WO2020185023A1 - 패키징 기판 및 이의 제조방법 - Google Patents

패키징 기판 및 이의 제조방법 Download PDF

Info

Publication number
WO2020185023A1
WO2020185023A1 PCT/KR2020/003483 KR2020003483W WO2020185023A1 WO 2020185023 A1 WO2020185023 A1 WO 2020185023A1 KR 2020003483 W KR2020003483 W KR 2020003483W WO 2020185023 A1 WO2020185023 A1 WO 2020185023A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
layer
opening
thickness
inner diameter
Prior art date
Application number
PCT/KR2020/003483
Other languages
English (en)
French (fr)
Inventor
김성진
노영호
김진철
장병규
Original Assignee
에스케이씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨 주식회사 filed Critical 에스케이씨 주식회사
Priority to CN202080007185.2A priority Critical patent/CN113261093B/zh
Priority to JP2021534595A priority patent/JP2022523898A/ja
Priority to KR1020217015660A priority patent/KR102537004B1/ko
Priority to KR1020237016450A priority patent/KR102622608B1/ko
Priority to US17/434,906 priority patent/US20220059421A1/en
Priority to EP20768931.6A priority patent/EP3913662A4/en
Publication of WO2020185023A1 publication Critical patent/WO2020185023A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/486Via connections through the substrate with or without pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/485Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body consisting of layered constructions comprising conductive layers and insulating layers, e.g. planar contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]

