分W2に平行な方向へのプロファイルを表すグラフを示す。つまり図15は、図14に示す線分W2に沿って測定された変位量スペクトルを示す。図15に示す複数のスペクトルは、様々な位置で線分W2に平行な方向に沿って測定した変位を表す。
 図13が示すとおり、この例の電極も端部、具体的には図12の線分L2で示す位置に波形形状を有する。図15が示すとおり、端部から内側へ進むにつれて波形形状が減少し、溝が浅くなる。
 図12-図15にて測定結果を示した電極は、図8-図11にて説明した電極よりも波形の周期が短く、溝が浅い。詳細には、この例の電極では波形のピッチが10 mm以下で、端部(線分L2の位置)での変位量、即ち溝の深さが200 μm以下である。図12-図15にて説明した電極の方が、捲回時の電極の重なりによる電極ずれが小さくなる。そのため、捲回型電極群に採用する電極としては、図12-図15の電極の方が図8-図11の電極より好ましい。
 第1の実施形態に係る電極は、集電体と活物質含有層とを具備する。集電体は、第1方向に沿う第1端部を含む主面を有する。活物質含有層は、集電体の主面の上に設けられ、第1方向に沿う第2端部を有し、電極活物質を含有する。活物質含有層の第2端部の少なくとも一部に複数の溝が設けられている。複数の溝は、第2端部から内側方向へ延びている。複数の溝は、主面に直交する方向へ向かって凹んでいる溝である。複数の溝は第1方向に沿って隣接している。複数の溝は、第2端部から内側方向へ向かって減衰している。当該電極は、高容量な電池を実現できる。
 [第2の実施形態]
 第2の実施形態に係る電極群は、正極と負極とを具備している。正極および負極の少なくとも一方は、第1の実施形態に係る電極を含む。
 電極群は、セパレータをさらに含むことができる。セパレータは、正極と負極との間に設けられ、正極と負極とを電気的に絶縁することができる。
 正極および負極の少なくとも一方として、第1の実施形態に係る電極(それぞれ、正極の形態、及び負極の形態)を用いることで、捲回型電極群(コイル)の作製の際、捲回時の電極の重なりのずれを小さくできる。そして電極端部に設けられた溝により電解質の含浸性が高いため、高い容量を発揮できる。正極および負極の両方が、第1の実施形態に係る電極であることが好ましい。
 電極において溝が設けられている端部、即ち第2端部が電極群の端面に位置することが望ましい。例えば、電極群は、正極と負極とを含んだ積層体が、先に説明した第1方向に直交する方向に中心が位置するように捲回されてなる捲回型構造を有し得る。このような捲回型構造を有する電極群では、電極にて溝が設けられている端部が、電極群の捲回中心に直交する端面にて露出し得る。
 捲回型電極群を作製するにあたって正極と負極とを含んだ積層体を捲回する際、正極および負極は、例えば、円弧状に湾曲し得る。湾曲した部分およびその周辺では、密度が相対的に高くなる。そのため、それらの部分に溝が配置されていることが望ましい。
 電極群は、正極と負極とを含んだ積層体が円弧形状に湾曲している湾曲部と、積層体が平坦である平坦部とを含んだ扁平状捲回型構造を有し得る。湾曲部および平坦部を含んだ電極群では、溝が設けられている電極端部(第2端部)が電極群の端面に位置するとともに、その電極端部のうち少なくとも湾曲部に対応する部分に溝が位置していることが望ましい。湾曲した部分およびその周辺では、平坦な部分に対し密度が相対的に高くなる。そのため、それらの部分に溝が配置されていることが望ましい。平坦部に溝を設けても電極群への電解質の浸透を促進できるため、湾曲部および平坦部を問わず電極端部(第2端部)の全域に亘って溝が設けられていることがより好ましい。
 図16及び図17を参照して、実施形態に係る電極群を説明する。
 図16は、実施形態に係る一例の電極群を概略的に示す斜視図である。図17は、電極群を部分的に展開した状態を概略的に示す斜視図である。
 電極群3は、図17に示すように、扁平形状で、正極4と、負極5と、正極4と負極5の間に配置されたセパレータ6とを含む。正極4は、例えば、箔からなる帯状の正極集電体と、正極集電体の長辺に平行な一端部からなる正極集電タブ4cと、少なくとも正極集電タブ4cの部分を除いて正極集電体に形成された正極活物質含有層4bとを含む。一方、負極5は、例えば、箔からなる帯状の負極集電体と、負極集電体の長辺に平行な一端部からなる負極集電タブ5cと、少なくとも負極集電タブ5cの部分を除いて負極集電体に形成された負極活物質含有層5bとを含む。
 電極群3は、正極4の正極活物質含有層4bと負極5の負極活物質含有層5bがセパレータ6を介して対向すると共に、電極群3の捲回軸Cの一方側に正極集電タブ4cが負極5及びセパレータ6よりも突出し、かつ他方側に負極集電タブ5cが正極4及びセパレータ6よりも突出するように、正極4、セパレータ6及び負極5が扁平形状に捲回されたもの、即ち扁平状捲回型電極群である。よって、電極群3において、捲回軸Cに直交する第一端面に、扁平の渦巻き状に捲回された正極集電タブ4cが位置する。また、捲回軸Cに直交する第二端面に、扁平の渦巻き状に捲回された負極集電タブ5cが位置する。
 正極4の電極端部に溝を設ける場合、例えば、正極集電タブ4cに対し反対側の第2端部4eに沿って溝を設けることで、電極群3の第二端面に沿って溝を配置させることができる。詳細には、捲回前の正極4の長辺方向を第1方向とし、この第1方向に沿い正極集電タブ4cの反対側にある長辺を正極4の第2端部4eとする。第2端部4eの一部に沿って溝を設けた正極4を用い、正極4と負極5とを含んだ積層体を第1方向に直交し且つ正極集電体の主面に平行な方向に中心が位置するように捲回する、つまり捲回軸Cを中心に捲回する。こうして、溝が設けられた第2端部4eを電極群3の第二端面側に位置させることができる。
 同様に、負極5の電極端部に溝を設ける場合、例えば、負極集電タブ5cに対し反対側の第2端部5eに沿って溝を設けることで、電極群3の第一端面に沿って溝を配置させることができる。詳細には、捲回前の負極5の長辺方向を第1方向とし、この第1方向に沿い負極集電タブ5cの反対側にある長辺を負極5の第2端部5eとする。第2端部5eの一部に沿って溝を設けた負極5を用い、正極4と負極5とを含んだ積層体を第1方向に直交し且つ負極集電体の主面に平行な方向に中心が位置するように捲回する、つまり捲回軸Cを中心に捲回する。こうして、溝が設けられた第2端部5eを電極群3の第一端面側に位置させることができる。
 図16に示すように、電極群3を電池に実装する際、正極リード17及び負極リード18を電極群3に電気的に接続したり、絶縁シート10を電極群3に設けたりすることができる。正極リード17は、正極集電タブ4cに電気的に接続される。負極リード18は、負極集電タブ5cに電気的に接続される。絶縁シート10は、例えば、電極群3の最外周のうち、正極集電タブ4c及び負極集電タブ5cを除いた部分を被覆する。なお、電池に実装された電極群3は、電解質(図示しない)を保持し得る。
 以上の説明では、捲回型の電極群の一例を詳述したが、実施形態に係る電極群の形態は図示した例に限られない。他の形態としては、例えば、積層型の電極群を挙げることができる。
 次に、実施形態に係る電極群を、より詳細に説明する。
 [正極および負極]
 電極群が含む正極および負極として、第1の実施形態に係る電極の正極としての形態および負極としての形態をそれぞれ用いることができる。説明が重複するため、正極および負極のそれぞれの詳細を省略する。
 第2の実施形態に係る電極群は、正極および負極の一方にのみ第1の実施形態の電極を含み、他方の電極は複数の溝が設けられた第2端部を有さない態様も含み得る。第2端部の溝に関する詳細を除き説明が重複するため、他方の電極の詳細を省略する。
 [セパレータ]
 セパレータは、例えば、ポリエチレン(polyethylene;PE)、ポリプロピレン(polypropylene;PP)、セルロース、若しくはポリフッ化ビニリデン(polyvinylidene fluoride;PVdF)を含む多孔質フィルム、又はポリエチレン(polyethylene;PE)、ポリプロピレン(polypropylene;PP)、若しくはポリフッ化ビニリデン(polyvinylidene fluoride;PVdF)を含む合成樹脂製不織布、又はセルロースの不織布から形成される。安全性の観点からは、ポリエチレン又はポリプロピレンから形成された多孔質フィルムを用いることが好ましい。これらの多孔質フィルムは、一定温度において溶融し、電流を遮断することが可能なためである。
 <製造方法>
 電極群を製造する方法の一例を説明する。
