WO2020189176A1 - ガス供給部、基板処理装置および半導体装置の製造方法 - Google Patents

ガス供給部、基板処理装置および半導体装置の製造方法 Download PDF

Info

Publication number
WO2020189176A1
WO2020189176A1 PCT/JP2020/006999 JP2020006999W WO2020189176A1 WO 2020189176 A1 WO2020189176 A1 WO 2020189176A1 JP 2020006999 W JP2020006999 W JP 2020006999W WO 2020189176 A1 WO2020189176 A1 WO 2020189176A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas supply
opening
holding member
supply nozzle
reaction tube
Prior art date
Application number
PCT/JP2020/006999
Other languages
English (en)
French (fr)
Inventor
智之 蔵田
森田 慎也
敦士 平野
慧 村田
裕巳 岡田
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to JP2021507125A priority Critical patent/JP7194805B2/ja
Priority to CN202090000433.6U priority patent/CN218299750U/zh
Publication of WO2020189176A1 publication Critical patent/WO2020189176A1/ja
Priority to US17/379,273 priority patent/US20210348275A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present disclosure relates to a method for manufacturing a gas supply unit, a substrate processing device, and a semiconductor device.
  • the reaction tube that constitutes the processing chamber that processes the substrate, the boat that supports the substrate, etc. may be composed of non-metals such as quartz in order to suppress metal contamination of the substrate. Further, in order to suppress metal contamination of the substrate, the gas supply nozzle for supplying gas into the reaction tube may be composed of a non-metal such as quartz (see, for example, Patent Document 1).
  • the quartz member may come into contact with the metal member and the quartz member may be damaged.
  • An object of the present disclosure is to provide a configuration capable of suppressing damage to a non-metal member even when the member in the reaction tube is composed of a non-metal member such as quartz.
  • a gas supply nozzle that supplies processing gas to the processing chamber formed inside the reaction tube through the opening of the reaction tube, and A first sealing material provided so as to cover at least a gap between the opening and the gas supply nozzle,
  • the holding member connected to the reaction tube and
  • An adapter connected from the outside of the reaction tube via the holding member,
  • a first fixture that fixes the opening, the holding member, and the adapter so that they are arranged concentrically.
  • a second sealing material provided so as to maintain the space between the gas supply nozzle, the holding member, and the adapter in an airtight state.
  • the member in the reaction tube is made of a non-metal member such as quartz, it is possible to suppress damage to the non-metal member.
  • the processing furnace 202 has a heater 206 as a heating mechanism.
  • the heater 206 has a cylindrical shape and is installed vertically.
  • a process tube 203 as a reaction tube is arranged concentrically with the heater 206.
  • the process tube 203 has an inner tube 204 as an internal reaction tube and an outer tube 205 as an external reaction tube provided on the outside thereof.
  • the inner tube 204 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and is formed in a cylindrical shape with open upper and lower ends.
  • a processing chamber 201 for processing the substrate 200 is formed in the hollow portion of the inner tube 204. That is, the process tube 203 constitutes the processing chamber 201 inside.
  • the processing chamber 201 is configured to accommodate a boat 217 as a substrate holder, which will be described later.
  • the boat 217 is configured to accommodate a substrate 200 made of silicon, glass, or the like in a horizontal posture and vertically arranged in multiple stages.
  • the outer tube 205 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), has an inner diameter larger than the outer diameter of the inner tube 204, and is formed in a cylindrical shape with the upper end closed. It is provided concentrically with the inner tube 204.
  • the process tube 203 is provided with at least one opening (through hole) 203a into which the gas supply nozzle is inserted. Specifically, an opening 203a is provided on the side wall of the process tube 203, and the tubular gas supply nozzle 230 communicates with each other inside and outside the process tube 203 in an airtight state. It is connected.
  • the gas supply nozzle 230 is configured to supply the processing gas to the processing chamber 201 formed inside the process tube 203 through the opening 203a.
  • the gas supply nozzle 230 includes a straight type in which the downstream end extends laterally with respect to the process tube 203, an L-shaped type in which the downstream end vertically falls, and a downstream end. There is an L-shaped type that stands up vertically.
  • the gas supply nozzle 230 is made of a non-metal member having heat resistance such as quartz (SiO 2 ).
  • the upstream end of the gas supply nozzle 230 projects outside the process tube 203 and is connected to the gas supply unit 500 and the gas supply pipe 232, which will be described later.
  • a process (not shown) is performed on the upstream side of the gas supply pipe 232, that is, on the side of the gas supply pipe 232 opposite to the connection side with the gas supply nozzle 230, via a mass flow controller (MFC) 241 as a gas flow rate controller.
  • MFC mass flow controller
  • a gas source or an inert gas source is connected.
  • a gas flow rate control unit 235 is electrically connected to the MFC 241.
  • the MFC 241 is configured to control the flow rate of the gas supplied to the processing chamber 201 at a desired timing so as to be a desired amount.
  • an exhaust system 231 for exhausting the atmosphere of the processing chamber 201 is provided on the side wall of the process tube 203.
  • the exhaust system 231 is arranged at the lower end of the tubular space 250 formed by the gap between the inner tube 204 and the outer tube 205, and communicates with the tubular space 250.
  • a vacuum exhaust device 246 such as a vacuum pump is provided via a pressure sensor 245 as a pressure detector and a main valve 242. Is connected.
  • the main valve 242 has a function of shutting off between the processing chamber 201 and the vacuum exhaust device 246, and the opening degree can be freely changed so that the pressure in the processing chamber 201 becomes a predetermined pressure (vacuum degree). It is configured so that it can be done.
  • a pressure control unit 236 is electrically connected to the main valve 242 and the pressure sensor 245. The pressure control unit 236 of the main valve 242 is based on the pressure in the processing chamber 201 and the exhaust system 231 detected by the pressure sensor 245 so that the pressure in the processing chamber 201 becomes a desired pressure at a desired timing. It is configured to feedback control the opening degree.
  • An overpressurization prevention line 233 for performing an overpressurization prevention treatment is connected to the upstream side of the main valve 242 of the exhaust system 231.
  • An overpressurization prevention valve 234 is inserted in the overpressurization prevention line 233.
  • a furnace opening flange 300 which is a furnace opening portion, is provided on the outer peripheral portion of the lower end of the process tube 203.
  • the process tube 203 is erected on the furnace opening flange 300.
  • the hearth flange 300 is made of a metal member such as stainless steel.
  • a seal cap 219 is provided as a furnace palate body that can airtightly close the lower end opening of the process tube 203.
  • the seal cap 219 is in contact with the lower end of the process tube 203 from the lower side in the vertical direction.
  • the seal cap 219 is made of a metal member such as stainless steel and is formed in a disk shape.
  • An O-ring 220b as a sealing material that comes into contact with the lower end of the process tube 203 is provided on the upper surface of the seal cap 219.
  • a rotation mechanism 254 for rotating the boat 217 is installed on the side of the seal cap 219 opposite to the processing chamber 201.
  • the rotating shaft 255 of the rotating mechanism 254 penetrates the seal cap 219 while maintaining the airtightness of the processing chamber 201, and is connected to the boat 217 described later.
  • the substrate 200 is configured to be rotated by rotating the boat 217 by the rotation mechanism 254.
  • the seal cap 219 is configured to be vertically lifted and lowered by a boat elevator 115 as a lifting mechanism vertically installed outside the process tube 203. As a result, the boat 217 can be carried in and out of the processing chamber 201.
  • a drive control unit 237 is electrically connected to the rotation mechanism 254 and the boat elevator 115.
  • the drive control unit 237 is configured to control the rotation mechanism 254 and the boat elevator 115 so that the rotation mechanism 254 and the boat elevator 115 perform a desired operation at a desired timing.
  • the boat 217 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and a plurality of substrates 200 are aligned in a horizontal position and centered on each other to be held in multiple stages. It is configured in.
  • a plurality of heat insulating plates 216 as disk-shaped heat insulating members made of heat-resistant materials such as quartz (SiO 2 ) and silicon carbide (SiC) are arranged in multiple stages in a horizontal posture. Sheets are arranged.
  • the heat insulating plate 216 is configured to make it difficult to transfer the heat from the heater 206 to the furnace opening flange 300 side.
