WO2020192053A1 - 一种糠醛的制备方法 - Google Patents

一种糠醛的制备方法 Download PDF

Info

Publication number
WO2020192053A1
WO2020192053A1 PCT/CN2019/108189 CN2019108189W WO2020192053A1 WO 2020192053 A1 WO2020192053 A1 WO 2020192053A1 CN 2019108189 W CN2019108189 W CN 2019108189W WO 2020192053 A1 WO2020192053 A1 WO 2020192053A1
Authority
WO
WIPO (PCT)
Prior art keywords
furfural
acid
acetic acid
steam
vapor
Prior art date
Application number
PCT/CN2019/108189
Other languages
English (en)
French (fr)
Inventor
刘运思
张睿哲
闵渝
林尚钿
Original Assignee
广州楹鼎生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州楹鼎生物科技有限公司 filed Critical 广州楹鼎生物科技有限公司
Priority to JP2021503063A priority Critical patent/JP7100925B2/ja
Priority to US17/056,927 priority patent/US11358943B2/en
Publication of WO2020192053A1 publication Critical patent/WO2020192053A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • C07D307/48Furfural
    • C07D307/50Preparation from natural products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • This application relates to the field of furfural preparation, for example, to a method for preparing furfural.
  • furfural mainly uses pentosans in plant raw materials, and plant fibers mainly contain cellulose, hemicellulose and lignin.
  • the pentosan contained in hemicellulose is first hydrolyzed to produce pentose, which is then dehydrated to produce furfural.
  • aldehyde gas generally contains 4-6% furfural, 1-2% acetic acid, and a small amount of low boilers.
  • the aldehyde gas enters the initial distillation tower after being condensed, and an azeotrope of furfural and water is obtained at the bottom of the tower, and the industrial wastewater containing acetic acid and a small amount of furfural is discharged from the top of the initial distillation tower.
  • CN102329287A discloses a new process and special equipment for preparing furfural by using xylose mother liquor.
  • the xylose mother liquor and sulfuric acid solution are first weighed in parts by weight, and the mixed liquid is added to the reaction kettle of the furfural conversion and distillation integrated tower.
  • Steam is fed into the reactor through a direct steam heating distributor, and xylose is dehydrated and converted into furfural under the action of sulfuric acid; after the reaction is completed, steam is stopped into the reactor, and steam is sent to the jacket to heat the reactor for subsequent follow-up Distillation and separation operations.
  • CN103193737A discloses a method for preparing furfural and producing lignin and cellulosic ethanol by using plant materials as raw materials, which in turn includes: hydrolyzing hemicellulose to prepare pentose, preheating the pentose liquid, spraying heating, dehydration and cyclization, and aldehyde vapor Flash evaporation, pressure release, distillation, rectification separation and other steps to obtain the main distillate furfural.
  • the method utilizes acid solutions such as sulfuric acid, acetic acid solution, nitric acid solution, hydrochloric acid, and solid super acid aqueous solution to hydrolyze pentosans contained in plant material hemicellulose to pentoses.
  • CN105503790A discloses a method for preparing furfural using corn cob corn stalks as raw materials.
  • the corn stalks and corn cobs are pretreated, and the hemicellulose in the stalks and corn cobs is separated and extracted by dilute sulfuric acid solution, and finally converted by high temperature and high pressure For furfural.
  • CN102659723A discloses a method for preparing furfural from high-crude fiber plant agricultural and sideline products, which comprises: hydrolyzing pretreated raw materials in a hydrolysis tank, and adopting an acidic catalyst formed by mixing sulfuric acid and phosphoric acid in the hydrolysis process; and transferring to the hydrolysis tank High-temperature steam is introduced, the hydrolysis tank is heated and the hydrolyzed furfural is gas-stripped; the gas-stripped furfural enters the furfural phase separator to obtain crude furfural and furfural residue.
  • the method adopts an acidic catalyst combined with sulfuric acid and phosphoric acid to hydrolyze the raw materials, and at the same time, is supplemented by ultrasonic treatment to improve the productivity of furfural.
  • the purpose of this application includes providing a method for preparing furfural, which can greatly increase the hydrolysis rate of pentosan in hemicellulose and at the same time increase the yield of furfural.
  • This application provides a method for preparing furfural, which includes the following steps:
  • step (2) Mix the material obtained by pretreatment in step (1) with organic acid, and separate solid and liquid after cooking to obtain hemicellulose sugar liquid;
  • step (3) Introduce the hemicellulose sugar liquid obtained in step (2) from the upper part of the reaction kettle, and at the same time pass acetic acid vapor from the lower part of the reaction kettle, so that the sugar liquid and the acetic acid steam are in countercurrent contact and react to generate furfural steam. Furfural vapor is discharged from the upper part, and a solution containing furfural is obtained after cooling.
  • step (1) before the pretreatment described in step (1), the plant raw materials are crushed first, and then the crushed raw materials are mixed with an acid containing -SO 3 H functional groups for pretreatment.
  • the acid containing the -SO 3 H functional group in step (1) is methanesulfonic acid and/or ethylsulfonic acid.
  • the pretreatment described in step (1) is performed at room temperature.
  • the pretreatment time of step (1) is 0.5-1h, for example, it can be 0.5h, 0.6h, 0.7h, 0.8h, 0.9h or 1h, and the specific point value between the above values is limited to For the sake of length and brevity, this application will not be exhaustive.
