WO2020189763A1 - 中空シャフト - Google Patents

中空シャフト Download PDF

Info

Publication number
WO2020189763A1
WO2020189763A1 PCT/JP2020/012347 JP2020012347W WO2020189763A1 WO 2020189763 A1 WO2020189763 A1 WO 2020189763A1 JP 2020012347 W JP2020012347 W JP 2020012347W WO 2020189763 A1 WO2020189763 A1 WO 2020189763A1
Authority
WO
WIPO (PCT)
Prior art keywords
tip
inner peripheral
peripheral surface
main body
hollow shaft
Prior art date
Application number
PCT/JP2020/012347
Other languages
English (en)
French (fr)
Inventor
村田 真一
Original Assignee
武蔵精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武蔵精密工業株式会社 filed Critical 武蔵精密工業株式会社
Priority to CN202080017913.8A priority Critical patent/CN113518673B/zh
Priority to DE112020001383.9T priority patent/DE112020001383T5/de
Priority to US17/430,859 priority patent/US20220143664A1/en
Publication of WO2020189763A1 publication Critical patent/WO2020189763A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/16Making tubes with varying diameter in longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K21/00Making hollow articles not covered by a single preceding sub-group
    • B21K21/12Shaping end portions of hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D41/00Application of procedures in order to alter the diameter of tube ends
    • B21D41/04Reducing; Closing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/02Making hollow objects characterised by the structure of the objects
    • B21D51/10Making hollow objects characterised by the structure of the objects conically or cylindrically shaped objects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S138/00Pipes and tubular conduits
    • Y10S138/11Shape

