WO2020189539A1 - 粒子状吸水剤の製造方法 - Google Patents

粒子状吸水剤の製造方法 Download PDF

Info

Publication number
WO2020189539A1
WO2020189539A1 PCT/JP2020/011004 JP2020011004W WO2020189539A1 WO 2020189539 A1 WO2020189539 A1 WO 2020189539A1 JP 2020011004 W JP2020011004 W JP 2020011004W WO 2020189539 A1 WO2020189539 A1 WO 2020189539A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel
water
weight
particulate
hydrogel
Prior art date
Application number
PCT/JP2020/011004
Other languages
English (en)
French (fr)
Inventor
まり子 玉置
一司 鳥井
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Publication of WO2020189539A1 publication Critical patent/WO2020189539A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium

Definitions

  • the present invention relates to a method for producing a particulate water absorbent containing polyacrylic acid (salt).
  • a method for producing a particulate water-absorbing agent which comprises a step of pulverizing a water-containing gel obtained by polymerizing a monomer at the same time as or after polymerization.
  • a pulverization step of a gel-type resin is carried out at the same time as internal cross-linking polymerization, and gel pulverization (coarse pulverization) is performed to 3 to 150 mm at the time of polymerization, and further finely pulverized to 1 to 20 mm after polymerization.
  • a method for producing a resin that is, a method for producing a water-absorbent resin including a coarse pulverization step and a fine pulverization step after polymerization is described.
  • gel pulverization is carried out at the same time as polymerization and after polymerization twice in total, and a hydrogel having a relatively high non-volatile component ratio (also known as solid content) (solid content 55 to 60% by weight in the examples) Gel crushing is being performed.
  • a hydrogel having a relatively high non-volatile component ratio also known as solid content
  • solid content 55 to 60% by weight in the examples Gel crushing is being performed.
  • Patent Documents 2 and 3 describe a water-absorbent resin in which the pulverized gel after the kneader polymerization is further gel pulverized (gel extruded) with a meat chopper as gel pulverization at the same time as the polymerization and twice after the polymerization.
  • the manufacturing method of is disclosed.
  • Patent Document 4 describes a coarse crusher (primary) for a water-containing gel containing a water-absorbent resin. The crusher) is disclosed, and further the use of a meat chopper to which a secondary crusher is connected is disclosed. Further, Patent Document 5 discloses a cutting machine for a sheet-like hydrogel after belt polymerization of a water-absorbent resin, and further discloses the use of a linked meat chopper.
  • Patent Document 6 discloses a production method that defines gel crushing energy GGE.
  • Patent Documents 7 and 8 disclose a production method for gel pulverizing a hydrogel having a specific gel strength (10000 to 13000 Pa to 10000 Pa or more and a gel strength of 35 to 95% after pulverization).
  • Patent Documents 9 to 12 disclose a manufacturing method using a gel extruder having a specific structure for a water-absorbent resin.
  • Patent Document 12 discloses a manufacturing method focusing on the operating conditions (Chopping-Index) of the meat chopper.
  • Patent Documents 13 and 14 disclose a manufacturing method that defines the pore size and the like of the meat chopper used for gel pulverization.
  • Patent Document 15 discloses a method for producing a water-absorbent resin having a CRC of 38 g / g or more, which pulverizes a hydrogel having a compression strength of 10 N or more.
  • Patent Document 16 discloses a method for producing a water-absorbent resin in which a hydrogel containing polymer is coarsely crushed at 35 ° C. or lower.
  • the present inventors have an effect that a water absorbing agent having a high water absorption ratio has a relatively high water absorption rate, but in the production of the water absorbing agent, when gel crushing is continuously performed, a gel crushing device is used. We have independently found that there is a problem that the operation of the gel crusher used is not stable because the gel easily adheres.
  • One aspect of the present invention is mainly intended to provide a stable production method of a particulate water absorbing agent containing polyacrylic acid (salt) having a high water absorption ratio.
  • the present inventor coarsely crushes a hydrogel crosslinked polymer (hereinafter referred to as hydrogel) during or after polymerization of an acrylic acid (salt) -based monomer, and then finely grinds the coarsely crushed hydrogel.
  • hydrogel hydrogel crosslinked polymer
  • the operation of the gel crushing apparatus used for producing a particulate water absorbing agent containing polyacrylic acid (salt) having a high water absorption ratio can be stabilized and the production efficiency can be improved, and the present invention is completed. I arrived.
  • the present invention includes the inventions described in the following [1] to [7].
  • a method for producing a particulate water-absorbing agent which comprises a particulate water-absorbent having a centrifuge retention capacity (CRC) of 32.0 g / g or more, wherein the non-volatile component ratio of the water-containing gel is 10% by weight to 48% by weight.
  • CRC centrifuge retention capacity
  • the weight average particle size (D50) of the coarsely crushed hydrogel is 500 ⁇ m to 10 cm
  • the weight average particle size (D50') of the particulate hydrogel is 360 ⁇ m to 1500 ⁇ m (here).
  • a perforated plate is provided at the outlet of the gel crushing device used in the gel crushing step (3), and in the gel crushing step (3), the PDCR defined by the following formula is 0.02 kg.
  • a method for producing a particulate water-absorbing agent which is / h / mm 2 to 0.10 kg / h / mm 2 .
  • PDCR (kg / h / mm 2 ) gel treatment amount (kg / h) / (diameter of the perforated plate (mm)) 2 .
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution of the coarsely crushed hydrogel is 1.25 or less
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution of the particulate hydrogel is 1.25 or less.
  • the bulk density of the particulate hydrogel before drying is 0.30 g / ml to 0.40 g / ml, according to any one of [1] to [6].
  • the temperature of the coarsely crushed hydrous gel before gel crushing is 40 ° C to 120 ° C
  • the temperature of the particulate hydrogel discharged from the outlet of the gel crusher The item according to any one of [1] to [7], wherein the value obtained by subtracting the temperature (° C.) of the coarsely crushed hydrous gel charged into the gel crushing apparatus from (° C.) is -9 ° C. or higher.
  • a method for producing a particulate water absorbent is any one of [1] to [7], wherein the value obtained by subtracting the temperature (° C.) of the coarsely crushed hydrous gel charged into the gel crushing apparatus from (° C.) is -9 ° C. or higher.
  • the additives are ethylenediaminetetraacetic acid (salt), triethylenetetraminehexacetic acid (salt), diethylenetriaminepentacetic acid (salt), trans-1,2-diaminocyclohexanetetraacetic acid (salt), and ethylenediaminetetra (methylene).
  • one or more moisture absorption fluidity improvers selected from the group consisting of silicon dioxide, phosphate, and hydrotalcite are added. 1] The method for producing a particulate water-absorbing agent according to any one of [11].
  • the centrifuge holding capacity (30 minutes value, CRC) of the dried polymer before the surface cross-linking step (5) obtained after the drying step (4) is 35.0 g / g or more, and the particulate water absorbent
  • the gel crushing apparatus used for producing the particulate water absorbing agent containing polyacrylic acid (salt) it is possible to stabilize the operation of the gel crushing apparatus used for producing the particulate water absorbing agent containing polyacrylic acid (salt) and improve the production efficiency. Therefore, it is possible to provide a stable method for producing a particulate water absorbing agent containing polyacrylic acid (salt) having a high water absorption ratio.
  • Water-absorbent resin refers to a water-swellable water-insoluble polymer gelling agent, and refers to a resin satisfying the following physical properties.
  • the "water-absorbent resin” in the present invention is defined by ERT470.2-02 as “water-swellable” with a CRC of 5 g / g or more defined by ERT441.2-02 and as “water-insoluble”.
  • ERT470.2-02 as “water-swellable” with a CRC of 5 g / g or more defined by ERT441.2-02 and as “water-insoluble”.
  • ERT441.2-02 water-insoluble
  • the water-absorbent resin can be appropriately designed according to its use, and is not particularly limited, but is preferably a hydrophilic crosslinked polymer obtained by crosslinking and polymerizing an unsaturated monomer having a carboxyl group. Further, the total amount (100% by weight) is not limited to the polymer form, and a water-absorbent resin composition containing additives and the like may be used as long as the above physical properties (CRC, Ext) are satisfied.
  • the water-absorbent resin in the present invention is not limited to the final product, and may refer to an intermediate (for example, a water-containing gel after polymerization, a dry polymer after drying, etc.) in the manufacturing process of the water-absorbent resin, and the above-mentioned water absorption. Together with the sex resin composition, all of these are collectively referred to as "water-absorbent resin".
  • water-absorbent resin examples include sheet-like, fibrous, film-like, particle-like, and gel-like forms, but in the present invention, particulate water-absorbent resin is preferable.
  • the particulate water absorbing agent means an absorbing gelling agent for an aqueous liquid containing a water absorbing resin as a main component (50% by weight or more).
  • the particulate water absorbent means a particulate (also known as powder) water absorbent, and even a single particulate water absorbent is an aggregate of a plurality of particulate water absorbents. However, in this specification, it is referred to as a particulate water absorbent.
  • “Particulate” means having the form of particles, which means solid or liquid granular small objects with measurable size (JIS Industrial Glossary, 4th Edition, p. 2002). Say. In the present specification, the particulate water absorbing agent may be simply referred to as a water absorbing agent.
  • the aqueous liquid is not limited to water, but may be urine, blood, sweat, feces, waste liquid, moisture, steam, ice, a mixture of water and an organic solvent and / or an inorganic solvent, rainwater, groundwater, or the like. , It is not particularly limited as long as it contains water.
  • Aqueous solutions preferably include urine, menstrual blood, sweat and other body fluids.
  • the particulate water absorbent according to the present invention is suitably used as a sanitary material for absorbing an aqueous liquid.
  • the water-absorbent resin as a polymer is contained as a main component in the particulate water-absorbent agent. That is, the water-absorbent resin is preferably contained in the particulate water-absorbent agent in an amount of 60% by weight to 100% by weight, 70% by weight to 100% by weight, 80% by weight to 100% by weight, and 90% by weight to 100% by weight.
  • the particulate water-absorbing agent optionally contains, as a non-polymer, additives such as water and / or inorganic fine particles and polyvalent metal cations.
  • the suitable water content contained in the particulate water absorbent is 0.2% by weight to 30% by weight.
  • a water-absorbent resin composition in which these components are integrated is also in the category of particulate water-absorbent.
  • the upper limit of the water-absorbent resin in the particulate water-absorbing agent is 100% by weight, preferably 99% by weight, more preferably 97% by weight, particularly 95% by weight and 90% by weight.
  • the particulate water-absorbing agent preferably further contains a component of about 0% by weight to 10% by weight, particularly water and an additive (inorganic fine particles, polyvalent metal cation) described later, in addition to the water-absorbing resin.
  • the water-absorbent resin that is the main component of the particulate water-absorbing agent includes polyacrylic acid (salt) -based resin, polysulfonic acid (salt) -based resin, maleic anhydride (salt) -based resin, polyacrylamide-based resin, and polyvinyl alcohol.
  • examples thereof include based resins, polyethylene oxide based resins, polyaspartic acid (salt) based resins, polyglutamic acid (salt) based resins, polyarginic acid (salt) based resins, starch based resins, and cellulose based resins, and polyacrylic acid is preferable.
  • (Salt) resin is used.
  • polyacrylic acid (salt) refers to polyacrylic acid and / or a salt thereof.
  • the polyacrylic acid (salt) refers to a polymer containing acrylic acid and / or a salt thereof (hereinafter referred to as "acrylic acid (salt)”) as a repeating unit as a main component and a graft component as an optional component. ..
  • Polyacrylic acid may be obtained by hydrolysis of polyacrylamide, polyacrylonitrile, etc., but is preferably obtained by polymerization of acrylic acid (salt).
  • main component means that the amount (content) of acrylic acid (salt) used is usually 50 mol% to 100% based on the entire monomer (excluding the internal cross-linking agent) used for polymerization. It means that it is mol%, preferably 70 mol% to 100 mol%, more preferably 90 mol% to 100 mol%, and further preferably substantially 100 mol%.
  • Non-volatile component ratio refers to the ratio of the component remaining after the substance is dried to completely volatilize the volatile component with respect to the total weight of the substance.
  • substrate examples include hydrogels, coarsely crushed hydrogels, particulate hydrogels, dry polymers, pulverized and dry polymers, water-absorbent resin powders, water-absorbent resin particles, and particulate water-absorbents.
  • the polymerization method is a method in which polymerization and coarse crushing are carried out at the same time as in kneader polymerization, and when water is evaporated or water is added during polymerization, the amount of evaporated water and the added water are corrected as necessary.
  • the resin solid content of the hydrogel may be considered to be the same as the concentration of the monomer component of the monomer aqueous solution. Specifically, when water evaporates or water is added during polymerization, the monomer calculated after subtracting the evaporated water content from the water content in the aqueous monomer solution and increasing the added water content. It may be regarded as the same as the component concentration.
  • EDANA European Disposables and Nonwovens Associations
  • ERT is an abbreviation for EDANA Recommended Test Methods, which is a European standard (almost the world standard) for measuring water-absorbent resins. In the present invention, unless otherwise specified, the physical properties of the water-absorbent resin are measured in accordance with the original ERT (revised in 2002 / publicly known literature).
  • CRC is an abbreviation for Centrifuge Retention Capacity.
  • CRC means the water absorption ratio under no pressure (sometimes referred to as “water absorption ratio") of a particulate water absorbent or a water absorbing resin.
  • a particulate water-absorbing agent or a water-absorbent resin is placed in a non-woven fabric bag, and then immersed in a large excess of 0.9 wt% sodium chloride aqueous solution for 30 minutes for free swelling, and then freely swollen. It refers to the water absorption ratio (unit: g / g) after draining with a centrifuge (250 G).
  • the weight of the non-volatile component is calculated from the weight loss obtained by drying 2 g of the hydrogel, coarsely crushed hydrogel, or particulate hydrogel for 24 hours at 180 ° C. Ask by doing.
  • the size of one side of the hydrogel, coarsely crushed hydrogel, or particulate hydrogel to be measured is 5 mm or more, it may be cut with scissors or the like to make the size 1 mm or less before measurement.
  • AAP is an abbreviation for Absorption Against Pressure, and means the water absorption ratio under pressure of a particulate water absorbing agent or a water absorbing resin.
  • 0.9 g of a particulate water-absorbing agent or a water-absorbent resin was applied to a large excess of 0.9 wt% sodium chloride aqueous solution under a load of 2.06 kPa (21 g / cm 2 , 0.3 psi) for 1 hour. It refers to the water absorption ratio (unit: g / g) after swelling with. In some cases, the load condition is changed to 4.83 kPa (49 g / cm 2 , 0.7 psi) for measurement.
  • PSD is an abbreviation for Particle Size Distribution and means the particle size distribution of particulate water absorbent or water absorbent resin measured by sieving.
  • the weight average particle size (D50) and the logarithmic standard deviation ( ⁇ ) of the particle size distribution are described in “(3) Mass-Average Particle Diameter (D50) and Logarithmic Standard Deviation ( ⁇ ) of” described in US Pat. No. 7,638,570. Measure in the same way as “Particle Diameter Distribution”.
  • “Moisture Content” (ERT430.2-02) "Moisture Content” means the water content of the water-absorbent resin.
  • a value (unit:% by weight) calculated from the weight loss of drying when 4.0 g of water-absorbent resin is dried at 105 ° C. for 3 hours. In some cases, the water-absorbent resin is changed to 1.0 g and the drying temperature is changed to 180 ° C. for measurement.
  • Ext is an abbreviation for Extractables and means a water-soluble component (amount of water-soluble component) of the water-absorbent resin.
  • dissolved polymer refers to the amount of dissolved polymer (unit:% by weight) after 1.0 g of a water-absorbent resin is added to 200 ml of a 0.9 wt% sodium chloride aqueous solution and stirred at 500 rpm for 16 hours. The amount of dissolved polymer is measured using pH titration.
  • liquid permeability refers to the flowability of the liquid passing between the particles of the swollen gel under load or no load.
  • Typical methods for measuring liquid permeability include SFC (Saline Flow Conductivity) and GBP (Gel Bed Permeability).
  • SFC refers to the liquid permeability of a 0.69 wt% sodium chloride aqueous solution to a particulate water absorbent or a water-absorbent resin under a load of 2.07 kPa, and conforms to the SFC test method disclosed in US Pat. No. 5,669,894. Is measured.
  • GBP includes swelling GBP under load (International Publication No. 2005/016393) or free swelling GBP (International Publication No. 2004/096304), and is loaded with a 0.9 wt% sodium chloride aqueous solution at a load of 70.3 psi. Liquid permeability is evaluated.
  • the amorphous crushed form refers to a pulverized product obtained by pulverizing a hydrogel containing polymer or a dried product thereof (preferably a dried product) during or after polymerization, and is crushed particles having a non-constant shape. It is preferably a pulverized product in aqueous solution polymerization.
  • spherical particles obtained without a pulverization step or granules of spherical particles typically spherical particles obtained by reverse phase suspension polymerization or droplet polymerization such as spraying and polymerizing a polymerization monomer.
  • the granulated product of spherical particles is not in the form of amorphous crushed material.
  • moisture absorption fluidity in the present invention refers to the fluidity of a particulate water absorbent when it is left for 1 hour under the conditions of a temperature of 25 ° C. and a relative humidity of 90% RH for blocking, caking, or moisture absorption as a powder. It is the evaluated physical property, and is judged by "moisture absorption fluidity (BR)" (also referred to as moisture absorption blocking rate). Briefly, the particulate water absorbent is placed on the sieve, classified, and the weight of the particulate water absorbent remaining on the sieve (W1 (g)) and the weight of the particulate water absorbent that has passed through the sieve (W2). (G)) is measured.
  • BR moisture absorption fluidity
  • BR moisture absorption fluidity
  • moisture absorption fluidity improving agent in the present invention means that by adding to a particulate water absorbing agent or a water absorbing resin, the moisture absorbing fluidity of the particulate water absorbing agent or the water absorbing resin is adjusted before the addition of the moisture absorbing fluidity improving agent.
  • hygroscopic fluidity improving agent examples include, but are not limited to, surfactants, water-insoluble polymers, water-soluble polyvalent metals, water-insoluble fine particles, and the like.
  • Water-insoluble particles include, for example, silicon dioxide, phosphates, hydrotalcites, and aluminum salts.
  • water-insoluble inorganic fine particles preferably a multi-element metal compound containing two types of divalent and trivalent metal cations having a hydrotalcite structure and a hydroxyl group, and phosphoric acids
  • a water-insoluble metal phosphate eg, calcium phosphate
  • an anion and a divalent or trivalent metal cation can be used.
  • GGE Gel crushing energy
  • GGE Gel grinding energy
  • GGE (J / g) ( ⁇ 3 x voltage x current x power factor x motor efficiency) / (weight of coarsely crushed hydrous gel charged into the gel crusher per second) ... Equation (1)
  • power factor and “motor efficiency” are device-specific values that change depending on the operating conditions of the gel crushing device and the like, and take a value from 0 to 1. These values can be known by inquiring to the device manufacturer or the like. Further, when the gel crusher is driven by single-phase AC power, GGE can be calculated by changing " ⁇ 3" in the above formula to "1". The unit of voltage is (V), the unit of current is (A), and the unit of weight of the coarsely crushed hydrogel is (g / s). GGE is measured by the method described in Patent Document 6 (International Publication No. 2011/126079).
  • the mechanical energy applied to the coarsely crushed hydrous gel is important, it is preferable to calculate the gel crushing energy by subtracting the current value when the gel crushing device is idle.
  • the gel crushing energy in this case is calculated by the following formula (2). In order to distinguish it from the above GGE, it is referred to as GGE (2).
  • GGE (2) (J / g) ⁇ 3 x voltage x (current during gel crushing-current during idle operation) x power factor x motor efficiency ⁇ / (coarse crushing charged into the gel crusher per second) Weight of hydrogel)... Equation (2)
  • the power factor and motor efficiency values during idle operation are approximately defined as in the above equation (2) because the current values during idle operation are small.
  • the "weight (g / s) of coarsely crushed hydrous gel charged into the gel crusher per second" in the above formula (2) is, for example, when the coarsely crushed hydrous gel is continuously supplied by a quantitative feeder. Refers to a value converted to (g / s) if the unit of the supply amount is (t / hr).
  • the reversion amount in the present invention indicates the reversion amount of the liquid absorbed by the absorber and released when pressure is applied to the absorber. Also called Re-wet.
  • the operation stability constant in the present invention is an index indicating the operation stability of the gel crusher used in the gel crushing step (3).
  • the operation stability of the gel crusher is increased, and the gel crusher can be continuously operated for a long time, so that stable continuous production of the particulate water absorbent is possible and the production efficiency is improved. be able to.
  • the centrifuge retention capacity (CRC) of the particulate water absorbent which comprises the drying step (4) and the surface cross-linking step (5) at the same time as the drying step (4) or after the drying step (4), is 32.
  • the PDCR specified in the above is 0.02 kg / h / mm 2 to 0.10 kg / h / mm 2 .
  • PDCR (kg / h / mm 2 ) gel treatment amount (kg / h) / (diameter of perforated plate (mm)) 2 .
  • the method for producing the particulate water absorbing agent according to the embodiment of the present invention is a method of adding an additive in one or more steps after the drying step (4). More specifically, the method for producing the particulate water absorbent according to the embodiment of the present invention is a pulverization step of pulverizing the dry polymer to obtain a pulverized dry polymer, and the pulverized dry polymer having a particle size within a predetermined range. The classification step of obtaining the water-absorbent resin powder, the surface cross-linking step (5) of surface-crosslinking the particulate hydrogel, the dry polymer, the pulverized dry polymer, or the water-absorbent resin powder, and the above. In one or more steps after the drying step (4), a method further comprising at least one step selected from the group consisting of a step of adding an additive (hereinafter referred to as "additive addition step"). ..
  • This step is a step of preparing an aqueous solution (hereinafter, referred to as "monomeric aqueous solution") containing a monomer (for example, acrylic acid (salt)) as a main component.
  • a monomer for example, acrylic acid (salt)
  • a monomer slurry solution can be used as long as the water absorption performance of the obtained water-absorbent resin does not deteriorate, but in this section, the monomer aqueous solution will be described for convenience.
  • main component is usually the amount (content) of acrylic acid (salt) used with respect to the entire monomer (excluding the internal cross-linking agent) subjected to the polymerization reaction of the water-absorbent resin. , 50 mol% or more, preferably 70 mol% or more, more preferably 90 mol% or more (upper limit is 100 mol%).
  • acrylic acid In the present invention, acrylic acid and / or a salt thereof, that is, "acrylic acid (salt)" is preferably used as the monomer from the viewpoint of physical properties and productivity of the obtained particulate water absorbent.
  • the above-mentioned "acrylic acid” may be a commercially available acrylic acid and may contain a polymerization inhibitor.
  • the polymerization inhibitor include methoxyphenols, and more preferably p-methoxyphenol.
  • the acrylic acid may contain a polymerization inhibitor, preferably 200 ppm or less, more preferably 10 ppm to 160 ppm, still more preferably 20 ppm to 100 ppm, from the viewpoint of the polymerizable property of acrylic acid and the color tone of the particulate water absorbent.
  • impurities in acrylic acid the compound described in US Patent Application Publication No. 2008/0161512 also applies to the present invention.
  • the "acrylic acid salt” is a salt obtained by neutralizing the above acrylic acid with the following basic composition, but a commercially available acrylic acid salt (for example, sodium acrylate) may be used as the acrylic acid salt. However, the salt obtained by neutralizing in the production plant of the particulate water absorbing agent may be used.
  • the “basic composition” refers to a composition containing a basic compound, and corresponds to, for example, a commercially available aqueous sodium hydroxide solution.
  • the basic compound examples include alkali metal carbonates and hydrogen carbonates, alkali metal hydroxides, ammonia, and organic amines.
  • alkali metal carbonates and hydrogen carbonates examples include alkali metal carbonates and hydrogen carbonates, alkali metal hydroxides, ammonia, and organic amines.
  • hydroxides of alkali metals such as sodium hydroxide, potassium hydroxide, and lithium hydroxide are preferable, and sodium hydroxide is more preferable.
  • neutralization As the neutralization in the present invention, either neutralization with acrylic acid (before polymerization) or neutralization with water-containing gel obtained by cross-linking and polymerizing acrylic acid (after polymerization) (hereinafter referred to as "post-polymerization") is used. Can be selected or used together. Further, these neutralizations may be continuous or batch type and are not particularly limited, but continuous type is preferable from the viewpoint of production efficiency and the like.
  • the neutralization rate in the present invention is preferably 10 mol% to 90 mol%, more preferably 40 mol% to 85 mol%, still more preferably 50 mol% to 80 mol%, based on the acid group of the monomer. Particularly preferably, it is 60 mol% to 75 mol%. If the neutralization rate is less than 10 mol%, the water absorption ratio of the obtained water-absorbent resin may be significantly reduced. On the other hand, when the neutralization rate exceeds 90 mol%, a water-absorbent resin having a high water-absorbing ratio under pressure may not be obtained.
  • the above neutralization rate is the same even in the case of post-neutralization.
  • the above neutralization rate is also applied to the neutralization rate of the particulate water absorbing agent as a final product.
  • the neutralization rate of 75 mol% means a mixture of 25 mol% of acrylic acid and 75 mol% of acrylate. In addition, the mixture may be referred to as a partially neutralized acrylic acid.
  • the "other monomer” refers to a monomer other than the above acrylic acid (salt), and a particulate water absorbent can be produced in combination with acrylic acid (salt).
  • Examples of the above-mentioned other monomers include water-soluble or hydrophobic unsaturated monomers.
  • the compounds described in US Patent Application Publication No. 2005/0215734 (excluding acrylic acid) also apply to the present invention.
  • Internal cross-linking agent As the internal cross-linking agent used in the present invention, the compound described in US Pat. No. 6,241,928 is also applied to the present invention. From these, one kind or two or more kinds of compounds are selected in consideration of reactivity.
  • a compound having two or more polymerizable unsaturated groups is preferable, a compound having thermal decomposition property at the following drying temperature is more preferable, and (poly) alkylene is more preferable.
  • a compound having two or more polymerizable unsaturated groups having a glycol structural unit is used as an internal cross-linking agent.
  • polymerizable unsaturated group examples include an allyl group, a (meth) acrylate group, and more preferably a (meth) acrylate group.
  • polyethylene glycol is preferable, and the n number is preferably 1 to 100, more preferably 6 to 50.
  • (poly) alkylene glycol di (meth) acrylate or (poly) alkylene glycol tri (meth) acrylate is preferably used, and (poly) ethylene glycol di (meth) acrylate is more preferably used.
  • the amount of the internal cross-linking agent used is preferably 0.0001 mol% to 10 mol%, more preferably 0.001 mol% to 1 mol%, based on the entire monomer.
  • a desired water-absorbent resin can be obtained by setting the amount used within the above range. If the amount used is too small, the gel strength tends to decrease and the water-soluble content tends to increase, and if the amount used is too large, the water absorption ratio tends to decrease, which is not preferable.
  • a method in which a predetermined amount of an internal cross-linking agent is added to a monomer aqueous solution in advance and a cross-linking reaction is carried out at the same time as polymerization is preferably applied.
  • a method of adding an internal cross-linking agent during or after polymerization to post-crosslink a method of radical cross-linking using a radical polymerization initiator, radiation using an electron beam, an active energy ray such as ultraviolet rays, etc.
  • a method of cross-linking or the like can also be adopted. Moreover, these methods can also be used together.
  • the substance added to the aqueous monomer solution include starch, starch derivative, cellulose, cellulose derivative, polyvinyl alcohol, polyacrylic acid (salt), polyacrylic acid (salt) crosslinked product, and the like.
  • examples include molecules.
  • the hydrophilic polymer is preferably added to a monomer aqueous solution in an amount of 50% by weight or less, more preferably 20% by weight or less, further preferably 10% by weight or less, and particularly preferably 5% by weight or less (the lower limit is 0% by weight). Can be added.
  • carbonates, azo compounds, foaming agents such as bubbles, surfactants, chelating agents, chain transfer agents and the like are preferably 5% by weight or less, more preferably 1% by weight or less, still more preferably 0.5% by weight.
  • the following (the lower limit is 0% by weight) can be added to the aqueous monomer solution.
  • a water-soluble resin or a water-absorbent resin is used as the hydrophilic polymer
  • a graft polymer or a water-absorbent resin composition for example, starch-acrylic acid polymer, PVA-acrylic acid polymer, etc.
  • These polymers and water-absorbent resin compositions are also within the scope of the present invention.
  • a coloring inhibitor can be added at the time of preparing the monomer aqueous solution.
  • the color-preventing agent is an additive that can prevent coloration that occurs when the particulate water-absorbing agent is stored for a long period of time.
  • the anticoloring agent include (heavy) sulfite (salt) and ⁇ -hydroxycarboxylic acid (salt).
  • (Heavy) sulfite (salt) Usually, from the viewpoint of water absorption characteristics and color tone (prevention of coloring) of the obtained particulate water absorbent, in one or more steps, preferably in one or more steps after the polymerization step (1), (heavy) sulfite (heavy) sulfite ( It is preferable to add salt). Further, by adding (heavy) sulfite (salt), it is possible to prevent coloring and suppress deterioration of the gel. When (heavy) sulfite (salt) is added in the polymerization step (1), the residual amount of unreacted monomer contained in the hydrogel obtained in the polymerization step (1) can be reduced.
  • sulfite (salt) is a sulfite, a sulfite, or a sulfite (hydrogen sulfite).
  • Examples of the above-mentioned sulfite include sodium sulfite, potassium sulfite, calcium sulfite, zinc sulfite, ammonium sulfite and the like.
  • Examples of the sodium bisulfite include sodium hydrogen sulfite, potassium hydrogen sulfite, calcium hydrogen sulfite, zinc hydrogen sulfite, ammonium hydrogen sulfite and the like.
  • sodium hydrogen sulfite is more preferable.
  • the amount of (heavy) sulfite (salt) added is preferably 5% by weight or less, more preferably 1% by weight or less, still more preferably 0.5% by weight or less (the lower limit is 0% by weight, preferably 0.01% by weight). Above).
  • ⁇ -Hydroxycarboxylic acid (salt) ⁇ -hydroxycarboxylic acid (salt)
  • ⁇ -hydroxycarboxylic acid (salt) it is preferable to add ⁇ -hydroxycarboxylic acid (salt) from the viewpoint of water absorption characteristics and color tone (prevention of coloring) of the obtained particulate water absorbent.
  • ⁇ -hydroxycarboxylic acid (salt) it is possible to reduce the molecular weight of the soluble component of the obtained particulate water absorbent, and thus reduce stickiness and discomfort when used as a sanitary material. .. Therefore, from these further viewpoints, it is preferable to add ⁇ -hydroxycarboxylic acid (salt).
  • ⁇ -hydroxycarboxylic acid (salt) refers to a carboxylic acid having a hydroxyl group in the molecule or a salt thereof, and is a hydroxycarboxylic acid having a hydroxyl group at the ⁇ -position or a salt thereof.
  • ⁇ -hydroxycarboxylic acid As the ⁇ -hydroxycarboxylic acid (salt), specifically, the compound disclosed in "[6] ⁇ -Hydroxycarboxylic acid compound" of International Publication No. 2011/040530 and the amount used thereof are applied to the present invention. Will be done.
  • Hydroxycarboxylic acid is a carboxylic acid that also has a hydroxyl group in the molecule, and is lactic acid, glycolic acid, malic acid, glyceric acid, tartaric acid, citric acid, isocitrate, mevalonic acid, quinic acid, shikimic acid, ⁇ -hydroxy.
  • Lipid hydroxy acids such as propionic acid, aromatic hydroxy acids such as salicylic acid, cleosortic acid, vanillic acid, syring acid, resocyl acid, pyrocatechuic acid, protocatechuic acid, gentidic acid, orseric acid, mandelic acid, and gallic acid. Examples include acids or salts thereof.
  • the ⁇ -hydroxycarboxylic acid is a salt in the present invention, it is preferably a monovalent salt from the viewpoint of solubility in water, and is an alkali metal salt such as lithium, potassium or sodium, an ammonia salt, or a monovalent salt. Amine salts and the like are preferably used.
  • ⁇ -hydroxypolycarboxylic acid is used as a salt, all of the carboxyl groups may be used as a salt, or only a part of the carboxyl group may be used as a salt.
  • ⁇ -Hydroxycarboxylic acid (salt) refers to " ⁇ -hydroxycarboxylic acid and / or a salt thereof”.
  • -acid (salt) refers to "-acid and / or salt thereof”.
  • malic acid (salt) refers to malic acid and / or a salt thereof
  • lactic acid (salt) refers to lactic acid and / or a salt thereof.
  • a step of preparing a monomer aqueous solution of the above substances hydrophilic polymer, (heavy) sulfite (salt), and ⁇ -hydroxycarboxylic acid (salt)). And / or can also be added in the polymerization step (1).
  • the above substance may be added not only in the form added to the aqueous monomer solution but also in the form added during the polymerization, and these forms can be used in combination. That is, the substance is added before, during, or after the polymerization step (1). More preferably, the substance is added before or during the polymerization step (1). Specifically, preferably, the above-mentioned substance is added to the aqueous monomer solution before polymerization. Alternatively, preferably, the above-mentioned substance is added to the aqueous monomer solution after the start of polymerization, and specifically, the substance is added to the aqueous monomer solution 2 minutes after the start of polymerization.
  • the above substance can be used at any time point from the start of polymerization to the end of polymerization of the aqueous monomer solution (for example, 1 minute, 2 minutes, 3 minutes, 5 minutes, 10 minutes, or 20 after the start of polymerization. It may be added after minutes, etc.).
  • the above substance is preferably added before, during or after the polymerization step (1), but may be added before or during the gel pulverization step (3). More preferably, the substance is added during the gel grinding step (3). Specifically, the above substance is added when the hydrogel obtained after polymerization is pulverized.
  • each of the above substances is added when preparing a monomer aqueous solution.
  • concentration of the monomer component in the aqueous monomer solution is not particularly limited, but is preferably 10% by weight to 80% by weight, more preferably 20% by weight to 75% by weight, from the viewpoint of the physical properties of the water-absorbent resin. More preferably, it is 30% by weight to 70% by weight.
  • a solvent other than water can be used in combination as needed, and the type of the solvent is not particularly limited.
  • the weight of the aqueous monomer solution does not include the weight of the graft component, the water-absorbent resin, and the hydrophobic solvent in the reverse phase suspension polymerization.
  • the method for producing a particulate water absorbent according to an embodiment of the present invention is a polymerization step (1) of polymerizing an aqueous solution containing an acrylic acid (salt) -based monomer to obtain a hydrogel containing polyacrylic acid (salt). )including.
  • the non-volatile component ratio of the hydrogel is 10% by weight to 48% by weight.
  • This step is a step of polymerizing the acrylic acid (salt) -based monomer aqueous solution obtained in the above-mentioned monomer aqueous solution preparation step to obtain a hydrogel.
  • the non-volatile component ratio of the hydrogel is preferably 10% by weight to 48% by weight, more preferably 15% by weight to 45% by weight, and 18% by weight to 42% by weight, based on the total weight of the hydrogel. It is more preferably by weight%.
  • the non-volatile component ratio (% by weight) is the weight of the non-volatile component of the hydrogel (substantially, the amount of solid content such as water-absorbent resin in the hydrogel) as the weight of the hydrogel dried at 180 ° C. for 24 hours. Can be sought. However, when gel crushing is performed at the same time as polymerization, if water evaporates or water is added during polymerization, the amount of evaporated water and the added water are corrected as necessary, and the monomer component (solid) of the monomer aqueous solution is corrected.
  • the non-volatile component ratio can be obtained from the concentration of minutes).
  • the polymerization initiator used in the present invention is appropriately selected depending on the polymerization form and the like, and is not particularly limited.
  • the polymerization initiator include a thermal decomposition type polymerization initiator, a photodegradable polymerization initiator, and a redox-based polymerization initiator in which a reducing agent that promotes the decomposition of these polymerization initiators is used in combination.
  • a thermal decomposition type polymerization initiator e.g., a photodegradable polymerization initiator
  • a redox-based polymerization initiator in which a reducing agent that promotes the decomposition of these polymerization initiators is used in combination.
  • one or more of the polymerization initiators disclosed in US Pat. No. 7,265,190 are used.
  • a peroxide or an azo compound is preferably used, more preferably a peroxide, and further preferably a persulfate.
  • the amount of the polymerization initiator used is preferably 0.001 mol% to 1 mol%, more preferably 0.001 mol% to 0.5 mol%, based on the monomer.
  • the amount of the reducing agent used is preferably 0.0001 mol% to 0.02 mol% with respect to the monomer.
  • the polymerization reaction may be carried out by irradiating with active energy rays such as radiation, electron beam, and ultraviolet rays, or these active energy rays and the polymerization initiator may be used in combination. ..
  • the polymerization form applied to the present invention is not particularly limited, but is preferably spray droplet polymerization, aqueous solution polymerization, reverse phase suspension polymerization, and more preferably aqueous solution polymerization from the viewpoint of water absorption characteristics, ease of polymerization control, and the like. , Reverse phase suspension polymerization, more preferably aqueous polymerization. Among them, continuous aqueous solution polymerization is particularly preferable, and either continuous belt polymerization or continuous kneader polymerization is applied.
  • continuous belt polymerization is referred to in US Pat. No. 4,893999, No. 624,928, US Patent Application Publication No. 2005/215734, etc.
  • continuous kneader polymerization is referred to in US Pat. No. 6,987,151, No. 6710141, etc. , Each is disclosed.
  • “high temperature start polymerization” and “high concentration polymerization” are mentioned as preferable form of the said continuous aqueous solution polymerization.
  • “High temperature start polymerization” means polymerization at a temperature of preferably 30 ° C. or higher, more preferably 35 ° C. or higher, still more preferably 40 ° C. or higher, particularly preferably 50 ° C. or higher (upper limit is boiling point). Refers to the form of starting.
  • “High-concentration polymerization” means that the concentration of the monomer component is preferably 30% by weight or more, more preferably 35% by weight or more, further preferably 40% by weight or more, and particularly preferably 45% by weight or more (upper limit is saturation concentration). ) Refers to the form of polymerization. These polymerization forms can also be used in combination.
  • Examples of the polymerization method for aqueous solution polymerization include stirring type continuous or batch type kneader polymerization, non-stirring type continuous belt polymerization, and non-stirring type batch polymerization.
  • the stirring type kneader polymerization means that a mixture of an unreacted monomer aqueous solution and a hydrogel is polymerized while stirring and coarsely crushing.
  • a strip-shaped hydrogel can be obtained by supplying a monomer aqueous solution to a polymerization machine having a flat polymerization belt having weirs at both ends and polymerizing the mixture.
  • a block-shaped hydrogel can be obtained by supplying a monomer aqueous solution to a polymerization container such as a vat, a cylinder, or a tank and polymerizing in a stationary state.
  • a polymerization container such as a vat, a cylinder, or a tank
  • the polymerization can be carried out in an air atmosphere, but from the viewpoint of the color tone of the obtained water-absorbent resin, it is preferable to carry out the polymerization in an atmosphere of an inert gas such as nitrogen or argon.
  • an inert gas such as nitrogen or argon.
  • the solid content concentration may be increased during the polymerization.
  • the degree of solid content increase which is an index of such increase in solid content concentration, is defined by the following formula (3).
  • the degree of increase in solid content concentration is preferably 1% by weight or more, more preferably 2% by weight or more.
  • the solid content concentration of the monomer aqueous solution is a value obtained by the following formula (4), and the components in the polymerization system are the monomer aqueous solution, the graft component, the water-absorbent resin, and other solid substances ( For example, water-insoluble fine particles, etc.), and does not include a hydrophobic solvent in reverse phase suspension polymerization.
  • the centrifugal holding capacity (hydraulic gel CRC) per solid content of the hydrogel obtained in the polymerization step (1) is preferably 32.0 g / g or more, 33.0 g / g or more, and 34.0 g / g or more.
  • the upper limit Is preferably 50 g / g. If the water-containing gel CRC of the water-containing gel is less than 10 g / g or more than 50 g / g, it becomes difficult to control the particle shape and particle size distribution during coarse gel crushing, which is not preferable.
  • the water-containing gel CRC of the water-containing gel can be appropriately controlled by the amount of the cross-linking agent added at the time of polymerization, the concentration of the monomer component, and the like.
  • the water-containing gel CRC of the water-containing gel exceeds 50 g / g, it becomes difficult to control the particle shape and particle size distribution.
  • a particulate water absorbent having excellent physical properties can be obtained.
  • the water content can be measured by the same method as the measurement of the water content of the particulate water absorbent. The method for measuring the water content of the particulate water absorbent will be described in detail in Examples.
  • the water content may be adjusted up to the polymerization step, may be adjusted by arbitrarily performing partial drying after the polymerization step, or may be further adjusted by adding water.
  • the hydrous gel obtained in the polymerization step (1) is roughly crushed at the same time as the polymerization step (1) or after the polymerization step (1), preferably after the polymerization step (1). Then, in the gel coarse crushing step (2), a coarsely crushed hydrous gel having a weight average particle diameter (D50) of 500 ⁇ m to 10 cm, preferably 600 ⁇ m to 6 cm, and more preferably 600 ⁇ m to 4 cm is obtained.
  • D50 weight average particle diameter
  • a method capable of rough crushing without kneading a hydrogel is preferable, and for example, a screw extruder such as a guillotine cutter, a kneader or a meat chopper, a gel roughing device such as a cutter mill, and more preferably continuous Examples thereof include coarse crushing using a gel crushing device.
  • the shape of the hydrogel obtained in the rough crushing step is not particularly limited as long as it can be filled in the gel crushing device.
  • the gel coarse crushing step (2) may be performed a plurality of times.
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution of the coarsely crushed hydrous gel after the gel crushing step (2) is preferably 1.25 or less, more preferably 1.20 or less, still more preferably 1.10 or less. Most preferably, it is 1.00 or less.
  • the lower limit is about 0.1, preferably about 0.5.
  • the method for producing the particulate water absorbent may further include a step of cutting or coarsely crushing the hydrous gel coarser than the size of the above-mentioned range before the gel rough crushing step (2).
  • the size of the hydrogel cut or coarsely crushed immediately before the rough crushing step is preferably at least one side size of 3000 ⁇ m (3 mm) or more on average, and 5000 ⁇ m (5 mm) or more, 10 mm or more, 30 mm or more, 10 cm. As mentioned above, it is preferably 50 cm or more and 100 cm or more (the upper limit is 300 cm).
  • one side of the gel is defined as a length (so-called major axis) at which any two points on the surface of the cut or coarsely crushed hydrous gel are taken and the distance between the two points is maximized.
  • the centrifugal holding capacity (hydraulic gel CRC) per solid content of the coarsely crushed hydrous gel obtained in the gel coarse crushing step (2) is preferably 10 g / g or more, and 32.0 g / g or more and 33.0 g / g / g. g or more, 34.0 g / g or more, 35.0 g / g or more, 36.0 / g or more, 37.0 g / g or more, 38.0 g / g or more, 39.0 g / g or more, 40.0 g / g
  • the above is more preferable, and the upper limit is preferably 50 g / g.
  • the water-containing gel CRC of the coarsely crushed water-containing gel is less than 10 g / g or more than 50 g / g, it becomes difficult to control the particle shape and particle size distribution during gel crushing, which is not preferable.
  • the water-containing gel CRC of the coarsely crushed water-containing gel can be appropriately controlled by the amount of the cross-linking agent added at the time of polymerization, the concentration of the monomer component, and the like. In the present invention, when the water-containing gel CRC of the coarsely crushed water-containing gel exceeds 50 g / g, it becomes difficult to control the particle shape and particle size distribution.
  • Conventionally, as an example of a means for obtaining a high CRC particulate water absorbent having a CRC of 32 g / g or more there has been a method of obtaining a high CRC hydrous gel by polymerization, but the conventional method makes gel pulverization difficult and continuous production difficult.
  • the water-containing gel CRC of the dry polymer, the pulverized dry polymer, the water-absorbent resin powder, and the water-absorbent resin particles before the surface cross-linking step (5) after the drying step (4) is defined as 30 minutes (30 minutes). Value / CRC).
  • the hydrogel CRC of the hydrogel obtained in the polymerization step (1) and the crude hydrogel obtained in the gel coarse crushing step (2) is defined by a 24-hour value.
  • the water content of the coarsely crushed water-containing gel may be adjusted by adjusting the monomer concentration during the polymerization and the amount of water evaporation during the polymerization, and the water-containing gel obtained after the polymerization may be partially dried, during coarse crushing or before rough crushing. The above range may be adjusted by adding water to the hydrous gel.
  • the coarsely crushed hydrous gel is subjected to the next gel crushing step (3).
  • the polymerization step (1) and the gel coarse crushing step (2) are carried out at the same time.
  • the gel coarse crushing step (2) is performed when the monomer aqueous solution is "sufficiently gelled".
  • the monomer aqueous solution changes to a hydrogel with the passage of the polymerization time.
  • the gel crushing region of the hydrogel at the final stage is the same and is performed continuously. Therefore, in order to clearly distinguish between "stirring of the monomer aqueous solution" at the start of polymerization and "gel coarse crushing" at the end, the process proceeds to the gel crushing step (2) with a "sufficiently gelled” state. Judge that it was done. When the hydrogel is cut or coarsely crushed before the gel coarse crushing step (2), the same judgment is made.
