WO2020192076A1 - 空调器、空调器的检测装置和驱动电路故障的检测方法 - Google Patents

空调器、空调器的检测装置和驱动电路故障的检测方法 Download PDF

Info

Publication number
WO2020192076A1
WO2020192076A1 PCT/CN2019/109590 CN2019109590W WO2020192076A1 WO 2020192076 A1 WO2020192076 A1 WO 2020192076A1 CN 2019109590 W CN2019109590 W CN 2019109590W WO 2020192076 A1 WO2020192076 A1 WO 2020192076A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
voltage
drive circuit
compressor
detection device
Prior art date
Application number
PCT/CN2019/109590
Other languages
English (en)
French (fr)
Inventor
梁敏游
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Priority to JP2021556514A priority Critical patent/JP7263541B2/ja
Publication of WO2020192076A1 publication Critical patent/WO2020192076A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/38Failure diagnosis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits

Definitions

  • the present disclosure relates to the technical field of air conditioners, and in particular to an air conditioner, an air conditioner detection device and a driving circuit failure detection method.
  • the present disclosure aims to solve one of the technical problems in the related art at least to a certain extent.
  • the first objective of the present disclosure is to provide an air conditioner, which can easily, quickly and efficiently locate the fault point without replacing the components, so as to facilitate maintenance.
  • the second objective of the present disclosure is to provide a control system for a heating device.
  • the third objective of the present disclosure is to provide a method for detecting a failure of the driving circuit.
  • the fourth purpose of the present disclosure is to propose another method for detecting failure of the driving circuit.
  • the first aspect of the present disclosure provides an air conditioner, including: a compressor; a drive circuit, the drive circuit includes 6 switch tubes, and the drive circuit is used to drive the compressor;
  • the controller is used to continuously output 6 PWM drive signals to the corresponding 6 switch tubes, so that the detection device of the air conditioner can detect the voltage between any two-phase output terminals of the drive circuit, and identify according to the voltage Whether the drive circuit is faulty.
  • the controller of the air conditioner continuously outputs 6 PWM drive signals to the corresponding 6 switch tubes for the detection device of the air conditioner to detect the voltage between any two-phase output terminals of the drive circuit , And identify whether the drive circuit is faulty according to the voltage, so that the fault point can be located simply, quickly and efficiently without replacing the device for easy maintenance.
  • the air conditioner proposed according to the above embodiments of the present disclosure may also have the following additional technical features:
  • the controller is specifically configured to continuously output the 6 PWM drive signals to the corresponding 6 switch tubes after detecting that the air conditioner enters the maintenance test mode.
  • the controller is further configured to: after receiving an instruction to enter the forced cooling mode sent by the indoor unit, detect the current of the compressor; and identify that the compressor is not connected to the compressor according to the current. If the driving circuit is connected, the air conditioner is controlled to enter the maintenance test mode.
  • the second aspect of the present disclosure provides a detection device for an air conditioner, which is suitable for the air conditioner proposed in the first aspect.
  • the detection device includes: a detection module for detecting the The voltage between any two-phase output terminals of the driving circuit of the air conditioner; the identification module is used to identify whether the driving circuit is faulty according to the voltage.
  • the detection device of the air conditioner proposed in the embodiment of the present disclosure, the voltage between any two-phase output terminals of the driving circuit of the air conditioner is detected by the detection module, so that the identification module can identify whether the driving circuit is faulty according to the voltage, so that the device can be replaced without replacing the device. Under the circumstances, it is simple, fast and efficient to locate the fault point for easy maintenance.
  • the detection device for an air conditioner proposed according to the above embodiment of the present disclosure may also have the following additional technical features:
  • the identification module is specifically configured to: identify that the voltage is outside the set voltage range, and then determine that the drive circuit is faulty.
  • the third aspect of the present disclosure provides a method for detecting a failure of a driving circuit.
  • the execution body of the method is an air conditioner.
  • the detection method includes the following steps: continuously outputting 6 PWM driving signals to The corresponding 6 switch tubes are used for the detection device of the air conditioner to detect the voltage between any two-phase output terminals of the drive circuit, and identify whether the drive circuit is faulty according to the voltage.
  • the detection device of the air conditioner can detect the voltage between any two-phase output terminals of the drive circuit. And according to the voltage to identify whether the drive circuit is faulty. Therefore, the method can locate the fault point simply, quickly and efficiently without replacing the device, so as to facilitate maintenance.
  • the method for detecting a failure of the driving circuit proposed according to the foregoing embodiment of the present disclosure may also have the following additional technical features:
  • the above-mentioned method for detecting failure of a driving circuit further includes: after detecting that the air conditioner enters the maintenance test mode, executing the continuous output of 6 PWM driving signals to the corresponding 6 switching tubes step.
  • the current of the compressor is detected; and the air conditioner is controlled if it is identified based on the current that the compressor is not connected to the drive circuit
  • the device enters the maintenance test mode.
  • the fourth aspect of the present disclosure provides another method for detecting a failure of a driving circuit.
  • the execution body of the method is a detection device of an air conditioner.
  • the detection method includes: detecting the driving of the air conditioner. The voltage between any two-phase output terminals of the circuit; according to the voltage, it is recognized whether the driving circuit is faulty.