Definitions

  • the present invention relates to a hollow shaft provided with a cylindrical main body portion and a tip drawing portion that is integrally connected to one end of the main body portion on the same axis and has a diameter reduced from that of the main body portion by drawing.
  • Patent Document 1 It has been conventionally known to obtain a hollow shaft having a tapered tip drawing portion by drawing the tip portion of a pipe material, for example, as shown in Patent Document 1.
  • the drawing ratio of the outer diameter (that is, the outer diameter before drawing / the outer diameter after drawing) is set so that the tip drawing is a predetermined small inner diameter. ) Is set large, the deformation may spread not only to the tip throttle portion but also to the cylindrical main body portion following the tip throttle portion. Therefore, there are inconveniences such as difficulty in forming a hollow shaft with a tip throttle portion with high shape accuracy as a whole.
  • the present invention has been proposed in view of the above.
  • the hollow shaft can be formed with high shape accuracy by reducing the drawing ratio of the tip drawing portion and obtaining a predetermined small inner diameter, and the tip drawing portion. It is an object of the present invention to provide a hollow shaft capable of increasing the rigidity and strength of the hollow shaft by suppressing the occurrence of stress concentration due to drawing processing at the boundary portion between the main body portion and the main body portion.
  • the present invention includes a cylindrical main body portion and a tip drawing portion that is integrally connected to one end of the main body portion on the same axis and has a diameter reduced from that of the main body portion by drawing.
  • the inner peripheral surface of the main body and the inner peripheral surface of the base of the tip drawing portion continuous with one end of the main body are formed by the cut surface cut before the drawing.
  • the first feature is that the inner peripheral surface of the tip portion of the tip drawing portion that is continuous with the tip end side of the base portion is a non-cutting surface.
  • the present invention is a hollow shaft having a first feature, which is formed by drawing a pipe material, and the pipe material has a cylindrical main body portion whose inner peripheral surface is a cutting surface.
  • One end of the main body is provided with a tip portion integrally connected on the same axis, and the inner peripheral surface of the tip portion base portion connected to one end side of the main body portion of the tip portion is attached to the tip of the tip portion.
  • It is a tapered cutting surface that gradually shrinks in diameter as it goes toward it, and the inner peripheral surface of the tip portion that is continuous with the tip side of the tip portion base portion is a non-cutting surface, and the inner peripheral surface of the tip portion base portion.
  • the second feature is that the inclination angle with respect to the shaft axis is smaller than the drawing angle of the tapered tapered surface of the inner peripheral surface of the tip drawing portion formed by the drawing process.
  • the inner peripheral surface of the tip portion base portion includes a first curved surface that smoothly connects the inner peripheral surface of the tip portion base portion to the inner peripheral surface of the main body portion.
  • the third feature is that it includes a second curved surface that smoothly connects the inner peripheral surface of the tip portion base portion to the inner peripheral surface of the tip portion tip portion.
  • the inner peripheral surface of the base portion connected to one end side of the main body portion is cut before the tip drawing portion is drawn, while the tip portion connected to the tip end side of the base portion is formed. Since the inner peripheral surface is not cut, a sufficient wall thickness can be left after drawing, so a predetermined inner diameter can be obtained while reducing the drawing ratio. Therefore, the main body is less likely to be deformed during drawing and is hollow.
  • the shaft as a whole can be molded with high shape accuracy.
  • the cutting process before drawing extends not only to the main body but also to a part (that is, the base) of the tip drawing, the entire inner peripheral surface of the main body can be reliably cut. It is more advantageous in improving the shape accuracy.
  • the boundary between the cutting surface and the non-cutting surface on the inner peripheral surface of the hollow shaft before drawing is located in the middle part of the tip drawing portion (that is, the boundary between the base and the tip) and is separated from the starting point of drawing. Therefore, even if a slight step remains at the boundary between the cutting surface and the non-cutting surface, it is unlikely to be a stress concentration factor at the starting point of drawing, and it is drawn near the boundary between the tip drawing part and the main body part. It is possible to suppress the occurrence of stress concentration during machining. Therefore, in combination with the effect of increasing the shape accuracy as described above, it is possible to greatly contribute to the increase in the rigidity and strength of the hollow shaft.
  • the inner peripheral surface of the tip base portion connected to one end side of the main body is the tip of the tip to be drawn.
  • a tapered cutting surface that gradually shrinks in diameter toward the tip of the portion, and the inner peripheral surface of the tip portion that is continuous with the tip side of the tip portion base portion is a non-cutting surface, and the tip portion base portion is tapered. Since the inclination angle of the shape inner peripheral surface with respect to the shaft axis is smaller than the drawing angle of the tip drawing portion formed by drawing the tip portion, the tapered inner peripheral surface of the tip portion base portion has a diameter due to drawing processing.
  • the inner peripheral surface of the portion from the main body portion to the tip of the tip drawing portion can be formed as smoothly as possible.
  • the inner peripheral surface of the base portion of the tip portion of the pipe material is smoothly connected to the inner peripheral surface of the tip portion and the first curved surface that smoothly connects the inner peripheral surface of the main body portion. Since it includes a second curved surface to be connected, stress concentration is less likely to occur at the boundary between the inner peripheral surface of the base portion of the tip portion and the inner peripheral surfaces of the main body portion and the tip portion of the tip portion during drawing processing, resulting in processing defects. Not only can this be effectively suppressed, but it can also contribute to further increasing the rigidity and strength of the hollow shaft.
  • FIG. 1 is a vertical cross-sectional view of a main part of the hollow shaft according to the first embodiment of the present invention.
  • FIG. 2 is a vertical cross-sectional view of a main part of the pipe material before drawing the hollow shaft.
  • FIG. 3 shows an example of the drawing process
  • FIG. 3A is a diagram showing a state immediately before drawing
  • FIG. 3B is a diagram showing a state immediately after drawing.
  • FIG. 4 is a vertical cross-sectional view of a main part of the pipe material according to the second embodiment (corresponding to FIG. 2).
  • FIG. 2 is a vertical cross-sectional view of a main part of the hollow shaft according to the first embodiment of the present invention.
  • FIG. 3 shows an example of the drawing process
  • FIG. 3A is a diagram showing a state immediately before drawing
  • FIG. 3B is a diagram showing a state immediately after drawing.
  • FIG. 4 is a vertical cross-sectional view of a main part of the pipe material according to the second embodiment (corresponding to FIG
  • FIG. 5 is a vertical cross-sectional view of a main part of the hollow shaft according to the second embodiment (corresponding to FIG. 1).