  • the above-mentioned "sufficient gelation” refers to a state in which a hydrogel can be subdivided by applying a shearing force after the time when the polymerization temperature reaches the maximum (polymerization peak temperature).
  • the time when the polymerization rate of the monomer in the aqueous monomer solution is preferably 90 mol% or more, more preferably 93 mol% or more, further preferably 95 mol% or more, and particularly preferably 97 mol% or more.
  • a hydrogel having a monomer polymerization rate in the above range is gel crushed.
  • the polymerization rate of the above-mentioned monomer is used to obtain "sufficient gelation". Is specified.
  • the crushing is performed after the kneader polymerization. Further cutting or further coarse crushing of the hydrogel may be performed separately.
  • the method for producing a particulate water-absorbent agent according to an embodiment of the present invention is a gel crushing step (3) in which the coarsely crushed hydrous gel obtained in the above coarse crushing step (2) is further pulverized to obtain a particulate hydrous gel. )including.
  • the weight average particle diameter (D50') of the particulate hydrogel is 360 ⁇ m to 1500 ⁇ m (here, D50>D50'), and the above.
  • PDCR (kg / h / mm 2 ) gel treatment amount (kg / h) / (diameter of perforated plate (mm)) 2
  • the PDCR specified in the above is 0.02 kg / h / mm 2 to 0.10 kg / h / mm 2 .
  • the coarsely crushed hydrous gel obtained in the gel crushing step (2) is crushed, and the weight average particle size (D50') is 360 ⁇ m to 1500 ⁇ m, preferably 400 ⁇ m to 1250 ⁇ m, more preferably.
  • a particulate hydrogel having a size of 600 ⁇ m to 1100 ⁇ m is obtained.
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution of the particulate hydrogel after the gel crushing step (3) is preferably 1.25 or less, more preferably 1.20 or less, still more preferably 1.10 or less. It is preferably 1.00 or less.
  • the lower limit is about 0.1, preferably about 0.5.
  • a perforated plate is provided at the outlet of the body (casing) portion of the gel crushing device, and the coarsely crushed hydrous gel passes through the perforated plate to crush the gel.
  • the gel crushing method include crushing with a screw extruder such as a kneader and a meat chopper, and a gel crushing device such as a cutter mill.
  • a continuous gel crusher is used, preferably a continuous screw extruder, specifically, a continuous screw extruder having a perforated plate at the outlet.
  • water, water-absorbent resin fine powder, surfactant, inorganic fine powder and others are required during gel crushing.
  • Add the above additives for example, hydroxycarboxylic acid, (heavy) sulfite (salt), chelating agent, etc.
  • the amount to be used can be appropriately determined according to the purpose, but is 0% by weight to 50% by weight when water is added to the amount of non-volatile components of the hydrogel, and 0% by weight to 30% when water-absorbing resin fine powder is added. When% by weight or other components are added, it is appropriately selected in the range of 0% by weight to 5% by weight.
  • the bulk density which will be described later, should be within the target range by appropriately adjusting the conditions of the gel crushing step (3) and trace components (for example, surfactant, inorganic powder, etc.) in the particulate hydrogel. Can be done.
  • the operation stability constant is obtained from the average current value (Ave.) and its standard deviation ( ⁇ ) when the gel crusher is continuously operated for a predetermined time after confirming that the gel crusher has been stably and continuously operated. It can be expressed by the following equation (5).
  • Operating stability constant standard deviation of current value (of gel crusher) / average of current value (of gel crusher) (Ave.) ... Equation (5)
  • the stable and continuous operation of the gel crusher means the supply rate (supply weight per unit time) of the raw material (coarse crushed hydrous gel) charged into the device and the crushed gel obtained from the outlet of the gel crusher. It means that the discharge rate (discharge weight per unit time) is about the same.
  • the operational stability constant of the gel crushing apparatus used to crush the coarsely crushed hydrous gel in the gel crushing step (3) to obtain a particulate hydrous gel is preferably 0.15 or less, preferably 0.12 or less. More preferably, it is more preferably 0.115 or less.
  • the lower limit is preferably 0.005. Since the operation stability constant is 0.15 or less, that is, the operation stability of the gel crusher is increased, the gel crusher can be continuously operated, so that the gel crusher is in the form of particles containing polyacrylic acid (salt). Continuous production of water absorbing agent is possible, and production efficiency can be improved.
  • the gel crushing step (3) may be performed a plurality of times.
  • the particulate hydrogel is subjected to the next drying step (4).
  • the gel crushing energy (GGE) for gel crushing a coarsely crushed hydrous gel is preferably 60 J / g or less, more preferably 50 J / g or less, still more preferably 40 J / g or less as an upper limit value. Further, as the lower limit value, 15 J / g or more is preferable, 17 J / g or more is more preferable, 20 J / g or more is further preferable, 23 J / g or more is further preferable, 25 J / g or more is further preferable, and 29 J / g or more. G or more is even more preferable, and 34 J / g or more is most preferable.
  • the gel pulverization energy (GGE) is preferably 29 J / g to 60 J / g, more preferably 29 J / g to 55 J / g, further preferably 29 J / g to 50 J / g, or preferably 34 J / g to 60 J / g. g, more preferably 34 J / g to 55 J / g, still more preferably 34 J / g to 50 J / g.
  • the gel crushing energy (GGE) is defined to include the energy when the gel crushing device is idle.
  • the gel crushing energy (2) (also referred to as "net gel crushing energy”) excluding the energy when the gel crushing device is idle.
  • the gel crushing energy (2) (GGE (2)) for crushing the coarsely crushed hydrous gel is preferably 40 J / g or less, more preferably 38 J / g or less, and 35 J / g as an upper limit value. It is more preferably g or less. Further, as the lower limit value, 9 J / g or more is preferable, 12 J / g or more is more preferable, 15 J / g or more is further preferable, 15 J / g or more is further preferable, and 19 J / g or more is further preferable.
  • the gel crushing energy (2) is preferably 15 J / g to 40 J / g, more preferably 15 J / g to 38 J / g, still more preferably 15 J / g to 35 J / g, or 19 J / g. It is -40 J / g, preferably 19 J / g to 38 J / g, and more preferably 19 J / g to 35 J / g.
  • GGE is controlled within the above range to crush the gel while applying an appropriate shear / compressive force to the coarsely crushed hydrous gel, and the particle shape of the particulate water absorbent is physically controlled rather than chemically. ..
  • the surface area per unit weight is increased, and the water absorption rate of the particulate water absorbent is increased. Therefore, it is possible to produce a particulate water-absorbing agent in which both a high water-absorbing ratio and a high water-absorbing rate are compatible, and the amount of reversion is reduced as compared with the conventional particulate water-absorbing agent.
  • the hydrogel is in a state of being a coarsely crushed hydrogel having a weight average particle size (D50) within the above range. It is assumed that the gel crushing step (3) is started.
  • the gel crushing device is provided with a perforated plate at the outlet of the body (casing) portion of the gel crushing device, and gel crushing is performed by passing the coarsely crushed hydrous gel through the perforated plate.
  • the body (casing) of the gel crusher may have a cylindrical shape (including an elliptical tubular shape) or another shape (for example, a rectangular parallelepiped). From the viewpoint of workability, a cylindrical body (casing) is preferable.
  • the size (diameter) of the perforated plate indicates the size (size, diameter) of the region where the coarsely crushed hydrous gel put into the gel crushing device passes through the outlet of the body of the device.
  • the size (diameter) of the perforated plate matches the size of the cross section of its outlet. If the size of the perforated plate is larger than the cross section of the outlet of the fuselage, the size and shape of the perforated plate shall be the same as the size and shape of the exit cross section of the fuselage.
  • the thickness, pore size, and aperture ratio of the perforated plate can be appropriately selected depending on the amount of treatment per unit time of the gel crushing apparatus, the properties of the hydrogel, and the like, and are not particularly limited. However, the thickness of the perforated plate is preferably 3.5 mm to 40 mm, more preferably 6 mm to 20 mm.
  • the pore diameter of the perforated plate is preferably 3 mm to 25 mm, more preferably 3.5 mm to 20 mm, further preferably 4 mm to 15 mm, and most preferably 4.5 mm to 10 mm. .. Further, the aperture ratio of the perforated plate is preferably 20% to 80%, more preferably 25% to 50%. When a perforated plate having a plurality of holes having different pore diameters (mm) is used, the simple average value of the pore diameters of each pore is used as the pore diameter of the perforated plate in the gel crushing apparatus.
  • the shape of the hole is preferably circular, but when the hole has a shape other than circular (for example, quadrangle, ellipse, slit shape, etc.), the opening area of the hole is calculated and the diameter is formed as circular. It is converted into a hole diameter (mm).
  • the number of holes in the perforated plate is preferably 2 to 1000, more preferably 5 to 500, and even more preferably 10 to 100.
  • the thickness of the perforated plate is less than 3.5 mm, the pore diameter is more than 25 mm, and the aperture ratio is more than 80%, it may not be possible to give sufficient shearing / compressive force to the hydrogel. There is. On the contrary, when the thickness of the perforated plate exceeds 40 mm, the pore diameter is less than 3 mm, and the aperture ratio is less than 20%, an excessive shearing / compressing force is applied to the coarsely crushed hydrous gel. This may lead to deterioration of physical properties.
  • the size of the perforated plate (diameter, unit is mm) has an optimum ratio to the gel treatment amount (kg / h) per unit time. Specifically, the ratio is a value obtained by dividing the gel treatment amount (kg / h) per unit time by the square of the diameter (mm) of the perforated plate (hereinafter, as shown by the following formula (6)). , PDCR; Plate Diameter and Capacity Ratio).
  • the shape of the perforated plate is not circular, the area of the perforated plate is converted into the area of a circle, and the diameter (mm) obtained from the area of the circle is used as the diameter of the perforated plate to calculate the PDCR.
  • PDCR (kg / h / mm 2 ) gel processing amount (kg / h) / (diameter of perforated plate (mm)) 2 ... Equation (6)
  • the preferred range of PDCR is 0.01 to 0.12, more preferably 0.02 to 0.10.
  • the temperature of the coarsely crushed hydrous gel charged into the gel crushing apparatus is preferably 40 ° C. to 120 ° C., more preferably 60 ° C. to 115 ° C., and most preferably 80 ° C. to 110 ° C. from the viewpoint of uniform pulverization. Further, from the viewpoint of the stability of gel pulverization, it is preferable that the temperature does not decrease during gel pulverization. Specifically, a value obtained by subtracting the temperature (° C.) of the coarsely crushed hydrous gel charged into the gel crusher from the temperature (° C.) of the particulate hydrogel discharged from the outlet of the gel crusher is preferably-. It is 9 ° C. or higher, more preferably ⁇ 5 ° C. or higher, further preferably 0 ° C. or higher, even more preferably 5 ° C. or higher, and most preferably 10 ° C. or higher. Although not particularly limited, the upper limit is about 30 ° C.
  • Patent Document 6 International Publication No. 2011/126079
  • Drying step (4) The method for producing a particulate water-absorbing agent according to an embodiment of the present invention includes a drying step (4) of drying the particulate hydrogel obtained in the gel crushing step (3) to obtain a dry polymer. ..
  • the drying step (4) and the surface cross-linking step (5) described later may be performed at the same time.
  • This step is a step of drying the particulate hydrogel obtained in the gel crushing step (3) until the desired non-volatile component ratio is obtained to obtain a dried polymer.
  • the non-volatile component ratio is determined from the weight loss by drying (weight change when 1 g of water-absorbent resin is heated at 180 ° C. for 3 hours).
  • the non-volatile component ratio is preferably 80% by weight or more, more preferably 85% by weight to 99% by weight, still more preferably 90% by weight to 98% by weight, and particularly preferably 92% by weight to 97% by weight.
  • the method for drying the particulate hydrogel is not particularly limited, but for example, heat drying, hot air drying, vacuum drying, fluidized layer drying, infrared drying, microwave drying, drum dryer drying, co-boiling with a hydrophobic organic solvent.
  • Examples include drying by dehydration and high-humidity drying using high-temperature steam.
  • hot air drying is preferable, and band drying in which hot air drying is performed on a ventilation belt is more preferable.
  • the wind speed of the hot air in the hot air drying is preferably 0.8 m / s to 2.5 m / s in the vertical direction (vertical direction), more preferably 0.003 m / s to 0.1 m / s, and further preferably 0. It is 005 m / s to 0.06 m / s.
  • Drying time in the hot air drying, to the band dry gel weight per unit area is 10kg / m 2 ⁇ 50kg / m 2 particulate hydrogel is preferably 10 minutes to 60 minutes.
  • the thickness of the particulate hydrogel when the band is dried is preferably 20 cm or less, more preferably 15 cm or less, further preferably 12 cm or less, and most preferably 9.5 cm or less.
  • the bulk density of the particulate hydrogel to be dried is preferably 0.20 g / ml to 0.50 g / ml, more preferably 0.25 g / ml to 0.45 g / ml, and most preferably 0.30 g / ml. It is from ml to 0.40 g / ml. It is preferable to set the thickness and bulk density of the particulate gel in an appropriate range because the dry polymer can be easily pulverized.
  • the bulk density can be set within the target range by appropriately adjusting the conditions of the gel crushing step (3) and trace components (for example, surfactant, inorganic powder, etc.) in the particulate hydrogel.
  • the drying temperature (hot air temperature) in the hot air drying is preferably 120 ° C. to 250 ° C., more preferably 150 ° C. to 200 ° C. from the viewpoint of the color tone of the water-absorbent resin and the drying efficiency.
  • Drying conditions other than the above-mentioned drying temperature such as the wind speed and drying time of hot air, may be appropriately set according to the water content and total weight of the particulate water-containing gel to be dried and the target non-volatile component ratio. ..
  • band drying the conditions described in International Publication No. 2006/100300, No. 2011/025012, No. 2011/0250513, No. 2011/11657, etc. are appropriately applied.
  • the CRC centrifuge holding capacity
  • water-soluble content Ext
  • color tone of the obtained water-absorbent resin can be set within the desired ranges. it can.
  • This step is a step of crushing the dry polymer obtained in the above drying step (4) to obtain a crushed dry polymer (hereinafter referred to as "crushed dry polymer"). Is.
  • Examples of the equipment used in the crushing process of the present invention include high-speed rotary crushers such as roll mills, hammer mills, screw mills and pin mills, vibration mills, knuckle type crushers, cylindrical mixers and the like, if necessary. Used together.
  • high-speed rotary crushers such as roll mills, hammer mills, screw mills and pin mills, vibration mills, knuckle type crushers, cylindrical mixers and the like, if necessary. Used together.
  • the particle size adjusting method in the classification step of the present invention is not particularly limited, and examples thereof include sieve classification using a JIS standard sieve (JIS Z8801-1 (2000)) and airflow classification.
  • the particle size adjustment of the water-absorbent resin is not limited to the above-mentioned pulverization step and classification step, but is limited to the polymerization step (1) (particularly reverse phase suspension polymerization and spray droplet polymerization) and other steps (for example, granulation step). It can be appropriately carried out in the fine powder recovery step).
  • the water-absorbent resin powder obtained in the present invention has a weight average particle size (D50) of preferably 200 ⁇ m to 600 ⁇ m, more preferably 200 ⁇ m to 550 ⁇ m, still more preferably 250 ⁇ m to 500 ⁇ m, and particularly preferably 350 ⁇ m to 450 ⁇ m.
  • D50 weight average particle size
  • the proportion of particles having a particle diameter of less than 150 ⁇ m is preferably 10% by weight or less, more preferably 5% by weight or less, and further preferably 1% by weight or less.
  • the proportion of particles having a particle size of 850 ⁇ m or more is preferably 5% by weight or less, more preferably 3% by weight or less, still more preferably 1% by weight or less, and further preferably the proportion of particles having a particle size of 710 ⁇ m or more is preferably 5% by weight. % Or less, more preferably 3% by weight or less, still more preferably 1% by weight or less.
  • the lower limit of the proportion of these particles is preferably as small as possible in any case, preferably 0% by weight, but may be about 0.1% by weight.
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution is preferably 0.20 to 0.50, more preferably 0.25 to 0.40, and even more preferably 0.27 to 0.35.
  • the above-mentioned particle size refers not only to the water-absorbent resin particles after surface cross-linking (hereinafter, the water-absorbent resin before surface cross-linking is referred to as "water-absorbent resin particles" for convenience) but also to the particulate water-absorbent as the final product. Also applies. Therefore, it is preferable that the water-absorbent resin particles are subjected to a surface cross-linking treatment (surface cross-linking step (5)) so as to maintain the particle size in the above range, and a sizing step is provided after the surface cross-linking step (5) to provide a particle size. It is more preferable to be adjusted.
  • the method for producing a particulate water absorbing agent according to an embodiment of the present invention includes a surface cross-linking step (5) at the same time as the drying step (4) or after the drying step (4).
  • This step is further applied to the surface layer of the particulate hydrogel, the dry polymer, the pulverized dry polymer, or the water-absorbent resin powder, preferably the water-absorbent resin powder (the portion from the surface of the water-absorbent resin powder to several tens of ⁇ m).
  • This is a step of providing a portion having a high crosslink density.
  • This step is composed of a mixing step, a heat treatment step, and a cooling step (optional). This step improves water absorption performance such as pressure absorption, liquid permeability, and water absorption rate.
  • gel blocking (particulate water absorbing agents agglomerate) is unlikely to occur even if the aqueous liquid is absorbed, and (2) the elastic modulus of the swollen gel becomes high and the water absorbing power under load becomes high. (3) It is possible to produce a particulate water absorbing agent having features such as good moisture absorption blocking property.
  • a water-absorbent resin (water-absorbent resin particles) surface-crosslinked by radical cross-linking or surface polymerization on the surface of the water-absorbent resin powder, a cross-linking reaction with a surface cross-linking agent, or the like can be obtained.
  • the CRC centrifuge holding capacity
  • the CRC of the dry polymer, the pulverized dry polymer, the water-absorbent resin powder, and the water-absorbent resin particles before surface cross-linking is also 32.0 g / g or more, and it is preferable that the CRC is even higher.
  • the CRC of the dry polymer, pulverized dry polymer, water-absorbent resin powder, and water-absorbent resin particles before surface cross-linking is higher in the range of 2 g / g to 40 g / g than the CRC of the target particulate water-absorbent. It is preferably CRC, more preferably high CRC in the range of 3 g / g to 40 g / g, further preferably high CRC in the range of 4 g / g to 20 g / g, 5 g / g to 15 g. A CRC higher by / g is even more preferable, and a CRC higher by 6 g / g to 10 g / g is most preferable.
  • the difference in CRC before and after surface cross-linking is small, the physical properties of AAP and the like are low, and if the difference is too large, the physical properties and productivity may be lowered. Specifically, it depends on the CRC of the dry polymer before surface cross-linking, the pulverized dry polymer, the water-absorbent resin powder, and the particulate water-absorbent agent intended as the CRC of the water-absorbent resin particles, but 35.0 g / g / G or more is preferable, 38.0 g / g or more is more preferable, 40.0 g / g or more is further preferable, 43.0 g / g or more is even more preferable, or 45.0 g / g or more is even more preferable.
  • 0 g / g or more preferably 70.0 g / g or less is preferable, and 60.0 g / g or less is more preferable, from the viewpoint of balance with other physical properties such as AAP, soluble matter and liquid permeability.
  • the surface cross-linking agent used in the present invention is not particularly limited, and examples thereof include organic or inorganic surface cross-linking agents. Among them, an organic surface cross-linking agent that reacts with a carboxyl group is preferable from the viewpoint of physical properties of the water-absorbent resin and handleability of the surface cross-linking agent. For example, one or more surface cross-linking agents disclosed in US Pat. No. 7,183,456.
  • polyhydric alcohol compounds epoxy compounds, haloepoxy compounds, polyvalent amine compounds or condensates thereof with haloepoxy compounds, oxazoline compounds, oxazolidinone compounds, polyvalent metal salts, alkylene carbonate compounds, cyclic urea compounds and the like.
  • the amount of the surface cross-linking agent used is preferably 0.01 parts by weight to 10 parts by weight, more preferably 0.01 parts by weight, based on 100 parts by weight of the water-absorbent resin powder. ⁇ 5 parts by weight.
  • the surface cross-linking agent is preferably added as an aqueous solution, and the amount of water used at this time is preferably 0.1 part by weight to 20 parts by weight, more preferably 0, based on 100 parts by weight of the water-absorbent resin powder. .5 to 10 parts by weight.
  • the amount used is preferably 10 parts by weight or less, more preferably 5 parts by weight or less, based on 100 parts by weight of the water-absorbent resin powder.
  • the lower limit of the amount used is 0 parts by weight.
  • various additives added in the "re-humidification step" described later may be mixed with the surface cross-linking agent (aqueous solution) in the range of 0 parts by weight to 5 parts by weight, respectively, or added separately in this mixing step. You can also do it.
  • This step is a step of mixing the water-absorbent resin powder and the surface cross-linking agent.
  • the method for mixing the surface cross-linking agent is not particularly limited, but a surface cross-linking agent solution is prepared in advance, and the solution is preferably sprayed or dropped onto the water-absorbent resin powder, and more preferably sprayed. There is a method of mixing.
  • the apparatus for performing the above mixing is not particularly limited, but preferably a high-speed stirring type mixer, and more preferably a high-speed stirring type continuous mixer.
  • This step is a step of applying heat to the mixture discharged from the mixing step to cause a crosslinking reaction on the surface of the water-absorbent resin powder.
  • the apparatus for performing the above-mentioned crosslinking reaction is not particularly limited, but a paddle dryer is preferable.
  • the reaction temperature in the crosslinking reaction is appropriately set according to the type of surface crosslinking agent used, but is preferably 50 ° C. to 300 ° C., more preferably 100 ° C. to 200 ° C.
  • This step is an arbitrary step carried out as needed after the heat treatment step.
  • the device that performs the cooling step is not particularly limited, but is preferably a device having the same specifications as the device used in the heat treatment step, and more preferably a paddle dryer. This is because it can be used as a cooling device by changing the heat medium to a refrigerant.
  • the water-absorbent resin particles obtained in the heat treatment step are forcibly cooled to 40 ° C. to 80 ° C., more preferably 50 ° C. to 70 ° C., if necessary, in the cooling step.
  • the surface-crosslinked water-absorbent resin particles may be physically damaged.
  • the shape of the water-absorbent resin particles becomes amorphous and crushed, and the water-absorbent resin particles can efficiently contain additives added in the rehumidification step described later.
  • the method of physically damaging the water-absorbent resin particles is not particularly limited as long as the water-absorbent resin particles can be impacted, and examples thereof include a paint shaker test (PS-test).
  • PS-test is carried out by putting 10 g of glass beads having a diameter of 6 mm and 30 g of water-absorbent resin into a glass container having a diameter of 6 cm and a height of 11 cm and putting it in a paint shaker (Toyo Seiki Seisakusho Product No. 488). It is a method of mounting and shaking at 800 cycles / minute (CPM) for 30 minutes. Details of the apparatus used in the paint shaker test are disclosed in JP-A-9-235378. After shaking, the glass beads are removed with a JIS standard sieve having a mesh size of 2 mm to obtain damaged water-absorbent resin particles.
  • the amount of increase of the water-absorbent resin particles having a particle size of 150 ⁇ m or less generated before and after the paint shaker test is preferably + 5% or less, more preferably + 3%, and further preferably + 2% or less. , + 1% or less is most preferable.
  • the lower limit of the increase is 0%.
  • Rehumidification step In this step, in one or more steps after the drying step (4), the following polyvalent metal salt, cationic polymer, chelating agent, inorganic reducing agent, hydroxycarboxylic acid compound, and This is a step of adding at least one kind of additive selected from the group consisting of moisture absorption fluidity improving agents.
  • the additive is added as an aqueous solution or a slurry liquid, the water-absorbent resin particles swell again with water. Therefore, this step is referred to as a "re-humidification step". Further, as described above, the additive can be mixed with the water-absorbent resin powder at the same time as the surface cross-linking agent (aqueous solution).
  • Multivalent metal salts and / or cationic polymers In the present invention, it is preferable to add a polyvalent metal salt and / or a cationic polymer from the viewpoint of improving the water absorption rate, liquid permeability, moisture absorption fluidity, etc. of the obtained water-absorbent resin.
  • polyvalent metal salt and / or cationic polymer specifically, the compound disclosed in "[7] Polyvalent metal salt and / or cationic polymer" of International Publication No. 2011/040530 and the amount thereof used. Is applied to the present invention.
  • chelating agent In the present invention, it is preferable to add a chelating agent from the viewpoint of color tone (prevention of coloring), prevention of deterioration, etc. of the obtained water-absorbent resin.
  • the amount of the chelating agent added is preferably 0.001 part by weight to 0.2 part by weight, more preferably 0.003 part by weight to 0.1 part by weight, based on 100 parts by weight of the particulate water absorbing agent or the water absorbing resin. Parts, more preferably 0.005 parts by weight to 0.06 parts by weight.
  • chelating agent examples include ethylenediaminetetraacetic acid (salt), triethylenetetraminehexacetic acid (salt), diethylenetriaminetetraacetic acid (DTPA) (salt), trans-1,2-diaminocyclohexanetetraacetic acid (salt), and iminoni.
  • aminocarboxylic acid (salt) is preferable, and diethylenetriamine pentaacetic acid (DTPA) (salt) is particularly preferable.
  • DTPA diethylenetriamine pentaacetic acid
  • Inorganic reducing agent In the present invention, it is preferable to add an inorganic reducing agent from the viewpoints of color tone (prevention of coloring), prevention of deterioration, reduction of residual monomers, etc. of the obtained water-absorbent resin.
  • the compound disclosed in "[3] Inorganic Reducing Agent" of International Publication No. 2011/040530 and the amount used thereof are applied to the present invention.
  • Hygroscopic fluidity improver In the present invention, it is preferable to add a moisture absorption fluidity improver from the viewpoint of improving the moisture absorption fluidity.
  • a moisture absorption fluidity improver By adding the moisture absorption fluidity improving agent, it is possible to increase the fluidity of the particulate water absorbing agent having a high CRC, which tends to have low fluidity.
  • the amount of the moisture absorption fluidity improving agent added is preferably 0.01 parts by weight to 1.0 part by weight, more preferably 0.02 parts by weight to 0, based on 100 parts by weight of the particulate water absorbing agent or the water absorbing resin. It is 0.7 parts by weight, more preferably 0.03 parts by weight to 0.5 parts by weight.
  • the hygroscopic fluidity improving agent is selected from the group consisting of silicon dioxide (silica), phosphate, hydrotalcite, and aluminum salt.
  • silicon dioxide silicon dioxide
  • phosphate phosphate
  • hydrotalcite hydrotalcite
  • aluminum salt aluminum salt
  • it is water-insoluble composed of a polyvalent metal compound containing two types of divalent and trivalent metal cations having a hydrotalcite structure and a hydroxyl group, and an anion of phosphoric acids and a divalent or trivalent metal cation.
  • Metal phosphates can be mentioned.
  • additives other than the above-mentioned additives in order to add various functions to the particulate water-absorbent, a particulate hydrogel, a dry polymer, a water-absorbent resin powder, or Various additives other than the above-mentioned additives can be added to the water-absorbent resin particles.
  • the various additives include surfactants, compounds having phosphorus atoms, oxidizing agents, organic reducing agents, water-insoluble inorganic fine particles, organic powders such as metal soaps, deodorants, antibacterial agents, pulps, and the like. Examples thereof include thermoplastic fibers.
  • the above-mentioned surfactant is disclosed in the compound disclosed in International Publication No. 2005/0757070, and the above-mentioned water-insoluble inorganic fine particles are disclosed in "[5] Water-insoluble inorganic fine particles" of International Publication No. 2011/040530. Each of these compounds is applied to the present invention.
  • the amount of the various additives used is appropriately determined according to the intended use, and is not particularly limited, but is 100 parts by weight of the water-absorbent resin (for example, water-absorbent resin powder) before the addition of the various additives. On the other hand, it is preferably 3 parts by weight or less, and more preferably 1 part by weight or less. Further, various additives can be added in a step different from the above steps (for example, a rehumidification step).
  • steps such as a granulation step, a granulation step, a fine powder removal step, and a fine powder reuse step may be carried out as necessary. it can. Further, in the present invention, steps such as a transportation step, a storage step, a packing step, and a storage step may be carried out as needed.
  • the water-absorbent resin or the like when the water-absorbent resin or the like aggregates in the steps after the surface cross-linking step (5) and exceeds a desired size, the water-absorbent resin or the like is classified and pulverized to be sized. It also includes the case where it is carried out together with each of the above-mentioned steps as necessary.
  • the "fine powder reuse step” is a step of adding the fine powder as it is to any step of the manufacturing process of the particulate water absorbing agent as a part of the raw material, and / or granulating the fine powder into a large hydrogel. This is a step of adding as a part of the raw material to the gel crushing step (3) and the drying step (4).
  • the particulate water-absorbing agent obtained by the above-mentioned production method the absorber that carries the particulate water-absorbing agent between the liquid-permeable sheet and the liquid-impermeable sheet, and the sanitary article containing the absorbent are also included. It is included in the category of the present invention.
  • the method for producing an absorber according to an embodiment of the present invention is a method for producing an absorber in which a particulate water-absorbing agent is supported between a liquid-permeable sheet and a liquid-impermeable sheet, and the above-mentioned particulate water absorption.
  • the method for producing the agent is a polymerization step (1) of polymerizing an aqueous solution containing an acrylic acid (salt) -based monomer to obtain a hydrous gel containing polyacrylic acid (salt), and a polymerization step (1) of producing the hydrogel.
  • Gel crushing step (2) to obtain a coarsely crushed hydrous gel by coarse crushing at the same time as 1) or after the above polymerization step (1), and gel crushing to obtain a particulate hydrated gel by further crushing the coarsely crushed hydrous gel.
  • Step (3) a drying step (4) of drying the particulate hydrogel to obtain a dry polymer, and a surface cross-linking step (5) at the same time as or after the drying step (4).
  • a method for producing a particulate water-absorbing agent which comprises a particulate water-absorbing agent having a centrifuge retention capacity (CRC) of 32.0 g / g or more, wherein the non-volatile component ratio of the water-containing gel is 10 weight by weight.
  • CRC centrifuge retention capacity
  • the weight average particle diameter (D50) of the coarsely crushed hydrous gel is 500 ⁇ m to 10 cm
  • the weight average particle diameter (D50') of the particulate hydrogel is 360 ⁇ m to 1500 ⁇ m.
  • the PDCR defined by the following formula is 0.02 kg / h / mm 2 to 0.10 kg / h / mm 2 .
  • PDCR (kg / h / mm 2 ) gel treatment amount (kg / h) / (diameter of perforated plate (mm)) 2 .
  • the method for producing the absorber may further include each step of the above-mentioned particulate water absorbing agent. Since the contents overlap with those described in the above-mentioned particulate water absorbing agent, the description thereof will be omitted.
  • the particulate water absorbent containing the polyacrylic acid (salt) obtained in the present invention has the physical properties of (a) to (g) listed below when the particulate water absorbent is used for hygiene products, especially disposable diapers.
  • AAP water absorption ratio
  • BR moisture absorption fluidity
  • the particulate water absorbent containing the polyacrylic acid (salt) obtained in the present invention is not particularly limited in its shape, but is preferably in the form of particles.
  • the physical properties of the particulate water-absorbing agent or the water-absorbent resin will be described. Unless otherwise specified, the following physical properties were measured in accordance with the EDANA method.
  • a particulate water absorbing agent having a CRC of 32 g / g or more and further satisfying at least one of the following (a) to (g), a filler thereof, and a method for producing them.
  • DRC 5 min is 35 g / g or more
  • Weight average particle diameter is 200 ⁇ m to 600 ⁇ m
  • the proportion of particles of 850 ⁇ m or more is 5 wt% or less
  • the proportion of particles less than 150 ⁇ m is 5 wt% or less
  • logarithmic standard of particle size distribution Deviation is 0.20 to 0.50
  • C Surface tension is 66 mN / m or more
  • Moisture absorption fluidity is 50% by weight or less
  • Soluble content is 25% by weight or less
  • deteriorated soluble content is 30% by weight or less
  • AAP is 18 g / g
  • Bulk specific gravity is 0.57 g / cm 3 to 0.75 g / cm 3 .
  • the DRC 5 min of the particulate water absorbent of the present invention is not particularly limited as long as it satisfies the above DRC index, but is preferably 35 g / g or more, more preferably 38 g / g or more, and further preferably 40 g / g or more.
  • the upper limit is not particularly limited, but is usually 60 g / g or less, preferably 55 g / g or less.
  • the DRC is defined in International Publication No. 2017/170605 by the method of disclosure.
  • the water absorption magnification CRC (centrifuge holding capacity) of the particulate water absorbent of the present invention is 32.0 g / g or more, 33.0 g / g or more, 34.0 g / g or more, 35.0 g / g or more, It is preferable in the order of 36.0 g / g or more, 38.0 g / g or more, 40.0 g / g or more, and 42.0 g / g or more.
  • stable continuous production is possible even for a water absorbing agent having a CRC of 40.0 g / g or more, which has been difficult to produce in the past.
  • the CRC When the CRC is less than 32.0 g / g, the amount of absorption is small and it is not suitable as an absorber for sanitary goods such as disposable diapers. Further, when the CRC exceeds 70 g / g, the rate of absorbing body fluids such as urine and blood decreases, so that it is not suitable for use in high water absorption rate type disposable diapers and the like.
  • the CRC can be controlled by increasing or decreasing the amount of the internal cross-linking agent, increasing or decreasing the surface cross-linking agent, and the like.
  • particle size of the particulate water absorbent of the present invention should be the same as the particle size of the water-absorbent resin powder before surface cross-linking.
  • particle size distribution, weight average particle size (D50), logarithmic standard deviation ( ⁇ ) of particle size distribution should be the same as the particle size of the water-absorbent resin powder before surface cross-linking.
  • particle size distribution, weight average particle size (D50), logarithmic standard deviation ( ⁇ ) of particle size distribution should be the same as the particle size of the water-absorbent resin powder before surface cross-linking.
  • it is as described in the pulverization step (2-6) and the classification step (2-7).
  • the surface tension of the particulate water absorbent of the present invention is preferably 66 mN / m or more, preferably 67 mN / m or more, and more preferably 68 mN / m. As described above, it is more preferably 69 mN / m or more, further preferably 70 mN / m or more, particularly preferably 71 mN / m or more, and most preferably 72 mN / m or more, and there is no substantial decrease in surface tension.
  • the upper limit is usually 75 mN / m.
  • the amount of reversion in the disposable diaper can be reduced.
  • One preferred embodiment is a form in which the particle shape of the particulate water absorbent of the present invention is amorphous and crushed. Since the surface area of the amorphous crushed particles is larger than that of the spherical particles obtained by reverse phase suspension polymerization or vapor phase polymerization, the water absorption rate of the particulate water absorbent is high and it is easy to fix the particles to the pulp. Because it can be done.
  • Moisture absorption fluidity moisture absorption blocking rate
  • BR Moisture absorption fluidity
  • the hygroscopic fluidity (BR) of the particulate water absorbent of the present invention is usually 50% by weight or less, preferably 40% by weight or less, more preferably 30% by weight or less, still more preferably 20% by weight or less, still more. It is preferably 10% by weight or less, and most preferably 0% by weight.
  • the range of hygroscopic fluidity (BR) of the particulate water absorbent of the present invention is 0 to 50% by weight, 0 to 40% by weight, 0 to 30% by weight, 0 to 20% by weight, 0 to 10% by weight.
  • BR moisture absorption fluidity
  • the above-mentioned hygroscopic fluidity (BR) can be achieved by adding the above-mentioned hygroscopic fluidity improving agent.
  • the water-soluble content (Ext) of the particulate water absorbent of the present invention is 25% by weight or less, preferably 24% by weight. Below, it is more preferably 22% by weight or less, still more preferably 20% by weight or less. The lower limit is not particularly limited, but is preferably 0.5% by weight.
  • the degraded soluble content of the particulate water absorbent of the present invention is 30% by weight or less, preferably 27% by weight or less, more preferably 24% by weight or less, still more preferably 20% by weight or less.
  • the lower limit is not particularly limited, but is preferably 0.5% by weight. Since the urine resistance of the particulate water absorbent is improved by satisfying the above conditions, the ability to remove gel deterioration, rough skin, cover, and foul odor due to body fluids such as urine when the particulate water absorbent is used for disposable diapers. It is possible to suppress problems such as a decrease in.
  • the water absorption ratio (AAP) of the particulate water absorbent of the present invention under pressure is preferably 18 g / g or more, more preferably 22 g / g or more, and further at a load of 2.06 kPa (preferably even at a load of 4.83 kPa). It is preferably 24 g / g or more, particularly preferably 26 g / g or more, further particularly preferably 28 g / g or more, and most preferably 30 g / g or more.
  • the upper limit is not particularly limited, but is preferably 40 g / g or less.
  • the AAP When the AAP is less than 18 g / g, the amount of liquid reversion when pressure is applied to the absorber (usually referred to as "Re-Wet") increases, and as an absorber for sanitary goods such as disposable diapers. Not suitable.
  • the AAP can be controlled by the particle size, the surface cross-linking agent, and the like.
  • the disposable diaper produced by using the above-mentioned particulate water-absorbing agent has an excellent ability to absorb urine from pulp, can reduce the amount of reversion, and can suppress skin irritation and urine leakage.
  • DAP Diffusion absorption ratio
  • the diffusion absorption ratio of the particulate water absorbent according to the present invention for 60 minutes is preferably 18 g / g or more, more preferably 20 g / g or more, and most preferably 22 g / g or more.
  • the upper limit of the diffusion absorption ratio is not particularly limited, but is generally about 40 g / g or less.
  • the diffusion absorption ratio of the particulate water absorbent according to the present invention for 10 minutes is preferably 7 g / g or more, more preferably 9 g / g or more, further preferably 11 g / g or more, and 13 g / g or more. Most preferably, it is g or more.
  • the upper limit is not particularly limited, but is generally about 30 g / g or less.
  • the method for measuring the diffusion absorption ratio is described in International Publication No. 2017/170605 and the like.
  • the degree of yellowness (see YI value / Yellow Index / European Patent No. 942014 and No. 11087745) is preferably 0 to 17, more preferably 0 to 16, still more preferably 0 to 15, and most preferably 0 to 14. It is preferable that there is almost no yellowing.
  • the method described in International Publication No. 2009/005114 (Lab value, YI value, WB value, etc.) can be exemplified.
  • the present invention there is a tendency to reduce the production of water-soluble components even in the production of particulate water absorbent having CRC ⁇ 32 g / g, which has been difficult to produce stably in the past. That is, it is also one of the features of the present invention that it is possible to reduce the production of the water-soluble component of the particulate water absorbent having CRC ⁇ 32 g / g. Further, it is also one of the features of the present invention that a particulate water absorbent having a small fluctuation in the physical property value of the particulate water absorbent (product) having CRC ⁇ 32 g / g can be obtained.
  • a water-absorbent resin (particulate water-absorbent) having a small standard deviation of physical properties, which can be obtained in one hour in continuous production.
  • a standard of physical properties for a series of packings for example, a group of packings in which particles of water absorbent in units of 20 kg to 20 tons are filled in 10 or more, 100 or more, 500 or more containers.
  • a filling of a water-absorbent resin (particulate water-absorbing agent) having a small deviation.
  • the filling is a packing of a particulate water absorbent into a non-permeable container, and is used for transportation, storage, etc. (transport silo, container, paper bag, container bag, or other non-permeable container). Filling) is provided.
  • a particulate water absorbing agent containing polyacrylic acid (salt) As an apparatus for producing a particulate water absorbing agent containing polyacrylic acid (salt), a polymerization step, a gel coarse crushing step, a gel crushing step, a drying step, a crushing step, a classification step, and a surface cross-linking step. , A continuous manufacturing apparatus composed of a cooling process, a sizing process, and a transportation process connecting each process was prepared. Using the above continuous production apparatus, a particulate water absorbing agent containing polyacrylic acid (salt) was continuously produced.
  • 200V or 100V power supplies were used for the electrical equipment used in the examples and comparative examples (including the electrical equipment for measuring the physical properties of the particulate water absorbent).
  • the physical properties of the particulate water absorbent of the present invention were measured under the conditions of room temperature (20 ° C. to 25 ° C.) and relative humidity of 50% RH.
  • the concentration of the monomer component of the aqueous monomer solution (hereinafter referred to as "monomer concentration") is determined.
  • the non-volatile component ratio of the hydrogel was used.
  • Weight average particle size (D50) The weight average particle diameter (D50) of the coarsely crushed hydrogel and the particulate hydrogel was measured by the following method.
  • the central part of the JIS standard sieve (diameter 21 cm, sieve opening; 8 mm / 4 mm / 2 mm / 1 mm / 0.60 mm / 0.30 mm / 0.15 mm / 0.075 mm) installed on the turntable.
  • the above dispersion was added to the mixture.
  • All coarsely crushed hydrous gels or particulate hydrous gels were washed out on a sieve using 100 g of Emar aqueous solution.
  • 6000 g of Emar aqueous solution was poured from the upper part by hand while rotating the sieve (20 rpm), and from a height of 30 cm using a shower (number of holes; 72, liquid volume: 6.0 (L / min)).
  • the ratio (% by weight) of the coarsely crushed hydrogel or particulate hydrogel on each sieve was calculated by the following formula (7).
  • the opening of the sieve after draining was plotted on logarithmic probability paper as the particle size distribution of the coarsely crushed hydrogel or the particulate hydrogel according to the following formula (8).
  • the particle size corresponding to 50% by weight of the integrated sieve% R of the plot was defined as the weight average particle size (D50) of the coarsely crushed hydrous gel or the particulate hydrogel.
  • X (%) (w / W) ⁇ 100 ... Equation (7)
  • R ( ⁇ ) (mm) (20 / W) 1/8 ⁇ r ... Equation (8) here, X: Weight% (%) of coarsely crushed hydrogel or particulate hydrogel remaining on each sieve after classification and draining
  • w Weight (g) of each coarsely crushed hydrogel or particulate hydrogel remaining on each sieve after classification and draining.
  • W Total weight (g) of coarsely crushed hydrogel or particulate hydrogel remaining on each sieve after classification and draining.
  • r Opening (mm) of a sieve in which a coarsely crushed hydrogel or a particulate hydrogel swollen in a 20 wt% sodium chloride aqueous solution is classified. Is.
  • a JIS standard sieve having an opening of 850 ⁇ m, 710 ⁇ m, 600 ⁇ m, 500 ⁇ m, 425 ⁇ m, 300 ⁇ m, 212 ⁇ m, 150 ⁇ m, 106 ⁇ m, 75 ⁇ m (The IIDA TESTING SIEVE; inner diameter 80 mm; JIS Z8801-1 (2000)).
  • 10.00 g of the particulate water absorbing agent was classified using a sieve corresponding to the JIS standard sieve. After the classification, the weight of each sieve was measured, and the weight percentage (% by weight) of the particulate water absorbent having a particle diameter of less than 150 ⁇ m was calculated.
  • the "weight percentage of the particulate water absorbent having a particle diameter of less than 150 ⁇ m" is the weight ratio (%) of the particles passing through the JIS standard sieve having a mesh size of 150 ⁇ m to the entire particulate water absorbent.
  • the glass beads were removed with a JIS standard sieve having a mesh size of 2 mm to obtain damaged water-absorbent resin particles.
  • 0.2 g of water-absorbent resin powder or particulate water-absorbent is placed in a non-woven fabric bag, and then immersed in a large excess of 0.9 wt% sodium chloride aqueous solution for 30 minutes for free swelling, and then a centrifuge (centrifuge). The water was drained at 250 G), and the water absorption ratio (unit: g / g) was determined.
  • a glass filter having a diameter of 120 mm (manufactured by Mutual Rikagaku Glass Mfg. Co., Ltd., pore diameter: 100 to 120 ⁇ m) was placed inside a circular or square Petri dish having a bottom area of 400 cm 2 . 0.90 wt% saline solution 106 (23 ⁇ 0.5 ° C.) at the same level as the upper surface of the glass filter (a state in which the liquid slightly floats on the outer circumference of the glass filter due to surface tension, or 50 on the surface of the glass filter. % was covered with liquid).
  • a filter paper with a diameter of 110 mm (ADVANTEC Toyo Co., Ltd., product name: (JIS) P 3801, No. 2), thickness 0.26 mm, reserved particle diameter 5 ⁇ m) was placed on the filter paper so that the entire surface of the filter paper was wet.
  • the set of the measuring device was placed on the damp filter paper to absorb the liquid (the liquid temperature is strictly controlled to 23 ⁇ 0.5 ° C. even during the measurement). Exactly after 5 minutes (300 seconds), the set of measuring devices was lifted and its mass Wb (g) was measured. Then, DRC 5 min (g / g) was calculated from Wa and Wb according to the following formula (9).
  • DRC 5min (g / g) ⁇ (Wb-Wa) / (weight of particulate water-absorbing agent or water-absorbing resin) ⁇ ... Equation (9)
  • Surface tension 50 ml of physiological saline adjusted to 20 ° C. was placed in a thoroughly washed 100 ml beaker, and the surface tension of the physiological saline was first measured by a surface tension meter (K11 automatic surface tension meter manufactured by KRUSS). ) was used for measurement. In this measurement, the surface tension value must be in the range of 71 mN / m to 75 mN / m.
  • a well-washed 25 mm long fluororesin rotor and 0.5 g of a particulate water-absorbing agent or water-absorbing resin were put into a beaker containing physiological saline adjusted to 20 ° C. after measuring the surface tension. Then, the mixture was stirred under the condition of 500 rpm for 4 minutes. After 4 minutes had passed, stirring was stopped, and after the water-containing particulate water-absorbing agent or water-absorbent resin had settled, the surface tension of the supernatant was measured again by performing the same operation.