  • the organic acid in step (2) is at least one of formic acid, acetic acid or butyric acid, for example, it can be any one of formic acid, acetic acid or butyric acid.
  • a typical but non-limiting combination is: formic acid And acetic acid, formic acid and butyric acid, acetic acid and butyric acid, formic acid, acetic acid and butyric acid.
  • the cooking temperature in step (2) is 90-150°C, for example, 90°C, 95°C, 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, 130°C, 135°C °C, 140°C, 145°C or 150°C, as well as the specific point values between the above values, are limited by space and for the sake of brevity, this application will not be exhaustively listed.
  • the cooking time in step (2) is 0.1-1.5h, for example, it can be 0.1h, 0.3h, 0.5h, 0.8h, 1h, 1.3h or 1.5h, and the specific point between the above values Value, limited by space and for the sake of brevity, this application will not be exhaustively listed.
  • the solid-liquid mass of the material obtained by the pretreatment in step (2) and the organic acid is 1:(5-25), for example, it can be 1:5, 1:8, 1:10, 1:13, 1:15, 1:18, 1:20, 1:23, or 1:25, as well as specific points between the above values, are limited by space and for the sake of brevity, this application will not exhaustively list them.
  • the mass concentration of the organic acid in step (2) is 50-95%, for example, it can be 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% Or 95%, and the specific points between the above values, are limited by space and for the sake of brevity, this application will not exhaustively list them.
  • the reaction kettle in step (3) is a reaction kettle containing multiple trays.
  • the temperature of the hemicellulose sugar solution in step (3) when entering the reactor is 160-200°C, for example 160°C, 165°C, 170°C, 175°C, 180°C, 185°C, 190°C , 195°C or 200°C, and the specific point values between the above values are limited to space and for the sake of brevity, this application will not be exhaustively listed.
  • the temperature of the acetic acid vapor in step (3) is 230-280°C, for example 230°C, 235°C, 240°C, 245°C, 250°C, 255°C, 260°C, 265°C, 270°C, 275°C or 280°C, as well as specific points between the above values, are limited in space and for the sake of brevity, this application will not exhaustively list them.
  • the mass concentration of acetic acid in the acetic acid vapor in step (3) is 10-20%, for example, it can be 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19% or 20%, as well as specific points between the above values, are limited to space and for reasons of brevity, this application will not exhaustively list them.
  • step (3) when the amount of furfural generated reaches 40-60% of the complete reaction, furfural vapor is exported, while the hemicellulose sugar liquid and acetic acid vapor are supplemented to continue the reaction.
  • the traditional furfural preparation process emits furfural steam at one time.
  • the furfural steam is released for all times after the reaction reaches the end point.
  • the furfural yield is 35%-45%, which is low.
  • This application adopts a process of discharging furfural steam multiple times, and the furfural steam is discharged before the reaction end point (40-60%) is reached.
  • the semi-continuous discharging method makes the reaction proceed more thoroughly, and the furfural yield is also increased.
  • the obtained distillate contains acetic acid, which is heated to form acetic acid vapor for use in the furfural preparation process.
  • the preparation method of furfural described in this application includes the following steps:
  • the material obtained by pretreatment in step (1) is mixed with an organic acid with a mass concentration of 50-95%, and cooked at 90-150°C for 0.1-1.5 h after solid-liquid separation to obtain hemicellulose sugar liquid, the organic acid is at least one of formic acid, acetic acid or butyric acid;
  • step (3) Heat the hemicellulose sugar solution obtained in step (2) to 160-200°C, and then introduce it into the reactor from the upper part of the reactor containing multi-layer trays, and at the same time pass the mass concentration of 10-20% of acetic acid steam at 230-280°C, the sugar liquid and acetic acid steam are in countercurrent contact and react to produce furfural steam.
  • furfural production reaches 40-60% of the complete reaction, furfural steam is exported and hemicellulose is added.
  • the sugar liquid and the acetic acid vapor continue to react, and the derived furfural vapor is cooled to obtain a solution containing furfural.
  • the obtained distillate contains acetic acid, which is heated to form acetic acid vapor for the furfural preparation process.
  • This application first uses an acid containing -SO 3 H functional groups to pretreat plant raw materials at room temperature, and then uses organic acid cooking to hydrolyze pentosans in hemicellulose to pentoses. After pretreatment, half The hydrolysis rate of pentosan in cellulose can reach more than 99%, thereby realizing efficient utilization of valuable substances in raw materials and reducing production costs.
  • This application adopts the process of discharging furfural steam in batches and semi-continuously to make the preparation reaction more thorough, and the yield of furfural reaches 65%-75%, which is about 30% higher than the one-time discharging process in related technologies; This method is also conducive to continuous and stable production and improves the efficiency of the production process.
  • the distillate is heated to form acetic acid vapor and then used in the preparation of furfural, which saves the processing cost of the distillate and improves the utilization rate of raw materials.
  • the plant raw materials used in the specific embodiments of this application are selected from straw, corn cob, bark, bamboo, corn cob, cotton seed husk, bagasse, bran, etc., but not limited to this, other bio-based plant raw materials are also applicable In this application.