  • a temperature sensor 263 as a temperature detector is installed in the process tube 203.
  • a temperature control unit 238 is electrically connected to the heater 206 and the temperature sensor 263.
  • the temperature control unit 238 is configured to control the degree of energization of the heater 206 so that the temperature of the processing chamber 201 has a desired temperature distribution at a desired timing based on the temperature information detected by the temperature sensor 263. ing.
  • the gas flow rate control unit 235, pressure control unit 236, drive control unit 237, and temperature control unit 238 also constitute an operation unit and an input / output unit, and are electrically connected to a main control unit 239 that controls the entire substrate processing device. ing. These gas flow rate control unit 235, pressure control unit 236, drive control unit 237, temperature control unit 238, and main control unit 239 are configured as a controller 240.
  • the gas supply nozzle 230 according to this configuration is made of a non-metal member having heat resistance such as quartz (SiO 2 ) and silicon carbide (SiC).
  • At least one opening (through hole) 203a for inserting the gas supply nozzle 230 is formed on the lower side wall of the process tube 203 (two in FIG. 4).
  • the opening 203a is formed on a protruding surface 203c protruding from the side wall surface of the process tube 203 in a block shape. Further, the opening 203a is formed so that the tip surface of the opening 203a is tapered so that the opening becomes narrower from the outside to the inside.
  • the upstream end of the gas supply nozzle 230 is arranged so as to project to the outside of the process tube 203 via the opening 203a.
  • the protruding surface 203c of the opening 203a of the process tube 203 is configured to mount the block 512 on which the opening 512a is formed.
  • the block 512 as the third fixture is fixed to the furnace opening flange 300 by the fixing bolt 513.
  • the retainer 502 which is a holding member, has a ring shape. A part of the gas supply nozzle 230 is arranged inside the retainer 502, and a gap is formed between the retainer 502 and the gas supply nozzle 230.
  • the O-ring 220c, which is the first sealing material, and the O-ring 220d, which is the second sealing material, are provided so as to cover the gap between the retainer 502 and the gas supply nozzle 230. That is, the retainer 502 holds the gas supply nozzle 230 from the outer peripheral side via the O-rings 220c and 220d.
  • the retainer 502 is connected to the gas supply nozzle 230 via the process tube 203 and the O-ring 220c. That is, the O-ring 220c is provided so as to cover the gap between the opening 203a and the gas supply nozzle 230.
  • a cushion ring 506 which is a ring-shaped cushioning material, is attached to the tip surface of the retainer 502, which is connected to the process tube 203. That is, the cushion ring 506 is provided between the retainer 502 and the process tube 203. That is, the retainer 502 is configured to come into contact with the outside of the process tube 203 via the O-ring 220c and the cushion ring 506.
  • the retainer 502 according to this configuration is made of a metal member.
  • the cushion ring 506 is made of, for example, polytetrafluoroethylene (PTFE), which is a non-metal member and is a fluororesin.
  • PTFE polytetrafluoroethylene
  • the cushion ring 506 is provided so as to surround the outer circumference of the O-ring 220c, and when the retainer 502 is pressed against the process tube 203 and the O-ring 220c is crushed, the metal retainer 502 is quartz. It is configured to avoid direct contact with the manufacturing process tube 203. That is, by providing the cushion ring 506 at the contact portion of the retainer 502 with the process tube 203, contact between the retainer 502, which is a metal member, and the quartz member is prevented.
  • the O-ring adapter 504 is provided on the gas upstream side via the O-ring 220d of the retainer 502. A part of the gas supply nozzle 230 is arranged inside the O-ring adapter 504, and a gap is formed between the O-ring adapter 504 and the gas supply nozzle 230.
  • the O-ring 220d is provided so as to cover the gap between the O-ring adapter 504 and the gas supply nozzle 230. That is, the O-ring adapter 504 holds the gas supply nozzle 230 from the outer peripheral side via the O-ring 220d.
  • the O-ring adapter 504 is connected to the gas supply nozzle 230 from the outside of the process tube 203 via the O-ring 220c, the retainer 502, and the O-ring 220d.
  • the O-ring adapter 504 is made of, for example, Hastelloy (registered trademark) or the like.
  • the O-ring adapter 504 is connected to the gas supply nozzle 230 in communication with the gas supply nozzle 230.
  • the upstream end of the O-ring adapter 504 is formed narrowly in a tapered shape and is connected to the gas supply pipe 232. That is, the upstream end of the gas supply nozzle 230 is connected to the gas supply pipe 232 via the O-ring adapter 504 in an airtight state.
  • the opening diameter of the tip surface (the surface facing the retainer 502) of the opening 203a is widened, and the tapered portion is tapered. It is preferable to form the O-ring 220c and fit the O-ring 220c into the inclined portion. Further, in order to prevent the O-ring 220d from falling off, the opening diameter of the connection surface (the surface facing the O-ring adapter 504) of the retainer 502 with the O-ring adapter 504 is widened to form a tapered portion. It is preferable to fit the O-ring 220d into the inclined portion.
  • the O-rings 220c and 220d are made of resin.
  • the gas supply nozzle 230 and the retainer 502 are connected via the O-ring 220c to maintain the opening 203a in an airtight state.
  • the gas supply nozzle 230, the retainer 502, and the O-ring adapter 504 are configured to be connected in an airtight state via the O-ring 220d. That is, the O-ring 220d is provided so as to maintain the space between the gas supply nozzle 230, the retainer 502, and the O-ring adapter 504 in an airtight state, and the processing chamber 201 is configured to be kept airtight. There is.
  • An opening 508a is formed in the floating block 508, which is the first fixture.
  • the retainer 502 and the O-ring adapter 504 are configured to be held in the opening 508a of the floating block 508.
  • the floating block 508 is fixed so that the opening 203a, the retainer 502, and the O-ring adapter 504 are arranged concentrically.
  • a nut 510 which is a second fixture, is connected to the outer circumference of the O-ring adapter 504 within the opening 508a of the floating block 508.
  • the nut 510 is configured to press the O-ring adapter 504 toward the process tube 203 side to close the opening 203a in an airtight state.
  • the nut 510 is made of a metal member such as stainless steel.
  • the lower end of the floating block 508 is fixed to the block 512 by the fixing bolt 518 via the washer 520.
  • two push bolts 514 and two pull bolts 516 are provided at the upper end of the floating block 508, for example.
  • the surface angle (direction) of the floating block 508 can be adjusted and fixed at an arbitrary position. That is, the floating block 508 is configured to be fixed to the block 512 in an arbitrary posture. That is, as shown in FIG.
  • the floating block 508 is adjusted substantially horizontally with respect to the O-rings 220c and 220d and moved toward the process tube 203, and the retainer 502 is pressed against the outer periphery of the process tube 203 to open the opening 203a. It is possible to keep the surroundings of the airtight.
  • the block 512 is fixed to the side wall surface of the process tube 203, and the O-ring 220c, the cushion ring 506, the retainer 502, and the gas supply nozzle 230 projecting from the opening 203a to the outside of the process tube 203.
  • the O-ring 220d, the floating block 508, the O-ring adapter 504, and the nut 510 are connected in this order.
  • the block 512 and the floating block 508 according to this configuration are made of a metal member such as stainless steel.
  • a block heater which is a heating member (not shown), may be provided between the block 512 and the process tube 203.
  • a block heater By providing a block heater between the block 512 and the process tube 203, it is possible to heat the gas supply nozzle 230, the process tube 203, the O-ring adapter 504, and the like so as not to lower the temperature of the processing gas.
  • a plurality of substrates 200 are loaded (wafer charged) on the boat 217 carried out from the process tube 203.
  • the boat 217 accommodates a plurality of substrates (for example, 100 substrates) having a diameter of 300 mm on which thin films should be formed.
  • the boat 217 holding the plurality of boards 200 is lifted by the boat elevator 115 and carried into the processing chamber 201 (boat loading) as shown in FIG. 1 (the boards are loaded into the processing chamber 201). Process of carrying in). In this state, the lower end of the process tube 203 is sealed by the seal cap 219 via the O-ring 220b.
  • the processing chamber 201 is evacuated by the vacuum exhaust device 246 so as to have a desired pressure (vacuum degree). As a result, the atmosphere of the processing chamber 201 is exhausted through the exhaust system 231. At this time, the pressure in the processing chamber 201 is measured by the pressure sensor 245. The opening degree of the main valve 242 is feedback-controlled based on the measured pressure. Further, the processing chamber 201 is heated by the heater 206 so that the processing chamber 201 has a desired temperature. Then, the degree of energization of the heater 206 is feedback-controlled so that the processing chamber 201 has a desired temperature distribution based on the temperature information detected by the temperature sensor 263. Subsequently, the substrate 200 is rotated by rotating the boat 217 by the rotation mechanism 254.