  • a plate method using a platinum plate was adopted, and the plate was sufficiently washed with deionized water before each measurement and then heated and washed with a gas burner before use.
  • Moisture absorption fluidity moisture absorption blocking rate (BR; Blocking Ratio) 2 g of the particulate water-absorbing agent or the water-absorbent resin was uniformly sprayed on an aluminum cup having a diameter of 52 mm. Then, it was allowed to stand for 1 hour in a constant temperature and humidity chamber (PLATINOUSLUCIFERPL-2G; manufactured by Tabie Spec) under a temperature of 25 ° C. and a relative humidity of 90 ⁇ 5% RH.
  • PVATINOUSLUCIFERPL-2G constant temperature and humidity chamber
  • the particulate water-absorbing agent or water-absorbent resin contained in the aluminum cup was gently transferred onto a JIS standard sieve (TheIIDATETINGSIEVE: inner diameter 80 mm) having a mesh size of 2000 ⁇ m (JIS8.6 mesh).
  • a low-tap type sieve shaker ES-65 type sieve shaker manufactured by Iida Seisakusho Co., Ltd .; rotation speed 230 rpm, impact number 130 rpm
  • the mixture was classified for 5 seconds under the condition of humidity 50% RH.
  • (K) Deteriorated Soluble Content A plastic container with an inner lid and an outer lid having a capacity of 250 ml containing a rotor having a length of 35 mm contains 0.05% by mass of L-ascorbic acid and 0.90% by mass of sodium chloride. 200.0 g of an aqueous solution (a mixture of 0.10 g of a deterioration test solution / L-ascorbic acid and 199.90 g of a 0.90 mass% sodium chloride aqueous solution) was weighed. Next, 1.00 g of a particulate water-absorbing agent or a water-absorbent resin was added to the aqueous solution, and the inner lid and the outer lid were sealed.
  • an aqueous solution a mixture of 0.10 g of a deterioration test solution / L-ascorbic acid and 199.90 g of a 0.90 mass% sodium chloride aqueous solution
  • the extract which is the above aqueous solution
  • the measurement solution was titrated with a 0.1 N-NaOH aqueous solution until the pH reached 10, and then titrated with a 0.1 N-HCl aqueous solution until the pH reached 2.7. The titration amount at this time was determined as [NaOH] ml and [HCl] ml.
  • the degraded soluble content was calculated from the above titration and monomer average molecular weight according to the following formula (11).
  • Degraded soluble content 0.1 ⁇ monomer average molecular weight ⁇ 200 ⁇ 100 ⁇ ([HCl]-[b2HCl]) / 1000 / 1.0 / 50.0 ... Equation (11)
  • the average molecular weight of the monomer was calculated using the neutralization rate calculated according to the following formula (12).
  • Measurement was performed according to JIS K3362 using a bulk specific gravity measuring instrument (manufactured by Kuramochi Scientific Instruments Mfg. Co., Ltd.). After putting 100.0 g of a water-absorbing agent sufficiently mixed to eliminate the bias due to the particle size into a funnel with a closed damper, the damper was quickly opened and the water-absorbing agent was dropped into a receiver having an internal volume of 100 ml. The receiver was weighed (unit: g) (weight W9) in advance.
  • the gel is naturally dropped from the upper part of 10 cm into a container (about 3 L) having a predetermined capacity, and the hydrogel raised from the receiver is removed to obtain the above. Calculated based on the same principle as. At this time, the bottom area of the container was adjusted so that the thickness of the gel was about 20 cm.
  • Example 1 Gel crushing (kneader polymerization) at the same time as the polymerization step and gel crushing after polymerization (polymerization step and gel crushing step)
  • a reactor formed by attaching a lid to a jacketed stainless steel double-armed kneader having two sigma-shaped blades, was charged with 397.2 parts by weight of acrylic acid, 4203.5 parts by weight of a 37% by weight sodium acrylate aqueous solution, and so on. 2.31 parts by weight of polyethylene glycol diacrylate (average molecular weight 523) and 861.7 parts by weight of deionized water (ion-exchanged water) were added and mixed to prepare a monomer aqueous solution (1). Next, the above-mentioned monomer aqueous solution (1) was degassed in a nitrogen gas atmosphere for 20 minutes.
  • the monomer aqueous solution (1) is polymerized and changes into a hydrogel (1).
  • the hydrogel (1) produced at that time is coarsely crushed by a kneader and coarsely divided.
  • a crushed hydrous gel (1) was prepared.
  • the non-volatile component ratio of the hydrogel (1) was 35.5% by weight, which is the monomer concentration of the monomer aqueous solution (1).
  • the weight average particle size (D50) of the coarsely crushed hydrous gel (1) was 1762 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.95.
  • the obtained coarsely crushed hydrous gel (1) was supplied to a screw extruder and pulverized to obtain a particulate hydrous gel (1).
  • a meat chopper having a diameter of 159.5 mm, a hole diameter of 8.0 mm, a thickness of 14 mm, an aperture ratio of 34%, and a perforated plate having 136 holes was used as the screw extruder.
  • the screw shaft rotation speed of the meat chopper set to 256 rpm
  • the coarsely crushed hydrous gel (1) was supplied at 9210 g / min, and at the same time, water vapor was supplied at 83 g / min.
  • the PDCR was 0.0217 kg / h / mm 2 .
  • the operating stability constant of the screw extruder at the time of gel crushing was 0.094.
  • the temperature of the coarsely crushed hydrous gel (1) before gel pulverization was 80 ° C., and the temperature of the particulate hydrous gel (1) after gel pulverization increased to 85 ° C. (+ 5 ° C. increase).
  • the weight average particle diameter (D50) of the particulate hydrogel (1) obtained in the gel crushing step was 1083 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.85.
  • the particulate hydrogel (1) is sprayed on a ventilation belt within 1 minute after the gel pulverization is completed (the temperature of the particulate hydrogel (1) at this time is 80 ° C.), and the temperature is 30 at 185 ° C. Drying was carried out for 1 minute to obtain a dry polymer (1).
  • the average wind speed of hot air was 1.0 m / s in the direction perpendicular to the traveling direction of the ventilation belt.
  • the wind speed of hot air was measured with a constant temperature thermal anemometer Anemomaster 6162 manufactured by Nippon Canomax Co., Ltd.
  • the entire amount of the dried polymer (1) obtained in the above drying step was supplied to a three-stage roll mill and pulverized (pulverized step) to obtain a pulverized and dried polymer (1).
  • the pulverized and dried polymer (1) was further classified with a JIS standard sieve having an opening of 710 ⁇ m and 175 ⁇ m to obtain an amorphous crushed water-absorbent resin powder (1).
  • the weight average particle size (D50) of the water-absorbent resin powder (1) was 348 ⁇ m
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.32
  • the CRC was 55.2 g / g
  • the water-soluble content was 25%. It was.
  • the proportion of the water-absorbent resin powder (1) passing through the sieve having a mesh size of 150 ⁇ m was 0.5% by weight.
  • aqueous solution of a chelating agent which is an additive consisting of 1 part by weight of deionized water and 0.03 part by weight of tetrasodium ethylenediaminetetraacetate, was uniformly mixed with 100 parts by weight of the water-absorbent resin particles (1). After drying at 60 ° C. for 1 hour, the mixture was passed through a JIS standard sieve having a mesh size of 710 ⁇ m, and 0.4 parts by weight of silicon dioxide (trade name: Aerosil 200, manufactured by Nippon Aerosil) was uniformly added. As a result, a particulate water absorbing agent (1) was obtained.
  • the CRC of the particulate water absorbent (1) was 46.1 g / g.
  • Tables 1 and 2 show the production conditions of Example 1, the physical properties of the coarsely crushed hydrous gel (1), the particulate hydrogel (1), and the particulate water absorbent (1), and the operating stability constants of the gel crusher. Shown.
  • Example 2 The composition of the aqueous monomer solution of Example 1 was changed (concentration: 35.5% by weight ⁇ 39.1% by weight, amount of cross-linking agent used: 0.020 mol% ⁇ 0.025 mol%).
  • the composition of the monomer aqueous solution to be charged into the reactor was 436.4 parts by weight of acrylic acid, 4617.9 parts by weight of 37% by weight sodium acrylate aqueous solution, and polyethylene glycol.
  • a monomer aqueous solution (2) was prepared in the same manner as in Example 1 except that 3.17 parts by weight of diacrylate and 403.8 parts by weight of deionized water were used.
  • the monomer concentration of the aqueous monomer solution (2) at the start of polymerization was 39.1% by weight, and the polyethylene glycol diacrylate as the internal cross-linking agent was 0.025 mol% with respect to the monomer. .. Except for the above, in the same manner as in Example 1, a hydrogel (2), a coarsely crushed hydrogel (2), a particulate hydrogel (2), a dry polymer (2), a pulverized dry polymer (2), and water absorption. The sex resin powder (2) and the water-absorbent resin particles (2) were passed in this order to obtain a particulate water-absorbent agent (2).
  • the non-volatile component ratio of the hydrogel (2) was 39.1% by weight, which is the monomer concentration of the monomer aqueous solution (2).
  • the weight average particle size (D50) of the coarsely crushed hydrous gel (2) was 2123 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.68.
  • the weight average particle diameter (D50) of the particulate hydrogel (2) was 804 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 1.04.
  • the weight average particle size (D50) of the water-absorbent resin powder (2) was 378 ⁇ m, the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.38, and the CRC was 51.3 g / g.
  • the operating stability constant of the screw extruder at the time of gel crushing was 0.099.
  • the proportion of the water-absorbent resin powder (2) passing through the sieve having a mesh size of 150 ⁇ m was 1.0% by weight.
  • the CRC of the particulate water absorbent (2) was 39.7 g / g.
  • Tables 1 and 2 show the production conditions of Example 2, the physical properties of the coarsely crushed hydrous gel (2), the particulate hydrogel (2), and the particulate water absorbent (2), and the operating stability constants of the gel crusher. Shown.
  • Example 3 Gel coarse crushing after the polymerization step (continuous belt polymerization) and subsequent gel crushing (polymerization step) 159.47 parts by weight of acrylic acid, 67.53 parts by weight of 48.5% by weight aqueous sodium hydroxide solution, 0.231 parts by weight of polyethylene glycol diacrylate, 0.98 parts by weight of 1.0% by weight diethylenetriamine trisodium pentaacetate aqueous solution, A monomer aqueous solution (3) consisting of 198.33 parts by weight of deionized water was prepared.
  • the monomer aqueous solution (3) whose temperature was adjusted to 49 ° C. was continuously supplied to the reactor by a metering pump, and then 65.71 parts by weight of a 48.5 wt% sodium hydroxide aqueous solution was added to the monomer aqueous solution (3). ) was continuously line-mixed to obtain a monomer aqueous solution (3'). At this time, the liquid temperature of the monomer aqueous solution (3') was raised to about 80 ° C. by the heat of neutralization.
  • the monomer concentration of the aqueous monomer solution (3') at the start of polymerization was 39.0% by weight, and the polyethylene glycol diacrylate as the internal cross-linking agent was 0.020 mol% with respect to the monomer. It was.
  • the obtained strip-shaped hydrogel (3) was continuously cut at equal intervals so that the cutting length was 300 mm in the width direction with respect to the traveling direction of the polymerization belt to obtain the hydrogel (3).
  • the non-volatile component ratio of the hydrogel (3) was 47.5% by weight.
  • the hydrogel (3) obtained in the above polymerization step is cut using fluorine-coated stainless scissors (manufactured by KOKUYO; scissors-F32B, blade length 70 mm) so as to have a dice shape with a side of about 5000 ⁇ m, and coarsely crushed water-containing.
  • Gel (3) was obtained.
  • the weight average particle size (D50) of the coarsely crushed hydrous gel (3) was 5540 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.42.
  • the coarsely crushed hydrous gel (3) was pulverized by the same method as in Example 1 to obtain a particulate hydrogel (3).
  • the weight average particle diameter (D50) of the particulate hydrogel (3) was 1096 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 1.12.
  • the operating stability constant of the screw extruder at the time of gel crushing was 0.112.
  • the dried polymer (3) was obtained by drying in the same manner as in Example 1. Next, the dried polymer (3) was pulverized to obtain a pulverized and dried polymer (3), and then the pulverized and dried polymer (3) was classified to obtain a water-absorbent resin powder (3).
  • the weight average particle size (D50) of the water-absorbent resin powder (3) was 423 ⁇ m, the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.37, and the CRC was 56.9 g / g.
  • the proportion of the water-absorbent resin powder (3) passing through the sieve having a mesh size of 150 ⁇ m was 0.6% by weight.
  • aqueous chelating agent solution consisting of 1 part by weight of water and 0.03 part by weight of trisodium diethylenetriamine pentaacetate was uniformly mixed with 100 parts by weight of the water-absorbent resin particles (3). After drying at 60 ° C. for 1 hour, pass through a JIS standard sieve with a mesh size of 710 ⁇ m to homogenize 0.1 parts by weight of porous superhydrophobic fine particle silica aerogel (trade name: AEROVA TM, manufactured by JIOS). Was added to. As a result, a particulate water absorbing agent (3) was obtained. The CRC of the particulate water absorbent (3) was 47.3 g / g.
  • Tables 1 and 2 show the production conditions of Example 3, the physical properties of the coarsely crushed hydrous gel (3), the particulate hydrogel (3), and the particulate water absorbent (3), and the operating stability constants of the gel crusher. Shown.
  • Example 4 The amount of the cross-linking agent used in Example 3 was changed (0.020 mol% ⁇ 0.060 mol%).
  • a monomer aqueous solution (4') was prepared in the same manner as in Example 3 except that the amount of polyethylene glycol diacrylate was 0.695 parts by weight, and the polymerization reaction was carried out.
  • the monomer concentration of the aqueous monomer solution (4') at the start of polymerization was 39.0% by weight, and the polyethylene glycol diacrylate as the internal cross-linking agent was 0.060 mol% with respect to the monomer. It was.
  • Example 3 Except for the above, in the same manner as in Example 3, a hydrogel (4), a coarsely crushed hydrogel (4), a particulate hydrogel (4), a dry polymer (4), a pulverized dry polymer (4), and water absorption.
  • the sex resin powder (4) and the water-absorbent resin particles (4) were passed in this order to obtain a particulate water-absorbent agent (4).
  • the non-volatile component ratio of the hydrogel (4) was 47.5% by weight.
  • the weight average particle size (D50) of the coarsely crushed hydrous gel (4) was 4890 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.49.
  • the weight average particle diameter (D50) of the particulate hydrogel (4) was 745 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 1.20.
  • the operating stability constant of the screw extruder at the time of gel crushing was 0.107.
  • the weight average particle size (D50) of the water-absorbent resin powder (4) was 440 ⁇ m, the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.30, and the CRC was 46.5 g / g.
  • the proportion of the water-absorbent resin powder (4) passing through the sieve having a mesh size of 150 ⁇ m was 0.5% by weight.
  • the CRC of the particulate water absorbent (4) was 35.1 g / g.
  • Tables 1 and 2 show the production conditions of Example 4, the physical properties of the coarsely crushed water-containing gel (4), the particulate water-containing gel (4), and the particulate water-absorbing agent (4), and the operating stability constants of the gel crusher. Shown.
  • Example 5 Change the monomer concentration of Example 3 (39.0% by weight ⁇ 33.0% by weight) and change the gel coarse grinding method 134.94 parts by weight acrylic acid, 48.5% by weight sodium hydroxide A monomer aqueous solution consisting of 57.18 parts by weight of the aqueous solution, 0.196 parts by weight of polyethylene glycol diacrylate, 0.83 parts by weight of the 1.0% by weight diethylenetriamine trisodium pentaacetate aqueous solution, and 244.82 parts by weight of deionized water ( 5) was prepared.
  • the monomer aqueous solution (5) whose temperature was adjusted to 49 ° C. was continuously supplied to the reactor by a metering pump, and then 55.56 parts by weight of a 48.5 wt% sodium hydroxide aqueous solution was added to the monomer aqueous solution (5). ) was continuously line-mixed to obtain a monomer aqueous solution (5').
  • the monomer concentration of the aqueous monomer solution (5') at the start of polymerization was 33.0% by weight, and the polyethylene glycol diacrylate as the internal cross-linking agent was 0.020 mol% with respect to the monomer. It was.
  • the obtained strip-shaped hydrogel (5) was continuously cut at equal intervals so that the cutting length was 300 mm in the width direction with respect to the traveling direction of the polymerization belt to obtain the hydrogel (5).
  • the non-volatile component ratio of the hydrogel (5) was 40.0% by weight.
  • Example 3 Except for the above, in the same manner as in Example 3, coarsely crushed water-containing gel (5), particulate water-containing gel (5), dried polymer (5), crushed and dried polymer (5), water-absorbent resin powder (5). , And the water-absorbent resin particles (5) in this order to obtain a particulate water-absorbent agent (5).
  • the weight average particle size (D50) of the coarsely crushed hydrous gel (5) was 9983 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.54.
  • the weight average particle diameter (D50) of the particulate hydrogel (5) was 1152 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.92.
  • the operating stability constant of the screw extruder at the time of gel crushing was 0.118.
  • the weight average particle size (D50) of the water-absorbent resin powder (5) was 362 ⁇ m, the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.41, and the CRC was 55.8 g / g.
  • the proportion of the water-absorbent resin powder (5) passing through the sieve having a mesh size of 150 ⁇ m was 2.0% by weight.
  • the CRC of the particulate water absorbent (5) was 47.8 g / g.
  • Tables 1 and 2 show the production conditions of Example 5, the physical properties of the coarsely crushed hydrous gel (5), the particulate hydrogel (5), and the particulate water absorbent (5), and the operating stability constants of the gel crusher. Shown.
  • Example 6 Gel coarse crushing after a polymerization step (batch type static UV polymerization) and subsequent gel crushing (polymerization step)
  • a cylindrical container 174.57 parts by weight of acrylic acid, 1847.12 parts by weight of a 37% by weight aqueous sodium acrylate solution, 3.93 parts by weight of polyethylene glycol diacrylate, and 365.50 parts by weight of deionized water were put and mixed.
  • a monomer aqueous solution (6) To prepare a monomer aqueous solution (6).
  • the above-mentioned monomeric aqueous solution (6) was supplied to a reaction vessel consisting of a thermometer, a nitrogen gas introduction pipe, a lid having an exhaust hole, and a bat and having a black light fluorescent lamp at the top.
  • the bat was immersed in a water bath at 40 ° C. to a height of 10 mm from the bottom. Nitrogen gas was introduced into this monomer aqueous solution (6) and degassed for 20 minutes. After confirming that the monomer aqueous solution (6) had reached 40 ° C., 5.37 parts by weight of a 20 wt% sodium persulfate aqueous solution and bis (2,4,6-trimethylbenzoyl) under a nitrogen stream atmosphere.
  • -Different phosphine oxide 0.1 part by weight was added and light irradiation was started at the same time, and the monomer aqueous solution (6) was stirred and mixed.
  • the monomer concentration of the aqueous monomer solution (6) at the start of polymerization was 36.0% by weight, and the polyethylene glycol diacrylate as the internal cross-linking agent was 0.078 mol% with respect to the monomer. ..
  • the polymerization system (monomeric aqueous solution (6)) was not stirred, and the vat was continuously immersed in a water bath at 40 ° C. for cooling. Then, the temperature of the water bath was set to 80 ° C., and the polymerization reaction was carried out for 20 minutes to obtain a hydrogel (6).
  • the non-volatile component ratio of the hydrogel (6) was 46.8% by weight.
  • the hydrous gel (6) obtained in the above polymerization step was cut using the fluorine-coated stainless scissors used in Examples 3 and 4 so as to form a dice with a side of about 20 mm, and the coarsely crushed hydrogel (6) was formed.
  • Got The weight average particle size (D50) of the coarsely crushed hydrous gel (6) was 22400 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.56.
  • the coarsely crushed hydrous gel (6) was pulverized by the same method as in Example 1 to obtain a particulate hydrogel (6).
  • the weight average particle diameter (D50) of the particulate hydrogel (6) was 591 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 1.25.
  • the operating stability constant of the screw extruder at the time of gel crushing was 0.111.
  • the dried polymer (6) was obtained by drying in the same manner as in Example 1. Next, the dry polymer (6) was pulverized to obtain a pulverized dry polymer (6), and then the pulverized dry polymer (6) was classified to obtain a water-absorbent resin powder (6).
  • the weight average particle size (D50) of the water-absorbent resin powder (6) was 362 ⁇ m, the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.35, and the CRC was 44.6 g / g.
  • the proportion of the water-absorbent resin powder (6) passing through the sieve having a mesh size of 150 ⁇ m was 0.6% by weight.
  • Tables 1 and 2 show the production conditions of Example 6, the physical properties of the coarsely crushed hydrous gel (6), the particulate hydrogel (6), and the particulate water absorbent (6), and the operating stability constants of the gel crusher. Shown.
  • Example 7 Change of PDCR (0.0217 ⁇ 0.0868)
  • the amount of the coarsely crushed hydrous gel (1) supplied to the meat chopper in the gel crushing step was changed from 9210 g / min (Example 1) to 36840 g / min (Example 7).
  • the gel was pulverized in the same manner as in the above.
  • the PDCR was 0.0868 kg / h / mm 2 .
  • the dry polymer (7), the pulverized dry polymer (7), the water-absorbent resin powder (7), and the water-absorbent resin particles (7) are passed through in this order.
  • a particulate water absorbing agent (7) was obtained.
  • the weight average particle diameter (D50) of the water-absorbent resin powder (7) was 350 ⁇ m, the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.32, the CRC was 55.8 g / g, and the water-soluble content was 25%. It was.
  • the proportion of the water-absorbent resin powder (7) passing through the sieve having a mesh size of 150 ⁇ m was 0.5% by weight.
  • Tables 1 and 2 show the production conditions of Example 7, the physical properties of the coarsely crushed hydrous gel (7), the particulate hydrogel (7), and the particulate water absorbent (7), and the operating stability constants of the gel crusher. Shown.
  • Example 8 Change of PDCR (0.0217 ⁇ 0.0434)
  • the amount of the coarsely crushed hydrous gel (1) supplied to the meat chopper in the gel crushing step was changed from 9210 g / min (Example 1) to 18820 g / min (Example 8).
  • the gel was pulverized in the same manner as in the above.
  • the PDCR was 0.0434 kg / h / mm 2 .
  • the dry polymer (8), the pulverized dry polymer (8), the water-absorbent resin powder (8), and the water-absorbent resin particles (8) are passed through in this order.
  • a particulate water absorbing agent (8) was obtained.
  • the weight average particle size (D50) of the water-absorbent resin powder (8) was 350 ⁇ m, the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.32, the CRC was 55.7 g / g, and the water-soluble content was 24%. It was.
  • the proportion of the water-absorbent resin powder (8) passing through the sieve having a mesh size of 150 ⁇ m was 0.5% by weight.
  • Tables 1 and 2 show the production conditions of Example 8, the physical properties of the coarsely crushed water-containing gel (8), the particulate water-containing gel (8), and the particulate water-absorbing agent (8), and the operating stability constants of the gel crusher. Shown.
  • Example 9 Change of PDCR (0.0217 ⁇ 0.0979)
  • the amount of the coarsely crushed hydrous gel (1) supplied to the meat chopper in the gel crushing step was changed from 9210 g / min (Example 1) to 41500 g / min (Example 9), and the screw shaft rotation of the meat chopper was changed.
  • Gel pulverization was performed in the same manner as in Example 1 except that the number was changed from 256 rpm to 300 rpm.
  • the PDCR was 0.979 kg / h / mm 2 .
  • Example 1 the dry polymer (9), the pulverized dry polymer (9), the water-absorbent resin powder (9), and the water-absorbent resin particles (9) are passed through in this order.
  • a particulate water absorbing agent (9) was obtained.
  • the weight average particle size (D50) of the water-absorbent resin powder (9) was 350 ⁇ m
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.32
  • the CRC was 55.2 g / g
  • the water-soluble content was 26%. It was.
  • the proportion of the water-absorbent resin powder (9) passing through the sieve having a mesh size of 150 ⁇ m was 0.5% by weight.
  • Tables 1 and 2 show the production conditions of Example 9, the physical properties of the coarsely crushed hydrous gel (9), the particulate hydrogel (9), and the particulate water absorbent (9), and the operating stability constants of the gel crusher. Shown.
  • Example 1 The composition of the aqueous monomer solution of Example 1 was changed (concentration: 35.5% by weight ⁇ 39.2% by weight, amount of cross-linking agent used: 0.020 mol% ⁇ 0.090 mol%).
  • the composition of the monomer aqueous solution to be charged into the reactor was 430.6 parts by weight of acrylic acid, 416.5 parts by weight of 37% by weight sodium acrylate aqueous solution, and polyethylene glycol.
  • a comparative monomer aqueous solution (1) was prepared and degassed in the same manner as in Example 1 except that the diacrylate was 10.42 parts by weight and the deionized water was 403.8 parts by weight.
  • the non-volatile component ratio of the comparative hydrogel (1) was 39.2% by weight, which is the monomer concentration of the comparative monomer aqueous solution (1).
  • the weight average particle size (D50) of the comparative coarsely crushed hydrous gel (1) was 1935 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.85.
  • the weight average particle size (D50) of the comparative particulate hydrogel (1) was 783 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 1.18.
  • the operating stability constant of the screw extruder at the time of gel crushing was 0.092.
  • the CRC of the comparative particulate water absorbent (1) was 27.4 g / g.
  • Table 1 shows the production conditions of Comparative Example 1, the physical properties of the comparative coarsely crushed hydrous gel (1), the comparative particulate hydrogel (1), and the comparative particulate water absorbent (1), and the operating stability constant of the gel crusher. And 2 show.
  • Example 2 The composition of the aqueous monomer solution of Example 1 was changed (concentration: 35.5% by weight ⁇ 49.4% by weight, amount of cross-linking agent used: 0.020 mol% ⁇ 0.027 mol%).
  • the composition of the aqueous monomer solution to be charged into the reactor was 500 parts by weight of acrylic acid, 100 parts by weight of sodium hydroxide, 1.5 parts by weight of polypropylene glycol diacrylate.
  • a comparative monomer aqueous solution (2) was prepared and degassed in the same manner as in Example 1 except that the amount of deionized water was 519.5 parts by weight.
  • a comparative hydrogel (2) a comparative crude hydrogel (2), a comparative particulate hydrogel (2), a comparative dry polymer (2), and a comparative pulverized dry polymer.
  • the non-volatile component ratio of the comparative hydrogel (2) was 52.0% by weight.
  • the weight average particle size (D50) of the comparative coarsely crushed hydrous gel (2) was 32,435 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.5.
  • the weight average particle size (D50) of the comparative particulate hydrogel (2) was 2887 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 1.30.
  • the operating stability constant of the screw extruder at the time of gel crushing was 0.225.
  • the CRC of the comparative particulate water absorbent (2) was 36.3 g / g.
  • Table 1 shows the manufacturing conditions of Comparative Example 2, the physical properties of the comparative coarsely crushed hydrous gel (2), the comparative particulate hydrogel (2), and the comparative particulate water absorbent (2), and the operational stability constant of the gel crusher. And 2 show.
  • Example 3 The composition of the aqueous monomer solution of Example 1 was changed (concentration: 35.5% by weight ⁇ 42.7% by weight, amount of cross-linking agent used: 0.020 mol% ⁇ 0.050 mol%).
  • the composition of the aqueous monomer solution to be charged into the reactor was 240 parts by weight of acrylic acid, 92 parts by weight of sodium hydroxide, and 0.49 parts by weight of trimethylolpropane triacrylate.
  • And 345 parts by weight of deionized water were prepared, and a comparative monomer aqueous solution (3) was prepared and degassed in the same manner as in Example 1.
  • the comparative water-absorbent resin powder (3), and the comparative water-absorbent resin particles (3) were passed in this order to obtain a comparative particulate water-absorbent agent (3).
  • the non-volatile component ratio of the comparative hydrogel (3) was 42.7% by weight, which is the monomer concentration of the comparative monomer aqueous solution (3).
  • the weight average particle size (D50) of the comparative coarsely crushed hydrous gel (3) was 4768 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.68.
  • the weight average particle size (D50) of the comparative particulate hydrogel (1) was 1776 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 1.26.
  • the operating stability constant of the screw extruder at the time of gel crushing was 0.143.
  • the CRC of the comparative water-absorbent resin powder (3) was 34.4 g / g.
  • the CRC of the comparative particulate water absorbent (3) was 27.2 g / g.
  • Table 1 shows the production conditions of Comparative Example 3, the physical properties of the comparative coarsely crushed hydrous gel (3), the comparative particulate hydrogel (3), and the comparative particulate water absorbent (3), and the operating stability constant of the gel crusher. And 2 show.
  • Comparative Example 4 The composition of the aqueous monomer solution of Example 3 was changed (concentration 39.0% by weight ⁇ 40.9% by weight, amount of cross-linking agent used 0.020 mol% ⁇ 0.043 mol%) and gel. Omission of rough crushing step In the polymerization step of Example 3, the comparative monomer aqueous solution was the same as in Example 3 except that the polyethylene glycol diacrylate was 0.5 parts by weight and the deionized water was 172.5 parts by weight. (4') was prepared and a polymerization reaction was carried out.
  • the monomer concentration of the comparative aqueous monomer solution (4') at the start of polymerization was 40.9% by weight, and the polyethylene glycol diacrylate as the internal cross-linking agent was 0.043 mol% with respect to the monomer. there were.
  • a comparative hydrogel (4) was obtained in the same manner as in Example 3 except for the above.
  • the non-volatile component ratio of the comparative hydrogel (4) was 49.5% by weight.
  • Example 3 cutting the hydrogel to about 5000 mm with scissors
  • Comparative Example 4 the comparative hydrogel (4) was gel-crushed to obtain a comparative particulate hydrogel (4) without performing gel coarse crushing of the comparative hydrogel (4).
  • the weight average particle size (D50) of the comparative particulate hydrogel (4) was 994 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 1.01.
  • the operating stability constant of the screw extruder at the time of gel crushing was 0.206.
  • the comparative dry polymer (4), the comparative pulverized dry polymer (4), the comparative water-absorbent resin powder (4), and the comparative water-absorbent resin particles (4) are used in the same manner as in Example 3.
  • the comparative particulate water absorbent (4) was obtained in this order.
  • the weight average particle size (D50) of the comparative water-absorbent resin powder (4) was 348 ⁇ m, the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.32, and the CRC was 42.1 g / g.
  • the proportion of the comparative water-absorbent resin powder (4) passing through the sieve having a mesh size of 150 ⁇ m was 0.5% by weight.
  • the CRC of the comparative particulate water absorbent (4) was 35.3 g / g.
  • Tables 1 and 2 show the production conditions of Comparative Example 4, the physical properties of the comparative particulate water-containing gel (4) and the comparative particulate water-absorbing agent (4), and the operational stability constants of the gel crusher.
  • Example 5 The composition of the aqueous monomer solution of Example 3 was changed (concentration: 39.0% by weight ⁇ 43.1% by weight, amount of cross-linking agent used: 0.020 mol% ⁇ 0.090 mol%) and gel. Change of coarse crushing process (cutting cut ⁇ meat chopper) (Polymerization process) In the polymerization step of Example 3, 1.04 parts by weight of polyethylene glycol diacrylate, 110.6 parts by weight of deionized water, and 0.98 parts by weight of a 1.0% by weight diethylenetriamine trisodium pentaacetate aqueous solution were 0.1 parts by weight.
  • a comparative monomer aqueous solution (5') was prepared in the same manner as in Example 3 except that the weight% was changed to 42.9 parts by weight of the aqueous sodium ethylenediaminetetramethylene phosphonate solution, and the polymerization reaction was carried out.
  • the monomer concentration of the comparative aqueous monomer solution (5') at the start of polymerization was 43.1% by weight, and the polyethylene glycol diacrylate as the internal cross-linking agent was 0.090 mol% with respect to the monomer. there were.
  • a comparative hydrogel (5) was obtained in the same manner as in Example 3 except for the above.
  • the non-volatile component ratio of the comparative hydrogel (5) was 49.4% by weight.
  • Comparative Example 4 the obtained comparative hydrogel (5) was supplied to a screw extruder to gel. It was coarsely crushed to obtain a coarsely crushed hydrous gel (5).
  • a meat having a screw shaft with an outer diameter of 86 mm is provided with a perforated plate having a diameter of 100 mm, a hole diameter of 9.5 mm, a number of holes of 40, an aperture ratio of 36.1%, and a thickness of 10 mm at the tip. I used a chopper.
  • the comparative hydrogel (5) was supplied at 4640 g / min, and at the same time, water vapor was supplied at 83 g / min.
  • the temperature of the comparative hydrous gel (5) before the gel coarse crushing was 80 ° C.
  • the weight average particle size (D50) of the comparative coarsely crushed hydrous gel (5) was 1041 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 1.74.
  • the weight average particle size (D50) of the comparative particulate hydrogel (5) was 772 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.91.
  • the operating stability constant of the screw extruder at the time of gel crushing was 0.105.
  • the weight average particle size (D50) of the comparative water-absorbent resin powder (5) was 360 ⁇ m, the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.33, and the CRC was 37.9 g / g.
  • the proportion of the comparative water-absorbent resin powder (5) passing through the sieve having a mesh size of 150 ⁇ m was 0.6% by weight.
  • the CRC of the comparative particulate water absorbent (5) was 31.7 g / g.
  • Table 1 shows the manufacturing conditions of Comparative Example 5, the physical properties of the comparative coarsely crushed hydrous gel (5), the comparative particulate hydrogel (5), and the comparative particulate water absorbent (5), and the operational stability constant of the gel crusher. And 2 show.
  • Example 6 The composition of the aqueous monomer solution of Example 3 was changed (concentration: 39.0% by weight ⁇ 45.0% by weight, amount of cross-linking agent 0.020 mol% ⁇ 0.030 mol%).
  • the comparative monomer aqueous solution (6') was prepared in the same manner as in Example 3 except that polyethylene glycol diacrylate was 0.347 parts by weight and deionized water was 131.6 parts by weight. It was prepared and subjected to a polymerization reaction.
  • the monomer concentration of the comparative aqueous monomer solution (6') at the start of polymerization was 45.0% by weight, and the polyethylene glycol diacrylate as the internal cross-linking agent was 0.030 mol% with respect to the monomer. there were.
  • the comparative water-absorbent resin powder (6), and the comparative water-absorbent resin particles (6) were passed in this order to obtain a comparative particulate water-absorbent agent (6).
  • the non-volatile component ratio of the comparative hydrogel (6) was 55.3% by weight.
  • the weight average particle size (D50) of the comparative coarsely crushed hydrous gel (6) was 5045 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.45.
  • the weight average particle size (D50) of the comparative particulate hydrogel (6) was 1609 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.92.
  • the operating stability constant of the screw extruder at the time of gel crushing was 0.188.
  • the CRC of the comparative water-absorbent resin powder (6) was 47.9 g / g.
  • the CRC of the comparative particulate water absorbent (6) was 38.4 g / g.
  • Table 1 shows the production conditions of Comparative Example 6, the physical properties of the comparative coarsely crushed hydrous gel (6), the comparative particulate hydrogel (6), and the comparative particulate water absorbent (6), and the operational stability constant of the gel crusher. And 2 show.
  • Example 7 The composition of the aqueous monomer solution of Example 6 was changed (concentration 36.0% by weight ⁇ 48.0% by weight, amount of cross-linking agent 0.078 mol% ⁇ 0.014 mol%) and gel coarse crushing. Omission of step In the polymerization step of Example 6, 62.6 parts by weight of sodium hydroxide, 0.16 parts by weight of polyethylene glycol diacrylate, and 167 parts of deionized water were added without adding a 37 wt% sodium acrylate aqueous solution.
  • a comparative aqueous monomer solution (7) was prepared in the same manner as in Example 6 except that it was not added.
  • the monomer concentration of the comparative aqueous monomer solution (7) at the start of polymerization was 48.0% by weight, and the polyethylene glycol diacrylate as the internal cross-linking agent was 0.014 mol% with respect to the monomer. It was.
  • a comparative hydrogel (7) was obtained in the same manner as in Example 6 except for the above.
  • the non-volatile component ratio of the comparative hydrogel (7) was 62.3% by weight.
  • Comparative Example 7 the comparative hydrogel (7) was gel-crushed to obtain a comparative particulate hydrogel (7) without performing gel coarse crushing of the comparative hydrogel (7).
  • the weight average particle size (D50) of the comparative particulate hydrogel (7) was 4932 ⁇ m, and the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.62.
  • the operating stability constant of the screw extruder at the time of gel crushing was 0.239.
  • the comparative dry polymer (7), the comparative pulverized dry polymer (7), the comparative water-absorbent resin powder (7), and the comparative water-absorbent resin particles (7) are used in the same manner as in Example 6.
  • a comparative particulate water absorbent (7) was obtained in this order.
  • the CRC of the comparative water-absorbent resin powder (7) was 48.7 g / g.
  • the CRC of the comparative particulate water absorbent (7) was 40.6 g / g.
  • Tables 1 and 2 show the production conditions of Comparative Example 7, the physical properties of the comparative particulate hydrogel (7) and the comparative particulate water absorbent (7), and the operational stability constants of the gel crusher.
  • Example 8 Change of PDCR value (0.0217 ⁇ 0.0138, out of range)
  • Gel pulverization was carried out in the same manner as in Example 1.
  • the PDCR was 0.0138 kg / h / mm 2 .
  • the comparative hydrogel (8), the comparative coarsely crushed hydrogel (8), the comparative particulate hydrogel (8), the comparative dry polymer (8), and the comparative pulverized dry The polymer (8), the comparative water-absorbent resin powder (8), and the comparative water-absorbent resin particles (8) were passed in this order to obtain a comparative particulate water-absorbent agent (8).
  • the weight average particle diameter (D50) of the comparative water-absorbent resin powder (8) was 345 ⁇ m
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.32
  • the CRC was 54.3 g / g. It was about the same as.
  • the water-soluble content of the comparative water-absorbent resin powder (8) was 27%.
  • Example 9 Change of PDCR (0.0217 ⁇ 0.0061)
  • the perforated plate used in the gel crushing step was 300 mm, a pore diameter of 8.0 mm, a thickness of 14 mm, an aperture ratio of 32%, and a number of holes of 456.
  • the gel was crushed.
  • the PDCR was 0.0061 kg / h / mm 2 .
  • the comparative hydrogel (9), the comparative coarsely crushed hydrogel (9), the comparative particulate hydrogel (9), the comparative dry polymer (9), and the comparative pulverized dry The polymer (9), the comparative water-absorbent resin powder (9), and the comparative water-absorbent resin particles (9) were passed in this order to obtain a comparative particulate water-absorbent agent (9).
  • the weight average particle diameter (D50) of the comparative water-absorbent resin powder (9) was 344 ⁇ m
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.32
  • the CRC was 54.1 g / g. It was about the same as.
  • the water-soluble content of the comparative water-absorbent resin powder (9) was 30%.
  • Example 10 Change of PDCR (0.0217 ⁇ 0.0189) In Example 1, except that the amount of the coarsely crushed hydrous gel (1) supplied to the meat chopper in the gel crushing step was changed from 9210 g / min (Example 1) to 8000 g / min (Comparative Example 10). The gel was pulverized in the same manner as in the above. The PDCR was 0.0189 kg / h / mm 2 .
  • the comparative hydrogel (10), the comparative coarsely crushed hydrogel (10), the comparative particulate hydrogel (10), the comparative dry polymer (10), and the comparative pulverized dry The polymer (10), the comparative water-absorbent resin powder (10), and the comparative water-absorbent resin particles (10) were passed in this order to obtain a comparative particulate water-absorbent agent (10).
  • the weight average particle diameter (D50) of the comparative water-absorbent resin powder (10) was 346 ⁇ m
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.32
  • the CRC was 54.4 g / g. It was about the same as.
  • the water-soluble content of the comparative water-absorbent resin powder (10) was 26%.
  • Example 11 Change of PDCR (0.0217 ⁇ 0.0118) In Example 1, except that the amount of the coarsely crushed hydrous gel (1) supplied to the meat chopper in the gel crushing step was changed from 9210 g / min (Example 1) to 5000 g / min (Comparative Example 11). The gel was pulverized in the same manner as in the above. The PDCR was 0.0118 kg / h / mm 2 .
  • the comparative hydrogel (11), the comparative coarsely crushed hydrogel (11), the comparative particulate hydrogel (11), the comparative dry polymer (11), and the comparative pulverized dry The polymer (11), the comparative water-absorbent resin powder (11), and the comparative water-absorbent resin particles (11) were passed in this order to obtain a comparative particulate water-absorbent agent (11).
  • the weight average particle size (D50) of the comparative water-absorbent resin powder (9) is 345 ⁇ m
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution is 0.33
  • the CRC is 54.1 g / g
  • the water-soluble content is 27%. It was about the same as the water-absorbent resin particles (1).
  • the results are shown in Tables 1 and 2.
  • Example 12 Change of PDCR (0.0217 ⁇ 0.0070) In Example 1, except that the amount of the coarsely crushed hydrous gel (1) supplied to the meat chopper in the gel crushing step was changed from 9210 g / min (Example 1) to 3000 g / min (Comparative Example 12). The gel was pulverized in the same manner as in the above. The PDCR was 0.0070 kg / h / mm 2 .
  • the comparative hydrogel (12), the comparative coarsely crushed hydrogel (12), the comparative particulate hydrogel (12), the comparative dry polymer (12), and the comparative pulverized dry The polymer (12), the comparative water-absorbent resin powder (12), and the comparative water-absorbent resin particles (12) were passed in this order to obtain a comparative particulate water-absorbent agent (12).
  • the weight average particle diameter (D50) of the comparative water-absorbent resin powder (12) was 344 ⁇ m
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution was 0.33
  • the CRC was 53.6 g / g. It was about the same as.
  • the water-soluble content of the comparative water-absorbent resin powder (12) was 29%.
  • Example 13 Change of PDCR (0.0217 ⁇ 0.1736)
  • the amount of the coarsely crushed hydrous gel (1) supplied to the meat chopper in the gel crushing step was changed from 9210 g / min (Example 1) to 73680 g / min (Comparative Example 13), and continuous crushing was performed in the gel crushing step. Since it could not be processed and could not be processed, gel pulverization was performed in the same manner as in Example 1 except that the subsequent steps were not performed.
  • the PDCR was 0.1736 kg / h / mm 2 .
  • Comparative Examples 1 and 3 are Comparative Examples in which the CRC is out of the range (Furthermore, Comparative Example 3 is also out of the range of the particle size of the particulate hydrogel after pulverization).
  • Comparative Examples 2 and 4 to 7 are Comparative Examples in which the non-volatile component (% by weight) of the hydrogel is out of the range (Furthermore, Comparative Examples 4 and 7 are Comparative Examples in which the coarse crushing step is not performed), and Comparative Examples 8 to 8 to 7.
  • PCDR is a comparative example outside the range.
  • Example 1 and 2 and Comparative Examples 1 to 3 a gel coarse crushing step and a subsequent gel crushing step (meat chopper) were performed at the same time as the polymerization step (kneader polymerization).
  • the operational stability constant of the gel crusher was as low as 0.1 or less, whereas in Comparative Example 1 in which the water absorption ratio CRC was 27.4 g / g (less than 32 g / g). There was no significant change in the operational stability constant of the gel crusher.
  • Comparative Example 3 since the weight average particle diameter (D50) of the particulate hydrogel after the gel crushing step is as large as 1776 ⁇ m, the operational stability constant of the gel crusher is as high as 0.143, and the gel crusher Operational stability has decreased. Further, in Comparative Example 2 in which the water absorption ratio CRC was 36.3 g / g, the non-volatile component of the hydrogel was as high as 52.0% by weight, so that the operational stability constant of the gel crusher deteriorated to 0.225. .. From the comparison between Examples 1 and 2 and Comparative Examples 1 to 3, it was found that the continuous operation is not stable when the non-volatile component of the hydrogel or the weight average particle diameter (D50) of the particulate hydrogel is high.
  • Example 3 to 5 and Comparative Examples 5 and 6 a gel crushing step after the polymerization step (continuous belt polymerization) and a subsequent gel crushing step (meat chopper) were performed, and in Comparative Example 4, the gel crushing step was omitted. ..
  • the operational stability constant of the gel crusher was as low as 0.12 or less, whereas in Comparative Example 5 in which the water absorption ratio CRC was 31.7 g / g (less than 32 g / g). Even if the non-volatile component of the water-containing gel was as high as 49.4% by weight, there was no significant change in the operational stability constant of the gel crusher.
  • Comparative Examples 4 and 6 in which the water absorption ratio CRC exceeded 32 g / g and the gel non-volatile component was as high as 49.5% by weight to 55.3% by weight (furthermore, the gel coarse crushing step was omitted in Comparative Example 4).
  • the operational stability constant of the gel crusher deteriorated from 0.206 (Comparative Example 4) to 0.188 (Comparative Example 6). From the comparison between Examples 3 to 5 and Comparative Examples 4 to 6, it was found that the non-volatile component of the hydrogel was high and the continuous operation was not stable if the gel coarse crushing step was omitted.
  • Example 6 the gel crushing step after the polymerization step (batch static UV polymerization) and the subsequent gel crushing step (meat chopper) were performed, and in Comparative Example 7, the gel crushing step was omitted.
  • the operational stability constant of the gel crusher was 0.092, whereas the non-volatile component of the hydrogel was as high as 62.3% by weight, and Comparative Example 7 in which the gel crushing step was not performed. Then, the operational stability constant of the gel crusher deteriorated to 0.239. From the comparison between Example 6 and Comparative Example 7, it was found that even in the batch static UV polymerization, the non-volatile component of the hydrogel was high, and if the gel coarse crushing step was omitted, the continuous operation was not stable.
  • the current value in the operating time (seconds) of the gel crushing apparatus of Example 6 (nonvolatile component ratio of the hydrogel is 46.8% by weight) and Comparative Example 7 (nonvolatile component ratio of the hydrogel is 62.3% by weight).
  • a graph plotting (A) is shown in FIG.
  • the current value of the gel crusher of Example 6 is relatively lower than the current value of the gel crusher of Comparative Example 7, and is stable. Therefore, regarding the operation stability constant defined by the standard deviation ( ⁇ ) of the current value / the average value (Ave.) Of the current value, the gel crushing apparatus of Example 6 shows an operation stability constant of 0.111, and the operation stability constant. It was found that the gel crusher of Comparative Example 7 which showed 0.239 was operating more stably and continuously. It was found that the non-volatile component ratio of the hydrogel is important for solving the problem of the present invention.
  • the bulk density of the particulate hydrogels obtained in Examples 1 to 9 was 0.30 g / ml to 0.40 g / ml.
  • the centrifuge holding capacity (30-minute value, CRC) of the dried polymers obtained in Examples 1 to 9 was 35.0 g / g or more.
  • the surface tension of (c) of the particulate water absorbents obtained in Examples 1 to 9 was 72 mN / m, (d) the moisture absorption and fluidity was almost 0% by weight (no blocking), and (g) bulk specific gravity g /. cm 3 was about 0.60 to 0.70.
  • hydrogel CRCs of the hydrogels obtained in Examples 1 to 9 after the polymerization step, the coarsely crushed hydrous gel after the gel coarse crushing step, and the particulate hydrogel after the gel crushing step were also 32. It was 0 g / g or more.
  • the production method according to the present invention it is possible to stably provide a particulate water-absorbing agent containing polyacrylic acid (salt) having a high water absorption ratio (CRC) without large fluctuations in physical properties or suspension of production. Therefore, it can be used in various fields such as disposable diapers, sanitary napkins, incontinence pads, sanitary products such as pet sheets, soil water-retaining agents for agriculture and horticulture, and industrial water-stopping agents.
  • salt polyacrylic acid
  • CRC water absorption ratio

