WO2020188126A1 - Sistema de exprimido de frutos - Google Patents

Sistema de exprimido de frutos Download PDF

Info

Publication number
WO2020188126A1
WO2020188126A1 PCT/ES2019/070174 ES2019070174W WO2020188126A1 WO 2020188126 A1 WO2020188126 A1 WO 2020188126A1 ES 2019070174 W ES2019070174 W ES 2019070174W WO 2020188126 A1 WO2020188126 A1 WO 2020188126A1
Authority
WO
WIPO (PCT)
Prior art keywords
fruit
motor
cups
squeezing
control unit
Prior art date
Application number
PCT/ES2019/070174
Other languages
English (en)
French (fr)
Other versions
WO2020188126A8 (es
Inventor
Eugenio Contell Albert
Original Assignee
Zummo Innovaciones Mecánicas, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US17/440,770 priority Critical patent/US20220175010A1/en
Priority to CA3132909A priority patent/CA3132909A1/en
Priority to PCT/ES2019/070174 priority patent/WO2020188126A1/es
Priority to BR112021018428A priority patent/BR112021018428A2/pt
Application filed by Zummo Innovaciones Mecánicas, S.A. filed Critical Zummo Innovaciones Mecánicas, S.A.
Priority to MA54416A priority patent/MA54416B1/fr
Priority to AU2019435845A priority patent/AU2019435845A1/en
Priority to MX2021011208A priority patent/MX2021011208A/es
Priority to KR1020217032091A priority patent/KR20220021449A/ko
Priority to EP19920434.8A priority patent/EP3942973A4/en
Priority to JP2021556374A priority patent/JP2022536409A/ja
Priority to CN201980094285.0A priority patent/CN113924031A/zh
Publication of WO2020188126A1 publication Critical patent/WO2020188126A1/es
Priority to IL286117A priority patent/IL286117A/en
Priority to SA521430324A priority patent/SA521430324B1/ar
Publication of WO2020188126A8 publication Critical patent/WO2020188126A8/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23NMACHINES OR APPARATUS FOR TREATING HARVESTED FRUIT, VEGETABLES OR FLOWER BULBS IN BULK, NOT OTHERWISE PROVIDED FOR; PEELING VEGETABLES OR FRUIT IN BULK; APPARATUS FOR PREPARING ANIMAL FEEDING- STUFFS
    • A23N1/00Machines or apparatus for extracting juice
    • A23N1/003Machines or apparatus for extracting juice especially for citrus fruits
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23NMACHINES OR APPARATUS FOR TREATING HARVESTED FRUIT, VEGETABLES OR FLOWER BULBS IN BULK, NOT OTHERWISE PROVIDED FOR; PEELING VEGETABLES OR FRUIT IN BULK; APPARATUS FOR PREPARING ANIMAL FEEDING- STUFFS
    • A23N1/00Machines or apparatus for extracting juice
    • A23N1/02Machines or apparatus for extracting juice combined with disintegrating or cutting
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J19/00Household machines for straining foodstuffs; Household implements for mashing or straining foodstuffs
    • A47J19/02Citrus fruit squeezers; Other fruit juice extracting devices
    • A47J19/023Citrus fruit squeezers; Other fruit juice extracting devices including a pressing cone or reamer
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J19/00Household machines for straining foodstuffs; Household implements for mashing or straining foodstuffs
    • A47J19/02Citrus fruit squeezers; Other fruit juice extracting devices