  • the method for detecting the failure of the drive circuit proposed by the embodiment of the present disclosure, the voltage between any two-phase output terminals of the drive circuit of the air conditioner is detected, and then whether the drive circuit is faulty is identified according to the voltage. Therefore, the method can locate the fault point simply, quickly and efficiently without replacing the device, so as to facilitate maintenance.
  • the method for detecting a failure of the driving circuit proposed according to the foregoing embodiment of the present disclosure may also have the following additional technical features:
  • the identifying whether the driving circuit is faulty according to the voltage includes: identifying that the voltage is outside a set voltage range, and then determining that the driving circuit is faulty.
  • Fig. 1 is a block schematic diagram of an air conditioner according to an embodiment of the present disclosure
  • Fig. 2 is a circuit diagram of a driving circuit of a compressor in an air conditioner according to an embodiment of the present disclosure
  • FIG. 3 is a diagram of voltage waveforms formed on the U, V, and W interfaces when the driving circuit according to an embodiment of the present disclosure works normally;
  • Fig. 4 is a voltage vector diagram of a compressor according to an embodiment of the present disclosure.
  • Fig. 5 is a schematic block diagram of a detection device for an air conditioner according to an embodiment of the present disclosure
  • Fig. 6 is a flowchart of a method for detecting a failure of a driving circuit according to an embodiment of the present disclosure.
  • FIG. 7 is a flowchart of a method for detecting a failure of a driving circuit according to another embodiment of the present disclosure.
  • Fig. 1 is a block diagram of an air conditioner according to an embodiment of the present disclosure
  • Fig. 2 is a circuit diagram of a driving circuit of a compressor in the air conditioner according to an embodiment of the present disclosure.
  • the air conditioner according to the embodiment of the present disclosure includes: a compressor 10, a driving circuit 20, and a controller 30.
  • the drive circuit 20 includes 6 switch tubes, the drive circuit 20 is used to drive the compressor 10, and the controller 30 is used to continuously output 6 PWM drive signals to the corresponding 6 switch tubes for the air conditioner detection device ( Figure Not shown in) detect the voltage between any two-phase output terminals of the drive circuit, and identify whether the drive circuit 20 is faulty based on the voltage.
  • the driving circuit 20 of the electric control board of the compressor 10 in the air conditioner has a total of 6 switch tubes, such as 6 IGBTs (Insulated Gate Bipolar Transistors). Composition, the driving circuit 20 is used to drive the compressor 10, where S1 to S6 represent 6 switch IGBTs, and the 6 IGBTs S1 to S6 are controlled by the controller 10 (not shown in FIG. 2). Specifically, when the electronic control board is normal, the controller 10 can output a PWM signal to control 6 switching tubes. At this time, the three input U, V, and W interfaces of the compressor 10 form a voltage waveform as shown in FIG.
  • 6 IGBTs Insulated Gate Bipolar Transistors
  • Vu represents the voltage of the U phase relative to the neutral line
  • Vv represents the voltage of the V phase relative to the neutral line
  • Vw represents the voltage of the W phase relative to the neutral line
  • Vu-v represents the voltage between the UV two phases
  • Vv-w represents the VW phase
  • Vw-u represents the voltage between the two phases of WU, as shown in Figure 4.
  • the reason for the damage of the electric control board may be the abnormality of the 6 PWM drive signals output by the controller 30 or at least one of the 6 switch tubes.
  • the switch tube has a fault, so the voltage between U, V, W can be measured to determine whether the electric control board has the above fault.
  • the controller 30 continuously outputs 6 PWM drive signals to the corresponding 6 switch tubes for the air conditioner detection device to detect the voltage between any two-phase output terminals of the drive circuit 20 and identify whether the drive circuit 20 is error occured.
  • the controller 30 needs to continuously output 6 PWM drive signals to the corresponding 6 switching tubes, so that the voltage between U, V, and W can remain stable. Therefore, a detection mode needs to be set. In the mode, the controller 30 does not detect the compressor feedback signal, and does not judge the compressor failure, but continuously outputs 6 PWM drive signals to the corresponding 6 switch tubes.
  • the detection device of the air conditioner detects the voltage between any two-phase output terminals of the drive circuit 20.
  • the AC voltage file of a multimeter can be used to measure the voltage between the UV, VW, and WU terminals on the electric control board.
  • the controller 30 is specifically configured to: after detecting that the air conditioner enters the maintenance test mode, continuously output 6 PWM drive signals to the corresponding 6 switch tubes.
  • the controller 30 is further configured to: after receiving an instruction to enter the forced cooling mode sent by the indoor unit, detect the current of the compressor 10; according to the current, it is recognized that the compressor 10 is not connected to the drive circuit 20, then Control the air conditioner to enter the maintenance test mode.
  • an entry method is specially set. First, unplug the connection line of the outdoor compressor 10 after power off, then power on again, and send the forced cooling mode command through the forced button on the main control panel of the indoor unit to control the air conditioner to enter the forced cooling function. After the outdoor unit receives the command to enter the forced cooling mode sent by the indoor unit, the controller 30 of the outdoor electromechanical control board detects the current of the compressor 10 and determines whether the compressor is connected to the drive circuit 20 according to the current, for example, when When the current is less than the preset current threshold, it is determined that the compressor 10 is not connected to the driving circuit 20, and at this time, it is considered that the air conditioner has entered the maintenance test mode.
  • the controller 30 of the outdoor electromechanical control board executes the corresponding program.
  • the drive control mode of the compressor 10 adopts the speed open loop and current closed loop methods, and the compressor feedback signal is not detected, and the compression is not judged. If the machine fails, it will continuously output 6 PWM drive signals to the corresponding 6 switch tubes.