Abstract

吸水倍率が高い、ポリアクリル酸(塩)を含む粒子状吸水剤の、安定的な製造方法を提供する。粒子状吸水剤の製造方法は、重合工程と、ゲル粗砕(D50;500μm~10cm)工程と、ゲル粉砕(D50';360μm~1500μm、PDCR;0.02~0.10)工程と、乾燥工程と、表面架橋工程と、を含み、含水ゲルの不揮発成分率が、含水ゲルの総重量に対して10重量%~48重量%であり、粒子状吸水剤のCRCが32.0g/g以上である方法である。

Description

粒子状吸水剤の製造方法
 本発明は、ポリアクリル酸(塩)を含む粒子状吸水剤の製造方法に関する。
 従来、単量体を重合して得られる含水ゲルを、重合と同時または重合後に含有するゲルの粉砕を行う工程を含む、粒子状吸水剤の製造方法が知られている。
 例えば、特許文献1には、ゲル型樹脂の粉砕工程が内部架橋重合と同時に遂行され、重合時に3~150mmにゲル粉砕(粗粉砕)して、さらに重合後に1~20mmに微粉砕する吸水性樹脂の製造方法、すなわち、粗粉砕工程および重合後の微粉砕工程を含む吸水性樹脂の製造方法が記載されている。当該製造方法では、ゲル粉砕が重合と同時および重合後の合計2回行われ、不揮発成分率(別称;固形分率)が比較的高い含水ゲル(実施例では固形分55~60重量%)のゲル粉砕が行われている。
 特許文献1以外にも、特許文献2,3には、重合と同時および重合後に合計2回のゲル粉砕として、ニーダー重合後の粉砕ゲルをさらにミートチョッパーでゲル粉砕(ゲル押し出し)する吸水性樹脂の製造方法が開示されている。
 上記特許文献1~3に記載のゲル粉砕方法(重合と同時および重合後にゲル粉砕)以外にも、重合後のゲル粉砕として、特許文献4には、吸水性樹脂の含水ゲルの粗砕機(一次粉砕装置)が開示され、さらには二次粉砕機が連結されたミートチョッパーの使用が開示されている。また、特許文献5には、吸水性樹脂のベルト重合後のシート状含水ゲルの切断機が開示され、さらには連結されたミートチョッパーの使用が開示されている。
 さらに、ゲル粉砕方法に着目した吸水性樹脂の製造方法が提案されている。具体的には、吸水性樹脂の製造方法として、特許文献6ではゲル粉砕エネルギーGGEを規定する製造方法が開示されている。特許文献7,8には、特定ゲル強度(10000~13000Paないし10000Pa以上で粉砕後にゲル強度が35~95%)の含水ゲルをゲル粉砕する製造方法が開示されている。特許文献9~12には、吸水性樹脂用の特定構造のゲル押し出し機を用いる製造方法が開示されている。特許文献12には、ミートチョッパーの運転条件(Chopping-Index)に着目した製造方法が開示されている。特許文献13,14には、ゲル粉砕に用いるミートチョッパーの孔径などを規定した製造方法が開示されている。特許文献15には、圧縮強度10N以上の含水ゲルをゲル粉砕するCRC38g/g以上の吸水性樹脂の製造方法が開示されている。特許文献16には、重合後の含水ゲルを35℃以下で粗砕する吸水性樹脂の製造方法が開示されている。
米国特許公開公報第2011/0301303号 国際公開第2014/118024号公報 国際公開第2015/169912号公報 国際公開第2011/149313号公報 欧州特許公開1510317号公報 国際公開第2011/126079号公報 国際公開第2015/088200号公報 国際公開第2018/117391号公報 国際公開第2015/030129号公報 国際公開第2015/030130号公報 国際公開第2018/114702号公報 国際公開第2018/139768号公報 日本国公開特許公報「特開平06-041319号公報」 米国特許5275773号公報 国際公開第2018/135629号公報 国際公開第2018/174175号公報
 しかしながら、本発明者らは、吸水倍率が高い吸水剤は、吸水速度が比較的速いという効果を奏するものの、当該吸水剤の製造において、連続式でゲル粉砕を行う場合には、ゲル粉砕装置にゲルが付着し易いために、用いるゲル粉砕装置の稼働が安定しないという課題があることを独自に見出した。
 本発明の一態様は、吸水倍率が高い、ポリアクリル酸(塩)を含む粒子状吸水剤の安定的な製造方法を提供することを主たる目的とする。
 本発明者は、アクリル酸(塩)系単量体の重合中または重合後に、含水ゲル架橋重合体(以下、含水ゲルと称する)を粗砕し、その後、粗砕した含水ゲルを細かく粉砕することにより、吸水倍率が高い、ポリアクリル酸(塩)を含む粒子状吸水剤の製造に用いるゲル粉砕装置の稼働を安定化して、生産効率を高めることができることを見出し、本発明を完成するに至った。
 本発明は、以下の〔1〕~〔7〕に記載の発明を含む。
 〔1〕アクリル酸(塩)系単量体を含有する水溶液を重合してポリアクリル酸(塩)を含む含水ゲルを得る重合工程(1)と、上記含水ゲルを上記重合工程(1)と同時または上記重合工程(1)後に粗砕して粗砕含水ゲルを得るゲル粗砕工程(2)と、上記粗砕含水ゲルをさらに小さく粉砕して粒子状含水ゲルを得るゲル粉砕工程(3)と、上記粒子状含水ゲルを乾燥して、乾燥重合体を得る乾燥工程(4)と、上記乾燥工程(4)と同時または乾燥工程(4)後に、表面架橋工程(5)と、を含む、粒子状吸水剤の遠心分離機保持容量(CRC)が32.0g/g以上である、粒子状吸水剤の製造方法であって、上記含水ゲルの不揮発成分率は、10重量%~48重量%であり、上記粗砕含水ゲルの重量平均粒子径(D50)は、500μm~10cmであり、上記粒子状含水ゲルの重量平均粒子径(D50’)は、360μm~1500μmであり(ここで、D50>D50’)、上記ゲル粉砕工程(3)で用いるゲル粉砕装置の出口に多孔板を有しており、上記ゲル粉砕工程(3)では、下記式で規定されるPDCRが0.02kg/h/mm~0.10kg/h/mmである、粒子状吸水剤の製造方法;
 PDCR(kg/h/mm)=ゲル処理量(kg/h)/(上記多孔板の直径(mm))
 〔2〕上記ゲル粉砕工程(3)で用いるゲル粉砕装置の下記式で規定される稼働安定性定数が0.15以下である、〔1〕に記載の粒子状吸水剤の製造方法;
 稼動安定性定数=電流値の標準偏差(σ)/電流値の平均(Ave.)。
 〔3〕上記粗砕含水ゲルの粒度分布の対数標準偏差(σζ)が1.25以下であり、上記粒子状含水ゲルの粒度分布の対数標準偏差(σζ)が1.25以下である、〔1〕または〔2〕に記載の粒子状吸水剤の製造方法。
 〔4〕上記多孔板の孔径が4.5~10mmである、〔1〕~〔3〕の何れか一項に記載の粒子状吸水剤の製造方法。
 〔5〕上記多孔板の開孔率が20~80%である、〔1〕~〔4〕の何れか一項に記載の粒子状吸水剤の製造方法。
 〔6〕上記多孔板が有する孔の数が2~1000個である、〔1〕~〔5〕の何れか一項に記載の粒子状吸水剤の製造方法。
 〔7〕上記乾燥工程(4)では、乾燥前の上記粒子状含水ゲルの嵩密度が0.30g/ml~0.40g/mlである、〔1〕~〔6〕の何れか一項に記載の粒子状吸水剤の製造方法。
 〔8〕上記ゲル粉砕工程(3)では、ゲル粉砕前の上記粗砕含水ゲルの温度が40℃~120℃であり、上記ゲル粉砕装置の出口から排出される上記粒子状含水ゲルの温度(℃)から、上記ゲル粉砕装置に投入される上記粗砕含水ゲルの温度(℃)を引いた値が、-9℃以上である、〔1〕~〔7〕の何れか一項に記載の粒子状吸水剤の製造方法。
 〔9〕上記乾燥工程(4)後の一つ以上の工程において、添加剤を添加する、〔1〕~〔8〕の何れか一項に記載の粒子状吸水剤の製造方法。
 〔10〕上記添加剤は、エチレンジアミン四酢酸(塩)、トリエチレンテトラミン六酢酸(塩)、ジエチレントリアミン五酢酸(塩)、trans-1,2-ジアミノシクロヘキサン四酢酸(塩)、およびエチレンジアミンテトラ(メチレンホスホン酸)(塩)からなる群より選択される一つ以上のキレート剤である、〔9〕に記載の粒子状吸水剤の製造方法。
 〔11〕一つ以上の工程において、(重)亜硫酸(塩)を添加する、〔1〕~〔10〕の何れか一項に記載の粒子状吸水剤の製造方法。
 〔12〕上記重合工程(1)後の一つ以上の工程において、二酸化ケイ素、リン酸塩、およびハイドロタルサイトからなる群より選択される一つ以上の吸湿流動性改善剤を添加する、〔1〕~〔11〕の何れか一項に記載の粒子状吸水剤の製造方法。
 〔13〕上記粒子状吸水剤がさらに下記(a)~(g)の少なくとも一つを満たす、〔1〕~〔12〕の何れか一項に記載の粒子状吸水剤の製造方法;
 (a)DRC5minが35g/g以上
 (b)重量平均粒子径が200μm~600μmで850μm以上の粒子の割合が5重量%以下、150μm未満の粒子の割合が5重量%以下、粒度分布の対数標準偏差が0.20~0.50
 (c)表面張力が66mN/m以上
 (d)吸湿流動性が50重量%以下
 (e)可溶分が25重量%以下、劣化可溶分が30重量%以下
 (f)AAPが18g/g以上
 (g)嵩比重が0.57g/cm~0.75g/cm
 〔14〕連続製造時間が10時間以上である、〔1〕~〔13〕の何れか一項に記載の粒子状吸水剤の製造方法。
 〔15〕重合工程(1)において得られる含水ゲルの含水ゲルCRCが32.0g/g以上である、〔1〕~〔14〕の何れか一項に記載の粒子状吸水剤の製造方法。ただし、含水ゲルの固形分は180℃で24時間乾燥での乾燥減量で規定。
 〔16〕ゲル粗砕工程(2)で得られる粗砕含水ゲルの含水ゲルCRCが32.0g/g以上である、〔1〕~〔15〕の何れか一項に記載の粒子状吸水剤の製造方法。ただし、粗砕含水ゲルの固形分は180℃で24時間乾燥での乾燥減量で規定。
 〔17〕乾燥工程(4)後に得られる表面架橋工程(5)前の乾燥重合体の遠心分離機保持容量(30分値・CRC)が35.0g/g以上であり且つ粒子状吸水剤のCRCより2g/g~40g/gの範囲で高い、〔1〕~〔16〕の何れか一項に記載の粒子状吸水剤の製造方法。
 本発明の一態様によれば、ポリアクリル酸(塩)を含む粒子状吸水剤の製造に用いるゲル粉砕装置の稼働を安定化して、生産効率を高めることができる。従って、吸水倍率が高い、ポリアクリル酸(塩)を含む粒子状吸水剤の安定的な製造方法を提供することができるという効果を奏する。
実施例6および比較例7のゲル粉砕装置の稼働時間(秒)における電流値(A)をプロットしたグラフである。
 以下、本発明の実施の形態に関して詳細に説明する。但し、本発明はこれに限定されるものではなく、記述した範囲内で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態に関しても本発明の技術的範囲に含まれる。尚、本明細書においては特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。また、特に注釈のない限り、重量の単位である「t(トン)」は「Metric ton(メトリックトン)」を意味し、「ppm」は「重量ppm」または「質量ppm」を意味する。「重量」と「質量」は同義語であると見なす。また、「~酸(塩)」は「~酸および/またはその塩」、「(メタ)アクリル」は「アクリルおよび/またはメタクリル」をそれぞれ意味する。
 〔1〕用語の定義
 (1-1)「吸水性樹脂」
 本発明における「吸水性樹脂」とは、水膨潤性水不溶性の高分子ゲル化剤を指し、以下の物性を満たす樹脂をいう。本発明における「吸水性樹脂」とは、「水膨潤性」として、ERT441.2-02で規定されるCRCが5g/g以上、かつ、「水不溶性」として、ERT470.2-02で規定されるExtが50重量%以下の物性を満たす高分子ゲル化剤を指す。
 上記吸水性樹脂は、その用途に応じて適宜、設計が可能であり、特に限定されないが、カルボキシル基を有する不飽和単量体を架橋重合させた親水性架橋重合体であることが好ましい。また、全量(100重量%)が重合体である形態に限定されず、上記物性(CRC、Ext)を満足する範囲内で、添加剤等を含んだ吸水性樹脂組成物であってもよい。
 さらに、本発明における吸水性樹脂は、最終製品に限らず、吸水性樹脂の製造工程における中間体(例えば、重合後の含水ゲル、乾燥後の乾燥重合体等)を指す場合もあり、上記吸水性樹脂組成物と合わせて、これら全てを包括して「吸水性樹脂」と総称する。尚、吸水性樹脂の形態としては、シート状、繊維状、フィルム状、粒子状、ゲル状等が挙げられるが、本発明では粒子状の吸水性樹脂が好ましい。
 (1-2)「粒子状吸水剤」
 本明細書において、粒子状吸水剤とは、吸水性樹脂を主成分(50重量%以上)として含む、水性液の吸収ゲル化剤を意味する。本明細書において粒子状吸水剤とは、粒子状(別称;粉末状)の吸水剤を意味し、一粒の粒子状吸水剤であっても、複数個の粒子状吸水剤の集合体であっても、本明細書では粒子状吸水剤と称する。「粒子状」とは、粒子の形態を有することを意味し、粒子とは、測定可能な大きさを持つ、固体または液体の粒状小物体(JIS工業用語大辞典第4版、2002頁)をいう。本明細書において、粒子状吸水剤を単に吸水剤と称する場合もある。
 尚、水性液とは、水に限らず、尿、血液、汗、糞、廃液、湿気、蒸気、氷、水と有機溶媒および/または無機溶媒との混合物、雨水、地下水等であってもよく、水を含んでいれば特に限定されない。水性液として、好ましくは、尿、経血、汗、その他の体液が挙げられる。
 本発明に係る粒子状吸水剤は、水性液を吸収するための衛生材料として好適に使用される。重合体としての吸水性樹脂は、粒子状吸水剤中に主成分として含有される。つまり、吸水性樹脂は、粒子状吸水剤中に、好ましくは60重量%~100重量%、70重量%~100重量%、80重量%~100重量%、90重量%~100重量%含まれる。粒子状吸水剤は、その他に、非重合体として、水および/または無機微粒子、多価金属カチオン等の添加剤を任意に含む。粒子状吸水剤に含まれる好適な含水率は、0.2重量%~30重量%である。これらの成分が一体化された吸水性樹脂組成物も、粒子状吸水剤の範疇である。
 尚、粒子状吸水剤中の吸水性樹脂の上限は、100重量%、好ましくは99重量%、より好ましくは97重量%、特に95重量%、90重量%程度である。粒子状吸水剤は、好ましくは、吸水性樹脂以外に、0重量%~10重量%程度の成分、特に水や後述の添加剤(無機微粒子、多価金属カチオン)をさらに含む。
 また、粒子状吸水剤の主成分となる吸水性樹脂としては、ポリアクリル酸(塩)系樹脂、ポリスルホン酸(塩)系樹脂、無水マレイン酸(塩)系樹脂、ポリアクリルアミド系樹脂、ポリビニルアルコール系樹脂、ポリエチレンオキシド系樹脂、ポリアスパラギン酸(塩)系樹脂、ポリグルタミン酸(塩)系樹脂、ポリアルギン酸(塩)系樹脂、デンプン系樹脂、およびセルロース系樹脂が挙げられ、好ましくはポリアクリル酸(塩)系樹脂が使用される。
 (1-3)「ポリアクリル酸(塩)」
 本発明における「ポリアクリル酸(塩)」とは、ポリアクリル酸および/またはその塩を指す。上記ポリアクリル酸(塩)は、主成分として、アクリル酸および/またはその塩(以下、「アクリル酸(塩)」と称する)を繰り返し単位として含み、任意成分としてグラフト成分を含む重合体を指す。ポリアクリル酸は、ポリアクリルアミドやポリアクリニトリル等の加水分解で得てもよいが、好ましくはアクリル酸(塩)の重合で得られる。
 尚、上記「主成分」とは、アクリル酸(塩)の使用量(含有量)が、重合に用いられる単量体(内部架橋剤を除く)全体に対して、通常、50モル%~100モル%、好ましくは70モル%~100モル%、より好ましくは90モル%~100モル%、さらに好ましくは実質100モル%であることをいう。
 (1-4)「不揮発成分率」
 本発明における「不揮発成分率」とは、物質の総重量に対する、物質を乾燥させて揮発成分を完全に揮発させた後に残存する成分の割合を指す。上記「物質」とは、例えば、含水ゲル、粗砕含水ゲル、粒子状含水ゲル、乾燥重合体、粉砕乾燥重合体、吸水性樹脂粉末、吸水性樹脂粒子、粒子状吸水剤等が挙げられる。尚、重合方法がニーダー重合のように重合と粗砕を同時に実施する方法であり、重合中で水分の蒸発や水分の添加がある場合は、必要により蒸発水分量や添加水を補正して、含水ゲルの樹脂固形分は、単量体水溶液の単量体成分の濃度と同一であると見なしてよい。具体的には、重合中で水分の蒸発や水分の添加がある場合は、単量体水溶液中の水分量から蒸発水分量を減じ、添加水分量を増加させた上で計算される単量体成分濃度と同一と見なしてよい。
 (1-5)「EDANA」および「ERT」
 「EDANA」は、欧州不織布工業会(European Disposables and Nonwovens Associations)の略称である。「ERT」は、欧州標準(ほぼ世界標準)の吸水性樹脂の測定法(EDANA Recommended Test Methods)の略称である。本発明では、特に断りのない限り、ERT原本(2002年改定/公知文献)に準拠して、吸水性樹脂の物性を測定する。
 (1-5-1)「CRC」(ERT441.2-02)
 「CRC」は、Centrifuge Retention Capacity(遠心分離機保持容量)の略称である。CRCは、粒子状吸水剤または吸水性樹脂の無加圧下吸水倍率(「吸水倍率」と称する場合もある)を意味する。
 具体的には、粒子状吸水剤または吸水性樹脂0.2gを不織布製の袋に入れた後、大過剰の0.9重量%塩化ナトリウム水溶液中に30分間浸漬して自由膨潤させ、その後、遠心分離機(250G)で水切りした後の吸水倍率(単位;g/g)のことをいう。
 (1-5-1-1)「含水ゲルCRC」
 尚、後述の含水ゲルCRC(重合工程得られた含水ゲル、ゲル粗砕工程で得られた粗砕含水ゲル、またはゲル粉砕工程で得られた粒子状含水ゲルのCRC)は、上記(1-5-1)に記載のCRC測定において、粒子状吸収剤または吸水性樹脂の代わりに含水ゲル、粗砕含水ゲル、または粒子状含水ゲルを試料として用いること、試料の量を0.4gとすること、自由膨潤時間を24時間とすること以外は上記(1-5-1)に記載のCRC測定と同様に測定を行う。その後、含水ゲル、粗砕含水ゲル、または粒子状含水ゲルの固形分1gあたりの吸水倍率に換算する。含水ゲル、粗砕含水ゲル、または粒子状含水ゲルの固形分重量は、含水ゲル、粗砕含水ゲル、または粒子状含水ゲル2gを180℃で24時間乾燥させた減量分から不揮発成分の重量を算出することによって求める。また、測定する含水ゲル、粗砕含水ゲル、または粒子状含水ゲルの一辺の大きさが5mm以上の場合には、はさみ等でカットして1mm以下のサイズとしてから測定を行ってもよい。
 (1-5-2)「AAP」(ERT442.2-02)
 「AAP」は、Absorption Against Pressureの略称であり、粒子状吸水剤または吸水性樹脂の加圧下吸水倍率を意味する。
 具体的には、粒子状吸水剤または吸水性樹脂0.9gを大過剰の0.9重量%塩化ナトリウム水溶液に対して、1時間、2.06kPa(21g/cm、0.3psi)荷重下で膨潤させた後の吸水倍率(単位;g/g)のことをいう。尚、荷重条件を4.83kPa(49g/cm、0.7psi)に変更して測定する場合もある。
 尚、ERT442.2-02には、Absorption Under Pressureと表記されているが、実質的に「AAP」と同一内容である。
 (1-5-3)「PSD」(ERT420.2-02)
 「PSD」は、Particle Size Distributionの略称であり、篩分級により測定される、粒子状吸水剤または吸水性樹脂の粒度分布を意味する。
 尚、重量平均粒子径(D50)および粒度分布の対数標準偏差(σζ)は、米国特許第7638570号に記載された「(3)Mass-Average Particle Diameter (D50) and Logarithmic Standard Deviation (σζ) of Particle Diameter Distribution」と同様の方法で測定する。
 (1-5-4)「Moisture Content」(ERT430.2-02)
 「Moisture Content」は、吸水性樹脂の含水率を意味する。
 具体的には、吸水性樹脂4.0gを105℃で3時間乾燥したときの乾燥減量から算出した値(単位;重量%)のことをいう。尚、吸水性樹脂を1.0g、乾燥温度を180℃にそれぞれ変更して測定する場合もある。
 (1-5-5)「Ext」(ERT470.2-02)
 「Ext」は、Extractablesの略称であり、吸水性樹脂の水可溶分(水可溶成分量)を意味する。
 具体的には、吸水性樹脂1.0gを0.9重量%塩化ナトリウム水溶液200mlに添加し、500rpmで16時間攪拌した後の溶解ポリマー量(単位;重量%)のことをいう。溶解ポリマー量の測定は、pH滴定を用いて行う。
 (1-6)「通液性」
 本発明における粒子状吸水剤または吸水性樹脂の「通液性」とは、荷重下または無荷重下での膨潤ゲルの粒子間を通過する液の流れ性のことをいう。代表的な通液性の測定方法として、SFC(Saline Flow Conductivity/食塩水流れ誘導性)やGBP(Gel Bed Permeability/ゲル床透過性)がある。
 「SFC」は、2.07kPa荷重下での粒子状吸水剤または吸水性樹脂に対する0.69重量%塩化ナトリウム水溶液の通液性をいい、米国特許第5669894号に開示されるSFC試験方法に準拠して測定される。
 「GBP」は、荷重下膨潤GBP(国際公開第2005/016393号)ないし自由膨潤GBP(国際公開第2004/096304号)があり、0.9重量%塩化ナトリウム水溶液での荷重70.3psiでの通液性が評価される。
 (1-7)「不定形破砕状」
 不定形破砕状とは、重合中ないし重合後の含水ゲルまたはその乾燥物(好ましくは乾燥物)を粉砕することによって得られる粉砕物を示し、形状が一定でない破砕状の粒子である。好ましくは水溶液重合における粉砕物である。一方、粉砕工程を経ないで得られる球状の粒子または球状粒子の造粒物、代表的には逆相懸濁重合や重合モノマーを噴霧し重合するような液滴重合等によって得られる球状の粒子または球状粒子の造粒物は、不定形破砕状ではない。
 (1-8)「吸湿流動性」
 本発明における「吸湿流動性」とは、粒子状吸水剤を気温25℃および相対湿度90%RHの条件下に1時間放置したときのブロッキング、ケーキング、または粉体としての吸湿時の流動性を評価した物性であり、「吸湿流動性(B.R.)」(吸湿ブロッキング率ともいう)で判断する。簡略に述べると、粒子状吸水剤を篩の上に乗せ、分級を行い、篩上に残存した粒子状吸水剤の重量(W1(g))および篩を通過した粒子状吸水剤の重量(W2(g))を測定する。そして、次式:
 吸湿流動性(B.R.)(重量%)={W1/(W1+W2)}×100
に従って、吸湿流動性を算出する。吸湿流動性の評価方法である「吸湿流動性(B.R.)」の値が小さい程、粒子状吸水剤が吸湿流動性に優れていることを意味する。
 (1-9)「吸湿流動性改善剤」
 本発明における「吸湿流動性改善剤」とは、粒子状吸水剤または吸水性樹脂に添加することにより、粒子状吸水剤または吸水性樹脂の吸湿流動性を、当該吸湿流動性改善剤の添加前よりも向上させることができる化合物または組成物である。
 吸湿流動性改善剤としては、例えば、これに限定されることを望まないが、界面活性剤、水不溶性高分子、水溶性多価金属、水不溶性微粒子などが挙げられる。水不溶性微粒子としては、例えば、二酸化ケイ素、リン酸塩、ハイドロタルサイト、およびアルミニウム塩が挙げられる。本発明においては、吸湿流動性改善剤として、水不溶性無機微粒子、好ましくは、ハイドロタルサイト構造を有する2価および3価の2種類の金属カチオンと水酸基とを含有する多元金属化合物、およびリン酸類のアニオンと2価あるいは3価の金属カチオンとからなる水不溶性金属リン酸塩(例えば、リン酸カルシウム)、が使用され得る。
 (1-10)「ゲル粉砕エネルギー(GGE)」
 本発明における「ゲル粉砕エネルギー」とは、粗砕含水ゲルをゲル粉砕するとき、ゲル粉砕装置が必要とする単位重量(粗砕含水ゲルの単位重量)当たりの機械的エネルギーをいう。ゲル粉砕エネルギーには、ジャケットを加熱冷却するエネルギーや、投入する水およびスチームのエネルギーは含まれない。
 尚、「ゲル粉砕エネルギー」は、英語表記の「Gel Grinding Energy」から「GGE」と略称する。ゲル粉砕装置が三相交流電力で駆動する場合には、GGEは、下記式(1)によって算出される。
 GGE(J/g)=(√3×電圧×電流×力率×モーター効率)/(1秒間にゲル粉砕装置に投入される粗砕含水ゲルの重量)  …式(1)
 上記、「力率」および「モーター効率」は、ゲル粉砕装置の稼動条件等によって変化する装置固有の値であり、0~1までの値をとる。これらの値は、装置メーカー等への問い合わせ等で知ることができる。また、ゲル粉砕装置が単相交流電力で駆動する場合には、GGEは、上記式中の「√3」を「1」に変更して算出することができる。尚、電圧の単位は(V)、電流の単位は(A)、粗砕含水ゲルの重量の単位は(g/s)である。GGEは、上記特許文献6(国際公開第2011/126079号)に記載の方法により測定される。
 また、本発明においては、粗砕含水ゲルに対して加えられる機械的エネルギーが重要であるため、ゲル粉砕装置が空運転時の電流値を差し引いて、ゲル粉砕エネルギーを計算することが好ましい。特に複数の装置でゲル粉砕を行う場合には、空運転時の電流値の合計が大きくなるため、空運転時の電流値を差し引いて計算する方法が好適である。この場合のゲル粉砕エネルギーは下記式(2)によって算出される。尚、上記GGEと区別するため、GGE(2)と表記する。
 GGE(2)(J/g)={√3×電圧×(ゲル粉砕時の電流-空運転時の電流)×力率×モーター効率}/(1秒間にゲル粉砕装置に投入される粗砕含水ゲルの重量)  …式(2)
 上記GGE(2)における「力率」および「モーター効率」は、ゲル粉砕時での値を採用する。尚、空運転時の力率およびモーター効率の値は、空運転時の電流値が小さいこともあり、近似的に上記式(2)のように定義する。上記式(2)における「1秒間にゲル粉砕装置に投入される粗砕含水ゲルの重量(g/s)」とは、例えば、粗砕含水ゲルが連続的に定量フィーダーで供給される場合には、その供給量の単位が(t/hr)であれば、(g/s)に換算した値をいう。
 (1-11)「逆戻り量」
 本発明における逆戻り量とは、吸収体に吸収された液体が、当該吸収体に圧力が加わることにより放出される液体の逆戻り量を示す。Re-wetとも呼ばれる。
 (1-12)「稼働安定性定数」
 本発明における稼働安定性定数とは、ゲル粉砕工程(3)で用いるゲル粉砕装置の稼働安定性を示す指標である。当該稼働安定性定数は、上記ゲル粉砕工程(3)で用いるゲル粉砕装置の連続運転時の電流値から下記式:
 稼動安定性定数=電流値の標準偏差(σ)/電流値の平均(Ave.)
で規定される。稼働安定性定数は、ゲル粉砕装置の電流値(σ/Ave.)から算出される値が小さいほど安定に稼働していることを示す。測定方法の詳細は実施例の項に記述する。
 稼働安定性定数が小さいと、ゲル粉砕装置の稼働安定性が増し、ゲル粉砕装置を長時間、連続運転することができるので、粒子状吸水剤の安定した連続生産が可能となり、生産効率を高めることができる。
 〔2〕ポリアクリル酸(塩)を含む粒子状吸水剤の製造方法
 本発明の一実施の形態における粒子状吸水剤の製造方法は、アクリル酸(塩)系単量体を含有する水溶液を重合してポリアクリル酸(塩)を含む含水ゲルを得る重合工程(1)と、上記含水ゲルを上記重合工程(1)と同時または上記重合工程(1)後に粗砕して粗砕含水ゲルを得るゲル粗砕工程(2)と、上記粗砕含水ゲルをさらに小さく粉砕して粒子状含水ゲルを得るゲル粉砕工程(3)と、上記粒子状含水ゲルを乾燥して、乾燥重合体を得る乾燥工程(4)と、上記乾燥工程(4)と同時または乾燥工程(4)後に、表面架橋工程(5)と、を含む、粒子状吸水剤の遠心分離機保持容量(CRC)が32.0g/g以上である、粒子状吸水剤の製造方法であって、上記含水ゲルの不揮発成分率は、10重量%~48重量%であり、上記粗砕含水ゲルの重量平均粒子径(D50)は、500μm~10cmであり、上記粒子状含水ゲルの重量平均粒子径(D50’)は、360μm~1500μmであり(ここで、D50>D50’)、上記ゲル粉砕工程(3)では、下記式で規定されるPDCRが0.02kg/h/mm~0.10kg/h/mmである方法である;
 PDCR(kg/h/mm)=ゲル処理量(kg/h)/(多孔板の直径(mm))
 また、さらに好ましくは、本発明の一実施の形態における粒子状吸水剤の製造方法は、乾燥工程(4)後の一つ以上の工程において、添加剤を添加する方法である。さらに具体的には、本発明の一実施の形態における粒子状吸水剤の製造方法は、上記乾燥重合体を粉砕して粉砕乾燥重合体を得る粉砕工程、上記粉砕乾燥重合体を所定範囲の粒度に調整して吸水性樹脂粉末を得る分級工程、上記粒子状含水ゲル、上記乾燥重合体、上記粉砕乾燥重合体、または上記吸水性樹脂粉末を表面架橋する表面架橋工程(5)、および、上記乾燥工程(4)後の一つ以上の工程において、添加剤を添加する工程(以下、「添加剤添加工程」と称する)、からなる群より選択される少なくとも一つの工程をさらに含む方法である。
 以下に、本発明の一実施の形態における粒子状吸水剤の製造方法の、各製造工程(2-1)~(2-11)に関して説明する。
 (2-1)単量体水溶液の調製工程
 本工程は、単量体(例えばアクリル酸(塩))を主成分として含有する水溶液(以下、「単量体水溶液」と称する)を調製する工程である。尚、得られる吸水性樹脂の吸水性能等が低下しない範囲で、単量体のスラリー液を使用することもできるが、本項では便宜上、単量体水溶液に関して説明を行う。
 また、上記「主成分」とは、アクリル酸(塩)の使用量(含有量)が、吸水性樹脂の重合反応に供される単量体(内部架橋剤は除く)全体に対して、通常、50モル%以上、好ましくは70モル%以上、より好ましくは90モル%以上(上限は100モル%)であることをいう。
 (アクリル酸)
 本発明では、得られる粒子状吸水剤の物性および生産性の観点から、単量体としてアクリル酸および/またはその塩、即ち「アクリル酸(塩)」が用いられることが好ましい。
 上記「アクリル酸」は、市販のアクリル酸でよく、重合禁止剤を含んでいればよい。重合禁止剤として好ましくはメトキシフェノール類、より好ましくはp-メトキシフェノールが挙げられる。上記アクリル酸は、重合禁止剤を、アクリル酸の重合性や粒子状吸水剤の色調の観点から、好ましくは200ppm以下、より好ましくは10ppm~160ppm、さらに好ましくは20ppm~100ppm含んでいればよい。また、アクリル酸中の不純物に関しては、米国特許出願公開第2008/0161512号に記載された化合物が本発明にも適用される。
 また、「アクリル酸塩」は、上記アクリル酸を下記塩基性組成物で中和した塩であるが、当該アクリル酸塩として、市販のアクリル酸塩(例えば、アクリル酸ナトリウム)を用いてもよいし、粒子状吸水剤の製造プラント内で中和して得られた塩を用いてもよい。
 (塩基性組成物)
 本発明において、「塩基性組成物」とは、塩基性化合物を含有する組成物を指し、例えば、市販の水酸化ナトリウム水溶液等が該当する。
 上記塩基性化合物として、具体的には、アルカリ金属の炭酸塩や炭酸水素塩、アルカリ金属の水酸化物、アンモニア、有機アミン等が挙げられる。これらの中でも、得られる粒子状吸水剤の物性の観点から、強塩基性であることが望まれる。そのため、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属の水酸化物が好ましく、水酸化ナトリウムがより好ましい。
 (中和)
 本発明における中和として、アクリル酸に対する中和(重合前)またはアクリル酸を架橋重合して得られる含水ゲルに対する中和(重合後)(以下、「後中和」と称する)の何れかを選択または併用することができる。また、これらの中和は、連続式でもバッチ式でもよく特に限定されないが、生産効率等の観点から連続式が好ましい。
 尚、中和を行う装置、中和温度、滞留時間等の条件に関しては、国際公開第2009/123197号や米国特許出願公開第2008/0194863号に記載された条件が本発明にも適用される。
 本発明における中和率は、単量体の酸基に対して、好ましくは10モル%~90モル%、より好ましくは40モル%~85モル%、さらに好ましくは50モル%~80モル%、特に好ましくは60モル%~75モル%である。当該中和率が10モル%未満の場合には、得られる吸水性樹脂の吸水倍率が著しく低下することがある。一方、中和率が90モル%を超える場合には、加圧下吸水倍率の高い吸水性樹脂が得られないことがある。
 上記中和率は、後中和の場合でも同様である。また、最終製品としての粒子状吸水剤の中和率に関しても、上記中和率が適用される。尚、中和率75モル%とは、アクリル酸25モル%およびアクリル酸塩75モル%の混合物を意味する。また、当該混合物をアクリル酸部分中和物と称する場合もある。
 (他の単量体)
 本発明において、「他の単量体」とは、上記アクリル酸(塩)以外の単量体を指し、アクリル酸(塩)と併用して粒子状吸水剤を製造することができる。
 上記他の単量体として、水溶性または疎水性の不飽和単量体が挙げられる。具体的には、米国特許出願公開第2005/0215734に記載された化合物(但し、アクリル酸は除く)が本発明にも適用される。
 (内部架橋剤)
 本発明で使用される内部架橋剤として、米国特許第6241928号に記載された化合物が本発明にも適用される。これらの中から反応性を考慮して一種類または二種類以上の化合物が選択される。
 また、得られる吸水性樹脂の吸水性能等の観点から、好ましくは重合性不飽和基を2個以上有する化合物、より好ましくは下記乾燥温度で熱分解性を有する化合物、さらに好ましくは(ポリ)アルキレングリコール構造単位を有する重合性不飽和基を2個以上する化合物が、内部架橋剤として用いられる。
 上記重合性不飽和基として、好ましくはアリル基、(メタ)アクリレート基、より好ましくは(メタ)アクリレート基が挙げられる。また、上記(ポリ)アルキレングリコール構造単位として、ポリエチレングリコールが好ましく、n数として、好ましくは1~100、より好ましくは6~50である。
 従って、本発明では、好ましくは(ポリ)アルキレングリコールジ(メタ)アクリレートまたは(ポリ)アルキレングリコールトリ(メタ)アクリレート、より好ましくは(ポリ)エチレングリコールジ(メタ)アクリレートが用いられる。
 上記内部架橋剤の使用量は、単量体全体に対して、好ましくは0.0001モル%~10モル%、より好ましくは0.001モル%~1モル%である。当該使用量を上記範囲内とすることで所望する吸水性樹脂が得られる。尚、使用量が少なすぎる場合には、ゲル強度が低下し水可溶分が増加する傾向にあり、使用量が多すぎる場合には、吸水倍率が低下する傾向にあるため、好ましくない。
 本発明では、所定量の内部架橋剤を単量体水溶液に予め添加しておき、重合と同時に架橋反応する方法が好ましく適用される。一方、この方法以外に、重合中や重合後に内部架橋剤を添加して後架橋する方法や、ラジカル重合開始剤を用いてラジカル架橋する方法、電子線、紫外線等の活性エネルギー線を用いて放射線架橋する方法等を採用することもできる。また、これらの方法を併用することもできる。
 (その他、単量体水溶液に添加される物質)
 本発明において、得られる吸水性樹脂の物性向上の観点から、下記物質を単量体水溶液の調製時に添加することもできる。
 単量体水溶液に添加される物質としては、具体的には、澱粉、澱粉誘導体、セルロース、セルロース誘導体、ポリビニルアルコール、ポリアクリル酸(塩)、ポリアクリル酸(塩)架橋体等の親水性高分子が挙げられる。上記親水性高分子を、好ましくは50重量%以下、より好ましくは20重量%以下、さらに好ましくは10重量%以下、特に好ましくは5重量%以下(下限は0重量%)で単量体水溶液に添加することができる。また、炭酸塩、アゾ化合物、気泡等の発泡剤、界面活性剤、キレート剤、連鎖移動剤等を、好ましくは5重量%以下、より好ましくは1重量%以下、さらに好ましくは0.5重量%以下(下限は0重量%)で単量体水溶液に添加したりすることができる。尚、親水性高分子として水溶性樹脂または吸水性樹脂を使用する場合には、グラフト重合体または吸水性樹脂組成物(例えば、澱粉-アクリル酸重合体、PVA-アクリル酸重合体等)が得られる。これらの重合体、吸水性樹脂組成物も本発明の範疇である。
 本発明において、得られる吸水性樹脂の物性向上の観点から、着色防止剤を単量体水溶液の調製時に添加することもできる。上記着色防止剤は、粒子状吸水剤を長期間保管するときに起こる着色を防止することができる添加剤である。上記着色防止剤としては、(重)亜硫酸(塩)、α-ヒドロキシカルボン酸(塩)等が挙げられる。
 ((重)亜硫酸(塩))
 通常、得られる粒子状吸水剤の吸水特性や色調(着色防止)等の観点から、一つ以上の工程において、好ましくは重合工程(1)後の一つ以上の工程において、(重)亜硫酸(塩)を添加することが好ましい。また、(重)亜硫酸(塩)を添加することによって、着色防止やゲルの劣化を抑制することができる。重合工程(1)において(重)亜硫酸(塩)を添加する場合は、重合工程(1)で得られる含水ゲルに含まれる未反応の単量体の残存量を低減することができる。これら更なる観点から、亜硫酸(塩)を添加することが好ましい。尚、「(重)亜硫酸(塩)」とは、亜硫酸、亜硫酸塩、または重亜硫酸塩(亜硫酸水素塩)のことである。
 上記亜硫酸塩としては、例えば、亜硫酸ナトリウム、亜硫酸カリウム、亜硫酸カルシウム、亜硫酸亜鉛、亜硫酸アンモニウム等が挙げられる。上記重亜硫酸塩としては、例えば、亜硫酸水素ナトリウム、亜硫酸水素カリウム、亜硫酸水素カルシウム、亜硫酸水素亜鉛、亜硫酸水素アンモニウム等が挙げられる。(重)亜硫酸(塩)として、亜硫酸水素ナトリウムがより好ましい。(重)亜硫酸(塩)の添加量は、好ましくは5重量%以下、より好ましくは1重量%以下、さらに好ましくは0.5重量%以下(下限は0重量%、好ましくは0.01重量%以上)である。
 (α-ヒドロキシカルボン酸(塩))
 通常、得られる粒子状吸水剤の吸水特性や色調(着色防止)等の観点から、α-ヒドロキシカルボン酸(塩)を添加することが好ましい。また、α-ヒドロキシカルボン酸(塩)を添加することによって、得られる粒子状吸水剤の可溶分分子量を低減させること、ひいては衛生材料として使用するときのべたつきおよび不快感を低減させることができる。このため、これらの更なる観点から、α-ヒドロキシカルボン酸(塩)を添加することが好ましい。尚、「α-ヒドロキシカルボン酸(塩)」とは、分子内にヒドロキシル基を有するカルボン酸またはその塩のことを指し、α位にヒドロキシル基を有するヒドロキシカルボン酸またはその塩である。
 上記α-ヒドロキシカルボン酸(塩)として、具体的には、国際公開第2011/040530号の「〔6〕α-ヒドロキシカルボン酸化合物」に開示された化合物およびその使用量が、本発明に適用される。
 ヒドロキシカルボン酸とは、分子内にヒドロキシル基を併せ持つカルボン酸のことで、乳酸、グリコール酸、リンゴ酸、グリセリン酸、酒石酸、クエン酸、イソクエン酸、メバロン酸、キナ酸、シキミ酸、β-ヒドロキシプロピオン酸等の脂肪族ヒドロキシ酸や、サリチル酸、クレオソート酸、バニリン酸、シリング酸、レソシル酸、ピロカテク酸、プロトカテク酸、ゲンチジン酸、オルセリン酸、マンデル酸、没食子酸等の芳香族ヒドロキシ酸等の酸またはその塩が挙げられる。
 また、本発明でα-ヒドロキシカルボン酸が塩である場合は、水に対する溶解度の観点から、好ましくは一価の塩であり、リチウム、カリウム、ナトリウム等のアルカリ金属塩、アンモニア塩、一価のアミン塩等が好ましく用いられる。また、α-ヒドロキシ多価カルボン酸を塩として用いる場合は、カルボキシル基の全てを塩としてもよく、一部のみを塩としてもよい。
 「α-ヒドロキシカルボン酸(塩)」とは、「α-ヒドロキシカルボン酸および/またはその塩」を指す。同様に、「~酸(塩)」とは、「~酸および/またはその塩」を指す。具体的には、リンゴ酸(塩)とは、リンゴ酸および/またはその塩を指し、乳酸(塩)とは、乳酸および/またはその塩を指す。
 本発明において、得られる吸水性樹脂の物性向上の観点から、上記物質(親水性高分子、(重)亜硫酸(塩)、およびα-ヒドロキシカルボン酸(塩))を単量体水溶液の調製工程および/または重合工程(1)において添加することもできる。