Definitions

  • the present invention belongs to the technical field of the agri-food industry, and specifically to that of fruit squeezing machines, mainly oranges, but also other citrus fruits and pomegranates. More specifically, the invention refers to fruit squeezing systems with rotating cups to receive the fruits, a blade for cutting them into two halves, and squeezing balls of these halves, which perform a vertical squeeze, that is, a movement vertical of the cups that house the halves of the fruits on the squeezing balls to make the squeeze.
  • This machine already incorporates a mechanism to squeeze each of the fruits, the juice extraction being carried out by means of a vertical displacement in which each of the fruit halves located in its corresponding location will be pressed on the respective pineapple or squeezer ball.
  • Document PCT / ES2012 / 070394 shows a fruit juicer machine in which, by rotating the cups that house the fruit in a symmetrical way, the fruit is cut into two equal halves. The cups face and compress these halves against squeezing balls, collecting the juice on one side, and the crust of the squeezed fruit on the other.
  • Spanish patent application P201230986 shows a fruit juicer machine of reduced size compared to the size of conventional machines, which allows its installation in premises with less available space. This machine has a single cup for the reception of the fruits and a single juicer ball, which makes it take up less space, but on the contrary allows lower speed than other machines with different systems of several cups and balls.
  • Document ES2545235B1 shows a fruit juicer machine with vertical juicing using cups and balls, in which all the elements are driven by a single motor, and the movements of all the components for cutting and juicing are synchronized with the continuous movement of the feeder of fruits.
  • the present invention solves the existing problems in the state of the art by means of a fruit squeezing system, which is considered intelligent because it allows any squeezing machine to make a vertical squeeze of any fruit, adapting to its characteristics, such as size, hardness, thickness of the rind, quantity of pulp, etc ... and it can vary certain operating parameters according to said characteristics of the fruit.
  • smart juicing means a juicing in which the system varies certain operating parameters that allows vertical juicing of any fruit, adapting to its characteristics, such as its size, hardness, thickness of the rind or amount of pulp.
  • the user will be able to access the system control unit through a simple interface to modify certain parameters such as squeezing speed and power to adapt to different circumstances, providing a versatile system.
  • This intelligent system will additionally allow to reduce breakdowns by detecting blockages and stopping the machine automatically, as well as avoiding movements of the machine squeezing the machine in vacuum.
  • the fruit squeezing system has a fruit feeding system, cutting and squeezing means arranged under the feeding system, and a tray for collecting the juice obtained from the fruits arranged under the cutting and squeezing means, which has at its disposal. Once a filter for the collection of pulp and seeds, preventing them from falling into the juice extracted from the fruit.
  • the cutting and squeezing means have a pair of sets of fruit receiving cups, displaced vertically by means of displacement vertically and rotatably by means of rotation.
  • the cutting and squeezing means also have a cutting and extraction assembly under the cup assemblies, which in turn is formed by a central blade for cutting the fruits into two halves, and means for extracting the crusts after being the squeezed fruit.
  • the cutting and squeezing means have a pair of fixed squeezing balls, each one arranged under one of the sets of cups, which perform the vertical squeezing of the fruit halves by means of the vertical displacement of the sets of cups on said sets. squeeze balls.
  • one of the sets of cups receives the fruit from the feeding system, and by turning the sets in opposite directions towards the interior of the system, the fruit is between two facing cups, which direct it with the turn towards the cutting and extraction assembly, in which the blade cuts the fruit into two substantially equal halves, each one remaining in the cup of a unit.
  • the assemblies then continue their rotation until the cups with the halves are arranged in the vertical of the system. From this position, by means of a vertical downward movement on the squeezing balls of the cup assemblies and of the cutting and extraction assembly driven by them, the pulp is squeezed. When the spin is finished, the system stops the vertical downward movement and makes an upward movement, in which the crust extracting means carry out the extraction of the crusts from the squeezing balls.
  • Both the cups and the squeezing balls are removable and interchangeable, with different sizes adaptable to different sizes of fruits.
  • the fruit squeezing system has a first motor that exclusively drives the means of vertical movement of the sets of cups, that is, said first motor drives solely and exclusively said means of vertical movement of the sets of cups, putting them in march, stopping them, with a determined intensity, and providing a speed to the means of vertical displacement of the sets of cups determined. Additionally, the fruit squeezing system has means for measuring the intensity generated in the first motor by the actuation of the vertical displacement means of the sets of cups, and a control unit to which the first motor and the intensity measurement means, configured to independently control the first motor.
  • the control unit will be configured to stop the first motor when the measured current is higher than a preset value.
  • this preset value can be set according to the intensity required to squeeze the pulp. This implies that when the system detects that the intensity of the first motor is higher than this preset value, it means that the squeezing ball has reached the crust, and at that moment the cup will stop its vertical downward movement for squeezing, avoiding squeezing the squeeze. Cortex.
  • this feature can also constitute a lockout detection and warning.
  • an unusually very high intensity is detected, outside of a set maximum value, depending on the position, it is because the movement downward squeezing vertical movement is being blocked by some circumstance, and said vertical movement will be stopped.
  • control unit may be configured to stop the first motor when the measured current is less than a predetermined value.
  • a minimum safety intensity value will be established, which implies that the vertical juicing is being done without fruit, in vacuum, so the vertical movement will also be stopped.
  • control unit will be able to vary the current intensity of the first motor and the speed that it provides to the means of vertical movement of the sets of cups, that is, the speed with which the sets of cups perform the vertical squeezing of the fruits on the squeezer balls.
  • This provides an intelligent squeeze with a control of the route and pressure exerted by the cups through the measured intensity, so that only the pulp of the fruit is squeezed until it reaches the rind, without crushing it, regardless of its thickness, which provides greater quality in the juice and the yield is optimized.
  • the fruit squeezing system has a second motor that exclusively drives the means of rotation of the sets of cups, that is, said second motor only and exclusively drives said means of rotation of the sets of cups, starting them, stopping them, with a determined intensity, and providing a determined speed of rotation to the means of turning of the sets of cups.
  • the fruit squeezing system has means for measuring the intensity generated in the second motor by actuating the means for rotating the sets of cups.
  • the second motor and the current measurement means are connected to the control unit, which is configured to independently control the second motor, and stop it when the measured current exceed a preset value. This will serve as a means of detecting possible blockages of the rotation of the cups by some element. If during the rotation an intensity peak occurs with a value well above a preset value, it is because there is some element blocking the rotation of the cups, and the second motor will stop this rotation of the cups.
  • control unit will be able to vary the current intensity of the second motor and the speed of rotation that it provides to the sets of cups, that is, the speed with which the sets of cups rotate to receive the fruits and drive them. through the following phases of juicing.
  • the squeezing system has a cleaner-filter assembly for cleaning the filter of the juice collection tray.
  • This cleaner-filter assembly is in turn made up of a movable scraper mounted between two end shafts, mounted on the filter. The movement of the scraper along the entire filter drags pulp and seeds to an existing outlet in the juice collection tray.
  • the squeezing system has a third motor exclusively driving the cleaner-filter assembly, connected to the control unit, which is configured to independently control said third motor.
  • the control unit is configured to stop the third motor when the measured current is greater than a predetermined value.
  • this preset value can be established according to the intensity necessary to move the cleaner-filter assembly dragging a certain amount of pulp, or seeds considered as "normal". This implies that when the system detects that the intensity of the third motor is higher than this preset value, it means that in the filter there is a greater quantity of pulp, or seeds, or even pieces of rind, than those established as "normal”. Therefore, this third motor and the control unit also act as detection means of possible filter clogs, so that the user of the system can solve it.
  • control unit can vary the current intensity of the third motor, the speed that it provides to the cleaner-filter assembly, and the operating time of said cleaner-filter assembly.
  • a speed of the cleaner-filter assembly would be established depending on the size of the fruit, in such a way that the larger the fruit the higher the speed of the assembly is set. You can also set an operating time depending on the size of the fruit, so that the larger the fruit, the longer the set's operating time is set.
  • the cleaner-filter assembly works only while fruits are being squeezed, and as soon as the squeezing stops, the cleaner-filter assembly also stops. .
  • the spinning can be stopped, and the cleaner-filter assembly can keep running for a while to ensure that the filter is clean and free of pulp and seeds for the next spinning, providing greater hygiene.
  • the fruit feeding system can be composed of a feeder, which is a rotating plate with several holes for individual accommodation of the fruits, and a basket on said feeder where the fruits are housed with a separator and its actuating mechanism to get them to fall one by one to the feeder.
  • the feeding system is made up of a ramp and a dosing element to make the fruits fall one by one into the cups.
  • the squeezing system with the feeding system that includes the feeder in the form of a rotating disk, has a fourth motor that exclusively drives said feeder connected to the control unit, which is configured to independently control said fourth motor.
  • the feeder is powered by the fourth motor, soft starts and stops will be made, so the fruits will not be damaged, solving the problem that existed in the machines of the state of the art, in which the starting and stopping was mechanical ( by lever), causing abrupt drives that damaged the fruits.
  • the fourth motor exclusively drives said dosing element, the control unit being configured to independently control said fourth motor, and with it the movement of the element. dispenser.
  • the system has an interface connected to the control unit, which is configured to select and adjust the operating time, speed and power of each of the motors by the user, in order to adapt the squeeze to different fruits and different needs, thus providing a versatile system for any type of circumstances.
  • the control unit configured to select and adjust the operating time, speed and power of each of the motors by the user, in order to adapt the squeeze to different fruits and different needs, thus providing a versatile system for any type of circumstances.
  • the control unit is configured to select and adjust the operating time, speed and power of each of the motors by the user, in order to adapt the squeeze to different fruits and different needs, thus providing a versatile system for any type of circumstances.
  • the control unit Through the screen the user will select the type and size of fruit, and the system will be able to automatically adjust the most suitable squeezing parameters.
  • the system has multiple electric motors, each of them controlling different components, and all of them electronically synchronized by the control unit. That is to say, a system with independent, electronic and intelligent control of all its movements is achieved, in contrast to the systems existing in the state of the art, in which a single motor drives all the components, and the movement of all of them is synchronized by mechanical elements.
  • the system can automatically detect anomalies, blockages or problems in operation, stopping the motors immediately in the event of excessive motor current. Detection will occur due to an out-of-range intensity at some point, for example not corresponding to the squeeze position. This allows detecting incorrect cup or ball configurations, fruit size not in accordance with the installed cup and ball configuration, foreign objects in the squeezing area, such as pieces or remains of fruit, etc.
  • different squeezing modes can be provided, and thus, for example, establishing a slower squeezing eco mode, with the intention of obtaining the maximum performance from each fruit, and a faster turbo mode, where speed with respect to the yield on each fruit (for example, applicable to an accumulation of customers).
  • Figure 1a is a perspective view of the rear part of a particular embodiment of the juicing system that is the object of the invention, showing the different independent motors driving the different components.
  • Figure 1b is a front perspective view of the juicing system of Figure 1a, in which some elements have been removed for clarity.
  • Figure 2a is a front perspective view of one embodiment of a means for vertical displacement of the receiving cup assemblies.
  • Figure 2b is a rear perspective view of the vertical displacement means of Figure 2a.
  • Figure 3a is a perspective view of an embodiment of a means of vertical displacement connected to the receiving cups, and the guides by which they move vertically.
  • Figure 3b is similar to Figure 3a above in which the guides have been removed for clarity of the mechanism.
  • Figure 4 is a perspective view of an embodiment of a means of rotating the sets of receiving cups connected to said cups.
  • Figure 5a is an exploded view of a particular embodiment of the filter and a cleaner-filter assembly.
  • Figure 5b shows the filter elements and the filter cleaner assembly of Figure 5a assembled.
  • Figure 6a is a perspective view of the drive motor of the cleaner-filter assembly attached to it.
  • Figure 6b is a perspective view of the cleaner-filter assembly of Figure 6a.
  • Figure 7 shows an embodiment of the squeezing system with an alternative embodiment of the fruit feeding system formed by a chute and a dosing element.
  • Figure 8 shows a particular embodiment of the juicing system with a fruit feeding system formed by a basket and a turntable-shaped feeder.
  • Figure 9a shows a top perspective view of a particular embodiment of the feeding system of the present invention including basket feeder, turntable and its drive mechanism.
  • Figure 9b shows a bottom perspective view of the feeding system of Figure 9a.
  • Figures 10a to 10e schematically show the cutting and squeezing movements in different embodiments of the system object of the present invention, such that:
  • Figure 10a shows an embodiment with a cup in each set in a system with enough space so that the cutting of the fruit occurs in a single turn of the cups on the cutting and extraction set.
  • Figure 10b shows an embodiment with a cup in each set where the cut of the fruit is produced by turning and lowering the cups onto the cutting and extraction assembly.
  • Figure 10c shows the fruit cutting system of Figure 9a, but with two cups in each set.
  • Figure 10d shows the fruit cutting system of Figure 9b, but with two cups in each set.
  • Figure 10e shows the fruit cutting system of Figures 9a and 9c, but with three cups in each set.
