WO2020184806A1 - 망막맥락막 신생혈관성 질환을 진단하기 위한 인테그린 αVβ3 표적화 프로브 및 이의 제조 방법 - Google Patents

망막맥락막 신생혈관성 질환을 진단하기 위한 인테그린 αVβ3 표적화 프로브 및 이의 제조 방법 Download PDF

Info

Publication number
WO2020184806A1
WO2020184806A1 PCT/KR2019/015132 KR2019015132W WO2020184806A1 WO 2020184806 A1 WO2020184806 A1 WO 2020184806A1 KR 2019015132 W KR2019015132 W KR 2019015132W WO 2020184806 A1 WO2020184806 A1 WO 2020184806A1
Authority
WO
WIPO (PCT)
Prior art keywords
rgd peptide
integrin
cyclic rgd
targeting probe
fitc
Prior art date
Application number
PCT/KR2019/015132
Other languages
English (en)
French (fr)
Inventor
이병철
정재호
우세준
안성준
Original Assignee
서울대학교병원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교병원 filed Critical 서울대학교병원
Priority to US17/438,412 priority Critical patent/US20220146519A1/en
Publication of WO2020184806A1 publication Critical patent/WO2020184806A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0041Xanthene dyes, used in vivo, e.g. administered to a mice, e.g. rhodamines, rose Bengal
    • A61K49/0043Fluorescein, used in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0056Peptides, proteins, polyamino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/16Ophthalmology
    • G01N2800/164Retinal disorders, e.g. retinopathy