Definitions

  • the embodiment relates to a packaging substrate and a method of manufacturing the same.
  • FE Front-End
  • BE Back-End
  • the four core technologies of the semiconductor industry that have enabled the rapid development of recent electronic products are semiconductor technology, semiconductor packaging technology, manufacturing process technology, and software technology.
  • Semiconductor technology is developing in various forms, such as a line width of sub-micron nano units, more than 10 million cells, high-speed operation, and dissipation of a lot of heat, but the technology for packaging it relatively completely is not supported. Accordingly, the electrical performance of the semiconductor is sometimes determined by the packaging technology and the electrical connection accordingly rather than the performance of the semiconductor technology itself.
  • Ceramic or resin is used as a material for the packaging substrate.
  • a ceramic substrate it is difficult to mount a high-performance, high-frequency semiconductor device due to its high resistance value or high dielectric constant.
  • a resin substrate it is possible to mount a relatively high-performance, high-frequency semiconductor element, but there is a limit to reducing the pitch of wiring.
  • An object of the embodiment is to provide a more integrated packaging substrate and a semiconductor device including the same by applying a glass substrate.
  • An object of the embodiment is to provide a substrate for semiconductor packaging including a glass substrate having a core seed layer formed inside a core via, and a method of manufacturing the same.
  • the core layer includes a glass substrate and a core via
  • the glass substrate has a first surface and a second surface facing each other,
  • a plurality of the core vias are disposed to penetrate the glass substrate in the thickness direction
  • the core layer includes a core distribution layer positioned on the surface of the glass substrate or the core via,
  • the core distribution layer at least partially includes an electroconductive layer electrically connecting the electroconductive layer on the first surface and the electroconductive layer on the second surface through the core via,
  • the angle of the inner diameter surface observed from the cross section of the core via from the opening of the opening contacting the first surface and the opening of the opening contacting the second surface having a large diameter to a portion having the minimum inner diameter of the core via is It may be 8 degrees or less based on the thickness direction perpendicular to the first surface.
  • the core via includes a first opening in contact with the first surface; A second opening in contact with the second surface; And a minimum inner diameter portion, which is a region having the narrowest inner diameter of the entire core via connecting the first opening and the second opening.
  • the diameter of the minimum inner diameter portion may have a size of 50% to 99% based on a larger diameter among the first opening and the second opening.
  • the point where the minimum inner diameter portion is positioned may be positioned at a point of 40% to 60% based on the first opening when the entire length of the core via is viewed as 100%.
  • the angle (Ca1) of the inner diameter surface connecting the minimum inner diameter portion and the first opening and the angle (Ca2) of the inner diameter surface connecting the minimum inner diameter portion and the second opening are 1:0.7 to 1.3. It can have a ratio.
  • a glass substrate having a first surface and a second surface facing each other;
  • a core layer positioned on the surface of the core via and in which a core seed layer serving as a seed for forming an electrically conductive layer is positioned;
  • the ratio (thickness ratio) of the first thickness and the second thickness, which is the thickness of the core seed layer, measured at two positions facing each other among the inner diameter surfaces of the core via may be 1:0.4 to 4.5.
  • the thickness deviation ratio of the core seed layer represented by Equation 1 below may be 90% or less.
  • Thickness deviation rate ((maximum thickness of core seed layer-minimum thickness of core seed layer)/average thickness of core seed layer) ⁇ 100%
  • the average thickness of the core seed layer may be 30 to 200 nm.
  • the angle of the inner diameter surface observed from the cross section of the core via from the opening of the opening contacting the first surface and the opening of the opening contacting the second surface having a large diameter to a portion having the minimum inner diameter of the core via is It may be 8 degrees or less based on the thickness direction perpendicular to the first surface.
  • the semiconductor device according to the embodiment,
  • An element unit including a semiconductor element; And a packaging substrate according to an embodiment electrically connected to the device unit.
  • the packaging substrate of the embodiment and the semiconductor device including the same may significantly improve electrical characteristics such as a signal transmission speed by connecting the semiconductor device and the motherboard closer to each other so that the electrical signal is transmitted over the shortest distance possible.
  • the glass substrate applied as the core of the substrate is itself an insulator, there is almost no fear of occurrence of parasitic elements compared to the conventional silicon core, so that the insulating film treatment process can be more simplified and can be applied to high-speed circuits.
  • FIG. 1 is a conceptual diagram illustrating a cross-section of a semiconductor device according to an embodiment.
  • FIG. 2 is a conceptual diagram illustrating a cross section of a packaging substrate according to an embodiment.
  • FIG. 3(a) a conceptual view illustrating a view of the glass substrate on which the core via is formed from above, and (b) a cross-sectional view taken by cutting a-a' of (a).
  • 4A and 4B are conceptual diagrams each illustrating a cross-sectional shape of a core via applied in an implementation example.
  • FIG. 5 is a conceptual diagram illustrating a state in which a core insulating layer is further formed in FIG. 4B.
  • FIG. 6 is a detailed conceptual diagram illustrating a part of a cross section of a packaging substrate according to an embodiment.
  • FIG. 7 is a detailed conceptual diagram illustrating a part of a cross section of a packaging substrate according to an embodiment.
  • FIGS. 8 to 10 are flowcharts illustrating a manufacturing process of a packaging substrate according to an embodiment in cross section.
  • FIG. 11 is a top view of a glass substrate having a core via according to an embodiment (a) and a conceptual view illustrating a cross section of the core via (b).
  • FIG. 12 is a schematic cross-sectional view of a core via explaining a measurement point applied when evaluating a thickness deviation in an embodiment.
  • FIG. 13 is a photograph showing exemplary thickness measurements of a core seed layer measured according to an embodiment.
  • FIG. 14 is a top view of a glass substrate having a core via according to another embodiment (a) and a conceptual view illustrating a cross section of the core via (b).
  • 15 is a cross-sectional conceptual diagram of a core via for explaining measurement points applied when evaluating thickness deviation in another embodiment.
  • the term "combination of these" included in the expression of the Makushi form means one or more mixtures or combinations selected from the group consisting of the constituent elements described in the expression of the Makushi form, and the constituent elements It means to include one or more selected from the group consisting of.
  • the “ ⁇ ” system may mean including a compound corresponding to “ ⁇ ” or a derivative of “ ⁇ ” in the compound.
  • B is located on A means that B is located directly on A or B is located on A while another layer is located between them, and B is located so as to contact the surface of A. It is limited to that and is not interpreted.
  • the inventors recognized that not only the device itself but also the packaging part is an important factor in improving performance, and were researching it. Unlike the application of two or more layers of cores on the motherboard as a packaging substrate such as an interposer and an organic substrate, the glass core is applied as a single layer, and the shape of the through via, the electrically conductive layer formed therein, etc. It was confirmed that by applying the control method, the packaging substrate can be made thinner and help improve the electrical characteristics of the semiconductor device.
  • FIG. 1 is a conceptual diagram illustrating a cross-section of a semiconductor device according to an embodiment
  • FIG. 2 is a conceptual diagram illustrating a cross-section of a packaging substrate according to an embodiment
  • FIG. 3 (a) a view of a glass substrate on which a core via is formed from above
  • (b) is a conceptual diagram illustrating a cross section seen by cutting a-a' of (a).
  • 4A and 4B are conceptual diagrams for explaining the shape of a cross section of a core via applied in each implementation example
  • FIG. 5 is a cross-sectional view illustrating a state in which a core insulating layer is further formed in FIG. 4B.
  • FIG. 1 is a conceptual diagram illustrating a cross-section of a semiconductor device according to an embodiment
  • FIG. 2 is a conceptual diagram illustrating a cross-section of a packaging substrate according to an embodiment
  • FIG. 3 (a) a view of a glass substrate on which a core via is formed from above
  • b is
  • FIG. 6 is a detailed conceptual diagram illustrating a part of a cross section of a packaging substrate according to an embodiment
  • FIG. 7 is a detailed conceptual diagram illustrating a part of a cross section of a packaging substrate according to an implementation example.
  • an embodiment will be described in more detail with reference to FIGS. 1 to 7.
  • a semiconductor device 100 includes a semiconductor device portion 30 in which one or more semiconductor devices 32, 34, and 36 are positioned; A packaging substrate 20 electrically connected to the semiconductor device; And a motherboard 10 that is electrically connected to the packaging substrate, transmits an external electrical signal to the semiconductor device, and connects to each other.
  • the packaging substrate 20 includes a core layer 22; And an upper layer 26;
  • the semiconductor device part 30 refers to devices mounted on a semiconductor device, and is mounted on the packaging substrate 20 by connection electrodes or the like.
  • the semiconductor device unit 30 includes, for example, an arithmetic device such as a CPU and a GPU (first device: 32, a second device: 34), and a memory device such as a memory chip (third device, 36).
  • an arithmetic device such as a CPU and a GPU
  • a memory device such as a memory chip
  • any semiconductor device mounted on a semiconductor device can be applied without limitation.
  • the motherboard 10 may be a motherboard such as a printed circuit board or a printed wiring board.
  • the packaging substrate 20 includes a core layer 22; And an upper layer 26 positioned on one surface of the core layer.
  • the packaging substrate 20 may further include a lower layer 29 selectively positioned under the core layer.
  • the core layer 22 includes a glass substrate 21; A plurality of core vias 23 penetrating the glass substrate in the thickness direction; And a core distribution layer on which an electroconductive layer is located on the surface of the glass substrate or the core via, at least a part of which electrically connects the electroconductive layer on the first surface and the second surface through the core via ( 24); includes.
  • the glass substrate 21 has a first surface 213 and a second surface 214 facing each other, and the two surfaces are substantially parallel to each other, so that the entire glass substrate has a constant thickness.
  • a core via 23 penetrating the first and second surfaces is disposed on the glass substrate 21.
  • a silicon substrate and an organic substrate are laminated.
  • silicon substrates due to the nature of semiconductors, parasitic elements may occur when applied to high-speed circuits, and power losses are relatively large.
  • organic substrates a larger area is required to form a more complex distribution pattern, but this does not correspond to the flow of manufacturing microelectronic devices.
  • it is necessary to substantially refine the pattern but there is a practical limit to pattern refinement due to the characteristics of materials such as polymers applied to organic substrates.
  • the glass substrate 21 is applied as a support for the core layer 22 as a method of solving these problems.
  • the core via 23 formed while penetrating the glass substrate together with the glass substrate the length of the electrical flow is shorter, smaller, faster response, and a packaging substrate 20 having less loss characteristics. to provide.
  • the glass substrate 21 is preferably a glass substrate applied to a semiconductor.
  • a borosilicate glass substrate, an alkali-free glass substrate, etc. may be applied, but the present invention is not limited thereto.
  • the glass substrate 21 may have a thickness of 1,000 ⁇ m or less, may be 100 to 1,000 ⁇ m, and may be 100 to 700 ⁇ m. More specifically, the glass substrate 21 may have a thickness of 100 to 500 ⁇ m. Forming a thinner packaging substrate is advantageous in that electrical signal transmission can be made more efficient, but it should also serve as a support, so it is preferable to apply the glass substrate 21 having the above-described thickness.
  • the thickness of the glass substrate refers to the thickness of the glass substrate itself excluding the thickness of the electrically conductive layer on the glass substrate.
  • the core via 23 may be formed by removing a predetermined region of the glass substrate 21, and specifically, may be formed by etching plate-shaped glass by physical and/or chemical methods.
  • a method of chemically etching after forming a defect (fault) on the surface of a glass substrate by a method such as a laser, or a laser etching method may be applied, but is not limited thereto.
  • the core via 23 may include a first opening 233 in contact with the first surface; A second opening 234 in contact with the second surface; And a minimum inner diameter portion 235, which is a region having the narrowest inner diameter of the entire core via connecting the first opening portion and the second opening portion.
  • the diameter of the first opening (CV1) and the diameter of the second opening (CV2) may be substantially different, and the first opening 233 and the second opening 234 may have substantially the same diameter. .
  • the minimum inner diameter portion may be located in the first opening or the second opening, and in this case, the core via may be a cylindrical or (cut) triangular pyramid shaped core via.
  • the diameter of the minimum inner diameter (CV3) corresponds to the diameter of the smaller of the first opening and the second opening.
  • the minimum inner diameter portion is located between the first opening and the second opening, and the core via may be a barrel-shaped core via.
  • the diameter of the minimum inner diameter (CV3) may be smaller than a larger one of the diameter of the first opening and the diameter of the second opening.
  • the average diameter of the minimum inner diameter may be specifically 50 ⁇ m to 95 ⁇ m.
  • the minimum inner diameter portion may satisfy the condition of Equation 1 below.
  • D 50 is a value corresponding to 50% of the diameter distribution of the minimum inner diameter
  • D 90 is a value corresponding to 90% of the diameter distribution of the minimum inner diameter
  • D 10 is the diameter distribution of the minimum inner diameter. It corresponds to 10% of the values.
  • the average diameter of the minimum inner diameter may be 55 ⁇ m to 85 ⁇ m, and may be 60 ⁇ m to 70 ⁇ m.
  • the minimum inner diameter portion may satisfy the condition of Equation 1-1 below.
  • D 50 is a value corresponding to 50% of the diameter distribution of the minimum inner diameter
  • D 90 is a value corresponding to 90% of the diameter distribution of the minimum inner diameter
  • D 10 is It is a value corresponding to 10% of the diameter distribution.
  • the target opening which is the larger of the first opening diameter and the second opening diameter, may have an average diameter of 70 ⁇ m to 120 ⁇ m.
  • the target opening which is the larger of the first opening diameter and the second opening diameter, may satisfy the condition of Equation 2 below.
  • D 50 is a value corresponding to 50% of the diameter distribution of the target opening
  • D 90 is a value corresponding to 90% of the diameter distribution of the target opening
  • D 10 is 10% of the diameter distribution of the target opening. It is a value corresponding to.
  • the target opening which is the larger of the first opening diameter and the second opening diameter, may have an average diameter of 80 ⁇ m to 105 ⁇ m.
  • the target opening which is the larger of the first opening diameter and the second opening diameter, may satisfy the condition of Equation 2-1 below.
  • D 50 is a value corresponding to 50% of the diameter distribution of the target opening
  • D 90 is a value corresponding to 90% of the diameter distribution of the target opening
  • D 10 is the diameter distribution of the target opening. It is a value corresponding to 10%.
  • the core via is the larger of the first opening diameter, which is a diameter at the opening contacting the first surface, and the second opening diameter, which is the diameter at the opening contacting the second surface, wherein the average diameter of the target opening is the diameter of the target opening. It may have a value greater than D 50, which is a value corresponding to 50% of the distribution.
  • the diameter distribution described above was measured by dividing the prepared sample into 9 compartments (3 X 3), taking samples of 5 areas: upper left, lower left, center, upper right, and lower right, and cut them and observed with a microscope in a cross section. It evaluated based on the diameter.
  • the thickness of the electrically conductive layer measured at the larger of the first opening diameter (CV1) and the second opening diameter (CV2) is the same as the thickness of the electrically conductive layer formed on the portion (CV3) having the minimum inner diameter of the core via It can be thick.
  • 100 to 3000 core vias 23 may be located, 100 to 2500 may be located, and 225 to 1024 Dogs can be located.
  • this pitch condition it is possible to improve the formation of an electrically conductive layer and the like and performance of the packaging substrate.
  • the core via 23 may be positioned on the glass substrate 21 at a pitch of 1.2 mm or less, may be positioned at a pitch of 0.12 mm to 1.2 mm, and may be positioned at a pitch of 0.3 mm to 0.9 mm. . In this case, it is advantageous to form an electrically conductive layer or the like while maintaining the mechanical properties of the glass substrate above a certain level.
  • the core distribution layer 24 includes a core distribution pattern 241, which is an electrically conductive layer electrically connecting the first and second surfaces of the glass substrate through a through via, and a core insulating layer 223 surrounding the core distribution pattern. ).
  • the core layer 22 has an electrically conductive layer formed therein through a core via to serve as an electrical path across the glass substrate 21, and connects the upper and lower portions of the glass substrate over a relatively short distance to provide faster electrical It can have the characteristics of signal transmission and low loss.
  • the core distribution pattern 241 is a pattern that electrically connects the first surface 213 and the second surface 214 of the glass substrate through a core via 23, and specifically, the first surface 213 A first surface distribution pattern 241a, which is an electrically conductive layer on at least part of the second surface 214, a second surface distribution pattern 241c, which is an electrically conductive layer on at least a part of the second surface 214, and the first And a core via distribution pattern 241b which is an electrically conductive layer electrically connecting the surface distribution pattern and the second surface distribution pattern to each other through the core via 23.
  • the electrically conductive layers may be, for example, applied with a copper plating layer, but are not limited thereto.
  • the core via 23 may include a first opening 233 in contact with the first surface; A second opening 234 in contact with the second surface; And a minimum inner diameter portion 235, which is a region having the narrowest inner diameter of the entire core via connecting the first opening portion and the second opening portion.
  • the glass substrate 21 serves as an intermediate and intermediary for connecting the semiconductor device 30 and the motherboard 10 to the upper and lower portions, respectively, and the core via 23 serves as a path for transmitting their electrical signals. The signal is smoothly transmitted.
  • one opening may have a larger diameter and the other opening may have a smaller diameter based on the thickness of the glass substrate (refer to FIG. 4(a) and photo), and the center It may be an overall barrel-shaped core via in which the inner diameter of the core via is slightly narrower in the portion (see Fig. 4(b) and photo).
  • the core via 23 has a first surface opening diameter (CV1) that is a diameter at the first opening, a second surface opening diameter (CV2) that is a diameter at the second opening, and a diameter at the minimum inner diameter. It has the minimum inner diameter (CV3).
  • the core via 23 may have the first surface opening diameter CV1 and the second surface opening diameter CV2 substantially the same or different from each other.
  • One of the inner diameter surfaces connecting the first opening and the second opening of the core via 22 may have an inner diameter smaller than that of the other, and this is referred to as a minimum inner diameter (part).
  • the size of the minimum inner diameter (CV3) is the larger of the first surface opening diameter (CV1) and the second surface opening diameter (CV2). It may be 50% to 99%, and may be 70% to 95%. In the case of having a size narrowed to this range, the formation of an electrically conductive layer, etc. may be performed more smoothly.
  • the point where the minimum inner diameter is located is viewed as 100% of the entire length of the core via (G21), it may be located at 40% to 60% point (G23) based on the first opening, and 45% to 55% Can be located on the branch. In this way, when the minimum inner diameter portion is present in the position described above based on the entire length of the core via, the process of designing the electroconductive layer of the packaging substrate and forming the electroconductive layer may be easier.
  • the diameter of the larger one of the first surface opening diameter (CV1) that is the diameter at the first opening and the second surface opening diameter (CV2) that is the diameter at the second opening and the size of the minimum inner diameter (CV3) is 1: It may be a ratio of 0.65 to 0.99, and 1: may be a ratio of 0.72 to 0.95. In the case of having the size of the inner diameter narrowed in this range, the formation of the electroconductive layer and the like may proceed more smoothly.
  • the core via 22 has an angle observed from the cross section of the core via from the opening of the opening in contact with the first surface and the opening of the opening in contact with the second surface with a larger diameter to a portion having the minimum inner diameter in the core via. It may be 8 degrees or less based on the thickness direction perpendicular to the first surface.
  • An angle Ca1 of an inner diameter surface connecting the minimum inner diameter portion and the first opening and an angle Ca2 of an inner diameter surface connecting the minimum inner diameter portion and the second opening may have a ratio of 1:0.7 to 1.3.
  • the difference between the angle of the inner diameter surface of the core via starting from the first opening and the inner diameter surface of the core via starting from the second opening may be insignificant, so that the subsequent plating process may proceed more smoothly.
  • the angle is evaluated as an angle with an imaginary reference line perpendicular to the first surface or the second surface, and is evaluated as an absolute value regardless of the direction (the same applies hereinafter).
  • the larger of the angle Ca1 of the inner diameter surface connecting the minimum inner diameter portion and the first opening and the angle Ca2 of the inner diameter surface connecting the minimum inner diameter portion and the second opening may be 8 degrees or less, and 0.1 degrees. It may be to 8 degrees, and may be 0.5 to 6.5 degrees. In the case of having such an angle, subsequent processes such as plating may proceed more smoothly, and it is easier to construct an electrically conductive layer having an intended pattern.
  • the thickness of the electroconductive layer measured at the larger of the first surface opening diameter (CV1) and the second surface opening diameter (CV2) is the thickness of the electroconductive layer formed on the portion (CV3) having the minimum inner diameter of the core via. It can be the same or thick.
  • the core distribution layer 24 is an electrically conductive layer formed on a glass substrate, and a cross cut adhesion test value according to ASTM D3359 may satisfy 4B or more, and specifically 5B or more.
  • the electroconductive layer which is the core distribution layer 24, may have an adhesive force of 3 N/cm or more with the glass substrate, and may have a bonding force of 4.5 N/cm or more. When this degree of adhesion is satisfied, it has sufficient adhesion between the substrate and the electroconductive layer to be applied as a packaging substrate.
  • An upper layer 26 is positioned on the first surface 213.
  • the upper layer 26 includes an upper distribution layer 25 and a top connection layer 27 positioned on the upper distribution layer, and the uppermost surface of the upper layer 26 can directly contact the connection electrodes of the semiconductor device. It may be protected by the cover layer 60 in which the opening is formed.
  • the upper distribution layer 25 includes an upper insulating layer 253 positioned on the first surface;
  • the core distribution layer 24 and at least a portion thereof are electrically conductive layers having a predetermined pattern and include an upper distribution pattern 251 embedded in the upper insulating layer.
  • the upper insulating layer 253 may be applied as long as it is applied as an insulator layer to a semiconductor device or a packaging substrate, and for example, an epoxy resin including a filler may be applied, but is not limited thereto.
  • the insulator layer may be formed by forming and curing a coating layer, or may be formed by laminating and curing an insulator film filmed in an uncured or semi-cured state on the core layer. In this case, if a pressure-sensitive lamination method or the like is applied, the insulator is inserted into the space inside the core via, thereby enabling efficient process progress. In addition, even if a plurality of insulator layers are stacked and applied, it may be difficult to distinguish between the insulator layers, and a plurality of insulator layers are collectively referred to as an upper insulating layer. In addition, the same insulating material may be applied to the core insulating layer 223 and the upper insulating layer 253, and in this case, the boundary may not be substantially separated.
  • the upper distribution pattern 251 refers to an electrically conductive layer positioned within the upper insulating layer 253 in a preset shape, and may be formed in, for example, a build-up layer method. Specifically, after forming an insulator layer, removing unnecessary portions of the insulator layer, forming an electrical conductive layer by copper plating, etc., removing unnecessary portions of the electrical conductive layer, and then forming an insulator layer on the conductive layer again. After forming, removing unnecessary parts again, the method of forming the electroconductive layer by plating or the like may be repeated to form an upper distribution pattern 251 in which the battery conductive layer is formed in a vertical or horizontal direction in an intended pattern. .
  • the upper distribution pattern 251 is located between the core layer 22 and the semiconductor device part 30, the transfer of the electrical signal to the semiconductor device part 30 is smoothly performed, and the intended complex pattern is sufficient. It is formed such that a fine pattern is included in at least a part of it so that it can be accommodated.
  • the fine pattern may have a width and a spacing of less than 4 ⁇ m, may be 3.5 ⁇ m or less, 3 ⁇ m or less, 2.5 ⁇ m or less, and 1 to 2.3 ⁇ m. .
  • the interval may be an interval between fine patterns adjacent to each other (hereinafter, the description of fine patterns is the same).
  • the upper distribution pattern 251 to include a fine pattern, at least two or more methods are applied in the embodiment.
  • the glass substrate 21 may have a fairly flat surface characteristic with a surface roughness Ra of 10 angstroms or less, and thus the influence of the surface morphology of the support substrate on the formation of a fine pattern can be minimized.
  • the other is in the characteristics of the insulator.
  • a filler component is often applied together with a resin, and inorganic particles such as silica particles may be applied as the filler.
  • inorganic particles such as silica particles
  • the size of the inorganic particles may affect whether or not a fine pattern is formed.
  • a particulate filler having an average diameter of 150 nm or less is applied, Specifically, it includes a particulate filler having an average diameter of 1 to 100 nm.
  • the top connection layer 27 is electrically connected to the top distribution pattern 251 and at least a portion thereof, and includes a top connection pattern 272 located on the top insulating layer 253, the semiconductor device part 30, and the It includes a top connection electrode 271 electrically connecting the top connection pattern 272.
  • the top connection pattern 272 may be positioned on one surface of the upper insulating layer 253, or at least a portion thereof may be exposed and embedded on the upper insulating layer.
  • the upper insulating layer may be formed by plating or the like, and a part of the top surface connection pattern is exposed on the upper insulating layer. If it is embedded, a part of the insulating layer or the electrically conductive layer may be removed by a method such as surface polishing or surface etching after forming a copper plating layer or the like.
  • the top connection pattern 272 may include at least a portion thereof. In this way, the top connection pattern 272 including a fine pattern allows a plurality of devices to be electrically connected even under a narrow area, making electrical signal connection between devices more smooth and more integrated packaging possible. Do.