  • the above-mentioned plant raw materials are crushed into small pieces of about 2 ⁇ 1.5 ⁇ 0.5 cm before pretreatment, and then the pretreatment operation is performed.
  • the addition amount of the acid containing -SO 3 H functional group is not specifically limited.
  • the plant raw material can be immersed in the pretreatment process. After the pretreatment is completed, the solid-liquid separation is performed. In the subsequent preparation of furfural, the acid containing -SO 3 H functional group can be reused.
  • step (2) Heat the hemicellulose sugar solution obtained in step (1) to 180°C, and then introduce it into the reactor from the upper part of the reactor containing multi-layer trays, and at the same time pass through the lower part of the reactor with a mass concentration of 20% ⁇ Acetic acid vapor at a temperature of 250°C makes the sugar liquid and acetic acid vapor come into contact in countercurrent reaction to generate furfural vapor.
  • the furfural production reaches 50% of the complete reaction, the furfural vapor is exported, and the hemicellulose sugar liquid and acetic acid vapor are added to continue the reaction.
  • the derived furfural vapor is cooled to obtain a solution containing furfural, and after rectification, the obtained distillate contains acetic acid, which is heated to form acetic acid vapor for the furfural preparation process.
  • step (2) Heat the hemicellulose sugar solution obtained in step (1) to 200°C, and then introduce it into the reactor from the upper part of the reactor containing multi-layer trays, and at the same time pass the mass concentration of 15% from the lower part of the reactor , Acetic acid vapor at a temperature of 280°C, make the sugar liquid and acetic acid vapor come into contact and react in countercurrent to generate furfural vapor.
  • the furfural production reaches 40% of the complete reaction, the furfural vapor is exported, and the hemicellulose sugar liquid and acetic acid vapor are added to continue the reaction.
  • the derived furfural vapor is cooled to obtain a solution containing furfural, and after rectification, the obtained distillate contains acetic acid, which is heated to form acetic acid vapor for the furfural preparation process.
  • step (2) Heat the hemicellulose sugar solution obtained in step (1) to 180°C, and then introduce it into the reactor from the upper part of the reactor containing multi-layer trays, and at the same time pass the mass concentration of 10% from the lower part of the reactor ⁇ Acetic acid vapor at 230°C makes the sugar liquid and acetic acid vapor come into contact and react in countercurrent to produce furfural vapor.
  • the furfural production reaches 55% of the complete reaction, the furfural vapor is exported, and the hemicellulose sugar liquid and acetic acid vapor are added to continue the reaction.
  • the derived furfural vapor is cooled to obtain a solution containing furfural, and after rectification, the obtained distillate contains acetic acid, which is heated to form acetic acid vapor for the furfural preparation process.
  • step (2) Heat the hemicellulose sugar solution obtained in step (1) to 170°C, and then introduce it into the reactor from the upper part of the reactor containing multi-layer trays, and at the same time pass the mass concentration of 13% from the lower part of the reactor , Acetic acid vapor at a temperature of 270°C, make the sugar liquid and acetic acid vapor come into contact with each other in countercurrent to generate furfural vapor.
  • the furfural production reaches 60% of the complete reaction, the furfural vapor will be exported, and the hemicellulose sugar liquid and acetic acid vapor will be added to continue the reaction.
  • the derived furfural vapor is cooled to obtain a solution containing furfural, and after rectification, the obtained distillate contains acetic acid, which is heated to form acetic acid vapor for the furfural preparation process.
  • step (2) Heat the hemicellulose sugar solution obtained in step (1) to 180°C, and then introduce it into the reactor from the upper part of the reactor containing multi-layer trays, and at the same time, pass the mass concentration of 17% from the lower part of the reactor ⁇ Acetic acid steam at a temperature of 250°C makes the sugar liquid and acetic acid steam come into contact with each other in countercurrent to produce furfural steam.
  • the furfural production reaches 45% of the complete reaction, the furfural steam is exported, and the hemicellulose sugar liquid and acetic acid steam are added to continue the reaction.
  • the derived furfural vapor is cooled to obtain a solution containing furfural, and after rectification, the obtained distillate contains acetic acid, which is heated to form acetic acid vapor for the furfural preparation process.
  • Example 1 Compared with Example 1, except for removing the pretreatment step, other conditions are exactly the same as Example 1. That is, the organic acid is directly used to cook the plant material.
  • Example 1 Compared with Example 1, the other steps and conditions are exactly the same as Example 1, except that the furfural vapor is discharged after the furfural is completely reacted in step (2).
  • Example 1 Compared with Example 1, except that the methanesulfonic acid in the pretreatment step (1) is replaced with hydrochloric acid, the other steps and conditions are exactly the same as those of Example 1.
  • Example 1 Compared with Example 1, except for replacing the methanesulfonic acid in the pretreatment step (1) with acetic acid, the other steps and conditions are exactly the same as those in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Furan Compounds (AREA)