Definitions

  • the present invention relates to an integrin targeting probe and a method of manufacturing the same, and more particularly, to an integrin ⁇ v ⁇ 3 targeting probe for diagnosing retinal choroidal neovascular disease and a method of manufacturing the same.
  • Age-related macular degeneration has been reported as a major cause of blindness in the elderly in developed countries.
  • CNV choroidal neovascularization
  • CNV choroidal neovascularization
  • retinal hemorrhage a major cause of wet age-related macular degeneration
  • photoreceptor degeneration a major cause of macular scarring.
  • integrin ⁇ v ⁇ 3 is preferentially expressed in angiogenesis, but it is known to have a low expression level in normal tissues (Kumar CC, Armstrong L, Yin Z, et al. (2000) Targeting integrins alpha v beta 3). and alpha v beta 5 for blocking tumor-induced angiogenesis.Adv Exp Med Biol 476:169-180).
  • integrin ⁇ v ⁇ 3 is related to ocular angiogenesis, a major pathological process of choroidal angiogenesis (Luna J, Tobe T, Mousa SA, Reilly TM, Campochiaro PA (1996) Antagonists of integrin alpha v beta 3 inhibit retinal neovascularization in a murine model.Lab Invest 75:563-573; Friedlander M, Theesfeld CL, Sugita M, et al. (1996) Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases.Proc Natl Acad Sci USA 93:9764-9769). Therefore, for the diagnosis and treatment of choroidal angiogenesis, research on an integrin ⁇ v ⁇ 3 targeting probe optimized for choroidal angiogenesis is urgently required.
  • RGD peptide is a peptide in which Arginine (R), Glycine (G), and Aspartic acid (D) are conjugated and has high affinity for integrin ⁇ v ⁇ 3 , so it is reported that it acts as an excellent contrast agent for angiogenesis.
  • R Arginine
  • G Glycine
  • D Aspartic acid
  • the present inventors completed the present invention by developing a novel RGD peptide optimized for diagnosis and treatment of choroidal neovascularization after much effort and research.
  • the problem to be solved by the present invention is to predict the occurrence and recurrence of retinal choroidal neovascularization before the structural change of retinal choroidal neovascularization occurs, thereby targeting integrin that can be usefully used in the diagnosis or treatment of retinal choroidal neovascularization or age-related macular degeneration.
  • Another problem to be solved by the present invention is to provide a method of manufacturing such an integrin targeting probe.
  • the integrin targeting probe according to an embodiment of the present invention for achieving the above object is an integrin ⁇ v ⁇ 3 targeting probe for diagnosing retinal choroidal neovascular disease, and conjugation of NH 2 -cyclic RGD peptide precursor to a fluorescent material It can be made of a fluorescent substance-labeled cyclic RGD peptide completed by gate.
  • the NH 2 -cyclic RGD peptide precursor may be NH 2 -D-[c(RGDfK)] 2
  • the fluorescent substance-labeled cyclic RGD peptide may be FITC-D-[c(RGDfK)] 2 .
  • the fluorescent material is FITC (fluorescein isothiocyanate), coumarine, cascade blue, Pacific blue, Pacific orange, lucifer yellow, NBD, PE, PE -Cy5, PE-Cy7, Red 613, PerCP, TruRed, FluorX, BODIPY-FL, cyanine series fluorescent materials (Cy2, Cy3, Cy3B, Cy3.5, Cy5, Cy5.5, Cy7) ), TRITC (tetramethylrhodamine isothiocyanate), X-rhodamine, lissamine rhodamine B, Texas red, fluorescein, indocyanine green ) And allophycocyanin (APC).
  • FITC fluorescein isothiocyanate
  • coumarine cascade blue, Pacific blue, Pacific orange, lucifer yellow
  • NBD PE
  • PE PE -Cy5, PE-Cy7, Red 613, PerCP, TruRed, FluorX, BODIPY-FL
  • the fluorescent substance-labeled cyclic RGD peptide can be used for fluorescent fundus angiography.
  • a method of manufacturing an integrin targeting probe according to an embodiment of the present invention for achieving the above other object is a method of manufacturing an integrin ⁇ v ⁇ 3 targeting probe for diagnosing retinal choroidal neovascular disease, NH 2 -cyclic RGD Synthesizing a peptide precursor; And conjugating the synthesized NH 2 -cyclic RGD peptide precursor to a fluorescent material to complete a fluorescent material-labeled cyclic RGD peptide.
  • the integrin targeting probe of the present invention i.e., FITC-labeled cyclic RGD peptide
  • can visualize retinal choroidal neovascularization which is the main cause of age-related macular degeneration. And recurrence of the disease can be predicted.
  • the retinal choroidal neovascular lesion showed strong immunofluorescence staining for the FITC-labeled cyclic RGD peptide of the present invention, unlike normal retina or choroid.
  • the FITC-labeled cyclic RGD peptide of the present invention hardly stained normal blood vessels in the retina.
  • FIG. 1 shows an image showing the specificity of choroidal neovascularization according to the present invention.
  • FIG. 2 shows a choroidal flat mount immunofluorescence image obtained 7 days after induction of choroidal angiogenesis according to the present invention.
  • Figure 4 (a) shows the expression of integrin mRNA by reverse transcription polymerase chain reaction (RT-PCR) in the retina with laser-induced choroidal neovascularization on days 1, 3, 7 and 14, and
  • Figure 4 (b) is a GAPDH gene Integrin expression data normalized to expression are shown.
  • the retinal choroidal neovascular disease mentioned in the present invention may include, for example, age-related macular degeneration, diabetic retinopathy, retinal vein obstruction, myopic macular degeneration, and the like.
  • the fluorescent material used for the fluorescent material-labeled cyclic RGD peptide of the present invention is fluorescein isothiocyanate (FITC), coumarine, cascade blue, and Pacific blue. ), Pacific orange, lucifer yellow, NBD, PE, PE-Cy5, PE-Cy7, Red 613, PerCP, TruRed, FluorX, BODIPY-FL, Cyanine series Of fluorescent substances (Cy2, Cy3, Cy3B, Cy3.5, Cy5, Cy5.5, Cy7), tetramethylrhodamine isothiocyanate (TRITC), X-rhodamine, lissamine rhodamine B, Texas red (texas red), fluorescein (fluorescein), indocyanine green (indocyanine green) and may be made of one or more materials selected from the group consisting of allophycocyanin (allophycocyanin, APC).
  • FITC fluorescein isothiocyanate
  • Choroidal neovascularization was reported as follows (Reich SJ, Fosnot J, Kuroki A, et al. (2003) Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model.Mol Vis 9:210-216) as follows. Was induced accordingly. After intravenous anesthesia using a 1:1 mixture of 100 mg/mL ketamine and 20 mg/mL xylazine, and dilatating the pupil with 5.0% phenylephrine and 0.8% tropicamide. , C57BL/6 mice were placed on a Mayo stand in front of the laser delivery system (Coherent PC-920 Argon Ion Laser System; Coherent Medical Laser, Santa Clara, CA).
  • Choroidal neovascularization was induced using a 512 nm argon laser light coagulation method, which was performed in the right eye at 100 mW power for 0.1 s using a spot size of 100 um. Five lesions of approximately 2-3 disc diameters were created from the optic nerve papilla. The formation of bubbles during laser delivery can be considered as sufficient damage to induce rupture of Bruch's membrane and choroidal neovascularization. Cases of subretinal hemorrhage after laser treatment were excluded.
  • FITC-labeled peptide FITC-D-[c(RGDfK)] 2 was used in C-18 reverse phase high performance liquid chromatography with a solvent mixture of acetonitrile / water / 0.1% trifluoroacetic acid.