 上記物質は、単量体水溶液に添加される形態のみならず、重合途中で添加される形態でもよく、これらの形態を併用することもできる。つまり、上記物質は、重合工程(1)の前、間または後に添加される。より好ましくは、上記物質は、重合工程(1)の前または間に添加される。具体的には、好ましくは、上記物質は、重合前の単量体水溶液に添加される。あるいは、好ましくは、上記物質は重合開始後の単量体水溶液に添加され、具体的には、重合開始から2分後の単量体水溶液に添加される。上記物質は、重合開始後から単量体水溶液の重合が終了するまでの任意の時点(例えば、重合開始から1分後、2分後、3分後、5分後、10分後、または20分後等)に添加されてもよい。
 上記物質は、重合工程(1)の前、間または後に添加されるのが好ましいものの、ゲル粉砕工程(3)の前または間に添加されてもよい。より好ましくは、上記物質は、ゲル粉砕工程(3)の間に添加される。具体的には、上記物質は、重合後に得られる含水ゲルのゲル粉砕時に添加される。
 (単量体成分の濃度)
 本工程において、単量体水溶液を調製するときに、上記各物質が添加される。当該単量体水溶液中の単量体成分の濃度としては特に限定されないが、吸水性樹脂の物性の観点から、好ましくは10重量%~80重量%、より好ましくは20重量%~75重量%、さらに好ましくは30重量%~70重量%である。
 また、水溶液重合または逆相懸濁重合を採用する場合には、水以外の溶媒を必要に応じて併用することもでき、当該溶媒の種類は特に限定されない。
 尚、上記「単量体成分の濃度」とは、下記式:
 (単量体成分の濃度(重量%))={(単量体成分の重量)/(単量体水溶液の重量)}×100
で求められる値である。単量体水溶液の重量には、グラフト成分や吸水性樹脂、逆相懸濁重合における疎水性溶媒の重量は含めない。
 ここで、単量体以外の架橋剤やその他上記添加剤が単量体に対してごく微量である場合や、重合での水分量の変化(例えば、重合熱での水分蒸発など)がない場合、「100-単量体成分の濃度(重量%)」がほぼ不揮発成分率(重量%)となる。
 (2-2)重合工程(1)
 本発明の一実施の形態における粒子状吸水剤の製造方法は、アクリル酸(塩)系単量体を含有する水溶液を重合してポリアクリル酸(塩)を含む含水ゲルを得る重合工程(1)を含む。そして、本発明の一実施の形態における粒子状吸水剤の製造方法は、上記含水ゲルの不揮発成分率が10重量%~48重量%である。
 本工程は、上記単量体水溶液の調製工程で得られたアクリル酸(塩)系単量体水溶液を重合させて、含水ゲルを得る工程である。当該含水ゲルの不揮発成分率は、含水ゲルの総重量に対して、10重量%~48重量%であることが好ましく、15重量%~45重量%であることがより好ましく、18重量%~42重量%であることがさらに好ましい。当該構成により、吸水倍率の高い粒子状吸水剤を製造することができる。吸水倍率の高い粒子状吸水剤は、吸水速度が速いという効果を奏する。不揮発成分率(重量%)は、含水ゲルの不揮発成分量(実質的には、含水ゲル中の吸水性樹脂等の固形分の量)を、180℃で24時間乾燥した含水ゲルの重量として、求めることができる。ただし、重合と同時にゲル粉砕を行う場合は、重合中で水分の蒸発や水分の添加がある場合は必要により蒸発水分量や添加水を補正して、単量体水溶液の単量体成分(固形分)の濃度から不揮発成分率を求めることができる。
 (重合開始剤)
 本発明で使用される重合開始剤は、重合形態等によって適宜選択されるため、特に限定されない。重合開始剤としては、例えば、熱分解型重合開始剤、光分解型重合開始剤、またはこれらの重合開始剤の分解を促進する還元剤を併用したレドックス系重合開始剤等が挙げられる。具体的には、米国特許第7265190号に開示された重合開始剤のうちの、一種類または二種類以上が用いられる。尚、重合開始剤の取り扱い性や粒子状吸水剤または吸水性樹脂の物性の観点から、好ましくは過酸化物またはアゾ化合物、より好ましくは過酸化物、さらに好ましくは過硫酸塩が使用される。
 重合開始剤の使用量は、単量体に対して、好ましくは0.001モル%~1モル%、より好ましくは0.001モル%~0.5モル%である。また、還元剤の使用量は、単量体に対して、好ましくは0.0001モル%~0.02モル%である。
 尚、上記重合開始剤に替えて、放射線、電子線、紫外線等の活性エネルギー線を照射して重合反応を実施してもよく、これらの活性エネルギー線と重合開始剤とを併用してもよい。
 (重合形態)
 本発明に適用される重合形態としては、特に限定されないが、吸水特性や重合制御の容易性等の観点から、好ましくは噴霧液滴重合、水溶液重合、逆相懸濁重合、より好ましくは水溶液重合、逆相懸濁重合、さらに好ましくは水溶液重合が挙げられる。中でも、連続水溶液重合が特に好ましく、連続ベルト重合、連続ニーダー重合の何れでも適用される。
 具体的な重合形態として、連続ベルト重合は米国特許第4893999号、同第6241928号、米国特許出願公開第2005/215734号等に、連続ニーダー重合は米国特許第6987151号、同第6710141号等に、それぞれ開示されている。これらの連続水溶液重合を採用することで、吸水性樹脂の生産効率が向上する。
 また、上記連続水溶液重合の好ましい形態として、「高温開始重合」や「高濃度重合」が挙げられる。「高温開始重合」とは、単量体水溶液の温度を好ましくは30℃以上、より好ましくは35℃以上、さらに好ましくは40℃以上、特に好ましくは50℃以上(上限は沸点)の温度で重合を開始する形態をいう。「高濃度重合」とは、単量体成分の濃度を好ましくは30重量%以上、より好ましくは35重量%以上、さらに好ましくは40重量%以上、特に好ましくは45重量%以上(上限は飽和濃度)で重合を行う形態をいう。これらの重合形態を併用することもできる。
 水溶液重合の重合方法としては、攪拌型の連続またはバッチ式のニーダー重合、無攪拌型の連続ベルト重合、および無攪拌型のバッチ重合が挙げられる。尚、攪拌型のニーダー重合とは、未反応の単量体水溶液と含水ゲルとの混合物を攪拌および粗砕しながら重合することを意味する。無攪拌型の連続ベルト重合では、例えば、単量体水溶液を、両端に堰を備えた平面状の重合ベルトを有する重合機に供給して重合することにより、帯状の含水ゲルが得られる。無攪拌型のバッチ重合では、例えば、単量体水溶液をバット、筒、タンク等の重合容器に供給して静置状態で重合することにより、ブロック状の含水ゲルが得られる。
 また、本発明においては、空気雰囲気下で重合を行うこともできるが、得られる吸水性樹脂の色調の観点から、窒素やアルゴン等の不活性ガス雰囲気下で重合を行うことが好ましい。この場合には、例えば、酸素濃度を1容積%以下に制御することが好ましい。尚、単量体水溶液中の溶存酸素に関しても、不活性ガスで置換(例えば、溶存酸素;1mg/l未満)しておくことが好ましい。
 また、本発明では、単量体水溶液に気泡(特に上記不活性ガス等)を分散させて重合を行う発泡重合とすることもできる。
 また、本発明においては、重合中に固形分濃度を上昇させてもよい。このような固形分濃度の上昇の指標である固形分上昇度は、下記式(3)により定義される。尚、固形分濃度の上昇度としては、好ましくは1重量%以上、より好ましくは2重量%以上である。
 (固形分上昇度(重量%))=(重合後の含水ゲルの固形分濃度(重量%))-(単量体水溶液の固形分濃度(重量%))  …式(3)
 但し、単量体水溶液の固形分濃度とは、下記式(4)で求められる値であり、重合系内の成分とは、単量体水溶液、グラフト成分、吸水性樹脂、およびその他固形物(例えば水不溶性微粒子等)であり、逆相懸濁重合における疎水性溶媒は含めない。
 (単量体水溶液の固形分(重量%))={((単量体成分+グラフト成分+吸水性樹脂+その他固形物)の重量)/(重合系内の成分の重量)}×100  …式(4)
 重合工程(1)で得られる含水ゲルの固形分あたりの遠心保持容量(含水ゲルCRC)は、32.0g/g以上であることが好ましく、33.0g/g以上、34.0g/g以上、35.0g/g以上、36.0/g以上、37.0g/g以上、38.0g/g以上、39.0g/g以上、40.0g/g以上であることがより好ましく、上限は50g/gであることが好ましい。含水ゲルの含水ゲルCRCが10g/g未満または50g/gを超える場合には、ゲル粗砕時の粒子形状や粒度分布の制御が困難になるため、好ましくない。含水ゲルの含水ゲルCRCは、重合時の架橋剤添加量、単量体成分の濃度等で適宜制御することができる。本発明において含水ゲルの含水ゲルCRCが50g/gを超える場合には、粒子形状や粒度分布の制御が困難となる。乾燥減量で規定される含水ゲルの含水率(=100-不揮発成分量(重量%))は、50重量%以上であることが好ましく、51重量%以上、52重量%以上、53重量%以上、54重量%以上、55重量%以上、56重量%以上、57重量%以上、58重量%以上、59重量%以上、60重量%以上、61重量%以上、62重量%以上、63重量%以上、64重量%以上、65重量%以上、66重量%以上、67重量%以上、68重量%以上、69重量%以上、70重量%以上であることがより好ましく、上限は90重量%以下であることが好ましく、85重量%以下であることがより好ましい。ゲル粗砕工程(2)に供される含水ゲル中の水分量を大きくすることによって、優れた物性の粒子状吸水剤を得ることができる。高いCRCの含水ゲルでもゲル粗砕によって粒子形状や粒度分布の制御が行い易くなり、優れた物性の粒子状吸水剤を得ることができる。含水率の測定は、粒子状吸水剤の含水率の測定と同様の方法により行うことができる。粒子状吸水剤の含水率の測定方法は、実施例に詳細に記載する。含水率は重合工程までで調整してもよく、重合工程後に任意に部分乾燥を行うことによって調整してもよく、水添加によってさらに調整してもよい。
 (2-3)ゲル粗砕工程(2)(第1ゲル粉砕工程)
 本発明の一実施の形態における粒子状吸水剤の製造方法は、上記重合工程(1)で得られる上記含水ゲルを上記重合工程(1)と同時または上記重合工程(1)後に粗砕して粗砕含水ゲルを得るゲル粗砕工程(2)を含む。そして、本発明の一実施の形態における粒子状吸水剤の製造方法は、上記粗砕含水ゲルの重量平均粒子径(D50)が500μm~10cmである。
 ゲル粗砕工程(2)では、上記重合工程(1)で得られた含水ゲルを重合工程(1)と同時または重合工程(1)後に、好ましくは重合工程(1)後に粗砕する。そして、ゲル粗砕工程(2)では、重量平均粒子径(D50)が500μm~10cm、好ましくは600μm~6cm、より好ましくは600μm~4cmの粗砕含水ゲルを得る。この操作によって、後述のゲル粉砕装置に含水ゲルを充填し易くなり、ゲル粉砕工程(3)を円滑に実施することができる。
 上記粗砕する方法としては、含水ゲルを練らないように粗砕できる方法が好ましく、例えば、ギロチンカッター、ニーダー、ミートチョッパー等のスクリュー押出機、カッターミル等のゲル粗砕装置、より好ましくは連続式ゲル粗砕装置による粗砕等が挙げられる。また、上記粗砕工程で得られる含水ゲルの形状は、ゲル粉砕装置に充填できればよく、特に限定されない。また、上記ゲル粗砕工程(2)を複数回行ってもよい。また、ゲル粗砕工程(2)後の粗砕含水ゲルの粒度分布の対数標準偏差(σζ)は、好ましくは1.25以下、より好ましくは1.20以下、さらに好ましくは1.10以下、最も好ましくは1.00以下である。下限は0.1程度、好ましくは0.5程度である。
 また、上記粒子状吸水剤の製造方法は、ゲル粗砕工程(2)前に含水ゲルを、上述した範囲の大きさよりも粗く切断または粗砕する工程をさらに含んでいてもよい。粗砕工程直前に切断または粗砕された含水ゲルの大きさとしては、少なくとも一辺の大きさが平均3000μm(3mm)以上であることが好ましく、5000μm(5mm)以上、10mm以上、30mm以上、10cm以上、50cm以上、100cm以上(上限は300cm)であることが好ましい。ここで、ゲルの一辺とは、切断または粗砕された含水ゲルの表面上の任意の2点をとり、その2点間の距離が最大となる長さ(いわゆる長径)とする。この操作によって、ゲル粗砕装置に含水ゲルを充填し易くなり、ゲル粗砕工程(2)をより円滑に実施することができる。
 ゲル粗砕工程(2)で得られる粗砕含水ゲルの固形分あたりの遠心保持容量(含水ゲルCRC)は、10g/g以上であることが好ましく、32.0g/g以上、33.0g/g以上、34.0g/g以上、35.0g/g以上、36.0/g以上、37.0g/g以上、38.0g/g以上、39.0g/g以上、40.0g/g以上であることがより好ましく、上限は50g/gであることが好ましい。粗砕含水ゲルの含水ゲルCRCが10g/g未満または50g/gを超える場合には、ゲル粉砕時の粒子形状や粒度分布の制御が困難になるため、好ましくない。粗砕含水ゲルの含水ゲルCRCは、重合時の架橋剤添加量、単量体成分の濃度等で適宜制御することができる。本発明において粗砕含水ゲルの含水ゲルCRCが50g/gを超える場合には、粒子形状や粒度分布の制御が困難となる。
 重合工程(1)で得られる含水ゲルおよび/またはゲル粗砕工程(2)で得られる粗砕含水ゲル(より好ましくは含水ゲルおよび粗砕含水ゲル)の固形分あたりの遠心保持容量(含水ゲルCRC)を高くすることが好ましい。これにより、本発明の目的とするCRC≧32g/g以上の粒子状吸水剤を得ることがより容易になる。従来、CRC≧32g/g以上の高CRCの粒子状吸水剤を得る手段の一例として高CRCの含水ゲルを重合で得る方法があったが、従来の手法ではゲル粉砕が困難で連続生産が困難であったのに対して、本発明では係る課題を解決した。尚、乾燥工程(4)後、表面架橋工程(5)前の乾燥重合体、粉砕乾燥重合体、吸水性樹脂粉末、および吸水性樹脂粒子の含水ゲルCRCは30分で規定される(30分値・CRC)。重合工程(1)で得られる含水ゲルおよびゲル粗砕工程(2)で得られる粗砕含水ゲルの含水ゲルCRCは24時間値で規定される。
 乾燥減量で規定される粗砕含水ゲルの含水率(=100-不揮発成分量(重量%))は、50重量%以上であることが好ましく、51重量%以上、52重量%以上、53重量%以上、54重量%以上、55重量%以上、56重量%以上、57重量%以上、58重量%以上、59重量%以上、60重量%以上、61重量%以上、62重量%以上、63重量%以上、64重量%以上、65重量%以上、66重量%以上、67重量%以上、68重量%以上、69重量%以上、70重量%以上であることがより好ましく、上限は90重量%以下であることが好ましく、85重量%以下であることがより好ましい。ゲル粉砕工程(3)に供される粗砕含水ゲル中の水分量を大きくすることによって、高いCRCの粗砕含水ゲルでもゲル粉砕によって粒子形状や粒度分布の制御が行い易くなり、優れた物性の粒子状吸水剤を得ることができる。含水率の測定は、粒子状吸水剤の含水率の測定と同様の方法により行うことができる。粗砕含水ゲルの含水率は、上記重合時のモノマー濃度や重合時の水分蒸発量で調整してもよく、また重合後に得られた含水ゲルを部分乾燥したり、粗砕中または粗砕前の当該含水ゲルに水を添加したりすることで上記範囲に調整してもよい。
 当該粗砕含水ゲルは、次のゲル粉砕工程(3)に供される。
 尚、上記重合工程(1)がニーダー重合の場合は、重合工程(1)とゲル粗砕工程(2)とが同時に実施されている。ニーダー重合等、重合中にゲル粉砕を行う形態の場合は、単量体水溶液が「十分にゲル化」した状態をもって、ゲル粗砕工程(2)とする。
 例えば、ニーダー重合を採用する場合は、重合時間の経過とともに単量体水溶液が含水ゲルに変化していく。重合開始時の単量体水溶液の攪拌領域、重合途中での一定粘度を有する低重合度の含水ゲルの攪拌領域、重合の進行に伴い一部の含水ゲルのゲル粉砕開始領域、および、重合後半または終盤での含水ゲルのゲル粉砕領域は同一であり、連続的に行われる。従って、重合開始時の「単量体水溶液の攪拌」と終盤での「ゲル粗砕」とを明確に区別するため、「十分にゲル化」した状態をもって、ゲル粗砕工程(2)に移行したと判断する。尚、ゲル粗砕工程(2)前に含水ゲルを切断または粗砕を行う場合も、同様に判断することとする。
 上記「十分にゲル化」とは、重合温度が最大となった時点(重合ピーク温度)以降において、せん断力をかけて含水ゲルを細分化できる状態のことをいう。または、単量体水溶液中のモノマーの重合率が好ましくは90モル%以上、より好ましくは93モル%以上、さらに好ましくは95モル%以上、特に好ましくは97モル%以上となった時点以降において、せん断力をかけて含水ゲルを細分化できる状態のことをいう。本発明のゲル粉砕工程(3)においては、モノマーの重合率が上記範囲である含水ゲルがゲル粉砕される。尚、上記重合ピーク温度を示さない重合反応の場合(例えば、常に一定温度で重合が進行する場合、重合温度が上昇し続ける場合、等)は、上記モノマーの重合率をもって、「十分にゲル化」を規定する。
 尚、上述したようにバッチ式または連続式のニーダー重合機を採用した場合など、重合工程(1)と同時にゲル粗砕工程(2)を行う場合であっても、ニーダー重合後に、粗砕された含水ゲルのさらなる切断またはさらなる粗砕を別途行ってもよい。
 (2-4)ゲル粉砕工程(3)(第2ゲル粉砕工程)
 本発明の一実施の形態における粒子状吸水剤の製造方法は、上記粗砕工程(2)で得られた上記粗砕含水ゲルをさらに小さく粉砕して粒子状含水ゲルを得るゲル粉砕工程(3)を含む。そして、本発明の一実施の形態における粒子状吸水剤の製造方法は、上記粒子状含水ゲルの重量平均粒子径(D50’)が360μm~1500μmであり(ここで、D50>D50’)、上記ゲル粉砕工程(3)では、下記式:
 PDCR(kg/h/mm)=ゲル処理量(kg/h)/(多孔板の直径(mm))
に規定されるPDCRが0.02kg/h/mm~0.10kg/h/mmである方法である。
 ゲル粉砕工程(3)では、上記ゲル粗砕工程(2)で得られた粗砕含水ゲルを粉砕し、重量平均粒子径(D50’)が360μm~1500μm、好ましくは400μm~1250μm、より好ましくは600μm~1100μmの粒子状含水ゲルを得る。ここで、粗砕含水ゲルのD50>粒子状含水ゲルのD50’であり、好ましくはD50の0.9~さらに0.8~0.2の範囲とされる。また、ゲル粉砕工程(3)後の粒子状含水ゲルの粒度分布の対数標準偏差(σζ)は、好ましくは1.25以下、より好ましくは1.20以下、さらに好ましくは1.10以下、最も好ましくは1.00以下である。下限は0.1程度、好ましくは0.5程度である。
 ゲル粉砕工程(3)では、ゲル粉砕装置の胴体(ケーシング)部分の出口に多孔板を備え、粗砕含水ゲルが係る多孔板を通過することでゲル粉砕を行う。上記ゲル粉砕する方法としては、例えば、ニーダー、ミートチョッパー等のスクリュー押出機、カッターミル等のゲル粉砕装置による粉砕等が挙げられる。バッチ生産ではなく連続生産をする場合、連続式ゲル粉砕装置が用いられ、好ましくは連続式スクリュー押出機、具体的には、出口に多孔板を有する連続式スクリュー押出機が好ましく使用される。ゲル粉砕の制御や吸水性樹脂の性能向上や吸水性樹脂の製造時に生じる吸水性樹脂微粉のリサイクルを目的として、ゲル粉砕時に必要により水、吸水性樹脂微粉、界面活性剤、無機微粉末やその他の上記添加剤(例えば、ヒドロキシカルボン酸、(重)亜硫酸(塩)、キレート剤など)を本工程であるゲル粉砕時または前工程であるゲル粗砕時、もしくは両方の工程における含水ゲルに加えてもよい。これら使用量は目的に応じて適宜決定できるが、含水ゲルの不揮発成分量に対して水を添加する場合は0重量%~50重量%、吸水性樹脂微粉を添加する場合は0重量%~30重量%、その他成分を添加する場合は0重量%~5重量%の範囲で適宜選択される。また、後述の嵩密度は、ゲル粉砕工程(3)の条件や粒子状含水ゲル中の微量成分(例えば、界面活性剤や無機粉末など)を適宜調整することによって、目的の範囲内とすることができる。
 上記ゲル粉砕工程(3)において、粗砕含水ゲルを粉砕して粒子状含水ゲルを得るのに用いるゲル粉砕装置の稼動安定性を示す数値として、「稼動安定性定数」がある。稼動安定性定数は、ゲル粉砕装置が安定して連続稼働したことを確認後、所定時間ゲル粉砕装置を連続稼動させたときの電流値平均(Ave.)とその標準偏差(σ)とから求めることができ、下記式(5)で表すことができる。
 稼動安定性定数=(ゲル粉砕装置の)電流値の標準偏差(σ)/(ゲル粉砕装置の)電流値の平均(Ave.)  …式(5)
 尚、ここでいう所定時間とは、電流値の平均値および標準偏差値σを算出する場合の、電流値のデータを0.1秒以上、60秒以下の間隔で300回以上連続して取得するのに要する時間を指す(例えば、電流値のデータを3秒間隔で300回連続して取得すれば、3×300=900秒となる)。ゲル粉砕装置を安定して連続稼働したとは、その装置に投入した原料(粗砕含水ゲル)の供給速度(単位時間当たりの供給重量)と、ゲル粉砕装置の出口から得られた粉砕ゲルの排出速度(単位時間当たりの排出重量)とが同程度になったことを意味する。
 上記ゲル粉砕工程(3)で粗砕含水ゲルを粉砕して粒子状含水ゲルを得るのに用いるゲル粉砕装置の稼働安定性定数は、0.15以下であることが好ましく、0.12以下であることがより好ましく、0.115以下であることがさらに好ましい。下限は、0.005であることが好ましい。稼働安定性定数が0.15以下であることにより、即ち、ゲル粉砕装置の稼働安定性が増すことにより、ゲル粉砕装置を連続運転することができるため、ポリアクリル酸(塩)を含む粒子状吸水剤の連続生産が可能となり、生産効率を高めることができる。
 上記ゲル粉砕工程(3)を複数回行ってもよい。当該粒子状含水ゲルは、次の乾燥工程(4)に供される。
 本発明において、粗砕含水ゲルをゲル粉砕するためのゲル粉砕エネルギー(GGE)は、上限値として、60J/g以下が好ましく、50J/g以下がより好ましく、40J/g以下がさらに好ましい。また、下限値としては、15J/g以上が好ましく、17J/g以上がより好ましく、20J/g以上がさらに好ましく、23J/g以上がさらにより好ましく、25J/g以上がさらにより好ましく、29J/g以上がさらにより好ましく、34J/g以上が最も好ましい。ゲル粉砕エネルギー(GGE)は、好ましくは29J/g~60J/g、より好ましくは29J/g~55J/g、さらに好ましくは29J/g~50J/g、または、好ましくは34J/g~60J/g、より好ましくは34J/g~55J/g、さらに好ましくは34J/g~50J/gである。当該GGEを上記範囲内に制御することで、適切なせん断・圧縮力を粗砕含水ゲルに与えながらゲル粉砕することができる。尚、上記ゲル粉砕エネルギー(GGE)は、ゲル粉砕装置の空運転時のエネルギーを含んで規定される。
 また、ゲル粉砕装置の空運転時のエネルギーを除外したゲル粉砕エネルギー(2)(「正味ゲル粉砕エネルギー」とも称する)によって規定することもできる。本発明においては、粗砕含水ゲルをゲル粉砕するためのゲル粉砕エネルギー(2)(GGE(2))は、上限値として、40J/g以下が好ましく、38J/g以下がより好ましく、35J/g以下がさらに好ましい。また、下限値としては、9J/g以上が好ましく、12J/g以上がより好ましく、15J/g以上がさらに好ましく、15J/g以上がさらに好ましく、19J/g以上がさらに好ましい。ゲル粉砕エネルギー(2)(GGE(2))は、好ましくは15J/g~40J/g、より好ましくは15J/g~38J/g、さらに好ましくは15J/g~35J/g、または19J/g~40J/g、好ましくは19J/g~38J/g、より好ましくは19J/g~35J/gである。当該GGEを上記範囲内に制御することで、適切なせん断・圧縮力を粗砕含水ゲルに与えながらゲル粉砕することができる。
 このように、GGEを上記範囲内に制御して適切なせん断・圧縮力を粗砕含水ゲルに与えながらゲル粉砕し、粒子状吸水剤の粒子形状を化学的にではなく、物理的にコントロールする。これにより、単位重量当たりの表面積が広くなり、当該粒子状吸水剤の吸水速度が速くなる。このため、高吸水倍率と高吸水速度とが両立し、さらに逆戻り量が従来の粒子状吸水剤と比較して低減された粒子状吸水剤を製造することができる。
 ゲル粗砕工程(2)およびゲル粉砕工程(3)が同一装置内で行われる場合には、含水ゲルが上述した範囲内の重量平均粒子径(D50)を有する粗砕含水ゲルとなった状態をもって、ゲル粉砕工程(3)が開始されたとする。
 (多孔板)
 上記ゲル粉砕装置は、ゲル粉砕装置の胴体(ケーシング)部分の出口に多孔板を備え、粗砕含水ゲルが係る多孔板を通過することでゲル粉砕を行う。ゲル粉砕装置の胴体(ケーシング)は、円筒状(楕円筒状も含む)であってもよいし、それ以外の形状であってもよい(例えば、直方体など)。作業性の点から、円筒状の胴体(ケーシング)が好ましい。上記多孔板のサイズ(直径)は、ゲル粉砕装置に投入した粗砕含水ゲルが、その装置の胴体の出口を通過する領域のサイズ(大きさ、直径)を示している。換言すると、多孔板のサイズ(直径)は、その出口の断面のサイズと一致する。仮に、胴体の出口の断面よりも多孔板のサイズが大きい場合、その多孔板のサイズおよび形状を胴体の出口断面のサイズおよび形状と同じとする。上記多孔板に関して、その厚さ、孔径、および開孔率は、ゲル粉砕装置の単位時間当りの処理量や含水ゲルの性状等によって適宜選択でき、特に限定されない。但し、多孔板の厚さは、3.5mm~40mmであることが好ましく、6mm~20mmであることがより好ましい。また、多孔板の孔径は、3mm~25mmであることが好ましく、3.5mm~20mmであることがより好ましく、4mm~15mmであることがさらに好ましく、4.5mm~10mmであることが最も好ましい。さらに、多孔板の開孔率は、20%~80%であることが好ましく、25%~50%であることがより好ましい。尚、異なる孔径(mm)の孔を複数有する多孔板を使用する場合は、各々の孔の孔径の単純平均値をそのゲル粉砕装置における多孔板の孔径とする。また、当該孔の形状は円形が好ましいが、円形以外の形状(例えば、四角形、楕円形、スリット形等)である場合には、その孔の開孔面積を算出し、円形とした場合の直径に換算して孔径(mm)とする。多孔板が有する孔の数は、2~1000個であることが好ましく、5~500個であることがより好ましく、10~100個であることがさらに好ましい。
 上記多孔板の厚さが3.5mm未満、孔径が25mm超、開孔率が80%超の何れか一つ以上に該当する場合、含水ゲルに十分なせん断・圧縮力を与えることができないおそれがある。逆に、上記多孔板の厚さが40mm超、孔径が3mm未満、開孔率が20%未満の何れか一つ以上に該当する場合、粗砕含水ゲルに過剰なせん断・圧縮力を与えてしまい、物性低下を招くおそれがある。
 また、多孔板のサイズ(直径、単位はmm)は、単位時間当たりのゲル処理量(kg/h)に対して最適な比率がある。具体的には、当該比率は、下記式(6)で示すように、単位時間当たりのゲル処理量(kg/h)を、多孔板の直径(mm)を二乗した値で割った値(以下、PDCR;Plate Diameter and Capacity Ratioと略す)で示される。尚、多孔板の形状が円形でない場合は、多孔板の面積を円の面積に換算して、その円の面積から求められる直径(mm)を多孔板の直径として、上記PDCRを計算する。
 PDCR(kg/h/mm)=ゲル処理量(kg/h)/(多孔板の直径(mm))  …式(6)
 PDCRの好ましい範囲は、0.01~0.12であり、さらに好ましくは0.02~0.10である。
 (粉砕時のゲルの温度変化)
 上記ゲル粉砕装置に投入される粗砕含水ゲルの温度は、均一な粉砕の観点から、40℃~120℃が好ましく、60℃~115℃がより好ましく、80℃~110℃が最も好ましい。また、ゲル粉砕の安定性の観点から、ゲル粉砕時の温度低下が起こらない方が好ましい。具体的には、ゲル粉砕装置の出口から排出される粒子状含水ゲルの温度(℃)から、ゲル粉砕装置に投入される粗砕含水ゲルの温度(℃)を引いた値が、好ましくは-9℃以上、より好ましくは-5℃以上、さらに好ましくは0℃以上、さらにより好ましくは5℃以上、最も好ましくは10℃以上である。特に限定されないが、上限は30℃程度である。
 上記以外のゲル粉砕条件や形態に関しては、上記特許文献6(国際公開第2011/126079号)に開示される内容が、本発明において参考とされ得る。
 (2-5)乾燥工程(4)
 本発明の一実施の形態における粒子状吸水剤の製造方法は、上記ゲル粉砕工程(3)で得られた上記粒子状含水ゲルを乾燥して、乾燥重合体を得る乾燥工程(4)を含む。尚、乾燥工程(4)と後述の表面架橋工程(5)とを同時に行ってもよい。
 本工程は、上記ゲル粉砕工程(3)で得られた粒子状含水ゲルを、所望する不揮発成分率となるまで乾燥させて乾燥重合体を得る工程である。上記不揮発成分率は、乾燥減量(吸水性樹脂1gを180℃で3時間加熱したときの重量変化)から求められる。上記不揮発成分率は、好ましくは80重量%以上、より好ましくは85重量%~99重量%、さらに好ましくは90重量%~98重量%、特に好ましくは92重量%~97重量%である。
 上記粒子状含水ゲルの乾燥方法としては、特に限定されないが、例えば、加熱乾燥、熱風乾燥、減圧乾燥、流動層乾燥、赤外線乾燥、マイクロ波乾燥、ドラムドライヤー乾燥、疎水性有機溶媒との共沸脱水による乾燥、高温の水蒸気を利用した高湿乾燥等が挙げられる。中でも乾燥効率の観点から、熱風乾燥が好ましく、通気ベルト上で熱風乾燥を行うバンド乾燥がより好ましい。
 上記熱風乾燥における熱風の風速は、垂直方向(上下方向)に好ましくは0.8m/s~2.5m/s、より好ましくは0.003m/s~0.1m/s、さらに好ましくは0.005m/s~0.06m/sである。
 上記熱風乾燥における乾燥時間は、バンド乾燥単位面積当たりのゲル重量が10kg/m~50kg/mである粒子状含水ゲルに対して、10分間~60分間であることが好ましい。
 また、バンド乾燥時の粒子状含水ゲルの厚さは、好ましくは20cm以下、より好ましくは15cm以下、さらに好ましくは12cm以下、最も好ましくは9.5cm以下である。
 また、乾燥される粒子状含水ゲルの嵩密度は、好ましくは0.20g/ml~0.50g/ml、より好ましくは0.25g/ml~0.45g/ml、最も好ましくは0.30g/ml~0.40g/mlである。粒子状ゲルの厚さおよび嵩密度を、適度な範囲とすることで、乾燥重合体の粉砕が容易になるため好ましい。嵩密度は、ゲル粉砕工程(3)の条件や粒子状含水ゲル中の微量成分(例えば、界面活性剤や無機粉末など)を適宜調整することによって、目的の範囲内とすることができる。
 上記熱風乾燥における乾燥温度(熱風の温度)は、吸水性樹脂の色調や乾燥効率の観点から、好ましくは120℃~250℃、より好ましくは150℃~200℃である。
 尚、熱風の風速や乾燥時間等、上記乾燥温度以外の乾燥条件に関しては、乾燥に供する粒子状含水ゲルの含水率や総重量、および目的とする不揮発成分率に応じて、適宜設定すればよい。バンド乾燥を行う場合には、国際公開第2006/100300号、同第2011/025012号、同第2011/025013号、同第2011/111657号等に記載される諸条件が適宜適用される。
 乾燥温度、乾燥時間、および熱風の風速を上記範囲とすることで、得られる吸水性樹脂のCRC(遠心分離機保持容量)や水可溶分(Ext)、色調を所望する範囲とすることができる。
 (2-6)粉砕工程
 本工程は、上記乾燥工程(4)で得られた乾燥重合体を粉砕して、粉砕された乾燥重合体(以下、「粉砕乾燥重合体」と称する)を得る工程である。
 本発明の粉砕工程で使用される機器としては、例えば、ロールミル、ハンマーミル、スクリューミル、ピンミル等の高速回転式粉砕機、振動ミル、ナックルタイプ粉砕機、円筒型ミキサー等が挙げられ、必要により併用される。
 (2-7)分級工程
 本工程は、上記粉砕工程で得られた粉砕乾燥重合体を、所定範囲の粒度に調整して、吸水性樹脂粉末(以下、表面架橋を施す前の吸水性樹脂を、便宜上「吸水性樹脂粉末」と称する)を得る工程である。
 また、本発明の分級工程での粒度調整方法としては、特に限定されないが、例えば、JIS標準篩(JIS Z 8801-1(2000))を用いた篩分級や気流分級等が挙げられる。尚、吸水性樹脂の粒度調整は、上記粉砕工程、分級工程に限定されず、重合工程(1)(特に逆相懸濁重合や噴霧液滴重合)、その他の工程(例えば、造粒工程、微粉回収工程)で適宜実施することができる。
 本発明で得られる吸水性樹脂粉末は、重量平均粒子径(D50)が、好ましくは200μm~600μm、より好ましくは200μm~550μm、さらに好ましくは250μm~500μm、特に好ましくは350μm~450μmである。また、粒子径150μm未満の粒子の割合は、好ましくは10重量%以下、より好ましくは5重量%以下、さらに好ましくは1重量%以下である。粒子径850μm以上の粒子の割合は、好ましくは5重量%以下、より好ましくは3重量%以下、さらに好ましくは1重量%以下であり、さらに好ましくは710μm以上の粒子の割合は、好ましくは5重量%以下、より好ましくは3重量%以下、さらに好ましくは1重量%以下である。尚、これらの粒子の割合の下限値としては、何れの場合も少ないほど好ましく、0重量%が望まれるが、0.1重量%程度でもよい。さらに、粒度分布の対数標準偏差(σζ)は、好ましくは0.20~0.50、より好ましくは0.25~0.40、さらに好ましくは0.27~0.35である。尚、これらの粒度は、米国特許第7638570号やEDANA ERT420.2-02に開示されている測定方法に準じて、標準篩を用いて測定される。
 上述した粒度は、表面架橋後の吸水性樹脂粒子(以下、表面架橋を施す前の吸水性樹脂を、便宜上「吸水性樹脂粒子」と称する)のみならず、最終製品としての粒子状吸水剤に関しても適用される。そのため、吸水性樹脂粒子において、上記範囲の粒度を維持するように、表面架橋処理(表面架橋工程(5))されることが好ましく、表面架橋工程(5)以降に整粒工程を設けて粒度調整されることがより好ましい。
 (2-8)表面架橋工程(5)
 本発明の一実施の形態における粒子状吸水剤の製造方法は、上記乾燥工程(4)と同時または乾燥工程(4)後に、表面架橋工程(5)を含む。
 本工程は、粒子状含水ゲル、乾燥重合体、粉砕乾燥重合体、または吸水性樹脂粉末、好ましくは吸水性樹脂粉末の表面層(吸水性樹脂粉末の表面から数10μmまでの部分)に、さらに架橋密度の高い部分を設ける工程である。本工程は、混合工程、加熱処理工程、および冷却工程(任意)から構成される。本工程により、圧力に対する吸収性、通液性、吸水速度等の吸水性能が向上する。それゆえ、(1)水性液を吸収してもゲルブロッキング(粒子状吸水剤同士が凝集すること)を起こし難い、(2)膨潤ゲル弾性率が高くなり荷重下での吸水力が高くなる、(3)耐吸湿ブロッキング性が良い、等の特長を有する粒子状吸水剤を製造することができる。
 表面架橋工程(5)を行うことにより、吸水性樹脂粉末表面でのラジカル架橋や表面重合、表面架橋剤との架橋反応等によって表面架橋された吸水性樹脂(吸水性樹脂粒子)が得られる。
 (表面架橋前のCRC)
 本発明の粒子状吸水剤の吸水倍率であるCRC(遠心分離機保持容量)は、必須に32.0g/g以上である。このため、表面架橋前の乾燥重合体、粉砕乾燥重合体、吸水性樹脂粉末、および吸水性樹脂粒子のCRCも32.0g/g以上であり、さらにより高いCRCであることが好ましい。表面架橋前の乾燥重合体、粉砕乾燥重合体、吸水性樹脂粉末、および吸水性樹脂粒子のCRCは、目的とする粒子状吸水剤のCRCに比べ、2g/g~40g/gの範囲で高いCRCであることが好ましく、3g/g~40g/gの範囲で高いCRCであることがより好ましく、4g/g~20g/gの範囲で高いCRCであることがさらに好ましく、5g/g~15g/g高いCRCであることがさらにより好ましく、6g/g~10g/g高いCRCであることが最も好ましい。表面架橋前後のCRCの差が小さいと、AAPなどの物性が低くなり、また差が大きすぎる場合、物性や生産性が低下することがある。具体的には、表面架橋前の乾燥重合体、粉砕乾燥重合体、吸水性樹脂粉末、および吸水性樹脂粒子のCRCとして目的とする粒子状吸水性剤のCRCにもよるが、35.0g/g以上が好ましく、38.0g/g以上がより好ましく、40.0g/g以上がさらに好ましく、43.0g/g以上がさらにより好ましく、または45.0g/g以上がさらにより好ましく、50.0g/g以上が最も好ましい。また、上限としては、AAPや可溶分や通液性などの他の物性とのバランスから、70.0g/g以下が好ましく、60.0g/g以下がより好ましい。
 (表面架橋剤)
 本発明で使用される表面架橋剤としては、特に限定されないが、有機または無機の表面架橋剤が挙げられる。中でも、吸水性樹脂の物性や表面架橋剤の取り扱い性の観点から、カルボキシル基と反応する有機表面架橋剤が好ましい。例えば、米国特許7183456号に開示される一種類または二種類以上の表面架橋剤が挙げられる。より具体的には、多価アルコール化合物、エポキシ化合物、ハロエポキシ化合物、多価アミン化合物またはそのハロエポキシ化合物との縮合物、オキサゾリン化合物、オキサゾリジノン化合物、多価金属塩、アルキレンカーボネート化合物、環状尿素化合物等が挙げられる。
 表面架橋剤の使用量(複数使用の場合は合計の使用量)は、吸水性樹脂粉末100重量部に対して、好ましくは0.01重量部~10重量部、より好ましくは0.01重量部~5重量部である。また、表面架橋剤は水溶液として添加することが好ましく、このときの水の使用量は、吸水性樹脂粉末100重量部に対して、好ましくは0.1重量部~20重量部、より好ましくは0.5重量部~10重量部である。さらに必要に応じて、親水性有機溶媒を使用する場合には、その使用量は、吸水性樹脂粉末100重量部に対して、好ましくは10重量部以下、より好ましくは5重量部以下である。親水性有機溶媒を使用する場合の使用量の下限は0重量部である。
 また、後述の「再加湿工程」等で添加される各種添加剤をそれぞれ0重量部~5重量部の範囲内で表面架橋剤(水溶液)に混合して添加したり、本混合工程で別途添加したりすることもできる。
 (混合工程)
 本工程は、吸水性樹脂粉末と上記表面架橋剤とを混合する工程である。表面架橋剤の混合方法に関しては、特に限定されないが、表面架橋剤溶液を予め作製しておき、当該溶液を吸水性樹脂粉末に対して、好ましくは噴霧または滴下して、より好ましくは噴霧して混合する方法が挙げられる。
 上記混合を行う装置としては、特に限定されないが、好ましくは高速攪拌型混合機、より好ましくは高速攪拌型連続混合機が挙げられる。
 (加熱処理工程)
 本工程は、上記混合工程から排出された混合物に熱を加えて、吸水性樹脂粉末の表面上で架橋反応を起させる工程である。
 上記架橋反応を行う装置としては、特に限定されないが、好ましくはパドルドライヤーが挙げられる。架橋反応での反応温度は、使用される表面架橋剤の種類に応じて適宜設定されるが、好ましくは50℃~300℃、より好ましくは100℃~200℃である。
 (冷却工程)
 本工程は、上記加熱処理工程後に必要に応じて実施される任意の工程である。
 冷却工程を行う装置としては、特に限定されないが、好ましくは加熱処理工程で使用される装置と同一仕様の装置であり、より好ましくはパドルドライヤーである。熱媒を冷媒に変更することで、冷却装置として使用することができるためである。尚、上記加熱処理工程で得られた吸水性樹脂粒子は、冷却工程において、好ましくは40℃~80℃、より好ましくは50℃~70℃に、必要に応じて強制冷却される。
 上記冷却工程後に、表面架橋された吸水性樹脂粒子に物理的ダメージを与えてもよい。これにより、当該吸水性樹脂粒子の形状は不定形破砕状となり、吸水性樹脂粒子は、後述する再加湿工程で添加される添加剤を効率良く含むことができる。
 吸水性樹脂粒子に物理的ダメージを与える方法としては、吸水性樹脂粒子に衝撃を与えることができれば特に限定されないが、例えば、ペイントシェーカーテスト(PS-test)が挙げられる。当該ペイントシェーカーテスト(PS-test)は、直径6cm、高さ11cmのガラス製容器に、直径6mmのガラスビーズ10g、吸水性樹脂30gを入れてペイントシェーカー(東洋製機製作所製品No.488)に取り付け、800cycle/分(CPM)で30分間、振盪する方法である。ペイントシェーカーテストで用いる装置の詳細は特開平9-235378号公報に開示されている。振盪後、目開き2mmのJIS標準篩でガラスビーズを除去して、ダメージを与えられた吸水性樹脂粒子を得る。