  • FIG. 6 is a vertical sectional view of a main part of the pipe material according to the third embodiment (corresponding to FIG. 2).
  • hird Embodiment is a vertical cross-sectional view of a main part of the pipe material according to the third embodiment (corresponding to FIG. 2).
  • the first embodiment is shown in FIGS. 1 to 3.
  • the hollow shaft S shown in FIG. 1 is entirely made of metal, and is integrally connected to one end of the cylindrical pipe-shaped main body 6 and one end of the main body 6 on the same axis, and is tapered from the main body 6 by drawing. It is provided with a tip drawing portion 7 whose diameter is reduced in shape.
  • Various functions of the hollow shaft S can be selected, and for example, it can be implemented as a power transmission shaft that rotates at high speed.
  • the inner peripheral surface 6i of the main body 6 and the inner peripheral surface 7bi of the base portion 7b of the tip drawing portion 7 that is integrally continuous with one end of the main body 6 are before the drawing process of the tip drawing portion 7. It is formed by a cutting surface that has been continuously machined.
  • the inner peripheral surface 7ai of the tip drawing portion 7 that is integrally continuous with the tip end side of the base portion 7b is a non-cutting surface, that is, is not cut. In each drawing, a region that is a cutting surface that has been machined before drawing is shown in pointillism.
  • FIG. 2 shows an example of the pipe material B before the above-mentioned hollow shaft S is drawn.
  • This pipe material B includes a cylindrical main body 6 whose inner peripheral surface 6i is a cutting surface, and a cylindrical tip 17 that is integrally connected to one end of the main body 6 on the same axis.
  • the tip portion 17 includes a tip portion base portion 17b integrally connected to one end side of the main body portion 6 and a tip portion tip portion 17a integrally connected to the tip side of the tip portion base portion 17b.
  • the inner peripheral surface 17bi of the tip portion base portion 17b is formed by a tapered cutting surface whose diameter gradually decreases from the main body portion 6 toward the tip of the tip portion 17.
  • the alternate long and short dash line in FIG. 2 indicates the inner peripheral surface of the pipe material B before being cut.
  • the inner peripheral surface 17bi of the tip portion base portion 17b is smoothly connected to the first curved surface r1 having an arcuate cross section that smoothly connects the inner peripheral surface 6i of the main body portion 6 and the inner peripheral surface 17ai of the tip portion tip portion 17a.
  • a second curved surface r2 having an arcuate cross section to be connected is provided at both ends of the inner peripheral surface 17bi of the tip portion base portion 17b. Therefore, both ends of the inner peripheral surface 17bi of the tip portion base portion 17b are smoothly connected to the inner peripheral surface 6i of the main body portion 6 and the inner peripheral surface 17ai of the tip portion tip portion 17a without any step.
  • the first and second curved surfaces r1 and r2 are both formed by cutting. Therefore, the inner peripheral surface 6i of the main body 6 and the inner peripheral surface 17bi of the tip base portion 17b including the first and second curved surfaces r1 and r2 can be continuously cut.
  • the inner peripheral surface 17ai of the tip portion 17a of the tip portion 17 which is connected to the tip side of the tip portion base portion 17b is a non-cutting surface, that is, is not machined.
  • the inclination angle ⁇ of the tapered inner peripheral surface 17bi of the tip portion base portion 17b with respect to the shaft axis L is set smaller than the drawing angle ⁇ of the tip drawing portion 7 formed by drawing the tip portion 17. ..
  • the drawing angle ⁇ corresponds to the inclination angle of the tapered surface 7t formed on the inner peripheral surface of the tip drawing portion 7 by drawing with respect to the shaft axis L.
  • the cutting step of the cylindrical pipe-shaped pipe material B on the inner peripheral surface and only the tip portion 17 of the pipe material B after the cutting step are contracted from the main body portion 6.
  • the inner peripheral surface 6i of the cylindrical main body 6 is cut to a predetermined inner diameter, and the inner peripheral surface 17bi of the tip base portion 17b connected to one end of the main body 6 is tapered.
  • the cutting process is performed so that the shape (however, both ends are the first and second curved surfaces r1 and r2), but the inner peripheral surface 17ai of the tip portion 17a connected to the tip side of the tip base portion 17b is a non-cut surface.
  • FIG. 3 shows an example of the above-mentioned drawing process, in which (a) shows the state immediately before drawing and (b) shows the state immediately after drawing.
  • the die device C used for drawing processing includes, for example, a fixed die body 20 and a push die 21 that can be driven up and down with respect to the die body 20.
  • the mold main body 20 has a molding hole 22 which is opened on the upper surface thereof and can fit and support a part of the main body portion 6 and the tip portion 17 of the pipe material B.
  • the formed hole 22 has a large tapered forming surface 22t for drawing the tip 17 of the pipe material B in cooperation with the stamp 21 (that is, reducing the diameter in a tapered shape) and a large tapered forming surface 22t. It includes a main body holding surface 22u that extends upward continuously to the diameter end (upper end), and a tip molding surface 22d that extends downward continuously to the small diameter end (lower end) of the tapered molding surface 22t. Then, between the large-diameter end of the tapered molding surface 22t and the main body holding surface 22u, and between the small-diameter end of the tapered molding surface 22t and the tip molding surface 22d, respectively, via a curved surface having an arcuate cross section. It is connected smoothly.
  • the push die 21 is integrally provided with a holding portion 21a that protrudes from the lower surface of the push die 21 and can fit and hold the upper end portion of the pipe material B.
  • the upper end portion is fitted to the holding portion 21a of the stamping die 21, and the lower end portion, that is, the tip portion 17 of the held pipe material B is made of gold. It is fitted and inserted into the molding hole 22 of the mold body 20, particularly the body holding surface 22u.
  • the pipe material B is pushed downward by the push die 21, and the tip portion 17 of the pipe material B is pushed into the tapered molding surface 22t to imitate the tapered molding surface 22t. It is drawn to make it fit.
  • the tapered tip drawing portion 7 is formed.
  • the push die 21 pushes down the pipe material B until the lower end of the tip portion 17 passes through the tapered molding surface 22t of the molding hole 22 and is immersed in the tip molding surface 22d by a predetermined amount.
  • a short cylindrical portion 7ae is formed on the tip portion 7a of the tip drawing portion 7 after the drawing process so as to follow the tip forming surface 22d.
  • the inner peripheral surface of the main body portion 6 is provided in the hollow shaft S provided with the cylindrical main body portion 6 and the reduced diameter tip drawing portion 7 integrally connected to one end of the main body portion 6, the inner peripheral surface of the main body portion 6 is provided.
  • the 6i and the inner peripheral surface 7bi of the base portion 7b connected to one end side of the main body portion 6 of the tip drawing portion 7 are formed by a cutting surface that has been continuously cut before the tip drawing portion 7 is drawn.
  • the inner peripheral surface 7ai of the tip portion 7a connected to the tip end side of the base portion 7b of the tip drawing portion 7 is a non-cutting surface.
  • the tip drawing portion 7 can leave a sufficient wall thickness because the inner peripheral surface 7ai of the tip portion 7a is not cut before it is drawn, so that a predetermined inner diameter can be reduced while reducing the drawing ratio of the drawing.