  • the detection device of the air conditioner detects the voltage between the UV, VW, and WU terminals of the drive circuit 20, and judges each voltage. If the voltage between the UV, VW, and WU terminals is Vu-v, Vv- Both w and Vw-u are between 150 ⁇ 270V, it means that the 6 switch tubes have output, and there is no problem with the drive circuit of the electric control board. If only one of Vu-v, Vv-w, Vw-u is not at 150 ⁇ 270V In the meantime, it indicates that there is a problem with the drive circuit 20 of the electric control board, and the electric control board needs to be replaced. If the electronic control board is normal, it can be judged that the compressor 10 is faulty, and the compressor 10 needs to be replaced immediately.
  • the controller of the air conditioner continuously outputs 6 PWM drive signals to the corresponding 6 switch tubes for the detection device of the air conditioner to detect the voltage between any two-phase output terminals of the drive circuit , And identify whether the drive circuit is faulty according to the voltage, so that the fault point can be located simply, quickly and efficiently without replacing the device for easy maintenance.
  • Fig. 5 is a schematic block diagram of a detection device for an air conditioner according to an embodiment of the present disclosure.
  • the detection device of the air conditioner in the embodiment of the present disclosure includes: a detection module 110 and an identification module 120.
  • the detection module 110 is used to detect the voltage between any two-phase output terminals of the driving circuit of the air conditioner, and the identification module 120 is used to identify whether the driving circuit is faulty according to the voltage.
  • the identification module 120 is specifically configured to: identify that the voltage is outside the set voltage range, and then determine that the drive circuit is faulty.
  • the detection device of the air conditioner proposed in the embodiment of the present disclosure, the voltage between any two-phase output terminals of the driving circuit of the air conditioner is detected by the detection module, so that the identification module can identify whether the driving circuit is faulty according to the voltage, so that the device can be replaced without replacing the device. Under the circumstances, it is simple, fast and efficient to locate the fault point for easy maintenance.
  • Fig. 6 is a flowchart of a method for detecting a failure of a driving circuit according to an embodiment of the present disclosure.
  • the execution body of the method for detecting failure of the drive circuit is an air conditioner.
  • the method for detecting a failure of a driving circuit in an embodiment of the present disclosure includes the following steps:
  • S61 Continuously output 6 PWM drive signals to the corresponding 6 switch tubes, so that the detection device of the air conditioner can detect the voltage between any two-phase output terminals of the drive circuit, and identify whether the drive circuit is faulty according to the voltage.
  • the above-mentioned driving circuit failure detection method further includes: after detecting that the air conditioner enters the maintenance test mode, executing the step of continuously outputting 6 PWM driving signals to the corresponding 6 switching tubes.
  • the above-mentioned driving circuit failure detection method further includes: after receiving a forced cooling mode command sent by the indoor unit, detecting the current of the compressor; and identifying that the compressor is not connected to the driving circuit according to the current , Then control the air conditioner to enter the maintenance test mode.
  • the detection device of the air conditioner can detect the voltage between any two-phase output terminals of the drive circuit. And according to the voltage to identify whether the drive circuit is faulty. Therefore, the method can locate the fault point simply, quickly and efficiently without replacing the device, so as to facilitate maintenance.
  • FIG. 7 is a flowchart of a method for detecting a failure of a driving circuit according to another embodiment of the present disclosure.
  • the execution body of the method for detecting failure of the drive circuit is the detecting device of the air conditioner.
  • the method for detecting a failure of a driving circuit in an embodiment of the present disclosure includes the following steps:
  • identifying whether the drive circuit is faulty based on the voltage includes: identifying that the voltage is outside the set voltage range, and then determining that the drive circuit is faulty.
  • the method for detecting the failure of the drive circuit proposed by the embodiment of the present disclosure, the voltage between any two-phase output terminals of the drive circuit of the air conditioner is detected, and then whether the drive circuit is faulty is identified according to the voltage. Therefore, the method can locate the fault point simply, quickly and efficiently without replacing the device, so as to facilitate maintenance.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present disclosure, "a plurality of” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a "computer-readable medium” can be any device that can contain, store, communicate, propagate, or transmit a program for use by an instruction execution system, device, or device or in combination with these instruction execution systems, devices, or devices.
  • computer readable media include the following: electrical connections (electronic devices) with one or more wiring, portable computer disk cases (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable and editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable media on which the program can be printed, because it can be used, for example, by optically scanning the paper or other media, and then editing, interpreting, or other suitable media if necessary. The program is processed in a manner to obtain the program electronically and then stored in the computer memory.
  • each part of the present disclosure can be implemented by hardware, software, firmware or a combination thereof.
  • multiple steps or methods can be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • Discrete logic gate circuits for implementing logic functions on data signals Logic circuit, application specific integrated circuit with suitable combinational logic gate, programmable gate array (PGA), field programmable gate array (FPGA), etc.
  • the functional units in the various embodiments of the present disclosure may be integrated into one processing module, or each unit may exist alone physically, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk or an optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