  • the processing gas is supplied to the processing chamber 201 to execute the film forming process on the substrate. That is, gas supplied from a processing gas supply source (not shown) and controlled to a desired flow rate by the MFC 241 is supplied from the gas supply pipe 232 as a gas supply body, and is supplied through the gas supply nozzle 230 in the processing chamber. Introduce to 201. The introduced gas rises in the processing chamber 201, flows out from the upper end opening of the inner tube 204 into the tubular space 250, and is exhausted from the exhaust system 231. When the processing gas passes through the processing chamber 201, it comes into contact with the surface of the substrate 200, and at this time, a thin film is deposited (deposited) on the surface of the substrate 200 by a thermal CVD reaction.
  • the after-purge process is executed. That is, the inert gas is supplied from the gas supply pipe 232 to the processing chamber 201 via the gas supply nozzle 230. At this time, the vacuum exhaust device 246 executes the vacuum exhaust process. As a result, the atmosphere of the processing chamber 201 is purified by the inert gas.
  • the atmospheric return process is executed. That is, the vacuum exhaust process is stopped and only the supply process of the inert gas is executed. As a result, the pressure in the processing chamber 201 returns to normal pressure.
  • the retainer 502 and the O-ring adapter 504 holding the gas supply nozzle 230 are pressed against the side wall of the process tube 203 by the nut 510 and the floating block 508. This is performed with the opening 203a airtightly closed. That is, at least while supplying gas to the processing chamber 201, the floating block 508 is adjusted substantially horizontally with respect to the O-rings 220c and 220d and moved to the process tube 203 side, and the retainer 502 is processed through the O-ring 220c. It is pressed against the side wall of the tube 203 to close the periphery of the opening 203a in an airtight state.
  • the boat unload process is executed. That is, the seal cap 219 is lowered by the boat elevator 115 to open the lower end of the process tube 203, and the substrate 200 having been subjected to the film forming process is held by the boat 217 from the lower end of the process tube 203. (Boat unloading) (the process of unloading the board from the processing room). After that, the substrate 200 that has undergone the film formation process is collected from the boat 217 (wafer discharge), and the process of the first batch is completed.
  • the above-mentioned processing is executed on the substrate 200 to be processed in the second and subsequent batches as well.
  • At least one opening (through hole) 203a for inserting the gas supply nozzle 230 is provided on the side wall of the process tube 203.
  • a quartz gas port portion 601 that surrounds the outer periphery of the gas supply nozzle 230 inserted into the opening 203a closes the opening 203a and the outer periphery of the gas supply nozzle 230 in an airtight state.
  • the gas port portion 601 protrudes from the side wall surface of the process tube 203. That is, the gas port portion 601 is connected so as to communicate with the opening 203a of the process tube 203.
  • a metal joint portion 602 is connected to the upstream end portion of the gas port portion 601. That is, the gas port portion 601 and the joint portion 602 are connected by tightening the metal joint portion 602 to the quartz gas port portion 601 having a protruding shape.
  • the gas supply nozzle 230 is inserted into the opening 203a of the process tube 203 and is held by the joint portion 602 described above.
  • the gas supply nozzle 230 and the joint portion 602 are in close contact with each other, and the processing chamber 201 is configured to be kept airtight.
  • the quartz gas port portion 601 protruding from the side wall surface of the quartz process tube 203 is fastened by the metal joint portion 602, and the quartz gas port portion There was a problem that 601 was easily damaged. Further, since the gas port portion 601 projects to the outside of the process tube 203, there is a problem that the gas port portion 601 is easily contacted and damaged. Further, when the gas supply nozzle 230 is a long nozzle, there is a problem that the gas port portion 601 cannot hold the gas supply nozzle 230 and the gas supply nozzle 230 is tilted or the gas port portion 601 is loaded and easily damaged.
  • the gas supply unit 500 in the present embodiment it is possible to suppress damage to the quartz member without directly contacting the quartz non-metal member such as the gas supply nozzle or the process tube 203 with the metal member. It will be possible. Further, as compared with the gas supply unit 600 as described above, since it protrudes in a block shape, damage can be prevented, and contact is further prevented. Further, as compared with the gas supply unit 600 as described above, the floating block 508 is adjusted horizontally with respect to the O-ring, and the pressing force against the O-ring adapter 504 is adjusted by the nut 510, whereby the processing chamber is operated.
  • the gas supply nozzle 230 can be stably fixed at an arbitrary position, and a stable processing gas supply becomes possible. Further, even when a long nozzle is used as the gas supply nozzle 230, the gas supply nozzle 230 can be stably fixed, and a stable processing gas supply becomes possible.
  • the retainer 502 and the O-ring adapter 504 holding the gas supply nozzle 230 are pressed against the side wall (outer circumference) of the process tube 203 by the nut 510 to open the opening. This is executed in a state where the part 203a is airtightly closed. Therefore, these treatments can be carried out while maintaining the airtightness of the treatment chamber.
  • the exposed parts in the furnace such as the process tube 203 and the gas supply nozzle 230 are made of non-metal members such as quartz, the exposed surface of the metal members in the processing chamber 201 is small. .. Therefore, it is possible to reduce the possibility that the substrate is contaminated with metal when the substrate is processed such as a film forming process.
  • the opening 203a into which the gas supply nozzle 230 is introduced is formed on the surface 203c protruding from the side wall surface of the process tube 203 in a block shape, damage is unlikely to occur.
  • the shape of the quartz process tube 203 can be simplified, and the manufacturing cost of the substrate processing apparatus can be reduced.
  • the surface angle (direction) of the floating block 508 can be adjusted and fixed at an arbitrary position by adjusting the push bolt 514 and the pull bolt 516 of the floating block 508, respectively. That is, the floating block 508 can be fixed to the block 512 in any posture. That is, the floating block 508 is adjusted substantially horizontally with respect to the O-rings 220c and 220d and moved to the process tube 203 side, and the retainer 502 and the O-ring adapter 504 are pressed against the side wall of the process tube 203 by the nut 510 to open the opening. The periphery of the portion 203a can be closed in an airtight state.
  • the upstream end of the gas supply nozzle 230 is connected to the gas supply pipe 232 via the O-ring adapter 504 in an airtight state.
  • an O-ring adapter 504 is arranged at the downstream end of the gas supply pipe 232, and by fixing the nut 510 to the outer peripheral portion of the O-ring adapter 504, the nut 510 closes the opening 508a and O.
  • the gas supply pipe 232 and the gas supply nozzle 230 are configured to be connected in an airtight state.
  • a cushion ring 506 is provided on the front end surface of the retainer 502 and outside the O-ring 220c so as to surround the outer circumference of the O-ring 220c. Therefore, when the retainer 502 is pressed against the process tube 203 and the O-ring 220c is crushed, the metal retainer 502 is prevented from coming into direct contact with the quartz process tube 203 and comes into contact with the metal member. It becomes possible to suppress the damage of the process tube 203 due to the above.
  • the type of film formed on the substrate using the substrate processing apparatus according to the present embodiment is not particularly limited.
  • it can be suitably applied to the case of forming various films such as a nitride film (SiN film), an oxide film (SiO film), and a metal oxide film.
  • the present invention can be applied not only to a semiconductor manufacturing apparatus for processing a semiconductor wafer such as the substrate processing apparatus according to the present embodiment, but also to an LCD (Liquid Crystal Display) manufacturing apparatus for processing a glass substrate.
  • a semiconductor manufacturing apparatus for processing a semiconductor wafer such as the substrate processing apparatus according to the present embodiment
  • LCD Liquid Crystal Display
  • Process tube 203a Opening 220c O-ring (first encapsulant) 220d O-ring (second encapsulant) 230 Gas supply nozzle 502 Retainer (holding member) 504 O-ring adapter 508 Floating block (first fixture) 510 nut (second fixture)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