 ペイントシェーカーテスト前後で発生する150μm以下の粒子径を有する吸水性樹脂粒子の増加量は、+5%以下であることが好ましく、+3%であることがより好ましく、+2%以下であることがさらに好ましく、+1%以下であることが最も好ましい。当該増加量の下限値は0%である。
 (2-9)再加湿工程
 本工程は、上記乾燥工程(4)後の一つ以上の工程において、下記多価金属塩、カチオン性ポリマー、キレート剤、無機還元剤、ヒドロキシカルボン酸化合物、および吸湿流動性改善剤からなる群より選択される少なくとも一種類の添加剤を添加する工程である。
 尚、上記添加剤は、水溶液またはスラリー液で添加されるため、吸水性樹脂粒子は再度、水膨潤する。このため、本工程を「再加湿工程」と称する。また、上述したように、添加剤は上記表面架橋剤(水溶液)と同時に、吸水性樹脂粉末と混合することもできる。
 (多価金属塩および/またはカチオン性ポリマー)
 本発明において、得られる吸水性樹脂の吸水速度、通液性、吸湿流動性等の向上の観点から、多価金属塩および/またはカチオン性ポリマーを添加することが好ましい。
 上記多価金属塩および/またはカチオン性ポリマーとして、具体的には、国際公開第2011/040530号の「〔7〕多価金属塩および/またはカチオン性ポリマー」に開示された化合物およびその使用量が、本発明に適用される。
 (キレート剤)
 本発明において、得られる吸水性樹脂の色調(着色防止)、劣化防止等の観点から、キレート剤を添加することが好ましい。
 上記キレート剤の添加量は、粒子状吸水剤または吸水性樹脂100重量部に対して、好ましくは0.001重量部~0.2重量部、より好ましくは0.003重量部~0.1重量部、さらに好ましくは0.005重量部~0.06重量部である。粒子状吸水剤にキレート剤を添加することにより、粒子状吸水剤の耐尿性を向上させることができる。
 上記キレート剤としては、例えば、エチレンジアミン四酢酸(塩)、トリエチレンテトラミン六酢酸(塩)、ジエチレントリアミン五酢酸(DTPA)(塩)、trans-1,2-ジアミノシクロヘキサン四酢酸(塩)、イミノ二酢酸(塩)、ヒドロキシエチルイミノ二酢酸(塩)、ニトリロ三酢酸(塩)、ニトリロ三プロピオン酸(塩)、ヒドロキシエチレンジアミン三酢酸(塩)、ヘキサメチレンジアミン四酢酸(塩)、ビス(2-ヒドロキシエチル)グリシン(塩)、ジアミノプロパノール四酢酸(塩)、エチレンジアミン-2-プロピオン酸(塩)、グリコールエーテルジアミン四酢酸(塩)、ビス(2-ヒドロキシベンジル)エチレンジアミン二酢酸(塩)、3-ヒドロキシ-2,2-イミノジコハク酸(塩)、イミノジコハク酸(塩)、メチルグリシン二酢酸(塩)、エチレンジアミンテトラ(メチレンホスフィン酸)(塩)、エチレンジアミン-N,N’-ジ(メチレンホスフィン酸)(塩)、ニトリロ酢酸-ジ(メチレンホスフィン酸)(塩)、ニトリロジ酢酸-(メチレンホスフィン酸)(塩)、ニトリロ酢酸-β-プロピオン酸-メチレンホスホン酸(塩)、ニトリロトリス(メチレンホスホン酸)(塩)、シクロヘキサンジアミンテトラ(メチレンホスホン酸)(塩)、エチレンジアミン-N,N’-ジ酢酸-N,N’-ジ(メチレンホスホン酸)(塩)、エチレンジアミン-N,N’-ジ(メチレンホスホン酸)(塩)、ポリメチレンジアミンテトラ(メチレンホスホン酸)(塩)、ジエチレントリアミンペンタ(メチレンホスホン酸)(塩)、および1-ヒドロキシエチリデンジホスホン酸(塩)が挙げられる。この中でも、アミノカルボン酸(塩)が好ましく、ジエチレントリアミン五酢酸(DTPA)(塩)が特に好ましい。粒子状吸水剤に上記キレート剤を添加することにより、粒子状吸水剤の耐尿性を向上させることができる。
 (無機還元剤)
 本発明において、得られる吸水性樹脂の色調(着色防止)、劣化防止、残存モノマー低減等の観点から、無機還元剤を添加することが好ましい。
 上記無機還元剤として、具体的には、国際公開第2011/040530号の「〔3〕無機還元剤」に開示された化合物およびその使用量が、本発明に適用される。
 (ヒドロキシカルボン酸化合物)
 ヒドロキシカルボン酸化合物として、上述した通り、国際公開第2011/040530号の「〔6〕α-ヒドロキシカルボン酸化合物」に開示された化合物およびその使用量が、本発明に適用される。
 (吸湿流動性改善剤)
 本発明において、吸湿流動性の向上の観点から、吸湿流動性改善剤を添加することが好ましい。吸湿流動性改善剤を添加することにより、流動性が低くなり易い、高いCRCの粒子状吸水剤の流動性を高めることができる。
 上記吸湿流動性改善剤の添加量は、粒子状吸水剤または吸水性樹脂100重量部に対して、好ましくは0.01重量部~1.0重量部、より好ましくは0.02重量部~0.7重量部、さらに好ましくは0.03重量部~0.5重量部である。上記条件を満たすことにより、粒子状吸水剤の吸湿流動性が改善され、粒子状吸水剤および繊維基材を用いて吸収体を作製する場合に、装置等の設備への付着を少なくすることができる。
 上記吸湿流動性改善剤は、二酸化ケイ素(シリカ)、リン酸塩、ハイドロタルサイト、およびアルミニウム塩からなる群より選択される。本発明において、ハイドロタルサイト構造を有する2価および3価の2種類の金属カチオンと水酸基とを含有する多元金属化合物、およびリン酸類のアニオンと2価あるいは3価の金属カチオンとからなる水不溶性金属リン酸塩が挙げられる。上記吸湿流動性改善剤を添加することにより粒子状吸水剤の吸湿流動性が改善され、粒子状吸水剤および繊維基材を用いて吸収体を作製する場合に、装置等の設備への付着を少なくすることができる。本発明の一実施の形態における粒子状吸水剤の製造方法は、重合工程(1)後の一つ以上の工程において、吸湿流動性改善剤を添加することが好ましい。
 (2-10)上述した添加剤以外の各種添加剤の添加工程
 本発明においては、粒子状吸水剤に種々の機能を付加させるため、粒子状含水ゲル、乾燥重合体、吸水性樹脂粉末、または吸水性樹脂粒子に、上述した添加剤以外の各種添加剤を添加することもできる。当該各種添加剤として、具体的には、界面活性剤、リン原子を有する化合物、酸化剤、有機還元剤、水不溶性無機微粒子、金属石鹸等の有機粉末、消臭剤、抗菌剤、パルプ、および熱可塑性繊維等が挙げられる。尚、上記界面活性剤は、国際公開第2005/075070号に開示された化合物が、また、上記水不溶性無機微粒子は、国際公開第2011/040530号の「〔5〕水不溶性無機微粒子」に開示された化合物が、それぞれ本発明に適用される。
 各種添加剤の使用量(添加量)は、その用途に応じて適宜決定されるため、特に限定されないが、各種添加剤を添加する前の吸水性樹脂(例えば、吸水性樹脂粉末)100重量部に対して、好ましくは3重量部以下、より好ましくは1重量部以下である。また、各種添加剤は、上記工程とは別の工程(例えば再加湿工程)で添加することもできる。
 (2-11)その他の工程
 本発明においては、上述した各工程以外に、造粒工程、整粒工程、微粉除去工程、微粉の再利用工程等の工程を、必要に応じて実施することができる。さらに、本発明においては、輸送工程、貯蔵工程、梱包工程、保管工程等の工程を、必要に応じて実施してもよい。尚、「整粒工程」は、表面架橋工程(5)以降の工程において吸水性樹脂等が凝集し、所望の大きさを超えた場合に、当該吸水性樹脂等を分級、粉砕して整粒する工程であり、必要に応じて上述した各工程とともに実施される場合も包含する。また、「微粉の再利用工程」は、微粉をそのまま、粒子状吸水剤の製造工程の何れかの工程に原料の一部として添加する工程、および/または、微粉を大きな含水ゲルに造粒して、ゲル粉砕工程(3)や乾燥工程(4)に原料の一部として添加する工程である。
 尚、上記製造方法で得られる粒子状吸水剤、液透過性シートと液不透過性シートとの間に、当該粒子状吸水剤を担持させる吸収体、並びに、当該吸収体を含む衛生物品も、本発明の範疇に含まれる。
 本発明の一実施の形態における吸収体の製造方法は、液透過性シートと液不透過性シートとの間に、粒子状吸水剤を担持させる吸収体の製造方法であって、上記粒子状吸水剤の製造方法が、アクリル酸(塩)系単量体を含有する水溶液を重合してポリアクリル酸(塩)を含む含水ゲルを得る重合工程(1)と、上記含水ゲルを上記重合工程(1)と同時または上記重合工程(1)後に粗砕して粗砕含水ゲルを得るゲル粗砕工程(2)と、上記粗砕含水ゲルをさらに小さく粉砕して粒子状含水ゲルを得るゲル粉砕工程(3)と、上記粒子状含水ゲルを乾燥して、乾燥重合体を得る乾燥工程(4)と、上記乾燥工程(4)と同時または乾燥工程(4)後に、表面架橋工程(5)と、を含む、粒子状吸水剤の遠心分離機保持容量(CRC)が32.0g/g以上である、粒子状吸水剤の製造方法であって、上記含水ゲルの不揮発成分率は、10重量%~48重量%であり、上記粗砕含水ゲルの重量平均粒子径(D50)は、500μm~10cmであり、上記粒子状含水ゲルの重量平均粒子径(D50’)は、360μm~1500μmであり(ここで、D50>D50’)、上記ゲル粉砕工程(3)では、下記式で規定されるPDCRが0.02kg/h/mm~0.10kg/h/mmである方法である;
 PDCR(kg/h/mm)=ゲル処理量(kg/h)/(多孔板の直径(mm))
吸収体の製造方法は、上述した粒子状吸水剤の各工程をさらに含んでいてもよい。尚、上述した粒子状吸水剤において説明した内容と重複するため、説明を省略することとする。
 本明細書において引用された、科学文献、特許、特許出願等の参考文献は、その全体が、各々具体的に記載されたのと同じ程度に本明細書において参考として援用される。
 以上、本発明を容易に理解するために、好ましい実施形態を示して説明した。以下、実施例に基づいて本発明をさらに説明するが、上述の説明および以下の実施例は、好ましい実施形態を例示する目的にのみ提供され、本発明を限定する目的では提供していない。従って、本発明の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限定されず、特許請求の範囲によってのみ限定される。
 〔3〕粒子状吸水剤の好ましい特性
 優れた物性を有する粒子状吸水剤は、上述した製造方法によって得られることが見出された。
 本発明で得られるポリアクリル酸(塩)を含む粒子状吸水剤は、該粒子状吸水剤を衛生用品、特に紙おむつに使用する場合には、以下に掲げた(a)~(g)の物性のうち、少なくとも一つ以上、好ましくは加圧下吸水倍率(AAP)および/または吸湿流動性(B.R.)を含めた二つ以上、より好ましくはAAPおよび/またはB.R.を含めた三つ以上、最も好ましくは全ての物性を、所望する範囲に制御することが望まれる。これらの物性が下記の範囲を満たさない場合、本発明の効果が十分に得られず、高濃度の紙おむつにおいて十分な性能を発揮しないおそれがある。
 また、本発明で得られるポリアクリル酸(塩)を含む粒子状吸水剤は、その形状について特に限定されないが、好ましくは粒子状である。本項においては、粒子状吸水剤または吸水性樹脂について、その物性を説明する。尚、下記物性は、特に断りのない限り、EDANA法に準拠して測定した。
 粒子状吸水剤のCRCが32g/g以上であり、さらに下記(a)~(g)の少なくとも一つを満たす粒子状吸水剤およびその充填物、それらの製造方法を提供する。
 (a)DRC5minが35g/g以上
 (b)重量平均粒子径が200μm~600μmで850μm以上の粒子の割合が5重量%以下、150μm未満の粒子の割合が5重量%以下、粒度分布の対数標準偏差が0.20~0.50
 (c)表面張力が66mN/m以上
 (d)吸湿流動性が50重量%以下
 (e)可溶分が25重量%以下、劣化可溶分が30重量%以下
 (f)AAPが18g/g以上
 (g)嵩比重が0.57g/cm~0.75g/cm
 (3-1)DRC5min(浸漬保持容量5分値)
 本発明の粒子状吸水剤のDRC5minは、上記DRC指数を満たせば特に限定されないが、好ましくは35g/g以上、より好ましくは38g/g以上、さらに好ましくは40g/g以上である。上限も特に限定されないが、通常60g/g以下、好ましくは55g/g以下である。ここで、DRCは、国際公開第2017/170605号に開示の方法で規定される。
 (3-2)CRC(遠心分離機保持容量)
 本発明の粒子状吸水剤の吸水倍率CRC(遠心分離機保持容量)は、32.0g/g以上であり、33.0g/g以上、34.0g/g以上、35.0g/g以上、36.0g/g以上、38.0g/g以上、40.0g/g以上、42.0g/g以上の順に好ましい。CRCは一般に高いほど好ましいが、AAPや可溶分や通液性などの他の物性とのバランスから、CRCの上限は70.0g/g以下、60.0g/g以下、50.0g/g以下、48.0g/g以下、45.0g/g以下の順に好ましい。本発明では、従来製造が困難であったCRCが40.0g/g以上の吸水剤も安定的な連続生産が可能となる。
 該CRCが32.0g/g未満の場合、吸収量が少なく、紙おむつ等の衛生用品の吸収体として適さない。また、該CRCが70g/gを超える場合、尿や血液等の体液等を吸収する速度が低下するため、高吸水速度タイプの紙おむつ等への使用に適さない。尚、CRCは、内部架橋剤量の増減や表面架橋剤の増減等により制御することができる。
 (3-3)粒度(粒度分布、重量平均粒子径(D50)、粒度分布の対数標準偏差(σζ))
 本発明の粒子状吸水剤の粒度(粒度分布、重量平均粒子径(D50)、粒度分布の対数標準偏差(σζ))は、表面架橋を施す前の吸水性樹脂粉末の粒度と同じになるように、制御される。好ましくは、上記粉砕工程(2-6)、分級工程(2-7)に記載される通りである。
 (3-4)表面張力
 本発明の粒子状吸水剤の表面張力(実施例に記載の測定法で規定)は、好ましくは66mN/m以上、好ましくは67mN/m以上、より好ましくは68mN/m以上、さらに好ましくは69mN/m以上、さらに好ましくは70mN/m以上、特に好ましくは71mN/m以上、最も好ましくは72mN/m以上であり、実質的な表面張力の低下もない。上限は通常75mN/mで十分である。
 表面張力が上記の条件を満たすことにより、紙おむつでの逆戻り量を低減させることができる。
 一つの好ましい実施形態は、本発明の粒子状吸水剤の粒子形状が不定形破砕状である形態である。逆相懸濁重合や気相重合で得られた球状粒子に比べて不定形破砕状では被表面積が大きいため、粒子状吸水剤の吸水速度が大きくなり、かつ、パルプへの固定も容易にすることができるからである。
 (3-5)吸湿流動性(吸湿ブロッキング率)(B.R.)
 具体的な吸湿流動性(B.R.)の測定(評価)方法は実施例の項に記載する。本発明の粒子状吸水剤の吸湿流動性(B.R.)は、通常50重量%以下、好ましくは40重量%以下、より好ましくは30重量%以下、さらに好ましくは20重量%以下、よりさらに好ましくは10重量%以下、最も好ましくは0重量%である。本発明の粒子状吸水剤の吸湿流動性(B.R.)の範囲は、0~50重量%、0~40重量%、0~30重量%、0~20重量%、0~10重量%の順に好ましい。上記吸湿流動性(B.R.)が50重量%を超える場合、多湿の環境下において、粒子状吸水剤の取り扱い性が悪く、衛生材料向けの薄型吸収体の製造時等、製造プラントの移送配管内での凝集および詰まりの発生や、親水性繊維と均一に混合できないという問題が生じるおそれがある。上記、吸湿流動性(B.R.)は、前述の吸湿流動性改善剤の添加によって達成することができる。
 上記の条件を満たすことにより粒子状吸水剤および繊維基材を用いて吸収体を作製するときに、装置設備への付着を少なくすることができる。
 (3-6)水可溶分(Ext)、劣化可溶分
 一つの好ましい実施形態では、本発明の粒子状吸水剤の水可溶分(Ext)が25重量%以下、好ましくは24重量%以下、より好ましくは22重量%以下、さらに好ましくは20重量%以下である。下限は特に限定されないが、好ましくは0.5重量%である。上記の条件を満たすことにより粒子状吸水剤の吸収能力(例えば加圧下吸水倍率など)が向上するため、上記粒子状吸水剤を紙おむつに使用したときに、Re-wetなどの性能を向上することができる。
 一つの好ましい実施形態では、本発明の粒子状吸水剤の劣化可溶分が30重量%以下、好ましくは27重量%以下、より好ましくは24重量%以下、さらに好ましくは20重量%以下である。下限は特に限定されないが、好ましくは0.5重量%である。上記の条件を満たすことにより粒子状吸水剤の耐尿性が向上するため、上記粒子状吸水剤を紙おむつに使用したときに、尿等の体液によるゲル劣化、肌荒れ、被れ、悪臭の除去能力が低下する等の問題を抑制することができる。
 (3-7)加圧下吸水倍率(AAP)
 本発明の粒子状吸水剤の加圧下吸水倍率(AAP)は、荷重2.06kPaにおいて(好ましくは荷重4.83kPaにおいても)、好ましくは、18g/g以上、より好ましくは22g/g以上、さらに好ましくは24g/g以上、特に好ましくは26g/g以上、さらに特に好ましくは28g/g以上、最も好ましくは30g/g以上である。上限値については特に限定されないが、好ましくは40g/g以下である。
 該AAPが18g/g未満の場合、吸収体に圧力が加わったときの液の逆戻り量(通常、「Re-Wet(リウェット)」と称する)が多くなり、紙おむつ等の衛生用品の吸収体として適さない。尚、AAPは、粒度や表面架橋剤等で制御することができる。
 上記の条件を満たすことにより、上記の粒子状吸水剤を用いて製造した紙おむつは、パルプからの尿の吸い取り能力に優れ、逆戻り量を低減でき、肌かぶれや尿漏れを抑制できるようになる。
 (3-8)嵩比重
 本発明の粒子状吸水剤の嵩比重は、0.57g/cm~0.75g/cm、好ましくは0.58g/cm~0.74g/cm、より好ましくは0.59g/cm~0.73g/cm、さらに好ましくは0.60g/cm~0.72g/cmである。
 (3-9)拡散吸収倍率(DAP)
 本発明に係る粒子状吸水剤の拡散吸収倍率60分は、18g/g以上であることが好ましく、20g/g以上であることがより好ましく、22g/g以上であることが最も好ましい。拡散吸収倍率の上限は特に限定されないが、一般的には40g/g以下程度である。
 本発明に係る粒子状吸水剤の拡散吸収倍率10分は、7g/g以上であることが好ましく、9g/g以上であることがより好ましく、11g/g以上であることがさらに好ましく、13g/g以上であることが最も好ましい。上限は特に限定されないが、一般的には30g/g以下程度である。尚、拡散吸収倍率の測定法は国際公開第2017/170605号などに記載されている。
 (3-10)黄色度(YI値/Yellow Index)
 黄色度(YI値/Yellow Index/欧州特許942014号および同1108745号参照)が、好ましくは0~17、より好ましくは0~16、さらに好ましくは0~15、最も好ましくは0~14を示し、殆ど黄ばみもないことが好ましい。色調の測定方法については、国際公開第2009/005114号に記載される方法(Lab値、YI値、WB値等)を例示することができる。
 上記の条件を満たすことにより粒子状吸水剤が白色のパルプと衛生材料中で複合化された際に、着色による異物感を与えない紙おむつを製造することができる。
 (3-11)連続生産において、充填物内の物性値の差が小さい(標準偏差が小さい)充填物
 本発明によれば、安定的な連続生産が可能であるため、得られる吸水性樹脂の物性値の振れが少なくなり、特に連続ゲル粉砕工程における生産のトラブルによる運転停止が少ない。このため、10時間以上、好ましくは100時間以上、より好ましくは500時間以上の連続生産が可能となる。
 本発明では、従来安定的な生産が困難であったCRC≧32g/gの粒子状吸水剤の生産においても、水可溶分の生成を低減する傾向がある。つまり、CRC≧32g/gの粒子状吸水剤の水可溶分の生成を低減することが可能なことも、本発明の特徴の一つである。また、CRC≧32g/gの粒子状吸水剤(製品)の物性値の振れが小さい粒子状吸水剤が得られることも本発明の特徴の一つである。具体的には、連続生産において1時間に得られる、物性の標準偏差が小さい吸水性樹脂(粒子状吸水剤)を提供することができる。あるいは、一連の充填物の群(例えば20Kg~20トン単位での粒子状吸水剤が、10個以上、100個以上、500個以上の容器に充填された充填物の群)に対する、物性の標準偏差が小さい吸水性樹脂(粒子状吸水剤)の充填物を提供することができる。充填物としては粒子状吸水剤の非透水性容器への充填物であって、輸送や保管などに使用される充填物(輸送用サイロ、コンテナ、ペーパーバッグやコンテナバッグなど非透水性容器への充填物)が提供される。
 以下の実施例および比較例に従って本発明をより具体的に説明するが、本発明はこれらに限定解釈されるものではなく、各実施例に開示された技術的手段を適宜組み合わせて得られる実施例も、本発明の範囲に含まれることとする。
 また、以下の実施例においては、ポリアクリル酸(塩)を含む粒子状吸水剤の製造装置として、重合工程、ゲル粗砕工程、ゲル粉砕工程、乾燥工程、粉砕工程、分級工程、表面架橋工程、冷却工程、整粒工程、および各工程間を連結する輸送工程から構成される連続製造装置を用意した。上記連続製造装置を用いて、ポリアクリル酸(塩)を含む粒子状吸水剤を連続的に製造した。
 尚、実施例および比較例で使用する電気機器(粒子状吸水剤の物性測定用の電気機器も含む)は、特に注釈のない限り、200Vまたは100Vの電源を使用した。また、本発明の粒子状吸水剤の諸物性は、特に注釈のない限り、室温(20℃~25℃)、相対湿度50%RHの条件下で測定した。
 (a)不揮発成分率
 含水ゲルを秤量した後、秤量した含水ゲルの全量から、乾燥温度180℃、乾燥時間24時間の条件で揮発成分を揮発させ、得られた乾燥後の含水ゲルを秤量した。含水ゲルの不揮発成分率は、下記式: 
 含水ゲルの不揮発成分率(重量%)=(乾燥後の含水ゲルの重量/乾燥前の含水ゲルの重量)×100
により算出した。
 尚、重合方法が重合と粗砕とを同時に実施する方法であるニーダー重合である場合には、単量体水溶液の単量体成分の濃度(以下、「単量体濃度」と称する)を、含水ゲルの不揮発成分率とした。
 (b)重量平均粒子径(D50)
 粗砕含水ゲルおよび粒子状含水ゲルの重量平均粒子径(D50)は、以下の方法で測定した。
 前処理として、温度20℃~25℃の、粗砕含水ゲルまたは粒子状含水ゲル20gを、0.08重量%エマール20C(界面活性剤、花王株式会社製)を含む20重量%塩化ナトリウム水溶液(以下、「エマール水溶液」と称する)500g中に添加して分散液とした。スターラーチップ(長さ50mm×直径7mm)を300rpmで60分間回転させて当該分散液を攪拌した(攪拌容器として、高さ21cm、直径8cmの円筒ポリプロピレン製の約1.14L容器を使用)。
 攪拌終了後、回転盤上に設置したJIS標準の篩(直径21cm、篩の目開き;8mm/4mm/2mm/1mm/0.60mm/0.30mm/0.15mm/0.075mm)の中央部に、上記分散液を投入した。エマール水溶液100gを使用して全ての粗砕含水ゲルまたは粒子状含水ゲルを篩上に洗い出した。その後、上部からエマール水溶液6000gを、篩を手で回転させながら(20rpm)、30cmの高さからシャワー(孔数;72個、液量;6.0(L/分))を使って注水範囲(50cm)が篩全体に行き渡るように満遍なく注いだ。このようにして、粗砕含水ゲルまたは粒子状含水ゲルを分級した。分級した一段目の篩上の粗砕含水ゲルまたは粒子状含水ゲルを約2分間水切りした後、秤量した。二段目以降の篩に関しても同様の操作で分級し、水切りした後にそれぞれの篩の上に残留した、粗砕含水ゲルまたは粒子状含水ゲルを秤量した。
 各篩の上に残留した粗砕含水ゲルまたは粒子状含水ゲルの重量から、下記式(7)により、各篩における粗砕含水ゲルまたは粒子状含水ゲルの割合(重量%)を算出した。水切りした後の篩の目開きは、下記式(8)に従い、粗砕含水ゲルまたは粒子状含水ゲルの粒度分布として対数確率紙にプロットした。プロットの積算篩上%Rが50重量%に相当する粒度を、粗砕含水ゲルまたは粒子状含水ゲルの重量平均粒子径(D50)とした。
 X(%)=(w/W)×100  …式(7)
 R(α)(mm)=(20/W)1/8×r  …式(8)
 ここで、
X:分級、水切りした後に各篩上に残留した粗砕含水ゲルまたは粒子状含水ゲルの重量%(%)
w:分級、水切りした後に各篩上に残留した粗砕含水ゲルまたは粒子状含水ゲルのそれぞれの重量(g)
W:分級、水切りした後に各篩上に残留した粗砕含水ゲルまたは粒子状含水ゲルの総重量(g)
R(α):固形分α重量%の粗砕含水ゲルまたは粒子状含水ゲルに換算したときの篩の目開き(mm)
r:20重量%塩化ナトリウム水溶液中で膨潤した粗砕含水ゲルまたは粒子状含水ゲルが分級された篩の目開き(mm)
である。
 (c)粒度分布(PSD、σζ)
 本発明に係る粒子状吸水剤の粒度分布(PSD)および粒度分布の対数標準偏差(σζ)は、米国特許出願公開第2006/204755号に開示された測定方法に準じて測定した。
 具体的には、目開き850μm、710μm、600μm、500μm、425μm、300μm、212μm、150μm、106μm、75μmを有するJIS標準篩(The IIDA TESTING SIEVE;内径80mm;JIS Z 8801-1(2000))、または当該JIS標準篩に相当する篩を用いて、粒子状吸水剤10.00gを分級した。分級後、各篩の重量を測定し、粒子径150μm未満の粒子状吸水剤の重量百分率(重量%)を算出した。尚、「粒子径150μm未満の粒子状吸水剤の重量百分率」とは、目開き150μmのJIS標準篩を通過する粒子の、粒子状吸水剤全体に対する重量割合(%)である。
 (d)稼働安定性定数
 本願の実施例では、ゲル粉砕装置に粗砕含水ゲルを9.21kg/分の速度で連続的にフィードし、ゲル粉砕装置を安定稼動したことを確認後、その安定稼働中のゲル粉砕装置に流れる電流値を1/10秒おきに30秒間、取得した(データを計300回取得)。このときの30秒間の電流値の平均値および標準偏差より、上記式(5)に基づいて、ゲル粉砕装置の稼動安定性定数を算出した。
 (e)ペイントシェーカーテスト
 直径6cm、高さ11cmのガラス製容器に、直径6mmのガラスビーズ10g、吸水性樹脂30gを入れてペイントシェーカー(東洋製機製作所製;製品No.488)に取り付け、800cycle/分(CPM)で30分間、振盪した。
 振盪後、目開き2mmのJIS標準篩でガラスビーズを除去して、ダメージを与えられた吸水性樹脂粒子を得た。
 (f)CRC
 本発明の吸水性樹脂粉末および粒子状吸水剤のCRCは、EDANA法(ERT441.2-02)に準拠して測定した。
 吸水性樹脂粉末または粒子状吸水剤0.2gを不織布製の袋に入れた後、大過剰の0.9重量%塩化ナトリウム水溶液中に30分間浸漬して自由膨潤させ、その後、遠心分離機(250G)で水切りし、吸水倍率(単位;g/g)を求めた。
 含水ゲルCRCの測定においては、サンプルとして粗砕含水ゲルおよび粒子状含水ゲルを0.4g用いて浸漬時間24時間で求め、上記(a)で算出される固形分あたりのCRCに換算した。
 (g)加圧下吸水倍率(AAP)
 本発明の粒子状吸水剤または吸水性樹脂の加圧下吸水倍率(AAP)は、EDANA法(ERT442.2-02)に準拠して測定した。
 (h)浸漬保持容量5分値:Dunk Retention Capacity(DRC5min)
 内径60mmのプラスチックの支持円筒の底に、ステンレス製400メッシュの金網(目の大きさ38μm)を融着させ、室温(20~25℃)、湿度50RH%の条件下で、該網上に粒子状吸水剤または吸水性樹脂1.000±0.005gを均一に散布し、この測定装置一式の重量Wa(g)を測定した。
 底面積が400cmの円形もしくは正方形のペトリ皿の内側に直径120mmのガラスフィルター(株式会社相互理化学硝子製作所社製、細孔直径:100~120μm)を置いた。0.90重量%食塩水106(23±0.5℃)をガラスフィルターの上面と同じレベル(ガラスフィルターの外周上に液が表面張力でわずかに浮き上がっている状態、もしくはガラスフィルターの表面の50%程度が液に覆われている状態)になるように加えた。その上に、直径110mmの濾紙(ADVANTEC東洋株式会社、品名:(JIS
 P 3801、No.2)、厚さ0.26mm、保留粒子径5μm)を1枚載せ、濾紙の全面が濡れるようにした。
 上記測定装置一式を上記湿った濾紙上に載せ、液を吸収させた(測定中も液温度は厳密に23±0.5℃に管理される)。厳密に5分間(300秒間)経過後、測定装置一式を持ち上げ、その質量Wb(g)を測定した。そして、Wa、Wbから、下記式(9)に従ってDRC5min(g/g)を算出した。
 DRC5min(g/g)={(Wb-Wa)/(粒子状吸水剤または吸水性樹脂の重量)}  …式(9)
 (i)表面張力
 十分に洗浄された100mlのビーカーに20℃に調整された生理食塩水50mlを入れ、まず、生理食塩水の表面張力を、表面張力計(KRUSS社製のK11自動表面張力計)を用いて測定した。この測定において表面張力の値が71mN/m~75mN/mの範囲でなくてはならない。
 次に、20℃に調整した表面張力測定後の生理食塩水を含んだビーカーに、十分に洗浄された25mm長のフッ素樹脂製回転子、および粒子状吸水剤または吸水性樹脂0.5gを投入し、500rpmの条件で4分間攪拌した。4分間経過後、攪拌を止め、含水した粒子状吸水剤または吸水性樹脂が沈降した後に、上澄み液の表面張力を再度同様の操作を行い測定した。尚、本発明では白金プレートを用いるプレート法を採用し、プレートは各測定前に十分脱イオン水にて洗浄し、かつガスバーナーで加熱洗浄して使用した。
 (j)吸湿流動性(吸湿ブロッキング率)(B.R.;Blocking Ratio)
 粒子状吸水剤または吸水性樹脂2gを、直径52mmのアルミカップに均一に散布した。その後、温度25℃、相対湿度90±5%RH下の恒温恒湿機(PLATINOUSLUCIFERPL-2G;タバイエスペック社製)中で1時間静置した。1時間経過後、上記アルミカップに入った粒子状吸水剤または吸水性樹脂を、目開き2000μm(JIS8.6メッシュ)のJIS標準篩(TheIIDATESTINGSIEVE:内径80mm)の上に静かに移した。粒子状吸水剤または吸水性樹脂を、ロータップ型ふるい振盪機(株式会社飯田製作所製ES-65型ふるい振盪機;回転数230rpm、衝撃数130rpm)を用いて、室温(20~25℃)、相対湿度50%RHの条件下で5秒間分級した。上記JIS標準篩上に残存した粒子状吸水剤または吸水性樹脂の重量(W1(g))および該JIS標準篩を通過した粒子状吸水剤または吸水性樹脂の重量(W2(g))を測定し、下記式(10)に従って、吸湿流動性(吸湿ブロッキング率)を算出した。
 吸湿流動性(B.R.)(重量%)={W1/(W1+W2)}×100  …式(10)
 尚、ブロッキング率の値が低いほど、吸湿流動性に優れている。
 (k)劣化可溶分
 長さ35mmの回転子を入れた容量250mlの内蓋および外蓋付きプラスチック容器に、L-アスコルビン酸を0.05質量%および塩化ナトリウムを0.90質量%含有する水溶液(劣化試験液/L-アスコルビン酸0.10gと0.90質量%塩化ナトリウム水溶液199.90gとの混合物)200.0gを量り取った。次いで、粒子状吸水剤または吸水性樹脂1.00gを上記水溶液に添加して、内蓋、外蓋で密栓した。その後、60±2℃に調整した恒温器に2時間静置した。2時間経過後、恒温器から上記容器を取り出し、室温下で、スターラーを用いて1時間攪拌(回転数500rpm)した。上記操作により、粒子状吸水剤または吸水性樹脂の水可溶分を抽出した。
 攪拌後、上記水溶液である抽出液を、濾紙(ADVANTEC東洋株式会社製;品名:JISP3801No.2/厚さ0.26mm、保留粒子径5μm)一枚を用いて濾過し、得られた濾液50.0gを測定用液とした。次いで、上記測定用液をpH10になるまで0.1N-NaOH水溶液で滴定した後、pH2.7になるまで0.1N-HCl水溶液で滴定した。このときの滴定量を[NaOH]mlおよび[HCl]mlとして求めた。
 また、粒子状吸水剤または吸水性樹脂を添加しないで劣化試験液200.0gのみを用いて、同様の操作を行い、空滴定量([b2NaOH]mlおよび[b2HCl]ml)を求めた。
 上記滴定量および単量体平均分子量から下記式(11)に従って、劣化可溶分を算出した。
 劣化可溶分(質量%)=0.1×単量体平均分子量×200×100×([HCl]-[b2HCl])/1000/1.0/50.0  …式(11)
 尚、単量体平均分子量が未知の場合は、下記式(12)に従って算出した中和率を用いて、単量体平均分子量を算出した。
 中和率(モル%)={1-([NaOH]-[b1NaOH])/([HCl]-[b1HCl])}×100  …式(12)
 (l)嵩比重(嵩密度)
 「Density」(ERT460.2-02):吸水剤の嵩比重を意味する。尚、本願ではERT460.2-02を参照の上で、JIS K3362に準じて嵩比重は測定する。
 嵩比重測定器(蔵持科学機器製作所製)を用い、JIS K3362に準じて測定した。粒度による偏りを無くすために十分に混合された吸水剤100.0gを、ダンパーを閉めた漏斗に入れた後、速やかにダンパーを開け、該吸水剤を内容量100mlの受器に落とした。尚、受器は予め重さ(単位;g)(重量W9とする)を量った。
 受器から盛り上がった吸水剤をガラス棒ですり落とした後、吸水剤の入った受器の重さ(単位;g)(重量W10とする)を0.1gまで正確に量り、下記式(13)に従って嵩比重を算出した。
 嵩比重(g/cm)=(W10-W9)/100  …式(13)
 尚、測定を行った環境の温度は24.2℃であり、相対湿度は43%RHであった。
 また、粒子状含水ゲルの嵩密度については、上記方法によらず、所定の容量の容器(3L程度)にゲルを10cm上部から自然落下させ、受器から盛り上がった含水ゲルを除去して、上記と同じ原理に基づいて算出した。この際ゲルの厚さは、20cm程度になるように容器の底面積を調整した。
 (m)水可溶分(Ext)
 本発明の粒子状吸水剤の水可溶分(Ext)は、EDANA法(ERT470.2-02)に準拠して測定した。
 〔実施例1〕重合工程と同時のゲル粗砕(ニーダー重合)および重合後のゲル粉砕
 (重合工程およびゲル粗砕工程)
 シグマ型羽根を2本有するジャケット付きステンレス型双腕型ニーダーに蓋を付けて形成した反応器(ニーダー)に、アクリル酸397.2重量部、37重量%アクリル酸ナトリウム水溶液4203.5重量部、ポリエチレングリコールジアクリレート(平均分子量523)2.31重量部、および脱イオン水(イオン交換水)861.7重量部を投入し、混合して単量体水溶液(1)を作製した。次に、上記単量体水溶液(1)を窒素ガス雰囲気下で、20分間脱気した。
 続いて、上記単量体水溶液(1)を攪拌しながら、20重量%過硫酸ナトリウム水溶液13.23重量部および0.1重量%L-アスコルビン酸水溶液22.05重量部を添加したところ、およそ20秒間経過後に重合が開始した。上記重合は、重合温度25℃以上、90℃以下で行った。重合開始時の単量体水溶液(1)の単量体濃度は35.5重量%であり、内部架橋剤であるポリエチレングリコールジアクリレートは、単量体に対して0.020モル%であった。上記重合の進行に伴って、単量体水溶液(1)が重合して含水ゲル(1)へと変化していくが、そのとき生成した含水ゲル(1)をニーダーによってゲル粗砕し、粗砕含水ゲル(1)を調製した。含水ゲル(1)の不揮発成分率は、単量体水溶液(1)の単量体濃度である35.5重量%とした。
 重合の開始から34分間経過後に、粗砕含水ゲル(1)を反応器から取り出した。粗砕含水ゲル(1)の重量平均粒子径(D50)は1762μm、粒度分布の対数標準偏差(σζ)は0.95であった。
 (ゲル粉砕工程)
 得られた粗砕含水ゲル(1)を、スクリュー押出機に供給してゲル粉砕し、粒子状含水ゲル(1)を得た。上記スクリュー押出機として、先端部に直径159.5mm、孔径8.0mm、厚さ14mm、開孔率34%、孔の数136個の多孔板が備えられたミートチョッパーを使用した。ミートチョッパーのスクリュー軸回転数を256rpmとした状態で、粗砕含水ゲル(1)を9210g/分で供給し、同時に、水蒸気を83g/分で供給した。ここで、PDCRは0.0217kg/h/mmであった。ゲル粉砕時におけるスクリュー押出機の稼働安定性定数は0.094であった。ゲル粉砕前の粗砕含水ゲル(1)の温度は80℃であり、ゲル粉砕後の粒子状含水ゲル(1)の温度は85℃に上昇(+5℃上昇)していた。
 上記ゲル粉砕工程で得られた粒子状含水ゲル(1)の重量平均粒子径(D50)は1083μm、粒度分布の対数標準偏差(σζ)は0.85であった。
 (乾燥工程)
 次に、上記粒子状含水ゲル(1)を、ゲル粉砕終了後から1分間以内に通気ベルト上に散布(このときの粒子状含水ゲル(1)の温度は80℃)し、185℃で30分間乾燥を行い、乾燥重合体(1)を得た。熱風の平均風速は、通気ベルトの進行方向に対する垂直方向で、1.0m/sであった。尚、熱風の風速は、日本カノマックス株式会社製の定温度熱式風速計アネモマスター6162で測定した。
 (粉砕工程および分級工程)
 次いで、上記乾燥工程で得られた乾燥重合体(1)の全量を3段ロールミルに供給して粉砕(粉砕工程)し、粉砕乾燥重合体(1)を得た。その後さらに、粉砕乾燥重合体(1)を目開き710μmおよび175μmのJIS標準篩で分級することで、不定形破砕状の吸水性樹脂粉末(1)を得た。当該吸水性樹脂粉末(1)の重量平均粒子径(D50)は348μm、粒度分布の対数標準偏差(σζ)は0.32、CRCは55.2g/g、水可溶分は25%であった。目開き150μmの篩を通過する吸水性樹脂粉末(1)の割合は0.5重量%であった。
 (表面架橋工程および添加工程)
 次に、上記吸水性樹脂粉末(1)100重量部に対して、エチレンカーボネート0.5重量部、メタノール3.0重量部、および脱イオン水3.0重量部からなる表面架橋剤溶液を均一に混合し、190℃で30分間程度、得られる吸水性樹脂粒子(1)のCRCが約47g/gとなるように加熱処理した。その後冷却を行い、上記ペイントシェーカーテストを実施し、製造プロセス相当のダメージを与えて吸水性樹脂粒子(1)を得た。吸水性樹脂粒子(1)100重量部に対して、脱イオン水1重量部、エチレンジアミン四酢酸四ナトリウム0.03重量部からなる添加剤であるキレート剤水溶液を均一に混合した。60℃で1時間乾燥した後、目開き710μmのJIS標準篩を通過させ、二酸化ケイ素(商品名;アエロジル200、日本アエロジル製)0.4重量部を均一に添加した。これにより、粒子状吸水剤(1)を得た。粒子状吸水剤(1)のCRCは46.1g/gであった。
 実施例1の製造条件、粗砕含水ゲル(1)、粒子状含水ゲル(1)、および粒子状吸水剤(1)の物性、ならびに、ゲル粉砕装置の稼働安定性定数を表1および2に示す。
 〔実施例2〕実施例1の単量体水溶液の組成を変更(濃度35.5重量%→39.1重量%、架橋剤の使用量0.020モル%→0.025モル%)
 実施例1の重合工程と同時のゲル粗砕において、反応器に投入する単量体水溶液の組成を、アクリル酸436.4重量部、37重量%アクリル酸ナトリウム水溶液4617.9重量部、ポリエチレングリコールジアクリレート3.17重量部、および脱イオン水403.8重量部とした以外は、実施例1と同様にして、単量体水溶液(2)を作製した。重合開始時の単量体水溶液(2)の単量体濃度は39.1重量%であり、内部架橋剤であるポリエチレングリコールジアクリレートは、単量体に対して0.025モル%であった。上記以外は、実施例1と同様にして、含水ゲル(2)、粗砕含水ゲル(2)、粒子状含水ゲル(2)、乾燥重合体(2)、粉砕乾燥重合体(2)、吸水性樹脂粉末(2)、および吸水性樹脂粒子(2)をこの順で経て、粒子状吸水剤(2)を得た。
 含水ゲル(2)の不揮発成分率は、単量体水溶液(2)の単量体濃度である39.1重量%とした。粗砕含水ゲル(2)の重量平均粒子径(D50)は2123μm、粒度分布の対数標準偏差(σζ)は0.68であった。粒子状含水ゲル(2)の重量平均粒子径(D50)は804μm、粒度分布の対数標準偏差(σζ)は1.04であった。吸水性樹脂粉末(2)の重量平均粒子径(D50)は378μm、粒度分布の対数標準偏差(σζ)は0.38、CRCは51.3g/gであった。ゲル粉砕時におけるスクリュー押出機の稼働安定性定数は0.099であった。目開き150μmの篩を通過する吸水性樹脂粉末(2)の割合は1.0重量%であった。粒子状吸水剤(2)のCRCは39.7g/gであった。