  • Figure 11a shows the vertical path of the cups on the balls in the systems of the state of the art, showing two cases for two different sizes of balls and cups.
  • Figure 11b shows the vertical path of the cups on the balls in the system object of the present invention, showing, as in Figure 10a, two cases for two different sizes of balls and cups.
  • the object of the present invention is a fruit squeezing system, considered intelligent because it allows any squeezing machine that uses said system to make a vertical squeeze of any fruit, adapting to its characteristics, such as size, hardness, thickness of the rind, amount of pulp, etc ... and it can vary certain operating parameters according to these characteristics of the fruit.
  • the fruit squeezing system has a fruit feeding system 1 2, which can have a turntable feeder 19, or a ramp 20, cutting and squeezing means arranged under the squeezing system. feeding 1, and a tray 7 for the collection of the juice obtained from the fruits 2, which is arranged under the cutting and squeezing means, and which in turn presents a filter 8 for the collection of pulp and seeds, avoiding that these fall into the juice extracted from the fruit 2.
  • the cutting and squeezing means have a pair of sets of fruit receiving cups 3, displaced vertically by means of vertical displacement 10 and rotatably in opposite directions towards the interior of the system by means of rotation 11. Additionally, the sets of cups 3 are they can rotate in opposite directions towards the outside of the system, obviously not for squeezing the fruits 2, but for positioning or positioning movements of the cups 3, for example when initializing the system.
  • the cutting and squeezing means also have a cutting and extraction assembly 4 under the cup assemblies 3, which is in turn formed by a central blade 5 for cutting the fruits 2 into two halves, and extraction means of rinds 23 after fruit 2 is squeezed.
  • This blade 5 in particular, can consist of a progressive blade designed so that the cutting of the fruit rind is progressive when the cups rotate, so that it cuts the same length of rind in each advance of the rotary movement of the cup. In this way it is achieved that the crust of the fruit does not tear during cutting, thus avoiding the presence of essential oils from the rind in the juice, and remains of torn peels inside the squeezing area of the system.
  • the bark extraction means 23 may consist of ribs arranged in the cutting and extraction assembly 4, as can be seen in Figure 1 b.
  • the cutting and squeezing means have a pair of balls 6 fixed squeezers, each one of them arranged under one of the sets of cups 3, which perform the vertical squeezing of the fruit halves 2 by means of the vertical displacement of the sets of cups 3 on said balls 6 squeezers.
  • Figures 1a and 1b show these essential elements of the invention.
  • Figure 1b shows a double cup embodiment, ie an embodiment in which each set has two cups 3.
  • each set could have one, two, three, or even five cups, which It would increase the fruit processing capacity 2 of the system, and the reception speed, which would imply an increase in the squeezing speed.
  • one of the sets of cups 3 receives the fruit 2 from the feeder 1, and by turning the sets in opposite directions towards the interior of the system, the fruit 2 remains between two facing cups 3, which they direct with the rotation or vertical movement towards the cutting and extraction assembly 4, in which the blade 5 cuts the fruit 2 into two substantially equal halves, each one remaining in a cup 3 of each assembly.
  • the assemblies then continue their rotation until the cups 3 with the halves are arranged in the vertical of the system. From this position, by means of a vertical downward movement on the squeezing balls 6 of the cup sets 3 and the cutting set 4 dragged by them, the fruit pulp 2 is squeezed.
  • the fruit squeezing system has a first motor 12 that exclusively drives the vertical displacement means 10 of the sets of cups 3, that is, said first motor 12 drives solely and exclusively said vertical displacement means 10 of the sets of cups 3, starting them, stopping them, with a determined intensity, and providing a speed to the vertical displacement means 10 of the sets of cups 3 determined.
  • the fruit squeezing system has means for measuring the intensity generated in the first motor 12 by driving the vertical displacement means 10 of the sets of cups 3, and a control unit to which the first is connected.
  • motor 12 and the current measurement means configured to independently control the first motor 12, and stop it when the measured current is outside a predetermined range of values.
  • Figures 2a and 2b show the first drive motor 12 attached to the vertical displacement means 10, which in particular consist of a drive arm.
  • Figures 1a and 1b show this first motor 12 attached to the vertical displacement means 10 integrated in the squeezing system.
  • Figures 3a and 3b show a partial detail view of the vertical displacement means 10 attached to the cups 3.
  • control unit will be configured to stop the first motor 12 when the measured current is higher than a preset value.
  • control unit may be configured to stop the first motor 12 when the measured current is less than a predetermined value.
  • control unit will be able to vary the current intensity of the first motor 12 and the speed that it provides to the vertical displacement means 10 of the sets of cups 3, that is, the speed with which the sets of cups 3 perform the vertical squeezing of the fruits 2 on the balls 6 juicers.
  • the first motor 12 has two directions, obviously providing two directions of displacement of the vertical displacement means 10 of the sets of cups 3.
  • the first motor 12 will change direction and the cups 3 will return vertically to their previous position.
  • FIGs 11a and 11b Another additional advantage provided by the first drive motor 12 exclusively for the vertical displacement means 10 of the cup assemblies 3 can be seen in Figures 11a and 11b.
  • the upper level of all ball sizes 6 can be equalized, so that the smaller ball size is achieved. 6, it is necessary to make less squeezing travel by the sets of cups 3, so that the system object of the present invention, as the size of the balls 6 decreases, is faster.
  • Figure 11a shows the vertical path of the cups on the balls in the systems of the state of the art, showing two cases for two different sizes of balls and cups. In this figure it is observed that the vertical path A is fixed for different sizes of balls 6.
  • figure 11b shows the vertical path of the cups 3 on the balls 6 in the system object of the present invention, showing two cases for two different sizes of balls 6 and cups 3, and in said figure 11b it can be seen that the route B for balls 6 of smaller size is much smaller than the route A for balls 6 of a larger size. Therefore, the system object of the present invention, as the size of the balls 6 decreases, is faster.
  • the fruit squeezing system has a second motor 13 that exclusively drives the means of rotation 11 of the sets of cups 3, that is, said second motor 13 drives solely and exclusively said means of rotation 11 of the sets of cups, in such a way that it starts them, stops them, with a determined intensity, and providing a determined speed of rotation to the means of rotation 11 of the sets of cups 3.
  • the fruit squeezing system has means for measuring the intensity generated in the second motor 13 by driving the means of rotation 11 of the sets of cups 3.
  • the second motor 13 and the means of measuring intensity are connected to the control unit, which is configured to independently control said second motor 13, activate it, and stop it when the rotation must be interrupted, in a preset position
  • the control unit which is configured to independently control said second motor 13, activate it, and stop it when the rotation must be interrupted, in a preset position
  • Figure 1a shows this second motor 13 integrated in the juicing system
  • Figure 4 shows a Detail view of the second motor 13 attached to the rotation means 11 and to the cup assemblies 3.
  • the rotation means consist of a toothed-wheel gear system, which is driven by the second motor 13.
  • control unit will be able to vary the current intensity of the second motor 13 and the speed of rotation that it provides to the sets of cups 3 to receive the fruits 2 and lead them through the following juicing phases.
  • the squeezing system has a cleaner-filter assembly 9 for cleaning the filter 8 of the juice collection tray 7.
  • the cleaner-filter assembly 9 has a movable scraper 14 that is mounted between two end shafts, a driving shaft 15 and a driven shaft 16, mounted on the filter 8. The movement of the scraper 14 along along the entire length of the filter 8 it draws pulp and seeds to an outlet of the juice collection tray 7.
  • Figures 5a and 5b show a particular embodiment of the filter cleaner 9.
  • the squeezing system has a third motor 18 that exclusively drives the cleaner-filter assembly 9, and that is connected to the control unit, which is configured to independently control said third motor 18.
  • Figure 6 shows an example of the third motor 18 connected to the actuator system of the cleaner-filter assembly 9, formed in this case by gears, as can be seen in said figure 6, although depending on the embodiment, the transmission It may be through gears, belts, or even the motor directly connected to the driving shaft 15 of the cleaner-filter assembly 9.
  • control unit will be configured to stop the third motor 18 when the measured current is greater than a preset value.
  • the control unit will be able to vary the current intensity of the third motor 18, the speed that it provides to the cleaner-filter assembly 9, and the time that said cleaner-filter assembly 9 operates.
  • the fruit feeding system 1 can be formed by a ramp 20 and a dosing element 22, as seen in Figure 7, or by a basket 24 and a feeder 19 of turntable, as shown in figure 8.
  • the feeding system of the juicing system has a turntable feeder 19, and a fourth motor 21 exclusively driving said feeder 19.
  • This fourth motor 21 is connected to the control unit , which is configured to independently control said fourth motor 21.
  • Figure 1a shows the fourth motor 21 and its arrangement in the system driving the turntable feeder 19 of the feed system 1.
  • the fourth motor 21 exclusively drives said dosing element 22, the control unit being configured to independently control said fourth motor 21, and with it the movement of the dosing element 22 .
  • the system presents a friendly and intuitive interface for the user, connected to the control unit, which is configured to select and adjust the operating time, speed and power of each of the motors 12 , 13,18,21 by the user, to be able to adapt the juice to different fruits and different needs, providing a versatile system adaptable to all kinds of circumstances.
  • Figures 10a, 10b, 10c, 10d and 10e schematically show the paths of the cups during the squeezing process according to different particular embodiments.
  • Figure 10a shows an embodiment with a cup 3 in each set in a squeezing system with enough space so that the cutting of the fruit 2 occurs in a single turn of the cups 3 on the cutting and extraction set 4.
  • the cups 3 rotate in opposite directions, towards the Inside the system, they cut the fruit 2 by means of the turning movement, and place the two halves in front of the juicing balls 6.
  • the cups 3 are lowered vertically.
  • the cups 3 press the fruit 2 against the squeezer ball 6 to extract the juice.
  • this path is determined by the thickness of the fruit rind 2.
  • the pressure to apply for squeezing is the same and independent of the thickness of the fruit rind 2.
  • the path of the cups 3 will be less (the first motor 12 will stop earlier due to the increase in the intensity measured when the pulp is stopped squeezing and the rind is squeezed) and the maximum pressure will be reached earlier that causes the direction of the vertical movement, and head up. At this point, when this maximum pressure is reached, the cups 3 will stop pressing the fruit 2, thus having squeezed the pulp and not the rind. Subsequently, in the passage movement from positions 2 to 3, the cups 3 move vertically upwards. Then, in the passage from positions 3 to 4, the cups 3 continue to rotate in the same direction, this time already towards the outside of the system to expel the crusts from the squeezing zone towards the cuvettes (in an already conventional way and known). At the end of this movement the next fruit 2 falls and another cycle begins from 0.
  • Figure 10b shows an embodiment with a cup in each set where the cutting of the fruit is produced by turning and lowering the cups onto the cutting and extraction set.
  • the cups 3 rotate in opposite directions, towards the interior of the system to put the fruit 2 in the cutting position.
  • the cups 3 are lowered vertically so that the blade 5 makes an incision of a few cm in the fruit.
  • the cups 3 continue to rotate in the same direction towards the interior of the system, the complete cutting of the fruit 2 being carried out by rotation and placing the halves in front of the squeezing balls 6.
  • cups 3 are lowered vertically.
  • the cups 3 press the fruit 2 against the squeezer ball 6 to extract the juice. According to the above, this path is determined by the thickness of the fruit's crust 2.
  • the pressure to be applied for squeezing is the same and independent of the thickness of the fruit's crust. The greater the thickness of the fruit rind 2, the travel of the cups 3 will be less (the first motor 12 will stop earlier due to the increase in intensity measured when the pulp is stopped squeezing and the rind is squeezed) and it will be reached earlier the pressure maximum that causes the direction of vertical movement to be reversed and directed upwards. At this point, when this maximum pressure is reached, the cups 3 will stop pressing the fruit 2, thus having squeezed the pulp and not the rind.
  • Figure 10c shows the fruit cutting system of Figure 10a, but with two cups in each set.
  • Figure 10d shows the fruit cutting system of Figure 10b, but with two cups in each set.
  • Figure 10e shows the fruit cutting system of Figures 10a and 10c, but with three cups in each set.
  • the cups 3 rotate in opposite directions, towards the interior of the system, cut the fruit 2 by turning, and place the two halves in front of the balls 6 of squeezing, simultaneously, if there were crusts in the cups 3 that were in front of the balls 6, by means of this movement they are expelled.
  • the cups 3 are lowered vertically.
  • the cups 3 press the fruit 2 against the squeezer ball 6 to extract the juice.
  • this path is determined by the thickness of the fruit's crust 2.
  • the pressure to be applied for squeezing is the same and independent of the thickness of the fruit's crust.
  • the greater the thickness of the fruit rind 2 the travel of the cups 3 will be less (the first motor 12 will stop earlier due to the increase in intensity measured when the pulp is stopped squeezing and the rind is squeezed) and it will be reached earlier the maximum pressure that causes the direction of vertical movement to be reversed, and directed upward.
  • the cups 3 will stop pressing the fruit 2, thus having squeezed the pulp and not the rind. Subsequently, in the movement from positions 2 to 3 the cups 3 move vertically upwards, and during this movement the next fruit falls and another cycle begins from 0.
  • the cups 3 continue rotating in the same direction towards the interior of the system, the complete cutting of the fruit 2 being carried out by rotating the cups 3, and placing the halves in front of the squeezing balls 6.
  • the cups 3 are lowered vertically.
  • the cups 3 press the fruit 2 against the squeezer ball 6 to extract the juice.
  • this route is determined by the thickness of the fruit's crust 2.
  • the pressure to apply for squeezing is the same and independent of the thickness of the fruit's crust.
  • the travel of the cups 3 will be less (the first motor 12 will stop earlier due to the increase in intensity measured when the pulp is stopped squeezing and the rind is squeezed) and it will be reached earlier the maximum pressure that causes the direction of vertical movement to be reversed, and directed upward. At this point, when this maximum pressure is reached, the cups 3 will stop pressing the fruit 2, thus having squeezed the pulp and not the rind. Later, in the movement from 4 to 5 the cups 3 move vertically upwards and during this movement, the next fruit 2 falls, and another cycle begins from 0.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Apparatuses For Bulk Treatment Of Fruits And Vegetables And Apparatuses For Preparing Feeds (AREA)
  • Food-Manufacturing Devices (AREA)
  • Details Of Cutting Devices (AREA)