反応管内の部材を石英等の非金属製部材により構成する場合でも、非金属製部材の破損を抑制することが可能となる。 反応管の開口部を介して反応管の内部に構成される処理室に処理ガスを供給するガス供給ノズルと、少なくとも開口部とガス供給ノズルの隙間を覆うように設けられる第1封止材と、反応管と接続される保持部材と、反応管の外側から保持部材を介して接続されるアダプタと、開口部と保持部材とアダプタが同心円上に配置されるように固定する第1固定具と、ガス供給ノズルと保持部材とアダプタとの間の空間を気密な状態に維持されるように設けられる第2封止材と、を備える。

Description

ガス供給部、基板処理装置および半導体装置の製造方法
 本開示は、ガス供給部、基板処理装置および半導体装置の製造方法に関する。
 基板を処理する処理室を構成する反応管や、基板を支持するボート等は、基板の金属汚染を抑制するために石英等の非金属により構成されることがある。また、基板の金属汚染を抑制するため、反応管内にガスを供給するガス供給ノズルが石英等の非金属により構成されることがある(例えば特許文献1参照)。
 但し、このような構造では、石英製部材と金属製部材とが接触して石英製部材が破損することがあった。
特開2009-094426号公報
 本開示の目的は、反応管内の部材を石英等の非金属製部材により構成する場合でも、非金属製部材の破損を抑制することが可能な構成を提供することにある。
 本開示の一態様によれば、
 反応管の開口部を介して前記反応管の内部に構成される処理室に処理ガスを供給するガス供給ノズルと、
 少なくとも前記開口部と前記ガス供給ノズルの隙間を覆うように設けられる第1封止材と、
 前記反応管と接続される保持部材と、
 前記反応管の外側から前記保持部材を介して接続されるアダプタと、
 前記開口部と前記保持部材と前記アダプタが同心円上に配置されるように固定する第1固定具と、
 前記ガス供給ノズルと前記保持部材と前記アダプタとの間の空間を気密な状態に維持されるように設けられる第2封止材と、
 を備える構成が提供される。
 本開示によれば、反応管内の部材を石英等の非金属製部材により構成する場合でも、非金属製部材の破損を抑制することが可能となる。
本開示の一実施形態にかかる基板処理装置の処理炉の断面構成図である。 本開示の一実施形態にかかる基板処理装置の処理炉のガス供給部周辺の概略断面構成図である。 本開示の一実施形態にかかる反応管の開口部周辺の一部概略断面構成図である。 本開示の一実施形態にかかる反応管の開口部周辺の斜視図である。 本開示の一実施形態にかかる基板処理装置の処理炉のガス供給部周辺の斜視図である。 比較例にかかる基板処理装置の処理炉のガス供給部周辺の概略断面構成図である。
(1)基板処理装置の構成
 まず、本開示の一実施形態にかかる基板処理装置の構成について、図1及び図2を用いて説明する。
 図1に示されているように、処理炉202は加熱機構としてのヒータ206を有する。ヒータ206は円筒形状であり、垂直に据え付けられている。
 ヒータ206の内側には、ヒータ206と同心円状に反応管としてのプロセスチューブ203が配設されている。プロセスチューブ203は、内部反応管としてのインナーチューブ204と、その外側に設けられた外部反応管としてのアウターチューブ205と、を有する。インナーチューブ204は、例えば石英(SiO2)または炭化珪素(SiC)等の耐熱性材料で構成され、上端および下端が開口した円筒形状に形成されている。インナーチューブ204の筒中空部には、基板200を処理する処理室201が形成されている。つまり、プロセスチューブ203は、内部に処理室201を構成している。処理室201には、後述する基板保持具としてのボート217を収容可能に構成されている。ボート217は、シリコンやガラス等の基板200を、水平姿勢で垂直方向に多段に整列した状態で収容可能に構成されている。アウターチューブ205は、例えば石英(SiO2)または炭化珪素(SiC)等の耐熱性材料で構成され、内径がインナーチューブ204の外径よりも大きく、上端が閉塞した円筒形状に形成されており、インナーチューブ204と同心円状に設けられている。
 なお、プロセスチューブ203には、ガス供給ノズルが挿入される開口部(貫通穴)203aが少なくとも1つ設けられている。具体的には、プロセスチューブ203の側壁に開口部203aが設けられており、開口部203aには、筒状のガス供給ノズル230が、プロセスチューブ203の内外を連通するようにそれぞれ気密な状態で接続されている。
 ガス供給ノズル230は、開口部203aを介してプロセスチューブ203の内部に構成される処理室201に処理ガスを供給するよう構成されている。ガス供給ノズル230は、図1に示すようにプロセスチューブ203に対して下流側端部が横向きに延びたストレートタイプの他、下流側端部が垂直に立ち下がったL字型タイプ、下流側端部が垂直に立ち上がったL字型タイプ等がある。ガス供給ノズル230は石英(SiO2)等の耐熱性を有する非金属製部材により構成されている。なお、ガス供給ノズル230の上流側端部は、プロセスチューブ203外に突出し、後述するガス供給部500、ガス供給管232に接続されている。なお、ガス供給管232の上流側、すなわち、ガス供給管232におけるガス供給ノズル230との接続側と反対側には、ガス流量制御器としてのマスフローコントローラ(MFC)241を介して、図示しない処理ガス供給源や不活性ガス供給源が接続されている。MFC241には、ガス流量制御部235が電気的に接続されている。MFC241は、処理室201に供給するガスの流量が所望の量となるよう所望のタイミングにて制御するように構成されている。
 また、プロセスチューブ203の側壁には、処理室201の雰囲気を排気する排気系231が設けられている。排気系231は、インナーチューブ204とアウターチューブ205との隙間によって形成される筒状空間250の下端部に配置されており、筒状空間250内に連通している。排気系231の下流側、すなわち排気系231のプロセスチューブ203との接続側とは反対側には、圧力検出器としての圧力センサ245およびメインバルブ242を介して、真空ポンプ等の真空排気装置246が接続されている。メインバルブ242は、処理室201と真空排気装置246との間を遮断する機能を有すると共に、処理室201の圧力が所定の圧力(真空度)となるように開度を自在に変更することが出来るように構成されている。メインバルブ242および圧力センサ245には、圧力制御部236が電気的に接続されている。圧力制御部236は、処理室201の圧力が所望のタイミングにて所望の圧力となるように、圧力センサ245により検出された処理室201や排気系231内の圧力に基づいて、メインバルブ242の開度をフィードバック制御するように構成されている。なお、排気系231のメインバルブ242の上流側には、過加圧防止処理を行うための過加圧防止ライン233が接続されている。過加圧防止ライン233には、過加圧防止バルブ234が挿入されている。処理室201の圧力が過加圧になって、その過加圧が圧力センサ245により検出されると、圧力制御部236が過加圧防止バルブ234を開いて処理室201の過加圧状態を開放させる。