Abstract

提供了一种糠醛的制备方法,所述方法为:将植物原料和含有-SO3H官能团的酸混合进行预处理后与有机酸混合,蒸煮后固液分离,得到半纤维素糖液;从反应釜上部导入所得半纤维素糖液,同时从反应釜下部通入醋酸蒸汽,使糖液和醋酸蒸汽逆流接触反应生成糠醛蒸汽,反应完成后,从反应釜上部导出糠醛蒸汽,冷却后得到含有糠醛的溶液。该方法首先利用含有-SO3H官能团的酸对植物原料进行预处理,然后利用有机酸进行蒸煮,半纤维素中的戊聚糖的水解率可达99%以上,实现了对原料中有价物质的高效利用。此外,该方法采用分批次半连续放出糠醛蒸汽的流程,提高了糠醛的产率,糠醛的产率可达65-75%,具有良好的经济效益和应用前景。

Description

一种糠醛的制备方法 技术领域
本申请涉及糠醛制备领域,例如涉及一种糠醛的制备方法。
背景技术
糠醛生产主要是利用植物原料中的戊聚糖,植物纤维中主要含有纤维素、半纤维素、木质素。半纤维素中含有的戊聚糖先水解生成戊糖,再由戊糖脱水生产糠醛。
目前,糠醛工业生产中,普遍采用强酸做催化剂,在水解过程中,用高压水蒸气将水解产生的糠醛及其他副产挥发性物质带出水解锅,形成醛气。醛气中一般含糠醛4-6%,醋酸1-2%,还有少量低沸物。醛气经冷凝后进入初馏塔,在塔底得到糠醛与水共沸物,初馏塔顶排出含醋酸及少量糠醛的工业废水。
CN102329287A公开了一种利用木糖母液制备糠醛的新工艺及专用设备,制备过程中首先按照重量份称取木糖母液和硫酸溶液,将混合液加入到糠醛转化蒸馏一体塔所属的反应釜中,通过直接蒸汽加热分配器向反应釜通入蒸汽,木糖在硫酸作用下脱水转化为糠醛;反应完成后,停止向反应釜通入蒸汽,向夹套内输送蒸汽对反应釜进行加热,进行后续蒸馏、分离的操作。
CN103193737A公开了一种以植物材料为原料制备糠醛并联产木质素和纤维乙醇的方法,依次包括:将半纤维素水解制备戊糖,戊糖液预热,喷射升温,脱水环化,醛汽闪蒸释压以及蒸馏、精馏分离等步骤,得到主馏分糠醛。该方法利用硫酸、乙酸溶液、硝酸溶液、盐酸、固体超强酸的水溶液等酸液将植物材料半纤维素中含有的戊聚糖水解为戊糖。
CN105503790A公开了一种以玉米芯玉米秸秆为原料制备糠醛的方法,将玉 米秸秆以及玉米芯进行预处理,通过稀硫酸溶液对将秸秆以及玉米芯中的半纤维素分离提取,最后通过高温高压转化为糠醛。
CN102659723A公开了一种用高粗纤维植物农副产品制备糠醛的方法,包括:将预处理后的原料在水解罐中进行水解,水解过程中采用硫酸和磷酸混合而成的酸性催化剂;往水解罐中引入高温蒸汽,加热水解罐并气提水解产物糠醛;气提糠醛进入糠醛分相器,得到粗糠醛和糠醛渣。该方法采用硫酸和磷酸结合的酸性催化剂水解原料,同时辅以超声波处理,提高糠醛的生产率。
上述制备糠醛的流程中均采用了无机强酸做催化剂,但该类型催化剂酸性强,得到的废液难以有效进行处理,对环境造成很大的压力。而采用有机酸做催化剂制备糠醛时,则存在戊糖转化率不高的问题,造成了对原材料中有价物质的浪费,增加了生产成本。此外,半纤维素糖液制备糠醛的反应平衡有限,传统的糖液制备糠醛的流程中,糠醛蒸汽的放出时间都是在反应达到终点后,糠醛产率较低,原料中还有很大部分没有反应,原料的利用率不高。因此需要对相关的植物原料制备糠醛的工艺流程进行改良。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的目的包括提供一种糠醛的制备方法,大幅提高半纤维素中的戊聚糖的水解率,同时提高糠醛的产率。
为达到上述目的,本申请采用以下技术方案:
本申请提供了一种糠醛的制备方法,所述方法包括以下步骤:
(1)将植物原料和含有-SO 3H官能团的酸混合进行预处理;
(2)将步骤(1)经过预处理得到的物料与有机酸混合,蒸煮后固液分离, 得到半纤维素糖液;
(3)从反应釜上部导入步骤(2)得到的半纤维素糖液,同时从反应釜下部通入醋酸蒸汽,使糖液和醋酸蒸汽逆流接触反应生成糠醛蒸汽,反应完成后,从反应釜上部导出糠醛蒸汽,冷却后得到含有糠醛的溶液。
本申请在步骤(1)所述预处理前,先将植物原料进行粉碎,然后将粉碎的原料与含有-SO 3H官能团的酸混合进行预处理。
根据本申请,步骤(1)所述含有-SO 3H官能团的酸为甲磺酸和/或乙基磺酸。
根据本申请,步骤(1)所述预处理在常温下进行。
根据本申请,步骤(1)所述预处理的时间为0.5-1h,例如可以是0.5h、0.6h、0.7h、0.8h、0.9h或1h,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举。
根据本申请,步骤(2)所述有机酸为甲酸、乙酸或丁酸中的至少一种,例如可以是甲酸、乙酸或丁酸中的任意一种,典型但非限定性的组合为:甲酸和乙酸,甲酸和丁酸,乙酸和丁酸,甲酸、乙酸和丁酸。
根据本申请,步骤(2)所述蒸煮的温度为90-150℃,例如可以是90℃、95℃、100℃、105℃、110℃、115℃、120℃、125℃、130℃、135℃、140℃、145℃或150℃,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举。
根据本申请,步骤(2)所述蒸煮的时间为0.1-1.5h,例如可以是0.1h、0.3h、0.5h、0.8h、1h、1.3h或1.5h,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举。