一种空调器、空调器的检测装置和驱动电路故障的检测方法,所述空调器,包括:压缩机(10);驱动电路(20),驱动电路(20)包括6个开关管,驱动电路(20)用于驱动压缩机(10);控制器(30),用于持续输出6路PWM驱动信号至对应的6个开关管,以供空调器的检测装置检测驱动电路任意两相输出端之间的电压,并根据电压识别驱动电路是否出现故障。所述空调器能够在不更换器件的情况下简单、快速、高效地定位故障点,以便于维修。

Description

空调器、空调器的检测装置和驱动电路故障的检测方法
相关申请的交叉引用
本公开基于申请号为201910227242.7,申请日为2019年03月25日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本公开作为参考。
技术领域
本公开涉及空调技术领域,特别涉及一种空调器、空调器的检测装置和驱动电路故障的检测方法。
背景技术
在空调技术领域中,当压缩机或者室外驱动压缩机的电控板的驱动电路出现故障时,都会出现压缩机不能动作的问题,此时需要排查是压缩机还是电控板的驱动电路出现问题。
由于电控板的驱动电路的复杂性和专业性,通常维修人员难以在现场判断电控板驱动电路的哪部分元器件出现问题,只能首先通过以下方式来解决该问题:先更换电控板,再重新开机测试,若能够正常运行,则证明是电控板的驱动电路出现问题,可以通过更换电控板解决;若更换电控板后压缩机依旧不能够正常运行,则证明压缩机出现问题,可以通过更换压缩机解决。但是,这种检测方式并不能快速地定位出故障点,检测效率低,且只能通过更换器件来探查问题。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本公开的第一个目的在于提出一种空调器,其能够在不更换器件的情况下简单、快速、高效地定位故障点,以便于维修。
本公开的第二个目的在于提出一种加热装置的控制系统。
本公开的第三个目的在于提出一种驱动电路故障的检测方法。
本公开的第四个目的在于提出另一种驱动电路故障的检测方法。
为达上述目的,本公开的第一方面实施例提出了一种空调器,包括:压缩机;驱动电路,所述驱动电路包括6个开关管,所述驱动电路用于驱动所述压缩机;控制器,用于持续输出6路PWM驱动信号至对应的所述6个开关管,以供空调器的检测装置检测所述驱动电路任意两相输出端之间的电压,并根据所述电压识别所述驱动电路是否出现故障。
根据本公开实施例提出的空调器,通过空调器的控制器持续输出6路PWM驱动信号至对应的6个开关管,以供空调器的检测装置检测驱动电路任意两相输出端之间的电压,并根据电压识别驱动电路是否出现故障,从而能够在不更换器件的情况下简单、快速、高效地定位故障点,以便于维修。
另外,根据本公开上述实施例提出的空调器还可以具有如下附加的技术特征:
根据本公开的一个实施例,所述控制器具体用于:在检测到所述空调器进入检修测试模式后,持续输出所述6路PWM驱动信号至对应的所述6个开关管。
根据本公开的一个实施例,所述控制器还用于:接收到室内机发送的进入强制制冷模式指令后,检测所述压缩机的电流;根据所述电流识别出所述压缩机未与所述驱动电路连接,则控制所述空调器进入所述检修测试模式。
为达上述目的,本公开的第二方面实施例提出了一种空调器的检测装置,其适用于第一方面实施例提出的空调器,所述检测装置包括:检测模块,用于检测所述空调器的驱动电路任意两相输出端之间的电压;识别模块,用于根据所述电压识别所述驱动电路是否出现故障。
根据本公开实施例提出的空调器的检测装置,通过检测模块检测空调器的驱动电路任意两相输出端之间的电压,以便识别模块根据电压识别驱动电路是否出现故障,从而能够在不更换器件的情况下简单、快速、高效地定位故障点,以便于维修。
另外,根据本公开上述实施例提出的空调器的检测装置还可以具有如下附加的技术特征:
根据本公开的一个实施例,所述识别模块具体用于:识别出所述电压位于设定电压范围外,则确定出所述驱动电路出现故障。
为达上述目的,本公开的第三方面实施例提出了一种驱动电路故障的检测方法,该方法的执行主体为空调器,所述检测方法,包括以下步骤:持续输出6路PWM驱动信号至对应的6个开关管,以供空调器的检测装置检测驱动电路任意两相输出端之间的电压,并根据所述电压识别所述驱动电路是否出现故障。
根据本公开实施例提出的驱动电路故障的检测方法,通过持续输出6路PWM驱动信号至对应的6个开关管,以供空调器的检测装置检测驱动电路任意两相输出端之间的电压,并根据电压识别驱动电路是否出现故障。由此,该方法能够在不更换器件的情况下简单、快速、高效地定位故障点,以便于维修。