 正極と、負極と、セパレータとを積層させて積層体を得る。正極および負極の少なくとも一方に第1の実施形態に係る電極を用いる。ここで、正極、セパレータ、負極、セパレータの順で重ね合せることで、正極と負極とが直接接しない構造となる。積層体を捲回することで捲回型電極群、つまり電池コイルを作製することができる。また、捲回後の積層体にプレスを施すことで、扁平形状のコイルを作製することができる。 
 なお、捲回する前の積層体をそのまま積層型の電極群として使用してもよい。
 <測定方法>
 先に説明したとおり、レーザー変位計を用いた測定の測定試料として、電池から取り出して洗浄した電極群を用いることができる。先の説明と重複するため、詳細を省略する。
 第2の実施形態に係る電極群は、正極と負極とを具備し、正極および負極の少なくとも一方が第1の実施形態に係る電極を含んでいる。当該電極群は、高容量な電池を実現できる。
 [第3の実施形態]
 第3の実施形態に係る電池は、正極と負極とを具備している。正極および負極の少なくとも一方は、第1の実施形態に係る電極を含む。第3の実施形態に係る電池は、第2の実施形態に係る電極群を具備し得る。
 電池が含む正極および負極として、第1の実施形態に係る電極の正極としての形態および負極としての形態をそれぞれ用いることができる。説明が重複するため、正極および負極のそれぞれの詳細を省略する。
 第3の実施形態に係る電池は、正極および負極の一方にのみ第1の実施形態の電極を含み、他方の電極は複数の溝が設けられた第2端部を有さない態様も含み得る。第2端部の溝に関する詳細を除き説明が重複するため、他方の電極の詳細を省略する。
 実施形態に係る電池は、電解質を更に具備することができる。電解質は、例えば、電極群に保持され得る。
 また、実施形態に係る電池は、例えば、電極群及び電解質を収容する外装部材を更に具備することができる。
 さらに、実施形態に係る電池は、負極に電気的に接続された負極端子及び正極に電気的に接続された正極端子を更に具備することができる。
 実施形態に係る電池は、例えば、リチウムイオン二次電池であり得る。また、電池は、例えば、電解質として非水電解質を含んだ非水電解質電池を含む。
 以下、電解質、外装部材、負極端子及び正極端子について詳細に説明する。
 [電解質]
 電解質としては、例えば液状非水電解質又はゲル状非水電解質を用いることができる。液状非水電解質は、溶質としての電解質塩を有機溶媒に溶解することにより調製される。電解質塩の濃度は、0.5 mol/L以上2.5 mol/L以下であることが好ましい。
 電解質塩の例には、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、及びビストリフルオロメチルスルホニルイミドリチウム(LiN(CF3SO2)2)のようなリチウム塩、及び、これらの混合物が含まれる。電解質塩は、高電位でも酸化し難いものであることが好ましく、LiPF6が最も好ましい。
 有機溶媒の例には、プロピレンカーボネート(propylene carbonate;PC)、エチレンカーボネート(ethylene carbonate;EC)、ビニレンカーボネート(vinylene carbonate;VC)のような環状カーボネート;ジエチルカーボネート(diethyl carbonate;DEC)、ジメチルカーボネート(dimethyl carbonate;DMC)、メチルエチルカーボネート(methyl ethyl carbonate;MEC)のような鎖状カーボネート;テトラヒドロフラン(tetrahydrofuran;THF)、2メチルテトラヒドロフラン(2-methyl tetrahydrofuran;2MeTHF)、ジオキソラン(dioxolane;DOX)のような環状エーテル;ジメトキシエタン(dimethoxy ethane;DME)、ジエトキシエタン(diethoxy ethane;DEE)のような鎖状エーテル;γ-ブチロラクトン(γ-butyrolactone;GBL)、アセトニトリル(acetonitrile;AN)、及びスルホラン(sulfolane;SL)が含まれる。これらの有機溶媒は、単独で、又は混合溶媒として用いることができる。
 ゲル状非水電解質は、液状非水電解質と高分子材料とを複合化することにより調製される。高分子材料の例には、ポリフッ化ビニリデン(polyvinylidene fluoride;PVdF)、ポリアクリロニトリル(polyacrylonitrile;PAN)、ポリエチレンオキサイド(polyethylene oxide;PEO)、又はこれらの混合物が含まれる。
 或いは、非水電解質としては、液状非水電解質及びゲル状非水電解質の他に、リチウムイオンを含有した常温溶融塩(イオン性融体)、及び高分子固体電解質等を用いてもよい。
 常温溶融塩(イオン性融体)は、有機物カチオンとアニオンとの組合せからなる有機塩の内、常温(15℃以上25℃以下)で液体として存在し得る化合物を指す。常温溶融塩には、単体で液体として存在する常温溶融塩、電解質塩と混合させることで液体となる常温溶融塩、有機溶媒に溶解させることで液体となる常温溶融塩、又はこれらの混合物が含まれる。一般に、二次電池に用いられる常温溶融塩の融点は、25℃以下である。また、有機物カチオンは、一般に4級アンモニウム骨格を有する。
 高分子固体電解質は、電解質塩を高分子材料に溶解し、固体化することによって調製される。
 加えて、無機固体電解質等を非水電解質として併せて用いることができる。無機固体電解質は、Liイオン伝導性を有する固体物質である。
 [外装部材]
 外装部材としては、例えば、ラミネートフィルムからなる容器、又は金属製容器を用いることができる。
 ラミネートフィルムの厚さは、例えば、0.5 mm以下であり、好ましくは、0.2 mm以下である。
 ラミネートフィルムとしては、複数の樹脂層とこれらの樹脂層間に介在した金属層とを含む多層フィルムが用いられる。樹脂層は、例えば、ポリプロピレン(polypropylene;PP)、ポリエチレン(polyethylene;PE)、ナイロン、及びポリエチレンテレフタレート(polyethylene terephthalate;PET)等の高分子材料を含んでいる。金属層は、軽量化のためにアルミニウム箔又はアルミニウム合金箔からなることが好ましい。ラミネートフィルムは、熱融着によりシールを行うことにより、外装部材の形状に成形され得る。
 金属製容器の壁の厚さは、例えば、1 mm以下であり、より好ましくは0.5 mm以下であり、更に好ましくは、0.2 mm以下である。
 金属製容器は、例えば、アルミニウム、アルミニウム合金、又はステンレス等から作られる。アルミニウム合金は、マグネシウム、亜鉛、及びケイ素等の元素を含むことが好ましい。アルミニウム合金は、鉄、銅、ニッケル、及びクロム等の遷移金属を含む場合、その含有量は100質量ppm以下であることが好ましい。
 外装部材の形状は、特に限定されない。外装部材の形状は、例えば、扁平型(薄型)、角型、円筒型、コイン型、又はボタン型等であってもよい。外装部材は、電池寸法や電池の用途に応じて適宜選択することができる。
 [負極端子]
 負極端子は、上述の負極活物質のLi吸蔵放出電位において電気化学的に安定であり、且つ導電性を有する材料から形成することができる。具体的には、負極端子の材料としては、銅、ニッケル、ステンレス若しくはアルミニウム、又は、Mg,Ti,Zn,Mn,Fe,Cu,及びSiからなる群より選択される少なくとも1つを含むアルミニウム合金が挙げられる。負極端子の材料としては、アルミニウム又はアルミニウム合金を用いることが好ましい。負極端子は、負極集電体との接触抵抗を低減するために、負極集電体と同様の材料からなることが好ましい。
 [正極端子]
 正極端子は、リチウムの酸化還元電位に対し3V以上4.5V以下の電位範囲(vs.Li/Li)において電気的に安定であり、且つ導電性を有する材料から形成することができる。正極端子の材料としては、アルミニウム、或いは、Mg、Ti、Zn、Mn、Fe、Cu及びSiからなる群より選択される少なくとも1つを含むアルミニウム合金が挙げられる。正極端子は、正極集電体との接触抵抗を低減するために、正極集電体と同様の材料から形成されることが好ましい。
 次に、実施形態に係る電池について、図面を参照しながらより具体的に説明する。
 図18は、実施形態に係る一例の扁平型電池の概略断面図である。図19は、図18のA部の拡大断面図である。
 図18及び図19に示す電池1は、図18に示す扁平状の捲回型電極群3を具備している。扁平状の捲回型電極群3は、金属層と、これを挟む2枚の樹脂フィルムとを含んだラミネートフィルムからなる袋状外装部材2内に収納されている。