  • the main body 6 is less likely to be deformed during drawing, and the hollow shaft S can be formed with high shape accuracy as a whole. Therefore, when the hollow shaft S is used as, for example, a power transmission shaft that rotates at high speed, the shape accuracy of the hollow shaft S can be improved, which is advantageous in suppressing runout due to high rotation.
  • the cutting process before drawing extends from the inner peripheral surface 6i of the main body 6 to the entire inner peripheral surface 7bi of a part of the tip drawing portion 7 (that is, the base 7b), the inner peripheral surface of the main body 6 is formed.
  • the entire 6i can be reliably cut, which is more advantageous in improving the shape accuracy of the main body 6.
  • the boundary between the cut surface and the non-cut surface on the inner peripheral surface of the hollow shaft S before drawing is located at the intermediate portion of the tip drawing portion 7 (that is, the boundary between the base portion 7b and the tip portion 7a), and the drawing process is performed. It is separated from the starting point. Therefore, even if a slight step remains at the boundary between the cutting surface and the non-cutting surface (for example, refer to the second embodiment described later), it is unlikely to be a stress concentration factor at the starting point of drawing, and the tip drawing portion is correspondingly increased. Since it is possible to suppress stress concentration during drawing in the vicinity of the boundary between 7 and the main body 6, the hollow shaft S can be greatly improved in rigidity and strength in combination with the effect of improving the shape accuracy as described above. Can contribute.
  • the inner peripheral surface 17bi of the tip base portion 17b connected to one end of the main body 6 of the tip 17 to be drawn Is a tapered cutting surface whose diameter gradually decreases from the main body 6 toward the tip of the tip 17, and the inner peripheral surface 17ai of the tip 17a connected to the base 17b of the tip is a non-cut surface. is there.
  • the inclination angle of the tapered inner peripheral surface 17bi of the tip portion base portion 17b with respect to the shaft axis L is the shaft of the throttle angle ⁇ of the tip throttle portion 7 (that is, the tapered tapered surface 7t of the inner peripheral surface of the tip throttle portion 7).
  • the inner peripheral surface 17bi which is the cutting surface of the tip base portion 17b, excessively protrudes inward in the radial direction due to the drawing process, and a step is formed at the end of the inner peripheral surface 17bi (cutting surface). Can be effectively suppressed, so that the inner peripheral surface of the portion from the main body portion 6 to the tip of the tip drawing portion 7 can be smoothly formed after the drawing process.
  • the inner peripheral surface 17bi of the tip portion base portion 17b has a first curved surface r1 that smoothly connects the inner peripheral surface 17bi of the main body portion 6 and a second curved surface that smoothly connects the inner peripheral surface 17ai of the tip portion tip portion 17a. Since it has r2, stress is concentrated at the boundary between the inner peripheral surface 17bi of the tip base portion 17b and the inner peripheral surfaces 6i and 17ai of the main body 6 and the tip tip portion 17a during drawing. Is less likely to occur, processing defects are effectively suppressed, and the rigidity and strength of the hollow shaft S can be further increased.
  • FIGS. 4 and 5 show a second embodiment.
  • the inner peripheral surface 17bi of the tip portion base portion 17b is formed by a tapered cutting surface, but in the second embodiment, the tip portion base is formed.
  • the inner peripheral surface 17bi of the portion 17b is formed by a cylindrical cutting surface having a uniform diameter at each portion. Therefore, before drawing, there is a very large amount of cutting between the inner peripheral surface 17bi (cutting surface) of the tip base portion 17b and the inner peripheral surface 17ai (non-cutting surface) of the tip tip portion 17a. There is a slight step 18.
  • the alternate long and short dash line in FIG. 4 indicates the inner peripheral surface of the pipe material B before being cut.
  • the inner peripheral surface of the pipe material B is formed by cutting not only the inner peripheral surface 6i of the cylindrical main body 6 but also the entire inner peripheral surface 17bi of the tip base portion 17b.
  • the action and effect based on the point that the inner peripheral surface 17bi of the tip portion base portion 17b is a tapered cutting surface, and based on the first and second curved surfaces r1 and r2. Except for the action and effect, the same action and effect as in the first embodiment can be achieved.
  • the inner peripheral surface 17bi which is the cutting surface of the tip base portion 17b
  • the inner peripheral surface 17bi of the tip base portion 17b is moved inward in the radial direction due to drawing.
  • the amount of overhang deformation becomes relatively large, and even after drawing, the end of the inner peripheral surface 17bi (that is, the inner peripheral surface 17bi (cutting surface) and the inner peripheral surface 17ai (non-cutting surface) of the tip end portion 17a). There is a possibility that a slight step will remain between the two.
  • the inner peripheral surface 17bi of the tip portion base portion 17b is made into a tapered cutting surface, so that the inner peripheral surface 17bi is moved inward in the radial direction by drawing. It is possible to effectively prevent excessive overhang and formation of a step at the end of the inner peripheral surface 17bi (cutting surface).
  • FIG. 6 shows a third embodiment.
  • the inner peripheral surface 17bi of the tip portion base portion 17b of the pipe material B smoothly connects the inner peripheral surface 17bi to the inner peripheral surface 6i of the main body portion 6, and the first curved surface r1 and the inner circumference of the tip portion tip portion 17a.
  • the first and second curved surfaces r1 and r2 are abolished in the third embodiment.
  • the base end of the tapered inner peripheral surface 17bi of the tip portion base portion 17b of the pipe material B is directly connected to the inner peripheral surface 6i of the main body portion 6 without passing through the first curved surface r1, and the inner peripheral surface thereof.
  • the tip of 17bi is directly connected to the inner peripheral surface 17ai of the tip portion 17a without passing through the second curved surface r2.
  • the inner peripheral surface of the pipe material B is formed by cutting not only the inner peripheral surface 6i of the cylindrical main body 6 but also the entire tapered inner peripheral surface 17bi of the tip base portion 17b. Therefore, it is possible to achieve the same effect as that of the first embodiment except for the effect based on the first and second curved surfaces r1 and r2 among the above-mentioned effects of the first embodiment.
  • both the first and second curved surfaces r1 and r2 are abolished on the inner peripheral surface 17bi of the tip portion base portion 17b, but as a modification (not shown) of the third embodiment, For example, only one of the first and second curved surfaces r1 and r2 may be abolished.
  • the drawing step is performed in only one step, but the drawing step may be carried out in multiple steps.
  • the mold body 20 for example, a plurality of types having different shapes of the tapered molding surface 22t of the molding hole 22 are prepared, and they are sequentially used to draw the blank (pipe material B) at the tip portion. This is performed so that 17 is gradually reduced in diameter.
  • the second curved surface r2 is formed by cutting like the first curved surface r1, but the second curved surface r2 is formed by machining (for example, polishing) other than cutting. May be good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Metal Extraction Processes (AREA)
  • Turning (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Endoscopes (AREA)