Abstract

Sistema de exprimido de frutos, con sistema de alimentación (1) y medios de corte y exprimido con un par de conjuntos de copas (3) desplazables verticalmente mediante medios de desplazamiento vertical (10) y rotatoriamente en sentidos opuestos mediante medios de rotación (11), un conjunto de corte (4) bajo estos con cuchilla (5) y medios de extracción de cortezas,y un par de bolas (6) exprimidoras fijas, cada una de ellas bajo uno de los conjuntos de copas, para el exprimido vertical de las mitades del fruto mediante el desplazamiento vertical de los conjuntos de copas (3). El sistema tiene un primer motor (12) accionador en exclusiva de los medios de desplazamiento vertical (10), medios de medición de la intensidad en éste,y una unidad de control que controla de forma independiente al primer motor (12), y lo detiene cuando la intensidad medida está fuera de un rango de valores prefijado.

Description

DESCRIPCIÓN
Título
Sistema de exprimido de frutos
Campo de la invención
La presente invención pertenece al campo técnico de la industria agroalimentaria, y concretamente al de las máquinas exprimidoras de frutos, principalmente naranjas, aunque también otros cítricos y granadas. Más concretamente la invención se refiere a los sistemas de exprimido de frutos con copas giratorias para recepcionar los frutos, una cuchilla para el corte de éstos en dos mitades, y bolas exprimidoras de estas mitades, que realizan un exprimido vertical, es decir, un movimiento vertical de las copas que albergan las mitades de los frutos sobre las bolas exprimidoras para realizar el exprimido.
Antecedentes de la invención Son conocidas del estado de la técnica diversas máquinas exprimidoras de frutos automáticas, principalmente de naranjas, aunque también de otros cítricos. Estas máquinas se basan principalmente en el movimiento de la fruta para que ésta sea cortada, exprimiéndose posteriormente las partes resultantes. Por lo general la mayoría de los exprimidores industriales y de gran capacidad, o los utilizados en la industria de la hostelería y asimilados, extraen el zumo mediante un movimiento giratorio, simultáneo y coincidente de unos alveolos o copas con unas piñas o bolas de exprimido correspondientes con éstas. El documento ES2091702B1 muestra una máquina exprimidora de cítricos la cual incorpora un sistema“revólver” de gran capacidad de carga donde son colocadas las naranjas y otros frutos. Esta máquina ya incorpora un mecanismo para exprimir cada uno de los frutos, realizándose la extracción de jugo mediante un desplazamiento vertical en el que cada una de las mitades de fruto ubicadas en su correspondiente emplazamiento será presionada sobre la respectiva piña o bola exprimidora. El documento PCT/ES2012/070394 muestra una máquina exprimidora de frutos en la que por medio del giro de las copas que albergan el fruto de forma simétrica, se realiza el corte de dicho fruto en dos mitades iguales. Las copas enfrentan y comprimen estas mitades contra unas bolas exprimideras, recogiéndose el zumo por un lado, y la corteza del fruto exprimido por otro.
La solicitud de patente española P201230986 muestra una máquina exprimidora de frutos de tamaño reducido respecto del tamaño de las máquinas convencionales, lo que permite su instalación en locales con menor espacio disponible. Esta máquina presenta una sola copa para la recepción de los frutos y una sola bola exprimidora, lo que hace que ocupe menos espacio, pero por el contrario permita menor velocidad que otras máquinas con diferentes sistemas de varias copas y bolas. El documento ES2545235B1 muestra una máquina exprimidora de frutos con exprimido vertical mediante copas y bolas, en las que todos los elementos están accionados por un único motor, y los movimientos de todos los componentes para el corte y exprimido están sincronizados con el movimiento continuo del alimentador de frutos.
Todos estos sistemas de exprimido presentan una serie de limitaciones, entre las que se señala la imposibilidad de que se adapten a cualquier tipo de fruto, con diferentes características tales como tamaños, grosor de corteza, dureza, etc... Efectivamente, estos sistemas presentan un único motor para el movimiento de todos los componentes, por lo que proporcionan una única forma de exprimir, rígida, la cual no es adecuada para todo tipo de frutos, debido precisamente a esta variación en las diferentes características. Según varíe el tamaño, dureza, grosor de la corteza, cantidad de pulpa, etc, una presión excesiva puede originar que se rompa la corteza o sea exprimida, o por el contrario si la presión es insuficiente, quedaría zumo sin exprimir. Para solucionar este problema, algunas máquinas permiten variar de forma manual el espacio entre copas y bolas exprimideras, para aumentarlo o reducirlo dependiendo del tamaño del fruto, o dureza o grosor de la corteza, pero esto es una solución poco eficiente, que implica manipulación de partes mecánicas de la máquina por parte del usuario continuamente, riesgo de averías, roturas, tiempos muertos, etc... lo que impide poder procesar cualquier fruto de forma continua y flexible, con un rendimiento satisfactorio, en un tiempo adecuado.
Además, dado que todos los componentes están accionados por un único motor, y los movimientos de todos los componentes están sincronizados mediante elementos mecánicos, se producen fallos mecánicos, atascos, etc. que afectan a toda la máquina, ya que un problema en el movimiento de un componente bloquea a todos los demás. Otro de los problemas que presentan estos sistemas accionados por un único motor, es que proporcionan un recorrido de exprimido vertical que es siempre el mismo, por lo que para frutos de diferentes tamaños y dureza debe ajustarse la presión mediante suplementos que limitan el recorrido de exprimido, lo que hace que puedan aparecer atascos, fallos y averías. Además, debido a este idéntico recorrido de exprimido vertical pueden quedarse frutas sin exprimir, y por el contrario otras frutas pueden llegar a exprimirse demasiado, incluyendo la corteza, lo que proporcionará que el zumo obtenido sea amargo.
Era por tanto deseable una máquina exprimidora de frutos automática que proporcionara zumo de forma rápida y eficiente, mediante un exprimido inteligente que se adapte de forma automática a diferentes tipos de fruto, y que exprima las frutas de manera óptima adaptándose al tamaño y al grosor de la corteza, evitando así los inconvenientes existentes en las anteriores máquinas del estado de la técnica.
Descripción de la invención
La presente invención resuelve los problemas existentes en el estado de la técnica mediante un sistema de exprimido de frutos, que se considera inteligente porque permite a cualquier máquina exprimidora realizar un exprimido vertical de cualquier fruto, adaptándose a las características de éste, tales como tamaño, dureza, grosor de la corteza, cantidad de pulpa, etc... y puede variar ciertos parámetros de funcionamiento de acuerdo con dichas características del fruto. Es decir, en este caso exprimido inteligente significa un exprimido en el que el sistema varía ciertos parámetros de funcionamiento que permite realizar un exprimido vertical de cualquier fruto, adaptándose a las características de éste, como pueden ser su tamaño, dureza, grosor de la corteza o cantidad de pulpa. Además, el usuario podrá acceder a la unidad de control del sistema mediante una sencilla interfaz para modificar ciertos parámetros como velocidad y potencia de exprimido para poder adaptarse a diferentes circunstancias, proporcionando un sistema versátil.
Este sistema inteligente permitirá adicionalmente reducir averías al detectar bloqueos y detener la máquina automáticamente, así como evitar movimientos de exprimido de la máquina en vacío.
El sistema de exprimido de frutos presenta un sistema de alimentación de frutos, medios de corte y exprimido dispuestos bajo el sistema de alimentación, y una bandeja de recogida del zumo obtenido de los frutos dispuesta bajo los medios de corte y exprimido, que tiene a su vez un filtro para la recolección de pulpa y semillas, evitando que éstas caigan al zumo extraído del fruto.
Los medios de corte y exprimido tienen un par de conjuntos de copas receptoras de frutos, desplazares verticalmente mediante medios de desplazamiento vertical y rotatoriamente mediante medios de rotación. Los medios de corte y exprimido presentan además un conjunto de corte y extracción bajo los conjuntos de copas, el cual está formado a su vez por una cuchilla central para el corte de los frutos en dos mitades, y medios de extracción de cortezas tras ser el fruto exprimido. Adicionalmente, los medios de corte y exprimido tienen un par de bolas exprimidoras fijas, cada una de ellas dispuesta bajo uno de los conjuntos de copas, que realizan el exprimido vertical de las mitades del fruto mediante el desplazamiento vertical de los conjuntos de copas sobre dichas bolas exprimidoras.
Mediante esta configuración, uno de los conjuntos de copas realiza la recepción del fruto del sistema de alimentación, y mediante el giro de los conjuntos en sentidos opuestos hacia el interior del sistema, el fruto queda entre dos copas enfrentadas, las cuales lo dirigen con el giro hacia el conjunto de corte y extracción, en el cual la cuchilla corta al fruto en dos mitades sustancialmente iguales, quedando cada una de ellas en la copa de un conjunto. A continuación, los conjuntos continúan su giro hasta que las copas con las mitades quedan dispuestas en la vertical del sistema. Desde esta posición, mediante un movimiento vertical de bajada sobre las bolas exprimidoras de los conjuntos de copas y del conjunto de corte y extracción arrastrado por éstos, se produce el exprimido de la pulpa. Cuando el exprimido termina, el sistema detiene el movimiento vertical de bajada y hace un movimiento de subida, en el cual los medios extractores de cortezas realizan la extracción de las cortezas de las bolas exprimideras. Dependiendo del número de copas, de los conjuntos, a la vez que se produce el exprimido, otras copas en otra posición estarán recepcionando frutos, lo que proporcionará continuidad al proceso. En el funcionamiento del sistema se van repitiendo los movimientos y posiciones anteriores, en continuo, para todos los pares de copas de ambos conjuntos.
Tanto las copas como las bolas exprimideras son desmontables e intercambiables, existiendo diferentes tamaños adaptables a diferentes tamaños de frutos.
El sistema de exprimido de frutos presenta un primer motor accionador en exclusiva de los medios de desplazamiento vertical de los conjuntos de copas, es decir, que dicho primer motor acciona única y exclusivamente a dichos medios de desplazamiento vertical de los conjuntos de copas, poniéndolos en marcha, parándolos, con una intensidad determinada, y proporcionando una velocidad a los medios de desplazamiento vertical de los conjuntos de copas determinada. Adicionalmente, el sistema de exprimido de frutos presenta medios de medición de la intensidad generada en el primer motor por el accionamiento de los medios de desplazamiento vertical de los conjuntos de copas, y una unidad de control a la que está conectada el primer motor y los medios de medición de intensidad, configurada para controlar de forma independiente al primer motor.
De acuerdo con diferentes realizaciones particulares del sistema, la unidad de control estará configurada para detener el primer motor cuando la intensidad medida es superior a un valor prefijado. Concretamente, este valor prefijado se puede establecer en función de la intensidad necesaria para exprimir la pulpa. Esto implica que cuando el sistema detecte que la intensidad del primer motor es superior a este valor prefijado, significa que la bola exprimidora ha llegado a la corteza, y en ese momento la copa detendrá su movimiento vertical de descenso para el exprimido, evitando exprimir la corteza.
Además, esta característica puede constituir también una detección y aviso de bloqueos. Cuando se detecta una intensidad inusualmente muy elevada, fuera de un valor máximo establecido, dependiendo de la posición, es porque el movimiento vertical descendente de exprimido está siendo bloqueado por alguna circunstancia, y dicho movimiento vertical será detenido.
Alternativamente, según otra realización particular, la unidad de control podrá estar configurada para detener al primer motor cuando la intensidad medida sea inferior a un valor prefijado. En este caso se establecerá un valor de intensidad mínimo de seguridad, que implica que el exprimido vertical se está haciendo sin fruto, en vacío, por lo que el movimiento vertical también será detenido.
Preferentemente, la unidad de control podrá variar la intensidad de corriente del primer motor y la velocidad que éste proporciona a los medios de desplazamiento vertical de los conjuntos de copas, es decir, la velocidad con la que los conjuntos de copas realicen el exprimido vertical de los frutos sobre las bolas exprimidoras.
Esto proporciona un exprimido inteligente con un control del recorrido y presión ejercida por las copas mediante la intensidad medida, de manera que se exprima únicamente la pulpa del fruto hasta llegar a la corteza, sin machacar ésta, independientemente de su grosor, lo que proporciona mayor calidad en el zumo y se optimiza el rendimiento.
Además, se consigue una adaptación de diferentes parámetros como la posición, velocidad, presión de exprimido, número de movimientos de exprimido (descensos verticales de las copas sobre las bolas).
Mediante este motor independiente por tanto se evita la regulación mecánica manual de la distancia entre copas y bolas para frutos con diferentes tamaños, y diferente dureza y grosores de corteza. De esta forma el propio sistema se autorregula para sacar el máximo rendimiento del fruto.
Otra ventaja de este sistema, es que como el recorrido de las copas es hasta que la máquina termina de exprimir la pulpa, se puede igualar el nivel superior de todos los tamaños de bolas, por lo que se consigue que a menor tamaño de bola, haya que realizar menor recorrido de exprimido por parte de los conjuntos de copas, por lo que el sistema objeto de la presente invención, a medida que baja el tamaño de las copas y bolas es más rápido. De acuerdo con una realización particular de la invención, el sistema de exprimido de frutos tiene un segundo motor accionador en exclusiva de los medios de rotación de los conjuntos de copas, es decir, que dicho segundo motor acciona única y exclusivamente a dichos medios de rotación de los conjuntos de copas, poniéndolos en marcha, parándolos, con una intensidad determinada, y proporcionando una velocidad de giro determinada a los medios de giro de los conjuntos de copas. Adicionalmente, el sistema de exprimido de frutos presenta medios de medición de la intensidad generada en el segundo motor por el accionamiento de los medios de rotación de los conjuntos de copas. Igual que en el caso del primer motor, en este caso el segundo motor y los medios de medición de intensidad están conectados a la unidad de control, la cual está configurada para controlar de forma independiente al segundo motor, y detener éste cuando la intensidad medida supere un valor prefijado. Esto servirá como medio de detección de posibles bloqueos de la rotación de copas por algún elemento. Si durante la rotación se produce un pico de intensidad con un valor muy por encima de un valor preestablecido, es porque hay algún elemento bloqueando el giro de las copas, y el segundo motor parará este giro de las copas.
Preferentemente, la unidad de control podrá variar la intensidad de corriente del segundo motor y la velocidad de rotación que éste proporciona a los conjuntos de copas, es decir, la velocidad con la que los conjuntos de copas giran para recepcionar los frutos y conducir a éstos a través de las siguientes fases del exprimido.
De acuerdo con una realización particular de la invención, el sistema de exprimido tiene un conjunto limpia-filtro para la limpieza del filtro de la bandeja de recogida de zumo. Este conjunto limpia-filtro está formada a su vez por una rasqueta móvil montada entre dos ejes extremos, montados sobre el filtro. El movimiento de la rasqueta a lo largo de todo el filtro arrastra pulpa y semillas hasta una salida existente en la bandeja de recogida de zumo.