 扁平状の捲回型電極群3は、図18に示すように、外側から負極5、セパレータ6、正極4、セパレータ6の順で積層した積層体を渦巻状に捲回し、プレス成型することにより形成された構造を有している。負極5のうち最も外側に位置する部分は、図19に示すように負極集電体5aの内面側の片面上に負極活物質を含む負極活物質含有層5bを形成している。負極5のその他の部分では、負極集電体5aの両面上に負極活物質含有層5bが形成されている。正極4については、正極集電体4aの両面に正極活物質含有層4bが形成されている。
 捲回型の電極群3の外周端近傍において、負極端子8が、負極5の最外層の部分の負極集電体5aに接続されており、正極端子7が、内側に位置する正極4の正極集電体4aに接続されている。これらの負極端子8および正極端子7は、袋状外装部材2の開口部から外部に延出されている。
 正極4及び負極5のそれぞれにおいて溝が設けられている第2端部は、捲回型電極群3の捲回軸方向の端部、つまり図18にて紙面に直交する方向への端部に設けられていることが望ましい。言い換えると、溝が設けられている第2端部は、図18にて紙面に平行な面内に沿っていることが望ましい。
 図18に示す扁平状の捲回型電極群3は、二つの湾曲部11と、二つの湾曲部11の間に位置する平坦部12とを含む。湾曲部11では、正極4と負極5とセパレータ6との積層体が円弧形状に湾曲している。平坦部12では、積層体が平坦な形状を有する。湾曲部11及び平坦部12は、捲回型電極群3の捲回軸方向、つまり図18にて紙面に直交する方向にそれぞれ延びている。先に説明したとおり平坦部12と比較して、湾曲部11における密度が相対的に高い。そのため、正極4及び負極5の第2端部のうち、捲回型電極群3の捲回軸方向への端面のうち少なくとも湾曲部11に対応する部分に溝が設けられていることが望ましい。正極4及び負極5のそれぞれについて、湾曲部11及び平坦部12を問わず第2端部の全域に亘って溝が設けられていることがより好ましい。
 図18及び図19に示す電池1は、図示しない電解質を更に具備する。電解質は、電極群3に含浸された状態で、外装部材2内に収容されている。
 第3の実施形態に係る電池は、第1の実施形態に係る電極を含む。そのため、電池の容量が高い。
 [第4の実施形態]
 第4の実施形態によると、電池パックが提供される。この電池パックは、第3の実施形態に係る電池を具備する。
 実施形態に係る電池パックは、複数の電池を備えることもできる。複数の電池は、電気的に直列に接続することもできるし、又は電気的に並列に接続することもできる。或いは、複数の電池を、直列及び並列の組み合わせで接続することもできる。
 例えば、電池パックは、第3の実施形態に係る電池を5つ具備することもできる。これらの電池は、直列に接続されることができる。また、直列に接続された電池は、組電池を構成することができる。すなわち、実施形態に係る電池パックは、組電池を具備することもできる。
 実施形態に係る電池パックは、複数の組電池を具備することができる。複数の組電池は、直列、並列、又は直列及び並列の組み合わせで接続することができる。
 実施形態に係る電池パックを図20及び図21を参照して詳細に説明する。単電池には、例えば、図18及び図19に示す扁平型電池を使用することができる。
 図20は、実施形態に係る電池パックの一例を概略的に示す分解斜視図である。図21は、図20に示す電池パック20の電気回路の一例を示すブロック図である。
 前述した図18及び図19に示す扁平型電池から構成される複数の単電池21は、外部に延出した負極端子8及び正極端子7が同じ向きに揃えられるように積層され、粘着テープ22で締結することにより組電池23を構成している。これらの単電池21は、図21に示すように互いに電気的に直列に接続されている。
 プリント配線基板24は、負極端子8及び正極端子7が延出する単電池21の側面と対向して配置されている。プリント配線基板24には、図21に示すようにサーミスタ25、保護回路26及び外部機器への通電用端子27が搭載されている。なお、組電池23と対向するプリント配線基板24の面には組電池23の配線と不要な接続を回避するために絶縁板(図示せず)が取り付けられている。
 正極側リード28は、組電池23の最下層に位置する正極端子7に接続され、その先端はプリント配線基板24の正極側コネクタ29に挿入されて電気的に接続されている。負極側リード30は、組電池23の最上層に位置する負極端子8に接続され、その先端はプリント配線基板24の負極側コネクタ31に挿入されて電気的に接続されている。これらのコネクタ29及び31は、プリント配線基板24に形成された配線32及び配線33を通して保護回路26に接続されている。
 サーミスタ25は、単電池21の温度を検出し、その検出信号は保護回路26に送信される。保護回路26は、所定の条件で保護回路26と外部機器への通電用端子27との間のプラス側配線34a及びマイナス側配線34bを遮断できる。所定の条件とは、例えばサーミスタ25の検出温度が所定温度以上になったときである。また、所定の条件とは単電池21の過充電、過放電、過電流等を検出したときである。この過充電等の検出は、個々の単電池21若しくは組電池23全体について行われる。個々の単電池21を検出する場合、電池電圧を検出してもよいし、正極電位もしくは負極電位を検出してもよい。後者の場合、個々の単電池21中に参照極として用いるリチウム電極が挿入される。図20及び図21の場合、単電池21それぞれに電圧検出のための配線35を接続し、これら配線35を通して検出信号が保護回路26に送信される。
 正極端子7及び負極端子8が突出する側面を除く組電池23の三側面には、ゴムもしくは樹脂からなる保護シート36がそれぞれ配置されている。
 組電池23は、各保護シート36およびプリント配線基板24と共に収納容器37内に収納される。すなわち、収納容器37の長辺方向の両方の内側面と短辺方向の内側面それぞれに保護シート36が配置され、短辺方向の反対側の内側面にプリント配線基板24が配置される。組電池23は、保護シート36およびプリント配線基板24で囲まれた空間内に位置する。蓋38は、収納容器37の上面に取り付けられている。
 なお、組電池23の固定には粘着テープ22に代えて、熱収縮テープを用いてもよい。この場合、組電池の両側面に保護シートを配置し、熱収縮テープを周回させた後、熱収縮テープを熱収縮させて組電池を結束させる。
 図20及び図21では単電池21を直列接続した形態を示したが、電池容量を増大させるためには並列に接続してもよい。組み上がった電池パックを直列及び/又は並列に接続することもできる。
 第4の実施形態に係る電池パックは、第3の実施形態に係る電池を含む。そのため、電池パックの容量が高い。
 [実施例]
 以下、実施例を説明する。
 (実施例1)
 実施例1では、以下の手順により、非水電解質電池を作製した。
 (正極の作製)
 正極活物質としてリチウム含有ニッケルコバルトマンガン酸化物LiNi0.4Co0.4Mn0.42粉末(NCM)90重量%と、カーボンブラック5.0重量%と、ポリフッ化ビニリデン(PVdF)5.0重量%とを、N-メチルピロリドンに添加して混合し、スラリー(塗液)を調製した。撹拌後に得られた正極スラリーを塗工装置で、厚さ15 μm、幅(第1方向に直交する短尺方向への幅)100 mmのアルミニウム箔の両面に塗布した。この際、アルミニウム箔の一方の縁にスラリーを塗布しない部分(未塗工部)を幅10mm残した。得られた塗膜を、乾燥させたのち、ロールプレス機で電極密度が3.0 g/cm3となるように圧延した。最後に、突出幅(図5に示す段差S)が0.2 mmであり断面形状が図6に示すように円形である大径部を有する加工ローラーを用い、未塗工部に対し幅方向に反対側にある幅6.0 mm(図5に示す重なり幅W)の端部のみを長さ方向の全域に亘って圧延した。 
 かくして、正極を作製した。
 (負極の作製)
 負極活物質としてスピネル型構造を有するチタン酸リチウムLi4Ti512(LTO)粉末90重量%とカーボンブラック5.0重量%と、ポリフッ化ビニリデン(PVdF)5.0重量%とを、N-メチルピロリドンに添加して混合し、スラリーを調製した。撹拌後に得られた負極スラリーを、塗工装置で、厚さ15 μm、幅(第1方向に直交する短尺方向への幅)100 mmのアルミニウム箔の両面に塗布した。この際、アルミニウム箔の一方の縁にスラリーを塗布しない部分(未塗工部)を幅6 mm残した。得られた塗膜を、乾燥させたのち、ロールプレス機で電極密度が2.0 g/cm3となるように圧延した。 
 かくして、負極を作製した。
 (電極群の作製)
 2枚のポリエチレン樹脂製セパレータを用意した。次に、セパレータ、正極、セパレータ及び負極をこの順で重ねて積層体を形成した。次いで、かくして得られた積層体を負極が最外周に位置するように渦巻き状に捲回した。続いて、巻き芯を抜いた後に、捲回後の積層体を加熱しながらプレスした。かくして、捲回型電極群を作製した。