Abstract

円筒状の本体部(6)と、本体部(6)の一端に同一軸線上に一体に連なり且つ絞り加工により本体部(6)よりも縮径した先端絞り部(7)とを備えた中空シャフトにおいて、本体部(6)の内周面(6i)と、先端絞り部(7)の、本体部(6)の一端側に連なる基部(7b)の内周面(7bi)とが、絞り加工の前に切削加工された切削面で形成されており、先端絞り部(7)の、基部(7b)の先端側に連なる先部(7a)の内周面(7ai)は非切削面である。これにより、先端絞り部の絞り比を小さくしつつ所定の小さい内径が得られるようにして、中空シャフトを高い形状精度で成形可能とし、しかも先端絞り部と円筒状本体部との境界部に絞り加工に伴う応力集中が生じるのを抑制可能として中空シャフトの剛性強度アップを図る。

Description

中空シャフト
 本発明は、円筒状の本体部と、その本体部の一端に同一軸線上に一体に連なり且つ絞り加工により本体部よりも縮径した先端絞り部とを備えた中空シャフトに関する。
 パイプ素材の先端部を絞り加工することで、先細りに縮径した先端絞り部を有した中空シャフトを得ることは、例えば特許文献1に示されるように従来より知られている。
日本特公昭52-35629号公報
 ところで円筒状のパイプ素材の先端部を絞り加工して中空シャフトを製造するに当たり、先端絞り部を所定の小さい内径とすべく外径の絞り比(即ち絞り加工前外径/絞り加工後外径)を大きく設定した場合には、先端絞り部のみならず、先端絞り部に続く円筒状の本体部にも変形が波及する虞れがある。そのため、先端絞り部付きの中空シャフトを全体として高い形状精度に成形することが難しくなる等の不都合がある。
 本発明は、上記に鑑み提案されたものであり、先端絞り部の絞り比を小さくしつつ所定の小さい内径が得られるようにして、中空シャフトを高い形状精度で成形可能とし、しかも先端絞り部と本体部との境界部に絞り加工に伴う応力集中が生じるのを抑制可能として中空シャフトの剛性強度アップを図ることができる中空シャフトを提供することを目的とする。
 上記目的を達成するために、本発明は、円筒状の本体部と、前記本体部の一端に同一軸線上に一体に連なり且つ絞り加工により該本体部よりも縮径した先端絞り部とを備えた中空シャフトにおいて、前記本体部の内周面と、前記先端絞り部の、前記本体部の一端に連続する基部の内周面とが、前記絞り加工の前に切削加工された切削面で形成されており、前記先端絞り部の、前記基部の先端側に連続する先部の内周面は非切削面であることを第1の特徴とする。
 また本発明は、パイプ素材に絞り加工を施して形成される、第1の特徴を有した中空シャフトであって、前記パイプ素材は、内周面が切削面である前記円筒状の本体部と、前記本体部の一端に同一軸線上に一体に連なる先端部とを備え、前記先端部のうち、前記本体部の一端側に連なる先端部基部分の内周面は、該先端部の先端に向かうにつれて徐々に縮径するテーパ状の切削面であると共に、前記先端部基部分の先端側に連なる先端部先部分の内周面は非切削面であり、前記先端部基部分の内周面のシャフト軸線に対する傾斜角は、該先端部が前記絞り加工されて形成される前記先端絞り部の内周面の先細りテーパ面の絞り角よりも小さいことを第2の特徴とする。
 また本発明は、第2の特徴に加えて、前記先端部基部分の内周面は、該先端部基部分の内周面を前記本体部の内周面に滑らかに繋げる第1曲面と、該先端部基部分の内周面を前記先端部先部分の内周面に滑らかに繋げる第2曲面とを含むことを第3の特徴とする。
 本発明の第1の特徴によれば、先端絞り部は、これが絞り加工される前に、本体部一端側に連なる基部の内周面が切削される一方、基部の先端側に連なる先部の内周面が切削されないことで、絞り加工後に十分な肉厚を残せるため、絞り比を小さくしながらも所定の内径が得られ、従って、絞り加工の際に本体部が変形しにくくなり、中空シャフトを全体として高い形状精度で成形可能となる。その上、絞り加工前の切削加工が、本体部のみならず先端絞り部の一部(即ち基部)にまで及ぶことで、本体部の内周面全体を確実に切削加工できるから、本体部の形状精度を高める上で、より有利になる。また絞り加工前の中空シャフトの内周面における切削面と非切削面との境界が、先端絞り部の中間部(即ち基部と先部の境界)に位置していて絞り加工の起点から離間しているため、たとえ切削面と非切削面との境界に僅かな段差が残った場合でも絞り加工の起点での応力集中要因とはなりにくく、それだけ先端絞り部と本体部との境界付近に絞り加工時に応力集中が生じるのを抑制可能となる。従って、前述のように形状精度を高くできる効果とも相俟って、中空シャフトの剛性強度アップに大いに寄与することができる。
 また第2の特徴によれば、中空シャフトが絞り加工される前のパイプ素材において、絞り加工の対象となる先端部のうち、本体部一端側に連なる先端部基部分の内周面は、先端部の先端に向かうにつれて徐々に縮径するテーパ状の切削面であると共に、先端部基部分の先端側に連なる先端部先部分の内周面は非切削面であり、先端部基部分のテーパ状内周面のシャフト軸線に対する傾斜角は、先端部が絞り加工されて形成される先端絞り部の絞り角よりも小さいので、先端部基部分のテーパ状の内周面が絞り加工に伴い径方向内方側に過度に張り出して該内周面(切削面)の端に段差が形成されてしまうのを効果的に抑制できる。従って、絞り加工後において本体部から先端絞り部の先端に至る部分の内周面を極力滑らかに形成可能となる。
 また第3の特徴によれば、パイプ素材の先端部基部分の内周面は、これを本体部の内周面に滑らかに繋げる第1曲面と、先端部先部分の内周面に滑らかに繋げる第2曲面とを含むので、絞り加工の際に先端部基部分の内周面と、本体部及び先端部先部分の各内周面との境界部に応力集中が生じにくくなり、加工不良が効果的に抑えられるばかりか、中空シャフトの更なる剛性強度アップに寄与することができる。
図1は本発明の第1実施形態に係る中空シャフトの要部縦断面図である。(第1の実施の形態) 図2は前記中空シャフトに絞り加工を施す前のパイプ素材の要部縦断面図である。(第1の実施の形態) 図3は絞り加工工程の一例を示すものであって、図3(a)は絞り加工直前の状態を、また図3(b)は絞り加工直後の状態をそれぞれ示す図である。(第1の実施の形態) 図4は第2実施形態に係るパイプ素材の要部縦断面図(図2対応図)である。(第2の実施の形態) 図5は第2実施形態に係る中空シャフトの要部縦断面図(図1対応図)である。(第2の実施の形態) 図6は第3実施形態に係るパイプ素材の要部縦断面図(図2対応図)である。(第3の実施の形態)
B・・・・・・パイプ素材
L・・・・・・シャフト軸線
S・・・・・・中空シャフト
α・・・・・・先端部基部分の内周面のシャフト軸線に対する傾斜角
β・・・・・・先端絞り部の絞り角
r1,r2・・第1,第2曲面
6・・・・・・本体部
6i・・・・・内周面
7・・・・・・先端絞り部
7a・・・・・先端絞り部の先部
7ai・・・・先部の内周面
7b・・・・・先端絞り部の基部
7bi・・・・基部の内周面
17・・・・・先端部
17a・・・・先端部基部分
17ai・・・先端部先部分の内周面
17b・・・・先端部基部分
17bi・・・先端部基部分の内周面
 本発明の実施形態を添付図面に基づいて以下に説明する。
第1の実施の形態
 図1~図3には第1実施形態が示される。図1に示される中空シャフトSは、全体が金属製であって、円筒パイプ状の本体部6と、本体部6の一端に同一軸線上に一体に連なり且つ絞り加工により本体部6よりも先細り状に縮径した先端絞り部7とを備える。中空シャフトSの用途機能は、種々選択可能であり、例えば高速回転する動力伝達軸としても実施可能である。
 中空シャフトSにおいて、本体部6の内周面6iと、先端絞り部7の、本体部6の一端に一体に連続する基部7bの内周面7biとは、先端絞り部7の絞り加工の前に連続的に切削加工された切削面で形成されている。一方、先端絞り部7の、基部7bの先端側に一体に連続する先部7aは、これの内周面7aiが非切削面であり、即ち切削加工されていない。尚、各々の図面には、絞り加工前に切削加工された切削面である領域を点描で示している。
 また図2には、上記した中空シャフトSが絞り加工を施される前のパイプ素材Bの一例が示される。
 このパイプ素材Bは、内周面6iが切削面である円筒状の本体部6と、本体部6の一端に同一軸線上に一体に連なる円筒状の先端部17とを備える。
 パイプ素材Bにおいて、先端部17は、本体部6の一端側に一体に連なる先端部基部分17bと、先端部基部分17bの先端側に一体に連なる先端部先部分17aとを備える。先端部基部分17bの内周面17biは、本体部6から先端部17の先端に向かうにつれて徐々に縮径するテーパ状の切削面で形成される。尚、図2の二点鎖線は、切削加工される前のパイプ素材Bの内周面を示す。
 また先端部基部分17bの内周面17biは、これを本体部6の内周面6iに滑らかに繋げる断面円弧状の第1曲面r1と、先端部先部分17aの内周面17aiに滑らかに繋げる断面円弧状の第2曲面r2とを、その先端部基部分17bの内周面17biの両端に有する。従って、先端部基部分17bの内周面17biは、その両端が本体部6の内周面6iと先端部先部分17aの内周面17aiとに各々、段差無く滑らかに接続される。
 本実施形態において、第1,第2曲面r1,r2は何れも切削加工で形成される。従って、本体部6の内周面6iと、先端部基部分17bの、第1,第2曲面r1,r2を含む内周面17biとは、連続して切削加工可能である。
 一方、先端部17の、先端部基部分17bの先端側に連なる先端部先部分17aは、これの内周面17aiが非切削面であり、即ち切削加工されていない。
 先端部基部分17bのテーパ状の内周面17biの、シャフト軸線Lに対する傾斜角αは、先端部17が絞り加工されて形成される前記先端絞り部7の絞り角βよりも小さく設定される。尚、絞り角βは、先端絞り部7の内周面に絞り加工で形成されたテーパ面7tの、シャフト軸線Lに対する傾斜角に相当する。