  • Performance liquid chromatography HPLC, Shimadzu Prominence, Kyoto, Japan
  • MS (ESI) m/z 1693.3 (M+H) + ).
  • mice were sacrificed and eyes were removed and fixed with 4% paraformaldehyde. Consecutive sections of 6 eyes extracted at 2 weeks after induction of choroidal neovascularization were cut to a thickness of 20 ⁇ m in a cryostat (HM550MP; Thermo Scientific, Waltham, Massachusetts, USA) at -20°C and prepared for staining. H&E (hematoxylin and eosin) staining was performed for histological examination of the retina and choroid.
  • HM550MP Thermo Scientific, Waltham, Massachusetts, USA
  • mice were anesthetized on the 7th or 14th day, and the eyes were removed and fixed with 4% paraformaldehyde for 30 minutes at 4°C. The anterior part of the eye and the retina were removed from the eyecup and four radial incisions were made. The remaining RPE (Retinal Pigment Epithelium)-choroid-scleral complex was flat mounted and coverslipped. The flat mount was examined with a scanning laser confocal microscope (LSM710; Carl Zeiss, Oberkochen, Germany).
  • fluorescein sodium was injected intraperitoneally, followed by fluorescence angiography using a commercial fundus camera and imaging system (Heidelberg Retina Angiography, Heidelberg Engineering, Heidelberg, Germany). fluorescein angiography, FA) was performed. Choroidal neovascularization was confirmed by fluorescence angiography as a hyperfluorescent lesion with late-phase leakage.
  • the extracted eyes were fixed in 2% paraformaldehyde/PBS (pH 7.4) for 5 minutes. Subsequently, the retina and choroid were separated from the eye, and permeabilization was performed with 0.5% Triton X-100, 5% fetal bovine serum and 20% dimethyl sulfoxide (DMSO) in PBS for 3 hours at room temperature. Induced. For blood vessel staining, the retina was incubated with BS-1 lectin-TRITC (Sigma-Aldrich) for 4 days at 4°C.
  • BS-1 lectin-TRITC Sigma-Aldrich
  • FITC-D-[c(RGDfK)] 2 a previously prepared FITC-labeled cyclic RGD peptide, was used for targeting integrin ⁇ v ⁇ 3 in choroidal neovascular lesions.
  • Fluorescence staining using FITC-D-[c(RGDfK)] 2 was performed as follows.
  • the flat mount was mounted on a glass slide with the glass side up and visualized on a confocal microscope (LSM710; Carl Zeiss, Oberkochen, Germany).
  • FITC-D-[c(RGDfK)] 2 staining was evaluated using an excess of cRGD peptide.
  • one mouse with the same laser-induced choroidal neovascularization for both eyes was sacrificed.
  • One eye of this mouse was stained with the above staining method using 10 nM of FITC-D-[c(RGDfK)] 2 .
  • the other eye was incubated for 2 hours with an excess of cRGD peptide (eg, 20-fold molar concentration of FITC-conjugated cRGD dimer, ie, 200 nM) before fluorescence staining and stained with the above staining method.
  • integrin ⁇ v ⁇ 3 antibody was used to investigate whether staining of integrin ⁇ v ⁇ 3 antibody overlaps with staining of FITC-conjugated cRGD dimer.
  • reaction conditions of the above sequence were subjected to 33 cycles of denaturation at 95°C for 5 minutes, extension at 58°C for 45 seconds, and annealing at 72°C for 60 seconds.
  • PCR products were separated on a 3% agarose gel by electrophoresis at 150V for 20 minutes. The PCR product was confirmed by the expected size.
  • FIG. 1 shows an image showing the specificity of choroidal neovascularization according to the present invention.
  • (a) is a fundus photograph obtained immediately after laser light coagulation (arrowheads indicate laser-treated spots, bubble formation indicates immediately after Bruch's membrane rupture), and
  • (b) is laser-treated spots (arrowheads) by fluorescence angiography.
  • (c) shows a frozen section stained with H&E (Hematoxylin and eosin) 2 weeks after induction of choroidal neovascularization.
  • H&E Hematoxylin and eosin
  • choroidal neovascularization was induced by laser light coagulation, and Bruch's membrane was destroyed. Immediately after laser induction, vaporization bubbles were formed.
  • Fig. 1(b) the formation of choroidal neovascularization was confirmed using fluorescence angiography (FA). Fluorescein angiography showed fluorescence leakage and hyperfluorescence spot at the site where laser photocoagulation was performed, which is compatible with choroidal neovascularization. The leaky spot coincided with the laser-guided area.
  • Fig. 1(c) histopathologically, the eyes in which choroidal angiogenesis are induced are fibrovascular complexes in the choroid and retina along with rupture of the retinal pigment epithelium (RPE) and the outer retina. ) was formed, which is compatible with choroidal neovascularization.
  • RPE retinal pigment epithelium
  • FIG. 2 shows a choroidal flat mount immunofluorescence image obtained 7 days after induction of choroidal angiogenesis according to the present invention.
  • the eye with choroidal angiogenesis induction represents a hyperfluorescent spot, which corresponds to the laser-treated area (arrowhead).
  • (b) is an enlarged image of the square portion of (a), that is, choroidal neovascularization, indicating that the laser-treated lesion stained with FITC-labeled RGD peptide matches the lesion stained with lectin, which indicates that choroidal neovascularization is based on RGD Indicates that it can be stained with a probe.
  • the FITC-labeled cyclic RGD peptide visualized choroidal neovascularization in the laser-treated region.
  • the choroidal angiogenesis-related eye has five lectin-positive RGD peptide-binding spots (arrowheads). Shown. These spots are topographically consistent with five laser-treated spots (right side of Fig. 2(a)). These spots were stained simultaneously with DAPI, lectin and RGD peptide.
  • FIG. 2(b) the enlarged image of one of the spots shows the co-localization of the lectin (top of FIG.
  • FIG. 3 shows the overlap of RGD-binding protein and integrin ⁇ v ⁇ 3 .
  • the same laser-treated mice for both eyes showed fluorescence staining of the choroidal flat mount, and both eyes were simultaneously stained with DAPI, FITC-RGD, CD31, and integrin ⁇ v ⁇ 3 antibody.
  • the left eye (b) was incubated with excess cRGD before FITC-RGD staining. In this case, it was confirmed that the fluorescence of the FITC-labeled RGD peptide was significantly reduced by excessive cRGD.
  • the FITC-D-[c(RGDfK)] 2 angiography image of FIG. 3 provides a higher resolution image than the conventional SEPCT image using radioactive isotopes.
  • Figure 4 (a) shows the expression of integrin mRNA by reverse transcription polymerase chain reaction (RT-PCR) in the retina with laser-induced choroidal neovascularization on days 1, 3, 7 and 14, and Figure 4 (b) is a GAPDH gene
  • RT-PCR reverse transcription polymerase chain reaction
  • Figure 4 (b) is a GAPDH gene
  • the upper bar represents the upper limit of the 95% confidence interval (P ⁇ 0.05).
  • RT-PCR was used to investigate integrin expression in the mouse retina over time after induction of choroidal angiogenesis.
  • GAPDH glycosyl transferase
  • most of the integrins showed similar expression patterns. That is, as shown in Fig. 4(b), it increased at the initial stage (peak on day 1), and then decreased for 2 weeks, but decreased to a level similar to the reference value.
  • integrin ⁇ v (1.48 fold)
  • ⁇ 3 (1.24 fold
  • the increase in the expression of integrin ⁇ v was statistically significant (P ⁇ 0.05).
  • days 3, 7, and 14 there was no significant change in the expression of integrin ⁇ v or ⁇ 3 compared to the baseline value.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