  • the top connection electrode 271 may be directly connected to the semiconductor device unit 30 through a terminal or the like, or may be connected via a device connection part 51 such as a solder ball.
  • the packaging substrate 20 is also connected to the motherboard 10.
  • a second surface distribution pattern 241c which is a core distribution layer positioned on at least a portion of the second surface 214 of the core layer 22, may be directly connected to a terminal of the motherboard. In addition, it may be electrically connected through a board connection such as a solder ball.
  • the second surface distribution pattern 241c may be connected to the motherboard 10 via a lower layer 29 positioned under the core layer 22.
  • the lower layer 29 includes a lower partial double layer 291 and a lower surface connection layer 292.
  • the lower partial double layer 291 includes: i) a lower insulating layer 291b in which the second surface 214 and at least a portion thereof contact; And ii) a lower part-fold pattern 291a which is embedded (buried) in the lower insulating layer and has a predetermined pattern, and in which the core distribution layer and at least a portion thereof are electrically connected.
  • the lower surface connection layer 292 includes i) a lower surface connection electrode 292a that is electrically connected to the lower surface connection pattern, and ii) the lower partial belly pattern and at least a portion thereof are electrically connected, and is formed on one surface of the lower insulating layer. It may further include a lower surface connection pattern (292b) at least a part of the exposed.
  • the lower surface connection pattern 292b is a portion connected to the motherboard 10 and may be formed as a non-fine pattern having a width wider than that of the fine pattern, unlike the upper surface connection pattern 272 for more efficient electrical signal transmission.
  • One of the characteristics of the present invention is that substantially no other substrates other than the glass substrate 21 are applied to the packaging substrate 20 positioned between the semiconductor device unit 30 and the motherboard 10.
  • an interposer and an organic substrate were stacked together to apply an interposer and an organic substrate between the device and the motherboard.
  • This is understood to have been applied in a multi-stage form for at least two reasons.
  • One is that there is a problem with scale in directly bonding the fine pattern of the device to the motherboard, and the other is that during the bonding process or driving the semiconductor device. This is because a problem of wiring damage due to a difference in thermal expansion coefficient may occur during the process.
  • a glass substrate having a coefficient of thermal expansion similar to that of a semiconductor device is applied, and a fine pattern having a fine scale sufficient for device mounting is formed on the first surface and the upper layer of the glass substrate, thereby solving this problem.
  • a thickness of a thinner one of the conductive layers of the core distribution layer 24 may be equal to or thicker than a thickness of a thinner one of the conductive layers of the upper layer 26 (Tus). In this way, electric signal transmission between the device and the motherboard is more effective than when the thickness of the thinner one of the conductive layers of the core distribution layer 24 is equal to or thicker than the thickness of the thinner one of the conductive layers of the upper layer 26. You can do it efficiently.
  • the thickness Tsc of the thinner of the second surface distribution patterns 241c may be thicker than the thickness Tus of the thinner of the top connection patterns 272.
  • the thickness Tds of the thicker one of the lower surface connection electrodes 292a may be thicker than the thickness Tsc of the thinner one of the second surface distribution patterns 241c.
  • the semiconductor device 100 has a packaging substrate 20 having a fairly thin thickness, so that the overall thickness of the semiconductor device can be reduced, and by applying a fine pattern, an intended electrical connection pattern can be arranged even in a narrower area.
  • the packaging substrate may have a thickness of about 2000 ⁇ m or less, about 1500 ⁇ m or less, and about 900 ⁇ m.
  • the packaging substrate may have a thickness of about 120 ⁇ m or more and about 150 ⁇ m or more.
  • the packaging substrate as described above, electrically and structurally stably connects the device and the motherboard even with a relatively thin thickness, and may contribute to a smaller and thinner semiconductor device.
  • FIGS. 8 to 10 are flow charts illustrating a manufacturing process of a packaging substrate according to the embodiment in cross section.
  • a method of manufacturing a packaging substrate according to another embodiment will be described with reference to FIGS. 7 to 9.
  • the manufacturing method of the packaging substrate of the embodiment includes: a preparation step of forming defects at predetermined positions on a first surface and a second surface of the glass substrate; An etching step of preparing a glass substrate on which a core via is formed by applying an etching solution to the glass substrate on which the defects are formed; A core layer manufacturing step of forming a core layer by plating the surface of the glass substrate on which the core via is formed to form a core distribution layer, which is an electrically conductive layer; In addition, an upper layer manufacturing step of forming an upper distribution layer, which is an electrically conductive layer wrapped in an insulating layer, on one surface of the core layer, to manufacture the packaging substrate described above.
  • the core layer manufacturing step includes a pretreatment process of forming a pretreated glass substrate by forming an organic-inorganic composite primer layer including nanoparticles having an amine group on the surface of the glass substrate on which the core via is formed; And a plating process of plating a metal layer on the pre-treated glass substrate.
  • the core layer manufacturing step includes a pretreatment process of forming a pretreated glass substrate by forming a metal-containing primer layer through sputtering on the surface of the glass substrate on which the core via is formed; And a plating process of plating a metal layer on the pre-treated glass substrate.
  • An insulating layer forming step may be further included between the core layer manufacturing step and the upper layer manufacturing step.
  • the insulating layer forming step may be a step of forming a core insulating layer by placing an insulating film on the core layer and then performing pressure-sensitive lamination.
  • the manufacturing method of the packaging substrate will be described in more detail.
  • a glass substrate applied to a substrate of an electronic device may be applied.
  • an alkali-free glass substrate may be applied, but is not limited thereto.
  • products manufactured by manufacturers such as Corning, Short, and AGC can be applied.
  • Methods such as mechanical etching and laser irradiation may be applied to the formation of the defects (grooves).
  • Etching step core via formation step: The glass substrate 21a on which the defects (grooves, 21b) are formed, forms the core vias 23 through a physical or chemical etching process. During the etching process, the glass substrate forms a via in the defective portion, and at the same time, the surface of the glass substrate 21a may be etched at the same time. In order to prevent the etching of the glass surface, a masking film or the like may be applied, but the defective glass substrate itself can be etched in consideration of the hassle of applying and removing the masking film. The thickness of the glass substrate with the core via may be somewhat thinner than the thickness.
  • Core layer manufacturing step An electrically conductive layer 21d is formed on a glass substrate.
  • the electroconductive layer may be a metal layer including a copper metal, but is not limited thereto.
  • the surface of the glass (including the surface of the glass substrate and the surface of the core via) and the surface of the copper metal have different properties, so the adhesion is poor.
  • the adhesion between the glass surface and the metal was improved by two methods, a dry method and a wet method.
  • the dry method is a method of applying sputtering, that is, a method of forming the seed layer 21c on the glass surface and the inner diameter surface of the core via by metal sputtering.
  • sputtering that is, a method of forming the seed layer 21c on the glass surface and the inner diameter surface of the core via by metal sputtering.
  • dissimilar metals such as titanium, chromium, and nickel may be sputtered together with copper, and in this case, it is believed that glass-metal adhesion is improved by an anchor effect in which the surface morphology of the glass and the metal particles interact. do.
  • the wet method is a method of performing a primer treatment, and is a method of forming the primer layer 21c by pretreating with a compound having a functional group such as amine.
  • a primer treatment may be performed with a compound or particle having an amine functional group after pretreatment with a silane coupling agent.
  • the support substrate of the embodiment needs to be of high performance enough to form a fine pattern, and this must be maintained even after the primer treatment. Therefore, when such a primer contains nanoparticles, nanoparticles having an average diameter of 150 nm or less are preferably applied. For example, nanoparticles are preferably applied to particles having an amine group.
  • the primer layer may be formed by applying an adhesion improving agent manufactured by MEC's CZ series, for example.
  • the electroconductive layer may selectively form a metal layer with or without removing portions that do not require formation of the electroconductive layer.
  • a portion requiring or unnecessary formation of an electroconductive layer may be selectively processed in a state activated or deactivated for metal plating, thereby performing a subsequent process.
  • the activation or deactivation treatment may be applied to a light irradiation treatment such as a laser having a certain wavelength, or a chemical treatment.
  • the metal layer may be formed using a copper plating method applied to semiconductor device manufacturing, but is not limited thereto.
  • the thickness of the formed electrically conductive layer may be controlled by adjusting various variables such as the concentration of the plating solution, the plating time, and the type of additive to be applied.
  • the core distribution layer may be removed.
  • metal plating is performed to form an electrically conductive layer in a predetermined pattern, and the etching layer 21e of the core distribution layer May be formed
  • the core via may undergo an insulating layer forming step in which an empty space is filled with an insulating layer after forming the core distribution layer, which is the electrically conductive layer.
  • the applied insulating layer may be manufactured in the form of a film, and may be applied, for example, by a method of laminating the insulating layer in the form of a film under reduced pressure. When the pressure-sensitive lamination is performed in this way, the insulating layer is sufficiently penetrated into the empty space inside the core via, thereby forming a core insulating layer without void formation.
  • Upper layer manufacturing step This is a step of forming an upper distribution layer including an upper insulating layer and an upper distribution pattern on the core layer.
  • the upper insulating layer may be performed by coating a resin composition forming the insulating layer 23a or stacking an insulating film, and simply stacking an insulating film is preferably applied. Lamination of the insulating film may be performed by laminating and curing the insulating film. In this case, if the pressure-sensitive lamination method is applied, the insulating resin may be sufficiently contained even in a layer in which an electrically conductive layer is not formed inside the core via.
  • the upper insulating layer is also in direct contact with the glass substrate in at least a portion thereof, and thus, a material having sufficient adhesion is applied. Specifically, it is preferable that the glass substrate and the upper insulating layer have a property that satisfies an adhesion test value of 4B or more according to ASTM D3359.
  • the upper distribution pattern may be formed by repeating the process of forming the insulating layer 23a, forming the electrically conductive layer 23c in a predetermined pattern, and etching unnecessary portions to form the etching layer 23d of the electrically conductive layer.
  • the blind via 23b may be formed in the insulating layer and then a plating process may be performed.
  • the blind via may be formed by a dry etching method such as laser etching or plasma etching, and a wet etching method using a masking layer and an etching solution.
  • the top connection pattern and the top connection electrode may be formed in a process similar to that of the formation of the top distribution layer. Specifically, formed by forming an etching layer 23f of an insulating layer on the insulating layer 23e, forming an electrically conductive layer 23g thereon again, and then forming an etching layer 23h of the electrically conductive layer. However, it may be applied as a method of selectively forming only an electrically conductive layer without applying an etching method.
  • the cover layer may be formed such that an opening (not shown) is formed at a position corresponding to the top connection electrode to expose the top connection electrode, and can be directly connected to the device connection part or the terminal of the device.
  • a lower surface connection layer and a cover layer In a manner similar to the above-described step of forming the upper connection layer and the cover layer, the lower partial rear layer and/or the lower surface connection layer, and optionally a cover layer (not shown) may be formed.
  • FIG. 11 is a top view (a) of a glass substrate having a core via and a conceptual view (b) illustrating a cross section of a core via according to another embodiment.
  • a packaging substrate including a glass substrate and a manufacturing method thereof will be described with reference to FIGS. 1 and 11.
  • a semiconductor packaging substrate 215 according to another embodiment,
  • a glass substrate 21 having a first surface 213 and a second surface 214 facing each other, ii) a plurality of core vias 23 and iii) the core via passing through the glass substrate in the thickness direction And a core layer on which the core seed layer 225, which is a seed for forming an electroconductive layer, is positioned on the surface of.
  • the semiconductor packaging substrate 215 may be applied as a component of the packaging substrate 20 of the semiconductor device 100 described above.
  • the glass substrate 21 is preferably a glass substrate applied to a semiconductor.
  • a borosilicate glass substrate, an alkali-free glass substrate, etc. may be applied, but the present invention is not limited thereto.
  • the glass substrate 21 may have a thickness of 1,000 ⁇ m or less, may be 100 ⁇ m to 1,000 ⁇ m, and may be 100 ⁇ m to 700 ⁇ m. More specifically, the glass substrate 21 may have a thickness of 100 ⁇ m to 500 ⁇ m. Forming a thinner packaging substrate is advantageous in that electrical signal transmission can be more efficient, but it should also serve as a support, so it is preferable to apply a glass substrate having the above-described thickness.
  • the thickness of the glass substrate refers to the thickness of the glass substrate itself excluding the thickness of the electrically conductive layer on the glass substrate.
  • the core via 23 may be formed by removing a predetermined region of the glass substrate 21, and specifically, may be formed by etching plate-shaped glass by physical and/or chemical methods.
  • a method of chemically etching after forming a defect (fault) on the surface of a glass substrate by a method such as a laser, or a laser etching method may be applied, but is not limited thereto.
  • the core via 23 may include a first opening 233 in contact with the first surface; A second opening 234 in contact with the second surface; And a minimum inner diameter portion 235, which is a region having the narrowest inner diameter of the entire core via connecting the first opening portion and the second opening portion.
  • the diameter of the first opening (CV1) and the diameter of the second opening (CV2) may be substantially different, and the first opening (CV1) and the second opening (CV2) may have substantially the same diameter. .
  • the minimum inner diameter portion may be located in the first opening or the second opening, and in this case, the core via may be a cylindrical or (cut) triangular pyramidal core via.
  • the diameter of the minimum inner diameter (CV3) corresponds to the diameter of the smaller of the first opening and the second opening.
  • the minimum inner diameter portion is located between the first opening and the second opening, and in this case, the core via may be a barrel-shaped core via.
  • the diameter of the minimum inner diameter (CV3) may be smaller than a larger one of the diameter of the first opening and the diameter of the second opening.
  • the core via 23 includes an opening in contact with the first surface, an opening in contact with the second surface, and a portion having a minimum inner diameter among the core vias, and a point where the minimum inner diameter is located is the entire length of the core via When viewed as 100%, it may be located at a point less than 40% or more than 60% based on the first opening. It may be more advantageous for a core via having such a shape to have a value for the thickness ratio described below.
  • the core via 23 has an opening-thickness ratio of 1:2 to 4, which means the ratio of the inner diameter of the opening (the larger of the first surface opening and the second surface opening) to the thickness of the glass substrate. have.
  • the core via 23 may have a minimum inner diameter portion-thickness ratio of 1:2.5 to 6, which means a ratio of the inner diameter of the minimum inner diameter portion and the thickness of the glass substrate. A core via having such a ratio is more advantageous for forming a core seed layer having features described later.
  • a core seed layer may not be sufficiently formed or core seed layers having different thicknesses may be formed in some portions due to the characteristics of the shape of the narrow and long core via.
  • This core seed layer is the basis for forming an electrically conductive layer such as a copper layer by plating, etc., and since the thickness distribution of this low conductivity layer can affect the speed and efficiency of electric signal transmission, I need it.
  • the first thickness and the second thickness which are the thicknesses of the core seed layer 225, measured at positions facing each other among the inner diameter surfaces of the core via 23 are measured, and the overall thickness is It is checked whether or not a core seed layer is formed.
  • the core via 23 in which the core seed layer 225 is located on the inner diameter surface is observed from a cross section, and the thickness of the core seed layer 225 is measured at a predetermined position. Since the core seed layer itself may also have a curved surface, the sample values measured 3 to 5 times or more are averaged and evaluated as a thickness value while finely changing positions at one point.
  • the thickness deviation rate represented by Equation 1 below may be 90% or less, 83% or less, and 67% or less. In the case of having such a thickness deviation ratio, a core seed layer having a relatively uniform thickness can be provided.
  • Thickness deviation rate ((maximum thickness of core seed layer-minimum thickness of core seed layer)/average thickness of core seed layer) ⁇ 100%
  • the maximum thickness is a thickness having a maximum value in the measured core seed layer thickness sample
  • the minimum thickness is a thickness having a minimum value in the thickness sample
  • the average thickness is an average value of the thickness sample.
  • the core seed layer 225 may have an average thickness of 30 nm to 200 nm, and may be 50 nm to 170 nm.
  • the core seed layer having such a thickness range can form relatively uniform electrical conductivity intended by the present invention.
  • the core seed layer 225 may also have the following features.
  • the core seed layers observed in the cross section exist at positions facing each other at the same height, which are matched as 1-1 and 2-1, 1-2 and 2-2 in FIG. 12. Since the core seed layer itself can also have a curved surface, the values measured 3 to 5 times or more are averaged and evaluated as a thickness value while finely changing positions at one point.
  • the thicknesses of the core seed layers facing each other are matched with the first thickness and the second thickness, such as 1-1 and 1-2, and these first and second thicknesses are calculated by calculating the ratio of the thickness ratio. It is called as.
  • the thickness ratio may be 1:0.4 to 4.5, 1:0.5 to 3.0, and 1:0.7 to 2.0.
  • the core seed layer 225 has a relatively even thickness at positions facing each other.
  • the thickness ratio measured at three or five locations with different heights among the inner diameter surfaces of the core via 23 may have a standard deviation of 1.5 or less, 1 or less, and 0.8 or less. This means that three or five different heights have a relatively constant thickness. In this case, three or five different heights refer to positions designated at relatively regular intervals in consideration of the overall length of the core via, and the position intervals do not need to be completely the same.
  • the inner diameter surface of the core via may have a different thickness depending on the height when the second surface is the reference, and this difference in thickness is likely to occur due to the characteristics of the narrow and long core via.
  • the core seed layer 225 having the above-mentioned characteristics provides a core seed layer having a certain characteristic over an appropriate level by controlling the unbalance of the thickness.
  • the core seed layer 225 includes a first surface core seed layer 225a disposed on a first surface sequentially connected to each other, a core via seed layer 225b disposed on an inner diameter surface of a core via, and a first surface. It includes a second surface core seed layer 225c positioned on the two surfaces.
  • the specific characteristics of the core seed layer 225 mentioned above are applied to the core via seed layer 225b.
  • the measured thickness, thickness ratio, and standard deviation of the core seed layer are presented as follows.
  • the photograph shown in FIG. 13 is the data of Sample 1.
  • Thickness is evaluated as a 5-point average * Thickness ratio is calculated as (1-1/2-1)
  • the method of manufacturing the core seed layer includes a preparation step and a sputtering step.
  • the preparation step is a step of preparing a processing electric board having a glass substrate having first and second surfaces facing each other and a plurality of core vias penetrating the glass substrate in a thickness direction. Since the detailed description of the glass substrate and the core via is duplicated with the above description, the description thereof is omitted. Further, since the detailed description of the method of forming the core via on the glass substrate and the like is duplicated with the description of the packaging substrate described above, the description thereof will be omitted.
  • the sputtering step is a step of forming a core seed layer on the inner diameter surface of the core via by sputtering at a key angle (As) of 10 to 90 degrees with respect to a reference line perpendicular to the first surface.
  • the gun angle may be 10 degrees to 65 degrees.
  • the gun angle may be from 15 degrees to 55 degrees, and from 15 degrees to 45 degrees.
  • the gun angle may be 10 to 35 degrees.
  • Step 1 Glass Defect Formation Process: Prepare a glass substrate 21a having a flat first side and a second side, and form a defect (groove, 21b) on the glass surface at a predetermined position for forming a core via. I did. As the glass, borosilicate glass (Corning) was applied. Mechanical etching and laser irradiation methods were applied to the formation of the defects (grooves).
  • Etching step core via formation step: The glass substrate 21a on which the defects (grooves, 21b) are formed was formed with the core via 23 through a physical or chemical etching process.
  • the core via may include a first opening in contact with the first surface; A second opening in contact with the second surface;
  • the inner diameter is formed to have a minimum inner diameter portion, which is the narrowest area, and the position of the minimum inner diameter portion is viewed as 100% of the entire core via length. It was positioned at 40% to 60% of the first opening.
  • the angle of the inner diameter surface observed from the cross section of the core via from the largest opening of the first opening and the second opening to the minimum inner diameter is 8 degrees or less based on the thickness direction perpendicular to the second surface. .
  • Core layer manufacturing step An electrically conductive layer 21d was formed on a glass substrate. A metal layer containing a copper metal was applied as the electroconductive layer. The adhesion between the surface of the glass substrate and the metal layer was improved by a dry method.
  • the dry method is a method of applying sputtering, that is, a method of forming the seed layer 21c on the glass surface and the inner diameter of the core via by metal sputtering.
  • sputtering that is, a method of forming the seed layer 21c on the glass surface and the inner diameter of the core via by metal sputtering.
  • the seed layer at least one of titanium, chromium, and nickel was sputtered with copper or the like. In this case, the sputtering was performed at a key angle As of 45 degrees with respect to a reference line perpendicular to the first surface.
  • Example 1 except that the position of the minimum inner diameter portion of 2) is less than 40% based on the first opening, and the angle at the time of sputtering of 3-1) was changed to 55 degrees, the embodiment 1 Proceeding in the same manner as, a packaging substrate was manufactured.
  • Example 1 a substrate for packaging was manufactured in the same manner as in Example 1, except that the angle during sputtering in 3-1) was changed to 65 degrees.
  • Example 1 except that the position of the minimum inner diameter portion of 2) is less than 40% based on the first opening, and the angle during sputtering of 3-1) was changed to 90 degrees, the embodiment 1 Proceeding in the same manner as, a packaging substrate was manufactured.
  • Example 1 except that the angle of the inner diameter surface of 2) was changed to exceed 8 degrees, the same procedure as in Example 1 was performed to prepare a packaging substrate.
  • Example 1 the angle of the inner diameter surface of 2) was set to exceed 8 degrees, the position of the minimum inner diameter was set to be less than 40% based on the first opening, and the angle during sputtering of 3-1) was Except for changing to 65 degrees, the same procedure as in Example 1 was performed to prepare a packaging substrate.
  • Example 1 the angle of the inner diameter surface of 2) was set to exceed 8 degrees, the position of the minimum inner diameter was set to be less than 40% based on the first opening, and the angle during sputtering of 3-1) was Except for changing to 90 degrees, it proceeded in the same manner as in Example 1 to prepare a packaging substrate.
  • the thickness of the core seed layer of the packaging substrate manufactured in the above Examples and Comparative Examples was measured five times, including one point and its periphery, and five times including the other point facing the one point and its periphery.
  • the first thickness and the second thickness ratio, and the thickness deviation results are shown in Table 1.
  • Example 1 Example 2 Example 3 Example 4 Comparative Example 1 Comparative Example 2 Comparative Example 3 Sputtering angle (degree) 45 55 65 90 45 65 90 Ca* (degrees) 8 or less 8 or less 8 or less 8 or less More than 8 More than 8 More than 8 1-n:2-n* 1:0.4 ⁇ 4.5 1:0.4 ⁇ 4.5 1:0.4 ⁇ 4.5 1:0.4 ⁇ 4.5 1:0.4 ⁇ 4.5 1:0.2 1:0.5 Thickness deviation rate*(%) 50 67 83 90 97 102 107 Min inner diameter position*(%) 40-60 Less than 40 40-60 Less than 40 40-60 Less than 40 Less than 40 Less than 40 Less than 40 Less than 40 Less than 40 Less than 40 Less than 40 Less than 40
  • Ca The angle of the inner diameter surface observed from the cross section of the core via from the opening of the larger one of the first opening or the second opening to the minimum inner diameter, based on the thickness direction perpendicular to the first surface 1-n: 2-n: of the core via The ratio of the first thickness and the second thickness of the core seed layer measured at two positions facing each other among the inner surface
  • Thickness deviation ratio ((maximum thickness of core seed layer-minimum thickness of core seed layer)/average thickness of core seed layer) ⁇ 100%
  • Minimum inner diameter position relative to the first opening when the entire length of the core via is viewed as 100%
  • the thickness deviation ratio is 90 or less
  • the 1-n:2-n ratio is 1:0.4 to 4.5.
  • the thickness of the seed layer is shown, and it is determined that the packaging substrate having such characteristics can sufficiently and smoothly transmit electrical signals to devices disposed above or below it.
  • the packaging substrate of the embodiment does not form parasitic elements of the glass substrate, and has excellent properties such as that it can serve as a substrate support having a thin and sufficient strength, and an efficient signal transmission by forming an electrically conductive layer with an appropriate ratio of the thickness of the glass substrate. It uses its excellent properties, such as inducing it.
  • the glass substrate is evaluated as having poor bonding properties with an electrically conductive layer such as a copper layer, and in order to form an electrically conductive layer of sufficient thickness by a method such as plating, a seed layer or a primer layer, etc., is formed between the glass surface and the electrically conductive layer. Need to be formed. However, when such a seed layer or primer layer is formed too thick, when formed unevenly, it may be difficult to sufficiently form an electrically conductive layer within a diameter of a predetermined core via, which may affect the electrical signal transmission speed of the upper and lower parts of the packaging substrate. It can have a bad effect.
  • the thickness of the seed layer or the primer layer is uniform and thin as possible while satisfying a specific ratio, the sputtering angle is 15 degrees to 90 degrees, the Ca is 8 It is thought that it is good to be below degrees.
  • semiconductor device part 32 first semiconductor device
  • packaging substrate 22 core layer
  • top connection layer 271 top connection electrode
  • connection part 51 element connection part
  • insulating layer 23b etching layer of the insulating layer
  • electroconductive layer 23d etching layer of electroconductive layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