 (非水電解質の調製)
 エチレンカーボネートとジメチルカーボネートとを体積比1:2で混合し、非水溶媒を調製した。電解質塩としてLiPFを1.0 mol/Lとなるように非水溶媒に溶解させて、非水電解質を調製した。
 (電池の組み立て)
 上記のようにして得られた捲回型電極群の正極、負極にそれぞれ端子を装着し、ラミネートフィルム製の容器に電極群を入れた。この容器の中に前述の非水電解質を注液し、非水電解質電池を得た。実施例1ではNCM正極の作製に加工ローラー(段差S=0.2 mm)を用い、LTO負極の作製には加工ローラーを用いなかった。
 (実施例2)
 負極活物質として、スピネル型構造を有するチタン酸リチウムの代わりに単斜晶型ニオブチタン酸化物Nb2TiO7(NTO)を用いたことを除き、実施例1と同様に負極を作製した。 
 上記の負極を用いたことを除き、実施例1と同様の手順で非水電解質電池を作製した。実施例2ではNCM正極の作製に加工ローラー(段差S=0.2 mm)を用い、NTO負極の作製には加工ローラーを用いなかった。
 (実施例3)
 負極活物質として、スピネル型構造を有するチタン酸リチウムの代わりに直方晶型チタン含有複合酸化物Li2Na1.6Ti5.6Nb0.414(LNT)を用いたことを除き、実施例1と同様に負極を作製した。 
 上記の負極を用いたことを除き、実施例1と同様の手順で非水電解質電池を作製した。実施例3ではNCM正極の作製に加工ローラー(段差S=0.2 mm)を用い、LNT負極の作製には加工ローラーを用いなかった。
 (実施例4)
 正極活物質として、リチウムマンガン酸化物の代わりにコバルト酸リチウムLiCoO(LCO)を用いたことを除き、実施例1と同様に正極を作製した。 
 上記の正極を用いたことを除き、実施例1と同様の手順で非水電解質電池を作製した。実施例1ではLCO正極の作製に加工ローラー(段差S=0.2 mm)を用い、LTO負極の作製には加工ローラーを用いなかった。
 (実施例5)
 加工ローラーを用いた圧延を省略したことを除き、実施例1と同様の手順で正極を作製した。 
 実施例1と同様の手順で負極を作製した。続いて、突出幅(図5に示す段差S)が0.2 mmである大径部を有する加工ローラーを用い、負極の未塗工部に対し幅方向に反対側にある幅6.0 mm(図5に示す重なり幅W)の端部のみを長さ方向の全域に亘って圧延した。
 上記の正極および負極を用いたことを除き、実施例1と同様の手順で非水電解質電池を作製した。上述したとおり、実施例5ではNCM正極の作製には加工ローラーを用いず、LTO負極の作製に加工ローラー(段差S=0.2 mm)を用いた。
 (実施例6)
 負極活物質として、スピネル型構造を有するチタン酸リチウムの代わりに単斜晶型ニオブチタン酸化物Nb2TiO7(NTO)を用いたことを除き、実施例5と同様に負極を作製した。 
 上記の負極を用いたことを除き、実施例5と同様の手順で非水電解質電池を作製した。上述したとおり、実施例5ではNCM正極の作製には加工ローラーを用いず、NTO負極の作製に加工ローラー(段差S=0.2 mm)を用いた。
 (実施例7)
 負極活物質として、スピネル型構造を有するチタン酸リチウムの代わりに直方晶型チタン含有複合酸化物Li2Na1.6Ti5.6Nb0.414(LNT)を用いたことを除き、実施例5と同様に負極を作製した。 
 上記の負極を用いたことを除き、実施例5と同様の手順で非水電解質電池を作製した。上述したとおり、実施例5ではNCM正極の作製には加工ローラーを用いず、LNT負極の作製に加工ローラー(段差S=0.2 mm)を用いた。
 (実施例8)
 正極活物質として、リチウムマンガン酸化物の代わりにコバルト酸リチウムLiCoO(LCO)を用いたことを除き、実施例5と同様に正極を作製した。 
 上記の正極を用いたことを除き、実施例5と同様の手順で非水電解質電池を作製した。上述したとおり、実施例5ではLCO正極の作製には加工ローラーを用いず、LTO負極の作製に加工ローラー(段差S=0.2 mm)を用いた。
 (実施例9)
 実施例5と同様にして負極を作製した。 
 上記の負極を用いたことを除き、実施例1と同様の手順で非水電解質電池を作製した。実施例9では、NCM正極の作製およびLTO負極の作製の両方に加工ローラー(段差S=0.2 mm)を用いた。
 (実施例10)
 実施例6と同様にして負極を作製した。 
 上記の負極を用いたことを除き、実施例1と同様の手順で非水電解質電池を作製した。実施例10では、NCM正極の作製およびLTO負極の作製の両方に加工ローラー(段差S=0.2 mm)を用いた。
 (実施例11)
 実施例7と同様にして負極を作製した。 
 上記の負極を用いたことを除き、実施例1と同様の手順で非水電解質電池を作製した。実施例11では、NCM正極の作製およびLNT負極の作製の両方に加工ローラー(段差S=0.2 mm)を用いた。
 (実施例12)
 実施例5と同様にして負極を作製した。 
 上記の負極を用いたことを除き、実施例4と同様の手順で非水電解質電池を作製した。実施例12では、LCO正極の作製およびLTO負極の作製の両方に加工ローラー(段差S=0.2 mm)を用いた。
 (実施例13)
 正極作製に用いた加工ローラーを、突出幅(図5に示す段差S)が0.3 mmである大径部を有する加工ローラーに変更したことを除き、実施例1と同様の手順で非水電解質電池を作製した。実施例13ではNCM正極の作製に加工ローラー(段差S=0.3 mm)を用い、LTO負極の作製には加工ローラーを用いなかった。
 (実施例14)
 正極作製に用いた加工ローラーを、突出幅(図5に示す段差S)が0.3 mmである大径部を有する加工ローラーに変更したことを除き、実施例2と同様の手順で非水電解質電池を作製した。実施例14ではNCM正極の作製に加工ローラー(段差S=0.3 mm)を用い、NTO負極の作製には加工ローラーを用いなかった。
 (実施例15)
 正極作製に用いた加工ローラーを、突出幅(図5に示す段差S)が0.3 mmである大径部を有する加工ローラーに変更したことを除き、実施例3と同様の手順で非水電解質電池を作製した。実施例15ではNCM正極の作製に加工ローラー(段差S=0.3 mm)を用い、LNT負極の作製には加工ローラーを用いなかった。
 (実施例16)
 正極作製に用いた加工ローラーを、突出幅(図5に示す段差S)が0.3 mmである大径部を有する加工ローラーに変更したことを除き、実施例4と同様の手順で非水電解質電池を作製した。実施例16ではLCO正極の作製に加工ローラー(段差S=0.3 mm)を用い、LTO負極の作製には加工ローラーを用いなかった。
 (実施例17)
 負極作製に用いた加工ローラーを、突出幅(図5に示す段差S)が0.3 mmである大径部を有する加工ローラーに変更したことを除き、実施例5と同様の手順で非水電解質電池を作製した。実施例17ではNCM正極の作製に加工ローラーを用いず、LTO負極の作製には加工ローラー(段差S=0.3 mm)を用いた。
 (実施例18)
 負極作製に用いた加工ローラーを、突出幅(図5に示す段差S)が0.3 mmである大径部を有する加工ローラーに変更したことを除き、実施例6と同様の手順で非水電解質電池を作製した。実施例18ではNCM正極の作製に加工ローラーを用いず、NTO負極の作製には加工ローラー(段差S=0.3 mm)を用いた。
 (実施例19)
 負極作製に用いた加工ローラーを、突出幅(図5に示す段差S)が0.3 mmである大径部を有する加工ローラーに変更したことを除き、実施例7と同様の手順で非水電解質電池を作製した。実施例19ではNCM正極の作製に加工ローラーを用いず、LNT負極の作製には加工ローラー(段差S=0.3 mm)を用いた。
 (実施例20)
 負極作製に用いた加工ローラーを、突出幅(図5に示す段差S)が0.3 mmである大径部を有する加工ローラーに変更したことを除き、実施例8と同様の手順で非水電解質電池を作製した。実施例20ではLCO正極の作製に加工ローラーを用いず、LTO負極の作製には加工ローラー(段差S=0.3 mm)を用いた。
 (実施例21)
 実施例13と同様にして正極を作製した。実施例17と同様にして負極を作製した。 
 上記の正極および負極を用いたことを除き、実施例1と同様の手順で非水電解質電池を作製した。実施例21では、NCM正極の作製およびLTO負極の作製の両方に加工ローラー(段差S=0.3 mm)を用いた。
 (実施例22)
 実施例14と同様にして正極を作製した。実施例18と同様にして負極を作製した。 
 上記の正極および負極を用いたことを除き、実施例1と同様の手順で非水電解質電池を作製した。実施例22では、NCM正極の作製およびNTO負極の作製の両方に加工ローラー(段差S=0.3 mm)を用いた。