망막맥락막 혈관신생의 구조 변화가 일어나기 전에 망막맥락막 혈관신생의 발생과 재발을 예측함으로써 망막맥락막 혈관신생 또는 나이관련 황반변성의 진단 또는 치료에 유용하게 사용될 수 있는 인테그린 표적화 프로브 및 이의 제조방법이 제공된다. 이 인테그린 표적화 프로브는, 망막맥락막 신생혈관성 질환을 진단하기 위한 인테그린 αvβ3 표적화 프로브로서, NH2-고리형 RGD 펩타이드 전구체를 형광물질에 컨쥬게이트하여 완성된 형광물질 표지 고리형 RGD 펩타이드로 이루어질 수 있다.

Description

망막맥락막 신생혈관성 질환을 진단하기 위한 인테그린 αVβ3 표적화 프로브 및 이의 제조 방법
본 발명은 인테그린 표적화 프로브 및 이의 제조 방법에 관한 것으로서, 더욱 상세하게는 망막맥락막 신생혈관성 질환을 진단하기 위한 인테그린 αvβ3 표적화 프로브 및 이의 제조 방법에 관한 것이다.
나이관련 황반변성(age-related macular degeneration, AMD)은 선진국 노인들의 실명의 주요 원인으로 보고되고 있다. 특히 습성 나이관련 황반변성의 주요 발병 원인으로 알려진 맥락막 혈관신생(choroidal neovascularization, CNV)은 이 질환에서 시각 장애의 주요 원인 중 하나이다. 구조적으로, 맥락막 혈관신생은 망막 출혈, 광 수용체 변성 및 황반 흉터 형성을 유발한다.
하지만, 맥락막 혈관신생의 발달에 대한 정확한 메커니즘이나 혈관신생을 매개하는 주요 분자에 대해서는 거의 알려진 바가 없다. 나아가, 나이관련 황반변성에 대해 현재 실시되고 있는 임상 이미징 방법으로 형광혈관조영술(fluorescein angiography) 및 광 간섭성 단층촬영(optical coherence tomography, OCT)이 있는데, 이들은 질병 상태나 이미 진행된 맥락막 혈관신생에 대한 구조적인 정보만을 제공한다. 따라서 종래 기술에 따른 황반변성의 이미징 방법은, 질병 진행을 알리거나 맥락막 혈관신생의 형성이나 재발을 예측하지는 못하고 있다.
한편, 인테그린(integrin) αvβ3은 혈관신생에 우선적으로 발현되지만 정상 조직에서는 발현 수준이 낮은 것으로 알려져 있다(Kumar CC, Armstrong L, Yin Z, et al. (2000) Targeting integrins alpha v beta 3 and alpha v beta 5 for blocking tumor-induced angiogenesis. Adv Exp Med Biol 476:169-180). 또한 인테그린 αvβ3은 맥락막 혈관신생의 주요 병리학적 과정인 안구 혈관신생에 관련이 있다고 보고되고 있다(Luna J, Tobe T, Mousa SA, Reilly TM, Campochiaro PA (1996) Antagonists of integrin alpha v beta 3 inhibit retinal neovascularization in a murine model. Lab Invest 75:563-573; Friedlander M, Theesfeld CL, Sugita M, et al. (1996) Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. Proc Natl Acad Sci U S A 93:9764-9769). 따라서 맥락막 혈관신생의 진단 및 치료를 위해, 맥락막 혈관신생에 최적화된 인테그린 αvβ3 표적화 프로브에 대한 연구가 절실히 요구된다.
일반적으로 RGD 펩타이드는 Arginine(R), Glycine(G), 및 Aspartic acid(D)가 결합된 펩타이드로서 인테그린 αvβ3에 높은 친화도를 가지고 있기 때문에 혈관신생에 대한 우수한 조영제로 작용하는 것으로 보고되고 있다(McDonald DM, Choyke PL (2003) Imaging of angiogenesis: from microscope to clinic. Nat Med 9:713-725; Gaertner FC, Kessler H, Wester HJ, Schwaiger M, Beer AJ (2012) Radiolabelled RGD peptides for imaging and therapy. Eur J Nucl Med Mol Imaging 39 Suppl 1:S126-138; Schottelius M, Laufer B, Kessler H, Wester HJ (2009) Ligands for mapping alphavbeta3-integrin expression in vivo. Acc Chem Res 42:969-980).
이에 본 발명자들은 많은 노력과 연구를 거친 끝에 맥락막 혈관신생의 진단과 치료에 최적화된 신규 RGD 펩타이드를 개발하여 본 발명을 완성하게 되었다.
본 발명이 해결하고자 하는 과제는, 망막맥락막 혈관신생의 구조 변화가 일어나기 전에 망막맥락막 혈관신생의 발생과 재발을 예측함으로써 망막맥락막 혈관신생 또는 나이관련 황반변성의 진단 또는 치료에 유용하게 사용될 수 있는 인테그린 표적화 프로브를 제공하고자 하는 것이다.
본 발명이 해결하고자 하는 다른 과제는, 이러한 인테그린 표적화 프로브의 제조 방법을 제공하고자 하는 것이다.
본 발명이 해결하고자 하는 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 달성하기 위한 본 발명의 일 실시예에 따른 인테그린 표적화 프로브는, 망막맥락막 신생혈관성 질환을 진단하기 위한 인테그린 αvβ3 표적화 프로브로서, NH2-고리형 RGD 펩타이드 전구체를 형광물질에 컨쥬게이트하여 완성된 형광물질 표지 고리형 RGD 펩타이드로 이루어질 수 있다.
상기 NH2-고리형 RGD 펩타이드 전구체는 NH2-D-[c(RGDfK)]2이고, 상기 형광물질 표지 고리형 RGD 펩타이드는 FITC-D-[c(RGDfK)]2일 수 있다.
상기 형광물질은 FITC(fluorescein isothiocyanate), 쿠마린(coumarine), 캐스캐이드 블루(cascade blue), 퍼시픽 블루(pacific blue), 퍼시픽 오렌지(pacific orange), 루시퍼 옐로우(lucifer yellow), NBD, PE, PE-Cy5, PE-Cy7, Red 613, PerCP, TruRed, 플루오르X(FluorX), BODIPY-FL, 시아닌(Cyanine) 계열의 형광물질(Cy2, Cy3, Cy3B, Cy3.5, Cy5, Cy5.5, Cy7), TRITC(tetramethylrhodamine isothiocyanate), X-로다민(X-rhodamine), 리사민 로다민 B(lissamine rhodamine B), 텍사스 레드(texas red), 플루오레신(fluorescein), 인도시아닌그린(indocyanine green) 및 알로피코시아닌(allophycocyanin, APC)로 이루어진 그룹에서 선택된 하나 이상의 물질로 이루어질 수 있다.
상기 형광물질 표지 고리형 RGD 펩타이드는 형광안저혈관조영술에 사용될 수 있다.
상기 다른 과제를 달성하기 위한 본 발명의 일 실시예에 따른 인테그린 표적화 프로브의 제조 방법은, 망막맥락막 신생혈관성 질환을 진단하기 위한 인테그린 αvβ3 표적화 프로브의 제조 방법으로서, NH2-고리형 RGD 펩타이드 전구체를 합성하는 단계; 및 상기 합성된 NH2-고리형 RGD 펩타이드 전구체를 형광물질에 컨쥬게이트하여 형광물질 표지 고리형 RGD 펩타이드를 완성하는 단계를 포함할 수 있다.
기타 실시예들의 구체적인 사항들은 구체적인 내용 및 도면들에 포함되어 있다.
상술한 바와 같이 본 발명의 인테그린 표적화 프로브, 즉 FITC 표지 고리형 RGD 펩타이드는 나이관련 황반변성의 주요 발명 원인인 망막맥락막 혈관신생을 가시화할 수 있으므로 망막맥락막 혈관신생의 구조변화가 일어나기 전에 망막맥락막 혈관신생의 발생과 재발을 예측할 수 있다. 특히 망막맥락막 혈관신생 병변은 정상 망막이나 맥락막과는 달리 본 발명의 FITC 표지 고리형 RGD 펩타이드에 대해 면역형광염색이 강하게 나타나는 것을 확인하였다. 또한 본 발명의 FITC 표지 고리형 RGD 펩타이드는 망막의 정상 혈관에 대해서는 거의 염색이 이루어지지 않는 것을 확인하였다.
도 1은 본 발명에 따른 맥락막 혈관신생 형성의 특정을 나타낸 이미지를 나타낸다.
도 2는 본 발명에 따라 맥락막 혈관신생 유도 후 7일째에 얻어진 맥락막 플랫마운트 면역 형광 이미지를 나타낸다.
도 3은 RGD-결합 단백질과 인테그린 αvβ3의 중첩을 나타낸다.
도 4(a)는 1, 3, 7 및 14일째 레이저 유도 맥락막 혈관신생을 가진 망막에서 역전사 중합 효소 연쇄반응(RT-PCR)에 의한 인테그린 mRNA 발현을 나타낸 것이고, 도 4(b)는 GAPDH 유전자 발현으로 정규화된 인테그린 발현 데이터를 나타낸다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
본 발명에서 언급된 망막맥락막 신생혈관성 질환은, 예를 들어 나이관련 황반변성, 당뇨망막병증, 망막정맥폐쇄, 근시성황반변성 등을 포함할 수 있다.