 プロセスチューブ203の下端外周部には、図1に示すように、炉口部である炉口フランジ300が設けられている。プロセスチューブ203は、炉口フランジ300上に立設されている。炉口フランジ300は、例えばステンレス等の金属製部材で構成される。
 プロセスチューブ203の下方には、プロセスチューブ203の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、プロセスチューブ203の下端に垂直方向下側から当接されるようになっている。シールキャップ219は、例えばステンレス等の金属製部材で構成され、円盤状に形成されている。シールキャップ219の上面には、プロセスチューブ203の下端と当接する封止材としてのOリング220bが設けられる。シールキャップ219における処理室201と反対側には、ボート217を回転させる回転機構254が設置されている。回転機構254の回転軸255は、処理室201の気密を保持したままシールキャップ219を貫通して、後述するボート217に接続されている。回転機構254によりボート217を回転させることで、基板200を回転させるように構成されている。シールキャップ219は、プロセスチューブ203の外部に垂直に設備された昇降機構としてのボートエレベータ115によって、垂直方向に昇降されるように構成されている。これによりボート217を処理室201に対し搬入搬出することが可能となっている。回転機構254及びボートエレベータ115には、駆動制御部237が電気的に接続されている。駆動制御部237は、回転機構254及びボートエレベータ115が所望のタイミングで所望の動作をするように、回転機構254及びボートエレベータ115を制御するように構成されている。
 ボート217は、例えば石英(SiO2)や炭化珪素(SiC)等の耐熱性材料で構成され、複数枚の基板200を水平姿勢でかつ互いに中心を揃えた状態で整列させて多段に保持するように構成されている。なお、ボート217の下部には、例えば石英(SiO2)や炭化珪素(SiC)等の耐熱性材料により構成される円板形状をした断熱部材としての断熱板216が、水平姿勢で多段に複数枚配置されている。断熱板216は、ヒータ206からの熱を炉口フランジ300側に伝えにくくするように構成されている。
 プロセスチューブ203内には、温度検出器としての温度センサ263が設置されている。ヒータ206と温度センサ263には、温度制御部238が電気的に接続されている。温度制御部238は、温度センサ263により検出された温度情報に基づき、処理室201の温度が所望のタイミングで所望の温度分布となるように、ヒータ206への通電具合を制御するように構成されている。
 ガス流量制御部235、圧力制御部236、駆動制御部237、温度制御部238は、操作部、入出力部をも構成し、基板処理装置全体を制御する主制御部239に電気的に接続されている。これら、ガス流量制御部235、圧力制御部236、駆動制御部237、温度制御部238、主制御部239は、コントローラ240として構成されている。
(2)本実施形態のガス供給部の構成
 続いて、本実施形態にかかるガス供給ノズル230の導入部であるガス供給部500の構成について、図2~5を用いて説明する。なお、本構成にかかるガス供給ノズル230は、石英(SiO2)や炭化珪素(SiC)等の耐熱性を有する非金属製部材により構成されている。
 図4に示すように、プロセスチューブ203の下方側壁には、ガス供給ノズル230を挿入するための開口部(貫通穴)203aが、少なくとも1つ(図4においては2つ)形成されている。開口部203aは、プロセスチューブ203の側壁面からブロック形状に突出した突出面203cに形成されている。また、開口部203aは、開口部203aの先端面が、外側から内側に向けて開口が狭くなるようテーパ状に形成されている。
 図3に示すように、ガス供給ノズル230の上流側端部は、開口部203aを介してプロセスチューブ203の外側に突出するように配置されている。
 図5に示すように、プロセスチューブ203の開口部203aの突出面203cには、開口部512aが形成されたブロック512が装着されるよう構成されている。第3固定具としてのブロック512は、炉口フランジ300に固定ボルト513により固定される。
 図2に示すように、保持部材であるリテーナ502は、リング形状である。リテーナ502の内側には、ガス供給ノズル230の一部が配置され、リテーナ502とガス供給ノズル230との間には、隙間が形成されている。第1封止材であるOリング220cと、第2封止材であるOリング220dは、リテーナ502とガス供給ノズル230の間の隙間を覆うように設けられている。すなわち、リテーナ502は、ガス供給ノズル230を、Oリング220c,220dを介して外周側から保持している。また、リテーナ502は、ガス供給ノズル230に、プロセスチューブ203とOリング220cを介して接続されている。すなわち、Oリング220cは、開口部203aとガス供給ノズル230の隙間を覆うように設けられている。
 図2に示すように、リテーナ502の先端面であって、プロセスチューブ203に接続される側には、リング状の緩衝材であるクッションリング506が取り付けられている。つまり、クッションリング506は、リテーナ502とプロセスチューブ203の間に設けられている。すなわち、リテーナ502は、Oリング220c、クッションリング506を介してプロセスチューブ203の外側に当接されるように構成されている。本構成にかかるリテーナ502は、金属製部材で構成されている。また、クッションリング506は、非金属製部材でありフッ素樹脂である例えばポリテトラフルオロエチレン(PTFE)等で構成されている。
 図3に示すように、クッションリング506は、Oリング220cの外周を囲うように設けられ、リテーナ502がプロセスチューブ203に押し付けられてOリング220cが潰れたときに、金属製のリテーナ502が石英製のプロセスチューブ203に直接接触することが回避されるよう構成されている。つまり、リテーナ502のプロセスチューブ203との接触部にクッションリング506を設けることにより、金属製部材であるリテーナ502と石英製部材との接触を防止するよう構成されている。
 また、Oリングアダプタ504は、リテーナ502のOリング220dを介してガス上流側に設けられている。Oリングアダプタ504の内側には、ガス供給ノズル230の一部が配置され、Oリングアダプタ504とガス供給ノズル230との間には、隙間が形成されている。Oリング220dは、Oリングアダプタ504とガス供給ノズル230の間の隙間を覆うように設けられている。すなわち、Oリングアダプタ504は、ガス供給ノズル230をOリング220dを介して外周側から保持している。つまり、Oリングアダプタ504は、ガス供給ノズル230に、プロセスチューブ203の外側からOリング220c、リテーナ502、Oリング220dを介して接続されている。Oリングアダプタ504は、例えばハステロイ(登録商標)等で構成されている。
 図2に示すように、Oリングアダプタ504は、ガス供給ノズル230に連通して接続される。Oリングアダプタ504は、上流側端部がテーパ状に狭く形成され、ガス供給管232に接続される。つまり、ガス供給ノズル230の上流側端部は、Oリングアダプタ504を介してガス供給管232に気密な状態で接続されている。