根据本申请,步骤(2)所述预处理得到的物料与有机酸的固液质量为1:(5-25),例如可以是1:5、1:8、1:10、1:13、1:15、1:18、1:20、1:23或1:25,以及上述数 值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举。
根据本申请,步骤(2)所述有机酸的质量浓度为50-95%,例如可以是50%、55%、60%、65%、70%、75%、80%、85%、90%或95%,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举。
根据本申请,步骤(3)所述反应釜为含有多层塔板的反应釜。
根据本申请,步骤(3)所述半纤维素糖液进入反应釜时的温度为160-200℃,例如可以是160℃、165℃、170℃、175℃、180℃、185℃、190℃、195℃或200℃,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举。
根据本申请,步骤(3)所述醋酸蒸汽的温度为230-280℃,例如可以是230℃、235℃、240℃、245℃、250℃、255℃、260℃、265℃、270℃、275℃或280℃,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举。
根据本申请,步骤(3)所述醋酸蒸汽中醋酸的质量浓度为10-20%,例如可以是10%、11%、12%、13%、14%、15%、16%、17%、18%、19%或20%,以及上述数值之间的具体点值,限于篇幅及出于简明的考虑,本申请不再穷尽列举。
根据本申请,步骤(3)中待糠醛生成量达到完全反应的40-60%时,导出糠醛蒸汽,同时补充半纤维素糖液和醋酸蒸汽继续进行反应。
传统糠醛制备一次放出糠醛蒸汽的工艺流程,糠醛蒸汽的放出时间都是在反应达到终点后,糠醛产率在35%-45%,产率较低。本申请采用了多次放出糠醛蒸汽的流程,在达到反应终点之前(40-60%)时即开始导出糠醛蒸汽,半连续的放出方式使反应进行更彻底,糠醛的产率也随之提高。
根据本申请,对步骤(3)得到的含有糠醛的溶液进行精馏后,所得馏出液中含有醋酸,将其加热形成醋酸蒸汽用于糠醛制备流程中。
作为可选的技术方案,本申请所述糠醛的制备方法包括以下步骤:
(1)将植物原料和含有-SO 3H官能团的酸混合进行预处理0.5-1h,所述含有-SO 3H官能团的酸为甲磺酸和/或乙基磺酸;
(2)按照1:(5-25)的固液质量比将步骤(1)经过预处理得到的物料与质量浓度为50-95%的有机酸混合,在90-150℃下蒸煮0.1-1.5h后固液分离,得到半纤维素糖液,所述有机酸为甲酸、乙酸或丁酸中的至少一种;
(3)将步骤(2)得到的半纤维素糖液加热至160-200℃,然后从含有多层塔板的反应釜上部将其导入反应釜中,同时从反应釜下部通入质量浓度为10-20%、温度为230-280℃的醋酸蒸汽,使糖液和醋酸蒸汽逆流接触反应生成糠醛蒸汽,待糠醛生成量达到完全反应的40-60%时导出糠醛蒸汽,同时补充半纤维素糖液和醋酸蒸汽继续进行反应,导出的糠醛蒸汽经过冷却后得到含有糠醛的溶液,对其精馏后,所得馏出液中含有醋酸,将其加热形成醋酸蒸汽用于糠醛制备流程中。
与相关技术相比,本申请至少具有以下有益效果:
(1)本申请首先利用含有-SO 3H官能团的酸在常温下对植物原料进行预处理,然后利用有机酸蒸煮将半纤维素中的戊聚糖水解生成戊糖,经过预处理后,半纤维素中的戊聚糖的水解率可达99%以上,进而实现了对原料中有价物质的高效利用,降低了生产成本。
(2)本申请采用了分批次半连续放出糠醛蒸汽的流程,使制备反应进行更彻底,糠醛的产率达到65%-75%,较相关技术中一次放出的工艺提高了30%左右;该方法同样利于持续稳定的生产,提高生产流程的效率。
(3)本申请将馏出液进行加热形成醋酸蒸汽后再利用到糠醛制备中,省去了馏出液的处理费用,同时提高了原料利用率。
在阅读并理解了详细描述后,可以明白其他方面。
具体实施方式
为便于理解本申请,本申请列举实施例如下。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
本申请具体实施方式中使用的植物原料选自秸秆、玉米芯、树皮、竹子、玉米芯、棉籽壳、甘蔗渣、糠麸皮等,但非仅限于此,其他生物基的植物原料同样适用于本申请。
本申请在预处理前先将上述植物原料粉碎为2×1.5×0.5cm左右的小块,然后再进行预处理的操作。
本申请具体实施方式中对含有-SO 3H官能团的酸的添加量不进行具体限定,预处理过程中将植物原料浸没其中即可,预处理完成后固液分离,经过预处理后的原料进行后续制备糠醛的操作,含有-SO 3H官能团的酸可重复利用。
以下为本申请典型但非限定性的具体实施例:
实施例1
(1)在常温下将玉米芯浸没在甲磺酸中进行预处理0.5h,然后按照1:25的固液质量比将经过预处理得到的物料与质量浓度为50%的甲酸混合,升温至150℃蒸煮0.5h,对所得浆料过滤后得到半纤维素糖液;
(2)将步骤(1)得到的半纤维素糖液加热至180℃,然后从含有多层塔板的反应釜上部将其导入反应釜中,同时从反应釜下部通入质量浓度为20%、温度为250℃的醋酸蒸汽,使糖液和醋酸蒸汽逆流接触反应生成糠醛蒸汽,待糠醛生成量达到完全反应的50%时导出糠醛蒸汽,同时补充半纤维素糖液和醋酸蒸 汽继续进行反应,导出的糠醛蒸汽经过冷却后得到含有糠醛的溶液,对其精馏后,所得馏出液中含有醋酸,将其加热形成醋酸蒸汽用于糠醛制备流程中。