또한 본 발명의 형광물질 표지 고리형 RGD 펩타이드에 사용되는 형광물질은 플루오레세인 이소티오시아네이트(fluorescein isothiocyanate, FITC), 쿠마린(coumarine), 캐스캐이드 블루(cascade blue), 퍼시픽 블루(pacific blue), 퍼시픽 오렌지(pacific orange), 루시퍼 옐로우(lucifer yellow), NBD, PE, PE-Cy5, PE-Cy7, Red 613, PerCP, TruRed, 플루오르X(FluorX), BODIPY-FL, 시아닌(Cyanine) 계열의 형광물질(Cy2, Cy3, Cy3B, Cy3.5, Cy5, Cy5.5, Cy7), TRITC(tetramethylrhodamine isothiocyanate), X-로다민(X-rhodamine), 리사민 로다민 B(lissamine rhodamine B), 텍사스 레드(texas red), 플루오레신(fluorescein), 인도시아닌그린(indocyanine green) 및 알로피코시아닌(allophycocyanin, APC)로 이루어진 그룹에서 선택된 하나 이상의 물질로 이루어질 수 있다. 다만 본 발명은 이에 한정되지 않으며 타겟의 형광수치를 증가시킬 수 있는 임의의 형광물질을 사용할 수 있다. 본 발명에서는 망막맥락막 신생혈관을 가시화하기에 적합한 FITC를 예로 들어 실험을 진행하였다.
실시예 1. 동물 및 재료의 준비
<1-1> 마우스의 준비
맥락막 혈관신생을 위한 이용된 모든 마우스 모델 연구는 서울대학교병원의 동물실험윤리위원회의 승인을 얻었으며, ARVO(Association for Research in Vision and Ophthalmology) statement for the Use of Animals in Ophthalmic and Vision Research의 지침을 준수하였다. 22 내지 25g의 야생형 6 주령 C57BL/6 수컷 마우스 29 마리를 실험에 사용했다.
<1-2> 맥락막 혈관신생의 유도
맥락막 혈관신생은 다음과 같이 문헌(Reich SJ, Fosnot J, Kuroki A, et al. (2003) Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol Vis 9:210-216)에 따라 유도하였다. 100 mg/mL 케타민(ketamine)과 20 mg/mL 자일라진(xylazine)의 1:1 혼합물을 이용하여 정맥마취하고 5.0% 페닐에프린(phenylephrine)과 0.8% 트로픽아미드(tropicamide)로 동공확대한 후, C57BL/6 마우스를 레이저 전달 시스템 앞에 Mayo 스탠드 위에 놓았다(Coherent PC-920 Argon Ion Laser System; Coherent Medical Laser, Santa Clara, CA). 맥락막 혈관신생은 512 nm 아르곤 레이저 광 응고법을 사용하여 유도되었으며, 이는 100 um의 스팟 크기를 사용하여 0.1s 동안 100 mW 출력에서 우안에서 수행되었다. 시신경 유두부로부터 약 2-3 디스크 직경의 5개 병변이 생성되었다. 레이저 전달 시 버블이 생긴 것은 브루크 막(Bruch's membrane)의 파열 및 맥락막 혈관신생을 유도하기에 충분한 손상이 생긴 것으로 간주될 수 있다. 레이저 처리 후 망막하 출혈이 있었던 경우는 제외되었다.
<1-3> FITC 표지 고리형 RGD 펩타이드의 제조
고리형 RGD 펩타이드는 바이오이미징코리아(Bio Imaging Korea Co., Ltd.)에서 구입한 보호기가 도입된 고리형 RGD 펩타이드, 즉 cyclic R(Pdf)-G-D(tBu)-f-K-NH2로부터 합성되었다(R = Arginine; Pdf = 펜타메틸벤조퓨란설포닐; G = glycine; D = aspartic acid; tBu = tert-부틸; f = D-Phenylalanine, K = Lysine). 시작물질인 cyclic R(Pdf)-G-D(tBu)-f-K-NH2 (0.4 mmol)을 N-하이드록시벤조트라이졸(N-hydroxybenzotriazole, 0.46 mmol), O-벤조트리아졸-N,N,N',N'-테트라메틸-우로늄-헥사플루오로포스페이트(O-benzotriazole-N,N,N',N'-tetramethyl-uronium-hexafluorophosphate, 0.46 mmol)과 함께 질소가스 분위기에서 Boc로 보호된 아스파틱엑시드(0.12 mmol)이 녹여져 있는 N,N'-디메틸포름아마미드(N,N'-dimethylformamide, 5 mL)에 첨가하여 실온에서 12 시간 교반시켰다. 감압 하에 용매를 제거한 후 컬럼크로마토그래피를 통해 분리하여 아스파틱엑시드에 고리형 RGD 이합체 펩타이드, BocNH-D-[c(R(Pdf)-G-D(tBu)-f-K)]2 (MS (ESI) m/z = 2020.4 (M+H)+)가 도입된 화합물을 얻었다. 이어서 보호기 그룹을 제거하기 위해 TFA:Et3SiH:H2O (95:2.5:2.5, 3 mL)에 녹이고 상온에서 6 시간 반응시킨 후, 모든 용액을 감압 하에 거의 증발시킨 다음에 다이에틸에스테르(diethyl ether)를 첨가해서 얻어진 고체를 여과하였다. 이렇게 얻어진 하얀색 고체를 충분히 에스테르로 세척한 후 건조하여 NH2-고리형 RGD 펩타이드 전구체인 NH2-D-[c(RGDfK)]2 (MS (ESI) m/z = 1304.2 (M+H)+)를 제조하였다. 얻어진 NH2-D-[c(RGDfK)]2 (10 nmol)은 100 mM PBS (phosphate buffered solution, pH 7.5)에서 실온에서 4 ㎍ FITC(fluorescein isothiocyanate; Thermo Fisher Scientific Korea Inc., Seoul, Korea)와 1시간 동안 교반하여 우레와 결합으로 컨쥬게이트(conjugated)되었다. FITC 표지 펩타이드인 FITC-D-[c(RGDfK)]2는 아세토니트릴(acetonitrile) / 물 / 0.1% 트리플루오로 아세트산(trifluoroacetic acid)의 용매 혼합물과 함께 C-18 역상 고속 액체 크로마토그래피(high-performance liquid chromatography, HPLC, Shimadzu Prominence, Kyoto, Japan)를 사용하여 95 % 이상의 순도로 정제되었고, 질량분석기(mass spectrometry, HP / Agilent 1100 series LC/MSD, Santa Clara, CA, USA)를 사용하여 확인되었다(MS (ESI) m/z = 1693.3 (M+H)+).
실시예 2. 조직학적 평가 및 혈관 조영 평가
마우스를 희생시키고 눈을 적출하여 4% 파라포름알데히드로 고정시켰다. 맥락막 혈관신생 유도 후 2 주째에 적출된 6개 눈의 연속 절편을 -20℃에서 저온유지장치(HM550MP; Thermo Scientific, Waltham, Massachusetts, USA)에서 20 um 두께로 절단하고 염색을 준비했다. 망막과 맥락막의 조직학적 검사를 위해 H&E(hematoxylin and eosin) 염색을 시행하였다.
10 개의 눈은 맥락막 플랫마운트(flatmount)로 준비되었다. 플랫마운트를 위해 마우스는 7 일 또는 14 일째에 마취된 후 눈은 적출되어 4 ℃에서 30분 동안 4% 파라포름알데히드로 고정되었다. 안구 앞부분과 망막은 아이컵에서 제거되고 4개의 방사형 절개가 이루어졌다. 나머지 RPE(Retinal Pigment Epithelium)-맥락막-공막 복합체는 플랫마운트되고 커버스립되었다. 플랫마운트는 스캐닝 레이저 공초점 현미경(LSM710; Carl Zeiss, Oberkochen, Germany)으로 검사되었다.
레이저 광 응고술 후 1 주째에 2% 플루오레세인 나트륨(fluorescein sodium) 0.2 mL를 복강 내 주사한 후 상업용 안저 카메라와 이미징 시스템(Heidelberg Retina Angiography, Heidelberg Engineering, Heidelberg, Germany)을 사용하여 형광혈관조영술(fluorescein angiography, FA)을 수행하였다. 맥락막 혈관신생은 레이트 페이스 리퀴지(late-phase leakage)가 있는 과형광(hyperfluorescent) 병변으로 형광혈관조영술로 확인되었다.
실시예 3. RGD 펩타이드를 이용한 망막 및 맥락막 플랫마운트에서 혈관의 형광 염색
적출된 눈은 2% 파라포름알데히드/PBS(pH 7.4)에 5 분간 고정되었다. 이어서 망막과 맥락막을 안구에서 분리한 후, 실온에서 3시간 동안 PBS에서 0.5 % Triton X-100, 5% 소태야혈청(fetal bovine serum) 및 20% DMSO(dimethyl sulfoxide)로 투과화(permeabilization)를 유도하였다. 혈관 염색을 위해, 망막을 4 ℃에서 4일간 BS-1 lectin-TRITC(Sigma-Aldrich)와 배양하였다. 앞서 준비한 FITC 표지 고리형 RGD 펩타이드인 FITC-D-[c(RGDfK)]2는 맥락막 혈관신생 병변에서의 인테그린 αvβ3 표적화에 사용되었다.