구현예는 패키징 기판 및 반도체 장치에 관한 것으로, 반도체 소자를 포함하는 소자부;와 상기 소자부와 전기적으로 연결되는 패키징 기판;을 포함하며 상기 패키징 기판에 유리기판을 코어로 적용하여 반도체 소자와 마더보드 사이를 보다 가깝게 연결해 전기적 신호가 최대한 짧은 거리로 전달되도록 한다. 이에, 신호 전달 속도 등의 전기적 특성을 크게 향상시키고, 기생소자 발생을 실질적으로 막아 절연막 처리 공정을 보다 단순화시킬 수 있으며, 고속 회로에 적용 가능한 패키징 기판을 제공한다.

Description

패키징 기판 및 이의 제조방법
구현예는 패키징 기판 및 이의 제조방법에 관한 것이다.
[연관된 출원과의 상호참조]
본 출원은 2019년 03월 12일에 출원된 미국 가출원 특허출원번호 62/816,984, 2019년 03월 12일에 출원된 미국 가출원 특허출원번호 62/816,972, 2019년 03월 29일에 출원된 미국 가출원 특허출원번호 62/825,966 및 2019년 03월 29일에 출원된 미국 가출원 특허출원번호 62/825,945에 의한 우선권의 이익을 가지며, 상기 우선권의 기초 출원의 내용 모두는 본 출원의 내용으로 포함된다.
전자부품을 제작하는데 있어 반도체 웨이퍼에 회로를 구현하는 것을 전 공정 (FE:Front-End)이라 하고, 웨이퍼를 실제 제품에서 사용할 수 있는 상태로 조립하는 것을 후 공정(BE:Back-End) 이라 하며, 이 후 공정 중에 패키징 공정이 포함된다.
최근 전자제품의 급속한 발전을 가능하게 한 반도체 산업의 4가지 핵심기술로는 반도체 기술, 반도체 패키징 기술, 제조공정 기술, 소프트웨어 기술이 있다. 반도체 기술은 마이크로 이하 나노 단위의 선폭, 천만 개 이상의 셀(Cell), 고속 동작, 많은 열 방출 등 다양한 형태로 발전하고 있으나 상대적으로 이를 완벽하게 패키징하는 기술이 뒷받침되지 못하고 있다. 이에, 반도체의 전기적 성능이 반도체 기술 자체의 성능보다는 패키징 기술과 이에 따른 전기적 접속에 의해 결정되기도 한다.
패키징 기판의 재료로는 세라믹 또는 수지가 적용된다. 세라믹 기판의 경우, 저항값이 높거나 유전율이 높아 고성능 고주파의 반도체 소자를 탑재하기에 쉽지 않다. 수지 기판의 경우 상대적으로 고성능 고주파의 반도차체 소자를 탑재할 수는 있으나, 배선의 피치 축소에 한계가 있다.
최근, 하이엔드용 패키징 기판으로 실리콘이나 유리를 적용한 연구들이 진행중이다. 실리콘이나 유리 기판에 관통구멍을 형성하고 도전성 물질을 이 관통구멍에 적용해서 소자와 마더보드 사이에 배선길이가 짧아지고 우수한 전기적 특징을 가질 수 있다.
관련 선행문헌으로,
한국 공개특허공보 제10-2019-0008103호,
한국 공개특허공보 제10-2016-0114710호,
한국 등록특허공보 제10-1468680호 등이 있다.
구현예의 목적은 유리기판을 적용하여 보다 집적화된 패키징 기판 및 이를 포함하는 반도체 장치를 제공하는 데 있다.
구현예의 목적은 코어비아 내부에 형성된 코어시드층을 갖는 유리기판을 포함하는 반도체 패키징용 기판 및 이의 제조방법을 제공하는 데 있다.
상기 목적을 달성하기 위하여, 구현예에 따른 패키징 기판은,
코어층과 코어층 상에 위치하는 상부층을 포함하고,
상기 코어층은 유리기판 및 코어비아를 포함하고,
상기 유리기판은 서로 마주보는 제1면과 제2면을 갖고,
상기 코어비아는 상기 유리기판을 두께 방향으로 관통하는 것으로 다수 개 배치되고,
상기 코어층은 상기 유리기판 또는 코어비아의 표면 상에 위치하는 코어분배층을 포함하고,
상기 코어분배층은 적어도 그 일부가 상기 코어비아를 통하여 상기 제1면 상의 전기전도성층과 상기 제2면 상의 전기전도성층을 전기적으로 연결하는 전기전도성층을 포함하고,
상기 코어비아는 상기 제1면과 접하는 개구부와 상기 제2면과 접하는 개구부 중에서 큰 직경을 갖는 것의 개구부에서 상기 코어비아 중에서 최소내경을 갖는 부분까지를 상기 코어비아 단면에서 관찰한 내경면의 각도가 상기 제1면에 수직한 두께 방향을 기준으로 8 도 이하일 수 있다.
일 구현예에 있어서, 상기 코어비아는 상기 제1면과 접하는 제1개구부; 상기 제2면과 접하는 제2개구부; 그리고 상기 제1개구부와 상기 제2개구부를 연결하는 전체 코어비아에서 그 내경이 가장 좁은 구역인 최소내경부를 포함한다.
일 구현예에 있어서, 상기 최소내경부의 직경은 상기 제1개구부 및 상기 제2개구부 중 큰 직경을 갖는 것을 기준으로 50 % 내지 99 %의 크기를 가질 수 있다.
일 구현예에 있어서, 상기 최소내경부가 위치하는 지점은 상기 코어비아 길이 전체를 100 %로 보았을 때, 상기 제1개구부를 기준으로 40 % 내지 60 % 지점에 위치할 수 있다.
일 구현예에 있어서, 상기 최소내경부와 상기 제1개구부를 잇는 내경면의 각도(Ca1)와 상기 최소내경부와 상기 제2개구부를 잇는 내경면의 각도(Ca2)는 1:0.7 내지 1.3의 비율을 가질 수 있다.
상기 목적을 달성하기 위하여, 다른 구현예에 따른 반도체 패키징용 기판은,
i) 서로 마주보는 제1면과 제2면을 갖는 유리기판;
ii) 상기 유리기판을 두께 방향으로 관통하는 다수의 코어비아; 및
iii) 상기 코어비아의 표면 상에 위치하며 전기전도성층 형성의 시드가 되는 코어시드층이 위치하는 코어층;을 포함하는 것으로,
상기 코어비아의 내경면 중에서 서로 마주보는 두 위치에서 측정한 상기 코어시드층의 두께인 제1두께와 제2두께는 그 비율(두께비율)이 1:0.4 내지 4.5일 수 있다.
일 구현예에 있어서, 상기 코어시드층의 하기 식 1로 표시되는 두께편차율은 90 %이하일 수 있다.
[식 1]
두께편차율 = ((코어시드층의 최대두께-코어시드층의 최소두께)/코어시드층의 평균두께)×100 %
일 구현예에 있어서, 상기 코어시드층의 평균 두께는 30 내지 200 nm일 수 있다.
상기 목적을 달성하기 위하여, 구현예에 따른 반도체 패키징용 기판의 제조방법은,
서로 마주보는 제1면과 제2면을 갖는 유리기판과 상기 유리기판을 두께 방향으로 관통하는 다수의 코어비아를 갖는 처리전기판을 마련하는 준비단계; 그리고
상기 제1면에 수직한 기준선에 대해 소정 각도로 스퍼터링하여 상기 코어비아의 내경면에 코어시드층을 형성하는 스퍼터링단계;를 포함하고,
상기 코어비아는 상기 제1면과 접하는 개구부와 상기 제2면과 접하는 개구부 중에서 큰 직경을 갖는 것의 개구부에서 상기 코어비아 중에서 최소내경을 갖는 부분까지를 상기 코어비아 단면에서 관찰한 내경면의 각도가 상기 제1면에 수직한 두께 방향을 기준으로 8 도 이하일 수 있다.
상기 목적을 달성하기 위하여, 구현예에 따른 반도체 장치는,
반도체 소자를 포함하는 소자부; 및 상기 소자부와 전기적으로 연결되는 구현예에 따른 패키징 기판;을 포함할 수 있다.
구현예의 패키징 기판 및 이를 포함하는 반도체 장치는 반도체 소자와 마더보드 사이를 보다 가깝게 연결해 전기적 신호가 최대한 짧은 거리로 전달되도록 하여 신호 전달 속도 등의 전기적 특성을 크게 향상시킬 수 있다.
또한, 기판의 코어로 적용하는 유리기판은 그 자체가 절연체이기 때문에 기존의 실리콘 코어와 비교하여 기생 소자 발생의 염려가 거의 없어서 절연막 처리 공정을 보다 단순화시킬 수 있고, 고속 회로에도 적용이 가능하다.
아울러, 실리콘이 둥근 웨이퍼의 형태로 제조되는 것과 달리, 유리 기판은 대형 패널 형태로 제조되기 때문에 대량 제조가 비교적 용이하고 경제성을 보다 향상시킬 수 있다.
도 1은 구현예에 따른 반도체 장치의 단면을 설명하는 개념도.
도 2는 구현예에 따른 패키징기판의 단면을 설명하는 개념도.
도 3의 (a) 코어비아가 형성된 유리기판을 위에서 바라본 모습과 (b) 상기 (a)의 a-a'을 절단하여 본 단면을 설명하는 개념도.
도 4의 (a)와 (b)는 각각 구현예에서 적용하는 코어비아의 단면의 형태를 설명하는 개념도.
도 5는 도 4의 (b)에 코어절연층이 더 형성된 모습을 단면으로 설명하는 개념도.
도 6은 구현예에 따른 패키징기판의 단면의 일부를 설명하는 상세개념도.
도 7은 구현예에 따른 패키징기판의 단면의 일부를 설명하는 상세개념도.
도 8 내지 도 10은 구현예에 따른 패키징기판의 제조과정을 단면으로 설명하는 순서도.
도 11은 구현예에 따른 코어비아를 갖는 유리기판을 위에서 본 모습(a)과 코어비아의 단면을 설명하는 개념도 (b).
도 12는 구현예에서 두께 편차 평가시에 적용하는 측정점에 대해 설명하는 코어비아의 단면 개념도.
도 13은 실시예에 따라 측정한 코어시드층의 두께 측정을 예시적으로 보여주는 사진.
도 14는 다른 구현예에 따른 코어비아를 갖는 유리기판을 위에서 본 모습(a)과 코어비아의 단면을 설명하는 개념도 (b).
도 15는 다른 구현예에서 두께 편차 평가시에 적용하는 측정점에 대해 설명하는 코어비아의 단면 개념도.
이하, 구현예가 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 실시예에 대하여 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 구현예는 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다.
본 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.
본 명세서 전체에서, “제1”, “제2” 또는 “A”, “B”와 같은 용어는 동일한 용어를 서로 구별하기 위하여 사용된다. 또한, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, “~”계는, 화합물 내에 “~”에 해당하는 화합물 또는 “~”의 유도체를 포함하는 것을 의미하는 것일 수 있다.
본 명세서에서, A 상에 B가 위치한다는 의미는 A 상에 직접 맞닿게 B가 위치하거나 그 사이에 다른 층이 위치하면서 A 상에 B가 위치하는 것을 의미하며 A의 표면에 맞닿게 B가 위치하는 것으로 한정되어 해석되지 않는다.
본 명세서에서, A 상에 B와 연결된다는 의미는 A와 B가 직접 연결되거나 A와 B 사이에 다른 구성요소를 통해서 연결되는 것을 의미하며, 특별한 언급이 없는 한 A와 B가 직접 연결되는 것으로 한정하여 해석되지 않는다.
본 명세서에서 단수 표현은 특별한 설명이 없으면 문맥상 해석되는 단수 또는 복수를 포함하는 의미로 해석된다.
발명자들은 보다 집적화되고 얇은 두께로 고성능을 발휘할 수 있는 반도체 장치를 개발하는 과정에서, 소자 자체 자체만이 아니라 패키징에 대한 부분이 성능향상에서 중요한 요소라는 점을 인식하고 이에 대해 연구하던 중, 기존의 인터포저와 유기기판(organic substrate)과 같이 2 층 이상의 코어를 패키징 기판으로 마더보드 상에 적용하던 것과 달리, 유리 코어를 단일 층으로 적용하고 관통비아의 형상, 여기에 형성되는 전기전도성층 등을 제어하는 방법을 적용하여 패키징 기판을 보다 얇고 반도체장치의 전기적 특성 향상에 도움이 되도록 할 수 있다는 점을 확인하였다. 이러한 패키징 기판을 구현하는 과정에서, 유리기판의 코어비아 내부에도 단락 등의 문제가 발생하지 않도록 비교적 고른 두께를 갖는 전기전도성층 형성하기 위해서는 코어비아 내경면에 고른 버퍼층의 형성이 필요하다. 구현예에서는 이하 설명하는 스퍼터링을 통한 코어시드층을 적용한다.
도 1은 구현예에 따른 반도체 장치의 단면을 설명하는 개념도이고, 도 2는 구현예에 따른 패키징기판의 단면을 설명하는 개념도이며, 도 3의 (a) 코어비아가 형성된 유리기판을 위에서 바라본 모습과 (b) 상기 (a)의 a-a'을 절단하여 본 단면을 설명하는 개념도이다. 도 4의 (a)와 (b)는 각각 구현예에서 적용하는 코어비아의 단면의 형태를 설명하는 개념도이고, 도 5는 도 4의 (b)에 코어절연층이 더 형성된 모습을 단면으로 설명하는 개념도이며, 도 6은 구현예에 따른 패키징기판의 단면의 일부를 설명하는 상세개념도이고, 도 7은 구현예에 따른 패키징기판의 단면의 일부를 설명하는 상세개념도이다. 이하, 도 1 내지 7을 참고해, 구현예를 보다 상세하게 설명한다.
반도체 장치(100)
상기 목적을 달성하기 위하여, 구현예에 따른 반도체 장치(100)는 1 이상의 반도체소자(32, 34, 36)가 위치하는 반도체소자부(30); 상기 반도체소자와 전기적으로 연결되는 패키징 기판(20); 및 상기 패키징 기판과 전기적으로 연결되며 상기 반도체소자와 외부의 전기적 신호를 전달하고 서로 연결하는 마더보드(10);를 포함한다.
다른 구현예에 따른 패키징 기판(20)은 코어층(22); 그리고 상부층(26);을 포함한다.
상기 반도체소자부(30)는 반도체 장치에 실장되는 소자들을 의미하며, 접속전극 등에 의해 상기 패키징 기판(20)에 실장된다. 구체적으로 상기 반도체소자부 (30)로는 예를 들어, CPU, GPU 등의 연산소자(제1소자: 32, 제2소자: 34), 메모리칩 등의 기억소자(제3소자, 36) 등이 적용될 수 있으나, 반도체 장치에 실장되는 반도체 소자라면 제한없이 적용 가능하다.
상기 마더보드(10)는 인쇄회로기판, 인쇄배선기판 등의 마더보드가 적용될 수 있다.
상기 패키징 기판(20)은 코어층(22); 및 상기 코어층의 일면 상에 위치하는 상부층(26);을 포함한다.
상기 패키징 기판(20)은 선택적으로 코어층 하에 위치하는 하부층(29)을 더 포함할 수 있다.
상기 코어층(22)은, 유리기판(21); 상기 유리기판을 두께 방향으로 관통하는 다수의 코어비아(23); 및 상기 유리기판 또는 코어비아의 표면 상에 위치하며 적어도 그 일부가 상기 코어비아를 통하여 상기 제1면과 상기 제2면 상의 전기전도성층을 전기적으로 연결하는 전기전도성층이 위치하는 코어분배층(24);을 포함한다.
상기 유리기판(21)은 서로 마주보는 제1면(213)과 제2면(214)을 가지며 이 두 면은 서로 대체로 평행하여 유리기판 전체적으로 일정한 두께를 갖는다.
상기 유리기판(21)에는 상기 제1면과 상기 제2면을 관통하는 코어비아(23)가 위치한다.
반도체 장치의 패키징 기판으로는, 기존에는 실리콘 기판과 유기기판(organic substrate)이 적층된 형태로 적용되었다. 실리콘기판의 경우에는 반도체라는 특성상 고속회로에 적용 시에는 기생 소자가 발생할 염려가 있고, 전력 손실이 상대적으로 크다는 단점이 있었다. 또한 유기기판의 경우에는 보다 복잡해지는 분배 패턴을 형성하기에는 대면적화가 필요하나 이는 초소형화 되는 전자기기의 제조의 흐름에 부합되지 않는다. 정해진 크기 내에서 복잡한 분배 패턴을 형성하기 위해서는 실질적으로 패턴 미세화가 필요하나, 유기기판에 적용하는 고분자 등 소재 특성상 패턴 미세화에 실질적인 한계가 있었다.
구현예에서는 이러한 문제점들을 해결하는 방법으로 유리기판(21)을 코어층(22)의 지지체로 적용한다. 또한, 유리기판과 함께 유리기판을 관통하며 형성된 코어비아(23)를 적용하여, 전기적 흐름의 길이를 보다 단축하고, 보다 소형화되며, 보다 빠른 반응, 보다 적은 손실 특성을 갖는 패키징 기판(20)을 제공한다.
상기 유리기판(21)은 반도체에 적용되는 유리기판을 적용하는 것이 좋고, 예를 들어 보로실리케이트 유리기판, 무알카리 유리기판 등이 적용될 수 있으나, 이에 한정되는 것은 아니다.
상기 유리기판(21)은 그 두께가 1,000 ㎛ 이하일 수 있고, 100 내지 1,000 ㎛일 수 있으며, 100 내지 700 ㎛일 수 있다. 보다 구체적으로 상기 유리기판(21)은 그 두께가 100 내지 500 ㎛일 수 있다. 보다 얇은 패키징 기판을 형성하는 것이 전기적 신호 전달을 보다 효율화할 수 있다는 점에서 유리하나 지지체로써의 역할도 하여야 하므로, 상기한 두께를 갖는 유리기판(21)을 적용하는 것이 좋다. 여기서, 유리기판의 두께는 유리기판 상에 위하는 전기전도성층의 두께를 제외한 유리기판 자체의 두께를 의미한다.
상기 코어비아(23)는 상기 유리기판(21)의 미리 정해진 영역을 제거하는 방식으로 형성될 수 있으며, 구체적으로 물리 및/또는 화학적인 방법으로 판형 유리를 식각하여 형성된 것일 수 있다.