 また、開口部203aへのOリング220cの取り付けは、例えば、図3に示すように、開口部203aの先端面(リテーナ502に対向する面)の開口径を広くし、テーパ状加工の傾斜部を形成し、この傾斜部にOリング220cを嵌め込むことによって行うことが好ましい。また、Oリング220dの脱落を抑制するため、リテーナ502のOリングアダプタ504との接続面(Oリングアダプタ504に対向する面)の開口径を広くし、テーパ状加工の傾斜部を形成し、この傾斜部にOリング220dを嵌め込むことによって行うことが好ましい。なお、Oリング220c,220dは、樹脂製の部材で構成される。
 すなわち、ガス供給ノズル230とリテーナ502は、Oリング220cを介して接続されることにより、開口部203aを気密な状態に維持している。また、ガス供給ノズル230とリテーナ502とOリングアダプタ504は、Oリング220dを介して気密な状態で接続されるよう構成されている。つまり、Oリング220dは、ガス供給ノズル230とリテーナ502とOリングアダプタ504との間の空間を気密な状態に維持するように設けられ、処理室201は気密に保たれるように構成されている。
 第1固定具であるフローティングブロック508には、開口部508aが形成されている。フローティングブロック508の開口部508a内に、リテーナ502とOリングアダプタ504が保持されるよう構成されている。フローティングブロック508は、開口部203aとリテーナ502とOリングアダプタ504とが同心円状に配置されるように固定されている。
 また、図2に示すように、フローティングブロック508の開口部508a内であって、Oリングアダプタ504の外周には、第2固定具であるナット510が接続される。ナット510は、Oリングアダプタ504をプロセスチューブ203側に押し付けて開口部203aを気密な状態で塞ぐよう構成されている。ナット510は、例えばステンレス等の金属製部材で構成されている。
 また、図5に示すように、フローティングブロック508の下端は、固定ボルト518によりワッシャー520を介してブロック512に固定される。また、フローティングブロック508の上端には、押しボルト514と引きボルト516が例えばそれぞれ2つ設けられている。押しボルト514と引きボルト516をそれぞれ調整することによりフローティングブロック508の面角度(向き)を調整して任意に位置で固定することができる。すなわち、ブロック512に対してフローティングブロック508が、任意の姿勢で固定されるよう構成されている。つまり、図3に示すように、Oリング220c,220dに対してフローティングブロック508を略水平に調整してプロセスチューブ203側に移動させ、リテーナ502をプロセスチューブ203の外周に押付けて、開口部203aの周囲を気密な状態で塞いでおくことができる。
 また、ブロック512は、プロセスチューブ203の側壁面に固定された状態で、開口部203aからプロセスチューブ203の外側に突出したガス供給ノズル230に対して、Oリング220c、クッションリング506、リテーナ502、Oリング220d、フローティングブロック508、Oリングアダプタ504、ナット510の順に接続させるよう構成されている。本構成にかかるブロック512とフローティングブロック508は、例えばステンレス等の金属製部材で構成される。
 なお、ブロック512とプロセスチューブ203の間には、図示していない加熱部材であるブロックヒータを設けてもよい。ブロック512とプロセスチューブ203との間にブロックヒータを設けることにより、ガス供給ノズル230やプロセスチューブ203やOリングアダプタ504等を加熱して処理ガスの温度を下げないようにすることができる。
(3)基板処理工程
 続いて、本実施形態にかかる基板処理装置により実施される基板処理工程について説明する。
 まず、プロセスチューブ203内から搬出されているボート217に、複数枚の基板200を装填(ウェハチャージ)する。これにより、ボート217に、薄膜が形成されるべき複数枚、例えば100枚、直径300mmの基板200が収容される。基板の装填が終了すると、複数枚の基板200を保持したボート217を、ボートエレベータ115によって持ち上げて、図1に示すように、処理室201に搬入(ボートローディング)する(処理室201に基板を搬入する工程)。この状態で、プロセスチューブ203の下端は、Oリング220bを介してシールキャップ219によりシールされた状態となる。
 処理室201に基板を搬入する工程が終了すると、処理室201が所望の圧力(真空度)となるように真空排気装置246によって真空排気する。これにより、処理室201の雰囲気を排気系231を介して排出する。この際、処理室201の圧力を、圧力センサ245で測定する。この測定した圧力に基づいて、メインバルブ242の開度をフィードバック制御する。また、処理室201が所望の温度となるようにヒータ206によって処理室201を加熱する。そして、ヒータ206への通電具合は、温度センサ263が検出した温度情報に基づき、処理室201が所望の温度分布となるようにフィードバック制御する。続いて、回転機構254によりボート217を回転させることで、基板200を回転させる。
 次いで、処理室201に処理ガスを供給して、基板上への成膜処理を実行する。すなわち、図示しない処理ガス供給源から供給され、MFC241にて所望の流量となるように制御されたガスをガス供給体としてのガス供給管232から供給して、ガス供給ノズル230を介して処理室201へと導入する。導入されたガスは、処理室201を上昇し、インナーチューブ204の上端開口から筒状空間250内に流出して、排気系231から排気される。処理ガスは、処理室201を通過する際に基板200の表面と接触し、この際に熱CVD反応によって基板200の表面上に薄膜が堆積(デポジション)される。
 成膜処理が終了したら、アフタパージ処理を実行する。すなわち、ガス供給管232からガス供給ノズル230を介して処理室201に不活性ガスを供給する。また、このとき、真空排気装置246によって真空排気処理を実行する。その結果、処理室201の雰囲気が不活性ガスにより浄化される。
 アフタパージ処理が終了したら、大気戻し処理を実行する。すなわち、真空排気処理を停止して、不活性ガスの供給処理だけを実行する。その結果、処理室201の圧力が常圧に復帰する。
 なお、少なくとも上述の成膜処理、アフタパージ処理、及び大気戻し処理は、ガス供給ノズル230を保持するリテーナ502、Oリングアダプタ504を、ナット510とフローティングブロック508によりプロセスチューブ203の側壁に押し付けて、開口部203aを気密に塞いだ状態で実行する。すなわち、少なくとも処理室201にガスを供給する間は、Oリング220c,220dに対してフローティングブロック508を略水平に調整してプロセスチューブ203側に移動させ、リテーナ502をOリング220cを介してプロセスチューブ203の側壁に押付けて、開口部203aの周囲を気密な状態で塞いでおく。