Preferentemente, y de acuerdo con la realización anterior, el sistema de exprimido tiene un tercer motor accionador en exclusiva del conjunto limpia-filtro, conectado a la unidad de control, la cual está configurada para controlar de forma independiente dicho tercer motor. Según diferentes realizaciones particulares, la unidad de control está configurada para detener el tercer motor cuando la intensidad medida es superior a un valor prefijado. Por ejemplo, este valor prefijado se puede establecer en función de la intensidad necesaria para mover el conjunto limpia-filtro arrastrando una cantidad determinada de pulpa, o semillas considerada como“normal”. Esto implica que cuando el sistema detecte que la intensidad del tercer motor es superior a este valor prefijado, significa que en el filtro hay una cantidad mayor de pulpa, o semillas, o incluso trozos de corteza, que las establecidas como“normales”. Por tanto, este tercer motor y la unidad de control actúan también como medios detección de posibles atascos del filtro, para que el usuario del sistema pueda solucionarlo.
De forma preferente, la unidad de control puede variar la intensidad de corriente del tercer motor, la velocidad que éste proporciona al conjunto limpia-filtro, y el tiempo de funcionamiento de dicho conjunto limpia-filtro.
Esto permite un sistema de filtrado de pulpa en el zumo variable, de manera que permita al usuario su regulación en función de sus preferencias.
Así, se podrían establecer diferentes modos de funcionamiento. En uno de ellos, por ejemplo, se establecería una velocidad del conjunto limpia-filtro en función del tamaño del fruto, de tal forma que a mayor tamaño del fruto se fije una mayor velocidad del conjunto. También se puede establecer un tiempo de funcionamiento en función del tamaño del fruto, de tal forma que a mayor tamaño del fruto se fije un mayor tiempo de funcionamiento del conjunto. En los sistemas existentes en el estado de la técnica al estar todos los componentes accionados por el mismo motor, el conjunto limpia-filtro funciona únicamente mientras se están exprimiendo frutos, y en cuanto el exprimido se detiene, se detiene también el conjunto limpia-filtro. En cambio, con el sistema de la presente invención, se puede detener el exprimido, y hacer que el conjunto limpia-filtro siga funcionando durante un tiempo para asegurar que el filtro queda limpio y libre de pulpa y semillas para el siguiente exprimido, proporcionando mayor higiene.
Según diferentes realizaciones particulares de la invención, el sistema de alimentación de frutos puede estar compuesto por un alimentador, que es un plato giratorio con varios huecos para el alojamiento individual de los frutos, y una cesta sobre dicho alimentador donde se alojan las frutas con un separador y su mecanismo accionador para conseguir que éstas caigan de una en una al alimentador. Alternativamente, el sistema de alimentación está formado por una rampa y elemento dosificador para conseguir que las frutas caigan de una en una a las copas.
De acuerdo con una realización preferente de la invención, el sistema de exprimido con el sistema de alimentación que incluye el alimentador en forma de disco giratorio, tiene un cuarto motor accionador en exclusiva de dicho alimentador conectado a la unidad de control, la cual está configurada para controlar de forma independiente dicho cuarto motor. Al ir el alimentador accionado por el cuarto motor, se realizarán arranques y paradas suaves, por lo que no se dañarán los frutos, resolviendo el problema que existían en las máquinas del estado de la técnica, en las que el arranque y parada era mecánico (por palanca), originando accionamientos bruscos que dañaban los frutos.
Alternativamente, en el caso del sistema de alimentación que incluye la rampa y el elemento dosificador, el cuarto motor acciona en exclusiva dicho elemento dosificador, estando la unidad de control configurada para controlar de forma independiente dicho cuarto motor, y con él el movimiento del elemento dosificador.
Según una realización preferente de la invención, el sistema presenta una interfaz conectada a la unidad de control, la cual está configurada para seleccionar y ajustar el tiempo de funcionamiento, velocidad y potencia de cada uno de los motores por parte del usuario, para poder adaptar el exprimido a diferentes frutos y diferentes necesidades, proporcionando de esta forma un sistema versátil para cualquier tipo de circunstancias. A través de la pantalla el usuario seleccionará el tipo y tamaño de fruto, y el sistema podrá ajustar automáticamente los parámetros de exprimido más adecuados.
Según todo lo anterior, el sistema dispone de múltiples motores eléctricos, cada uno de ellos controlando diferentes componentes, y todos ellos sincronizados electrónicamente por parte de la unidad de control. Es decir, se consigue un sistema con control independiente, electrónico e inteligente de todos sus movimientos, en contraposición a los sistemas existentes en el estado de la técnica, en los que un único motor acciona todos los componentes, y el movimiento de todos ellos está sincronizado mediante elementos mecánicos. Así, el sistema puede detectar de forma automática anomalías, bloqueos o problemas en el funcionamiento, deteniendo los motores de forma inmediata en caso de producirse un exceso de intensidad de los motores. La detección se producirá debido a una intensidad fuera de rango en algún punto determinado, por ejemplo, que no corresponda con la posición de exprimido. Esto permite detectar configuraciones de copas o bolas incorrectas, calibre de fruta no acorde con la configuración de copas y bolas instalada, objetos extraños en la zona de exprimido, tales como piezas o restos de fruta, etc.
Mediante los ajustes de velocidad se podrán proporcionar diferentes modos de exprimido, y así por ejemplo establecer un modo eco de exprimido, más lento, con la intención de obtener el máximo rendimiento de cada fruto, y un modo turbo, más rápido, donde prima la velocidad respecto al rendimiento sobre cada fruto (por ejemplo, aplicable ante una acumulación de clientes).
De esta forma se obtiene un sistema automatizado, versátil y de fácil manejo por parte del usuario, además de proporcionar un alto rendimiento.
Breve descripción de los dibujos
A continuación, para facilitar la comprensión de la invención, a modo ilustrativo, pero no limitativo se describirá una realización de la invención que hace referencia a una serie de figuras.
La figura 1a es una vista en perspectiva de la parte trasera de una realización particular del sistema de exprimido objeto de la invención, que muestra los diferentes motores independientes accionadores de los diferentes componentes. La figura 1b es una vista en perspectiva delantera del sistema de exprimido de la figura 1a, en la que algunos elementos se han retirado por motivos de claridad.
La figura 2a es una vista en perspectiva frontal de una realización de unos medios de desplazamiento vertical de los conjuntos de copas receptoras. La figura 2b es una vista en perspectiva trasera de los medios de desplazamiento vertical de la figura 2a.
La figura 3a es una vista en perspectiva de una realización de unos medios de desplazamiento vertical conectados a las copas receptoras, y las guías por las que se desplazan éstas verticalmente. La figura 3b es similar a la figura 3a anterior en la que se han retirado las guías para mayor claridad del mecanismo.
La figura 4 es una vista en perspectiva de una realización de unos medios de rotación de los conjuntos de copas receptoras conectados a dichas copas.
La figura 5a es una vista en despiece de una realización particular del filtro y un conjunto limpia-filtro. La figura 5b muestra los elementos del filtro y el conjunto limpia- filtro de la figura 5a montados.
La figura 6a es una vista en perspectiva del motor accionador del conjunto limpia-filtro unido a éste. La figura 6b es una vista en perspectiva del conjunto limpia-filtro de la figura 6a.
La figura 7 muestra una realización del sistema de exprimido con una realización alternativa del sistema de alimentación de frutos formado por una rampa y un elemento dosificador.
La figura 8 muestra una realización particular del sistema de exprimido con un sistema de alimentación de frutos formado por una cesta y un alimentador en forma de plato giratorio.
La figura 9a muestra una vista en perspectiva superior de una realización particular del sistema de alimentación de la presente invención incluyendo alimentador de cesta, plato giratorio y su mecanismo de accionamiento. La figura 9b muestra una vista en perspectiva inferior del sistema de alimentación de la figura 9a.
Las figuras 10a a 10e muestran de forma esquemática los movimientos de corte y exprimido en diferentes realizaciones del sistema objeto de la presente invención, de forma que:
La figura 10a muestra una realización con una copa en cada conjunto en sistema con suficiente espacio para que el corte del fruto se produzca en un único giro de las copas sobre el conjunto de corte y extracción.
La figura 10b muestra una realización con una copa en cada conjunto donde el corte del fruto se produce por giro y bajada de las copas sobre el conjunto de corte y extracción.
La figura 10c muestra el sistema de corte del fruto de la figura 9a, pero con dos copas en cada conjunto.
La figura 10d muestra el sistema de corte del fruto de la figura 9b, pero con dos copas en cada conjunto.
La figura 10e muestra el sistema de corte del fruto de las figuras 9a y 9c, pero con tres copas en cada conjunto.
La figura 11a muestra el recorrido vertical de las copas sobre las bolas en los sistemas del estado de la técnica, mostrando dos casos para dos tamaños diferentes de bolas y copas. La figura 11b muestra el recorrido vertical de las copas sobre las bolas en el sistema objeto de la presente invención, mostrando como en la figura 10a, dos casos para dos tamaños diferentes de bolas y copas.
En estas figuras se hace referencia a un conjunto de elementos que son:
1. Sistema de alimentación de frutos
2. fruto
3. copas
4. conjunto de corte y extracción
5. cuchilla
6. bolas exprimideras fijas
7. bandeja de recogida de zumo
8. filtro
9. conjunto limpia-filtro
10. medios de desplazamiento vertical de los conjuntos de copas
11. medios de rotación de los conjuntos de copas
12. primer motor
13. segundo motor
14. rasqueta del conjunto limpia-filtro
15. eje motriz del conjunto limpia-filtro
16. eje conducido del conjunto limpia-filtro
18. tercer motor
19. alimentador de plato giratorio
20. rampa del sistema de alimentación
21. cuarto motor 22. elemento dosificador del sistema de alimentación
23. medios de extracción de cortezas
24. cesta del sistema de alimentación
Descripción detallada de la invención
El objeto de la presente invención es un sistema de exprimido de frutos, considerado inteligente porque permite a cualquier máquina exprimidora que utilice dicho sistema realizar un exprimido vertical de cualquier fruto, adaptándose a las características de éste, tales como tamaño, dureza, grosor de la corteza, cantidad de pulpa, etc... y puede variar ciertos parámetros de funcionamiento de acuerdo con dichas características del fruto.
Como se puede observar en las diferentes figuras, el sistema de exprimido de frutos presenta un sistema de alimentación 1 de frutos 2, que puede presentar un alimentador de plato giratorio 19, o una rampa 20, medios de corte y exprimido dispuestos bajo el sistema de alimentación 1 , y una bandeja 7 para la recogida del zumo que se obtiene de los frutos 2, que se dispone bajo los medios de corte y exprimido, y que presenta a su vez un filtro 8 para la recolección de pulpa y semillas, evitando que éstas caigan al zumo extraído del fruto 2.
Los medios de corte y exprimido tienen un par de conjuntos de copas 3 receptoras de frutos, desplazares verticalmente mediante medios de desplazamiento vertical 10 y rotatoriamente en sentidos opuestos hacia el interior del sistema mediante medios de rotación 11. Adicionalmente, los conjuntos de copas 3 se pueden desplazar rotatoriamente en sentidos opuestos hacia el exterior del sistema, obviamente no para realizar el exprimido de los frutos 2, pero sí para movimientos de posicionamiento o colocación de las copas 3, por ejemplo al inicializar el sistema. Los medios de corte y exprimido presentan además un conjunto de corte y extracción 4 bajo los conjuntos de copas 3, el cual está formado a su vez por una cuchilla 5 central para el corte de los frutos 2 en dos mitades, y medios de extracción de cortezas 23 tras ser el fruto 2 exprimido. Esta cuchilla 5, de forma particular puede consistir en una cuchilla progresiva diseñada para que el corte de la corteza de los frutos sea progresivo cuando las copas rotan, de forma que corta la misma longitud de corteza en cada avance del movimiento rotatorio de la copa. De esta forma se consigue que la corteza del fruto no se desgarre durante el corte, evitándose así la presencia de aceites esenciales de la corteza en el zumo, y restos de cáscaras desgarradas en el interior de la zona de exprimido del sistema. De forma particular los medios de extracción de cortezas 23 pueden consistir en nervios dispuestos en el conjunto de corte y extracción 4, tal y como se observa en la figura 1 b. Adicionalmente, los medios de corte y exprimido tienen un par de bolas 6 exprimideras fijas, cada una de ellas dispuesta bajo uno de los conjuntos de copas 3, las cuales realizan el exprimido vertical de las mitades del fruto 2 mediante el desplazamiento vertical de los conjuntos de copas 3 sobre dichas bolas 6 exprimidoras. Las figuras 1a y 1 b muestran estos elementos esenciales de la invención. La figura 1b muestra una realización de copa doble, es decir una realización en la que cada conjunto presenta dos copas 3. Sin embargo, de acuerdo con diferentes realizaciones, cada conjunto podría tener una, dos, tres, o incluso cinco copas, lo que aumentaría la capacidad de procesamiento de frutos 2 del sistema, y la velocidad de recepción, lo que implicaría en un aumento de la velocidad de exprimido.
Mediante esta configuración, uno de los conjuntos de copas 3 realiza la recepción del fruto 2 del alimentador 1 , y mediante el giro de los conjuntos en sentidos opuestos hacia el interior del sistema, el fruto 2 queda entre dos copas 3 enfrentadas, las cuales lo dirigen con el giro o movimiento vertical hacia el conjunto de corte y extracción 4, en el cual la cuchilla 5 corta al fruto 2 en dos mitades sustancialmente iguales, quedando cada una de ellas en una copa 3 de cada conjunto. A continuación, los conjuntos continúan su giro hasta que las copas 3 con las mitades quedan dispuestas en la vertical del sistema. Desde esta posición, mediante un movimiento vertical de bajada sobre las bolas 6 exprimidoras de los conjuntos de copas 3 y del conjunto de corte 4 arrastrado por éstos, se produce el exprimido de la pulpa del fruto 2. Cuando el exprimido termina, el sistema detiene el movimiento vertical de bajada y hace un movimiento de subida, en el cual el conjunto de corte y extracción 4 realiza la extracción de las cortezas de las bolas exprimidoras. Dependiendo del número de copas 3 de los conjuntos, a la vez que se produce el exprimido, otras copas 3 en posición opuesta estarán recepcionando frutos 2, lo que proporcionará continuidad al proceso. En el funcionamiento del sistema se van repitiendo los movimientos y posiciones anteriores, en continuo. El sistema de exprimido de frutos presenta un primer motor 12 accionador en exclusiva de los medios de desplazamiento vertical 10 de los conjuntos de copas 3, es decir, que dicho primer motor 12 acciona única y exclusivamente a dichos medios de desplazamiento vertical 10 de los conjuntos de copas 3, poniéndolos en marcha, parándolos, con una intensidad determinada, y proporcionando una velocidad a los medios de desplazamiento vertical 10 de los conjuntos de copas 3 determinada. Adicionalmente, el sistema de exprimido de frutos presenta medios de medición de la intensidad generada en el primer motor 12 por el accionamiento de los medios de desplazamiento vertical 10 de los conjuntos de copas 3, y una unidad de control a la que está conectada el primer motor 12 y los medios de medición de intensidad, configurada para controlar de forma independiente al primer motor 12, y detener éste cuando la intensidad medida está fuera de un rango de valores prefijado. Las figuras 2a y 2b muestran el primer motor accionador 12 unido a los medios de desplazamiento vertical 10, que particularmente consisten en un brazo accionador. Las figuras 1a y 1b muestran este primer motor 12 unido a los medios de desplazamiento vertical 10 integrados en el sistema de exprimido. Las figuras 3a y 3b muestran una vista parcial en detalle de los medios de desplazamiento vertical 10 unidos a las copas 3.