구체적으로, 상기 코어비아(23)의 형성은 유리기판의 표면에 레이저 등의 방식으로 결함(흠)을 형성한 후 화학적으로 에칭하는 방식, 레이저 식각 등이 적용될 수 있으나, 이에 한정되는 것은 아니다.
상기 코어비아(23)는, 상기 제1면과 접하는 제1개구부(233); 상기 제2면과 접하는 제2개구부(234); 그리고 상기 제1개구부와 상기 제2개구부를 연결하는 전체 코어비아에서 그 내경이 가장 좁은 구역인 최소내경부(235);를 포함한다.
상기 제1개구부의 직경(CV1)과 상기 제2개구부의 직경(CV2)은 실질적으로 다를 수 있고, 상기 제1개구부(233)와 상기 제2개구부(234)는 그 직경이 실질적으로 같을 수 있다.
상기 최소내경부는 상기 제1개구부 또는 상기 제2개구부에 위치할 수 있으며, 이때 코어비아는 원통형 또는 (잘린)삼각뿔형의 코어비아일 수 있다. 이 경우 상기 최소내경부의 직경(CV3)은 제1개구부와 상기 제2개구부 중에서 작은 것의 직경에 해당한다.
상기 최소내경부는 상기 제1개구부와 상기 제2개구부 사이에 위치하며, 이때 코어비아는 배럴형의 코어비아일 수 있다. 이 경우 최소내경부의 직경(CV3)은 상기 제1개구부의 직경과 상기 제2개구부의 직경 중에서 큰 것 보다 작을 수 있다.
상기 최소내경부의 평균 직경은 구체적으로 50 ㎛ 내지 95 ㎛일 수 있다.
상기 최소내경부는 아래 식 1의 조건을 만족하는 것일 수 있다.
[식 1]
0.83×D 90≤ D 50 ≤1.25×D 10
상기 식 1에서, D 50은 최소내경부의 직경분포 중 50 %에 해당하는 값이고, D 90은 최소내경부의 직경분포 중 90 %에 해당하는 값이며, D 10은 최소내경부의 직경분포 중 10 %에 해당하는 값이다.
상기 최소내경부의 평균 직경이 55 ㎛ 내지 85 ㎛일 수 있고, 60 ㎛ 내지 70 ㎛일 수 있다.
더 구체적으로 상기 최소내경부는 아래 식 1-1의 조건을 만족하는 것일 수 있다.
[식 1-1]
0.88×D 90≤D 50≤1.18×D 10
상기 식 1-1에서, D 50은 최소내경부의 직경분포 중 50 %에 해당하는 값이고, D 90은 최소내경부의 직경분포 중 90 %에 해당하는 값이며, D 10은 최소내경부의 직경분포 중 10 %에 해당하는 값이다.
구체적으로 상기 제1개구부직경과 상기 제2개구부직경 중에서 큰 것인 대상개구부는 그 평균 직경이 70 ㎛ 내지 120 ㎛일 수 있다.
구체적으로 상기 제1개구부직경과 상기 제2개구부직경 중에서 큰 것인 대상개구부는 아래 식 2의 조건을 만족할 수 있다.
[식 2]
0.9×D 90≤D 50≤1.1×D 10
상기 식 2에서, D 50은 대상개구부의 직경분포 중 50 %에 해당하는 값이고, D 90은 대상개구부의 직경분포 중 90 %에 해당하는 값이며, D 10은 대상개구부의 직경분포 중 10 %에 해당하는 값이다.
구체적으로 상기 제1개구부직경과 상기 제2개구부직경 중에서 큰 것인 대상개구부는 그 평균 직경이 80 ㎛ 내지 105 ㎛일 수 있다.
구체적으로 상기 제1개구부직경과 상기 제2개구부직경 중에서 큰 것인 대상개구부는 아래 식 2-1의 조건을 만족할 수 있다.
[식 2-1]
0.92×D 90≤D 50≤1.08×D 10
상기 식 2-1에서, D 50은 대상개구부의 직경분포 중 50 %에 해당하는 값이고, D 90은 대상개구부의 직경분포 중 90 %에 해당하는 값이며, D 10은 대상개구부의 직경분포 중 10 %에 해당하는 값이다.
상기 코어비아는, 상기 제1면과 접하는 개구부에서의 직경인 제1개구부직경과 제2면과 접하는 개구부에서의 직경인 제2개구부직직경 중에서 큰 것인 대상개구부의 평균 직경은 대상개구부의 직경분포 중 50 %에 해당하는 값인 D 50보다 큰 값을 가질 수 있다.
위에서 설명한 직경 분포는 제조된 샘플을 9개의 구획(3 X 3)을 구분한 후 좌상, 좌하, 중앙, 우상, 우하의 5개 영역의 샘플들을 취하여 절단 처리한 후 단면에서 현미경으로 관찰하여 측정한 직경을 기준으로 평가했다.
상기 제1개구부직경(CV1)과 상기 제2개구부직경(CV2) 중 큰 것에서 측정한 전기전도성층의 두께는 코어비아 중에서 최소내경을 갖는 부분(CV3) 상에 형성된 전기전도성층의 두께와 같거나 두꺼울 수 있다.
상기 코어비아(23)는 상기 유리기판(21)의 단위면적(1 cm x 1 cm)을 기준으로 100 개 내지 3000 개가 위치할 수 있고, 100 개 내지 2500 개가 위치할 수 있으며, 225 개 내지 1024 개가 위치할 수 있다. 이러한 피치 조건을 만족하는 경우, 전기전도성층 등의 형성과 패키징 기판의 성능을 향상시킬 수 있다.
상기 코어비아(23)는 상기 유리기판(21)에 1.2 mm 이하의 피치로 위치할 수 있고, 0.12 mm 내지 1.2 mm의 피치로 위치할 수 있으며, 0.3 mm 내지 0.9 mm의 피치로 위치할 수 있다. 이러한 경우, 유리기판의 기계적 물성을 일정 수준 이상으로 유지하면서 전기전도성층 등을 형성하기에 유리하다.
상기 코어분배층(24)는 상기 유리기판의 제 1면과 제2면을 관통비아를 통해 전기적으로 연결하는 전기전도성층인 코어분배패턴(241)과 상기 코어분배패턴을 감싸는 코어절연층(223)을 포함한다.
상기 코어층(22)은 그 내부에 코어비아를 통해 전기전도성층이 형성되어 유리기판(21)을 가로지르는 전기적 통로로써 역할 하며, 비교적 짧은 거리로 유리기판의 상부와 하부를 연결하여 보다 빠른 전기적 신호 전달과 저손실의 특성을 가질 수 있다.
상기 코어분배패턴(241)은 상기 유리기판의 제1면(213)과 제2면(214)을 코어비아(23)를 통해 전기적으로 연결하는 패턴으로, 구체적으로 상기 제1면(213)의 적어도 일부 상에 위치하는 전기전도성층인 제1면분배패턴(241a)과 상기 제2면(214)의 적어도 일부 상에 위치하는 전기전도성층인 제2면분배패턴(241c), 그리고 상기 제1면분배패턴과 상기 제2면분배패턴을 상기 코어비아(23)를 통해 서로 전기적으로 연결하는 전기전도성층인 코어비아분배패턴(241b)을 포함한다. 상기 전기전도성층들은 예를 들어 구리도금층이 적용될 수 있으나, 이에 한정되는 것은 아니다.
상기 코어비아(23)는, 상기 제1면과 접하는 제1개구부(233); 제2면과 접하는 제2개구부(234); 그리고 상기 제1개구부와 상기 제2개구부를 연결하는 전체 코어비아에서 그 내경이 가장 좁은 구역인 최소내경부(235);를 포함한다.
상기 유리기판(21)은 상부와 하부에 각각 반도체소자(30)와 마더보드(10)를 연결하는 중간 역할, 중개 역할을 하고, 상기 코어비아(23)는 이들의 전기적 신호을 전달하는 통로로 역할하기에 원활한 신호전달을 한다.
상기 코어비아(23)를 단면에서 본 형태가 유리기판의 두께를 기준으로 일 개구부의 직경이 더 크고 타 개구부의 직경이 더 작은 형태일 수 있고(도 4의 (a) 및 사진 참고), 중앙 부분에서 코어비아의 내경이 다소 좁아지는 전체적으로 배럴 형태의 코어비아일 수 있다(도 4의 (b) 및 사진 참고).
상기 코어비아(23)는 상기 제1개구부에서의 직경인 제1면개구부직경(CV1)과 상기 제2개구부에서의 직경인 제2면개구부직직경(CV2), 그리고 상기 최소내경부에서의 직경인 최소내경부직경(CV3)을 갖는다.
상기 코어비아(23)는 상기 제1면개구부직경(CV1)과 상기 제2면개구부직경(CV2)이 서로 실질적으로 같을 수 있고 다를 수 있다.
상기 코어비아(22)는 상기 제1개구부와 상기 제2개구부를 연결하는 내경면 중에서 어느 한 곳이 다른 곳들보다 작은 내경을 가질 수 있고, 이를 최소내경(부)라 한다.
상기 코어비아(22)가 비아의 적어도 일부에 좁아지는 구역이 있는 경우, 최소내경부의 크기(CV3)가 제1면개구부직경(CV1)과 제2면개구부직경(CV2) 중에서 큰 것을 기준으로 50 % 내지 99 %일 수 있고, 70 % 내지 95 %일 수 있다. 이러한 범위로 좁아진 크기를 갖는 경우 전기전도성층 형성 등이 보다 원활하게 진행될 수 있다.
상기 최소내경부가 위치하는 지점이 상기 코어비아 길이 전체(G21)를 100 %로 보았을 때, 상기 제1개구부를 기준으로 40 % 내지 60 % 지점(G23)에 위치할 수 있고, 45 % 내지 55 % 지점에 위치할 수 있다. 이렇게 코어비아 길이 전체를 기준으로 상기 최소내경부가 위에서 설명한 위치에 존재하는 경우, 패키징 기판의 전기전도성층 설계와 전기전도성층 형성 과정이 보다 용이할 수 있다.
상기 제1개구부에서의 직경인 제1면개구부직경(CV1)과 상기 제2개구부에서의 직경인 제2면개구부직경(CV2) 중 큰 것의 직경과 상기 최소내경부의 크기(CV3)는 1: 0.65 내지 0.99의 비율일 수 있고, 1: 0.72 내지 0.95의 비율일 수 있다. 이러한 범위로 좁아진 내경의 크기를 갖는 경우 전기전도성층 형성 등이 보다 원활하게 진행될 수 있다.
상기 코어비아(22)는 상기 제1면과 접하는 개구부와 상기 제2면과 접하는 개구부 중에서 큰 직경을 갖는 것의 개구부에서 상기 코어비아 중에서 최소내경을 갖는 부분까지를 상기 코어비아 단면에서 관찰한 각도가 상기 제1면에 수직한 두께 방향을 기준으로 8 도 이하일 수 있다.
상기 최소내경부와 상기 제1개구부를 잇는 내경면의 각도(Ca1)와 상기 최소내경부과 상기 제2개구부를 잇는 내경면의 각도(Ca2)는 1:0.7 내지 1.3의 비율을 가질 수 있다. 이러한 경우 상기 제1개구부에서 시작되는 코어비아의 내경면과 상기 제2개구부에서 시작되는 코어비아의 내경면의 각도의 차이가 미미하여 이후 도금공정 등의 진행이 보다 원활할 수 있다.
상기 각도는 상기 제1면 또는 상기 제2면에 수직한 가상의 기준선과의 각도로 평가하며, 방향과 무관하게 절대값으로 평가한다(이하 동일함).
상기 최소내경부와 상기 제1개구부를 잇는 내경면의 각도(Ca1)와 상기 최소내경부와 상기 제2개구부를 잇는 내경면의 각도(Ca2) 중에서 큰 것의 각도는 8 도 이하일 수 있고, 0.1 도 내지 8도일 수 있으며, 0.5 도 내지 6.5 도 일 수 있다. 이러한 각도를 갖는 경우 도금 등 이후 공정이 보다 원활하게 진행될 수 있고, 의도하는 패턴을 갖는 전기전도성층 구성에 보다 용이하다.
상기 제1면개구부직경(CV1)과 상기 제2면개구부직경(CV2) 중 큰 것에서 측정한 전기전도성층의 두께는 코어비아 중에서 최소내경을 갖는 부분(CV3) 상에 형성된 전기전도성층의 두께와 같거나 두꺼울 수 있다.
상기 코어분배층(24)은 유리기판 상에 형성되는 전기전도성층으로, ASTM D3359에 따른 부착력 테스트(Cross Cut Adhesion Test) 값이 4B 이상을 만족할 수 있고, 구체적으로 5 B이상을 만족할 수 있다. 또한, 코어분배층(24)인 전기전도성층은 상기 유리기판과 3 N/cm 이상의 접착력을 가질 수 있고, 4.5 N/cm 이상의 접합력을 가질 수 있다. 이러한 접합력 정도를 만족하는 경우, 패키징 기판으로 적용하기에 충분한 기판-전기전도성층 사이의 접합력을 갖는다.
상기 제1면(213) 상에는 상부층(26)이 위치한다.
상기 상부층(26)은 상부분배층(25)과 상기 상부분배층 상에 위치하는 상면접속층(27)을 포함하며, 상기 상부층(26)의 가장 윗면은 반도체소자부의 접속전극이 직접 맞닿을 수 있는 개구부가 형성된 커버층(60)에 의해 보호될 수 있다.
상기 상부분배층(25)은 상기 제1면 상에 위치하는 상부절연층(253); 미리 정해진 패턴을 가지며 상기 코어분배층(24)과 그 적어도 일부가 전기적으로 연결되는 전기전도성층으로 상기 상부절연층에 내장되는 상부분배패턴(251)을 포함한다.
상기 상부절연층(253)은 반도체 소자나 패키징 기판에 절연체층으로 적용하는 것이라면 적용 가능하고, 예를 들어 필러가 포함된 에폭시계 수지 등이 적용될 수 있으나, 이에 한정되는 것은 아니다.
상기 절연체층은 코팅층을 형성하고 경화하는 방식으로 형성될 수도 있고, 미경화 또는 반경화된 상태로 필름화된 절연체필름을 상기 코어층에 라미네이션 하고 경화하는 방법으로 형성될 수도 있다. 이 때, 감압 라미네이션 방법 등을 적용하면 코어비아 내부의 공간까지 상기 절연체가 함입되어 효율적인 공정 진행이 가능하다. 또한, 복층의 절연체층을 적층하여 적용하더라도 절연체층 사이에 실질적인 구분이 어려울 수 있으며, 복수의 절연체층들을 통칭하여 상부절연층이라 칭한다. 또한, 코어절연층(223)과 상부절연층(253)은 동일한 절연재료가 적용될 수 있고, 이러한 경우 그 경계가 실질적으로 구분되지 않을 수 있다.
상기 상부분배패턴(251)은 미리 설정된 형태로 상기 상부절연층(253) 내에 위치하는 전기전도성층을 의미하며, 예를 들어 빌드-업 레이어 방식으로 형성될 수 있다. 구체적으로, 절연체층을 형성하고, 절연체층의 불필요한 부분을 제거한 후 구리도금 등의 방식으로 전기전도성층을 형성하고, 전기전도성층 중 불필요한 부분을 제거한 후, 이 전기전도성층 상에 다시 절연체층을 형성하고, 다시 불필요한 부분을 제거한 후 도금 등의 방식으로 전기전도성층을 형성하는 방식을 반복하여, 의도하는 패턴으로 수직 또는 수평 방향으로 전지전도성층이 형성된 상부분배패턴(251)을 형성할 수 있다.
상기 상부분배패턴(251)은 코어층(22)과 반도체소자부(30)의 사이에 위치하기 때문에, 반도체소자부(30)와 전기적 신호의 전달이 원활하게 진행되고 의도하는 복잡한 패턴이 충분하게 수용될 수 있도록, 적어도 그 일부에 미세패턴이 포함되도록 형성된다. 이 때, 미세패턴이라 함은, 폭과 간격이 각각 4 ㎛ 미만인 것일 수 있고, 3.5 ㎛ 이하인 것일 수 있으며, 3 ㎛ 이하인 것일 수 있고, 2.5 ㎛ 이하인 것일 수 있으며, 1 내지 2.3 ㎛인 것일 수 있다. 상기 간격은 서로 이웃하는 미세패턴 간 사이의 간격일 수 있다(이하, 미세패턴에 대한 설명은 동일함).
상부분배패턴(251)에 미세패턴이 포함되도록 형성하기 위해, 구현예에서는 적어도 두 가지 이상의 방법을 적용한다.
그 하나는, 패키징 기판의 유리기판(21)으로 유리기판(21)을 적용한다. 상기 유리기판(21)은 표면 조도(Ra)가 10 옹스트롬 이하로 상당히 평탄한 표면 특성을 가질 수 있고, 따라서 미세패턴 형성에 미치는 지지체기판 표면 모폴로지의 영향을 최소화할 수 있다.
다른 하나는, 상기 절연체의 특성에 있다. 상기 절연체의 경우 레진과 함께 필러 성분을 함께 적용하는 경우가 많은데, 상기 필러는 실리카 입자와 같은 무기계 입자가 적용될 수 있다. 무기계 입자가 필러로 절연체에 적용되는 경우, 이 무기계 입자의 크기가 미세패턴 형성 가부에 영향을 미칠 수 있는데, 구현예에서 적용하는 절연체는 그 평균직경이 150 nm 이하의 입자형 필러를 적용하고, 구체적으로 평균직경이 1 내지 100 nm인 입자형 필러를 포함한다. 이러한 특징은, 절연체에 필요한 물성을 일정 수준 이상으로 유지하면서 수 마이크로미터 단위의 폭을 갖는 전기전도성층 형성에 절연체 자체가 미치는 영향을 최소화하고, 미세한 표면 모폴로지로 그 표면 상에 우수한 부착력을 갖는 미세패턴을 형성하도록 돕는다.
상기 상면접속층(27)은 상기 상부분배패턴(251)과 그 적어도 일부가 전기적으로 연결되며 상기 상부절연층(253)에 위치하는 상면연결패턴(272)과 상기 반도체소자부(30)와 상기 상면연결패턴(272)을 전기적으로 연결하는 상면접속전극(271)을 포함한다. 상기 상면연결패턴(272)은 상부절연층(253)의 일면 상에 위치할 수도 있고, 적어도 그 일부가 상부절연층 상으로 노출되며 박혀(embedded) 있을 수도 있다. 예를 들어, 상기 상면연결패턴이 상기 상부절연층의 일면 상에 위치하는 경우에는 도금 등의 방식으로 상기 상부절연층을 형성할 수 있고, 상기 상면연결패턴이 그 일부가 상부절연층 상으로 노출되며 박혀있는 경우는 구리도금층 등을 형성한 후 표면연마, 표면식각 등의 방법으로 절연층 또는 전기전도성층의 일부가 제거된 것일 수 있다.
상기 상면연결패턴(272)은 위에서 설명한 상부분배패턴(251)과 같이 미세패턴을 적어도 그 일부에 포함할 수 있다. 이렇게 미세패턴을 포함하는 상면연결패턴(272)은 보다 다수개의 소자들을 좁은 면적 하에서도 전기적으로 연결할 수 있도록 하여, 소자간 또는 외부와의 전기적 신호 연결을 보다 원활하게 하며, 보다 집적화된 패키징이 가능하다.