 大気戻し処理が終了したら、ボートアンロード処理を実行する。すなわち、ボートエレベータ115によりシールキャップ219を下降させ、プロセスチューブ203の下端を開口させるとともに、成膜処理の済んだ基板200を、ボート217に保持させた状態でプロセスチューブ203の下端からプロセスチューブ203の外部に搬出(ボートアンローディング)する(基板を処理室より搬出する工程)。その後、成膜処理の済んだ基板200を、ボート217より回収して(ウェハディスチャージ)、1バッチ目の処理を終了する。以下、同様に、2バッチ目以降も処理対象の基板200に対して上述の処理を実行する。
(4)比較例に係るガス供給部の構成
 次に、比較例に係るガス供給ノズル230の導入部であるガス供給部600の構成について、図6を用いて説明する。
 上述したようにプロセスチューブ203の側壁には、ガス供給ノズル230を挿入するための開口部(貫通穴)203aが、少なくとも1つ設けられている。プロセスチューブ203の側壁面には、開口部203aに挿入されるガス供給ノズル230の外周を囲う石英製のガスポート部601が、開口部203a及びガス供給ノズル230の外周を気密な状態で塞ぐように、プロセスチューブ203に接続されている。ガスポート部601は、プロセスチューブ203の側壁面から突出している。つまり、ガスポート部601は、プロセスチューブ203の開口部203aに連通されるように接続される。そして、ガスポート部601の上流側端部には、金属製の継手部602が接続されている。つまり、突出した形状である石英製のガスポート部601に、金属製の継手部602を締め込んでガスポート部601と継手部602とが接続されるように構成されている。
 そして、ガス供給ノズル230は、プロセスチューブ203の開口部203aに挿入されるとともに、上述の継手部602によって保持される。なお、ガス供給ノズル230と継手部602との間は密着しており、処理室201は気密に保たれるように構成されている。
 上述の構成においては、例えば、石英製のプロセスチューブ203の側壁面から突出した石英製のガスポート部601を、金属製の継手部602で締め込む構造となっており、石英製のガスポート部601が破損しやすいという課題があった。また、ガスポート部601がプロセスチューブ203の外側に突出しているため、接触し破損しやすいという課題があった。また、ガス供給ノズル230がロングノズルの場合に、ガスポート部601で保持しきれずに、ガス供給ノズル230が傾いたり、ガスポート部601に負荷がかかって破損しやすいという課題があった。
 つまり、本実施形態におけるガス供給部500によれば、ガス供給ノズルやプロセスチューブ203等の石英製の非金属製部材と金属製部材とを直接接触させないで石英製部材の破損を抑制することが可能となる。また、上述のようなガス供給部600と比較して、ブロック状に突出しているため破損を防止することでき、さらに接触が防止される。また、上述のようなガス供給部600と比較して、Oリングに対してフローティングブロック508を水平方向に調整して、ナット510によりOリングアダプタ504に対する押付け力を調整することで、処理室の気密性が向上され、ガス供給ノズル230を任意の位置で安定して固定することができ、安定した処理ガス供給が可能となる。また、ガス供給ノズル230としてロングノズルを用いた場合であっても、安定して固定することができ、安定した処理ガス供給が可能となる。
(5)本実施形態にかかる効果
 本実施形態によれば、以下に示す1つ又は複数の効果を奏する。
 本実施形態にかかる成膜処理、アフタパージ処理、及び大気戻し処理は、ガス供給ノズル230を保持するリテーナ502、Oリングアダプタ504を、ナット510によりプロセスチューブ203の側壁(外周)に押し付けて、開口部203aを気密に塞いだ状態で実行する。従って、処理室の気密を維持したまま、これらの処理を実施することが出来る。
 また、本実施形態によれば、プロセスチューブ203、ガス供給ノズル230等の炉内露出部が石英等の非金属製部材により構成されているため、処理室201の金属製部材の露出面が少ない。そのため、成膜処理などの基板処理を行う際に、基板が金属汚染される可能性を低減させることが可能となる。
 また、本実施形態によれば、ガス供給ノズル230が導入される開口部203aが、プロセスチューブ203の側壁面からブロック形状に突出した面203cに形成されているため、破損が発生しにくい。
 また、本実施形態によれば、石英製のプロセスチューブ203の形状を単純化させることが可能となり、基板処理装置の製造コストを低減させることが出来る。
 また、本実施形態によれば、フローティングブロック508の押しボルト514と引きボルト516をそれぞれ調整することによりフローティングブロック508の面角度(向き)を調整して任意に位置で固定することができる。すなわち、ブロック512に対してフローティングブロック508が、任意の姿勢で固定することができる。つまり、Oリング220c,220dに対してフローティングブロック508を略水平に調整してプロセスチューブ203側に移動させ、ナット510により、リテーナ502、Oリングアダプタ504をプロセスチューブ203の側壁に押付けて、開口部203aの周囲を気密な状態で塞いでおくことができる。
 また、本実施形態によれば、ガス供給ノズル230の上流側端部は、Oリングアダプタ504を介してガス供給管232に気密な状態で接続されている。具体的には、ガス供給管232の下流側端部にOリングアダプタ504が配置され、ナット510をOリングアダプタ504の外周部に固定することにより、ナット510が開口部508aを塞ぐと共に、Oリングアダプタ504とリテーナ502との間のOリング220dを押し付けるため、ガス供給管232とガス供給ノズル230とが気密な状態で接続されるよう構成されている。
 また、本実施形態によれば、リテーナ502の先端面であってOリング220cの外側に、Oリング220cの外周を囲うように、クッションリング506が設けられている。そのため、リテーナ502がプロセスチューブ203側に押し付けられてOリング220cが潰れたときに、金属製のリテーナ502が石英製のプロセスチューブ203に直接接触することを抑制し、金属製部材と接触することによるプロセスチューブ203の破損を抑制することが可能になる。
<他の実施形態>
 以上、本開示の実施形態を具体的に説明した。但し、本開示は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 例えば、本実施形態に係る基板処理装置を用いて基板上に形成される膜種は特に限定されない。例えば、窒化膜(SiN膜)、酸化膜(SiO膜)、金属酸化膜等、種々の膜を形成する場合にも、好適に適用できる。
 また、本実施形態に係る基板処理装置のような半導体ウエハを処理する半導体製造装置などに限らず、ガラス基板を処理するLCD(Liquid Crystal Display)製造装置にも適用することができる。
203  プロセスチューブ(反応管)
203a 開口部
220c Oリング(第1封止材)
220d Oリング(第2封止材)
230  ガス供給ノズル
502  リテーナ(保持部材)
504  Oリングアダプタ
508  フローティングブロック(第1固定具)
510  ナット(第2固定具)