另外,根据本公开上述实施例提出的驱动电路故障的检测方法还可以具有如下附加的技术特征:
根据本公开的一个实施例,上述的驱动电路故障的检测方法,还包括:在检测到所述 空调器进入检修测试模式后,执行所述持续输出6路PWM驱动信号至对应的6个开关管步骤。
根据本公开的一个实施例,接收到室内机发送的进入强制制冷模式指令后,检测压缩机的电流;根据所述电流识别出所述压缩机未与所述驱动电路连接,则控制所述空调器进入所述检修测试模式。
为达上述目的,本公开的第四方面实施例提出了另一种驱动电路故障的检测方法,该方法的执行主体为空调器的检测装置,所述检测方法包括:检测所述空调器的驱动电路任意两相输出端之间的电压;根据所述电压识别所述驱动电路是否出现故障。
根据本公开实施例提出的驱动电路故障的检测方法,通过检测所述空调器的驱动电路任意两相输出端之间的电压,再根据所述电压识别所述驱动电路是否出现故障。由此,该方法能够在不更换器件的情况下简单、快速、高效地定位故障点,以便于维修。
另外,根据本公开上述实施例提出的驱动电路故障的检测方法还可以具有如下附加的技术特征:
根据本公开的一个实施例,所述根据所述电压识别所述驱动电路是否出现故障,包括:识别出所述电压位于设定电压范围外,则确定出所述驱动电路出现故障。
附图说明
图1是根据本公开一个实施例的空调器的方框示意图;
图2是根据本公开一个实施例的空调器中压缩机的驱动电路的电路图;
图3是根据本公开一个实施例的驱动电路正常工作时的U、V、W接口上形成的电压波形图;
图4是根据本公开一个实施例的压缩机的电压矢量图;
图5是根据本公开一个实施例的空调器的检测装置的方框示意图;
图6是根据本公开一个实施例的驱动电路故障的检测方法的流程图;以及
图7是根据本公开另一个实施例的驱动电路故障的检测方法的流程图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面结合附图来描述本公开实施例的空调器、空调器的检测装置和驱动电路故障的检测方法。
图1是根据本公开一个实施例的空调器的方框示意图,图2是根据本公开一个实施例的空调器中压缩机的驱动电路的电路图。
参照图1和图2所示,本公开实施例的空调器,包括:压缩机10、驱动电路20和控制器30。
其中,驱动电路20包括6个开关管,驱动电路20用于驱动压缩机10,控制器30用于持续输出6路PWM驱动信号至对应的6个开关管,以供空调器的检测装置(图中未示出)检测驱动电路任意两相输出端之间的电压,并根据电压识别驱动电路20是否出现故障。
在本公开的实施例中,如图2所示,空调器中压缩机10的电控板的驱动电路20共有6个开关管如6个IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)构成,该驱动电路20用于驱动压缩机10,其中,S1~S6表示6个开关管IGBT,S1~S6这6个IGBT由控制器10(图2中未标出)控制。具体地,电控板正常时,控制器10可输出PWM信号控制6个开关管,此时压缩机10的3路输入U、V、W接口上形成如图3所示的电压波形,其中,Vu表示U相相对于中线的电压,Vv表示V相相对于中线的电压,Vw表示W相相对于中线的电压,Vu-v表示U-V两相之间的电压,Vv-w表示V-W两相之间的电压,Vw-u表示W-U两相之间的电压,如图4所示。而电控板损坏时,控制器10是无法驱动压缩机10的,此时电控板损坏的原因有可能是控制器30输出的6路PWM驱动信号异常或者是6个开关管中的至少一个开关管出现了故障,因此,可以通过测量U、V、W之间的电压来确定电控板有没有出现以上的故障。
为此,控制器30持续输出6路PWM驱动信号至对应的6个开关管,以供空调器的检测装置检测驱动电路20任意两相输出端之间的电压,并根据电压识别驱动电路20是否出现故障。
可以理解的是,在正常的运行模式下,如果电控板或者压缩机10出现了故障,电控板检测到故障后就会停止6路PWM驱动信号输出,此时由于6个开关管没有开通,U、V、W之间的电压为0。
具体地,为了方便测量,控制器30需要持续输出6路PWM驱动信号至对应的6个开关管,使U、V、W之间的电压能够保持稳定,因此需要设置一种检测模式,在该模式下,控制器30不检测压缩机反馈信号,不判断压缩机故障,只是持续输出6路PWM驱动信号至对应的6个开关管。