De acuerdo con diferentes realizaciones particulares del sistema, la unidad de control estará configurada para detener al primer motor 12 cuando la intensidad medida es superior a un valor prefijado.
Alternativamente, según otra realización particular, la unidad de control podrá estar configurada para detener al primer motor 12 cuando la intensidad medida sea inferior a un valor prefijado.
Preferentemente, la unidad de control podrá variar la intensidad de corriente del primer motor 12 y la velocidad que éste proporciona a los medios de desplazamiento vertical 10 de los conjuntos de copas 3, es decir, la velocidad con la que los conjuntos de copas 3 realicen el exprimido vertical de los frutos 2 sobre las bolas 6 exprimideras.
El primer motor 12 tiene dos sentidos, proporcionando obviamente dos sentidos de desplazamiento de los medios de desplazamiento vertical 10 de los conjuntos de copas 3. Así, cuando el movimiento de exprimido, de descenso de los conjuntos de copas 3 llega a su posición final, o se detiene por alcanzar una intensidad prefijada (señal de que ha llegado a la corteza, o se ha producido un bloqueo), el primer motor 12 cambiará de sentido y las copas 3 volverán verticalmente a su posición anterior.
Otra ventaja adicional que proporciona el primer motor 12 accionador en exclusiva de los medios de desplazamiento vertical 10 de los conjuntos de copas 3 se puede apreciar en las figuras 11a y 11 b. Tal y como se ha indicado anteriormente, como el recorrido de las copas3 es hasta que la máquina termina de exprimir la pulpa, se puede igualar el nivel superior de todos los tamaños de bolas 6, por lo que se consigue que a menor tamaño de bola 6, haya que realizar menor recorrido de exprimido por parte de los conjuntos de copas 3, por lo que el sistema objeto de la presente invención, a medida que baja el tamaño de las bolas 6 es más rápido. La figura 11a muestra el recorrido vertical de las copas sobre las bolas en los sistemas del estado de la técnica, mostrando dos casos para dos tamaños diferentes de bolas y copas. En esta figura se observa que el recorrido vertical A es fijo para diferentes tamaños de bolas 6. Por el contrario, la figura 11b muestra el recorrido vertical de las copas 3 sobre las bolas 6 en el sistema objeto de la presente invención, mostrando dos casos para dos tamaños diferentes de bolas 6 y copas 3, y en dicha figura 11b se aprecia que el recorrido B para bolas 6 de menor tamaño es mucho menor que el recorrido A para bolas 6 de mayor tamaño. Por tanto, el sistema objeto de la presente invención, a medida que baja el tamaño de las bolas 6 es más rápido.
De acuerdo con una realización particular de la invención, el sistema de exprimido de frutos tiene un segundo motor 13 accionador en exclusiva de los medios de rotación 11 de los conjuntos de copas 3, es decir, que dicho segundo motor 13 acciona única y exclusivamente a dichos medios de rotación 11 de los conjuntos de copas, de tal forma que los pone en marcha, los para, con una intensidad determinada, y proporcionando una velocidad de giro determinada a los medios de rotación 11 de los conjuntos de copas 3. Adicionalmente, el sistema de exprimido de frutos presenta medios de medición de la intensidad generada en el segundo motor 13 por el accionamiento de los medios de rotación 11 de los conjuntos de copas 3. El segundo motor 13 y los medios de medición de intensidad están conectados a la unidad de control, la cual está configurada para controlar de forma independiente a dicho segundo motor 13, accionar éste, y detenerlo cuando se deba interrumpir el giro, en una posición prefijada según figuras 10a, 10b, 10c, 10d, 10e. La figura 1a muestra este segundo motor 13 integrado en el sistema de exprimido, y la figura 4 muestra una vista en detalle del segundo motor 13 unido a los medios de rotación 11 y a los conjuntos de copas 3. Como se puede observar en esta figura los medios de rotación consisten en un sistema de engranajes de ruedas dentadas, el cual es accionado por el segundo motor 13.
Preferentemente, la unidad de control podrá variar la intensidad de corriente del segundo motor 13 y la velocidad de rotación que éste proporciona a los conjuntos de copas 3 para recepcionar a los frutos 2 y conducir a éstos a través de las siguientes fases del exprimido.
De forma particular, el sistema de exprimido tiene un conjunto limpia-filtro 9 para la limpieza del filtro 8 de la bandeja 7 de recogida de zumo. De acuerdo con una realización particular, el conjunto limpia-filtro 9 tiene una rasqueta 14 móvil que se monta entre dos ejes extremos, un eje motriz 15 y en eje conducido 16, montados sobre el filtro 8. El movimiento de la rasqueta 14 a lo largo de todo el filtro 8 arrastra pulpa y semillas hasta una salida de la bandeja 7 de recogida de zumo. Se puede observar un ejemplo en las figuras 5a y 5b, las cuales muestran una realización particular del limpia-filtro 9.
De forma preferente, y según lo anterior, el sistema de exprimido tiene un tercer motor 18 que acciona en exclusiva al conjunto limpia-filtro 9, y que está conectado a la unidad de control, la cual está configurada para controlar de forma independiente dicho tercer motor 18. La figura 6 muestra un ejemplo del tercer motor 18 conectado al sistema accionador del conjunto limpia-filtro 9, formado en este caso por engranajes, tal y como se puede ver en dicha figura 6, aunque dependiendo de la realización, la transmisión podrá ser mediante engranajes, correas, o incluso el motor conectado directamente al eje motriz 15 del conjunto limpia-filtro 9.
De acuerdo con diferentes realizaciones particulares del sistema, la unidad de control estará configurada para detener al tercer motor 18 cuando la intensidad medida es superior a un valor prefijado.
De forma preferente, la unidad de control podrá variar la intensidad de corriente del tercer motor 18, la velocidad que éste proporciona al conjunto limpia-filtro 9, y el tiempo que dicho conjunto limpia-filtro 9 funciona. Según diferentes realizaciones particulares de la invención, el sistema de alimentación 1 de frutos 2 puede estar formado por una rampa 20 y un elemento dosificador 22, tal y como se observa en la figura 7, o bien por una cesta 24 y un alimentador 19 de plato giratorio, tal y como se observa en la figura 8.
De acuerdo con una realización preferente de la invención, el sistema de alimentación del sistema de exprimido tiene un alimentador 19 de plato giratorio, y un cuarto motor 21 accionador en exclusiva de dicho alimentador 19. Este cuarto motor 21 está conectado a la unidad de control, la cual está configurada para controlar de forma independiente dicho cuarto motor 21. La figura 1a muestra el cuarto motor 21 y su disposición en el sistema accionando el alimentador 19 de plato giratorio del sistema de alimentación 1. Alternativamente, en el caso del sistema de alimentación 1 que incluye la rampa 20 y el elemento dosificador 22, el cuarto motor 21 acciona en exclusiva dicho elemento dosificador 22, estando la unidad de control configurada para controlar de forma independiente dicho cuarto motor 21 , y con él el movimiento del elemento dosificador 22.
Según una realización preferente de la invención, el sistema presenta una interfaz amigable e intuitiva para el usuario, conectada a la unidad de control, la cual está configurada para seleccionar y ajustar el tiempo de funcionamiento, velocidad y potencia de cada uno de los motores 12,13,18,21 por parte del usuario, para poder adaptar el exprimido a diferentes frutos y diferentes necesidades, proporcionando un sistema versátil adaptable a todo tipo de circunstancias.
Las figuras 10a, 10b, 10c, 10d y 10e muestran de forma esquemática los recorridos de las copas durante el procedimiento de exprimido de acuerdo con diferentes realizaciones particulares.
La figura 10a muestra una realización con una copa 3 en cada conjunto en un sistema de exprimido con suficiente espacio para que el corte del fruto 2 se produzca en un único giro de las copas 3 sobre el conjunto de corte y extracción 4. En la figura 10a, en el movimiento de paso de 0 a 1 , las copas 3 giran en sentidos opuestos, hacia el interior del sistema, cortan el fruto 2 mediante el movimiento de giro, y sitúan las dos mitades frente a las bolas 6 de exprimido. En el movimiento de paso de la posición 1 a 2, las copas 3 bajan verticalmente. Las copas 3 presionan el fruto 2 contra la bola 6 exprimidora para extraer el zumo. Según lo anterior, este recorrido viene determinado por el espesor de la corteza del fruto 2. La presión a aplicar para el exprimido es la misma e independiente del espesor de la corteza del fruto 2. A mayor espesor de corteza del fruto 2, el recorrido de las copas 3 será menor (el primer motor 12 parará antes debido al incremento de la intensidad medida cuando se deje de exprimir la pulpa y se pase a exprimir la corteza) y se alcanzará antes la presión máxima que hace que se invierta el sentido del movimiento vertical, y se dirija hacia arriba. En este punto, cuando se alcance esta presión máxima, las copas 3 dejarán de presionar el fruto 2, habiéndose exprimido así la pulpa y no la corteza. Posteriormente, en el movimiento de paso de las posiciones 2 a 3, las copas 3 se desplazan verticalmente hacia arriba. A continuación, en el paso de las posiciones 3 a 4, las copas 3 continúan girando en el mismo sentido, esta vez ya hacia el exterior del sistema para expulsar las cortezas de la zona de exprimido hacia las cubetas (en una forma ya convencional y conocida). Al final de este movimiento cae el siguiente fruto 2 y comienza otro ciclo desde 0.
La figura 10b muestra una realización con una copa en cada conjunto donde el corte del fruto se produce por giro y bajada de las copas sobre el conjunto de corte y extracción. En el movimiento de las posiciones 0 a 1 , las copas 3 giran en sentidos opuestos, hacia el interior del sistema para poner el fruto 2 en posición de corte. Después, en el movimiento de las posiciones 1 a 2 las copas 3 bajan verticalmente para que la cuchilla 5 realice una incisión de unos pocos cm en el fruto. A continuación, en el movimiento de 2 a 3 las copas 3 continúan girando en el mismo sentido hacia el interior del sistema realizándose el corte completo del fruto 2 por rotación y situando las mitades frente a las bolas 6 de exprimido. En el movimiento de la posición 3 a 4, las copas 3 bajan vertical mente. Las copas 3 presionan el fruto 2 contra la bola 6 exprimidora para extraer el zumo. Según lo anterior, este recorrido viene determinado por el espesor de la corteza del fruto 2. La presión a aplicar para el exprimido es la misma e independiente del espesor de la corteza de la fruta. A mayor espesor de corteza del fruto 2, el recorrido de las copas 3 será menor (el primer motor 12 parará antes debido al incremento de la intensidad medida cuando se deje de exprimir la pulpa y se pase a exprimir la corteza) y se alcanzará antes la presión máxima que hace que se invierta el sentido del movimiento vertical, y se dirija hacia arriba. En este punto, cuando se alcance esta presión máxima, las copas 3 dejarán de presionar el fruto 2, habiéndose exprimido así la pulpa y no la corteza. Posteriormente, en el movimiento de las posiciones 4 a 5, las copas 3 se desplazan verticalmente hacia arriba. A continuación, en el paso de las posiciones 5 a 6, las copas 3 continúan girando en el mismo sentido, esta vez ya hacia el exterior del sistema para expulsar las cortezas de la zona de exprimido hacia las cubetas (en una forma ya convencional y conocida). Al final de este movimiento cae el siguiente fruto 2 y comienza otro ciclo desde la posición 0.
La figura 10c muestra el sistema de corte del fruto de la figura 10a, pero con dos copas en cada conjunto. La figura 10d muestra el sistema de corte del fruto de la figura 10b, pero con dos copas en cada conjunto. La figura 10e muestra el sistema de corte del fruto de las figuras 10a y 10c, pero con tres copas en cada conjunto. En cuanto a las figuras 10c y 10e, en el movimiento de las posiciones 0 a 1 , las copas 3 giran en sentidos opuestos, hacia el interior del sistema, cortan el fruto 2 mediante giro, y sitúan las dos mitades frente a las bolas 6 de exprimido, simultáneamente, si había cortezas en las copas 3 que estaban frente a las bolas 6, mediante este movimiento son expulsadas. En el movimiento de la posición 1 a 2, las copas 3 bajan verticalmente. Las copas 3 presionan el fruto 2 contra la bola 6 exprimidora para extraer el zumo. Según lo anterior, este recorrido viene determinado por el espesor de la corteza del fruto 2. La presión a aplicar para el exprimido es la misma e independiente del espesor de la corteza de la fruta. A mayor espesor de corteza del fruto 2, el recorrido de las copas 3 será menor (el primer motor 12 parará antes debido al incremento de la intensidad medida cuando se deje de exprimir la pulpa y se pase a exprimir la corteza) y se alcanzará antes la presión máxima que hace que se invierta el sentido del movimiento vertical, y se dirija hacia arriba. En este punto, cuando se alcance esta presión máxima, las copas 3 dejarán de presionar el fruto 2, habiéndose exprimido así la pulpa y no la corteza. Posteriormente, en el movimiento de las posiciones 2 a 3 las copas 3 se desplazan verticalmente hacia arriba, y durante este movimiento cae la siguiente fruta y comienza otro ciclo desde 0. Estos movimientos se cumplen tanto para conjuntos de dos copas (figura 10c) y tres copas 3 (figura 10e) indistintamente. En cuanto a la figura 10d, en el movimiento de las posiciones de 0 a 1 , las copas 3 giran en sentidos opuestos, hacia el interior del sistema para poner el fruto 2 en posición de corte, al mismo tiempo, si había cortezas en las copas 3 que están frente a las bolas 6, son expulsadas. Después, en el movimiento de posiciones 1 a 2, las copas 3 bajan verticalmente para que la cuchilla 5 realice una incisión de unos pocos cm en el fruto 2. A continuación, en el movimiento de las posiciones 2 a 3, las copas 3 continúan girando en el mismo sentido hacia el interior del sistema realizándose el corte completo del fruto 2 mediante rotación de las copas 3, y situando las mitades frente a las bolas 6 de exprimido. En el movimiento de la posición 3 a 4, las copas 3 bajan verticalmente. Las copas 3 presionan el fruto 2 contra la bola 6 exprimidora para extraer el zumo. Según lo anterior, este recorrido viene determinado por el espesor de la corteza del fruto 2. La presión a aplicar para el exprimido es la misma e independiente del espesor de la corteza de la fruta. A mayor espesor de corteza del fruto 2, el recorrido de las copas 3 será menor (el primer motor 12 parará antes debido al incremento de la intensidad medida cuando se deje de exprimir la pulpa y se pase a exprimir la corteza) y se alcanzará antes la presión máxima que hace que se invierta el sentido del movimiento vertical, y se dirija hacia arriba. En este punto, cuando se alcance esta presión máxima, las copas 3 dejarán de presionar el fruto 2, habiéndose exprimido así la pulpa y no la corteza. Posteriormente, en el movimiento de 4 a 5 las copas 3 se desplazan verticalmente hacia arriba y durante este movimiento, cae el siguiente fruto 2, y comienza otro ciclo desde 0.
Estos recorridos son para una realización particular del sistema, por lo que pequeñas variaciones en la realización de los componentes podrían dar lugar a pequeñas variaciones en estos recorridos, sin alejarse del funcionamiento del sistema.
Asimismo, todos estos ejemplos son posibles diferentes secuencias de exprimido, posibilitadas por disponer de motores independientes.