상기 상면접속전극(271)은 상기 반도체소자부(30)와 단자 등으로 직접 연결될 수도 있고, 솔더볼과 같은 소자연결부(51)를 매개로 연결될 수도 있다.
상기 패키징 기판(20)는 마더보드(10)와도 연결된다. 상기 마더보드(10)는 상기 코어층(22)의 상기 제2면(214)의 적어도 일부에 상에 위치하는 코어분배층인 제2면분배패턴(241c)과 마더보드의 단자가 직접 연결될 수 있고, 솔더볼과 같은 보드연결부를 매개로 하여 전기적으로 연결될 수도 있다. 또한, 상기 제2면분배패턴(241c)은 상기 코어층(22)의 하부에 위치하는 하부층(29)을 매개로 상기 마더보드(10)와 연결될 수도 있다.
상기 하부층(29)은, 하부분배층(291)과 하면접속층(292)을 포함한다.
하부분배층(291)은 i) 상기 제2면(214)과 그 적어도 일부가 접하는 하부절연층(291b); 그리고 ii) 상기 하부절연층에 내장(매설)되어 미리 정해진 패턴을 가지는 것으로 상기 코어분배층과 그 적어도 일부가 전기적으로 연결되는 하부분배패턴(291a)을 포함한다.
하면접속층(292)은 i) 상기 하면연결패턴과 전기적으로 연결되는 하면접속전극(292a)을 포함하며, ii) 상기 하부분배패턴과 그 적어도 일부가 전기적으로 연결되며 상기 하부절연층의 일면 상에 적어도 그 일부가 노출되는 하면연결패턴(292b)을 더 포함할 수 있다.
상기 하면연결패턴(292b)은 마더보드(10)와 연결되는 부분으로 보다 효율적인 전기적 신호 전달을 위하여, 상기 상면연결패턴(272)과 달리 미세패턴보다 폭이 넓은 비미세패턴으로 형성될 수 있다.
상기 반도체소자부(30)와 상기 마더보드(10) 사이에 위치하는 패키징 기판(20)에는 상기 유리기판(21) 외에 실질적으로 추가적인 다른 기판을 적용하지 않는 것을 발명의 특징 중 하나로 한다.
기존에는 소자와 마더보드를 연결하는 사이에, 인터포저와 유기기판(organic substrate)을 함께 적층하여 적용했다. 이는 적어도 두 가지 이유에서 이렇게 다단의 형태로 적용한 것으로 파악되는데, 그 하나는 소자의 미세한 패턴을 마더보드에 직접 접합시키기에는 스케일 상의 문제가 있다는 점, 그리고 다른 하나는 접합 과정에서 또는 반도체 장치의 구동 과정에서 열팽창계수의 차이로 인한 배선 손상의 문제가 발생할 수 있다는 점 때문이다. 구현예에서는 열팽창계수가 반도체 소자와 유사한 유리기판을 적용하고, 유리기판의 제1면과 그 상부층에는 소자 실장에 충분한 정도로 미세한 스케일을 갖는 미세패턴을 형성하여, 이러한 문제를 해결했다.
구현예에서 상기 코어분배층(24)의 전기전도성층 중에서 얇은 것의 두께는 상기 상부층(26)의 전기전도성층 중에서 얇은 것의 두께(Tus)와 같거나 두꺼운 것일 수 있다. 이렇게 코어분배층(24)의 전기전도성층 중에서 얇은 것의 두께가 상기 상부층(26)의 전기전도성층 중 얇은 것(Tus)의 두께와 같거나 두꺼운 경우 보다 소자와 마더보드 사이에서 전기적 신호 전달을 보다 효율적으로 할 수 있다.
구현예에서 제2면분배패턴(241c) 중에서 얇은 것의 두께(Tsc)는 상기 상면연결패턴(272) 중 얇은 것의 두께(Tus)보다 두꺼운 것일 수 있다.
구현예에서 하면접속전극(292a) 중에서 두꺼운 것의 두께(Tds)는 제2면분배패턴(241c) 중에서 얇은 것의 두께(Tsc)보다 두꺼운 것일 수 있다.
상기 반도체 장치(100)는 상당히 얇은 두께를 갖는 패키징 기판(20)를 가져서 상기 반도체 장치의 전체적인 두께를 얇게 할 수 있으며, 미세패턴을 적용하여 보다 좁은 면적에서도 의도하는 전기적인 연결 패턴을 배치할 수 있다. 구체적으로 상기 패키징 기판은 그 두께가 약 2000 ㎛ 이하일 수 있고, 약 1500 ㎛ 이하일 수 있으며, 약 900 ㎛일 수 있다. 또한 상기 패키징 기판은 그 두께가 약 120 ㎛ 이상일 수 있고, 약 150 ㎛ 이상일 수 있다. 상기 패키징 기판은 위에서 설명한 특징으로 비교적 얇은 두께로도 소자와 마더보드를 전기적으로 그리고 구조적으로 안정적으로 연결하며, 반도체 장치의 소형화 박막화에 보다 기여할 수 있다.
도 8 내지 도 10는 실시예에 따른 패키징 기판의 제조과정을 단면으로 설명하는 순서도이다. 이하, 도 7 내지 9를 참조해, 또 다른 구현예에 따른 패키징 기판의 제조방법을 설명한다.
패키징 기판의 제조방법
구현예의 패키징 기판의 제조방법은, 유리기판의 제1면과 제2면의 미리 정해진 위치에 결함을 형성하는 준비단계; 식각액을 상기 결함이 형성된 유리기판에 가하여 코어비아가 형성된 유리기판을 마련하는 식각단계; 상기 코어비아가 형성된 유리기판의 표면을 도금하여 전기전도성층인 코어분배층을 형성하여 코어층을 제조하는 코어층제조단계; 그리고 상기 코어층의 일면 상에 절연층에 감싸인 전기전도성층인 상부분배층을 형성하는 상부층제조단계;를 포함하여, 위에서 설명한 패키징 기판을 제조한다.
상기 코어층제조단계는 상기 코어비아가 형성된 유리기판의 표면에 아민기를 갖는 나노입자를 포함하는 유무기 복합 프라이머층을 형성하여 전처리된 유리기판을 마련하는 전처리과정; 그리고 상기 전처리된 유리기판에 금속층을 도금하는 도금과정;을 포함할 수 있다.
상기 코어층제조단계는 상기 코어비아가 형성된 유리기판의 표면에 스퍼터링을 통해 금속 함유 프라이머층을 형성하여 전처리된 유리기판을 마련하는 전처리과정; 그리고 상기 전처리된 유리기판에 금속층을 도금하는 도금과정;을 포함할 수 있다.
상기 코어층제조단계와 상기 상부층제조단계 사이에는 절연층형성단계가 더 포함될 수 있다.
상기 절연층형성단계는 절연체필름을 상기 코어층 상에 위치시킨 후 감압라미네이션 하여 코어절연층을 형성하는 단계일 수 있다.
패키징 기판의 제조방법을 보다 자세히 설명한다.
1) 준비단계(유리결함 형성과정): 평탄한 제1면과 제2면을 갖는 유리기판(21a)을 준비하여, 코어비아 형성을 위해 미리 정해진 위치에 유리 표면에 결함(홈, 21b)을 형성한다. 상기 유리는 전자장치의 기판 등에 적용되는 유리기판이 적용될 수 있으며, 예를 들어 무알카리 유리기판 등이 적용될 수 있으나, 이에 한정되지 않는다. 시판 제품으로 코닝사, 쇼트사, AGC 등의 제조사가 제조한 제품이 적용될 수 있다. 상기 결함(홈)의 형성에는 기계적인 식각, 레이저 조사 등의 방식이 적용될 수 있다
2) 식각단계(코어비아 형성단계): 결함(홈, 21b)이 형성된 유리기판(21a)은 물리적 또는 화학적인 에칭 과정을 통해 코어비아(23)를 형성한다. 에칭 과정에서 유리기판은 결함 부분에 비아를 형성하며 동시에 유리기판(21a)의 표면도 동시에 식각될 수 있다. 이러한 유리 표면의 식각을 막기 위하여 마스킹 필름 등을 적용할 수도 있으나, 마스킹 필름을 적용하고 제거하는 과정의 번거로움 등을 고려하여 결함이 있는 유리기판 자체를 식각할 수 있으며, 이러한 경우 최초 유리기판의 두께보다 코어비아를 갖는 유리기판의 두께가 다소 얇아질 수 있다.
3-1) 코어층제조단계: 유리기판 상에 전기전도성층(21d)을 형성한다. 상기 전기전도성층은 대표적으로 구리금속을 포함하는 금속층이 적용될 수 있으나, 이에 한정되는 것은 아니다.
유리의 표면(유리기판의 표면과 코어비아의 표면을 포함함)과 구리금속의 표면은 그 성질이 달라 부착력이 떨어지는 편이다. 구현예에서는 드라이 방식과 웻 방식의 두 가지 방법으로 유리 표면과 금속 사이의 부착력을 향상시켰다.
드라이 방식은, 스퍼터링을 적용하는 방식, 즉 금속 스퍼터링으로 유리 표면과 코어비아 내경면에 시드층(21c)을 형성하는 방식이다. 상기 시드층의 형성에는 티타늄, 크롬, 니켈과 같은 이종 금속이 구리 등과 함께 스퍼터링될 수 있으며, 이러한 경우 유리의 표면 모폴로지와 금속 입자가 상호작용하는 앵커 효과 등에 의해 유리-금속 부착력이 향상되는 것으로 생각된다.
웻 방식은 프라이머 처리를 하는 방식으로, 아민 등의 작용기를 갖는 화합물질로 전처리를 하여 프라이머층(21c)을 형성하는 방식이다. 의도하는 부착력의 정도에 따라 실란 커플링제로 전처리를 한 후 아민 작용기를 갖는 화합물 또는 입자로 프라이머 처리를 할 수 있다. 위에서도 언급한 바와 같이, 구현예의 지지체기판은 미세패턴을 형성할 수 있을 정도의 고성능일 것을 필요로 하고, 이는 프리이머 처리 후에도 유지되어야 한다. 따라서, 이러한 프라이머가 나노입자를 포함하는 경우에는, 평균 직경이 150 nm 이하의 크기를 갖는 나노입자가 적용되는 것이 좋으며, 예를 들어 아민기를 갖는 입자는 나노입자가 적용되는 것이 좋다. 상기 프라이머층은 예시적으로 MEC사의 CZ 시리즈 등에서 제조하는 접합력개선제가 적용되어 형성될 수 있다.
상기 시드층/프라이머층(21c)은 전기전도성층 형성이 불필요한 부분을 제거한 상태로 또는 제거하지 않은 상태로 선택적으로 전기전도성층이 금속층을 형성할 수 있다. 또한, 상기 시드층/프라이머층(21c)는 전기전도성층의 형성이 필요한 부분 또는 불필요한 부분을 선택적으로 금속 도금에 활성화된 상태로 또는 불활성화된 상태로 처리하여 이후 공정을 진행할 수 있다. 예를 들어 상기 활성화 또는 불활성화 처리는 일정한 파장의 레이저 등의 광조사 처리, 약품처리 등이 적용될 수 있다. 금속층의 형성에는 반도체 소자 제조에 적용되는 구리도금 방법 등이 적용될 수 있으나, 이에 한정되는 것은 아니다.
상기 금속도금 시에 도금액의 농도, 도금 시간, 적용하는 첨가제의 종류 등의 여러 변수들을 조절하여 형성되는 전기전도성층의 두께를 조절할 수 있다.
상기 코어분배층의 일부가 불필요한 경우에는 제거될 수 있으며, 시드층이 일부 제거되거나 불활성화 처리된 후에 금속도금을 진행하여 미리 정해진 패턴으로 전기전도성층을 형성하여 코어분배층의 식각층(21e)이 형성될 수도 있다
3-2) 절연층형성단계: 코어비아는 상기 전기전도층인 코어분배층 형성 이후 절연층으로 빈 공간을 매꾸는 절연층형성단계를 거칠 수 있다. 이때, 적용되는 절연층은 필름 형태로 제조된 것이 적용될 수 있으며, 예를 들어 필름 형태의 절연층을 감압 라미네이션하는 방법 등으로 적용될 수 있다. 이렇게 감압 라미네이션을 진행하면 절연층이 상기 코어비아 내부의 빈 공간까지 충분하게 함입되어 보이드 형성 없는 코어절연층을 형성하 수 있다.
4) 상부층제조단계: 코어층 상에 상부절연층과 상부분배패턴을 포함하는 상부분배층을 형성하는 단계이다. 상부절연층은 절연층(23a)을 형성하는 수지 조성물을 코팅하거나 절연필름을 적층하는 방식으로 진행될 수 있으며, 간편하게는 절연필름을 적층하는 방식의 적용이 좋다. 절연필름의 적층은 절연필름을 라미네이션하여 경화하는 과정으로 진행될 수 있는데, 이 때 감압 라미네이션 방법을 적용하면 코어비아 내부에 전기전도성층이 형성되지 않은 층 등까지도 절연수지가 충분히 함입될 수 있다. 상기 상부절연층도 유리기판과 적어도 그 일부에서 직접 맞닿고, 따라서 충분한 부착력을 갖는 것을 적용한다. 구체적으로 상기 유리기판과 상기 상부절연층은 ASTM D3359에 따른 부착력 테스트 값이 4B 이상을 만족하는 특성을 갖는 것이 좋다.
상부분배패턴은 상기 절연층(23a)의 형성과 미리 정해진 패턴으로 전기전도성층(23c)을 형성하고 불필요한 부분을 식각하여 전기전도성층의 식각층(23d)을 형성하는 과정을 반복하여 형성될 수 있고, 절연층을 사이에 두고 이웃하게 형성되는 전기전도성층의 경우에는 절연층에 블라인드비아(23b)를 형성한 후에 도금공정을 진행하는 방식으로 형성될 수 있다. 블라인드비아의 형성은 레이저 식각, 플라즈마 식각 등의 건식 식각방식, 마스킹층과 식각액을 이용한 습식식각방식 등이 적용될 수 있다.
5) 상면접속층 및 커버층 형성단계: 상면연결패턴과 상면접속전극도 상부분배층 형성과 유사한 과정으로 형성될 수 있다. 구체적으로, 절연층(23e)에 절연층의 식각층(23f)을 형성하고 여기에 다시 전기전도성층(23g)을 형성한 후, 전기전도성층의 식각층(23h)을 형성하는 방식 등으로 형성될 수 있으나, 식각의 방식을 적용하지 않고 전기전도성층만을 선택적으로 형성하는 방법으로 적용될 수도 있다. 커버층은 상면접속전극에 대응하는 위치에 개구부(미도시)가 형성되어 상면접속전극이 노출되고, 소자연결부 또는 소자의 단자 등과 직접 연결될 수 있도록 형성될 수 있다.
6) 하면접속층 및 커버층의 형성단계; 위에서 설명한 상면접속층 및 커버층 형성단계와 유사한 방식으로 하부분배층 및/또는 하면접속층, 그리고 선택적으로 커버층(미도시)을 형성할 수 있다.
도 11은 다른 구현예에 따른 코어비아를 갖는 유리기판을 위에서 본 모습(a)과 코어비아의 단면을 설명하는 개념도(b)이다. 이하, 도 1과 도 11을 참고하여 유리기판을 포함하는 패키징 기판과 이의 제조방법을 설명한다.
반도체 패키징용 기판(215) 및 이의 제조방법
다른 구현예에 따른 반도체 패키징용 기판(215)은,
i) 서로 마주보는 제1면(213)과 제2면(214)을 갖는 유리기판(21), ii) 상기 유리기판을 두께 방향으로 관통하는 다수의 코어비아(23) 및 iii) 상기 코어비아의 표면 상에 위치하며 전기전도성층 형성의 시드가 되는 코어시드층(225)이 위치하는 코어층;을 포함한다.
상기 반도체 패키징용 기판(215)은 위에서 설명한 상기 반도체 장치(100)의 패키징 기판(20)의 구성요소로 적용될 수 있다.
상기 유리기판(21)은 반도체에 적용되는 유리기판을 적용하는 것이 좋고, 예를 들어 보로실리케이트 유리기판, 무알카리 유리기판 등이 적용될 수 있으나, 이에 한정되는 것은 아니다.
상기 유리기판(21)은 그 두께가 1,000 ㎛ 이하일 수 있고 100 ㎛ 내지 1,000 ㎛일 수 있으며, 100 ㎛ 내지 700 ㎛일 수 있다. 보다 구체적으로 상기 유리기판(21)은 그 두께가 100 ㎛ 내지 500 ㎛일 수 있다. 보다 얇은 패키징 기판을 형성하는 것이 전기적 신호 전달을 보다 효율화할 수 있다는 점에서 유리하나 지지체로써의 역할도 하여야 하므로, 상기한 두께를 갖는 유리기판을 적용하는 것이 좋다. 여기서 유리기판의 두께는 유리기판 상에 위하는 전기전도성층의 두께를 제외한 유리기판 자체의 두께를 의미한다.
상기 코어비아(23)는 상기 유리기판(21)의 미리 정해진 영역을 제거하는 방식으로 형성될 수 있으며, 구체적으로 물리 및/또는 화학적인 방법으로 판형 유리를 식각하여 형성된 것일 수 있다.
구체적으로, 상기 코어비아(23)의 형성은 유리기판의 표면에 레이저 등의 방식으로 결함(흠)을 형성한 후 화학적으로 에칭하는 방식, 레이저 식각 등이 적용될 수 있으나, 이에 한정되는 것은 아니다.
상기 코어비아(23)는, 상기 제1면과 접하는 제1개구부(233); 제2면과 접하는 제2개구부(234); 그리고 상기 제1개구부와 상기 제2개구부를 연결하는 전체 코어비아에서 그 내경이 가장 좁은 구역인 최소내경부(235);를 포함한다.
상기 제1개구부의 직경(CV1)과 상기 제2개구부의 직경(CV2)은 실질적으로 다를 수 있고, 상기 제1개구부(CV1)와 상기 제2개구부(CV2)는 그 직경이 실질적으로 같을 수 있다.
상기 최소내경부는 상기 제1개구부 또는 상기 제2개구부에 위치할 수 있으며, 이 때 코어비아는 원통형 또는 (잘린)삼각뿔형의 코어비아일 수 있다. 이 경우 상기 최소내경부의 직경(CV3)은 제1개구부와 상기 제2개구부 중에서 작은 것의 직경에 해당한다.
상기 최소내경부는 상기 제1개구부와 상기 제2개구부 사이에 위치하며, 이 때 코어비아는 배럴형의 코어비아일 수 있다. 이 경우 최소내경부의 직경(CV3)은 상기 제1개구부의 직경과 상기 제2개구부의 직경 중에서 큰 것 보다 작을 수 있다.
상기 코어비아(23)는 상기 제1면과 접하는 개구부와 상기 제2면과 접하는 개구부, 그리고 상기 코어비아 중에서 최소내경을 갖는 부분을 포함하며, 상기 최소내경부가 위치하는 지점이 상기 코어비아 길이 전체를 100 %로 보았을 때, 상기 제1개구부를 기준으로 40 % 미만 또는 60 % 초과 지점에 위치하는 것일 수 있다. 이러한 형태를 갖는 코어비아가 이하 설명하는 두께 비율에 대한 값을 갖는데 보다 유리할 수 있다.