 (実施例23)
 実施例15と同様にして正極を作製した。実施例19と同様にして負極を作製した。 
 上記の正極および負極を用いたことを除き、実施例1と同様の手順で非水電解質電池を作製した。実施例23では、NCM正極の作製およびLNT負極の作製の両方に加工ローラー(段差S=0.3 mm)を用いた。
 (実施例24)
 実施例16と同様にして正極を作製した。実施例20と同様にして負極を作製した。 
 上記の正極および負極を用いたことを除き、実施例1と同様の手順で非水電解質電池を作製した。実施例24では、LCO正極の作製およびLTO負極の作製の両方に加工ローラー(段差S=0.3 mm)を用いた。
 (実施例25)
 正極作製に用いた加工ローラーを、突出幅(図5に示す段差S)が0.7 mmである大径部を有する加工ローラーに変更したことを除き、実施例1と同様の手順で非水電解質電池を作製した。実施例25ではNCM正極の作製に加工ローラー(段差S=0.7 mm)を用い、LTO負極の作製には加工ローラーを用いなかった。
 (実施例26)
 正極作製に用いた加工ローラーを、突出幅(図5に示す段差S)が0.7 mmである大径部を有する加工ローラーに変更したことを除き、実施例2と同様の手順で非水電解質電池を作製した。実施例26ではNCM正極の作製に加工ローラー(段差S=0.7 mm)を用い、NTO負極の作製には加工ローラーを用いなかった。
 (実施例27)
 正極作製に用いた加工ローラーを、突出幅(図5に示す段差S)が0.7 mmである大径部を有する加工ローラーに変更したことを除き、実施例3と同様の手順で非水電解質電池を作製した。実施例27ではNCM正極の作製に加工ローラー(段差S=0.7 mm)を用い、LNT負極の作製には加工ローラーを用いなかった。
 (実施例28)
 正極作製に用いた加工ローラーを、突出幅(図5に示す段差S)が0.7 mmである大径部を有する加工ローラーに変更したことを除き、実施例4と同様の手順で非水電解質電池を作製した。実施例28ではLCO正極の作製に加工ローラー(段差S=0.7 mm)を用い、LTO負極の作製には加工ローラーを用いなかった。
 (実施例29)
 負極作製に用いた加工ローラーを、突出幅(図5に示す段差S)が0.7 mmである大径部を有する加工ローラーに変更したことを除き、実施例5と同様の手順で非水電解質電池を作製した。実施例29ではNCM正極の作製に加工ローラーを用いず、LTO負極の作製には加工ローラー(段差S=0.7 mm)を用いた。
 (実施例30)
 負極作製に用いた加工ローラーを、突出幅(図5に示す段差S)が0.7 mmである大径部を有する加工ローラーに変更したことを除き、実施例6と同様の手順で非水電解質電池を作製した。実施例30ではNCM正極の作製に加工ローラーを用いず、NTO負極の作製には加工ローラー(段差S=0.7 mm)を用いた。
 (実施例31)
 負極作製に用いた加工ローラーを、突出幅(図5に示す段差S)が0.7 mmである大径部を有する加工ローラーに変更したことを除き、実施例7と同様の手順で非水電解質電池を作製した。実施例31ではNCM正極の作製に加工ローラーを用いず、LNT負極の作製には加工ローラー(段差S=0.7 mm)を用いた。
 (実施例32)
 負極作製に用いた加工ローラーを、突出幅(図5に示す段差S)が0.7 mmである大径部を有する加工ローラーに変更したことを除き、実施例8と同様の手順で非水電解質電池を作製した。実施例32ではLCO正極の作製に加工ローラーを用いず、LTO負極の作製には加工ローラー(段差S=0.7 mm)を用いた。
 (実施例33)
 実施例25と同様にして正極を作製した。実施例29と同様にして負極を作製した。 
 上記の正極および負極を用いたことを除き、実施例1と同様の手順で非水電解質電池を作製した。実施例33では、NCM正極の作製およびLTO負極の作製の両方に加工ローラー(段差S=0.7 mm)を用いた。
 (実施例34)
 実施例26と同様にして正極を作製した。実施例30と同様にして負極を作製した。 
 上記の正極および負極を用いたことを除き、実施例1と同様の手順で非水電解質電池を作製した。実施例34では、NCM正極の作製およびNTO負極の作製の両方に加工ローラー(段差S=0.7 mm)を用いた。
 (実施例35)
 実施例27と同様にして正極を作製した。実施例31と同様にして負極を作製した。 
 上記の正極および負極を用いたことを除き、実施例1と同様の手順で非水電解質電池を作製した。実施例35では、NCM正極の作製およびLNT負極の作製の両方に加工ローラー(段差S=0.7 mm)を用いた。
 (実施例36)
 実施例28と同様にして正極を作製した。実施例29と同様にして負極を作製した。 
 上記の正極および負極を用いたことを除き、実施例1と同様の手順で非水電解質電池を作製した。実施例36では、LCO正極の作製およびLTO負極の作製の両方に加工ローラー(段差S=0.7 mm)を用いた。
 (比較例1)
 正極を作製する際に用いた加工ローラーを、下記設計の溝付き加工ローラーに変更したことを除き、実施例1と同様にして正極を作製した。
 図22及び図23を参照して、溝付き加工ローラーによる電極の加工を説明する。図22は、溝付き加工ローラーを用いた正極の製造を概略的に示す説明図である。図22は、溝付き加工ローラーのロール軸に沿った断面である。図23は、正極の製造を他の方向から見た概略断面図である。図23は、溝付き加工ローラーの軸方向に直交する断面を示す。この断面は、溝付き加工ローラーの大径部を含む断面である。
 溝付き加工ローラー50は、軸方向に沿って並ぶ小径部51及び大径部52を有していた。図5で説明した加工ローラー40の小径部41と同様に、溝付き加工ローラー50の小径部51は円柱形状を有し退避面51aを有していた。大径部52が軸方向に沿う幅は、圧延の対象の正極4の未塗工部(正極集電タブ4c)から幅方向に反対側にある端部(第1端部4d及び第2端部4e)までの距離以上に亘っていた。大径部52は、小径部51の退避面51aよりも外側に位置する突出面52a及び逃げ面53を有していた。
 大径部52の突出幅(図22に示す段差S)は、0.2 mmであった。図23に示すように大径部52には、複数の凹部が形成されていた。それぞれの凹部は大径部52の軸方向の全域に亘っており、それぞれの凹部の部分ではローラー軸に向かって小径部51の退避面51aまで大径部52がへこんでいた。つまり凹部の部分の径r1は、小径部51の径r1と等しかった。そして突出面52aからロール軸までの距離(径r2)と凹部の部分の径r1との差が大径部52の突出幅に等しかった(S=r2-r1)。凹部を挟んで円周方向に並ぶ突出面52aの間の間隔I1は0.05 mmであった。また、凹部の間の突出面の円周方向の円弧幅I2は0.05 mmであった。
 この溝付き加工ローラー50を用いた際、ローラーの突出面52aと正極活物質含有層4bとの重なり幅Wが、正極活物質含有層4bの幅と等しくなるようローラーと正極活物質含有層4bとの位置関係を調整した。電極の幅方向への位置関係をこのように調整した状態で、電極端部(第1端部4d及び第2端部4e)及び未塗工部(正極集電タブ4c)の縁に平行な長さ方向の全域に亘って正極4を圧延した。
 上記のとおり正極を作製したことを除き、実施例1と同様の手順で非水電解質電池を作製した。なお比較例1では、負極の作製に加工ローラーを用いていない。
 (比較例2)
 正極を作製する際に用いた加工ローラーを、下記設計の傾斜付きローラーに変更したことを除き、実施例1と同様にして正極を作製した。
 図24を参照して、傾斜付きローラーを用いた電極の加工を説明する。図24は、傾斜付きローラーを用いた正極の製造を概略的に示す説明図である。図24は、傾斜付きローラーのロール軸に沿った断面である。
 傾斜付きローラー60は、軸方向に沿って並ぶ小径部61及び大径部62を有していた。図5で説明した加工ローラー40の小径部41と同様に、傾斜付きローラー60の小径部61は円柱形状を有し退避面61aを有していた。大径部62が軸方向に沿う幅は、圧延の対象の正極4の未塗工部(正極集電タブ4c)から幅方向に反対側にある端部(第1端部4d及び第2端部4e)までの距離以上に亘っていた。大径部62は、小径部61の退避面61aよりも外側に位置する突出面62aを有していた。
 大径部62は、一方の端部から他方の端部にかけて傾斜していた。一方の端部にて大径部62が退避面61aから最も突出しており、この部分の突出幅(図24に示す段差SMAX)が0.2 mmであった。ここの突出幅(段差SMAX)は、大径部62の最大径rMAXと小径部61の径r1との差に等しかった。大径部62の突出幅は他方の端部へ向かって減少していた。この減少の度合いを、基準点での突出幅(図24に示す段差S)に対する距離Eを進んだ位置での突出幅(図24に示す段差S)の減衰率(100%×[S-S]/S)で表すと、10 mmごとの減衰率が10%であった。