Claims

REIVINDICACIONES
1. Sistema de exprimido de frutos, que comprende
un sistema de alimentación (1) de frutos (2),
medios de corte y exprimido dispuestos bajo el sistema de alimentación (1) que comprenden a su vez
un par de conjuntos de copas (3) receptoras de frutos (2), desplazables verticalmente mediante medios de desplazamiento vertical (10) y rotatoriamente en sentidos opuestos mediante medios de rotación (11),
un conjunto de corte y extracción (4) bajo los conjuntos de copas (3), que comprende
una cuchilla (5) central configurada para cortar los frutos (2) en dos mitades, y
medios de extracción de cortezas (23) tras ser el fruto (2) exprimido,
y un par de bolas (6) exprimideras fijas, cada una de ellas dispuesta bajo uno de los conjuntos de copas (3), configuradas para el exprimido vertical de las mitades del fruto (2) mediante el desplazamiento vertical de los conjuntos de copas (3),
caracterizado por que comprende
un primer motor (12) accionador en exclusiva de los medios de desplazamiento vertical (10) de los conjuntos de copas (3),
medios de medición de la intensidad generada en el primer motor (12) por el accionamiento de los medios de desplazamiento vertical (10) de los conjuntos de copas (3),
y una unidad de control configurada para controlar de forma independiente al primer motor (12), y detener éste cuando la intensidad medida está fuera de un rango de valores prefijado.
2. Sistema de exprimido de frutos, según la reivindicación 1 , donde la unidad de control está configurada para detener al primer motor (12) cuando la intensidad medida es superior a un valor prefijado.
3. Sistema de exprimido de frutos, según cualquiera de las reivindicaciones anteriores, donde la unidad de control está configurada para variar la intensidad de corriente del primer motor (12) y la velocidad de los medios de desplazamiento vertical (10) de los conjuntos de copas (3).
4. Sistema de exprimido de frutos, según cualquiera de las reivindicaciones anteriores, que comprende
un segundo motor (13) accionador en exclusiva de los medios de rotación (11) de los conjuntos de copas (3),
medios de medición de la intensidad generada en el segundo motor (13) por el accionamiento de los medios de rotación (11) de los conjuntos de copas (3), donde la unidad de control está configurada para controlar de forma independiente al segundo motor (13), y detener éste cuando la intensidad medida supera un valor prefijado.
5. Sistema de exprimido de frutos, según la reivindicación anterior, donde la unidad de control está configurada para variar la intensidad de corriente del segundo motor (13) y la velocidad de los medios de rotación (11) de los conjuntos de copas (3).
6. Sistema de exprimido de frutos, según cualquiera de las reivindicaciones anteriores, que comprende una bandeja (7) de recogida del zumo obtenido de los frutos dispuesta bajo los medios de corte y exprimido, que comprende a su vez un filtro (8) para la recolección de pulpa y semillas.
7. Sistema de exprimido de frutos, según la reivindicación anterior, que comprende un conjunto limpia-filtro (9) para la limpieza del filtro (8) de la bandeja (7) de recogida de zumo.
8. Sistema de exprimido de frutos, según la reivindicación anterior, en la que el conjunto limpia-filtro (9) comprende a su vez una rasqueta (14) móvil montada entre dos ejes (15,16) extremos montados sobre el filtro (8), la cual en su movimiento a lo largo de todo el filtro (8) arrastra pulpa y semillas hasta una salida de la bandeja (7) de recogida de zumo.
9. Sistema de exprimido de frutos, según cualquiera de las reivindicaciones 7 a 8, que comprende un tercer motor (18) accionador en exclusiva del conjunto limpia-filtro (9), donde la unidad de control está configurada para controlar de forma independiente dicho tercer motor (18).
10. Sistema de exprimido de frutos, según la reivindicación 9, donde la unidad de control está configurada para detener al tercer motor (18) cuando la intensidad medida es superior a un valor prefijado.
11. Sistema de exprimido de frutos, según cualquiera de las reivindicaciones 9 a 10, donde la unidad de control está configurada para variar la intensidad de corriente y el tiempo de funcionamiento del tercer motor (18) y la velocidad del conjunto limpia- filtro (9) .
12. Sistema de exprimido de frutos, según cualquiera de las reivindicaciones anteriores, donde el sistema de alimentación (1) de frutos (2) comprende
una cesta (24) con un separador y un mecanismo accionador, configurados para proporcionar frutos (2) a
un alimentador (19) de plato giratorio configurado para recibir los frutos (2) de la cesta (24) y conducirlos hasta las copas (3).
13. Sistema de exprimido de frutos, según la reivindicación anterior, que comprende un cuarto motor (21) accionador en exclusiva del alimentador (19) de plato giratorio del sistema de alimentación (1), donde la unidad de control está configurada para controlar de forma independiente dicho cuarto motor (21).
14. Sistema de exprimido de frutos, según cualquiera de las reivindicaciones 1 a 10, donde el sistema de alimentación (1) de frutos (2) comprende
una rampa (20) y
un elemento dosificador (22) configurado para permitir y cerrar el paso de los frutos (2) de la rampa hasta las copas (3).
15. Sistema de exprimido de frutos, según la reivindicación anterior, que comprende un cuarto motor (21) accionador en exclusiva del elemento dosificador (22) del sistema de alimentación (1), donde la unidad de control está configurada para controlar de forma independiente dicho cuarto motor (21).
16. Sistema de exprimido de frutos, según cualquiera de las reivindicaciones anteriores, que comprende una interfaz conectada a la unidad de control configurada para seleccionar y ajustar el tiempo de funcionamiento, velocidad y potencia de cada uno de los motores (12,13,18,21).
PCT/ES2019/070174 2019-03-18 2019-03-18 Sistema de exprimido de frutos WO2020188126A1 (es)