 次に第1実施形態の作用を、図3を併せて参照して説明する。
 本実施形態の中空シャフトSの製造方法は、例えば、円筒パイプ状のパイプ素材Bの内周面に対する切削工程と、切削工程後のパイプ素材Bのうち先端部17のみを、本体部6より縮径するよう絞り加工する絞り加工工程とを含む。
 上記切削工程では、円筒状をなす本体部6の内周面6iを所定の内径に切削加工すると共に、本体部6の一端に連なる先端部基部分17bの内周面17biを、先細りのテーパ面状(但し両端は第1,第2曲面r1,r2)になるよう切削加工するが、先端部基部分17bの先端側に連なる先端部先部分17aの内周面17aiは非切削面とする。
 図3には、上記した絞り加工工程の一例が示され、(a)は絞り加工直前の状態を、また(b)は絞り加工直後の状態をそれぞれ示す。
 絞り加工に用いる金型装置Cは、例えば、固定の金型本体20と、金型本体20に対し昇降駆動可能な押し型21とを備える。金型本体20は、これの上面に開口してパイプ素材Bの本体部6の一部及び先端部17を嵌合、支持し得る成形孔22を有する。
 この成形孔22には、パイプ素材Bの先端部17を押し型21と協働して絞り加工(即ち先細り状に縮径する)ためのテーパ状成形面22tと、テーパ状成形面22tの大径端(上端)に連続して上方に延びる本体部保持面22uと、テーパ状成形面22tの小径端(下端)に連続して下方に延びる先端成形面22dとを備える。そして、テーパ状成形面22tの大径端と本体部保持面22uとの間、並びにテーパ状成形面22tの小径端と先端成形面22dとの間は各々、横断面円弧状の曲面を介して滑らかに接続される。
 また押し型21には、これの下面より突出してパイプ素材Bの上端部を嵌合、保持可能な保持部21aが一体的に設けられる。
 而して、絞り加工工程では、例えば図3(a)に示すように、押し型21の保持部21aに上端部を嵌合、保持されたパイプ素材Bの下端部即ち先端部17を、金型本体20の成形孔22、特に本体部保持面22uに嵌挿させる。次いで、図3(b)に示すように、押し型21でパイプ素材Bを下方に押し込み、パイプ素材Bの先端部17をテーパ状成形面22t内に押し入れることでテーパ状成形面22tに倣わせるように絞り加工する。この先端部17に対する絞り加工により、先細りの先端絞り部7が成形される。
 尚、図示例では押し型21がパイプ素材Bを、先端部17の下端が成形孔22のテーパ状成形面22tを経て先端成形面22d内に所定量没入するまで押し下げるようにしている。これにより、絞り加工後の先端絞り部7の先部7aには、先端成形面22dに倣うように短円筒部7aeが形成される。
 上記した第1実施形態によれば、円筒状の本体部6と、本体部6の一端に一体に連なる縮径した先端絞り部7とを備えた中空シャフトSにおいて、本体部6の内周面6iと、先端絞り部7の、本体部6の一端側に連なる基部7bの内周面7biとが、先端絞り部7を絞り加工する前に連続的に切削加工された切削面で形成されており、一方、先端絞り部7の、基部7bの先端側に連なる先部7aの内周面7aiは非切削面とされる。
 これにより、先端絞り部7は、これが絞り加工される前に、先部7aの内周面7aiが切削されないことで十分な肉厚を残せるから、絞り加工の絞り比を小さくしつつ所定の内径を得ることができ、その結果、絞り加工の際に本体部6が変形しにくくなり、中空シャフトSを全体として高い形状精度で成形可能となる。従って、中空シャフトSを例えば高回転する動力伝達軸として用いる場合には、これの形状精度を高くできることで、高回転による芯振れを抑制する上で有利になる。その上、絞り加工前の切削加工が、本体部6の内周面6iから先端絞り部7の一部(即ち基部7b)の内周面7bi全域にまで及ぶため、本体部6の内周面6i全体を確実に切削加工可能となって、本体部6の形状精度を高める上で、より有利になる。
 また絞り加工前の中空シャフトSの内周面における切削面と非切削面との境界が、先端絞り部7の中間部(即ち基部7bと先部7aの境界)に位置していて絞り加工の起点から離間している。従って、仮に切削面と非切削面との境界に僅かな段差が残る場合(例えば、後述する第2実施形態を参照)でも絞り加工の起点での応力集中要因とはなりにくく、それだけ先端絞り部7と本体部6との境界付近に絞り加工時に応力集中が生じるのを抑制可能となるため、前述のように形状精度を高くできる効果とも相俟って、中空シャフトSの剛性強度アップに大いに寄与することができる。
 また本実施形態では、中空シャフトSが絞り加工される前のパイプ素材Bにおいて、絞り加工の対象となる先端部17のうち、本体部6の一端に連なる先端部基部分17bの内周面17biは、本体部6から先端部17の先端に向かうにつれて徐々に縮径するテーパ状の切削面であると共に、先端部基部分17bに連なる先端部先部分17aの内周面17aiは非切削面である。しかも先端部基部分17bのテーパ状の内周面17biの、シャフト軸線Lに対する傾斜角は、先端絞り部7の絞り角β(即ち先端絞り部7の内周面の先細りテーパ面7tの、シャフト軸線Lに対する傾斜角)よりも小さく設定される。これにより、先端部基部分17bの切削面たる内周面17biが絞り加工に伴い径方向内方側に過度に張り出して該内周面17bi(切削面)の端に段差が形成されてしまうのを効果的に抑制できるため、絞り加工後において本体部6から先端絞り部7の先端に至る部分の内周面を滑らかに形成することが可能となる。
 更に先端部基部分17bの内周面17biは、これを本体部6の内周面6iに滑らかに繋げる第1曲面r1と、先端部先部分17aの内周面17aiに滑らかに繋げる第2曲面r2とを有しているため、絞り加工の際に先端部基部分17bの内周面17biと、本体部6及び先端部先部分17aの内周面6i,17aiとの各境界部に応力集中が生じにくくなり、加工不良が効果的に抑えられるばかりか、中空シャフトSの更なる剛性強度アップが図られる。
第2の実施の形態
 また図4,図5には、第2実施形態が示される。第1実施形態では、パイプ素材Bの先端部17において、先端部基部分17bの内周面17biが先細りテーパ状の切削面で形成されるものを示したが、第2実施形態では先端部基部分17bの内周面17biが、各部が一様等径の円筒面状の切削面で形成される。従って、絞り加工前において、先端部基部分17bの内周面17bi(切削面)と、先端部先部分17aの内周面17ai(非切削面)との間には、切削量に対応したごく僅かな段差18が生じている。尚、図4の二点鎖線は、切削加工される前のパイプ素材Bの内周面を示す。
 この第2実施形態においても、パイプ素材Bの内周面は、円筒状の本体部6の内周面6iのみならず先端部基部分17bの内周面17bi全域まで切削面で形成されるため、第1実施形態の前記した作用効果のうちの特に先端部基部分17bの内周面17biをテーパ状の切削面とした点に基づく作用効果や、第1,第2曲面r1,r2に基づく作用効果を除いて、第1実施形態と同様の作用効果を達成可能である。
 ところで第2実施形態のように先端部基部分17bの切削面たる内周面17biがテーパ状でない構造では、先端部基部分17bの内周面17biの、絞り加工に伴う径方向内方側への張り出し変形量が比較的大きくなり、絞り加工後においても、該内周面17biの端(即ち該内周面17bi(切削面)と先端部先部分17aの内周面17ai(非切削面)との間)に僅かながら段差が残ってしまう可能性がある。これに対し、第1実施形態では、前述の如く先端部基部分17bの内周面17biをテーパ状の切削面としたことで、その内周面17biが絞り加工に伴い径方向内方側に過度に張り出して内周面17bi(切削面)の端に段差が形成されてしまうのを効果的に抑制可能である。
第3の実施の形態
 また図6には、第3実施形態が示される。第1実施形態では、パイプ素材Bの先端部基部分17bの内周面17biが、これを本体部6の内周面6iに滑らかに繋げる第1曲面r1と、先端部先部分17aの内周面17aiに滑らかに繋げる第2曲面r2とを含むものを示したが、第3実施形態では、第1,第2曲面r1,r2が廃止される。即ち、パイプ素材Bの先端部基部分17bのテーパ状の内周面17biの基端が、本体部6の内周面6iに第1曲面r1を介さずに直接接続され、また同内周面17biの先端が、先端部先部分17aの内周面17aiに第2曲面r2を介さずに直接接続される。
 この第3実施形態においても、パイプ素材Bの内周面は、円筒状の本体部6の内周面6iのみならず先端部基部分17bのテーパ状の内周面17bi全域まで切削面で形成されるため、第1実施形態の前記した作用効果のうちの特に第1,第2曲面r1,r2に基づく作用効果を除いて、第1実施形態と同様の作用効果を達成可能である。
 尚、第3実施形態では、先端部基部分17bの内周面17biにおいて、第1,第2曲面r1,r2を両方とも廃止したが、第3実施形態の変形例(図示せず)として、例えば、第1,第2曲面r1,r2の何れか一方だけを廃止するようにしてもよい。
 以上、本発明の実施形態について説明したが、本発明は、実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の設計変更が可能である。
 例えば、前記実施形態では、絞り工程を1段のみで行うものを示したが、絞り工程を多段階に実行してもよい。この場合、金型本体20は、例えば成形孔22のテーパ状成形面22tの形状が異なる複数種類を用意し、それらを順次に使用して、ブランク(パイプ素材B)に対する絞り加工を、先端部17が段階的に縮径されるように実行する。
 また前記実施形態では、第2曲面r2を第1曲面r1と同様、切削加工で形成するものを示したが、第2曲面r2は、切削加工以外の機械加工(例えば研磨加工)で形成してもよい。