然后,空调器的检测装置检测驱动电路20任意两相输出端之间的电压,例如可利用万用表的交流电压档分别测量电控板上U-V、V-W、W-U接线端子之间的电压,在获取到U-V、V-W、W-U接线端子之间分别对应的电压Vu-v、Vv-w、Vw-u后,对每个电压进行判断,如果Vu-v、Vv-w、Vw-u均在150~270V之间,则表明6路IGBT有输出,电控板的驱动电 路20没有问题,而如果Vu-v、Vv-w、Vw-u只有一个不在150~270V之间,则表明电控板的驱动电路20出现了问题,需要更换电控板。
可以理解的是,如果电控板的驱动电路20正常,则可以判断为压缩机10出现了故障,需要马上更换压缩机10。
根据本公开的一个实施例,控制器30具体用于:在检测到空调器进入检修测试模式后,执行持续输出6路PWM驱动信号至对应的6个开关管。
根据本公开的一个实施例,控制器30还用于:接收到室内机发送的进入强制制冷模式指令后,检测压缩机10的电流;根据电流识别出压缩机10未与驱动电路20连接,则控制空调器进入检修测试模式。
优选地,为了方便进入上述检测模式,特别设置了一种进入方式。首先,断电后拔掉室外压缩机10的连接线,然后,重新上电,通过室内机主控板上的强制按键发送进入强制制冷模式指令,以控制空调器进入强制制冷功能。室外机在接收到室内机发送的进入强制制冷模式指令后,室外机电控板的控制器30通过检测压缩机10的电流,并根据该电流判断压缩机是否与驱动电路20连接,例如,当该电流小于预设电流阈值时判断压缩机10没有与驱动电路20连接,此时认为空调器进入了检修测试模式。
在空调器进入检修测试模式后,室外机电控板的控制器30执行相应的程序,压缩机10的驱动控制方式采用速度开环和电流闭环的方式,不检测压缩机反馈信号,不判断压缩机故障,持续固定的输出6路PWM驱动信号至对应的6个开关管。
最后,空调器的检测装置检测驱动电路20的U-V、V-W、W-U接线端子之间的电压,并对每个电压进行判断,如果U-V、V-W、W-U接线端子之间的电压Vu-v、Vv-w、Vw-u均在150~270V之间,则表明6个开关管有输出,电控板的驱动电路没有问题,而如果Vu-v、Vv-w、Vw-u只有一个不在150~270V之间,则表明电控板的驱动电路20出现了问题,需要更换电控板。而如果电控板正常,则可以判断为压缩机10故障,需要马上更换压缩机10。
根据本公开实施例提出的空调器,通过空调器的控制器持续输出6路PWM驱动信号至对应的6个开关管,以供空调器的检测装置检测驱动电路任意两相输出端之间的电压,并根据电压识别驱动电路是否出现故障,从而能够在不更换器件的情况下简单、快速、高效地定位故障点,以便于维修。
图5是根据本公开一个实施例的空调器的检测装置的方框示意图。如图5所示,本公开实施例的空调器的检测装置,包括:检测模块110和识别模块120。
其中,检测模块110用于检测空调器的驱动电路任意两相输出端之间的电压,识别模块120用于根据电压识别驱动电路是否出现故障。
根据本公开的一个实施例,识别模块120具体用于:识别出电压位于设定电压范围外,则确定出驱动电路出现故障。
需要说明的是,本公开实施例的空调器的检测装置中未披露的细节,请参考本公开实施例的空调器中所披露的细节,具体这里不再详述。
根据本公开实施例提出的空调器的检测装置,通过检测模块检测空调器的驱动电路任意两相输出端之间的电压,以便识别模块根据电压识别驱动电路是否出现故障,从而能够在不更换器件的情况下简单、快速、高效地定位故障点,以便于维修。
图6是根据本公开一个实施例的驱动电路故障的检测方法的流程图。
需要说明的是,该驱动电路故障的检测方法的执行主体为空调器。
如图6所示,本公开实施例的驱动电路故障的检测方法,包括以下步骤:
S61,持续输出6路PWM驱动信号至对应的6个开关管,以供空调器的检测装置检测驱动电路任意两相输出端之间的电压,并根据电压识别驱动电路是否出现故障。
根据本公开的一个实施例,上述的驱动电路故障的检测方法,还包括:在检测到空调器进入检修测试模式后,执行持续输出6路PWM驱动信号至对应的6个开关管步骤。
根据本公开的一个实施例,上述的驱动电路故障的检测方法,还包括:接收到室内机发送的进入强制制冷模式指令后,检测压缩机的电流;根据电流识别出压缩机未与驱动电路连接,则控制空调器进入检修测试模式。
需要说明的是,本公开实施例的驱动电路故障的检测方法中未披露的细节,请参考本公开实施例的空调器中所披露的细节,具体这里不再详述。
根据本公开实施例提出的驱动电路故障的检测方法,通过持续输出6路PWM驱动信号至对应的6个开关管,以供空调器的检测装置检测驱动电路任意两相输出端之间的电压,并根据电压识别驱动电路是否出现故障。由此,该方法能够在不更换器件的情况下简单、快速、高效地定位故障点,以便于维修。