 この傾斜付き加工ローラー60を用いた際、突出幅が0.2 mmである端部から他方の端部(突出幅が減衰した端部)へ軸方向に沿って向かう向きと、未塗工部(正極集電タブ4c)から正極4の幅方向に沿って未塗工部の反対側の正極端部側(第1端部4d及び第2端部4eがある側)へ向かう向きとを揃えた。つまり、大径部62のうち正極4の未塗工部側に接する部分の方がより大きい直径を有する部分になるよう、加工ローラーの向きを調整した。このように向きを揃えて、正極端部(第1端部4d及び第2端部4e)及び未塗工部(正極集電タブ4c)の縁に平行な長さ方向の全域に亘って正極4を圧延した。このとき、ローラーの突出面と正極活物質含有層4bとの重なり幅Wが、正極活物質含有層4bの幅と等しくなった。
 上記のとおり正極を作製したことを除き、実施例1と同様の手順で非水電解質電池を作製した。なお比較例1では、負極の作製に加工ローラーを用いていない。
 (比較例3)
 負極を作製する際に用いた加工ローラーを、比較例1で用いた溝付きローラーに変更したことを除き、実施例5と同様にして負極を作製した。この溝付き加工ローラーを用いた際、ローラーの突出面と活物質含有層との重なり幅(W)が、活物質含有層の幅と等しくなるよう、ローラーと活物質含有層との位置関係を調整した。電極の幅方向への位置関係をこのように調整した状態で、電極端部および未塗工部の縁に平行な長さ方向の全域に亘って電極を圧延した。
 上記のとおり負極を作製したことを除き、実施例5と同様の手順で非水電解質電池を作製した。なお比較例3では、正極の作製に加工ローラーを用いていない。
 (比較例4)
 負極を作製する際に用いた加工ローラーを、比較例2で用いた傾斜付きローラーに変更したことを除き、実施例5と同様にして負極を作製した。この傾斜付き加工ローラーを用いた際、突出幅が0.2 mmである端部から他方の端部(突出幅が減衰した端部)へ軸方向に沿って向かう向きと、未塗工部から電極の幅方向に沿って未塗工部の反対側の電極端部側へ向かう向きとを揃えた。このように向きを揃えて、電極端部および未塗工部の縁に平行な長さ方向の全域に亘って電極を圧延した。このとき、ローラーの突出面と活物質含有層との重なり幅(W)が、活物質含有層の幅と等しくなった。
 上記負極を用いたことを除き、実施例5と同様の手順で非水電解質電池を作製した。なお比較例4では、正極の作製に加工ローラーを用いていない。
 (比較例5)
 正負極ともに加工ローラーを用いたロールプレス処理をしなかったことを除き、実施例1と同様の手順で非水電解質電池を作製した。
 <変位量の測定>
 各々の実施例および比較例で作製した正極および負極に対し、先に説明したとおりレーザー変位計を用いて測定を行った。測定結果を下記表1-表6に示す。具体的には、正極について、電極活物質の組成、溝が電極端部から内側へ向かって減衰するか否か又は溝の有無、第2端部での溝の深さ(図3で示した深さD)つまり第1深さの平均、先に説明した第1深さに対する第2乃至第4深さのそれぞれの減衰率の平均、溝の第1方向へのピッチ、並びに第2端部での溝の内壁の高さ(図2で示した高さH)の平均を表1-3にまとめる。負極について、電極活物質の組成、溝が電極端部から内側へ向かって減衰するか否か、第1深さの平均、先に説明した第1深さに対する第2乃至第4深さのそれぞれの減衰率の平均、溝の第1方向へのピッチ、並びに第2端部での溝の内壁の高さの平均を表4-6にまとめる。なお、表における「-」という記号は、対象の項目に“該当しない”ことを意味する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 <評価>
 (初充電)
 各々の非水電解質電池に対し、初充電を行った。初充電は、25℃で2.8Vまで0.2Cで定電流充電後、電流値が0.01Cとなるまで定電圧で行った。
 (容量測定)
 初充電を行った各々の非水電解質電池を、60℃の大気中で150時間加温した後、25℃で2.8Vまで0.2Cで定電流充電した。その後、各電池を、定電圧充電で電流値が0.01Cとなるまで充電した。さらに、各電池を0.2Cで電圧値が1.3Vになるまで放電し、放電容量を測定した。
 測定した放電容量を実容量として表7及び8に示す。また、表7及び8には、各電池についての基準容量、並びに基準容量と実用量との差(差=(実用量-基準容量)/基準容量×100%)を示す。ここでいう基準容量は、活物質の種類などに基づいて求められた理論容量をいう。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 実施例1,5,9,13,17,21,25,29,及び33で作製した非水電解質電池では、各々正極活物質としてリチウム含有ニッケルコバルトマンガン複合酸化物LiNi0.4Co0.4Mn0.42(NCM)を用い、負極活物質としてスピネル構造を有するチタン酸リチウムLi4Ti512(LTO)を用いた。比較例1から5で作製した非水電解質電池についても同様の正極活物質および負極活物質の組み合わせを用いた。これらの実施例および比較例で作製した非水電解質電池では、基準容量が22 Ahであった。
 これらのNCM正極とLTO負極との組み合わせを用いた非水電解質電池のうち、実施例で作製した非水電解質電池では、比較例における非水電解質電池よりも高い実用量が得られた。実施例における非水電解質電池では、正極および負極の少なくとも一方が、電極端部から内部へ向かって減衰する複数の溝を有していた。このような電極を用いることで、実施例の非水電解質電池は高い実用量を発揮したと考えられる。
 これに対し比較例1では正極が溝を有していたものの、この溝が電極端部から未塗工部までの全域の幅に亘って減衰せずに存在していた。同様に比較例3では負極が溝を有していたものの、この溝が電極端部から未塗工部までの全域の幅に亘って減衰せずに存在していた。比較例2では正極が溝を有していたものの、この溝の深さが電極端部から未塗工部に向かって増加していた。同様に比較例4では、負極が溝を有していたものの、この溝の深さが電極端部から未塗工部に向かって増加していた。これらの比較例の非水電解質電池では、電極群の作製時に捲きずれが生じて、それにより実容量が低下してしまったと考えられる。
 比較例5では、正極および負極の何れも溝を有していなかった。この比較例の非水電解質電池では、電極群への電解質の含浸が促進されなかった結果高い容量が得られなかったと考えられる。
 実施例2,6,10,14,18,22,26,30,及び34で作製した非水電解質電池では、各々正極活物質として上記NCMを用い、負極活物質として単斜晶型ニオブチタン酸化物Nb2TiO7(NTO)を用いた。これらの実施例で作製した非水電解質電池では、基準容量が22 Ahであった。これらの実施例では、NCM正極とLTO負極との組み合わせが用いられていた上述の実施例と同程度の実容量が得られた。
 実施例3,7,11,15,19,23,27,31,及び35で作製した非水電解質電池では、各々正極活物質として上記NCMを用い、負極活物質として直方晶型チタン含有複合酸化物Li2Na1.6Ti5.6Nb0.414(LNT)を用いた。これらの実施例で作製した非水電解質電池では、基準容量が10 Ahであった。これらの実施例では、良好な実容量を維持できた。
 実施例4,8,12,16,20,24,28,32,及び36で作製した非水電解質電池では、各々正極活物質としてコバルト酸リチウムLiCoO2(LCO)を用い、負極活物質として上記LTOを用いた。これらの実施例で作製した非水電解質電池では、基準容量が14 Ahであった。これらの実施例では、良好な実容量を維持できた。
 以上に説明した少なくとも一つの実施形態および実施例に係る電極は、集電体と活物質含有層とを具備する。集電体は、第1方向に沿う第1端部を含む主面を有する。活物質含有層は、集電体の主面の上に設けられている。活物質含有層は、第1方向に沿う第2端部を有している。活物質含有層は、電極活物質を含有する。活物質含有層の第2端部の少なくとも一部に複数の溝が設けられている。複数の溝は、第2端部から内側方向へ延びている。複数の溝は、主面に直交する方向へ向かって凹んでいる溝である。複数の溝は第1方向に沿って隣接している。複数の溝は、第2端部から内側方向へ向かって減衰している。当該電極は、高容量な電池、及びこの電池を具備する電池パックを実現できる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。