经过检测,植物原料中戊聚糖的水解率为99.3%,糠醛的产率为72%。
实施例2
(1)在常温下将甘蔗渣浸没在乙基磺酸中进行预处理1h,然后按照1:5的固液质量比将经过预处理得到的物料与质量浓度为95%的乙酸混合,升温至90℃蒸煮1.5h,对所得浆料过滤后得到半纤维素糖液;
(2)将步骤(1)得到的半纤维素糖液加热至200℃,然后从含有多层塔板的反应釜上部将其导入反应釜中,同时从反应釜下部通入质量浓度为15%、温度为280℃的醋酸蒸汽,使糖液和醋酸蒸汽逆流接触反应生成糠醛蒸汽,待糠醛生成量达到完全反应的40%时导出糠醛蒸汽,同时补充半纤维素糖液和醋酸蒸汽继续进行反应,导出的糠醛蒸汽经过冷却后得到含有糠醛的溶液,对其精馏后,所得馏出液中含有醋酸,将其加热形成醋酸蒸汽用于糠醛制备流程中。
经过检测,植物原料中戊聚糖的水解率为99.5%,糠醛的产率为66%。
实施例3
(1)在常温下将竹子浸没在乙基磺酸中进行预处理0.8h,然后按照1:15的固液质量比将经过预处理得到的物料与质量浓度为70%的丁酸混合,升温至100℃蒸煮1h,对所得浆料过滤后得到半纤维素糖液;
(2)将步骤(1)得到的半纤维素糖液加热至180℃,然后从含有多层塔板的反应釜上部将其导入反应釜中,同时从反应釜下部通入质量浓度为10%、温度为230℃的醋酸蒸汽,使糖液和醋酸蒸汽逆流接触反应生成糠醛蒸汽,待糠醛生成量达到完全反应的55%时导出糠醛蒸汽,同时补充半纤维素糖液和醋酸蒸汽继续进行反应,导出的糠醛蒸汽经过冷却后得到含有糠醛的溶液,对其精馏 后,所得馏出液中含有醋酸,将其加热形成醋酸蒸汽用于糠醛制备流程中。
经过检测,植物原料中戊聚糖的水解率为99.5%,糠醛的产率为75%。
实施例4
(1)在常温下将玉米秸秆浸没在甲磺酸和乙基磺酸的混合液中进行预处理0.7h,然后按照1:20的固液质量比将经过预处理得到的物料与质量浓度为60%的乙酸混合,升温至95℃蒸煮1h,对所得浆料过滤后得到半纤维素糖液;
(2)将步骤(1)得到的半纤维素糖液加热至170℃,然后从含有多层塔板的反应釜上部将其导入反应釜中,同时从反应釜下部通入质量浓度为13%、温度为270℃的醋酸蒸汽,使糖液和醋酸蒸汽逆流接触反应生成糠醛蒸汽,待糠醛生成量达到完全反应的60%时导出糠醛蒸汽,同时补充半纤维素糖液和醋酸蒸汽继续进行反应,导出的糠醛蒸汽经过冷却后得到含有糠醛的溶液,对其精馏后,所得馏出液中含有醋酸,将其加热形成醋酸蒸汽用于糠醛制备流程中。
经过检测,植物原料中戊聚糖的水解率为99.6%,糠醛的产率为70%。
实施例5
(1)在常温下将树皮浸没在甲磺酸中进行预处理0.6h,然后按照1:12的固液质量比将经过预处理得到的物料与质量浓度为75%的乙酸混合,升温至110℃蒸煮1h,对所得浆料过滤后得到半纤维素糖液;
(2)将步骤(1)得到的半纤维素糖液加热至180℃,然后从含有多层塔板的反应釜上部将其导入反应釜中,同时从反应釜下部通入质量浓度为17%、温度为250℃的醋酸蒸汽,使糖液和醋酸蒸汽逆流接触反应生成糠醛蒸汽,待糠醛生成量达到完全反应的45%时导出糠醛蒸汽,同时补充半纤维素糖液和醋酸蒸汽继续进行反应,导出的糠醛蒸汽经过冷却后得到含有糠醛的溶液,对其精馏后,所得馏出液中含有醋酸,将其加热形成醋酸蒸汽用于糠醛制备流程中。
经过检测,植物原料中戊聚糖的水解率为99.2%,,糠醛的产率为68%。
对比例1
与实施例1相比,除了去掉预处理的步骤外,其他条件与实施例1完全相同。即,直接利用有机酸对植物原料进行蒸煮。
经过检测,本对比例中植物原料中戊聚糖的水解率为85.8%。
对比例2
与实施例1相比,除了步骤(2)中待糠醛完全反应后再导出糠醛蒸汽外,其他步骤和条件与实施例1完全相同。
经过检测,本对比例中糠醛的产率为43%。
对比例3
与实施例1相比,除了将步骤(1)预处理中的甲磺酸替换为盐酸外,其他步骤和条件与实施例1完全相同。
经过检测,本对比例中植物原料中戊聚糖的水解率为87.3%。
对比例4
与实施例1相比,除了将步骤(1)预处理中的甲磺酸替换为乙酸外,其他步骤和条件与实施例1完全相同。
经过检测,本对比例中植物原料中戊聚糖的水解率为86.8%。
由实施例1-5可知,采用本申请提供的方法,可在糠醛制备过程中实现对原料中有价物质的高效利用,同时大幅提高糠醛的产率,植物原料中的戊聚糖的水解率可达99%以上,糠醛产率达到了65%以上。
由对比例1可知,当不进行预处理时,植物原料中戊聚糖的水解率仅为85.8%,较实施例1下降明显,说明在有机酸作为催化剂制备糠醛时,利用含有-SO 3H官能团的酸对植物原料进行预处理的步骤能够有效促进半纤维素中戊聚 糖的水解,提高原料利用率。
由对比例2可知,一次放出糠醛蒸汽时糠醛产率只有43%,而实施例1中糠醛的产率达到72%,提高了29%,说明分批次半连续放出糠醛蒸汽的流程能够大幅提高糠醛的产率。
由对比例3和对比例4可知,当使用盐酸和乙酸替换甲磺酸进行预处理时,植物原料中戊聚糖的水解率分别只有87.3%和86.8%,说明预处理过程中,含有-SO 3H官能团的酸对提高戊聚糖的水解率起到了不可替代的作用。
申请人声明,本申请通过上述实施例来说明本申请的详细工艺设备和工艺流程,但本申请并不局限于上述详细工艺设备和工艺流程,即不意味着本申请必须依赖上述详细工艺设备和工艺流程才能实施。