FITC-D-[c(RGDfK)]2를 이용한 형광 염색은 다음과 같이 수행하였다.
(1) 망막 및 맥락막 플랫마운트를 PBS로 세척하고 FITC-D-[c(RGDfK)]2와 함께 30분 동안 배양하였다.
(2) 슬라이드를 PBS로 여러 번 세척하고, DAPI(4',6-diamidino-2-phenylindole)로 대조 염색하고, ProLong Gold 안티페이드 시약(anti-fade reagent)(Life Technologies, Carlsbad, CA, USA)으로 마운트하였다.
(3) 염색 후, 플랫마운트는 유리 슬라이드에 유리면이 위로 가도록 마운트하고 공초점 현미경(LSM710; Carl Zeiss, Oberkochen, Germany) 상에서 시각화하였다.
또한, 과량의 cRGD 펩타이드를 사용하여 FITC-D-[c(RGDfK)]2 염색의 특이성을 평가했다. 이 실험에서, 양쪽 눈에 대해 동일하게 레이저로 유도된 맥락막 혈관신생을 가진 한 마우스를 희생시켰다. 이 마우스의 한쪽 눈은 10nM의 FITC-D-[c(RGDfK)]2를 사용하여 상기 염색법으로 염색하였다. 다른 한쪽 눈은 형광 염색 전에 과량의 cRGD 펩타이드(예를 들어, FITC-conjugated cRGD dimer의 20배 몰 농도, 즉, 200 nM)로 2 시간 인큐베이터하고 상기 염색법으로 염색하였다. 이 염색에서 인테그린 αvβ3 항체를 사용하여, 인테그린 αvβ3 항체의 염색이 FITC-conjugated cRGD dimer의 염색과 중첩되는지를 조사하였다.
실시예 4. in vitro 인테그린 발현을 위한 RT-PCR
기준치(baseline)과 맥락막 혈관신생 유도 후 1, 3, 7, 14일째에, 각 시점마다 4 마리 마우스를 희생시키고 안구를 적출했다. RNeasy 미니 키트(Bio-Rad, Hercules, CA, USA)를 사용하여, 망막 조직으로부터 총 RNA를 분리하였다. 역전사(reverse transcription, RT)는 Superscript III First-strand Synthesis 키트(Invitrogen)를 사용하여 2 ㎍g 변성된 RNA에서 수행하였다. 제조사의 프로토콜에 따라 BioMix(Bioline, London, UK)를 사용하여 준정량적 PCR(semi-quantitative PCR, semi-quantitative Polymerase Chain Reaction)로 인테그린의 상대적 존재량을 분석하였다. 게놈 DNA 오염이 없음을 확인하기 위해, RT없이 음성 대조군을 수행하였다. 상기 시퀀스의 반응 조건은 95℃에서 5분간 변성(denaturation), 58℃에서 45초간 신장(extension), 그리고 72℃에서 60초간 결합(annealing)을 33 사이클 실시하였다. PCR 산물은 150V에서 20분 동안 전기 영동에 의해 3% 아가로즈 겔(agarose gel) 상에서 분리되었다. PCR 산물은 예상되는 크기에 의해 확인되었다.
참고예1. 통계 분석
쌍을 이룬 그룹 간의 차이를 평가하기 위해 Wilcoxon signed rank test가 사용되었다. 독립적인 그룹 간의 비교를 위해 Mann-Whitney test가 사용되었다. 연속값은 평균 ± 표준오차(SE)로 표시된다. P 값이 0.05 미만인 경우 통계적으로 유의한 것으로 간주되었다. 통계 분석은 SPSS 버전 18.0(SPSS Inc., Chicago, Illinois, USA)을 사용하여 수행되었다.
실험예 1. 맥락막 혈관신생 형성의 확인
도 1은 본 발명에 따른 맥락막 혈관신생 형성의 특정을 나타낸 이미지를 나타낸다. 여기서, (a)는 레이저 광 응고 직후 얻은 안저 사진이고(화살촉은 레이저 처리된 반점을 나타내고, 버블 형성은 Bruch's membrane 파열 직후를 나타냄), (b)는 형광혈관조영술에 의해 레이저 처리된 반점(화살촉)에서 염료 누출이 있는 맥락막 혈관신생 병변을 나타내고, (c)는 맥락막 혈관신생 유도 후 2주째에 H&E(Hematoxylin and eosin) 염색된 동결절편을 나타낸다.
구체적으로, 도 1(a)에 도시된 바와 같이 맥락막 혈관신생은 레이저 광 응고법에 의해 유도되었으며, 브루크 막(Bruch's membrane)이 파괴되었다. 레이저 유도 직후, 기화 버블이 형성되었다. 도 1(b)에 도시된 바와 같이 맥락막 혈관신생의 형성은 형광혈관조영술(FA)을 사용하여 확인되었다. 형광혈관주영술은 레이저 광 응고술이 시행된 부위에서 형광 누출과 함께 과형광 스팟을 나타내었고, 이는 맥락막 혈관신생과 양립할 수 있다. 누설이 있는 스팟은 레이저 유도로 처리된 부분과 일치했다.
도 1(c)에 도시된 바와 같이 조직 병리학적으로, 맥락막 혈관신생이 유도된 눈은 망막 색소 상피(retinal pigment epithelium, RPE) 및 외측 망막의 파열과 함께 맥락막과 망막에서 섬유 혈관 복합체(fibrovascular complex)를 형성하였고, 이는 맥락막 혈관신생과 양립할 수 있다.
실험예 2. 맥락막 혈관신생의 ex vivo 이미지 및 인테그린의 중첩
도 2는 본 발명에 따라 맥락막 혈관신생 유도 후 7일째에 얻어진 맥락막 플랫마운트 면역 형광 이미지를 나타낸다. 여기서, (a)에서 미처리된 눈(왼쪽)과 비교할 때 맥락막 혈관신생 유도가 있는 눈 (오른쪽)은 과형광 스팟을 나타내며 이는 레이저 처리된 부위(화살촉)에 대응한다. (b)는 (a)의 사각형 부분, 즉 맥락막 혈관신생의 확대 이미지로서, FITC 표지 RGD 펩타이드로 염색된 레이저 처리된 병변은 렉틴으로 염색된 병변과 일치함을 나타내며, 이는 맥락막 혈관신생이 RGD 기반 프로브로 염색될 수 있음을 나타낸다. 처리되지 않은 망막(하부)에서, FITC 표지 RGD 펩타이드 면역 형광이 망막 혈관을 따라 관찰된다(OP = optic disc).
구체적으로, 도 2에 도시된 바와 같이 FITC 표지 고리형 RGD 펩타이드는 레이저 처리된 영역에서 맥락막 혈관신생을 가시화하였다. 특히 도 2(a)에 도시된 바와 같이 미처리 눈에 비해(도 2(a)의 왼쪽), 맥락막 혈관신생 관련 눈은 5개의 렉틴-양성(lectin-positive)인 RGD 펩타이드-결합 스팟(화살촉)을 나타내었다. 이 스팟들은 지형적으로 5개의 레이저 처리된 스팟과 일치한다(도 2(a)의 오른쪽). 이 스팟들은 DAPI, 렉틴 및 RGD 펩타이드로 동시에 염색되었다. 도 2(b)에 도시된 바와 같이, 스팟들 중 하나의 확대 이미지는 렉틴(도 2(b)의 상부)과 RGD-결합 단백질(인테그린 αvβ3)의 중첩(co-localization)을 잘 보여준다. 대조적으로, 렉틴-양성인 망막의 정상 혈관은 FITC 표지 RGD 펩티드로 거의 염색되지 않았다(도 2(b)의 하부). 이는 RGD 펩타이드 이합체-통합 프로브가 선택적으로 맥락막 혈관신생에 결합할 때, 맥락막 혈관신생이 RGD 펩티드 이합체-통합 프로브를 사용하여 이미지화될 수 있음을 나타낸다.
도 3은 RGD-결합 단백질과 인테그린 αvβ3의 중첩을 나타낸다. 구체적으로, 양쪽 눈에 대해 동일하게 레이저 처리한 마우스에서 맥락막 플랫마운트의 형광 염색을 나타내며, 두 눈을 DAPI, FITC-RGD, CD31 및 인테그린 αvβ3 항체로 동시에 염색하였다. 여기서 좌안(b)은 FITC-RGD 염색 전에 과다 cRGD로 배양하였다. 이 경우, FITC 표지 RGD 펩타이드의 형광은 과다 cRGD에 의해 현저하게 감소되는 것이 확인되었다.
도 3의 도시된 FITC-D-[c(RGDfK)]2 혈관 조영술 이미지는 종래 방사성 동위원소를 이용한 SEPCT 이미지보다 고해상도 이미지를 제공한다.
실험예 3. 맥락막 혈관신생 유도 후 인테그린 mRNA 발현
도 4(a)는 1, 3, 7 및 14일째 레이저 유도 맥락막 혈관신생을 가진 망막에서 역전사 중합 효소 연쇄반응(RT-PCR)에 의한 인테그린 mRNA 발현을 나타낸 것이고, 도 4(b)는 GAPDH 유전자 발현으로 정규화된 인테그린 발현 데이터로서 상부 막대는 95% 신뢰 구간의 상한을 나타낸다(P <0.05).
구체적으로 도 4와 같이, RT-PCR를 이용하여, 맥락막 혈관신생 유도 후 시간 경과에 따른 마우스 망막에서 인테그린 발현을 조사하였다. GAPDH(glyceraldehyde-3-phosphate dehydrogenase) 유전자의 발현으로 정규화 시켰을 때, 대부분의 인테그린은 유사한 발현 패턴을 나타내었다. 즉, 도 4(b)에 도시된 바와 같이 초기 단계에서 증가하였고(1일째 피크), 이후 2주 동안의 감소 양상을 보였는데 기준치와 비슷한 수준까지 감소하였다. 맥락막 혈관신생 유도 후 1일째에 integrin αv (1.48 배)와 β3 (1.24 배)의 발현이 증가하였다. 1일째에 인테그린 αv의 발현 증가는 통계적으로 유의했다(P <0.05). 3, 7, 14일째에는 기준치와 비교하여 인테그린 αv 또는 β3의 발현에는 유의한 변화가 없었다.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (8)