Claims (9)

  1.  反応管の開口部を介して前記反応管の内部に構成される処理室に処理ガスを供給するガス供給ノズルと、
     少なくとも前記開口部と前記ガス供給ノズルの隙間を覆うように設けられる第1封止材と、
     前記反応管と接続される保持部材と、
     前記反応管の外側から前記保持部材を介して接続されるアダプタと、
     前記開口部と前記保持部材と前記アダプタが同心円上に配置されるように固定する第1固定具と、
     前記ガス供給ノズルと前記保持部材と前記アダプタとの間の空間を気密な状態に維持されるように設けられる第2封止材と、
    を備えるガス供給部。
  2.  前記ガス供給ノズルと前記保持部材は、前記第1封止材を介して接続されることにより、前記開口部を気密な状態に維持するよう構成されている請求項1記載のガス供給部。
  3.  更に、前記保持部材と前記反応管の間に緩衝材を設けるように構成されている請求項1記載のガス供給部。
  4.  更に、前記アダプタを前記反応管側に押し付け前記開口部を塞ぐように構成されている第2固定具を備える請求項1記載のガス供給部。
  5.  更に、炉口部に固定されている第3固定具を備え、
     前記第3固定具と接続される前記第1固定具は、任意の姿勢で固定できるよう構成されている請求項1記載のガス供給部。
  6.  前記保持部材は金属製部材であり、前記緩衝材は非金属製部材である請求項3記載のガス供給部。
  7.  前記第1封止材は、樹脂製の部材である請求項1または2記載のガス供給部。
  8.  基板を処理する処理室と、
     前記処理室を内部に構成する反応管と、
     前記反応管の開口部を介して前記処理室に処理ガスを供給するガス供給ノズルと、
     少なくとも前記開口部と前記ガス供給ノズルの隙間を覆うように設けられる第1封止材と、
     前記反応管と接続される保持部材と、
     前記反応管の外側から前記保持部材を介して接続されるアダプタと、
     前記開口部と前記保持部材と前記アダプタが同心円上に配置されるように固定する第1固定具と、
     前記ガス供給ノズルと前記保持部材と前記アダプタとの間の空間を気密な状態に維持されるように設けられる第2封止材と、
     を備えるガス供給部と、
    を有する基板処理装置。
  9.  反応管の開口部とガス供給ノズルの隙間を覆うように設けられる第1封止材と、前記反応管と接続される保持部材と、前記反応管の外側から前記保持部材を介して接続されるアダプタと、前記開口部と前記保持部材と前記アダプタが同心円上に配置されるように固定する第1固定具と、前記ガス供給ノズルと前記保持部材と前記アダプタとの間の空間を気密な状態に維持されるように設けられる第2封止材と、を有するガス供給部に取り付けられた前記ガス供給ノズルから、基板を処理する処理ガスを供給する工程を有する半導体装置の製造方法。
PCT/JP2020/006999 2019-03-20 2020-02-21 ガス供給部、基板処理装置および半導体装置の製造方法 WO2020189176A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021507125A JP7194805B2 (ja) 2019-03-20 2020-02-21 ガス供給部、基板処理装置および半導体装置の製造方法
CN202090000433.6U CN218299750U (zh) 2019-03-20 2020-02-21 气体供给部及基板处理装置
US17/379,273 US20210348275A1 (en) 2019-03-20 2021-07-19 Gas supply structure and substrate processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019052559 2019-03-20
JP2019-052559 2019-03-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/379,273 Continuation US20210348275A1 (en) 2019-03-20 2021-07-19 Gas supply structure and substrate processing apparatus

Publications (1)

Publication Number Publication Date
WO2020189176A1 true WO2020189176A1 (ja) 2020-09-24

Family

ID=72520273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006999 WO2020189176A1 (ja) 2019-03-20 2020-02-21 ガス供給部、基板処理装置および半導体装置の製造方法

Country Status (5)

Country Link
US (1) US20210348275A1 (ja)
JP (1) JP7194805B2 (ja)
CN (1) CN218299750U (ja)
TW (1) TWI733342B (ja)
WO (1) WO2020189176A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115068A (ja) * 1993-10-18 1995-05-02 Tokyo Electron Ltd 熱処理装置
JPH11111621A (ja) * 1997-10-03 1999-04-23 Toshiba Corp 半導体製造装置
KR20050112203A (ko) * 2004-05-25 2005-11-30 삼성전자주식회사 반도체 소자 제조장비에서의 가스 플로잉 노즐 세팅구조
JP2009094426A (ja) * 2007-10-12 2009-04-30 Hitachi Kokusai Electric Inc 基板処理装置、及び半導体装置の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3645564A (en) * 1970-01-12 1972-02-29 Johns Manville Insulated conduit-fitting assembly
JPH11145072A (ja) * 1997-11-06 1999-05-28 Tokyo Electron Ltd 熱処理装置
JP4330703B2 (ja) * 1999-06-18 2009-09-16 東京エレクトロン株式会社 搬送モジュール及びクラスターシステム
US6347749B1 (en) * 2000-02-09 2002-02-19 Moore Epitaxial, Inc. Semiconductor processing reactor controllable gas jet assembly
JP6056673B2 (ja) * 2013-06-14 2017-01-11 東京エレクトロン株式会社 ガス処理装置
JP6706901B2 (ja) * 2015-11-13 2020-06-10 東京エレクトロン株式会社 処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115068A (ja) * 1993-10-18 1995-05-02 Tokyo Electron Ltd 熱処理装置
JPH11111621A (ja) * 1997-10-03 1999-04-23 Toshiba Corp 半導体製造装置
KR20050112203A (ko) * 2004-05-25 2005-11-30 삼성전자주식회사 반도체 소자 제조장비에서의 가스 플로잉 노즐 세팅구조
JP2009094426A (ja) * 2007-10-12 2009-04-30 Hitachi Kokusai Electric Inc 基板処理装置、及び半導体装置の製造方法

Also Published As

Publication number Publication date
TW202039926A (zh) 2020-11-01
CN218299750U (zh) 2023-01-13
JP7194805B2 (ja) 2022-12-22
TWI733342B (zh) 2021-07-11
US20210348275A1 (en) 2021-11-11
JPWO2020189176A1 (ja) 2021-10-28

Similar Documents

Publication Publication Date Title
US8529701B2 (en) Substrate processing apparatus
JP5237133B2 (ja) 基板処理装置
US7575431B2 (en) Vertical heat processing apparatus and method for using the same
US8791031B2 (en) Method of manufacturing semiconductor device, method of processing substrate and substrate processing apparatus
JP2008091761A (ja) 基板処理装置及び半導体装置の製造方法
KR20100110822A (ko) 열처리 장치 및 그 제어 방법
WO2004003995A1 (ja) 基板処理装置および半導体装置の製造方法
KR20100012816A (ko) 기판 처리 장치
JP2670515B2 (ja) 縦型熱処理装置
WO2020189176A1 (ja) ガス供給部、基板処理装置および半導体装置の製造方法
JP2002302770A (ja) 基板処理装置
JP2009124105A (ja) 基板処理装置
US20220325413A1 (en) Substrate Processing Apparatus, Heat Insulator Assembly and Method of Manufacturing Semiconductor Device
JP4880408B2 (ja) 基板処理装置、基板処理方法、半導体装置の製造方法、メインコントローラおよびプログラム
JP2012099723A (ja) 基板処理装置
US7211514B2 (en) Heat-processing method for semiconductor process under a vacuum pressure
JP5242984B2 (ja) 基板処理装置、及び半導体装置の製造方法
JP2009088346A (ja) 基板処理装置
KR102133547B1 (ko) 기판 처리 장치, 이음부 및 반도체 장치의 제조 방법
JP2010056124A (ja) 基板処理装置および半導体装置の製造方法
JPH0247266A (ja) 処理装置
US20220298640A1 (en) Substrate Processing Apparatus, Nozzle Adapter, Method of Manufacturing Semiconductor Device and Substrate Processing Method
KR20210024141A (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
JP2007324478A (ja) 基板処理装置
JP2010093131A (ja) 基板処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773211

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507125

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20773211

Country of ref document: EP

Kind code of ref document: A1