图7是根据本公开另一个实施例的驱动电路故障的检测方法的流程图。
需要说明的是,该驱动电路故障的检测方法的执行主体为空调器的检测装置。
如图7所示,本公开实施例的驱动电路故障的检测方法,包括以下步骤:
S71,检测空调器的驱动电路任意两相输出端之间的电压。
S72,根据电压识别驱动电路是否出现故障。
根据本公开的一个实施例,根据电压识别驱动电路是否出现故障,包括:识别出电压位于设定电压范围外,则确定出驱动电路出现故障。
需要说明的是,本公开实施例的驱动电路故障的检测方法中未披露的细节,请参考本公开实施例的空调器中所披露的细节,具体这里不再详述。
根据本公开实施例提出的驱动电路故障的检测方法,通过检测所述空调器的驱动电路任意两相输出端之间的电压,再根据所述电压识别所述驱动电路是否出现故障。由此,该方法能够在不更换器件的情况下简单、快速、高效地定位故障点,以便于维修。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本公开各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种空调器,其特征在于,包括:
    压缩机;
    驱动电路,所述驱动电路包括6个开关管,所述驱动电路用于驱动所述压缩机;
    控制器,用于持续输出6路PWM驱动信号至对应的所述6个开关管,以供空调器的检测装置检测所述驱动电路任意两相输出端之间的电压,并根据所述电压识别所述驱动电路是否出现故障。
  2. 根据权利要求1所述的空调器,其特征在于,所述控制器具体用于:
    在检测到所述空调器进入检修测试模式后,持续输出所述6路PWM驱动信号至对应的所述6个开关管。
  3. 根据权利要求2所述的空调器,其特征在于,所述控制器还用于:
    接收到室内机发送的进入强制制冷模式指令后,检测所述压缩机的电流;
    根据所述电流识别出所述压缩机未与所述驱动电路连接,则控制所述空调器进入所述检修测试模式。
  4. 一种空调器的检测装置,其特征在于,适用于如权利要求1-3任一项所述的空调器,所述检测装置包括:
    检测模块,用于检测所述空调器的驱动电路任意两相输出端之间的电压;
    识别模块,用于根据所述电压识别所述驱动电路是否出现故障。
  5. 根据权利要求4所述的检测装置,其特征在于,所述识别模块具体用于:
    识别出所述电压位于设定电压范围外,则确定出所述驱动电路出现故障。
  6. 一种驱动电路故障的检测方法,其特征在于,执行主体为空调器,所述检测方法,包括以下步骤:
    持续输出6路PWM驱动信号至对应的6个开关管,以供空调器的检测装置检测驱动电路任意两相输出端之间的电压,并根据所述电压识别所述驱动电路是否出现故障。
  7. 根据权利要求6所述的检测方法,其特征在于,还包括:
    在检测到所述空调器进入检修测试模式后,执行所述持续输出6路PWM驱动信号至对应的6个开关管步骤。
  8. 根据权利要求7所述的检测方法,其特征在于,
    接收到室内机发送的进入强制制冷模式指令后,检测压缩机的电流;
    根据所述电流识别出所述压缩机未与所述驱动电路连接,则控制所述空调器进入所述检修测试模式。
  9. 一种驱动电路故障的检测方法,其特征在于,执行主体为空调器的检测装置,所述检测方法包括:
    检测所述空调器的驱动电路任意两相输出端之间的电压;
    根据所述电压识别所述驱动电路是否出现故障。
  10. 根据权利要求9所述的检测方法,其特征在于,所述根据所述电压识别所述驱动电路是否出现故障,包括:
    识别出所述电压位于设定电压范围外,则确定出所述驱动电路出现故障。
PCT/CN2019/109590 2019-03-25 2019-09-30 空调器、空调器的检测装置和驱动电路故障的检测方法 WO2020192076A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021556514A JP7263541B2 (ja) 2019-03-25 2019-09-30 空気調和機、空気調和機の検出装置及び駆動回路の故障の検出方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910227242.7A CN109945396B (zh) 2019-03-25 2019-03-25 空调器、驱动电路故障的检测方法和检测装置
CN201910227242.7 2019-03-25