Claims (15)

  1.  第1方向に沿う第1端部を含む主面を有する集電体と、
     前記集電体の前記主面の上に設けられ、前記第1方向に沿う第2端部を有し、電極活物質を含有する活物質含有層と
    を具備し、
     前記活物質含有層の前記第2端部の少なくとも一部に前記第2端部から内側方向へ延び且つ前記主面に直交する方向へ向かって凹んでいる複数の溝が設けられており、複数の前記溝は前記第1方向に沿って隣接し、且つ前記内側方向へ向かって減衰している電極。
  2.  複数の前記溝は、前記第2端部の位置での前記溝の第1深さに対し、前記内側方向へ向かって2 mmの位置での前記溝の第2深さは20 %減衰している、請求項1に記載の電極。
  3.  複数の前記溝は、前記第1深さに対し、前記内側方向へ向かって4 mmの位置での前記溝の第3深さは50 %減衰している、請求項2に記載の電極。
  4.  複数の前記溝は、前記第1深さに対し、前記内側方向へ向かって7 mmの位置での前記溝の第4深さは90 %減衰している、請求項3に記載の電極。
  5.  複数の前記溝の前記第1方向へのピッチは10 mm以下である、請求項1乃至4の何れか1項に記載の電極。
  6.  前記第2端部での複数の前記溝の内壁の高さの平均は0.2 mm以下である、請求項1乃至5の何れか1項に記載の電極。
  7.  前記集電体はアルミニウムを含む箔である、請求項1乃至6の何れか1項に記載の電極。
  8.  前記電極活物質は、リチウムの酸化還元電位に対し1 V以上の電位でリチウムを吸蔵および放出する化合物を含む、請求項1乃至7の何れか1項に記載の電極。
  9.  前記電極活物質は、リチウムチタン複合酸化物を含む、請求項1乃至7の何れか1項に記載の電極。
  10.  前記電極活物質は、Li, Fe, Ni, Mn, 及びCoからなる群より選択される1以上を含む、請求項1乃至7の何れか1項に記載の電極。
  11.  前記電極活物質は、一般式Li1-xNi1-a-b-cCoaMnbM1cO2で表され、前記一般式においてM1はMg, Al, Si, Ti, Zn, Zr, Ca, 及びSnからなる群より選択される1以上であり、-0.2<x<0.5、0<a<0.5、0<b<0.5、0≦c<0.1、a+b+c<1であるリチウム含有ニッケルコバルトマンガン酸化物を含む、請求項1乃至7の何れか1項に記載の電極。
  12.  正極と、
     負極と
    を具備し、
     前記正極および前記負極の少なくとも一方が請求項1乃至11の何れか1項に記載の電極を含む、電池。
  13.  前記正極と前記負極とを含んだ積層体が前記第1方向に直交する方向に中心が位置するように捲回されてなる捲回型構造を有する、請求項12に記載の電池。
  14.  電解質を更に具備する、請求項13に記載の電池。
  15.  請求項12乃至14の何れか1項に記載の電池を具備する、電池パック。
PCT/JP2019/012072 2019-03-22 2019-03-22 電極、電池、及び電池パック WO2020194376A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021508359A JP7196283B2 (ja) 2019-03-22 2019-03-22 電極、電池、及び電池パック
PCT/JP2019/012072 WO2020194376A1 (ja) 2019-03-22 2019-03-22 電極、電池、及び電池パック
CN201980079091.3A CN113169298B (zh) 2019-03-22 2019-03-22 电极、电池及电池包