  1. 망막맥락막 신생혈관성 질환을 진단하기 위한 인테그린 αvβ3 표적화 프로브로서,
    NH2-고리형 RGD 펩타이드 전구체를 형광물질에 컨쥬게이트하여 완성된 형광물질 표지 고리형 RGD 펩타이드로 이루어진 인테그린 표적화 프로브.
  2. 제1항에 있어서,
    상기 NH2-고리형 RGD 펩타이드 전구체는 NH2-D-[c(RGDfK)]2이고, 상기 형광물질 표지 고리형 RGD 펩타이드는 FITC-D-[c(RGDfK)]2인 것을 특징으로 하는 인테그린 표적화 프로브.
  3. 제1항에 있어서,
    상기 형광물질은 FITC(fluorescein isothiocyanate), 쿠마린(coumarine), 캐스캐이드 블루(cascade blue), 퍼시픽 블루(pacific blue), 퍼시픽 오렌지(pacific orange), 루시퍼 옐로우(lucifer yellow), NBD, PE, PE-Cy5, PE-Cy7, Red 613, PerCP, TruRed, 플루오르X(FluorX), BODIPY-FL, 시아닌(Cyanine) 계열의 형광물질(Cy2, Cy3, Cy3B, Cy3.5, Cy5, Cy5.5, Cy7), TRITC(tetramethylrhodamine isothiocyanate), X-로다민(X-rhodamine), 리사민 로다민 B(lissamine rhodamine B), 텍사스 레드(texas red), 플루오레신(fluorescein), 인도시아닌그린(indocyanine green) 및 알로피코시아닌(allophycocyanin, APC)로 이루어진 그룹에서 선택된 하나 이상의 물질로 이루어진 것을 특징으로 하는 인테그린 표적화 프로브.
  4. 제1항에 있어서,
    상기 형광물질 표지 고리형 RGD 펩타이드는 형광안저혈관조영술에 사용되는 것을 특징으로 하는 인테그린 표적화 프로브.
  5. 망막맥락막 신생혈관성 질환을 진단하기 위한 인테그린 αvβ3 표적화 프로브의 제조 방법으로서,
    NH2-고리형 RGD 펩타이드 전구체를 합성하는 단계; 및
    상기 합성된 NH2-고리형 RGD 펩타이드 전구체를 형광물질에 컨쥬게이트하여 형광물질 표지 고리형 RGD 펩타이드를 완성하는 단계를 포함하는, 인테그린 표적화 프로브의 제조 방법.
  6. 제5항에 있어서,
    상기 NH2-고리형 RGD 펩타이드 전구체는 NH2-D-[c(RGDfK)]2이고, 상기 형광물질 표지 고리형 RGD 펩타이드는 FITC-D-[c(RGDfK)]2인 것을 특징으로 하는 인테그린 표적화 프로브의 제조 방법.
  7. 제5항에 있어서,
    상기 형광물질은 FITC(fluorescein isothiocyanate), 쿠마린(coumarine), 캐스캐이드 블루(cascade blue), 퍼시픽 블루(pacific blue), 퍼시픽 오렌지(pacific orange), 루시퍼 옐로우(lucifer yellow), NBD, PE, PE-Cy5, PE-Cy7, Red 613, PerCP, TruRed, 플루오르X(FluorX), BODIPY-FL, 시아닌(Cyanine) 계열의 형광물질(Cy2, Cy3, Cy3B, Cy3.5, Cy5, Cy5.5, Cy7), TRITC(tetramethylrhodamine isothiocyanate), X-로다민(X-rhodamine), 리사민 로다민 B(lissamine rhodamine B), 텍사스 레드(texas red), 플루오레신(fluorescein), 인도시아닌그린(indocyanine green) 및 알로피코시아닌(allophycocyanin, APC)로 이루어진 그룹에서 선택된 하나 이상의 물질로 이루어진 그룹에서 선택된 하나 이상의 물질로 이루어진 것을 특징으로 하는 인테그린 표적화 프로브의 제조 방법.
  8. 제5항에 있어서,
    상기 형광물질 표지 고리형 RGD 펩타이드는 형광안저혈관조영술에 사용되는 것을 특징으로 하는 인테그린 표적화 프로브의 제조 방법.
PCT/KR2019/015132 2019-03-11 2019-11-08 망막맥락막 신생혈관성 질환을 진단하기 위한 인테그린 αVβ3 표적화 프로브 및 이의 제조 방법 WO2020184806A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/438,412 US20220146519A1 (en) 2019-03-11 2019-11-08 Integrin alpha v beta 3 targeting probe for diagnosing retinochoroidal neovascular diseases and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0027284 2019-03-11
KR1020190027284A KR102307767B1 (ko) 2019-03-11 2019-03-11 망막맥락막 신생혈관성 질환을 진단하기 위한 인테그린 αvβ3 표적화 프로브 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2020184806A1 true WO2020184806A1 (ko) 2020-09-17