상기 코어비아(23)는 상기 개구부(제1면개구부와 제2면개구부 중 큰 것)에서의 내경 직경과 상기 유리기판의 두께의 비를 의미하는 개구부-두께 비율이 1:2 내지 4일 수 있다. 상기 코어비아(23)는 상기 최소내경부에서의 내경 직경과 상기 유리기판의 두께의 비를 의미하는 최소내경부-두께 비율이 1:2.5 내지 6일 수 있다. 이러한 비율을 갖는 코어비아가 이후 설명하는 특징을 갖는 코어시드층 형성에 보다 유리하다.
상기 코어시드층(225)을 스퍼터의 방식으로 형성하면, 좁고 긴 코어비아의 형상의 특성상 일부 부분에는 코어시드층이 충분히 형성되지 않거나 두께가 서로 다른 코어시드층이 형성될 수 있다. 이러한 코어시드층은 도금 등의 방법으로 구리층과 같은 전기전도성층 형성의 기초가 되고, 이러한 전기저도성층의 두께 분포는 전기적인 신호 전달의 속도와 효율성에 영향을 미칠 수 있기 때문에, 이를 제어하는 것이 필요하다.
구현예에서는, 상기 코어비아(23)의 내경면 중에서 서로 마주보는 위치에서 측정한 상기 코어시드층(225)의 두께인 제1두께와 제2두께를 측정하고, 이의 비율을 통해 전체적으로 고른 두께의 코어시드층이 형성되었는지 여부를 확인한다.
구체적으로, 그 내경면 상에 코어시드층(225)이 위치하는 코어비아(23)를 단면에서 관찰하고, 일정한 위치에서 코어시드층(225)의 두께를 측정한다. 상기 코어시드층 자체도 굴곡있는 표면을 가질 수 있기 때문에, 한 지점에서도 미세하게 위치를 바꿔가면서 3 내지 5 회 이상 측정한 표본 값을 평균하여 두께 값으로 평가한다.
상기 코어시드층(225)에서, 하기 식 1로 표시되는 두께편차율은 90 %이하일 수 있고, 83 %이하일 수 있으며, 67 % 이하일 수 있다. 이러한 두께편차율을 갖는 경우, 상대적으로 균일한 두께의 코어시드층을 제공할 수 있다.
[식 1]
두께편차율 = ((코어시드층의 최대두께-코어시드층의 최소두께)/코어시드층의 평균두께)×100 %
상기 식 1에서, 상기 최대두께는 측정된 코어시드층 두께 표본에서 최대값을 갖는 두께이고, 상기 최소두께는 상기 두께 표본에서 최소값을 갖는 두께이고, 상기 평균두께는 상기 두께 표본의 평균값이다.
상기 코어시드층(225)는 그 평균 두께가 30 nm 내지 200 nm일 수 있고, 50 nm 내지 170 nm 일 수 있다. 이러한 두께 범위를 갖는 코어시드층은 본 발명이 의도하는 상대적으로 균일한 전기전도성을 형성할 수 있다.
상기 코어시드층(225)는 아래의 특징도 함께 가질 수 있다.
단면에서 관찰하는 코어시드층은 같은 높이에서 서로 마주보는 위치가 존재하며, 이는 도 12에서 1-1과 2-1, 1-2와 2-2와 같이 매칭된다. 코어시드층 자체도 굴곡있는 표면을 가질 수 있기 때문에, 한 지점에서도 미세하게 위치를 바꿔가면서 3 내지 5 회 이상 측정한 값을 평균하여 두께 값으로 평가한다.
또한, 서로 마주보는 위치에 있는 코어시드층의 두께는 1-1과 1-2와 같이 제1두께와 제2두께로 매칭되고, 이들 제1두께와 제2두께는 그 비율을 계산하여 두께비율로 칭한다.
상기 두께비율이 1:0.4 내지 4.5일 수 있고, 1:0.5 내지 3.0일 수 있으며, 1:0.7 내지 2.0일 수 있다. 이러한 두께비율을 가질 때 상기 코어시드층(225)이 서로 마주보는 위치에서 비교적 고른 두께를 갖는다.
상기 코어비아(23)의 내경면 중에서 서로 높이가 다른 3곳 또는 5곳의 위치에서 측정한 상기 두께비율은 그 표준편차가 1.5 이하일 수 있고, 1 이하일 수 있으며, 0.8 이하일 수 있다. 이는, 서로 높이가 다른 3곳 또는 5곳은 비교적 일정한 두께를 갖는다는 것을 의미한다. 이 때, 서로 높이가 다른 3곳 또는 5곳이라 함은 코아비아의 전체적인 길이를 고려해 비교적 일정한 간격으로 지정한 위치를 위미하며, 그 위치 간격이 완전히 동일할 필요는 없다.
구체적으로, 상기 코어비아의 내경면은 제2면을 기준으로 하였을 때 그 높이에 따라서도 다른 두께를 가질 수 있고, 이는 좁고 긴 형태의 코어비아의 특성상 이러한 두께의 차이가 발생하기 쉽다. 그러나, 위에서 언급한 특징을 갖는 코어시드층(225)은 그 두께의 불균형을 제어하여 적정한 수준 이상으로 일정한 특성을 갖는 코어시드층을 제공한다.
상기 코어시드층(225)은 구체적으로 서로 순차로 연결된 제1면 상에 위치하는 제1면코어시드층(225a), 코어비아상의 내경면 상에 위치하는 코어비아시드층(225b), 그리고 제2면 상에 위치하는 제2면코어시드층(225c)을 포함한다.
위에서 언급한 코어시드층(225)의 구체적인 특징은 상기 코어비아시드층(225b)에 적용된다.
도 13에 제시한 바와 같이, 실측된 코어시드층의 두께, 두께비, 그리고 표준편차는 아래와 같이 제시된다. 도 13에 제시된 사진은 샘플 1의 데이터이다.
샘플1 1-1 2-1 두께비율* 1-2 2-2 두께비율
두께* 175.85 126.5 1.39 105.63 96 1.10
샘플2 1-1 2-1 두께비율 1-2 2-2 두께비율
두께 51.5 88.14 0.58 67 37.5 1.79
샘플3 1-1 2-1 두께비율 1-2 2-2 두께비율
두께 59.32 42.54 1.39 141.04 36.54 3.86
샘플4 1-1 2-1 두께비율 1-2 2-2 두께비율
두께 61.3 158.58 0.39 36.46 72.54 0.50
샘플1 1-3 2-3 두께비율 1-4 2-4 두께비율
두께 49.5 54.5 0.91 74 58 1.28
샘플2 1-3 2-3 두께비율 1-4 2-4 두께비율
두께 65.5 98.5 0.66 61 76 0.80
샘플3 1-3 2-3 두께비율 1-4 2-4 두께비율
두께 193.04 57.04 3.38 102.64 77.5 1.32
샘플4 1-3 2-3 두께비율 1-4 2-4 두께비율
두께 70.04 40 1.751 50.04 71.18 0.70
샘플1 1-5 2-5 두께비율 평균 표준편차 -
두께 274.2 87 3.15 1.566 0.74 -
샘플2 1-5 2-5 두께비율 평균 표준편차 -
두께 123.93 68 1.82 1.13 0.51 -
샘플3 1-5 2-5 두께비율 평균 표준편차 -
두께 226.02 37 6.11 3.212 1.62 -
샘플4 1-5 2-5 두께비율 평균 표준편차 -
두께 98.66 51.12 1.93 1.054 0.60 -
* 두께는 5점평균으로 평가함* 두께비율은 (1-1/2-1)로 계산함
이하, 상기 코어시드층의 제조방법을 설명한다.
상기 코어시드층의 제조방법은, 준비단계 그리고 스퍼터링단계를 포함한다.
상기 준비단계는 서로 마주보는 제1면과 제2면을 갖는 유리기판과 상기 유리기판을 두께 방향으로 관통하는 다수의 코어비아를 갖는 처리전기판을 마련하는 단계이다. 상기 유리기판과 코어비아에 대한 구체적인 설명은 위에서 한 설명과 중복되므로 그 기재를 생략한다. 또한, 유리기판에 코어비아를 형성하는 방법 등에 대한 구체적인 내용은 위에서 기술한 패키징 기판 등에 대한 설명과 중복되므로 그 기재를 생략한다.
상기 스퍼터링단계는 상기 제1면에 수직한 기준선에 대해 10 도 내지 90 도의 건 각도(As)로 스퍼터링하여 상기 코어비아의 내경면에 코어시드층을 형성하는 단계이다. 상기 건 각도는 10 도 내지 65 도일 수 있다. 상기 건 각도는 15 도 내지 55 도 일 수 있으며, 15 도 내지 45 도일 수 있다. 상기 건 각도는 10 내지 35 도 일 수 있다. 이러한 건 각도를 적용하여 스퍼터링을 적용하는 경우, 상기 코어비아 내부까지 보다 효율적으로 일정 수준 이상의 두께 균일도를 갖는 코어시드층을 형성할 수 있다.
이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 하기 실시예는 본 발명의 이해를 돕기 위한 예시에 불과하며, 본 발명의 범위가 이에 한정되는 것은 아니다.
<실시예 1 - 반도체 패키징용 기판의 제조>
1) 준비단계(유리결함 형성과정): 평탄한 제1면과 제2면을 갖는 유리기판(21a)을 준비하여, 코어비아 형성을 위해 미리 정해진 위치에 유리 표면에 결함(홈, 21b)을 형성하였다. 상기 유리는 보로실리케이트 유리(코닝 사)를 적용하였다. 상기 결함(홈)의 형성에는 기계적인 식각, 레이저 조사 방식이 적용되었다.
2) 식각단계(코어비아 형성단계): 결함(홈, 21b)이 형성된 유리기판(21a)은 물리적 또는 화학적인 에칭 과정을 통해 코어비아(23)를 형성하였다. 이때, 상기 코어비아는, 상기 제1면과 접하는 제1개구부; 상기 제2면과 접하는 제2개구부; 그리고 상기 제1개구부와 제2개구부를 연결하는 전체 코어비아에서 그 내경이 가장 좁은 구역인 최소내경부를 가지도록 형성되었고, 상기 최소내경부의 위치는 상기 코어비아 길이 전체를 100 %로 보았을 때 상기 제1개구부를 기준으로 40 % 내지 60 % 지점에 위치하도록 하였다. 또한, 제1개구부 및 제2개구부 중 가장 큰 것의 개구부에서 상기 최소내경부까지 상기 코어비아 단면에서 관찰한 내경면의 각도가 상기 제2면에 수직한 두께 방향을 기준으로 8 도 이하가 되도록 하였다.
3-1) 코어층제조단계: 유리기판 상에 전기전도성층(21d)을 형성하였다. 상기 전기전도성층은 구리금속을 포함하는 금속층이 적용되었다. 드라이 방식으로 상기 유리기판 표면과 금속층 사이의 부착력을 향상시켰다. 상기 드라이 방식은, 스퍼터링을 적용하는 방식, 즉 금속 스퍼터링으로 유리 표면과 코어비아 내경에 시드층(21c)을 형성하는 방식이다. 상기 시드층의 형성에 티타늄, 크롬, 니켈 중 어느 하나 이상의 이종 금속이 구리 등과 함께 스퍼터링되었다. 이때, 상기 스퍼터링은 상기 제1면에 수직한 기준선에 대해 45 도의 건 각도(As)로 스퍼터링하였다.
이후, 금속층의 형성에는 반도체 소자 제조에 적용되는 구리도금 방법이 적용되었다.
<실시예 2 - 반도체 패키징용 기판의 제조>
상기 실시예 1에서, 2)의 최소내경부의 위치가 상기 제1개구부를 기준으로 40 % 미만이 되도록 하고, 3-1)의 스퍼터링 시 각도를 55 도로 변경한 것을 제외하고, 상기 실시예 1과 동일하게 진행하여 패키징용 기판을 제조하였다.
<실시예 3 - 반도체 패키징용 기판의 제조>
상기 실시예 1에서, 3-1)의 스퍼터링 시 각도를 65 도로 변경한 것을 제외하고, 상기 실시예 1과 동일하게 진행하여 패키징용 기판을 제조하였다.
<실시예 4 - 반도체 패키징용 기판의 제조>
상기 실시예 1에서, 2)의 최소내경부의 위치가 상기 제1개구부를 기준으로 40 % 미만이 되도록 하고, 3-1)의 스퍼터링 시 각도를 90 도로 변경한 것을 제외하고, 상기 실시예 1과 동일하게 진행하여 패키징용 기판을 제조하였다.
<비교예 1 - 반도체 패키징용 기판의 제조>
상기 실시예 1에서, 2)의 내경면의 각도가 8 도 초과가 되도록 변경한 것을 제외하고, 상기 실시예 1과 동일하게 진행하여 패키징용 기판을 제조하였다.
<비교예 2 - 반도체 패키징용 기판의 제조>
상기 실시예 1에서, 2)의 내경면의 각도가 8 도 초과가 되도록 하고, 최소내경부의 위치가 상기 제1개구부를 기준으로 40 % 미만이 되도록 하고, 3-1)의 스퍼터링 시 각도를 65 도로 변경한 것을 제외하고, 상기 실시예 1과 동일하게 진행하여 패키징용 기판을 제조하였다.
<비교예 3 - 반도체 패키징용 기판의 제조>
상기 실시예 1에서, 2)의 내경면의 각도가 8 도 초과가 되도록 하고, 최소내경부의 위치가 상기 제1개구부를 기준으로 40 % 미만이 되도록 하고, 3-1)의 스퍼터링 시 각도를 90 도로 변경한 것을 제외하고, 상기 실시예 1과 동일하게 진행하여 패키징용 기판을 제조하였다.
<실험예 - 제1두께 및 제2두께 비율, 두께 편차 측정>
상기 실시예 및 비교예에서 제조된 패키징용 기판의 코어시드층의 두께를 일 점과, 그 주변부를 포함하여 5회 측정하였고, 상기 일 점 마주보는 타 점과, 그 주변부를 포함하여 5회 측정하였고, 제1두께 및 제2두께 비율, 두께편차 결과를 표 1에 나타내었다.
실시예 1 실시예 2 실시예 3 실시예 4 비교예 1 비교예 2 비교예 3
스퍼터링각도(도) 45 55 65 90 45 65 90
Ca*(도) 8 이하 8 이하 8 이하 8 이하 8 초과 8 초과 8 초과
1-n:2-n* 1:0.4~4.5 1:0.4~4.5 1:0.4~4.5 1:0.4~4.5 1:0.4~4.5 1:0.2 1:0.5
두께편차율*(%) 50 67 83 90 97 102 107
최소내경부위치*(%) 40~60 40 미만 40~60 40 미만 40~60 40 미만 40 미만
Ca: 제1개구부 또는 제2개구부 중 큰 것의 개구부에서 최소내경부까지 코어비아 단면에서 관찰한 내경면의 각도, 제1면에 수직한 두께 방향을 기준 1-n:2-n: 코어비아의 내경면 중에서 서로 마주보는 두 위치에서 측정한 코어시드층의 제1두께와 제2두께의 비율
두께편차율: ((코어시드층의 최대두께-코어시드층의 최소두께)/코어시드층의 평균두께)×100 %
최소내경부 위치: 코어비아 길이 전체를 100 %로 보았을 때, 제1개구부를 기준으로 상대적인 위치
상기 표 1을 참조하면, 상기 Ca 값이 8 도 이하인 실시예 1 내지 4는은, 상기 두께편차율이 90 이하, 상기 1-n:2-n 비율이 1:0.4~4.5로 비교적 균일한 코어시드층의 두께를 나타내었고, 이러한 특징을 갖는 패키징 기판은 그 위 또는 아래에 각각 배치된 소자에 전기적 신호를 충분히 원활하게 전달할 수 있는 것으로 판단된다.
구현예의 패키징 기판은 유리기판이 갖는 기생소자를 형성하지 않고, 얇고 충분한 강도를 갖는 기판 지지체로써 역할 할 수 있다는 등의 우수한 특성과 함께 유리기판 적절한 비율의 두께로 전기전도성층을 형성하여 효율적인 신호 전달을 유도하는 등 그 우수한 특성을 활용한다.
유리기판은 구리층 등 전기전도성층과의 접합 특성이 좋지 않은 것으로 평가되며, 도금 등의 방법으로 충분한 두께의 전기전도성층을 형성하기 위해서는 유리표면과 전기전도성층 사이에 시드층 또는 프라이머층 등을 형성할 필요가 있다. 그러나, 이러한 시드층 또는 프라이머층이 지나치게 두껍게 형성될 경우, 불균일하게 형성될 경우, 정해진 코어비아의 직경 내에서 충분하게 전기전도성층을 형성하기 어려울 수 있고, 이는 패키징 기판의 상하부 전기적 신호 전달 속도에 좋지 않은 영향을 줄 수 있다.
이러한 특성들을 고려하고, 효율적인 전기적 신호 전달을 위해서는, 시드층 또는 프라이머층의 두께를 특정 비율을 만족하면서 가능하면 균일하고 얇게 적용하는 것이 좋고, 상기 스퍼터링 각도가 15 도 내지 90 도, 상기 Ca가 8 도 이하인 것이 좋은 것으로 생각된다.
이상에서 구현예의 바람직한 실시예에 대하여 상세하게 설명하였지만 구현예의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 구현예의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 구현예의 권리범위에 속하는 것이다.
<부호의 설명>
100: 반도체 장치 10: 마더보드
30: 반도체소자부 32: 제1반도체소자
34: 제2반도체소자 36: 제3반도체소자
20: 패키징 기판 22: 코어층
223: 코어절연층 21, 21a: 유리기판
213: 제1면 214: 제2면
23: 코어비아 233: 제1개구부
234: 제2개구부 235: 최소내경부
24: 코어분배층 241: 코어분배패턴
241a: 제1면분배패턴 241b: 코어비아분배패턴
241c: 제2면분배패턴 26: 상부층
25: 상부분배층 251: 상부분배패턴
252: 블라인드비아 253: 상부절연층
27: 상면접속층 271: 상면접속전극
272: 상면연결패턴 29: 하부층
291: 하부분배층 291a: 하부분배패턴
291b: 하부절연층 292: 하면접속층
292a: 하면접속전극 292b: 하면연결패턴
50: 연결부 51: 소자연결부
52: 보드연결부 60: 커버층
21b: 유리결함 21c: 시드층, 프라이머층
21d: 코어분배층 21e: 코어분배층의 식각층
23a: 절연층 23b: 절연층의 식각층
23c: 전기전도성층 23d: 전기전도성층의 식각층
23e: 절연층 23f: 절연층의 식각층
23g: 전기전도성층 23h: 전기전도성층의 식각층