Priority Applications (13)

Application Number Priority Date Filing Date Title
AU2019435845A AU2019435845A1 (en) 2019-03-18 2019-03-18 Fruit squeezing system
PCT/ES2019/070174 WO2020188126A1 (es) 2019-03-18 2019-03-18 Sistema de exprimido de frutos
BR112021018428A BR112021018428A2 (pt) 2019-03-18 2019-03-18 Sistema de espremer frutas
KR1020217032091A KR20220021449A (ko) 2019-03-18 2019-03-18 과일 압착 시스템
MA54416A MA54416B1 (fr) 2019-03-18 2019-03-18 Système de pressage de fruits
CA3132909A CA3132909A1 (en) 2019-03-18 2019-03-18 Fruit squeezing system
MX2021011208A MX2021011208A (es) 2019-03-18 2019-03-18 Sistema de exprimido de frutos.
US17/440,770 US20220175010A1 (en) 2019-03-18 2019-03-18 Fruit squeezing system
EP19920434.8A EP3942973A4 (en) 2019-03-18 2019-03-18 FRUIT PRESSING SYSTEM
JP2021556374A JP2022536409A (ja) 2019-03-18 2019-03-18 フルーツ圧搾システム
CN201980094285.0A CN113924031A (zh) 2019-03-18 2019-03-18 水果压榨系统
IL286117A IL286117A (en) 2019-03-18 2021-09-05 Fruit squeezing system
SA521430324A SA521430324B1 (ar) 2019-03-18 2021-09-16 نظام لعصر الفاكهة

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2019/070174 WO2020188126A1 (es) 2019-03-18 2019-03-18 Sistema de exprimido de frutos

Publications (2)

Publication Number Publication Date
WO2020188126A1 true WO2020188126A1 (es) 2020-09-24
WO2020188126A8 WO2020188126A8 (es) 2021-09-16

Family

ID=72519679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2019/070174 WO2020188126A1 (es) 2019-03-18 2019-03-18 Sistema de exprimido de frutos

Country Status (13)

Country Link
US (1) US20220175010A1 (es)
EP (1) EP3942973A4 (es)
JP (1) JP2022536409A (es)
KR (1) KR20220021449A (es)
CN (1) CN113924031A (es)
AU (1) AU2019435845A1 (es)
BR (1) BR112021018428A2 (es)
CA (1) CA3132909A1 (es)
IL (1) IL286117A (es)
MA (1) MA54416B1 (es)
MX (1) MX2021011208A (es)
SA (1) SA521430324B1 (es)
WO (1) WO2020188126A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112167946A (zh) * 2020-09-30 2021-01-05 杭州宜科智能科技有限公司 一种果蔬汁液制取加工系统及制取加工工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4479424A (en) * 1983-03-11 1984-10-30 Ncc Engineering, Inc. Juicer for separating pulp and juice from fruit
ES2091702B1 (es) 1992-10-23 1998-05-01 Font Rafael Olmos Perfeccionamientos introducidos en maquinas exprimidoras de citricos.
US20080028943A1 (en) * 2006-07-19 2008-02-07 Chang Seok Lee Vending machine for fruit juice and controlling method thereof
ES2545235A1 (es) * 2014-03-06 2015-09-09 Zummo Innovaciones Mecánicas, S.A. Máquina exprimidora de frutos
CN105982500A (zh) * 2015-02-09 2016-10-05 上海巨昂实业有限公司 一种榨汁机榨汁装置
ES1196358U (es) * 2017-10-19 2017-11-03 Zummo Innovaciones Mecanicas, S.A. Máquina exprimidora de frutos

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2037576B1 (es) * 1991-03-15 1994-01-16 Instazum S L Maquina para la preparacion instantanea de zumos de frutas.
JPH07246155A (ja) * 1994-03-10 1995-09-26 Nitto Kohki Co Ltd 果汁搾り装置
ITPI20040035A1 (it) * 2004-05-21 2004-08-21 Primo Bertocchi Metodo per realizzare il lavaggio del setaccio di macchine rotanti atte all'estrazione di succo e purea da alimenti vegetali
US7854194B2 (en) * 2006-09-15 2010-12-21 Breville Pty Limited Juicer speed control
CN203885249U (zh) * 2014-04-23 2014-10-22 杭州九阳小家电有限公司 一种整果压榨榨汁机
CN204743685U (zh) * 2015-06-04 2015-11-11 武卓星 果饮机
CN206565738U (zh) * 2016-11-17 2017-10-20 深圳市祈飞科技有限公司 去渣接汁装置
CN108497906A (zh) * 2018-05-25 2018-09-07 邯郸开发区华骐环保科技有限公司 用于粉碎水果的自动添加装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4479424A (en) * 1983-03-11 1984-10-30 Ncc Engineering, Inc. Juicer for separating pulp and juice from fruit
ES2091702B1 (es) 1992-10-23 1998-05-01 Font Rafael Olmos Perfeccionamientos introducidos en maquinas exprimidoras de citricos.
US20080028943A1 (en) * 2006-07-19 2008-02-07 Chang Seok Lee Vending machine for fruit juice and controlling method thereof
ES2545235A1 (es) * 2014-03-06 2015-09-09 Zummo Innovaciones Mecánicas, S.A. Máquina exprimidora de frutos
ES2545235B1 (es) 2014-03-06 2016-06-21 Zummo Innovaciones Mecánicas, S.A. Máquina exprimidora de frutos
CN105982500A (zh) * 2015-02-09 2016-10-05 上海巨昂实业有限公司 一种榨汁机榨汁装置
ES1196358U (es) * 2017-10-19 2017-11-03 Zummo Innovaciones Mecanicas, S.A. Máquina exprimidora de frutos

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3942973A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112167946A (zh) * 2020-09-30 2021-01-05 杭州宜科智能科技有限公司 一种果蔬汁液制取加工系统及制取加工工艺

Also Published As

Publication number Publication date
EP3942973A1 (en) 2022-01-26
IL286117A (en) 2021-10-31
CA3132909A1 (en) 2020-09-24
KR20220021449A (ko) 2022-02-22
WO2020188126A8 (es) 2021-09-16
CN113924031A (zh) 2022-01-11
US20220175010A1 (en) 2022-06-09
JP2022536409A (ja) 2022-08-16
MA54416A1 (fr) 2022-06-30
BR112021018428A2 (pt) 2021-11-23
SA521430324B1 (ar) 2023-01-01
MX2021011208A (es) 2022-01-19
EP3942973A4 (en) 2022-05-18
AU2019435845A1 (en) 2021-09-30
MA54416B1 (fr) 2022-07-29

Similar Documents

Publication Publication Date Title
ES2959885T3 (es) Máquina exprimidora de frutos
KR101226441B1 (ko) 주스 착즙기
CA2736523C (en) Automated juice extractor
CN106901586B (zh) 改进的双驱动榨汁机
ES2442389T3 (es) Ensamble guía de fruta de múltiples carriles para un extractor de jugos y métodos relacionados.
ES2443466T3 (es) Extractor de jugos que incluye acoplamientos friccionales de buje-eje para levas de accionamiento y métodos relacionados
ES2455498T3 (es) Extractor de zumo que incluye detector de desacoplamiento del alimentador de fruta y métodos asociados
AU2010212283A1 (en) Juicer Apparatus
WO2014048097A1 (zh) 榨汁机
WO2019077180A1 (es) Máquina exprimidora de frutos
JP2022522734A (ja) 果物および/または野菜からジュースを抽出する装置
WO2020188126A1 (es) Sistema de exprimido de frutos
ES2438218T3 (es) Extractor de jugos con contrapeso funcionalmente interconectado con árbol de levas
ES2439897T3 (es) Extractor de jugos con colector de jugo que tiene salida lateral para jugo
KR101181013B1 (ko) 착즙장치
ES2431551T3 (es) Extractor de zumo con un tubo de filtro de carga por la base
KR20180002167U (ko) 착즙기용 스크류 및 그 착즙기
NL2001220C2 (nl) Inrichting en werkwijze voor het persen van citrusvruchten.
WO2019077179A1 (es) Máquina exprimidora de frutos
EP3415016A1 (en) Citrus fruit juice extractor
RU2773474C1 (ru) Система выжимания фруктов
ES2820125B2 (es) Conjunto de barredor y filtro para maquinas exprimidoras y maquina exprimidora que lo incorpora
CN114009808A (zh) 果蔬洗削切榨复合型装置
CN210697135U (zh) 一种便于排渣的果汁压榨装置
CN114027513A (zh) 一种全自动甘蔗汁加工装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920434

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3132909

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021556374

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021018428

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019435845

Country of ref document: AU

Date of ref document: 20190318

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021127070

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2019920434

Country of ref document: EP

Effective date: 20211018

ENP Entry into the national phase

Ref document number: 112021018428

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210916