Claims (3)

  1.  円筒状の本体部(6)と、前記本体部(6)の一端に同一軸線上に一体に連なり且つ絞り加工により該本体部(6)よりも縮径した先端絞り部(7)とを備えた中空シャフトにおいて、
     前記本体部(6)の内周面(6i)と、前記先端絞り部(7)の、前記本体部(6)の一端に連続する基部(7b)の内周面(7bi)とが、前記絞り加工の前に切削加工された切削面で形成されており、
     前記先端絞り部(7)の、前記基部(7b)の先端側に連続する先部(7a)の内周面(7ai)は非切削面であることを特徴とする中空シャフト。
  2.  パイプ素材(B)に絞り加工を施して形成される、請求項1に記載の中空シャフトであって、
     前記パイプ素材(B)は、内周面(6i)が切削面である前記円筒状の本体部(6)と、前記本体部(6)の一端に同一軸線上に一体に連なる先端部(17)とを備え、
     前記先端部(17)のうち、前記本体部(6)の一端側に連なる先端部基部分(17b)の内周面(17bi)は、該先端部(17)の先端に向かうにつれて徐々に縮径するテーパ状の切削面であると共に、前記先端部基部分(17b)の先端側に連なる先端部先部分(17a)の内周面(17ai)は非切削面であり、
     前記先端部基部分(17b)の内周面(17bi)のシャフト軸線(L)に対する傾斜角(α)は、該先端部(17)が前記絞り加工されて形成される前記先端絞り部(7)の絞り角(β)よりも小さいことを特徴とする中空シャフト。
  3.  前記先端部基部分(17b)の内周面(17bi)は、該先端部基部分(17b)の内周面(17bi)を前記本体部(6)の内周面(6i)に滑らかに繋げる第1曲面(r1)と、該先端部基部分(17b)の内周面(17bi)を前記先端部先部分(17a)の内周面(17ai)に滑らかに繋げる第2曲面(r2)とを含むことを特徴とする、請求項2に記載の中空シャフト。
     