Claims (10)

  1. 一种糠醛的制备方法,其中,所述方法包括以下步骤:
    (1)将植物原料和含有-SO 3H官能团的酸混合进行预处理;
    (2)将步骤(1)经过预处理得到的物料与有机酸混合,蒸煮后固液分离,得到半纤维素糖液;
    (3)从反应釜上部导入步骤(2)得到的半纤维素糖液,同时从反应釜下部通入醋酸蒸汽,使糖液和醋酸蒸汽逆流接触反应生成糠醛蒸汽,反应完成后,从反应釜上部导出糠醛蒸汽,冷却后得到含有糠醛的溶液。
  2. 如权利要求1所述的方法,其中,步骤(3)中待糠醛生成量达到完全反应的40-60%时,导出糠醛蒸汽,同时补充半纤维素糖液和醋酸蒸汽继续进行反应。
  3. 如权利要求1所述的方法,其中,步骤(1)所述含有-SO 3H官能团的酸为甲磺酸和/或乙基磺酸;
    可选地,步骤(1)所述预处理的时间为0.5-1h。
  4. 如权利要求1-3任一项所述的方法,其中,步骤(2)所述有机酸为甲酸、乙酸或丁酸中的至少一种。
  5. 如权利要求1-4任一项所述的方法,其中,步骤(2)所述蒸煮的温度为90-150℃;
    可选地,步骤(2)所述蒸煮的时间为0.1-1.5h。
  6. 如权利要求1-5任一项所述的方法,其中,步骤(2)所述预处理得到的物料与有机酸的固液质量比为1:(5-25);
    可选地,步骤(2)所述有机酸的质量浓度为50-95%。
  7. 如权利要求1-6任一项所述的方法,其中,步骤(3)所述反应釜为含有多层塔板的反应釜。
  8. 如权利要求1-7任一项所述的方法,其中,步骤(3)所述半纤维素糖液进入反应釜时的温度为160-200℃;
    可选地,步骤(3)所述醋酸蒸汽的温度为230-280℃;
    可选地,步骤(3)所述醋酸蒸汽中醋酸的质量浓度为10-20%。
  9. 如权利要求1-8任一项所述的方法,其中,对步骤(3)得到的含有糠醛的溶液进行精馏后,所得馏出液中含有醋酸,将其加热形成醋酸蒸汽用于糠醛制备流程中。
  10. 如权利要求1-9任一项所述的方法,其中,所述方法包括以下步骤:
    (1)将植物原料和含有-SO 3H官能团的酸混合进行预处理0.5-1h,所述含有-SO 3H官能团的酸为甲磺酸和/或乙基磺酸;
    (2)按照1:(5-25)的固液质量比将步骤(1)经过预处理得到的物料与质量浓度为50-95%的有机酸混合,在90-150℃下蒸煮0.1-1.5h后固液分离,得到半纤维素糖液,所述有机酸为甲酸、乙酸或丁酸中的至少一种;
    (3)将步骤(2)得到的半纤维素糖液加热至160-200℃,然后从含有多层塔板的反应釜上部将其导入反应釜中,同时从反应釜下部通入质量浓度为10-20%、温度为230-280℃的醋酸蒸汽,使糖液和醋酸蒸汽逆流接触反应生成糠醛蒸汽,待糠醛生成量达到完全反应的40-60%时导出糠醛蒸汽,同时补充半纤维素糖液和醋酸蒸汽继续进行反应,导出的糠醛蒸汽经过冷却后得到含有糠醛的溶液,对其精馏后,所得馏出液中含有醋酸,将其加热形成醋酸蒸汽用于糠醛制备流程中。
PCT/CN2019/108189 2019-03-27 2019-09-26 一种糠醛的制备方法 WO2020192053A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021503063A JP7100925B2 (ja) 2019-03-27 2019-09-26 フルフラールの調製方法
US17/056,927 US11358943B2 (en) 2019-03-27 2019-09-26 Method for preparing furfural

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910237443.5A CN109748895B (zh) 2019-03-27 2019-03-27 一种糠醛的制备方法
CN201910237443.5 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020192053A1 true WO2020192053A1 (zh) 2020-10-01

Family

ID=66409293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108189 WO2020192053A1 (zh) 2019-03-27 2019-09-26 一种糠醛的制备方法

Country Status (4)