Publications (1)

Publication Number Publication Date
WO2020192076A1 true WO2020192076A1 (zh) 2020-10-01

Family

ID=67011412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109590 WO2020192076A1 (zh) 2019-03-25 2019-09-30 空调器、空调器的检测装置和驱动电路故障的检测方法

Country Status (3)

Country Link
JP (1) JP7263541B2 (zh)
CN (1) CN109945396B (zh)
WO (1) WO2020192076A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109945396B (zh) * 2019-03-25 2021-10-26 广东美的制冷设备有限公司 空调器、驱动电路故障的检测方法和检测装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101749832A (zh) * 2010-01-15 2010-06-23 广东欧科空调制冷有限公司 一种中央空调控制器
CN101871981A (zh) * 2010-06-01 2010-10-27 佛山市中格威电子有限公司 一种用于空调的自动检测、调整方法及电路
JP2012200042A (ja) * 2011-03-18 2012-10-18 Mitsubishi Electric Corp インバータ制御装置及び冷凍空調装置
CN102789230A (zh) * 2012-08-13 2012-11-21 海信(山东)空调有限公司 空调室外机控制板的自动检测方法
US8941347B2 (en) * 2012-04-12 2015-01-27 Mitsubishi Electric Corporation Converter control device and air conditioner including converter control device
CN106411140A (zh) * 2016-11-21 2017-02-15 广东美的制冷设备有限公司 驱动电路和家用电器
JP6273844B2 (ja) * 2014-01-08 2018-02-07 ダイキン工業株式会社 空調システムのコントローラ
CN108134551A (zh) * 2017-12-21 2018-06-08 青岛海信日立空调系统有限公司 一种风机驱动电路、空调室内机及空调
KR101911258B1 (ko) * 2016-08-24 2018-12-19 엘지전자 주식회사 전력 변환 장치 및 이를 포함하는 공기 조화기
CN109945396A (zh) * 2019-03-25 2019-06-28 广东美的制冷设备有限公司 空调器、驱动电路故障的检测方法和检测装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02131158U (zh) * 1989-04-04 1990-10-31
JPH0866081A (ja) * 1994-06-14 1996-03-08 Toshiba Corp 無整流子電動機の制御装置および異常検出方法並びに空気調和機
KR100452993B1 (ko) * 2001-12-21 2004-10-15 주식회사 엘지이아이 인버터공기조화기의 인버터모터 제어회로 및 방법
JP2005033559A (ja) * 2003-07-14 2005-02-03 Fuji Xerox Co Ltd 故障診断装置
DE10359236B3 (de) 2003-12-17 2005-05-25 Siemens Ag Anordnung zur Prüfung einer Leistungsendstufe
JP2006081327A (ja) 2004-09-10 2006-03-23 Mitsubishi Electric Corp インバータの故障検出装置
CN101034124B (zh) * 2007-02-12 2010-08-04 珠海格力电器股份有限公司 变频空调电源模块及其驱动模块的检测方法
JP5266687B2 (ja) 2007-08-16 2013-08-21 三菱電機株式会社 異常検出装置
KR101463159B1 (ko) 2007-12-21 2014-11-20 엘지전자 주식회사 공기조화기의 전동기 제어장치
KR101054439B1 (ko) * 2009-03-24 2011-08-04 엘지전자 주식회사 공기조화기의 전동기 구동장치
JP5364138B2 (ja) * 2011-09-29 2013-12-11 日立アプライアンス株式会社 モータ駆動制御装置および空調機器
CN202372581U (zh) * 2011-11-03 2012-08-08 珠海格力电器股份有限公司 空调器的测试装置及系统
CN103091573B (zh) * 2011-11-03 2015-10-07 珠海格力电器股份有限公司 空调器的测试方法、装置及系统
CN104730366B (zh) * 2013-12-23 2017-12-19 美的集团股份有限公司 用于家用电器的故障诊断与维修辅助设备
JP6270987B2 (ja) 2014-03-14 2018-01-31 東芝三菱電機産業システム株式会社 電力変換装置の監視装置
CN105811371B (zh) * 2016-03-14 2018-12-25 珠海格力电器股份有限公司 直流电机控制系统故障诊断方法及装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101749832A (zh) * 2010-01-15 2010-06-23 广东欧科空调制冷有限公司 一种中央空调控制器
CN101871981A (zh) * 2010-06-01 2010-10-27 佛山市中格威电子有限公司 一种用于空调的自动检测、调整方法及电路
JP2012200042A (ja) * 2011-03-18 2012-10-18 Mitsubishi Electric Corp インバータ制御装置及び冷凍空調装置
US8941347B2 (en) * 2012-04-12 2015-01-27 Mitsubishi Electric Corporation Converter control device and air conditioner including converter control device
CN102789230A (zh) * 2012-08-13 2012-11-21 海信(山东)空调有限公司 空调室外机控制板的自动检测方法
JP6273844B2 (ja) * 2014-01-08 2018-02-07 ダイキン工業株式会社 空調システムのコントローラ
KR101911258B1 (ko) * 2016-08-24 2018-12-19 엘지전자 주식회사 전력 변환 장치 및 이를 포함하는 공기 조화기
CN106411140A (zh) * 2016-11-21 2017-02-15 广东美的制冷设备有限公司 驱动电路和家用电器
CN108134551A (zh) * 2017-12-21 2018-06-08 青岛海信日立空调系统有限公司 一种风机驱动电路、空调室内机及空调
CN109945396A (zh) * 2019-03-25 2019-06-28 广东美的制冷设备有限公司 空调器、驱动电路故障的检测方法和检测装置

Also Published As

Publication number Publication date
CN109945396A (zh) 2019-06-28
JP2022525667A (ja) 2022-05-18
CN109945396B (zh) 2021-10-26
JP7263541B2 (ja) 2023-04-24

Similar Documents

Publication Publication Date Title
JP5065192B2 (ja) モータ制御装置及びモータの絶縁劣化検出方法
US7583109B2 (en) Apparatus and methods for monitoring parallel-connected power switching devices responsive to drive circuit parameters
US20150340977A1 (en) Motor drive device including function to detect failure in inverter and power line
US20120075755A1 (en) Electric device, electric device system, method to detect arc fault in the same
US20130285584A1 (en) Motor driving apparatus and method
US8427173B2 (en) Open fuse detection by neutral point shift
JP6516878B2 (ja) 電動機制御装置
JP6661054B1 (ja) 電力変換装置
CN104950238B (zh) 换流器及其igbt驱动电路的故障检测方法和装置
US20150185287A1 (en) Detection device for power component drivers, and detection method thereof
WO2020192076A1 (zh) 空调器、空调器的检测装置和驱动电路故障的检测方法
JP2013072689A (ja) 故障検出装置および方法
WO2007096971A1 (ja) 保守ガイダンス表示装置、保守ガイダンス表示方法、保守ガイダンス表示プログラム
JP6131940B2 (ja) インバータの故障検出方法およびインバータ検査装置
JP5354277B2 (ja) 電力変換装置
CN114123755A (zh) 检测pfc电路故障的方法、pfc电路和空调器
US10072666B2 (en) Hermetic compressor driving device
JP2006304456A (ja) 電力変換装置
JP4623220B2 (ja) 電源回路
US9209705B2 (en) Power supply circuit and heat pump unit
KR0182744B1 (ko) 인버터용 공기조화기
CN111694302B (zh) 一种io模块的检测装置、方法和楼宇控制系统
US20210359621A1 (en) Drive system with common dc bus
CN112083221B (zh) 一种故障检测方法、装置及电器设备
JP5535266B2 (ja) 多軸三相サーボモータ用の故障検出装置および故障検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021556514

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921501

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/02/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19921501

Country of ref document: EP

Kind code of ref document: A1