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/012072 WO2020194376A1 (ja) 2019-03-22 2019-03-22 電極、電池、及び電池パック

Publications (1)

Publication Number Publication Date
WO2020194376A1 true WO2020194376A1 (ja) 2020-10-01

Family

ID=72610366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012072 WO2020194376A1 (ja) 2019-03-22 2019-03-22 電極、電池、及び電池パック

Country Status (3)

Country Link
JP (1) JP7196283B2 (ja)
CN (1) CN113169298B (ja)
WO (1) WO2020194376A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114634203A (zh) * 2022-02-24 2022-06-17 四川国创成电池材料有限公司 一种具有铌钛氧复合氧化物负极的锂离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176558A (ja) * 1999-12-20 2001-06-29 Toshiba Corp 非水電解液二次電池
WO2009013889A1 (ja) * 2007-07-20 2009-01-29 Panasonic Corporation 電池用電極板、電池用極板群、リチウム二次電池、電池用電極板の製造方法、及び電池用電極板の製造装置
JP2010524177A (ja) * 2007-04-05 2010-07-15 スリーエム イノベイティブ プロパティズ カンパニー 隆起したパターンを有する電極
JP2016066594A (ja) * 2014-07-11 2016-04-28 株式会社半導体エネルギー研究所 二次電池、および二次電池を備えた電子機器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285607A (ja) * 2004-03-30 2005-10-13 Matsushita Electric Ind Co Ltd 非水系二次電池およびその製造方法
JP2006107853A (ja) * 2004-10-04 2006-04-20 Sony Corp 非水電解質二次電池及びその製造方法
JP2007311328A (ja) * 2006-04-18 2007-11-29 Hitachi Maxell Ltd 非水電解液電池
JP4362539B2 (ja) * 2007-07-20 2009-11-11 パナソニック株式会社 電池用電極板、電池用極板群、リチウム二次電池、電池用電極板の製造方法、及び電池用電極板の製造装置
JP5498284B2 (ja) * 2010-07-07 2014-05-21 大日本スクリーン製造株式会社 電池用電極の製造方法、電池の製造方法、電池、車両および電子機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176558A (ja) * 1999-12-20 2001-06-29 Toshiba Corp 非水電解液二次電池
JP2010524177A (ja) * 2007-04-05 2010-07-15 スリーエム イノベイティブ プロパティズ カンパニー 隆起したパターンを有する電極
WO2009013889A1 (ja) * 2007-07-20 2009-01-29 Panasonic Corporation 電池用電極板、電池用極板群、リチウム二次電池、電池用電極板の製造方法、及び電池用電極板の製造装置
JP2016066594A (ja) * 2014-07-11 2016-04-28 株式会社半導体エネルギー研究所 二次電池、および二次電池を備えた電子機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114634203A (zh) * 2022-02-24 2022-06-17 四川国创成电池材料有限公司 一种具有铌钛氧复合氧化物负极的锂离子电池

Also Published As

Publication number Publication date
CN113169298B (zh) 2024-03-29
CN113169298A (zh) 2021-07-23
JPWO2020194376A1 (ja) 2021-10-14
JP7196283B2 (ja) 2022-12-26

Similar Documents

Publication Publication Date Title
US8642209B2 (en) Non-aqueous electrolyte secondary battery, electrode used for secondary battery, and method of manufacturing electrode
US7541114B2 (en) Anode active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery
US8349495B2 (en) Nonaqueous battery with composite negative electrode
US9331332B2 (en) Nonaqueous electrolyte battery and battery pack
JP5225002B2 (ja) 二次電池
US9391325B2 (en) Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US10003073B2 (en) Electrode and nonaqueous electrolyte battery
KR20040072023A (ko) 캐소드활성물질과 그것을 이용한 비수전해질 이차전지
JP7142258B2 (ja) 二次電池用正極、及び二次電池
JP7041811B2 (ja) 円筒形ゼリーロールに使用されるストリップ型電極及びそれを含むリチウム二次電池
JP7106750B2 (ja) 電極群、電池、及び電池パック
JP2008243672A (ja) 二次電池用捲回電極、リチウムイオン二次電池および二次電池パック
US9159997B2 (en) Nonaqueous electrolyte battery, electrode for the same, and battery pack
JP5100441B2 (ja) 非水電解質電池
JP7247353B2 (ja) 電極、電池、及び電池パック
JP4805691B2 (ja) 非水電解質電池用活物質、非水電解質電池および電池パック
WO2020194376A1 (ja) 電極、電池、及び電池パック
JP6952876B2 (ja) 電極群、電池、及び電池パック
JP6054540B2 (ja) 正極活物質、非水電解質電池及び電池パック
JP7106747B2 (ja) 電極、電池、及び電池パック
JP2024000245A (ja) 電極材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921362

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021508359

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921362

Country of ref document: EP

Kind code of ref document: A1