Claims (10)

  1. i) 서로 마주보는 제1면과 제2면을 갖는 유리기판;
    ii) 상기 유리기판을 두께 방향으로 관통하는 다수의 코어비아; 및
    iii) 상기 코어비아의 표면 상에 위치하며 전기전도성층 형성의 시드가 되는 코어시드층이 위치하는 코어층;을 포함하는 것으로,
    상기 코어비아의 내경면 중에서 서로 마주보는 두 위치에서 측정한 상기 코어시드층의 두께인 제1두께와 제2두께는 그 비율(두께비율)이 1:0.4 내지 4.5인, 반도체 패키징용 기판.
  2. 제1항에 있어서,
    상기 코어시드층의 하기 식 1로 표시되는 두께편차율이 90 %이하인, 반도체 패키징용 기판.
    [식 1]
    두께편차율 = ((코어시드층의 최대두께-코어시드층의 최소두께)/코어시드층의 평균두께)×100 %
  3. 제1항에 있어서,
    상기 코어시드층의 평균 두께는 30 내지 200 nm인, 반도체 패키징용 기판.
  4. 제1항에 있어서,
    상기 코어층 상에 위치하는 상부층을 포함하고,
    상기 코어층은 상기 유리기판 또는 코어비아의 표면 상에 위치하는 코어분배층을 포함하고,
    상기 코어분배층은 적어도 그 일부가 상기 코어비아를 통하여 상기 제1면 상의 전기전도성층과 상기 제2면 상의 전기전도성층을 전기적으로 연결하는 전기전도성층을 포함하고,
    상기 코어비아는 상기 제1면과 접하는 개구부와 상기 제2면과 접하는 개구부 중에서 큰 직경을 갖는 것의 개구부에서 상기 코어비아 중에서 최소내경을 갖는 부분까지를 상기 코어비아 단면에서 관찰한 내경면의 각도가 상기 제1면에 수직한 두께 방향을 기준으로 8 도 이하인, 패키징 기판.
  5. 제1항에 있어서,
    상기 코어비아는 상기 제1면과 접하는 제1개구부; 상기 제2면과 접하는 제2개구부; 그리고 상기 제1개구부와 상기 제2개구부를 연결하는 전체 코어비아에서 그 내경이 가장 좁은 구역인 최소내경부를 포함하는, 패키징 기판.
  6. 제5항에 있어서,
    상기 최소내경부의 직경은 상기 제1개구부 및 상기 제2개구부 중 큰 직경을 갖는 것을 기준으로 50 % 내지 99 %의 크기를 갖는, 패키징 기판.
  7. 제5항에 있어서,
    상기 최소내경부가 위치하는 지점은 상기 코어비아 길이 전체를 100 %로 보았을 때, 상기 제1개구부를 기준으로 40 % 내지 60 % 지점에 위치하는, 패키징 기판.
  8. 제5항에 있어서,
    상기 최소내경부가 위치하는 지점은 상기 코어비아 길이 전체를 100 %로 보았을 때, 상기 제1개구부를 기준으로 40 % 미만 60 % 초과 지점에 위치하는, 패키징 기판.
  9. 서로 마주보는 제1면과 제2면을 갖는 유리기판과 상기 유리기판을 두께 방향으로 관통하는 다수의 코어비아를 갖는 처리전기판을 마련하는 준비단계; 그리고
    상기 제1면에 수직한 기준선에 대해 소정 각도로 스퍼터링하여 상기 코어비아의 내경면에 코어시드층을 형성하는 스퍼터링단계;를 포함하고,
    상기 코어비아는 상기 제1면과 접하는 개구부와 상기 제2면과 접하는 개구부 중에서 큰 직경을 갖는 것의 개구부에서 상기 코어비아 중에서 최소내경을 갖는 부분까지를 상기 코어비아 단면에서 관찰한 내경면의 각도가 상기 제1면에 수직한 두께 방향을 기준으로 8 도 이하이고,
    상기 코어비아의 내경면 중에서 서로 마주보는 두 위치에서 측정한 상기 코어시드층의 두께인 제1두께와 제2두께는 그 비율(두께비율)이 1:0.4 내지 4.5인, 반도체 패키징용 기판의 제조방법.
  10. 반도체 소자를 포함하는 소자부; 및 상기 소자부와 전기적으로 연결되는 패키징 기판;을 포함하고, 상기 패키징 기판은 제1항에 따른 패키징 기판인, 반도체 장치.
PCT/KR2020/003483 2019-03-12 2020-03-12 패키징 기판 및 이의 제조방법 WO2020185023A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080007185.2A CN113261093B (zh) 2019-03-12 2020-03-12 半导体封装用基板及其制备方法以及半导体装置
JP2021534595A JP2022523898A (ja) 2019-03-12 2020-03-12 パッケージング基板及びその製造方法
KR1020217015660A KR102537004B1 (ko) 2019-03-12 2020-03-12 패키징 기판 및 이의 제조방법
KR1020237016450A KR102622608B1 (ko) 2019-03-12 2020-03-12 패키징 기판 및 이의 제조방법
US17/434,906 US20220059421A1 (en) 2019-03-12 2020-03-12 Packaging substrate and method for manufacturing same
EP20768931.6A EP3913662A4 (en) 2019-03-12 2020-03-12 PACKAGING SUBSTRATE AND METHOD OF MANUFACTURE THEREOF

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201962816984P 2019-03-12 2019-03-12
US201962816972P 2019-03-12 2019-03-12
US62/816,984 2019-03-12
US62/816,972 2019-03-12
US201962825966P 2019-03-29 2019-03-29
US201962825945P 2019-03-29 2019-03-29
US62/825,945 2019-03-29
US62/825,966 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020185023A1 true WO2020185023A1 (ko) 2020-09-17

Family

ID=72427145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/003483 WO2020185023A1 (ko) 2019-03-12 2020-03-12 패키징 기판 및 이의 제조방법

Country Status (6)

Country Link
US (1) US20220059421A1 (ko)
EP (1) EP3913662A4 (ko)
JP (2) JP2022523898A (ko)
KR (2) KR102622608B1 (ko)
CN (1) CN113261093B (ko)
WO (1) WO2020185023A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114340225A (zh) * 2021-12-23 2022-04-12 江苏普诺威电子股份有限公司 适用于镭射盲孔的多层封装基板对准方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100097383A (ko) * 2009-02-26 2010-09-03 삼성전기주식회사 패키지 기판 및 이의 제조 방법
JP2014139963A (ja) * 2013-01-21 2014-07-31 Ngk Spark Plug Co Ltd ガラス基板の製造方法
KR101468680B1 (ko) 2013-05-09 2014-12-04 (주)옵토레인 인터포저 기판의 관통전극 형성 방법 및 인터포저 기판을 포함하는 반도체 패키지
JP2016111221A (ja) * 2014-12-08 2016-06-20 日本特殊陶業株式会社 配線基板の製造方法及び配線基板
KR20160114710A (ko) 2014-01-31 2016-10-05 코닝 인코포레이티드 반도체칩을 상호연결하기 위한 인터포저를 제공하기 위한 방법 및 장치
KR20170084562A (ko) * 2016-01-12 2017-07-20 삼성전기주식회사 패키지기판
JP2017216398A (ja) * 2016-06-01 2017-12-07 凸版印刷株式会社 ガラス回路基板
KR20190008103A (ko) 2017-07-14 2019-01-23 가부시기가이샤 디스코 유리 인터포저의 제조 방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4092890B2 (ja) * 2001-05-31 2008-05-28 株式会社日立製作所 マルチチップモジュール
JP2004311919A (ja) * 2003-02-21 2004-11-04 Shinko Electric Ind Co Ltd スルーホールフィル方法
JP5550076B2 (ja) * 2007-07-05 2014-07-16 オー・アー・セー・マイクロテック・アクチボラゲット 低抵抗のウエハ貫通ビア
US8742588B2 (en) * 2008-10-15 2014-06-03 ÅAC Microtec AB Method for making via interconnection
US8584354B2 (en) * 2010-08-26 2013-11-19 Corning Incorporated Method for making glass interposer panels
US9117730B2 (en) * 2011-12-29 2015-08-25 Ibiden Co., Ltd. Printed wiring board and method for manufacturing printed wiring board
JP2015070189A (ja) * 2013-09-30 2015-04-13 凸版印刷株式会社 インターポーザーおよびその製造方法、並びにインターポーザーを備える半導体装置およびその製造方法
JP6201663B2 (ja) * 2013-11-13 2017-09-27 大日本印刷株式会社 貫通電極基板の製造方法、貫通電極基板、および半導体装置
WO2015183915A1 (en) * 2014-05-27 2015-12-03 The University Of Florida Research Foundation, Inc. Glass interposer integrated high quality electronic components and systems
US20160111380A1 (en) * 2014-10-21 2016-04-21 Georgia Tech Research Corporation New structure of microelectronic packages with edge protection by coating
JP7080579B2 (ja) * 2016-12-02 2022-06-06 凸版印刷株式会社 電子部品製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100097383A (ko) * 2009-02-26 2010-09-03 삼성전기주식회사 패키지 기판 및 이의 제조 방법
JP2014139963A (ja) * 2013-01-21 2014-07-31 Ngk Spark Plug Co Ltd ガラス基板の製造方法
KR101468680B1 (ko) 2013-05-09 2014-12-04 (주)옵토레인 인터포저 기판의 관통전극 형성 방법 및 인터포저 기판을 포함하는 반도체 패키지
KR20160114710A (ko) 2014-01-31 2016-10-05 코닝 인코포레이티드 반도체칩을 상호연결하기 위한 인터포저를 제공하기 위한 방법 및 장치
JP2016111221A (ja) * 2014-12-08 2016-06-20 日本特殊陶業株式会社 配線基板の製造方法及び配線基板
KR20170084562A (ko) * 2016-01-12 2017-07-20 삼성전기주식회사 패키지기판
JP2017216398A (ja) * 2016-06-01 2017-12-07 凸版印刷株式会社 ガラス回路基板
KR20190008103A (ko) 2017-07-14 2019-01-23 가부시기가이샤 디스코 유리 인터포저의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3913662A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114340225A (zh) * 2021-12-23 2022-04-12 江苏普诺威电子股份有限公司 适用于镭射盲孔的多层封装基板对准方法
CN114340225B (zh) * 2021-12-23 2024-02-23 江苏普诺威电子股份有限公司 适用于镭射盲孔的多层封装基板对准方法

Also Published As

Publication number Publication date
KR20210071075A (ko) 2021-06-15
JP2023103353A (ja) 2023-07-26
CN113261093A (zh) 2021-08-13
US20220059421A1 (en) 2022-02-24
KR20230074611A (ko) 2023-05-30
JP2022523898A (ja) 2022-04-27
CN113261093B (zh) 2024-04-16
KR102537004B1 (ko) 2023-05-26
EP3913662A4 (en) 2022-11-02
EP3913662A1 (en) 2021-11-24
KR102622608B1 (ko) 2024-01-08

Similar Documents

Publication Publication Date Title
WO2020185016A1 (ko) 패키징 기판 및 이를 포함하는 반도체 장치
WO2020180149A1 (ko) 패키징 기판 및 이를 포함하는 반도체 장치
WO2012087058A2 (en) Printed circuit board and method for manufacturing the same
WO2020185023A1 (ko) 패키징 기판 및 이의 제조방법
WO2012087060A2 (en) Printed circuit board and method for manufacturing the same
WO2015147509A1 (ko) 열경화성 반도체 웨이퍼용 임시접착필름, 이를 포함하는 적층체 및 적층체 분리방법
WO2021215784A1 (ko) 회로기판
WO2020185021A1 (ko) 패키징 기판 및 이를 포함하는 반도체 장치
WO2018221876A1 (ko) 연성인쇄회로기판 제조 방법 및 이에 의해 제조된 연성인쇄회로기판
WO2020204473A1 (ko) 반도체용 패키징 유리기판, 반도체용 패키징 기판 및 반도체 장치
WO2020180145A1 (ko) 패키징 기판 및 이를 포함하는 반도체 장치
WO2022060166A1 (ko) 회로기판
WO2021040364A1 (ko) 회로기판
WO2020105957A1 (ko) 비아 홀 가공을 위한 지그, 비아 홀 가공 장치 및 이를 이용한 비아 홀 가공방법
WO2022045663A1 (ko) 반도체 패키지용 수지 조성물 및 이를 포함하는 동박 부착 수지
WO2024034703A1 (ko) 인쇄회로기판 및 그 제조방법
WO2023059001A1 (ko) 회로기판 및 이를 포함하는 반도체 패키지
WO2023059007A1 (ko) 회로기판 및 이를 포함하는 반도체 패키지
WO2022231017A1 (ko) 회로기판 및 이를 포함하는 패키지 기판
WO2021040178A1 (ko) 패키징 기판 및 이를 포함하는 반도체 장치
WO2023059008A1 (ko) 회로기판 및 이를 포함하는 반도체 패키지
WO2022231016A1 (ko) 회로기판 및 이를 포함하는 패키지 기판
WO2023113386A1 (ko) 회로 기판
WO2023080719A1 (ko) 회로기판
WO2021256869A1 (ko) 회로기판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20768931

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217015660

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021534595

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020768931

Country of ref document: EP

Effective date: 20210819

NENP Non-entry into the national phase

Ref country code: DE