PCT/JP2020/012347 2019-03-20 2020-03-19 中空シャフト WO2020189763A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080017913.8A CN113518673B (zh) 2019-03-20 2020-03-19 中空轴
DE112020001383.9T DE112020001383T5 (de) 2019-03-20 2020-03-19 Hohlwelle
US17/430,859 US20220143664A1 (en) 2019-03-20 2020-03-19 Hollow shaft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-052861 2019-03-20
JP2019052861A JP7023886B2 (ja) 2019-03-20 2019-03-20 中空シャフト

Publications (1)

Publication Number Publication Date
WO2020189763A1 true WO2020189763A1 (ja) 2020-09-24

Family

ID=72520272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012347 WO2020189763A1 (ja) 2019-03-20 2020-03-19 中空シャフト

Country Status (5)

Country Link
US (1) US20220143664A1 (ja)
JP (1) JP7023886B2 (ja)
CN (1) CN113518673B (ja)
DE (1) DE112020001383T5 (ja)
WO (1) WO2020189763A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113600638A (zh) * 2021-07-28 2021-11-05 宁波金田铜管有限公司 一种异径管件加工工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638859B2 (ja) * 1979-09-18 1988-02-24 Kunyoshi Nakamura
JPH0356813B2 (ja) * 1983-04-07 1991-08-29
JPH0523881B2 (ja) * 1986-06-20 1993-04-06 Tokyo Shibaura Electric Co
JP2001246524A (ja) * 2000-03-02 2001-09-11 Irie Sangyo:Kk 管体の加工方法及び加工装置
US20110209802A1 (en) * 2010-03-01 2011-09-01 Chih-Feng Ho Method for processing steel tubes and the likes

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191500832A (en) * 1915-01-19 1915-09-16 William Sutcliffe Improvements in Cloth-folding Machines.
US2133091A (en) * 1936-10-07 1938-10-11 Clark Equipment Co Axle and method of forming same
JPH06109248A (ja) * 1992-09-28 1994-04-19 Jidosha Kiki Co Ltd シース型グロープラグの製造方法
US5643093A (en) * 1995-10-19 1997-07-01 Dana Corporation Aluminum driveshaft having reduced diameter end portion
JP5023881B2 (ja) * 2006-10-03 2012-09-12 日本電気株式会社 移動通信システム、信号転送方法、および受信装置
JP5235629B2 (ja) 2008-11-28 2013-07-10 株式会社日立製作所 無線通信装置の符号化及び変調方法、並びに復号方法
JP5574752B2 (ja) * 2010-02-26 2014-08-20 三菱重工業株式会社 中空エンジンバルブの製造方法
WO2013054821A1 (ja) * 2011-10-11 2013-04-18 日本精工株式会社 ステアリングコラムおよびその製造方法
CN104918727A (zh) * 2012-12-26 2015-09-16 日产自动车株式会社 拉深成型方法
CN103223453A (zh) * 2013-03-31 2013-07-31 上海泛华紧固系统有限公司 钢管标准外径上直接滚压锥管外螺纹方法、装置及其产品
JP6308859B2 (ja) 2014-04-28 2018-04-11 日立建機株式会社 油圧駆動装置
JP2016106034A (ja) * 2016-03-08 2016-06-16 株式会社井口一世 中空筒型リング部材の製造方法および中空筒型リング部材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638859B2 (ja) * 1979-09-18 1988-02-24 Kunyoshi Nakamura
JPH0356813B2 (ja) * 1983-04-07 1991-08-29
JPH0523881B2 (ja) * 1986-06-20 1993-04-06 Tokyo Shibaura Electric Co
JP2001246524A (ja) * 2000-03-02 2001-09-11 Irie Sangyo:Kk 管体の加工方法及び加工装置
US20110209802A1 (en) * 2010-03-01 2011-09-01 Chih-Feng Ho Method for processing steel tubes and the likes

Also Published As

Publication number Publication date
CN113518673B (zh) 2023-01-13
US20220143664A1 (en) 2022-05-12
JP2020151755A (ja) 2020-09-24
JP7023886B2 (ja) 2022-02-22
CN113518673A (zh) 2021-10-19
DE112020001383T5 (de) 2021-12-02

Similar Documents

Publication Publication Date Title
US6647839B2 (en) Method of forming an integral tubular projection in a work by spinning and a product produced by the same
WO2020189763A1 (ja) 中空シャフト
JP2009050905A (ja) 内歯車の成形方法及び成形装置
JP5569495B2 (ja) カップ状部品の製造方法及び製造装置
US3943691A (en) Open-end spinning apparatus
JP4283711B2 (ja) モータヨークの製造方法
JPS5921441A (ja) バルブボデ−の製造方法
JP5118852B2 (ja) メタルブランク上にフランジを製造するための方法およびトランズミッション部品
JP6469491B2 (ja) ブシュ及びその製造方法
KR101646363B1 (ko) 직경이 작은 중공을 갖는 차량용 중공샤프트 제조방법
JP2007090387A (ja) ブレーキピストンの製造方法
JP2009195916A (ja) 内歯車部材の成形方法及び成形装置
JPS5926381B2 (ja) 締め付けロ−ラ式コ−スタ型カツプリング用スリ−ブの製法
US6625887B1 (en) Sheet metal-made poly V-grooved pulley and method of manufacturing the pulley
JP3962350B2 (ja) 内歯車の成形方法
JP6792878B2 (ja) プレス成形品の製造方法及びプレス成形品
JP2007303536A (ja) 円錐ころ軸受用保持器の製造方法
JP2010052038A (ja) 絞り加工装置及び絞り加工方法
JPH11351297A (ja) 皿ばね及びその皿ばねを用いた主軸装置
JP4486717B2 (ja) 歯付リング及びその製造方法
JP3118682U (ja) 自動車用シフトレバーの心棒
JP2016006331A (ja) インサートカラーの製造方法
JP3898135B2 (ja) 板金製ダンパープーリー及びその製造方法
JPS60121025A (ja) 多条vプ−リの製造方法
JPWO2006061908A1 (ja) 板金製背面プーリの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774307

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20774307

Country of ref document: EP

Kind code of ref document: A1