 実施例2の製造条件、粗砕含水ゲル(2)、粒子状含水ゲル(2)、および粒子状吸水剤(2)の物性、ならびに、ゲル粉砕装置の稼働安定性定数を表1および2に示す。
 〔実施例3〕重合工程(連続ベルト重合)後のゲル粗砕およびその後のゲル粉砕
 (重合工程)
 アクリル酸159.47重量部、48.5重量%水酸化ナトリウム水溶液67.53重量部、ポリエチレングリコールジアクリレート0.231重量部、1.0重量%ジエチレントリアミン五酢酸三ナトリウム水溶液0.98重量部、および脱イオン水198.33重量部からなる単量体水溶液(3)を作製した。
 次に、49℃に調温した上記単量体水溶液(3)を定量ポンプで反応器に連続供給した後、48.5重量%水酸化ナトリウム水溶液65.71重量部を単量体水溶液(3)に連続的にラインミキシングすることにより、単量体水溶液(3’)とした。このとき、中和熱によって単量体水溶液(3’)の液温は約80℃まで上昇した。
 さらに、4重量%過硫酸ナトリウム水溶液7.75重量部を単量体水溶液(3’)に連続的にラインミキシングした後、両端に堰を備えた平面状の重合ベルトを有する連続重合機に、厚さが約10mmとなるように、ラインミキシングした後の単量体水溶液(3’)を連続的に供給した。その後、重合(重合時間;約3分間)を連続的に行って、帯状の含水ゲル(3)を得た。重合開始時の単量体水溶液(3’)の単量体濃度は39.0重量%であり、内部架橋剤であるポリエチレングリコールジアクリレートは、単量体に対して0.020モル%であった。得られた帯状の含水ゲル(3)を、重合ベルトの進行方向に対する幅方向に、切断長が300mmとなるように等間隔に連続して切断することで、含水ゲル(3)を得た。含水ゲル(3)の不揮発成分率は47.5重量%であった。
 (ゲル粗砕工程)
 上記重合工程で得られた含水ゲル(3)を、フッ素コーティングステンレスハサミ(KOKUYO製;ハサ-F32B、刃渡り寸法70mm)を用いて一辺が約5000μmのサイコロ状となるようにカットし、粗砕含水ゲル(3)を得た。粗砕含水ゲル(3)の重量平均粒子径(D50)は5540μm、粒度分布の対数標準偏差(σζ)は0.42であった。
 (ゲル粉砕工程)
 実施例1と同様の方法により、粗砕含水ゲル(3)をゲル粉砕し、粒子状含水ゲル(3)を得た。粒子状含水ゲル(3)の重量平均粒子径(D50)は1096μm、粒度分布の対数標準偏差(σζ)は1.12であった。ゲル粉砕時におけるスクリュー押出機の稼動安定性定数は0.112であった。
 (乾燥工程、粉砕工程および分級工程)
 実施例1と同様の方法により乾燥して、乾燥重合体(3)を得た。次いで、乾燥重合体(3)を粉砕して粉砕乾燥重合体(3)を得た後、粉砕乾燥重合体(3)を分級して吸水性樹脂粉末(3)を得た。吸水性樹脂粉末(3)の重量平均粒子径(D50)は423μm、粒度分布の対数標準偏差(σζ)は0.37、CRCは56.9g/gであった。目開き150μmの篩を通過する吸水性樹脂粉末(3)の割合は0.6重量%であった。
 (表面架橋工程および添加工程)
 次に、上記吸水性樹脂粉末(3)100重量部に対して、エチレングリコールジグリシジルエーテル0.03重量部、1,4-ブタンジオール0.4重量部、プロピレングリコール0.6重量部、および脱イオン水3.0重量部からなる表面架橋剤溶液を均一に混合し、190℃で30分間程度、得られる吸水性樹脂粒子(3)のCRCが約48g/gとなるように加熱処理した。その後冷却を行い、上記ペイントシェーカーテストを実施し、製造プロセス相当のダメージを与えて吸水性樹脂粒子(3)を得た。吸水性樹脂粒子(3)100重量部に対して、水1重量部、ジエチレントリアミン五酢酸三ナトリウム0.03重量部からなる添加剤であるキレート剤水溶液を均一に混合した。60℃で1時間乾燥した後、目開き710μmのJIS標準篩を通過させ、多孔性超疎水性微細粒子シリカアエロゲル(商品名;AEROVA(商標)、JIOS社製)0.1重量部を均一に添加した。これにより、粒子状吸水剤(3)を得た。粒子状吸水剤(3)のCRCは47.3g/gであった。
 実施例3の製造条件、粗砕含水ゲル(3)、粒子状含水ゲル(3)、および粒子状吸水剤(3)の物性、ならびに、ゲル粉砕装置の稼働安定性定数を表1および2に示す。
 〔実施例4〕実施例3の架橋剤の使用量を変更(0.020モル%→0.060モル%)
 ポリエチレングリコールジアクリレートを0.695重量部とした以外は、実施例3と同様にして単量体水溶液(4’)を作製し、重合反応を行った。重合開始時の単量体水溶液(4’)の単量体濃度は39.0重量%であり、内部架橋剤であるポリエチレングリコールジアクリレートは、単量体に対して0.060モル%であった。上記以外は、実施例3と同様にして、含水ゲル(4)、粗砕含水ゲル(4)、粒子状含水ゲル(4)、乾燥重合体(4)、粉砕乾燥重合体(4)、吸水性樹脂粉末(4)、および吸水性樹脂粒子(4)をこの順で経て、粒子状吸水剤(4)を得た。
 含水ゲル(4)の不揮発成分率は47.5重量%であった。粗砕含水ゲル(4)の重量平均粒子径(D50)は4890μm、粒度分布の対数標準偏差(σζ)は0.49であった。粒子状含水ゲル(4)の重量平均粒子径(D50)は745μm、粒度分布の対数標準偏差(σζ)は1.20であった。ゲル粉砕時におけるスクリュー押出機の稼働安定性定数は0.107であった。吸水性樹脂粉末(4)の重量平均粒子径(D50)は440μm、粒度分布の対数標準偏差(σζ)は0.30、CRCは46.5g/gであった。目開き150μmの篩を通過する吸水性樹脂粉末(4)の割合は0.5重量%であった。粒子状吸水剤(4)のCRCは35.1g/gであった。
 実施例4の製造条件、粗砕含水ゲル(4)、粒子状含水ゲル(4)、および粒子状吸水剤(4)の物性、ならびに、ゲル粉砕装置の稼働安定性定数を表1および2に示す。
 〔実施例5〕実施例3の単量体濃度を変更(39.0重量%→33.0重量%)およびゲル粗砕法の変更
 アクリル酸134.94重量部、48.5重量%水酸化ナトリウム水溶液57.18重量部、ポリエチレングリコールジアクリレート0.196重量部、1.0重量%ジエチレントリアミン五酢酸三ナトリウム水溶液0.83重量部、および脱イオン水244.82重量部からなる単量体水溶液(5)を作製した。
 次に、49℃に調温した上記単量体水溶液(5)を定量ポンプで反応器に連続供給した後、48.5重量%水酸化ナトリウム水溶液55.56重量部を単量体水溶液(5)に連続的にラインミキシングすることにより、単量体水溶液(5’)とした。
 さらに、4重量%過硫酸ナトリウム水溶液6.55重量部を単量体水溶液(5’)に連続的にラインミキシングした後、両端に堰を備えた平面状の重合ベルトを有する連続重合機に、厚さが約10mmとなるように、ラインミキシングした後の単量体水溶液(5’)を連続的に供給した。その後、重合(重合時間;約3分間)を連続的に行って、帯状の含水ゲル(5)を得た。重合開始時の単量体水溶液(5’)の単量体濃度は33.0重量%であり、内部架橋剤であるポリエチレングリコールジアクリレートは、単量体に対して0.020モル%であった。得られた帯状の含水ゲル(5)を、重合ベルトの進行方向に対する幅方向に、切断長が300mmとなるように等間隔に連続して切断することで、含水ゲル(5)を得た。含水ゲル(5)の不揮発成分率は40.0重量%であった。
 上記以外は、実施例3と同様にして、粗砕含水ゲル(5)、粒子状含水ゲル(5)、乾燥重合体(5)、粉砕乾燥重合体(5)、吸水性樹脂粉末(5)、および吸水性樹脂粒子(5)をこの順で経て、粒子状吸水剤(5)を得た。
 粗砕含水ゲル(5)の重量平均粒子径(D50)は9983μm、粒度分布の対数標準偏差(σζ)は0.54であった。粒子状含水ゲル(5)の重量平均粒子径(D50)は1152μm、粒度分布の対数標準偏差(σζ)は0.92であった。ゲル粉砕時におけるスクリュー押出機の稼働安定性定数は0.118であった。吸水性樹脂粉末(5)の重量平均粒子径(D50)は362μm、粒度分布の対数標準偏差(σζ)は0.41、CRCは55.8g/gであった。目開き150μmの篩を通過する吸水性樹脂粉末(5)の割合は2.0重量%であった。粒子状吸水剤(5)のCRCは47.8g/gであった。
 実施例5の製造条件、粗砕含水ゲル(5)、粒子状含水ゲル(5)、および粒子状吸水剤(5)の物性、ならびに、ゲル粉砕装置の稼働安定性定数を表1および2に示す。
 〔実施例6〕重合工程(バッチ式静置UV重合)後のゲル粗砕およびその後のゲル粉砕
 (重合工程)
 円柱状容器に、アクリル酸174.57重量部、37重量%アクリル酸ナトリウム水溶液1847.12重量部、ポリエチレングリコールジアクリレート3.93重量部、および脱イオン水365.50重量部を投入し、混合して単量体水溶液(6)を作製した。
 次に、温度計、窒素ガス導入管、および排気孔を備えた蓋、ならびに、バットからなり、上部にブラックライト蛍光ランプを備えた反応容器に、上記単量体水溶液(6)を供給し、上記バットを40℃の水浴に底から10mmの高さまで浸した。この単量体水溶液(6)に窒素ガスを導入して20分間脱気した。当該単量体水溶液(6)が40℃になったのを確認した後、窒素気流雰囲気下で、20重量%過硫酸ナトリウム水溶液5.37重量部、およびビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド0.1重量部を添加すると同時に光照射を開始し、単量体水溶液(6)を攪拌混合した。重合開始時の単量体水溶液(6)の単量体濃度は36.0重量%であり、内部架橋剤であるポリエチレングリコールジアクリレートは、単量体に対して0.078モル%であった。
 重合開始後、重合系(単量体水溶液(6))を攪拌せず、引き続き40℃の水浴にバットを浸して冷却を行った。その後、水浴の温度を80℃にして20分間重合反応を行い、含水ゲル(6)を得た。含水ゲル(6)の不揮発成分率は46.8重量%であった。
 (ゲル粗砕工程)
 上記重合工程で得られた含水ゲル(6)を、実施例3,4で使用したフッ素コーティングステンレスハサミを用いて一辺が約20mmのサイコロ状となるようにカットし、粗砕含水ゲル(6)を得た。粗砕含水ゲル(6)の重量平均粒子径(D50)は22400μm、粒度分布の対数標準偏差(σζ)は0.56であった。
 (ゲル粉砕工程)
 実施例1と同様の方法により、粗砕含水ゲル(6)をゲル粉砕し、粒子状含水ゲル(6)を得た。粒子状含水ゲル(6)の重量平均粒子径(D50)は591μm、粒度分布の対数標準偏差(σζ)は1.25であった。ゲル粉砕時におけるスクリュー押出機の稼動安定性定数は0.111であった。
 (乾燥工程、粉砕工程および分級工程)
 実施例1と同様の方法により乾燥し、乾燥重合体(6)を得た。次いで、乾燥重合体(6)を粉砕して粉砕乾燥重合体(6)を得た後、粉砕乾燥重合体(6)を分級して吸水性樹脂粉末(6)を得た。吸水性樹脂粉末(6)の重量平均粒子径(D50)は362μm、粒度分布の対数標準偏差(σζ)は0.35、CRCは44.6g/gであった。目開き150μmの篩を通過する吸水性樹脂粉末(6)の割合は0.6重量%であった。
 (表面架橋工程および添加工程)
 次に、上記吸水性樹脂粉末(6)100重量部に対して、1,3-プロパンジオール0.18重量部、メタノール4.0重量部、および脱イオン水3.0重量部からなる表面架橋剤溶液を均一に混合し、190℃で30分間程度、得られる吸水性樹脂粒子(6)のCRCが34.2g/gとなるように加熱処理した。その後冷却を行い、上記ペイントシェーカーテストを実施し、製造プロセス相当のダメージを与えて吸水性樹脂粒子を得た。吸水性樹脂粒子(6)100重量部に対して、水1重量部、トリエチレンテトラミン六酢酸六ナトリウム0.03重量部からなる水溶液を均一に混合した。60℃で1時間乾燥した後、目開き710μmのJIS標準篩を通過させ、多孔性超疎水性微細粒子シリカアエロゲル(商品名;AEROVA(商標)、JIOS社製)0.1重量部を均一に添加した。これにより、粒子状吸水剤(6)を得た。粒子状吸水剤(6)のCRCは34.2g/gであった。
 実施例6の製造条件、粗砕含水ゲル(6)、粒子状含水ゲル(6)、および粒子状吸水剤(6)の物性、ならびに、ゲル粉砕装置の稼働安定性定数を表1および2に示す。
 〔実施例7〕PDCRの変更(0.0217→0.0868)
 実施例1において、ゲル粉砕工程での粗砕含水ゲル(1)のミートチョッパーへの供給量を9210g/分(実施例1)から36840g/分(実施例7)とした以外は、実施例1と同様にして、ゲル粉砕を行った。PDCRは0.0868kg/h/mmであった。それ以外は、実施例1と同様に行うことで、乾燥重合体(7)、粉砕乾燥重合体(7)、吸水性樹脂粉末(7)、および吸水性樹脂粒子(7)をこの順で経て、粒子状吸水剤(7)を得た。当該吸水性樹脂粉末(7)の重量平均粒子径(D50)は350μm、粒度分布の対数標準偏差(σζ)は0.32、CRCは55.8g/g、水可溶分は25%であった。目開き150μmの篩を通過する吸水性樹脂粉末(7)の割合は0.5重量%であった。実施例7の製造条件、粗砕含水ゲル(7)、粒子状含水ゲル(7)、および粒子状吸水剤(7)の物性、ならびに、ゲル粉砕装置の稼働安定性定数を表1および2に示す。
 〔実施例8〕PDCRの変更(0.0217→0.0434)
 実施例1において、ゲル粉砕工程での粗砕含水ゲル(1)のミートチョッパーへの供給量を9210g/分(実施例1)から18820g/分(実施例8)とした以外は、実施例1と同様にして、ゲル粉砕を行った。PDCRは0.0434kg/h/mmであった。それ以外は、実施例1と同様に行うことで、乾燥重合体(8)、粉砕乾燥重合体(8)、吸水性樹脂粉末(8)、および吸水性樹脂粒子(8)をこの順で経て、粒子状吸水剤(8)を得た。当該吸水性樹脂粉末(8)の重量平均粒子径(D50)は350μm、粒度分布の対数標準偏差(σζ)は0.32、CRCは55.7g/g、水可溶分は24%であった。目開き150μmの篩を通過する吸水性樹脂粉末(8)の割合は0.5重量%であった。実施例8の製造条件、粗砕含水ゲル(8)、粒子状含水ゲル(8)、および粒子状吸水剤(8)の物性、ならびに、ゲル粉砕装置の稼働安定性定数を表1および2に示す。
 〔実施例9〕PDCRの変更(0.0217→0.0979)
 実施例1において、ゲル粉砕工程での粗砕含水ゲル(1)のミートチョッパーへの供給量を9210g/分(実施例1)から41500g/分(実施例9)とし、ミートチョッパーのスクリュー軸回転数を256rpmから300rpmにした以外は、実施例1と同様にして、ゲル粉砕を行った。PDCRは0.979kg/h/mmであった。それ以外は、実施例1と同様に行うことで、乾燥重合体(9)、粉砕乾燥重合体(9)、吸水性樹脂粉末(9)、および吸水性樹脂粒子(9)をこの順で経て、粒子状吸水剤(9)を得た。当該吸水性樹脂粉末(9)の重量平均粒子径(D50)は350μm、粒度分布の対数標準偏差(σζ)は0.32、CRCは55.2g/g、水可溶分は26%であった。目開き150μmの篩を通過する吸水性樹脂粉末(9)の割合は0.5重量%であった。実施例9の製造条件、粗砕含水ゲル(9)、粒子状含水ゲル(9)、および粒子状吸水剤(9)の物性、ならびに、ゲル粉砕装置の稼働安定性定数を表1および2に示す。
 〔比較例1〕実施例1の単量体水溶液の組成を変更(濃度35.5重量%→39.2重量%、架橋剤の使用量0.020モル%→0.090モル%)
 実施例1の重合工程と同時のゲル粗砕において、反応器に投入する単量体水溶液の組成を、アクリル酸430.6重量部、37重量%アクリル酸ナトリウム水溶液4106.5重量部、ポリエチレングリコールジアクリレート10.42重量部、および脱イオン水403.8重量部とした以外は、実施例1と同様にして、比較単量体水溶液(1)を作製し、脱気した。重合開始時の比較単量体水溶液(1)の単量体濃度は39.2重量%であり、内部架橋剤であるポリエチレングリコールジアクリレートは、単量体に対して0.090モル%であった。上記以外は、実施例1と同様にして、比較含水ゲル(1)、比較粗砕含水ゲル(1)、比較粒子状含水ゲル(1)、比較乾燥重合体(1)、比較粉砕乾燥重合体(1)、CRC=34.2g/gの比較吸水性樹脂粉末(1)、および比較吸水性樹脂粒子(1)をこの順で経て、比較粒子状吸水剤(1)を得た。
 比較含水ゲル(1)の不揮発成分率は、比較単量体水溶液(1)の単量体濃度である39.2重量%とした。比較粗砕含水ゲル(1)の重量平均粒子径(D50)は1935μm、粒度分布の対数標準偏差(σζ)は0.85であった。比較粒子状含水ゲル(1)の重量平均粒子径(D50)は783μm、粒度分布の対数標準偏差(σζ)は1.18であった。ゲル粉砕時におけるスクリュー押出機の稼働安定性定数は0.092であった。比較粒子状吸水剤(1)のCRCは27.4g/gであった。
 比較例1の製造条件、比較粗砕含水ゲル(1)、比較粒子状含水ゲル(1)、および比較粒子状吸水剤(1)の物性、ならびに、ゲル粉砕装置の稼働安定性定数を表1および2に示す。
 〔比較例2〕実施例1の単量体水溶液の組成を変更(濃度35.5重量%→49.4重量%、架橋剤の使用量0.020モル%→0.027モル%)
 実施例1の重合工程と同時のゲル粗砕において、反応器に投入する単量体水溶液の組成を、アクリル酸500重量部、水酸化ナトリウム100重量部、ポリプロピレングリコールジアクリレート1.5重量部、および脱イオン水519.5重量部とした以外は、実施例1と同様にして、比較単量体水溶液(2)を作製し、脱気した。
 続いて、比較単量体水溶液(2)を攪拌しながら、1重量%過酸化水素水溶液5重量部、および2重量%L-アスコルビン酸水溶液5重量部を添加し、重合反応を行った。重合開始時の比較単量体水溶液(2)の単量体濃度は49.4重量%であり、内部架橋剤であるポリプロピレングリコールジアクリレートは、単量体に対して0.027モル%であった。上記以外は、実施例1と同様にして、比較含水ゲル(2)、比較粗砕含水ゲル(2)、比較粒子状含水ゲル(2)、比較乾燥重合体(2)、比較粉砕乾燥重合体(2)、CRC=45.3g/gの比較吸水性樹脂粉末(2)、および比較吸水性樹脂粒子(2)をこの順で経て、比較粒子状吸水剤(2)を得た。
 比較含水ゲル(2)の不揮発成分率は52.0重量%であった。比較粗砕含水ゲル(2)の重量平均粒子径(D50)は32435μm、粒度分布の対数標準偏差(σζ)は0.5であった。比較粒子状含水ゲル(2)の重量平均粒子径(D50)は2887μm、粒度分布の対数標準偏差(σζ)は1.30であった。ゲル粉砕時におけるスクリュー押出機の稼働安定性定数は0.225であった。比較粒子状吸水剤(2)のCRCは36.3g/gであった。
 比較例2の製造条件、比較粗砕含水ゲル(2)、比較粒子状含水ゲル(2)、および比較粒子状吸水剤(2)の物性、ならびに、ゲル粉砕装置の稼働安定性定数を表1および2に示す。
 〔比較例3〕実施例1の単量体水溶液の組成を変更(濃度35.5重量%→42.7重量%、架橋剤の使用量0.020モル%→0.050モル%)
 実施例1の重合工程と同時のゲル粗砕において、反応器に投入する単量体水溶液の組成を、アクリル酸240重量部、水酸化ナトリウム92重量部、トリメチロールプロパントリアクリレート0.49重量部、および脱イオン水345重量部とした以外は、実施例1と同様にして、比較単量体水溶液(3)を作製し、脱気した。
 続いて、比較単量体水溶液(3)を攪拌しながら、2.5重量%過酸化水素水溶液0.093重量部、15重量%ペルオキソ二硫酸ナトリウム2.52重量部、および0.5重量%L-アスコルビン酸水溶液1.34重量部を添加し、重合反応を行った。重合開始時の比較単量体水溶液(3)の単量体濃度は42.7重量%であり、内部架橋剤であるトリメチロールプロパントリアクリレートは、単量体に対して0.050モル%であった。上記以外は、実施例1と同様にして、比較含水ゲル(3)、比較粗砕含水ゲル(3)、比較粒子状含水ゲル(3)、比較乾燥重合体(3)、比較粉砕乾燥重合体(3)、比較吸水性樹脂粉末(3)、および比較吸水性樹脂粒子(3)をこの順で経て、比較粒子状吸水剤(3)を得た。
 比較含水ゲル(3)の不揮発成分率は、比較単量体水溶液(3)の単量体濃度である42.7重量%とした。比較粗砕含水ゲル(3)の重量平均粒子径(D50)は4768μm、粒度分布の対数標準偏差(σζ)は0.68であった。比較粒子状含水ゲル(1)の重量平均粒子径(D50)は1776μm、粒度分布の対数標準偏差(σζ)は1.26であった。ゲル粉砕時におけるスクリュー押出機の稼働安定性定数は0.143であった。比較吸水性樹脂粉末(3)のCRCは34.4g/gであった。比較粒子状吸水剤(3)のCRCは27.2g/gであった。
 比較例3の製造条件、比較粗砕含水ゲル(3)、比較粒子状含水ゲル(3)、および比較粒子状吸水剤(3)の物性、ならびに、ゲル粉砕装置の稼働安定性定数を表1および2に示す。
 〔比較例4〕実施例3の単量体水溶液の組成を変更(濃度39.0重量%→40.9重量%、架橋剤の使用量0.020モル%→0.043モル%)およびゲル粗砕工程の省略
 実施例3の重合工程において、ポリエチレングリコールジアクリレートを0.5重量部、脱イオン水を172.5重量部とした以外は、実施例3と同様にして比較単量体水溶液(4’)を作製し、重合反応を行った。重合開始時の比較単量体水溶液(4’)の単量体濃度は40.9重量%であり、内部架橋剤であるポリエチレングリコールジアクリレートは、単量体に対して0.043モル%であった。上記以外は、実施例3と同様にして、比較含水ゲル(4)を得た。比較含水ゲル(4)の不揮発成分率は49.5重量%であった。
 さらに、実施例3のゲル粗砕工程(ハサミでの約5000mmへの含水ゲルのカット)は省略した。比較例4では、比較含水ゲル(4)のゲル粗砕は行わずに、比較含水ゲル(4)をゲル粉砕して比較粒子状含水ゲル(4)を得た。比較粒子状含水ゲル(4)の重量平均粒子径(D50)は994μm、粒度分布の対数標準偏差(σζ)は1.01であった。ゲル粉砕時におけるスクリュー押出機の稼働安定性定数は0.206であった。上述した以外は、実施例3と同様にして、比較乾燥重合体(4)、比較粉砕乾燥重合体(4)、比較吸水性樹脂粉末(4)、および比較吸水性樹脂粒子(4)をこの順で経て、比較粒子状吸水剤(4)を得た。
 比較吸水性樹脂粉末(4)の重量平均粒子径(D50)は348μm、粒度分布の対数標準偏差(σζ)は0.32、CRCは42.1g/gであった。目開き150μmの篩を通過する比較吸水性樹脂粉末(4)の割合は0.5重量%であった。比較粒子状吸水剤(4)のCRCは35.3g/gであった。
 比較例4の製造条件、比較粒子状含水ゲル(4)および比較粒子状吸水剤(4)の物性、ならびに、ゲル粉砕装置の稼働安定性定数を表1および2に示す。
 〔比較例5〕実施例3の単量体水溶液の組成を変更(濃度39.0重量%→43.1重量%、架橋剤の使用量0.020モル%→0.090モル%)およびゲル粗砕工程の変更(裁断カット→ミートチョッパー)
 (重合工程)
 実施例3の重合工程において、ポリエチレングリコールジアクリレートを1.04重量部、脱イオン水を110.6重量部とし、1.0重量%ジエチレントリアミン五酢酸三ナトリウム水溶液0.98重量部を0.1重量%エチレンジアミンテトラメチレンホスホン酸五ナトリウム水溶液42.9重量部に変更した以外は、実施例3と同様にして比較単量体水溶液(5’)を作製し、重合反応を行った。重合開始時の比較単量体水溶液(5’)の単量体濃度は43.1重量%であり、内部架橋剤であるポリエチレングリコールジアクリレートは、単量体に対して0.090モル%であった。上記以外は、実施例3と同様にして、比較含水ゲル(5)を得た。比較含水ゲル(5)の不揮発成分率は49.4重量%であった。
 (ゲル粗砕工程)
 さらに実施例3のゲル粗砕工程(裁断カットによる約5000mmへの含水ゲルのカット)に代えて、比較例4では、得られた比較含水ゲル(5)を、スクリュー押出機に供給してゲル粗砕し、粗砕含水ゲル(5)を得た。上記スクリュー押出機として、先端部に直径100mm、孔径9.5mm、孔数40個、開孔率36.1%、厚さ10mmの多孔板が備えられた、スクリュー軸の外径が86mmのミートチョッパーを使用した。ミートチョッパーのスクリュー軸回転数を130rpmとした状態で、比較含水ゲル(5)を4640g/分で供給し、同時に、水蒸気を83g/分で供給した。ゲル粗砕前の比較含水ゲル(5)の温度は80℃であり、ゲル粗砕後の比較粗砕含水ゲル(5)の温度は85℃に上昇していた。比較粗砕含水ゲル(5)の重量平均粒子径(D50)は1041μm、粒度分布の対数標準偏差(σζ)は1.74であった。
 (ゲル粉砕工程~添加工程)
 実施例1と同様の方法により、ゲル粉砕、乾燥、粉砕、分級、表面架橋、添加剤の添加を行い、比較粒子状含水ゲル(5)、比較乾燥重合体(5)、比較粉砕乾燥重合体(5)、比較吸水性樹脂粉末(5)、および比較吸水性樹脂粒子(5)をこの順で経て、比較粒子状吸水剤(5)を得た。
 比較粒子状含水ゲル(5)の重量平均粒子径(D50)は772μm、粒度分布の対数標準偏差(σζ)は0.91であった。ゲル粉砕時におけるスクリュー押出機の稼働安定性定数は0.105であった。比較吸水性樹脂粉末(5)の重量平均粒子径(D50)は360μm、粒度分布の対数標準偏差(σζ)は0.33、CRCは37.9g/gであった。目開き150μmの篩を通過する比較吸水性樹脂粉末(5)の割合は0.6重量%であった。比較粒子状吸水剤(5)のCRCは31.7g/gであった。
 比較例5の製造条件、比較粗砕含水ゲル(5)、比較粒子状含水ゲル(5)、および比較粒子状吸水剤(5)の物性、ならびに、ゲル粉砕装置の稼働安定性定数を表1および2に示す。
 〔比較例6〕実施例3の単量体水溶液の組成を変更(濃度39.0重量%→45.0重量%、架橋剤量0.020モル%→0.030モル%)
 実施例3の重合工程において、ポリエチレングリコールジアクリレートを0.347重量部、脱イオン水を131.6重量部とした以外は、実施例3と同様にして比較単量体水溶液(6’)を作製し、重合反応を行った。重合開始時の比較単量体水溶液(6’)の単量体濃度は45.0重量%であり、内部架橋剤であるポリエチレングリコールジアクリレートは、単量体に対して0.030モル%であった。上記以外は、実施例3と同様にして、比較含水ゲル(6)、比較粗砕含水ゲル(6)、比較粒子状含水ゲル(6)、比較乾燥重合体(6)、比較粉砕乾燥重合体(6)、比較吸水性樹脂粉末(6)、および比較吸水性樹脂粒子(6)をこの順で経て、比較粒子状吸水剤(6)を得た。
 比較含水ゲル(6)の不揮発成分率は55.3重量%であった。比較粗砕含水ゲル(6)の重量平均粒子径(D50)は5045μm、粒度分布の対数標準偏差(σζ)は0.45であった。比較粒子状含水ゲル(6)の重量平均粒子径(D50)は1609μm、粒度分布の対数標準偏差(σζ)は0.92であった。ゲル粉砕時におけるスクリュー押出機の稼働安定性定数は0.188であった。比較吸水性樹脂粉末(6)のCRCは47.9g/gであった。比較粒子状吸水剤(6)のCRCは38.4g/gであった。
 比較例6の製造条件、比較粗砕含水ゲル(6)、比較粒子状含水ゲル(6)、および比較粒子状吸水剤(6)の物性、ならびに、ゲル粉砕装置の稼働安定性定数を表1および2に示す。
 〔比較例7〕実施例6の単量体水溶液の組成を変更(濃度36.0重量%→48.0重量%、架橋剤量0.078モル%→0.014モル%)およびゲル粗砕工程の省略
 実施例6の重合工程において、37重量%アクリル酸ナトリウム水溶液を添加せず、水酸化ナトリウムを62.6重量部、ポリエチレングリコールジアクリレートを0.16重量部、および脱イオン水を167重量部とし、さらに20重量%過硫酸ナトリウム水溶液5.37重量部を3重量%過硫酸ナトリウム水溶液16.1重量部に変更し、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシドを添加しなかった以外は、実施例6と同様にして、比較単量体水溶液(7)を作製した。重合開始時の比較単量体水溶液(7)の単量体濃度は48.0重量%であり、内部架橋剤であるポリエチレングリコールジアクリレートは、単量体に対して0.014モル%であった。上記以外は、実施例6と同様にして、比較含水ゲル(7)を得た。比較含水ゲル(7)の不揮発成分率は62.3重量%であった。
 さらに、実施例6の重合工程後のゲル粗砕工程は省略した。比較例7では、比較含水ゲル(7)のゲル粗砕は行わずに、比較含水ゲル(7)をゲル粉砕して比較粒子状含水ゲル(7)を得た。比較粒子状含水ゲル(7)の重量平均粒子径(D50)は4932μm、粒度分布の対数標準偏差(σζ)は0.62であった。ゲル粉砕時におけるスクリュー押出機の稼働安定性定数は0.239であった。上述した以外は、実施例6と同様にして、比較乾燥重合体(7)、比較粉砕乾燥重合体(7)、比較吸水性樹脂粉末(7)、および比較吸水性樹脂粒子(7)をこの順で経て、比較粒子状吸水剤(7)を得た。
 比較吸水性樹脂粉末(7)のCRCは48.7g/gであった。比較粒子状吸水剤(7)のCRCは40.6g/gであった。
 比較例7の製造条件、比較粒子状含水ゲル(7)および比較粒子状吸水剤(7)の物性、ならびに、ゲル粉砕装置の稼働安定性定数を表1および2に示す。
 〔比較例8〕PDCR値の変更(0.0217→0.0138で範囲外)
 実施例1(PDCR=0.0217)において、ゲル粉砕工程で使用する多孔板を200mm、孔径8.0mm、厚さ14mm、開孔率33%、孔の数204個の多孔板とした以外は、実施例1と同様にして、ゲル粉砕を行った。PDCRは0.0138kg/h/mmであった。それ以外は、実施例1と同様に行うことで、比較含水ゲル(8)、比較粗砕含水ゲル(8)、比較粒子状含水ゲル(8)、比較乾燥重合体(8)、比較粉砕乾燥重合体(8)、比較吸水性樹脂粉末(8)、および比較吸水性樹脂粒子(8)をこの順で経て、比較粒子状吸水剤(8)を得た。比較吸水性樹脂粉末(8)の重量平均粒子径(D50)は345μm、粒度分布の対数標準偏差(σζ)は0.32、CRCは54.3g/gであり、吸水性樹脂粒子(1)と同程度であった。しかしながら、比較吸水性樹脂粉末(8)の水可溶分は27%であった。結果を表1および2に示す。
 〔比較例9〕PDCRの変更(0.0217→0.0061)
 実施例1において、ゲル粉砕工程で使用する多孔板を300mm、孔径8.0mm、厚さ14mm、開孔率32%、孔の数456個の多孔板とした以外は、実施例1と同様にして、ゲル粉砕を行った。PDCRは0.0061kg/h/mmであった。それ以外は、実施例1と同様に行うことで、比較含水ゲル(9)、比較粗砕含水ゲル(9)、比較粒子状含水ゲル(9)、比較乾燥重合体(9)、比較粉砕乾燥重合体(9)、比較吸水性樹脂粉末(9)、および比較吸水性樹脂粒子(9)をこの順で経て、比較粒子状吸水剤(9)を得た。比較吸水性樹脂粉末(9)の重量平均粒子径(D50)は344μm、粒度分布の対数標準偏差(σζ)は0.32、CRCは54.1g/gであり、吸水性樹脂粒子(1)と同程度であった。しかしながら、比較吸水性樹脂粉末(9)の水可溶分は30%であった。結果を表1および2に示す。
 〔比較例10〕PDCRの変更(0.0217→0.0189)
 実施例1において、ゲル粉砕工程での粗砕含水ゲル(1)のミートチョッパーへの供給量を9210g/分(実施例1)から8000g/分(比較例10)とした以外は、実施例1と同様にして、ゲル粉砕を行った。PDCRは0.0189kg/h/mmであった。それ以外は、実施例1と同様に行うことで、比較含水ゲル(10)、比較粗砕含水ゲル(10)、比較粒子状含水ゲル(10)、比較乾燥重合体(10)、比較粉砕乾燥重合体(10)、比較吸水性樹脂粉末(10)、および比較吸水性樹脂粒子(10)をこの順で経て、比較粒子状吸水剤(10)を得た。比較吸水性樹脂粉末(10)の重量平均粒子径(D50)は346μm、粒度分布の対数標準偏差(σζ)は0.32、CRCは54.4g/gであり、吸水性樹脂粒子(1)と同程度であった。しかしながら、比較吸水性樹脂粉末(10)の水可溶分は26%であった。結果を表1および2に示す。
 〔比較例11〕PDCRの変更(0.0217→0.0118)
 実施例1において、ゲル粉砕工程での粗砕含水ゲル(1)のミートチョッパーへの供給量を9210g/分(実施例1)から5000g/分(比較例11)とした以外は、実施例1と同様にして、ゲル粉砕を行った。PDCRは0.0118kg/h/mmであった。それ以外は、実施例1と同様に行うことで、比較含水ゲル(11)、比較粗砕含水ゲル(11)、比較粒子状含水ゲル(11)、比較乾燥重合体(11)、比較粉砕乾燥重合体(11)、比較吸水性樹脂粉末(11)、および比較吸水性樹脂粒子(11)をこの順で経て、比較粒子状吸水剤(11)を得た。比較吸水性樹脂粉末(9)の重量平均粒子径(D50)は345μm、粒度分布の対数標準偏差(σζ)は0.33、CRCは54.1g/gであり、水可溶分は27%であり、吸水性樹脂粒子(1)と同程度であった。結果を表1および2に示す。
 〔比較例12〕PDCRの変更(0.0217→0.0070)
 実施例1において、ゲル粉砕工程での粗砕含水ゲル(1)のミートチョッパーへの供給量を9210g/分(実施例1)から3000g/分(比較例12)とした以外は、実施例1と同様にして、ゲル粉砕を行った。PDCRは0.0070kg/h/mmであった。それ以外は、実施例1と同様に行うことで、比較含水ゲル(12)、比較粗砕含水ゲル(12)、比較粒子状含水ゲル(12)、比較乾燥重合体(12)、比較粉砕乾燥重合体(12)、比較吸水性樹脂粉末(12)、および比較吸水性樹脂粒子(12)をこの順で経て、比較粒子状吸水剤(12)を得た。比較吸水性樹脂粉末(12)の重量平均粒子径(D50)は344μm、粒度分布の対数標準偏差(σζ)は0.33、CRCは53.6g/gであり、吸水性樹脂粒子(1)と同程度であった。しかしながら、比較吸水性樹脂粉末(12)の水可溶分は29%であった。結果を表1および2に示す。
 〔比較例13〕PDCRの変更(0.0217→0.1736)
 実施例1において、ゲル粉砕工程での粗砕含水ゲル(1)のミートチョッパーへの供給量を9210g/分(実施例1)から73680g/分(比較例13)とし、ゲル粉砕工程では連続粉砕できず処理不能であったため、その後の工程を行わなかった以外は、実施例1と同様にして、ゲル粉砕を行った。PDCRは0.1736kg/h/mmであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 (まとめ)
 以上、実施例1~8に対して、比較例1,3はCRCが範囲外となる比較例であり、(さらに比較例3は粉砕後の粒子状含水ゲル粒径も範囲外)であり、比較例2,4~7は含水ゲルの不揮発成分(重量%)が範囲外である比較例であり(さらに比較例4,7は粗砕工程を行わない比較例)であり、比較例8~11ではPCDRが範囲外となる比較例である。
 実施例1,2および比較例1~3では、重合工程(ニーダー重合)と同時のゲル粗砕工程およびその後のゲル粉砕工程(ミートチョッパー)を行った。実施例1,2では、ゲル粉砕装置の稼働安定性定数が0.1以下と低いのに対して、吸水倍率CRCが27.4g/g(32g/g未満)であった比較例1では、ゲル粉砕装置の稼働安定性定数に大きな変化はなかった。しかしながら、比較例3では、ゲル粉砕工程後の粒子状含水ゲルの重量平均粒子径(D50)が1776μmと大きいため、ゲル粉砕装置の稼働安定性定数が0.143と高くなり、ゲル粉砕装置の稼働安定性が低下した。さらに、吸水倍率CRCが36.3g/gであった比較例2では、含水ゲルの不揮発成分が52.0重量%と高いため、ゲル粉砕装置の稼働安定性定数が0.225にまで悪化した。実施例1,2と比較例1~3との対比から、含水ゲルの不揮発成分や粒子状含水ゲルの重量平均粒子径(D50)が高いと連続運転が安定しないことが分かった。
 実施例3~5および比較例5,6では、重合工程(連続ベルト重合)後のゲル粗砕工程およびその後のゲル粉砕工程(ミートチョッパー)を行い、比較例4ではゲル粗砕工程を省略した。実施例3~5では、ゲル粉砕装置の稼働安定性定数が0.12以下と低いのに対して、吸水倍率CRCが31.7g/g(32g/g未満)であった比較例5では、含水ゲルの不揮発性成分が49.4重量%と高くても、ゲル粉砕装置の稼働安定性定数に大きな変化はなかった。しかしながら、吸水倍率CRCが32g/gを超えてゲル不揮発性成分が49.5重量%~55.3重量%と高い比較例4,6(さらに比較例4ではゲル粗砕工程も省略)では、ゲル粉砕装置の稼働安定性定数が0.206(比較例4)ないし0.188(比較例6)にまで悪化した。実施例3~5と比較例4~6との対比から、含水ゲルの不揮発成分が高く、ゲル粗砕工程を省略すると、連続運転が安定しないことが分かった。
 実施例6では、重合工程(バッチ静置UV重合)後のゲル粗砕工程およびその後のゲル粉砕工程(ミートチョッパー)を行い、比較例7ではゲル粗砕工程を省略した。実施例6では、ゲル粉砕装置の稼働安定性定数が0.092であったのに対して、含水ゲルの不揮発成分が62.3重量%と高く、ゲル粗砕工程を行わなかった比較例7では、ゲル粉砕装置の稼働安定性定数が0.239にまで悪化した。実施例6と比較例7との対比から、バッチ静置UV重合であっても、含水ゲルの不揮発成分が高く、ゲル粗砕工程を省略すると、連続運転が安定しないことが分かった。
 また、実施例6(含水ゲルの不揮発成分率が46.8重量%)および比較例7(含水ゲルの不揮発成分率が62.3重量%)のゲル粉砕装置の稼働時間(秒)における電流値(A)をプロットしたグラフを図1に示す。当該グラフでは、実施例6のゲル粉砕装置の電流値は、比較例7のゲル粉砕装置の電流値よりも相対的に低い値であり、かつ安定している。このため、電流値の標準偏差(σ)/電流値の平均値(Ave.)で規定される稼働安定定数について、実施例6のゲル粉砕装置は稼働安定定数0.111を示し、稼働安定定数0.239を示した比較例7のゲル粉砕装置よりも安定的に連続稼働していることが分かった。含水ゲルの不揮発成分率が本発明の課題解決に重要であることが分かった。
 比較例8~12(PDCR=0.0189~0.0061)は、実施例1(PDCR=0.0217)と同じ不揮発成分率35.5重量%の含水ゲル(1)をゲル粗砕した粗砕含水ゲル(1)について、実施例1からゲル粉砕時のPDCRを変更したものである。実施例1と比較例8~12との対比から、ゲル粉砕時のPDCRが下がるほど、ゲル粉砕装置の稼働安定安定性(表1の稼働安定定数)が低下することが分かった。特に、PDCR≧0.02が臨界的に重要であることが分かった。また、PDCRが0.15を超える場合では稼働が逆に不安定になったり、最悪、比較例13のように停止したりすることもある。さらに、PDCRが本発明の範囲外であると、吸水性樹脂粉末の水可溶分が増加する傾向が見られる。比較例8~12と、実施例1(PDCR=0.0217)との対比から、PDCRは0.02~0.15(さらには0.021~0.10)の範囲が好適であることが分かった。本発明の課題解決には、さらにPDCRも重要であることが分かった。
 尚、表には記載しないが、実施例1~9で得られた粒子状含水ゲルの嵩密度は0.30g/ml~0.40g/mlであった。また、実施例1~9で得られた乾燥重合体の遠心分離機保持容量(30分値・CRC)は、35.0g/g以上であった。また、実施例1~9で得られた粒子状吸水剤の(c)の表面張力は72mN/m、(d)吸湿流動性はほぼ0重量%(ブロッキングなし)、(g)嵩比重g/cmは約0.60~0.70であった。また、実施例1~9で得られた重合工程後の含水ゲル、ゲル粗砕工程後の粗砕含水ゲル、およびゲル粉砕工程後のゲル粉砕後の粒子状含水ゲルの含水ゲルCRCも32.0g/g以上であった。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態に関しても本発明の技術的範囲に含まれる。
 本発明に係る製造方法によれば、吸水倍率(CRC)が高い、ポリアクリル酸(塩)を含む粒子状吸水剤を物性値の大きな振れや生産の停止もなく安定的に提供することができるので、紙おむつ、生理用ナプキン、失禁パッド、ペット用シート等の衛生用品、農園芸用の土壌保水剤、ならびに工業用の止水剤等の種々の分野において利用することができる。