Family

ID=72427612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015132 WO2020184806A1 (ko) 2019-03-11 2019-11-08 망막맥락막 신생혈관성 질환을 진단하기 위한 인테그린 αVβ3 표적화 프로브 및 이의 제조 방법

Country Status (3)

Country Link
US (1) US20220146519A1 (ko)
KR (1) KR102307767B1 (ko)
WO (1) WO2020184806A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114835723A (zh) * 2022-07-01 2022-08-02 戴格普瑞生物科技(苏州)有限公司 Psma荧光分子探针、制备方法及试剂盒

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115960160A (zh) * 2021-10-12 2023-04-14 南京大学 活细胞膜整合素αvβ3聚糖的原位糖链延长方法
CN114949208B (zh) * 2022-05-06 2023-07-04 温州医科大学 纳米光动力材料及其脉络膜新生血管的治疗的应用
CN116239704B (zh) * 2023-05-09 2023-07-14 北京青云智创科技有限公司 一种治疗新生血管性眼病的多肽及其制剂

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040028966A (ko) * 2001-08-01 2004-04-03 메르크 파텐트 게엠베하 안구 질환 치료용 인테그린 억제제

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040028966A (ko) * 2001-08-01 2004-04-03 메르크 파텐트 게엠베하 안구 질환 치료용 인테그린 억제제

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AHN SEONG JOON; LEE HO-YOUNG; HONG HYE KYOUNG; JUNG JAE HO; PARK JI HYUN; PARK KYU HYUNG; KIM SANG EUN; WOO SE JOON; LEE BYUNG CHU: "Preclinical SPECT imaging of choroidal neovascularization in mice using integrin-binding 99mTc-IDA-D-[c(RGDfK)]2", MOLECULAR IMAGING AND BIOLOGY, vol. 21, no. 4, 20 November 2018 (2018-11-20), pages 644 - 653, XP036831347 *
AHN, S. J.: "Preclinical SPECT Imaging of Choroidal Neovascularization in Mice Using Integrin-Binding [99m Tc] IDA-D-[c (RGDfK)] 2", MOLECULAR IMAGING AND BIOLOGY, vol. 21, 20 November 2018 (2018-11-20), pages 644 - 653, XP036831347, DOI: 10.1007/s11307-018-1294-8 *
HONG, H. K.: "Preclinical Single photon emission computered tomography/computered tomography (SPECT/CT) imaging of choroidal neovascularization in macular degeneration mice using integrin-binding 99mTc-IDA-D-[c (RGDfK)] 2", INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, vol. 57, no. 12, September 2016 (2016-09-01) *
YUMIN ZHENG; SHUNDONG JI; ANDRZEJ CZERWINSKI; FRANCISCO VALENZUELA; MICHAEL PENNINGTON; SHUANG LIU: "FITC-conjugated cyclic RGD peptides as fluorescent probes for staining integrin alpha.nubeta3/alpha.nubeta5 in tumor tissues", BIOCONJUGATE CHEMISTRY, vol. 25, no. 11, 201411022 - 19 November 2014 (2014-11-19), pages 1925 - 1941, XP055567037 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114835723A (zh) * 2022-07-01 2022-08-02 戴格普瑞生物科技(苏州)有限公司 Psma荧光分子探针、制备方法及试剂盒
CN114835723B (zh) * 2022-07-01 2022-09-16 戴格普瑞生物科技(苏州)有限公司 Psma荧光分子探针、制备方法及试剂盒

Also Published As

Publication number Publication date
KR20200108545A (ko) 2020-09-21
US20220146519A1 (en) 2022-05-12
KR102307767B1 (ko) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2020184806A1 (ko) 망막맥락막 신생혈관성 질환을 진단하기 위한 인테그린 αVβ3 표적화 프로브 및 이의 제조 방법
Narfström et al. Functional and structural recovery of the retina after gene therapy in the RPE65 null mutation dog
ES2174855T5 (es) Metodos diagnosticos y composiciones farmaceuticas que se basan en proteinas notch y acidos nucleicos.
CN103415290B (zh) 用于治疗aids的化合物
Shi et al. Development, composition, and structural arrangements of the ciliary zonule of the mouse
Reichstein et al. Apoptotic retinal ganglion cell death in the DBA/2 mouse model of glaucoma
JP6797310B2 (ja) 老化細胞が介在する疾患を治療するためのペプチド系プロテアソーム阻害物質、およびがんを治療するためのペプチド系プロテアソーム阻害物質
TW201643161A (zh) 氟化之四氫 啶基壬酸衍生物及其用途
CN112007044B (zh) 一种预防视网膜神经节细胞氧化应激和湿性黄斑病变的药物
Thorne et al. Lichen planus and cicatrizing conjunctivitis: characterization of five cases
PT1539157E (pt) Rapamicina para utilização na inibição ou prevenção de neovascularização coroidal
KR20180043329A (ko) [4-(1,3,3-트리메틸-2-옥소-3,4-디히드로-1h-퀴녹살린-7-일)페녹시]에틸옥시 화합물 또는 그의 염
JPH08176087A (ja) 2,9−ジアミノ−及び2−アミノ−8−カルバモイル−4−ヒドロキシ−アルカノン酸アミド誘導体
Tu et al. AAV-mediated gene delivery of the calreticulin anti-angiogenic domain inhibits ocular neovascularization
Bonet-Fernández et al. CPAMD8 loss-of-function underlies non-dominant congenital glaucoma with variable anterior segment dysgenesis and abnormal extracellular matrix
WO2021045485A1 (ko) 면역 마이크로버블 복합체 및 이의 이용
WO2012099448A2 (ko) αΑ-크리스탈린 유전자를 발현하는 재조합 아데노바이러스 및 이를 이용한 망막혈관 질환의 유전자 치료
US20150367004A1 (en) Compositions and methods of diagnosing ocular diseases
PT1614419E (pt) Medicamentos para a prevenção ou o tratamento de doenças do nervo da retina contendo derivados de éter de alquilo ou os seus sais
USRE49518E1 (en) Fluorescent probe for detecting calpain activity
Nguyen et al. USH2A gene mutations in rabbits lead to progressive retinal degeneration and hearing loss
US20110195931A1 (en) Methods and compositions for reducing neuronal cell death
CN102656161A (zh) 用于治疗与淀粉状蛋白有关的疾病或用于治疗眼部疾病的2,6-二氨基吡啶化合物
JP6989864B2 (ja) ギャップ結合細胞間コミュニケーションモジュレータ及び糖尿病性眼疾患の治療のためのそれらの使用
BR112020024605A2 (pt) Métodos para o tratamento de câncer de bexiga

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919278

Country of ref document: EP

Kind code of ref document: A1