Country Link
US (1) US11358943B2 (zh)
JP (1) JP7100925B2 (zh)
CN (1) CN109748895B (zh)
WO (1) WO2020192053A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2936518T3 (es) * 2017-12-06 2023-03-17 Eco Biomass Tech Company Limited Sistema y método para la preparación continua de furfural usando materia prima lignocelulósica
CN109748895B (zh) * 2019-03-27 2023-01-13 广州楹鼎生物科技有限公司 一种糠醛的制备方法
CN115819380A (zh) * 2022-11-16 2023-03-21 安徽金禾化学材料研究所有限公司 一种中性气爆-so3超声耦合预处理玉米芯催化制备糠醛的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102659723A (zh) * 2012-04-27 2012-09-12 广州博能能源科技有限公司 用高粗纤维植物农副产品制备糠醛的方法
CN103193737A (zh) * 2013-03-29 2013-07-10 山东龙力生物科技股份有限公司 植物材料制备糠醛并联产木质素和纤维乙醇的方法
CN106536496A (zh) * 2014-08-14 2017-03-22 国际壳牌研究有限公司 从生物质制备糠醛的方法
CN106536495A (zh) * 2014-08-14 2017-03-22 国际壳牌研究有限公司 从生物质制备糠醛的方法
CN109748895A (zh) * 2019-03-27 2019-05-14 广州楹鼎生物科技有限公司 一种糠醛的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2739086A (en) * 1952-06-14 1956-03-20 Tennessee Coal & Iron Division Method and apparatus for hydrolyzing cellulosic materials
DE10158120A1 (de) * 2001-11-27 2003-06-18 Ties Karstens Verfahren zum Abtrennen von Xylose aus xylanreichen Lignocellulosen, insbesondere Holz
IT1391099B1 (it) * 2008-08-06 2011-11-18 Eni Spa Procedimento per la produzione di zuccheri da biomassa
CA2783942A1 (en) * 2009-12-16 2011-06-23 Shell Internationale Research Maatschappij B.V. Method for producing furfural from lignocellulosic biomass material
TW201522380A (zh) * 2013-10-02 2015-06-16 Basf Se 含纖維素生質之加工方法
CN104557810A (zh) * 2013-10-24 2015-04-29 中国石油化工股份有限公司 一种采用撞击流反应器由戊糖溶液生产糠醛的方法
ITMI20132069A1 (it) * 2013-12-11 2015-06-12 Versalis Spa Procedimento per la produzione di zuccheri da biomassa
CN107445926A (zh) * 2016-05-31 2017-12-08 中国科学院大连化学物理研究所 一种气液两相流木糖脱水制备糠醛的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102659723A (zh) * 2012-04-27 2012-09-12 广州博能能源科技有限公司 用高粗纤维植物农副产品制备糠醛的方法
CN103193737A (zh) * 2013-03-29 2013-07-10 山东龙力生物科技股份有限公司 植物材料制备糠醛并联产木质素和纤维乙醇的方法
CN106536496A (zh) * 2014-08-14 2017-03-22 国际壳牌研究有限公司 从生物质制备糠醛的方法
CN106536495A (zh) * 2014-08-14 2017-03-22 国际壳牌研究有限公司 从生物质制备糠醛的方法
CN109748895A (zh) * 2019-03-27 2019-05-14 广州楹鼎生物科技有限公司 一种糠醛的制备方法

Also Published As

Publication number Publication date
CN109748895A (zh) 2019-05-14
JP2021535901A (ja) 2021-12-23
CN109748895B (zh) 2023-01-13
JP7100925B2 (ja) 2022-07-14
US11358943B2 (en) 2022-06-14
US20210206737A1 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
US8901325B2 (en) Method for producing furfural from lignocellulosic biomass material
WO2020192053A1 (zh) 一种糠醛的制备方法
CN103193737B (zh) 植物材料制备糠醛并联产木质素和纤维乙醇的方法
CN101886143B (zh) 一种超/亚临界水两步水解生物质制备还原糖的方法
CN108530404B (zh) 一种解聚生物质联产糠醛、纤维素和木质素的方法
JPS62111700A (ja) リグノセルロ−ス植物性原料からグルコ−ス、リグニンおよびセルロ−スを回収する方法
US20140024093A1 (en) Process for the production of digested biomass useful for chemicals and biofuels
US8426619B2 (en) Continuous production of furfural and levulininc acid
CN105669421A (zh) 一种生物质水解制备乙酰丙酸和糠醛的方法
WO2018152870A1 (zh) 一种生物质催化热解制备左旋葡萄糖酮的方法
CN104292195B (zh) 一种生物质分级处理后制备糠醛和调变流量制备乙酰丙酸的方法
CN108117652B (zh) 一种酶解木质素的提取方法
JP5861413B2 (ja) バイオマスからのフルフラールの連続製造方法
CN106831342A (zh) 一种利用农作物秸秆制备木糖醇的方法
CN102392082B (zh) 一类低溶解度有机酸催化纤维素水解制备葡萄糖的方法
AU2016251402B2 (en) Method for producing levoglucosenone
CN105418556A (zh) 一种以玉米秸秆为原料制备糠醛的方法
CN111943918A (zh) 一种糠醛五塔连续精馏工艺
TWI425097B (zh) 提升纖維原料水解液木糖濃度之方法
CN114736176B (zh) 一种农林废弃物制糠醛的方法
CN111747911B (zh) 一种连续分离糠醛的方法
CN114250257B (zh) 低聚糖的制备及非粮生物质资源高值化清洁利用方法
CN107893131A (zh) 一种玉米芯制木糖液的方法
CN116144038B (zh) 一种一体化多过程耦合制备糠醛、木素磺酸盐和高可降解纤维素的方法
CN109535440B (zh) 一种处理植物原料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921738

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503063

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921738

Country of ref document: EP

Kind code of ref document: A1