Claims (17)

  1.  アクリル酸(塩)系単量体を含有する水溶液を重合してポリアクリル酸(塩)を含む含水ゲルを得る重合工程(1)と、
     上記含水ゲルを上記重合工程(1)と同時または上記重合工程(1)後に粗砕して粗砕含水ゲルを得るゲル粗砕工程(2)と、
     上記粗砕含水ゲルをさらに小さく粉砕して粒子状含水ゲルを得るゲル粉砕工程(3)と、
     上記粒子状含水ゲルを乾燥して、乾燥重合体を得る乾燥工程(4)と、
     上記乾燥工程(4)と同時または乾燥工程(4)後に、表面架橋工程(5)と、
    を含む、粒子状吸水剤の遠心分離機保持容量(CRC)が32.0g/g以上である、粒子状吸水剤の製造方法であって、
     上記含水ゲルの不揮発成分率は、10重量%~48重量%であり、
     上記粗砕含水ゲルの重量平均粒子径(D50)は、500μm~10cmであり、
     上記粒子状含水ゲルの重量平均粒子径(D50’)は、360μm~1500μmであり(ここで、D50>D50’)、
     上記ゲル粉砕工程(3)で用いるゲル粉砕装置の出口に多孔板を有しており、上記ゲル粉砕工程(3)では、下記式で規定されるPDCRが0.02kg/h/mm~0.10kg/h/mmである、粒子状吸水剤の製造方法;
     PDCR(kg/h/mm)=ゲル処理量(kg/h)/(上記多孔板の直径(mm))
  2.  上記ゲル粉砕工程(3)で用いるゲル粉砕装置の下記式で規定される稼働安定性定数が0.15以下である、請求項1に記載の粒子状吸水剤の製造方法;
     稼動安定性定数=電流値の標準偏差(σ)/電流値の平均(Ave.)。
  3.  上記粗砕含水ゲルの粒度分布の対数標準偏差(σζ)が1.25以下であり、
     上記粒子状含水ゲルの粒度分布の対数標準偏差(σζ)が1.25以下である、請求項1または2に記載の粒子状吸水剤の製造方法。
  4.  上記多孔板の孔径が4.5~10mmである、請求項1~3の何れか一項に記載の粒子状吸水剤の製造方法。
  5.  上記多孔板の開孔率が20~80%である、請求項1~4の何れか一項に記載の粒子状吸水剤の製造方法。
  6.  上記多孔板が有する孔の数が2~1000個である、請求項1~5の何れか一項に記載の粒子状吸水剤の製造方法。
  7.  上記乾燥工程(4)では、乾燥前の上記粒子状含水ゲルの嵩密度が0.30g/ml~0.40g/mlである、請求項1~6の何れか一項に記載の粒子状吸水剤の製造方法。
  8.  上記ゲル粉砕工程(3)では、ゲル粉砕前の上記粗砕含水ゲルの温度が40℃~120℃であり、上記ゲル粉砕装置の出口から排出される上記粒子状含水ゲルの温度(℃)から、上記ゲル粉砕装置に投入される上記粗砕含水ゲルの温度(℃)を引いた値が、-9℃以上である、請求項1~7の何れか一項に記載の粒子状吸水剤の製造方法。
  9.  上記乾燥工程(4)後の一つ以上の工程において、添加剤を添加する、請求項1~8の何れか一項に記載の粒子状吸水剤の製造方法。
  10.  上記添加剤は、エチレンジアミン四酢酸(塩)、トリエチレンテトラミン六酢酸(塩)、ジエチレントリアミン五酢酸(塩)、trans-1,2-ジアミノシクロヘキサン四酢酸(塩)、およびエチレンジアミンテトラ(メチレンホスホン酸)(塩)からなる群より選択される一つ以上のキレート剤である、請求項9に記載の粒子状吸水剤の製造方法。
  11.  一つ以上の工程において、(重)亜硫酸(塩)を添加する、請求項1~10の何れか一項に記載の粒子状吸水剤の製造方法。
  12.  上記重合工程(1)後の一つ以上の工程において、二酸化ケイ素、リン酸塩、およびハイドロタルサイトからなる群より選択される一つ以上の吸湿流動性改善剤を添加する、請求項1~11の何れか一項に記載の粒子状吸水剤の製造方法。
  13.  上記粒子状吸水剤がさらに下記(a)~(g)の少なくとも一つを満たす、請求項1~12の何れか一項に記載の粒子状吸水剤の製造方法;
     (a)DRC5minが35g/g以上
     (b)重量平均粒子径が200μm~600μmで850μm以上の粒子の割合が5重量%以下、150μm未満の粒子の割合が5重量%以下、粒度分布の対数標準偏差が0.20~0.50
     (c)表面張力が66mN/m以上
     (d)吸湿流動性が50重量%以下
     (e)可溶分が25重量%以下、劣化可溶分が30重量%以下
     (f)AAPが18g/g以上
     (g)嵩比重が0.57g/cm~0.75g/cm
  14.  連続製造時間が10時間以上である、請求項1~13の何れか一項に記載の粒子状吸水剤の製造方法。
  15.  重合工程(1)において得られる含水ゲルの含水ゲルCRCが32.0g/g以上である、請求項1~14の何れか一項に記載の粒子状吸水剤の製造方法。ただし、含水ゲルの固形分は180℃で24時間乾燥での乾燥減量で規定。
  16.  ゲル粗砕工程(2)で得られる粗砕含水ゲルの含水ゲルCRCが32.0g/g以上である、請求項1~15の何れか一項に記載の粒子状吸水剤の製造方法。ただし、粗砕含水ゲルの固形分は180℃で24時間乾燥での乾燥減量で規定。
  17.  乾燥工程(4)後に得られる表面架橋工程(5)前の乾燥重合体の遠心分離機保持容量(30分値・CRC)が35.0g/g以上であり且つ粒子状吸水剤のCRCより2g/g~40g/gの範囲で高い、請求項1~16の何れか一項に記載の粒子状吸水剤の製造方法。
PCT/JP2020/011004 2019-03-15 2020-03-13 粒子状吸水剤の製造方法 WO2020189539A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019048971 2019-03-15
JP2019-048971 2019-03-15

Publications (1)

Publication Number Publication Date
WO2020189539A1 true WO2020189539A1 (ja) 2020-09-24

Family

ID=72521045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011004 WO2020189539A1 (ja) 2019-03-15 2020-03-13 粒子状吸水剤の製造方法

Country Status (1)

Country Link
WO (1) WO2020189539A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113499471A (zh) * 2021-05-26 2021-10-15 深圳德诚达光电材料有限公司 一种自降解的医疗气凝胶颗粒及制备工艺
CN113527716A (zh) * 2021-07-27 2021-10-22 南昌工程学院 具有强力学性能的双网络复合水凝胶及其制备方法和应用
JP7436119B2 (ja) 2020-10-16 2024-02-21 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040530A1 (ja) * 2009-09-30 2011-04-07 株式会社日本触媒 粒子状吸水剤及びその製造方法
WO2011126079A1 (ja) * 2010-04-07 2011-10-13 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法及びポリアクリル酸(塩)系吸水性樹脂粉末
WO2015030130A1 (ja) * 2013-08-28 2015-03-05 株式会社日本触媒 ゲル粉砕装置、及びポリアクリル酸(塩)系吸水性樹脂粉末の製造方法、並びに吸水性樹脂粉末
WO2016204302A1 (ja) * 2015-06-19 2016-12-22 株式会社日本触媒 ポリ(メタ)アクリル酸(塩)系粒子状吸水剤及び製造方法
WO2017170605A1 (ja) * 2016-03-28 2017-10-05 株式会社日本触媒 粒子状吸水剤
WO2018139768A1 (ko) * 2017-01-24 2018-08-02 주식회사 엘지화학 고흡수성 수지의 제조 방법
WO2018155591A1 (ja) * 2017-02-22 2018-08-30 株式会社日本触媒 吸水性シート、長尺状吸水性シートおよび吸収性物品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040530A1 (ja) * 2009-09-30 2011-04-07 株式会社日本触媒 粒子状吸水剤及びその製造方法
WO2011126079A1 (ja) * 2010-04-07 2011-10-13 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法及びポリアクリル酸(塩)系吸水性樹脂粉末
WO2015030130A1 (ja) * 2013-08-28 2015-03-05 株式会社日本触媒 ゲル粉砕装置、及びポリアクリル酸(塩)系吸水性樹脂粉末の製造方法、並びに吸水性樹脂粉末
WO2016204302A1 (ja) * 2015-06-19 2016-12-22 株式会社日本触媒 ポリ(メタ)アクリル酸(塩)系粒子状吸水剤及び製造方法
WO2017170605A1 (ja) * 2016-03-28 2017-10-05 株式会社日本触媒 粒子状吸水剤
WO2018139768A1 (ko) * 2017-01-24 2018-08-02 주식회사 엘지화학 고흡수성 수지의 제조 방법
WO2018155591A1 (ja) * 2017-02-22 2018-08-30 株式会社日本触媒 吸水性シート、長尺状吸水性シートおよび吸収性物品

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7436119B2 (ja) 2020-10-16 2024-02-21 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法
CN113499471A (zh) * 2021-05-26 2021-10-15 深圳德诚达光电材料有限公司 一种自降解的医疗气凝胶颗粒及制备工艺
CN113527716A (zh) * 2021-07-27 2021-10-22 南昌工程学院 具有强力学性能的双网络复合水凝胶及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN109608661B (zh) 凝胶粉碎装置、及聚丙烯酸(盐)系吸水性树脂粉末的制造方法、以及吸水性树脂粉末
JP6151790B2 (ja) 吸水性樹脂を主成分とする粒子状吸水剤及びその製造方法
JP5558818B2 (ja) 粒子状吸水剤およびその製造方法
KR102105733B1 (ko) 흡수제 및 그의 제조 방법
JP5785087B2 (ja) 粒子状吸水剤及びその製造方法
EP2484702B2 (en) Polyacrylic acid salt-based water absorbent resin and method for producing same
CN107936189B (zh) 聚丙烯酸(盐)系吸水性树脂粉末及其制品
JP7016798B2 (ja) 吸水剤の製造方法
WO2020189539A1 (ja) 粒子状吸水剤の製造方法
WO2009123193A1 (ja) 吸水性樹脂を主成分とする粒子状吸水剤の製造方法
JP6425341B2 (ja) ポリアクリル酸(塩)系吸水性樹脂の製造方法
WO2010114058A1 (ja) 粒子状吸水性樹脂の製造方法
EP2130581A1 (en) Granular water absorbent comprising water absorbing resin as the main component
KR102373041B1 (ko) 폴리아크릴산(염)계 흡수성 수지의 제조 방법
WO2014162843A1 (ja) 吸水剤の製造方法及び吸水剤
JP7064614B2 (ja) キレート剤を含む吸水性樹脂の製造方法
JP2016112475A (ja) ポリ(メタ)アクリル酸塩系吸水性樹脂を主成分とする吸水剤及びその製造方法
JP7296474B2 (ja) 粒子状吸水剤およびその製造方法
JP5006675B2 (ja) 吸水性樹脂組成物およびその製造方法
JP7273067B2 (ja) 吸水性樹脂を主成分とする吸水剤及びその製造方法
JP6508947B2 (ja) ポリアクリル酸(塩)系吸水剤の製造方法
WO2022163849A1 (ja) 吸水性樹脂の製造方法
JP7382493B2 (ja) 粒子状吸水剤
JP7270828B2 (ja) 吸水性樹脂およびその製造方法
JP2023088497A (ja) 表面架橋された(メタ)アクリル酸(塩)系吸水性樹脂を含む吸水剤および(メタ)アクリル酸(塩)系吸水性樹脂の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20774226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20774226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP