WO2020184678A1 - 三次元測定システム及び三次元測定方法 - Google Patents

三次元測定システム及び三次元測定方法 Download PDF

Info

Publication number
WO2020184678A1
WO2020184678A1 PCT/JP2020/010912 JP2020010912W WO2020184678A1 WO 2020184678 A1 WO2020184678 A1 WO 2020184678A1 JP 2020010912 W JP2020010912 W JP 2020010912W WO 2020184678 A1 WO2020184678 A1 WO 2020184678A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
robot arm
dimensional measurement
surface plate
temperature
Prior art date
Application number
PCT/JP2020/010912
Other languages
English (en)
French (fr)
Inventor
田村 仁
智生 山形
健人 栗原
陽一 外川
Original Assignee
株式会社東京精密
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020037113A external-priority patent/JP6725862B1/ja
Priority claimed from JP2020037114A external-priority patent/JP7458578B2/ja
Priority claimed from JP2020037115A external-priority patent/JP7400183B2/ja
Application filed by 株式会社東京精密 filed Critical 株式会社東京精密
Priority to DE112020000438.4T priority Critical patent/DE112020000438B4/de
Priority to CN202080009482.0A priority patent/CN113330277B/zh
Priority to GB2112849.1A priority patent/GB2596439B/en
Publication of WO2020184678A1 publication Critical patent/WO2020184678A1/ja
Priority to US17/336,541 priority patent/US11365959B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0002Arrangements for supporting, fixing or guiding the measuring instrument or the object to be measured
    • G01B5/0004Supports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/004Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points
    • G01B5/008Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points using coordinate measuring machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/088Controls for manipulators by means of sensing devices, e.g. viewing or touching devices with position, velocity or acceleration sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0091Shock absorbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • G01B11/005Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates coordinate measuring machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
    • G01B21/045Correction of measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0002Arrangements for supporting, fixing or guiding the measuring instrument or the object to be measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0011Arrangements for eliminating or compensation of measuring errors due to temperature or weight
    • G01B5/0014Arrangements for eliminating or compensation of measuring errors due to temperature or weight due to temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector

Definitions

  • the present invention relates to a three-dimensional measurement system and method, and particularly to a three-dimensional measurement system and method using a three-dimensional measuring machine and a robot arm.
  • Patent Document 1 proposes a measuring jig used when installing a work on a surface plate.
  • a block can be appropriately installed on a pallet of a plate material, and a work having a three-dimensional shape can be fixed by this block. Then, a plurality of pallets to which the workpieces are fixed are prepared in advance, and the workpieces are automatically set on the surface plate by exchanging the pallets.
  • the posture of the work to be measured is not necessarily one type, but may extend to multiple types.
  • a measuring jig suitable for each posture of the work is required, which requires man-hours and costs for designing the measuring jig.
  • the work must be installed on the measuring jig for each measurement posture, and it takes time to prepare for the measurement.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a three-dimensional measurement system and a three-dimensional measurement method having improved measurement accuracy and measurement efficiency.
  • the three-dimensional measurement system is a robot having a surface plate, an end effector for holding a work to be measured, and a variable posture of the work. It includes an arm and a probe configured to be movable relative to the surface plate. Since the robot arm is provided with a variable work posture, the work posture can be easily changed when performing three-dimensional measurement using a probe configured to be relatively movable with respect to the surface plate. Thereby, the efficiency of the three-dimensional measurement can be improved. Further, since the posture of the work is changed by using the robot arm, the variation in the measurement position is reduced, and the measurement accuracy can be improved.
  • the probe performs three-dimensional measurement of the work while the work is held by the robot arm. Since the work is measured three-dimensionally from the probe while the work is held by the end effector of the robot arm, the posture of the work can be easily changed. Thereby, the efficiency of the three-dimensional measurement can be further improved.
  • the three-dimensional measurement system is a work by a probe based on a relative position change detecting means for detecting a change in the relative position between the surface plate and the robot arm and a detection result of the relative position change detecting means. It is provided with a correction means for correcting the measurement result of.
  • An example of an external environment (measurement environment) that can affect the accuracy of three-dimensional measurement is a change in the relative position between the surface plate and the robot arm. Since the change in the relative position between the surface plate and the robot arm can be detected by the relative position change detecting means and the measurement result of the work by the probe can be corrected by the correction means based on the detection result, the three-dimensional measurement of the work can be performed. The accuracy can be further improved.
  • the relative position change detecting means includes an arm vibration detecting means for detecting the vibration of the robot arm.
  • the relative position change detecting means is a surface plate vibration detecting means for detecting the vibration of the surface plate and / or an inclination for detecting the inclination of the surface plate with respect to the horizontal direction. Includes detection means. As a result, the influence of vibration and / or inclination of the surface plate can be reduced, and the accuracy of the three-dimensional measurement can be further improved.
  • the relative position change detecting means detects the amount of change in the relative position in each of the horizontal direction and the vertical direction, and the correction means is used in each of the horizontal direction and the vertical direction. , The amount of change in the relative position is added or subtracted from the measurement result of the work by the probe.
  • the relative position change detecting means detects the relative position change in real time
  • the correction means uses a probe based on the relative position change detected in real time. The measurement result of the work is corrected in real time.
  • the relative position change detecting means irradiates the reflector and the reflector with a laser beam, receives the reflected light of the laser beam from the reflector, and receives the reflected light of the laser beam of the reflector.
  • a laser tracker main body for acquiring displacement and a laser tracker having the laser tracker body are provided.
  • the reflector is placed on the robot arm.
  • the reflector By arranging the reflector on the robot arm, it is possible to more accurately detect the influence of the vibration of the robot arm itself on the work W.
  • the three-dimensional measurement system includes a temperature detecting means for detecting the temperature of the work and a correction means for correcting the measurement result of the work by the probe based on the detection result of the temperature detecting means.
  • a further example of the external environment (measurement environment) that can affect the accuracy of 3D measurement is the temperature of the work. Since the temperature of the work can be detected by the temperature detecting means and the three-dimensional measurement result can be corrected by the correction means based on the temperature of the work, the influence of the temperature of the work can be reduced and the accuracy of the three-dimensional measurement can be further improved. be able to.
  • the end effector of the robot arm includes a temperature detecting means for detecting the temperature of the work. More preferably, the temperature detecting means is provided on the holding surface on which the end effector holds the work. As a result, the temperature of the work held by the end effector can be detected with high accuracy. Further, since the end effector is provided with the temperature detecting means, the temperature detection can be automatically started when the work is held by the robot arm. As a result, the efficiency of three-dimensional measurement can be improved. More preferably, the three-dimensional measurement system according to the first aspect includes a correction means for correcting the measurement result of the work by the probe based on the detection result of the temperature detection means. Since the three-dimensional measurement result can be corrected based on the temperature of the work, the influence of the temperature of the work can be reduced and the accuracy of the three-dimensional measurement can be further improved.
  • the temperature detecting means detects the temperature of the work while the work is held by the robot arm. Since the temperature can be detected while the work is held by the robot arm without installing the work on the surface plate, for example, when the work does not meet a predetermined temperature condition, the work is temporarily installed on the surface plate. It can be carried out quickly without any problems. As a result, the operating rate of the three-dimensional measurement system can be improved.
  • the temperature detecting means starts detecting the temperature of the work when the work is held by the robot arm.
  • the temperature is detected after the work is placed on the surface plate, but in the three-dimensional measurement system according to the first aspect, the temperature detection can be started at a timing earlier than the conventional one. For example, this advantage becomes remarkable when the temperature detecting means takes a long time to start up.
  • the robot base that supports the robot arm may be provided outside the surface plate. Since the robot base is provided outside the surface plate, a relatively large robot arm can be used.
  • the robot base that supports the robot arm may be provided on the surface plate. Since the robot base is provided on the surface plate, the vibration system of the robot arm is the same as the vibration system of the surface plate. As a result, the influence of vibration in the external environment can be reduced, and the accuracy of the three-dimensional measurement can be further improved.
  • the robot arm has a contact portion that directly or indirectly contacts the surface plate when measuring the work by the probe. Since the contact portion of the robot arm is brought into direct or indirect contact with the surface plate, the vibration of the robot arm itself can be reduced, and the accuracy of the three-dimensional measurement can be further improved.
  • a vibration damping member is provided on the surface plate, and the contact portion of the robot arm indirectly contacts the surface plate via the vibration damping member. Since the contact portion of the robot arm indirectly contacts the surface plate, the degree of freedom in the posture of the robot arm at the time of measurement can be improved. In addition, since a gap in the vertical direction (Z direction) can be secured between the robot arm and the surface plate, a workpiece having a relatively long vertical length is held so as not to come into contact with the surface plate for measurement. It can be carried out.
  • the robot arm includes a plurality of arms and a plurality of joints rotatably connecting the plurality of arms, and the robot arm has a plurality of contact portions. It is one of the joints. More preferably, the contact portion of the robot arm is the joint portion closest to the end effector side among the plurality of joint portions.
  • the three-dimensional measurement method according to the second aspect of the present invention uses a transport step for transporting the work to be measured by a robot arm whose posture is variable, and a surface plate.
  • it includes a measurement step of performing a three-dimensional measurement of the work by a probe configured to be relatively movable.
  • the three-dimensional measurement method according to the second aspect can also obtain the same effect as the three-dimensional measurement system according to the first aspect.
  • the work is three-dimensionally measured by the probe while the work is held by the robot arm. Since the work is measured three-dimensionally from the probe while the work is held by the end effector of the robot arm, the posture of the work can be easily changed. Thereby, the efficiency of the three-dimensional measurement can be further improved.
  • the three-dimensional measurement method according to the second aspect is based on a relative position change detection step for detecting a change in the relative position between the surface plate and the robot arm and a measurement step based on the detection result by the relative position change detection step. It includes a vibration correction step for correcting the measurement result of the workpiece.
  • An example of an external environment (measurement environment) that can affect the accuracy of three-dimensional measurement is a change in the relative position between the surface plate and the robot arm. Since the change in the relative position between the surface plate and the robot arm can be detected in the relative position change detection step and the measurement result of the work by the probe can be corrected in the vibration correction step based on the detection result, the work can be measured three-dimensionally. The accuracy of the above can be further improved.
  • the relative position change detection step preferably includes a step of detecting vibration of the robot arm. Further, preferably, the relative position change detection step includes a step of detecting the vibration of the surface plate. Further, preferably, the relative position change detection step includes a step of detecting the inclination of the surface plate.
  • the relative position change detection step includes a step of detecting a relative position change amount in each of the horizontal direction and the vertical direction
  • the vibration correction step includes a step of detecting the relative position change amount. It includes a step of adding or subtracting the amount of change in the relative position with respect to the measurement result of the workpiece by the probe in each of the horizontal direction and the vertical direction.
  • the relative position change detection step detects the relative position change in real time
  • the vibration correction step detects the relative position change detected in real time. Based on this, the measurement result of the workpiece by the probe is corrected in real time.
  • the three-dimensional measurement method according to the second aspect of the present invention includes a temperature detection step for detecting the temperature of the work and a temperature correction for correcting the measurement result of the work by the measurement step based on the detection result by the temperature detection step. Including steps.
  • a further example of the external environment (measurement environment) that can affect the accuracy of 3D measurement is the temperature of the work. Since the temperature of the work can be detected in the temperature detection step and the three-dimensional measurement result can be corrected based on the temperature of the work in the temperature correction step, the influence of the temperature of the work can be reduced and the accuracy of the three-dimensional measurement can be further improved. Can be made to.
  • the three-dimensional measurement method according to the second aspect of the present invention includes a temperature detection step of detecting the temperature of the work by the temperature detecting means provided in the end effector of the robot arm.
  • the temperature of the work held by the end effector can be detected with high accuracy.
  • the end effector is provided with the temperature detecting means, the temperature detection can be automatically started when the work is held by the robot arm. As a result, the efficiency of three-dimensional measurement can be improved.
  • the three-dimensional measurement method according to the second aspect of the present invention further includes a temperature correction step for correcting the measurement result of the work by the measurement step based on the detection result by the temperature detection step.
  • the temperature detection step is performed in the transport step.
  • the efficiency of the three-dimensional measurement can be further improved.
  • the temperature detection step is preferably performed in a state where the work is held by the robot arm. Even if the work is not installed on the surface plate, the temperature can be detected by the temperature detecting means while the work is held by the robot arm, so that the efficiency of the three-dimensional measurement can be improved.
  • the temperature detection step is preferably started when the work is held by the robot arm.
  • the temperature is detected after the work is placed on the surface plate by the robot arm, but in the three-dimensional measurement method according to the second aspect, the temperature detection can be started at a timing earlier than the conventional one. ..
  • the three-dimensional measurement method includes a temperature determination step of determining whether or not the temperature of the work satisfies a predetermined temperature condition. Thereby, for example, it can be determined whether or not the temperature of the work satisfies the temperature condition suitable for the three-dimensional measurement.
  • the temperature determination step is performed in a state where the work is held by the robot arm.
  • the work is carried out while being held by the robot arm.
  • the work can be quickly carried out without being placed on the surface plate once. Thereby, the efficiency of the three-dimensional measurement can be further improved.
  • the temperature detection step is performed in real time while the work is held by the robot arm, and in the temperature correction step, the measurement result of the work by the measurement step is measured in real time based on the detection result by the temperature detection step.
  • the time lag time difference
  • the robot base that supports the robot arm is preferably provided outside the surface plate.
  • the robot base that supports the robot arm is provided on the surface plate.
  • the three-dimensional measurement method preferably includes an installation step in which the contact portion of the robot arm is directly or indirectly contacted with the surface plate while the work is held by the robot arm. Further, preferably, a vibration damping member is provided on the surface plate, and the contact portion of the robot arm indirectly contacts the surface plate via the vibration damping member in the installation step.
  • the robot arm includes a plurality of arms and a plurality of joint portions rotatably connecting the plurality of arms, and the robot arm has a plurality of contact portions. It is one of the joints. More preferably, the contact portion of the robot arm is the joint portion closest to the end effector side among the plurality of joint portions.
  • FIG. 1 is a diagram showing an example of a three-dimensional measurement system according to the first embodiment.
  • FIG. 2 is a diagram showing an example of a three-dimensional measuring machine.
  • FIG. 3 is a diagram showing an example of a robot arm.
  • FIG. 4 is a flowchart showing a three-dimensional measurement method according to the first embodiment.
  • FIG. 5 is a diagram illustrating an example of a work transport step in the first embodiment.
  • FIG. 6 is a diagram illustrating an example of an installation step and a measurement step in the first embodiment.
  • FIG. 7 is a diagram illustrating another example of the installation step and the measurement step in the first embodiment.
  • FIG. 8 is a diagram showing an example of the change step in the first embodiment.
  • FIG. 1 is a diagram showing an example of a three-dimensional measurement system according to the first embodiment.
  • FIG. 2 is a diagram showing an example of a three-dimensional measuring machine.
  • FIG. 3 is a diagram showing an example of a robot arm.
  • FIG. 9 is a diagram showing an example in which the joint portion is pressed against the block on the surface plate in the first embodiment.
  • FIG. 10 is a diagram illustrating a case where the gate of the coordinate measuring machine moves in a state where a part of the robot arm is directly pressed against the surface plate in the first embodiment.
  • FIG. 11 is a diagram illustrating a case where the gate of the coordinate measuring machine moves without pressing a part of the robot arm against the surface plate in the first embodiment.
  • FIG. 12 is a schematic configuration diagram of the three-dimensional measurement system according to the second embodiment.
  • FIG. 13 is a diagram illustrating the effect of the movement of the gate of the coordinate measuring machine on the measurement accuracy in the three-dimensional measuring system according to the second embodiment.
  • FIG. 10 is a diagram illustrating a case where the gate of the coordinate measuring machine moves in a state where a part of the robot arm is directly pressed against the surface plate in the first embodiment.
  • FIG. 11 is a diagram illustrating a case where the gate of the coordinate measuring machine
  • FIG. 14 is a diagram showing a state in which a part of the robot arm is in direct or indirect contact with the surface plate 18 in the three-dimensional measurement system according to the second embodiment.
  • FIG. 15 is a schematic configuration diagram of the three-dimensional measurement system according to the third embodiment.
  • FIG. 16 is a diagram showing an example of arrangement of the reflector and the laser tracker main body when the relative position change detecting means includes a plurality of laser trackers.
  • FIG. 17 is a flowchart showing a three-dimensional measurement method according to the third embodiment.
  • FIG. 18 is an example of a graph showing a time change of the relative position detected by the relative position change detecting means.
  • FIG. 19 is a schematic configuration diagram of the three-dimensional measurement system according to the fourth embodiment.
  • FIG. 19 is a schematic configuration diagram of the three-dimensional measurement system according to the fourth embodiment.
  • FIG. 20 is a schematic configuration diagram of the three-dimensional measurement system according to the fifth embodiment.
  • FIG. 21 is a diagram showing an example of an end effector having a temperature detecting means.
  • FIG. 22 is a diagram showing an example of an end effector having a temperature detecting means.
  • FIG. 23 is a flowchart showing a three-dimensional measurement method according to the fifth embodiment.
  • FIG. 24 is a flowchart showing a three-dimensional measurement method according to the first modification of the fifth embodiment.
  • FIG. 25 is a flowchart showing a three-dimensional measurement method according to the third modification of the fifth embodiment.
  • FIG. 1 is a schematic configuration diagram of the three-dimensional measurement system 1000 according to the present embodiment.
  • a part of the column 16 of the coordinate measuring machine 1 is omitted in order to illustrate the robot arm 50.
  • the three-dimensional measurement system 1000 includes a three-dimensional measuring machine 1 and a robot arm device 100.
  • the robot base 52 of the robot arm 50 is arranged outside the surface plate 18 of the coordinate measuring machine 1.
  • FIG. 2 is a diagram (perspective view and block diagram) showing an example of the coordinate measuring machine 1 used in the present embodiment.
  • a three-dimensional Cartesian coordinate system will be used.
  • the three-dimensional measuring machine 1 includes a measuring machine main body 10 and a measuring machine control device 30.
  • a contact type three-dimensional measuring machine including a contact type probe as the three-dimensional measuring machine 1 will be described.
  • the coordinate measuring machine 1 may be a non-contact type three-dimensional measuring machine.
  • a laser probe may be used instead of the contact type probe 22 described below.
  • the measuring machine main body 10 causes the stylus 26 formed at the tip of the probe 22 (including the stylus 24) to be brought into contact with the work W to be measured and scanned, thereby causing the shape (contour) and dimensions of the work W to be scanned. It is a device that measures such things.
  • the measuring machine main body 10 includes a base 20 and a surface plate 18 provided on the base 20.
  • the surface of the surface plate 18 is formed in a plane parallel to the XY plane.
  • a pair of columns (posts) 16 extending from the surface of the surface plate 18 to the upper side (+ Z direction) in the drawing are attached to the surface plate 18.
  • a beam (beam) 14 is bridged over the upper end (+ Z side end) of the column 16.
  • the pair of columns 16 can move on the surface plate 18 in synchronization with the Y direction, and the beam 14 can move in the Y direction in a state parallel to the X direction.
  • a motor can be used as a driving means for moving the column 16 with respect to the surface plate 18. It is a gate-type coordinate measuring machine 1 in which a gate is formed by a beam 14 and a column 16.
  • a head 12 extending in the Z direction is attached to the beam 14.
  • the head 12 is movable along the length direction (X direction) of the beam 14.
  • a motor can be used as the driving means for moving the head 12 with respect to the beam 14.
  • a probe 22 is attached to the lower end of the head 12 (the end on the ⁇ Z side) so as to be movable in the vertical direction (Z direction) in the drawing.
  • a motor can be used as a driving means for moving the probe 22 in the vertical direction.
  • the measuring machine main body 10 includes a movement amount measuring unit (for example, a linear encoder, not shown) for measuring the movement amount of each of the column 16, the head 12, and the probe 22.
  • a movement amount measuring unit for example, a linear encoder, not shown
  • the probe 22 includes a highly rigid shaft-shaped member (stylus 24).
  • stylus 24 As the material of the stylus 24, for example, cemented carbide, titanium, stainless steel, ceramic, carbon fiber and the like can be used.
  • a stylus 26 is provided at the tip of the stylus 24 of the probe 22.
  • the stylus 26 is a spherical member having high hardness and excellent wear resistance.
  • the diameter of the stylus 26 (hereinafter referred to as the stylus diameter) is 4.0 mm in one example.
  • the column 16, the head 12, and the probe 22 are moved in the XYZ direction to bring the stylus 26 into contact with the work W. Then, the displacement amount of the stylus 26 and the like are measured while scanning the stylus 26 along the outer shape of the work W. Data such as the measured value of the displacement amount is transmitted to the measuring machine control device 30.
  • the measuring machine control device 30 can obtain the shape (contour), dimensions, and the like of the work W by processing this data using a general-purpose measuring program.
  • the controller 40 is a means for communicating with the measuring machine main body 10, and performs a conversion process of data sent and received with the measuring machine main body 10.
  • the controller 40 is a D / A (digital-to-analog) converter for converting a digital command transmitted from the measuring machine control device 30 to the measuring machine main body 10 into an analog signal, and a measuring machine from the measuring machine main body 10. It may include an A / D (analog-to-digital) converter for converting data such as measured values sent to the control device 30 into digital data.
  • FIG. 3 is a diagram (conceptual diagram and block diagram) showing an example of the robot arm device 100 used in the present embodiment.
  • the robot arm device 100 is composed of a robot arm 50 and a robot arm control device 60.
  • the robot arm 50 includes a plurality of movable parts, and also includes a plurality of motors for driving the plurality of movable parts.
  • the robot arm control device 60 operates the robot arm 50 by controlling a motor provided in the robot arm 50.
  • the robot arm control device 60 is composed of a computer, and automatically operates the robot arm 50 by a user's operation or a dedicated program.
  • the robot arm 50 is designed so that the work W can be held. Specifically, the robot arm 50 holds (grasps) the work W by the end effector EE connected to the first joint portion (wrist portion) J1. Further, the end effector EE can freely change the posture of the work W. For example, the end effector EE can change the posture of the work W by rotating in parallel with the YY plane or in parallel with the XY plane.
  • the robot arm 50 has four joints (first joint J1 to fourth joint J4) and three arms (first arms A1 to third arms) sequentially connected by these joints. A3) and an articulated arm having a robot base 52.
  • first joint portion J1 connects the end effector EE and the first arm A1, and the end effector EE is rotatable relative to the first arm A1.
  • the second joint portion J2 connects the first arm A1 and the second arm A2, and the first arm A1 is rotatable around an axis extending in the longitudinal direction of the first arm A1.
  • the third joint portion J3 connects the second arm A2 and the third arm A3, and the second arm A2 can rotate about an axis extending in the horizontal direction with respect to the third arm A3.
  • the fourth joint portion J4 connects the third arm A3 and the tip portion 52a of the robot base 52, and the third arm A3 can rotate about an axis extending horizontally with respect to the robot base 52.
  • the robot arm device 100 shown in FIG. 3 is an example, and other known robot arm devices of other forms may be used.
  • FIG. 4 is a flowchart showing a measurement method using the robot arm device 100 and the coordinate measuring machine 1.
  • the robot arm device 100 holds the work W outside the measurement space of the coordinate measuring machine 1 by the end effector EE (step S10), and transports the work W into the measurement space of the coordinate measuring machine 1 while holding the work W.
  • Step S11 Transport step.
  • a part of the robot arm 50 is directly pressed (contacted) with the upper surface of the surface plate 18 (hereinafter referred to as the surface plate 18) to bring the work.
  • the measurement posture of W is determined (step S12: installation step).
  • the work W is measured by the coordinate measuring machine 1 (step S13: measurement step).
  • the robot arm device 100 operates the end effector EE to change the posture of the work W while holding the work W (step S14: change step).
  • the work W is measured after the posture is changed by the coordinate measuring machine 1 (step S15).
  • FIG. 5 is a diagram illustrating an example of a work W transport step (step S11 in FIG. 4).
  • the robot arm device 100 holds the work W outside the measurement space of the coordinate measuring machine 1 by the end effector EE, and holds the work W in the measurement space of the coordinate measuring machine 1 in the held state. Carry.
  • the measuring machine control device 30, the controller 40, and the robot arm control device 60 are omitted. Further, in FIGS. 5 to 11, a part of the column 16 of the coordinate measuring machine 1 is omitted in order to illustrate the robot arm 50.
  • FIG. 6 is a diagram illustrating an example of an installation step (step S12 in FIG. 4) and a measurement step (step S13 in FIG. 4).
  • the work W is positioned by directly pressing the first joint portion J1 (wrist portion) on the end effector EE side, which is a part of the robot arm 50, directly onto the surface plate 18. ing.
  • first joint portion J1 an example of the contact portion
  • the platen by directly pressing the first joint portion J1 (an example of the contact portion) of the robot arm 50 onto the platen 18, ground vibration (vibration of the external environment) and vibration of the robot arm device 100 itself can be generated. It is suppressed, and the influence on the tip portion of the robot arm 50 and the work W is suppressed.
  • the robot arm 50 is affected by the ground vibration and the vibration of the robot arm device 100 itself.
  • the first joint portion J1 of the robot arm 50 is pressed onto the surface plate 18, thereby suppressing the influence of vibration on the work W.
  • the above-mentioned vibration is easily affected by the tip portion (the portion holding the work W) of the robot arm device 100.
  • the influence of vibration is effectively suppressed by pressing the first joint portion J1 which is the tip portion of the robot arm 50 onto the surface plate 18.
  • FIG. 7 is a diagram illustrating another example of the installation step and the measurement step.
  • the third joint portion (an example of the elbow portion and the contact portion) J3 of the robot arm 50 is directly pressed against the surface plate 18 to position the work W.
  • the third joint portion J3 By pressing the third joint portion J3 directly onto the surface plate 18 in this way, the ground vibration and the vibration of the robot arm device 100 itself are suppressed, and the work W held by the end effector EE of the robot arm 50 is suppressed.
  • the influence of vibration on the robot can be suppressed.
  • FIG. 8 is a diagram showing an example of the change step (step S14 of FIG. 4).
  • a part of the robot arm 50 for example, the first joint portion J1 is separated from the surface plate 18 to change the posture of the work W.
  • the robot arm 50 changes the posture of the work W by rotating the end effector EE in parallel with the XX plane.
  • the posture of the work W is changed in order to measure the back surface of the work W.
  • a part of the robot arm 50 is pressed onto the surface plate 18 at the same position as before the posture of the work W is changed, and the work W whose posture has been changed is measured.
  • the position on the surface plate 18 on which a part of the robot arm 50 is pressed may be different before and after the posture of the work W is changed. In this way, since the posture of the work W can be changed by operating the end effector EE, it is not necessary to prepare a measuring jig for each posture of the work W, and the posture of the work W can be easily changed. it can.
  • ⁇ Modified example of the first embodiment> As an example of a mode in which a part of the robot arm 50 is directly pressed against the surface plate 18, a mode in which the joint portions (joint portions J1, joint portions J3) of the robot arm 50 are pressed onto the surface plate 18 This has been described (step S12 in FIG. 4).
  • the present invention is not limited to this, and a part of the robot arm 50 may be indirectly pressed against the surface plate 18 in step S12 of FIG.
  • a mode in which a part of the robot arm 50 is indirectly pressed against the surface plate 18 a case where a part of the robot arm 50 is pressed against a vibration damping member (block) on the surface plate 18 will be described.
  • FIG. 9 is a diagram showing an example in which the first joint portion J1 is pressed as a part of the robot arm 50 against the upper surface of the block B on the surface plate 18 (hereinafter, referred to as the block B).
  • the block B the surface plate 18
  • the same effect as when the first joint portion J1 is directly pressed onto the surface plate 18 can be obtained.
  • the first joint portion J1 onto the block B ground vibration and vibration of the robot arm device 100 itself can be suppressed.
  • a space can be secured between the end effector EE and the surface plate 18, and even a work WL having a long length in the Z direction comes into contact with the surface plate 18.
  • the measurement can be performed by holding it so that it does not occur.
  • the shape and material of block B are not particularly limited.
  • the shape and material of the block B are such that a part of the robot arm 50 is pressed on the surface plate 18 and a part of the robot arm 50 is pressed to suppress vibration. Selected in consideration.
  • the measurement accuracy can be maintained as compared with the case where the robot arm 50 is not pressed.
  • FIG. 10 is a diagram illustrating a case where the gate of the coordinate measuring machine 1 moves while a part of the robot arm 50 is directly pressed onto the surface plate 18.
  • the inclination of the surface plate 18 shown in FIG. 10 is exaggerated for the sake of explanation, and the inclination of the surface plate 18 is actually very small.
  • the surface plate 18 is slightly tilted due to the influence of the weight of the gate. Specifically, when the gate moves in the positive direction of the Y-axis, the surface plate 18 sinks due to the weight of the gate at the destination, and the surface plate 18 floats in the opposite direction, resulting in a slight surface plate 18. Tilt.
  • the measurement space G of the coordinate measuring machine 1 also tilts as the surface plate 18 tilts, as shown in FIG.
  • FIG. 11 is a diagram illustrating a case where the gate of the coordinate measuring machine 1 moves without pressing the robot arm 50 against the surface plate 18.
  • the robot arm 50 does not move following the inclination of the surface plate 18, and the work W held by the robot arm 50 is related to the inclination of the surface plate 18. It is in a state of being held (fixed) in a fixed position. Further, as the surface plate 18 is tilted, the measurement space GB changes to the measurement space G, but the position of the work W cannot follow this change and remains at a constant position.
  • the measurement is performed in a state where a part (first joint portion J1) of the robot arm 50 is directly (or indirectly) pressed against the surface plate 18. .. Therefore, even if the surface plate 18 is tilted, the position (posture) of the robot arm 50 changes according to the tilt of the surface plate 18, and the position of the work W also changes according to the change. That is, since the work W also moves following the inclination of the surface plate 18, it is unlikely that a large deviation will occur in the relative positions of the surface plate 18 and the work W. Therefore, even if the measurement space G moves with the movement of the gate, the relative positions of the work W and the measurement space G are unlikely to shift. Therefore, when a part of the robot arm 50 is not pressed against the surface plate 18. Compared with (see FIG. 11), the measurement accuracy can be maintained.
  • the robot arm 50 when the robot arm 50 is pressed against the surface plate 18, even if the gate moves, the position of the work W can be moved according to the change in the measurement space, so that it is three-dimensional. The accuracy of measurement by the measuring machine 1 can be maintained.
  • the portion pressed against the surface plate 18 is not limited to the joint portion of the robot arm 50.
  • the arms of the robot arm 50 (arms A1 to A3) may be pressed directly or indirectly onto the surface plate 18, and other parts of the robot arm 50 may be directly or indirectly pressed onto the surface plate 18. It may be pressed against the target.
  • the portion where a part of the robot arm 50 is directly or indirectly pressed is not limited to the surface plate 18, and for example, a part of the robot arm 50 is directly or indirectly pressed on the side surface of the surface plate 18. May be pressed against.
  • FIG. 12 is a schematic configuration diagram of the three-dimensional measurement system 2000 according to the second embodiment.
  • the three-dimensional measurement system 2000 according to the second embodiment includes a three-dimensional measuring machine 1 and a robot arm device 200.
  • the robot arm device 100 includes a robot base 52 arranged outside the surface plate 18 of the coordinate measuring machine 1, whereas in the second embodiment, the robot arm device 200 is attached to the robot base 52. Instead, a robot base 53 arranged on the surface plate 18 of the coordinate measuring machine 1 is provided.
  • the configuration other than the position of the robot base 53 is basically the same as that of the first embodiment, and the method of measuring the work W according to the configuration of the second embodiment is also basically the same as that of the first embodiment. The description of these will be omitted. Further, it is desirable that the robot arm device 200 is relatively small because it is arranged on the surface plate 18.
  • the vibration system of the robot arm device 200 is in the horizontal direction (X direction) of the three-dimensional measuring machine 1.
  • the robot arm device 200 is less susceptible to the vibration of the external environment because it is the same as the vibration system in the Y direction and the vertical direction (Z direction). Therefore, it is possible to reduce the influence of vibration of the external environment and improve the accuracy of the three-dimensional measurement of the work W.
  • Reference numeral 13A in FIG. 13 indicates a case where a part of the robot arm 50 is directly or indirectly measured in the three-dimensional measurement system 1000 according to the first embodiment without contacting the surface plate 18 (that is, FIG. 11 is shown. Same as the state).
  • the surface plate 18 is parallel to the XY plane, and the central axis of the work W is parallel to the Z direction.
  • reference numeral 13A the result of the gate of the coordinate measuring machine 1 moving in the positive direction of the Y axis and the position of the gate of the coordinate measuring machine 1 changing from the position indicated by the two-point chain line to the position indicated by the solid line. It is assumed that the posture of the surface plate 18 is changed so that the surface plate 18 is inclined with respect to the horizontal direction due to the influence of the weight of the gate. Then, as described with reference to FIG. 11, the measurement space G also changes with the change in the posture of the surface plate 18.
  • the robot base 52 Since the robot base 52 is arranged outside the surface plate 18, the position of the work W held by the end effector EE (central axis L1) does not follow the change in the posture of the surface plate 18. As a result, if the posture of the surface plate 18 changes due to the movement of the gate, the relative positional relationship between the surface plate 18 (and the measurement space G) and the work W changes, which may adversely affect the measurement accuracy.
  • Reference numeral 13B in FIG. 13 indicates a case where the gate of the coordinate measuring machine 1 moves in the same manner as in reference numeral 13A in the three-dimensional measuring system 2000 according to the second embodiment.
  • the robot base 53 is arranged on the surface plate 18, the position of the work W held by the end effector EE can follow the inclination of the surface plate 18.
  • the relative position between the surface plate 18 (and the measurement space G) and the work W does not change significantly with the tilt of the surface plate 18, and the measurement accuracy is high. Is maintained.
  • the robot arm device 200 can follow the change in the posture of the surface plate 18, so that the influence of the change in the posture of the surface plate 18 is reduced.
  • the work W can be measured three-dimensionally with high accuracy.
  • the three-dimensional measurement method according to the second embodiment is the same as the three-dimensional measurement method according to the first embodiment shown in FIG. 4 excluding step S12 in which a part of the robot arm 50 is brought into contact with the surface plate 18. Is. Therefore, detailed description of the three-dimensional measurement method according to the second embodiment will be omitted.
  • a part of the robot arm 50 is directly or indirectly part of the surface plate 18 in order to follow the change in the posture of the surface plate 18 accompanying the movement of the gate of the coordinate measuring machine 1. Is in contact with.
  • the robot base 53 is arranged on the surface plate 18, it is not necessary to bring a part of the robot arm 50 into contact with the surface plate 18 at the time of measurement. It is possible to ensure the ability to follow changes in the posture of the surface plate 18.
  • step S12 in the three-dimensional measurement method according to the first embodiment can be omitted. Therefore, as compared with the first embodiment, the degree of freedom of the posture of the robot arm 50 at the time of measurement is higher in the second embodiment.
  • a part (contact portion) of the robot arm 50 such as joint portions J1 and J3 is brought into direct or indirect contact with the surface plate 18 at the time of measurement.
  • a part of the robot arm 50 may be brought into direct or indirect contact with the surface plate 18 at the time of measurement. That is, in the modified example of the second embodiment, for example, step S12 is performed in the same manner as the three-dimensional measurement method according to the first embodiment shown in FIG.
  • Reference numeral 14A in FIG. 14 indicates an example of a state in which a part of the robot arm 50 is directly in contact with the surface plate 18 in the three-dimensional measurement system 2000 according to the second embodiment.
  • Reference numeral 14B indicates an example of a state in which the joint portion of the robot arm 50 is indirectly brought into contact with the surface plate 18 via a vibration damping member (block B in the drawing) on the surface plate 18.
  • a vibration damping member block B in the drawing
  • FIG. 15 is a schematic configuration diagram of the three-dimensional measurement system 3000 according to the third embodiment.
  • the three-dimensional measurement system 3000 according to the third embodiment includes a three-dimensional measuring machine 2 and a robot arm device 300.
  • the robot arm device 300 is a robot arm device 200 according to the second embodiment to which an arm vibration detecting means 55 is added as a relative position change detecting means.
  • the three-dimensional measuring machine 2 is a three-dimensional measuring machine 1 according to the first embodiment to which a vibration correction means 31 (correction means) is added.
  • the posture of the work can be easily changed.
  • the relative position change detecting means detects the change in the relative position between the surface plate 18 and the robot arm 50.
  • the relative position change detecting means may detect the change in the relative position on the robot arm 50 side, or may detect the change in the relative position on the surface plate 18 side. Alternatively, the relative position change detecting means may detect the relative position change on both the robot arm 50 side and the surface plate 18 side.
  • an arm vibration detecting means 55 is shown as an example of means for detecting vibration as a change in relative position on the robot arm 50 side.
  • the arm vibration detecting means 55 is used in the horizontal direction (X direction and Y direction) and vertical of the robot arm 50 itself by the drive system of the motor of the robot arm 50.
  • the vibration in the direction (Z direction) is detected in real time and output to the correction means 31 of the three-dimensional measuring machine 2.
  • Real-time means that vibration is detected at all times or at regular intervals within the time required for detection of vibration (change in relative position) (time during which the three-dimensional measurement of the work W is performed). Further, the vibration may be detected not only at regular time intervals but also at unequal time intervals. Further, not only in the case of detecting vibration in real time, data on vibration may be received from the outside.
  • any kind of vibration detecting device can be used as the arm vibration detecting means 55.
  • the arm vibration detecting means 55 include a position sensor, a vibration sensor, a laser tracker, and a displacement measuring means.
  • the vibration sensor include an acceleration sensor and various gyro sensors.
  • examples of the displacement measuring means include a capacitance type displacement sensor, an eddy current type displacement sensor, a laser interferometer and the like.
  • the arm vibration detecting means 55 is provided in the vicinity of the end effector EE that holds the work W. This makes it possible to more accurately detect the influence of the vibration of the robot arm 50 itself on the work W.
  • the vibration compensating means 31 of the coordinate measuring machine 2 calculates the amplitude in each direction based on the vibration in the X direction, the Y direction, and the Z direction of the robot arm 50 output from the arm vibration detecting means 55, and obtains the calculated amplitude. Based on this, the measured value of the three-dimensional measurement of the work W is corrected in real time, for example. As a result, the influence of vibration of the robot arm 50 can be reduced, and the measurement accuracy can be further improved.
  • a surface plate vibration detecting means 56 that detects a change in the relative position between the surface plate 18 and the robot arm 50 on the surface plate 18 side is used as a three-dimensional measuring machine as a relative position change detecting means. It may be provided in 2.
  • the surface plate vibration detecting means 56 is arranged in the vicinity of the surface plate 18, for example, on the surface plate 18.
  • the surface plate vibration detecting means 56 detects, for example, the vibration of the surface plate 18 in the X direction, the Y direction, and the Z direction as a change in the relative position in real time.
  • any kind of vibration detecting device can be used as in the arm vibration detecting means 55.
  • the vibration compensating means 31 calculates the amplitude in each direction based on the vibration in each direction of the surface plate 18 detected by the surface plate vibration detecting means 56, and further, the three-dimensional measurement of the work W is performed based on the amplitude in each direction. Correct the measured value in real time. As a result, the influence of the vibration of the surface plate 18 can be reduced, and the measurement accuracy can be further improved.
  • the arm vibration detecting means 55 and the surface plate vibration detecting means 56 may be provided in the coordinate measuring machine 2 as the relative position change detecting means.
  • the vibration compensating means 31 measures the work W in three dimensions based on the vibration of the robot arm 50 detected by the arm vibration detecting means 55 and the vibration of the surface plate 18 detected by the surface plate vibration detecting means 56. Correct the measured value of.
  • FIG. 16 shows an example of arrangement of a plurality of laser tracker reflectors and a plurality of laser tracker main bodies.
  • the laser tracker as the arm vibration detecting means 55 includes a reflector 55R and a laser tracker main body 55M.
  • the reflector 55R is provided, for example, in the end effector EE, and the laser tracker main body 55M is provided, for example, in the coordinate measuring machine 1.
  • the laser tracker main body 55M is arranged on the surface plate 18, but of course, the laser tracker main body 55M may be arranged outside the surface plate 18.
  • the laser tracker body 55M is arranged to face the reflector 55R.
  • the laser tracker main body 55M irradiates a laser beam toward the reflector 55R, receives the laser beam (reflected light) reflected from the reflector 55R, and changes the relative position between the end effector EE and the platen 18 (reflector). (Displacement of 55R) is detected. Since the principle and configuration of the laser tracker are known, detailed description thereof will be omitted.
  • the laser tracker as the surface plate vibration detecting means 56 includes a plurality of reflectors 56R provided on the X-direction and Y-direction side surfaces of the surface plate 18, and a plurality of reflectors 56R arranged to face each of the plurality of reflectors 56R. Includes a laser tracker body 56M.
  • the laser tracker body 56M is arranged outside the surface plate 18.
  • Each laser tracker body 56M irradiates laser light toward the opposing reflector 56R, receives the reflected laser light (reflected light) from the reflector 56R, and receives the laser light (reflected light) at the relative positions of the end effector EE and the platen 18. A change (displacement of the reflector 56R) is detected.
  • the number of laser trackers in the surface plate vibration detecting means 56 may be one, but when the surface plate 18 is relatively large, a plurality of laser trackers detect a change in the relative position of the surface plate 18 (displacement of the reflector 56R). It is preferable to do so.
  • the coordinate measuring machine 1 may be provided with an inclination detecting means (not shown) for detecting the inclination (change in posture) of the surface plate 18.
  • the tilt detecting means include a tilt sensor, an acceleration sensor, a gyro sensor, and the like.
  • the vibration compensating means 31 is the third order of the work W based on the vibration in each direction of the surface plate 18 detected by the surface plate vibration detecting means 56 and the inclination of the surface plate 18 detected by the inclination detecting means.
  • the measured value of the original measurement is corrected in real time. As a result, the accuracy of the three-dimensional measurement can be further improved.
  • an inclination detecting means may be provided instead of the surface plate vibration detecting means 56.
  • FIG. 17 is a flowchart showing a three-dimensional measurement method according to the third embodiment.
  • the same steps as those in the flowchart shown in FIG. 4 are numbered the same, and the description of the same steps will be omitted.
  • the robot base 53 is arranged on the surface plate 18 in the third embodiment as in the second embodiment, a part of the robot arm 50 is directly or indirectly fixed.
  • the step of contacting the plate 18 (for example, step S12 in FIG. 4) can be omitted.
  • the relative position change detecting means (that is, the arm vibration detecting means 55 and / or the surface plate vibration detecting means 56) is the surface plate 18 and the robot. It starts to detect the change in the relative position with the arm 50 (step S20), and outputs the detection result to the vibration correction means 31 in real time, for example.
  • the vibration correction means 31 corrects the measured value of the three-dimensional measurement based on the detection result output from the relative position change detecting means (steps S21 and S22).
  • the vibration compensating means 31 cancels the vibration of the surface plate 18 with the vibration of the robot arm 50.
  • the measured value of the three-dimensional measurement of the work W is corrected so as to be performed.
  • the robot arm device 300 is not easily affected by the vibration of the external environment. Further, even if the posture of the surface plate 18 changes due to the movement of the gate, the robot arm device can follow the change in the posture of the surface plate 18. However, even so, since the three-dimensional measurement is performed while the work W is held by the end effector EE, the vibration of the robot arm 50 itself may affect the measured value of the three-dimensional measurement.
  • steps S21 and S22 the influence of the vibration of the robot arm 50 itself is suppressed by correcting the measurement result of the three-dimensional measurement based on the change in the relative position between the surface plate 18 and the robot arm 50. As a result, the accuracy of the three-dimensional measurement can be further improved.
  • the relative position change detecting means detects the time change of the relative position of the robot arm 50 in the X direction, the Y direction, and the Z direction. Then, a waveform as shown in FIG. 18 is obtained in each of the X direction, the Y direction, and the Z direction.
  • FIG. 18 is an example of a graph showing a time change of a relative position in one direction detected by the relative position change detecting means, in which the horizontal axis shows time and the vertical axis shows the amount of change (amplitude) of the relative position.
  • the vibration correction means 31 calculates the amplitude in each direction based on the waveform shown in FIG. 18, and corrects the measured value of the three-dimensional measurement of the work W based on the calculated amplitude. More specifically, the vibration compensating means 31 is relative to the measured value (measured coordinates) of the three-dimensional measurement in each of the X, Y, and Z directions so as to cancel the influence of the change in the relative position. The value corresponding to the amplitude detected by the position change detecting means is added, or the value corresponding to the vibration is subtracted from the measured value of the three-dimensional measurement. Whether addition or subtraction is performed is determined based on the direction in which the relative position changes.
  • a part of the robot arm 50 may be directly or indirectly brought into contact with the surface plate 18 at the time of measurement.
  • the step of bringing a part of the robot arm 50 directly or indirectly into contact with the surface plate 18 at the time of measurement is shown in FIG. 3 It may be added between step S11 and step S13 of the measurement method according to the embodiment. As a result, the vibration of the robot arm 50 itself can be reduced, so that the measurement accuracy can be further improved.
  • the coordinate measuring machine 2 may be provided with an inclination detecting means (not shown) for detecting the inclination of the surface plate 18.
  • the tilt detecting means include a tilt sensor, an acceleration sensor, a gyro sensor, and the like.
  • the vibration compensating means 31 measures the work W in three dimensions based on the vibration in each direction of the surface plate 18 detected by the surface plate vibration detecting means 56 and the inclination of the surface plate 18 detected by the inclination detecting means.
  • the measured value is corrected in real time, for example. As a result, the accuracy of the three-dimensional measurement can be further improved.
  • an inclination detecting means may be provided instead of the surface plate vibration detecting means 56.
  • FIG. 19 is a schematic configuration diagram of the three-dimensional measurement system 4000 according to the fourth embodiment.
  • the three-dimensional measurement system 4000 according to the fourth embodiment includes a three-dimensional measuring machine 2 and a robot arm device 400.
  • the robot arm device 400 replaces the robot base 53 of the robot arm device 300 according to the third embodiment with the robot base 52.
  • the three-dimensional measuring machine 2 is basically the same as the three-dimensional measuring machine 2 according to the third embodiment.
  • the three-dimensional measurement method according to the fourth embodiment is basically the same as that of the third embodiment, the description thereof will be omitted. Also in the fourth embodiment, since the three-dimensional measurement can be performed while the work is held by the end effector EE of the robot arm 50, the posture of the work can be easily changed.
  • the vibration system of the coordinate measuring machine 2 and the vibration system of the robot arm device 400 are separate systems as in the first embodiment. It has become.
  • the relative position change detecting means that is, the arm vibration correcting means 55 and / or the surface plate vibration detecting means 56
  • the vibration correcting means 31 are provided, the influence of the vibration of the robot arm 50 and / or the influence of the vibration of the surface plate 18 Can be reduced. Therefore, as in the third embodiment, it is not always necessary to bring a part of the robot arm 50 directly or indirectly into contact with the surface plate 18 as in the first embodiment.
  • ⁇ Modification 1 of the fourth embodiment> Similar to the first embodiment and its modifications, in the fourth embodiment as well, a part of the robot arm 50 may be directly or indirectly brought into contact with the surface plate 18 at the time of measurement. Since the three-dimensional measurement method according to the modified example of the fourth embodiment is basically the same as the modified example of the third embodiment, the description thereof will be omitted. Also in the modified example of the fourth embodiment, since the vibration of the robot arm 50 itself can be reduced, the accuracy of the three-dimensional measurement of the work W can be further improved.
  • the coordinate measuring machine 2 may be provided with an inclination detecting means (not shown) for detecting the inclination of the surface plate 18.
  • the vibration compensating means 31 vibrates in each direction of the surface plate 18 detected by the surface plate vibration detecting means 56, and the surface plate 18 detected by the inclination detecting means.
  • the measured value of the three-dimensional measurement of the work W can be corrected in real time, for example, based on the inclination of the work W, and the accuracy of the three-dimensional measurement can be further improved.
  • the inclination detecting means may be provided instead of the surface plate vibration detecting means 56.
  • FIG. 20 is a schematic configuration diagram of the three-dimensional measurement system 5000 according to the fifth embodiment.
  • the three-dimensional measurement system 5000 according to the fifth embodiment includes a three-dimensional measuring machine 3 and a robot arm device 500.
  • the robot arm device 500 is a robot arm device 100 according to the first embodiment with the temperature detecting means 57 added.
  • the three-dimensional measuring machine 3 is a three-dimensional measuring machine 1 according to the first embodiment to which a temperature compensating means (correcting means) 32 is added.
  • the posture of the work can be easily changed.
  • any kind of temperature sensor can be used.
  • the temperature detecting means 57 include a thermocouple thermometer, a resistance thermometer, an infrared thermometer, and a bimetal thermometer.
  • the temperature detecting means 57 may be provided anywhere as long as the temperature of the work W held by the end effector EE can be detected. However, preferably, the temperature detecting means 57 is an end effector. It is provided on the holding surface that holds (holds) the work W in the EE. As a result, the temperature of the work W held by the end effector EE can be detected with high accuracy.
  • the temperature compensating means 32 determines whether or not the three-dimensional measurement is possible based on the temperature of the work W detected by the temperature detecting means 57. Further, the temperature correction means 32 corrects the measured value of the three-dimensional measurement based on the detected temperature of the work W.
  • end effector EE including the temperature detecting means 57 will be described with reference to FIGS. 21 and 22.
  • the end effector EE is appropriately replaced according to the shape and material of the work W.
  • FIG. 21 shows an example of an end effector EE that can be suitably used when holding a square-shaped work W.
  • Reference numeral 21A in FIG. 21 is a front view of the end effector EE
  • reference numeral 21B is a diagram showing a holding surface.
  • the end effector EE includes a base portion 71 and a pair of claw portions 72.
  • the base end side of the base portion 71 is connected to the first arm A1 of the robot arm 50.
  • the pair of claw portions 72 are provided on the tip end side of the base portion 71.
  • the pair of claws 72 are configured to be movable so as to be separated from each other and close to each other, and the work W is held in the gap between the pair of claws 72 as shown by reference numeral 21C. That is, the surfaces of the pair of claws 72 facing each other form a pair of holding surfaces 73 for holding the work W.
  • a temperature detecting means 57 is provided on at least one of the holding surfaces 73.
  • the work W comes into contact with the temperature detecting means 57 provided on the holding surface 73, and the temperature detection of the work W by the temperature detecting means 57 is started.
  • all holding surfaces 73 are provided with temperature detecting means 57. As a result, the temperature measurement accuracy can be improved.
  • FIG. 22 shows an example of an end effector EE that can be suitably used when holding a cylindrical work W.
  • Reference numeral 22A in FIG. 22 is a front view of the end effector EE
  • reference numeral 22B is a bottom view.
  • the end effector EE includes a base 75 and a set of three chucks 76.
  • the base end side of the base portion 75 is connected to the first arm A1 of the robot arm 50.
  • a set of chucks 76 is provided on the distal end side of the base 75.
  • a set of chucks 76 are arranged on the same circumference at intervals of 120 degrees, and are configured to be movable in the radial direction.
  • the work W is held in the gap between the set of chucks 76. That is, the radial center side of the set of chucks 76 constitutes a set of holding surfaces 77 for holding the work W.
  • a temperature detecting means 57 is provided on at least one of the holding surfaces 77.
  • all holding surfaces 77 are provided with temperature detecting means 57.
  • FIG. 23 is a flowchart showing a three-dimensional measurement method according to the fifth embodiment.
  • the same steps as those in the flowchart shown in FIG. 4 are numbered the same, and the description of the same steps will be omitted.
  • the three-dimensional measurement method according to the fifth embodiment is obtained by adding steps S30 to S33 to the three-dimensional measurement method according to the first embodiment.
  • a part of the robot arm 50 is directly brought into contact with the surface plate 18 (for example, step S12), but of course, the robot arm is the same as the modified example of the first embodiment.
  • a part of 50 may be indirectly brought into contact with the surface plate 18.
  • step S10 when the end effector EE holds the work W (step S10), the work W and the temperature detecting means 57 come into contact with each other, and the temperature detecting means 57 starts detecting the temperature of the work W (step S30: Temperature detection step).
  • step S30 Temperature detection step
  • the temperature detection means 57 outputs the temperature detection result to the temperature correction means 32 at regular time intervals, unequal time intervals, or in real time.
  • step S12 when the temperature detection result is not automatically output from the temperature detection means 57 to the temperature correction means 32, after setting the posture of the work W (step S12), for example, the temperature correction means 32 to the temperature detection means 57 On the other hand, a signal instructing the output of the temperature detection result may be sent.
  • the temperature detecting means 57 can automatically start the temperature detection of the work W at the timing when the end effector EE holds the work W, the user attaches a sensor for detecting the temperature of the work W to the robot arm 50 or the like. The process can be omitted. Further, since the end effector EE starts to detect the temperature of the work W while holding the work W, the work W is in the time from the holding of the work W (step S10: holding step) to the installation of the work W (step S12). Temperature detection can be performed. This advantage is remarkable when the rise of the temperature detecting means 57 takes a relatively long time. Thereby, the efficiency of the three-dimensional measurement can be improved.
  • the temperature compensating means 32 is the temperature detecting means in the coordinate measuring machine. It is determined whether or not the temperature of the work W detected by 57 satisfies a predetermined temperature condition (step S31: temperature determination step).
  • the temperature condition is set in advance based on, for example, the temperature range of the work W that can be measured by the coordinate measuring machine 3. For example, when the temperature of the atmosphere to be measured three-dimensionally is 20 degrees Celsius, a predetermined temperature condition may be set to 20 degrees Celsius ⁇ 2 degrees Celsius or 20 degrees Celsius ⁇ 1 degree Celsius.
  • step S31: No When it is determined that the temperature of the work W does not satisfy the predetermined temperature condition (step S31: No), the user is notified to that effect (not shown), and the temperature is based on the newly detected temperature after the elapse of the predetermined time. And the temperature is judged again.
  • step S31: Yes When it is determined that the temperature of the work W is suitable for the measurement of the work W (step S31: Yes), the three-dimensional measurement of the work W is performed (step S13).
  • the temperature compensating means 32 corrects the measured value of the three-dimensional measurement of the work W based on the temperature detection result of the work W output from the temperature detecting means 57 during the three-dimensional measurement of the work W (step S32). ).
  • the temperature detecting means 57 detects the temperature in real time and the temperature detected by the temperature compensating means 32 is output in real time
  • the measured value of the three-dimensional measurement may be corrected in real time.
  • step S12 When the three-dimensional measurement in the posture determined in step S12 is completed, the posture of the work W is changed by the robot arm 50 (step S14). Subsequently, the work after the posture change is similarly subjected to the three-dimensional measurement (step S15), and the measured value of the three-dimensional measurement is corrected based on the detected temperature (step S32).
  • step S31 in FIG. 23 it is determined whether or not the work W satisfies a predetermined temperature condition. However, if it is known in advance that the work W satisfies a predetermined temperature condition, step S31 in FIG. 23 may be omitted. Thereby, the efficiency of the three-dimensional measurement can be further improved.
  • a work stocker for storing the work W and a place (temperature break-in place) for temporarily storing the work W that does not satisfy a predetermined temperature condition are previously provided in the vicinity of the three-dimensional measurement system 5000. Provided (not shown). Since the configuration of the three-dimensional measurement system according to the first modification of the fifth embodiment is the same as that of the three-dimensional measurement system 5000 according to the fifth embodiment, the description of the system configuration will be omitted.
  • FIG. 24 shows a flowchart of the three-dimensional measurement method according to the first modification of the fifth embodiment.
  • Step S40 is added, and step S34, step S41, and step S42 are added after step S33. Since the other steps are basically the same as those in the fifth embodiment, the description thereof will be omitted.
  • step S31 when it is determined that the temperature detection result of the work W satisfies a predetermined temperature condition (Yes in step S31), the work W is three-dimensionally formed as in the fifth embodiment. After performing the measurement and temperature correction, the work W is carried out from the coordinate measuring machine 3 (step S34), and the process proceeds to step S41.
  • step S31 when it is determined that the temperature detection result of the work W does not satisfy the predetermined temperature condition (No in step S31), the work W held in the end effector EE is moved to the temperature break-in field (step). S40: Carry-out step), the process proceeds to step S41.
  • the temperature is determined while the work W is held, and the work W that does not satisfy the temperature condition is quickly measured by the coordinate measuring machine without removing the work W from the end effector EE. It can be carried out from 3. As a result, the operating rate of the coordinate measuring machine 3 can be improved.
  • step S41 it is determined whether or not there is another work in the work stocker.
  • the process returns to step S10, and the processing after step S10 is performed for the other work W in the work stocker.
  • step S42 it is determined whether or not there is another work in the temperature break-in field.
  • the process returns to step S10, and the processing after step S10 is performed on the other work W in the temperature break-in field.
  • the process ends.
  • the modification 1 of the fifth embodiment can obtain the same effect as that of the fifth embodiment.
  • the work W determined not to satisfy the predetermined temperature condition is temporarily moved to the temperature break-in field in step S40. Then, after performing the three-dimensional measurement on another work W acquired by the work stocker, the three-dimensional measurement is performed on the work W that has been temperature-conditioned (temperature-conditioned) in the temperature break-in field. As a result, the operating rate of the coordinate measuring machine 3 can be increased.
  • ⁇ Modification 2 of the fifth embodiment> the configuration in which the temperature detecting means 57 and the temperature compensating means 32 are added to the robot arm device 100 and the three-dimensional measuring machine 1 according to the first embodiment has been described.
  • the three-dimensional measurement systems 2000 and 3000 according to the second and third embodiments which include the robot base 53 arranged on the surface plate 18 instead of the robot base 52 arranged outside the surface plate 18.
  • the temperature detecting means 57 and the temperature compensating means 32 may be added to the above.
  • the three-dimensional measurement method according to the second modification of the fifth embodiment is a step of directly or indirectly abutting a part of the robot arm 50 on the surface plate 18 from the flowcharts shown in FIGS. 23 and 24 (step S12). It is the same as the one excluding. That is, by applying the modification 2 of the fifth embodiment to the modification 1 of the fifth embodiment and the fifth embodiment, the effect of the modification 1 of the fifth embodiment and the fifth embodiment can be obtained. In addition, even if the robot arm 50 is not directly or indirectly brought into contact with the surface plate 18, the influence of vibration of the external environment can be reduced and the followability to the change in the posture of the surface plate 18 can be ensured. The effect of the second and third embodiments that can be obtained can also be obtained.
  • FIG. 25 shows a flowchart showing a three-dimensional measurement method according to the third modification of the fifth embodiment.
  • step S12 of the flowchart of the three-dimensional measurement method according to the fifth embodiment shown in FIG. 23 is changed to step S50, and further, a predetermined step S31 is performed.
  • step S51 is added, and step S34 and step S52 are added after step S33.
  • step S53 is added. Since the other steps are basically the same as those in the fifth embodiment, the description thereof will be omitted.
  • the three-dimensional measurement is performed while the work W is held by the end effector EE.
  • the work W is placed on the surface plate 18, and the three-dimensional measurement is performed with the work W removed from the end effector EE.
  • step S11 after the work W is carried into the three-dimensional measurement 3 in step S11 (step S11), when the work W is arranged at a predetermined measurement position in the measurement space, the work W Is placed on the surface plate 18 (step S50).
  • the work W may be placed directly on the surface plate 18, or may be indirectly placed on the surface plate 18 via a jig (not shown).
  • the work W is held by the end effector EE at least until the temperature detection result is output. This is because if the end effector EE removes the work W, the temperature detecting means 57 provided in the end effector EE may come into contact with the outside air, and the temperature of the work W may not be measured correctly.
  • step S50 when the temperature detection means 57 outputs the temperature detection result of the work W to the temperature correction means 32, the temperature correction means 32 determines whether or not the temperature detection result of the work W satisfies a predetermined temperature condition. (Step S31). If it is known in advance that the work W satisfies a predetermined temperature condition, for example, step S31 may be omitted. Thereby, the efficiency of the three-dimensional measurement can be further improved.
  • step S13 When it is determined that the temperature detection result of the work W does not satisfy the predetermined temperature condition (No in step S13), the user is notified to that effect (not shown). Subsequently, the end effector EE moves the held work W from the measurement position to a predetermined position outside the coordinate measuring machine 3 (step S53: carry-out step), and then proceeds to step S52.
  • the temperature can be determined while holding the work W, the work W that does not satisfy the temperature condition can be quickly carried out from the coordinate measuring machine 3 without temporarily removing the work W from the end effector EE. As a result, the operating rate of the coordinate measuring machine 3 can be improved.
  • step S13 When it is determined that the temperature detection result of the work W satisfies a predetermined temperature condition (Yes in step S13), the work W is removed from the end effector EE, and the robot arm 50 is retracted (step S51). Subsequently, the work W is measured three-dimensionally in the same manner as in the fifth embodiment, and further, the temperature is corrected based on the temperature used in the temperature determination in step S31.
  • the work W is held again by the end effector EE to change the posture of the work W, and then the three-dimensional measurement and the temperature correction are performed.
  • the robot arm device 500 carries out the work W for which the measurement has been completed from the three-dimensional measuring machine 3 (step S34). If there is another work W to be measured (Yes in step S52), the process returns to step S10, and the same process is repeated for the new work W.
  • the modification 3 of the fifth embodiment has the effect that it is not necessary to manually attach the temperature detecting means 57 as in the fifth embodiment, and the temperature detection is started at an early timing. The effect of being able to do is obtained.
  • the three-dimensional measurement is performed with the work W removed from the end effector EE, but even in that case, the work W is held by the end effector EE before being removed from the end effector EE.
  • the temperature can be detected and the temperature can be determined in this state. As a result, the work W that does not satisfy the temperature condition can be quickly carried out from that state, so that the operating rate of the coordinate measuring machine 3 can be increased.
  • step S51 and step S52 in FIG. 25 may be changed from step S40 in FIG. 24 to step S42.
  • step S51 and step S52 in FIG. 25 may be changed from step S40 in FIG. 24 to step S42.
  • the robot base 53 arranged on the surface plate 18 may be used instead of the robot base 52 arranged outside the surface plate 18.
  • the measured value of the three-dimensional measurement of the work W can be corrected based on the vibration of the robot arm 50 and / or the surface plate 18 and the temperature of the work W.
  • the accuracy of the three-dimensional measurement can be further improved.
  • the measuring machine control device 30, the vibration compensation means 31, the temperature compensation means 32, and the robot arm control device 60 are realized by a general-purpose computer such as a workstation or a personal computer, and are realized by a general-purpose computer such as a workstation or a personal computer, and have a CPU (Central Processing Unit) and an FPGA (Field Programmable Gate Array). ), A memory such as ROM and RAM, an external recording device such as a hard disk, an input device, an output device, a network connection device, and the like.
  • a program for operating the measuring machine main body 10 is stored in the memory of the measuring machine control device 30, and measurement may be automatically performed by reading and executing this program by the processor.
  • a program for moving the robot arm 50 is stored in the memory of the robot arm control device 60, and the processor reads and executes this program to automatically carry the work W and change the posture. You may. Further, the measuring machine control device 30 and the robot arm control device 60 may cooperate with each other to automatically perform the entire measurement.
  • a part of the robot arm 50 is directly or indirectly abutted on the surface plate 18 of the coordinate measuring machine 1 while the work W is held by the end effector EE.
  • the work W is measured three-dimensionally. As a result, the influence of the vibration of the robot arm 50 on the work W can be reduced, so that the accuracy of the three-dimensional measurement can be improved.
  • the arm vibration detecting means 55 and / or the surface plate vibration detecting means 56 of the robot arm devices 300 and 400 detect the vibration of the robot arm 50 and / or the surface plate 18, and the coordinate measuring machine 2 is based on the detected vibration.
  • the vibration correction means 31 of the above can correct the measured value of the three-dimensional measurement of the work W. As a result, the accuracy of the three-dimensional measurement can be further improved.
  • the temperature of the work W held in the end effector EE is detected by the temperature detecting means 57 of the robot arm device 400, and the temperature compensating means 32 of the coordinate measuring machine 3 measures the work W three-dimensionally based on the detected temperature.
  • the measured value of can be corrected. This makes it possible to omit the step of attaching the sensor for detecting the temperature of the work W to the robot arm 50 or the like by the user. Further, since the temperature of the work W can be measured during the time until the work W is transported and installed at the measurement position, the efficiency of the three-dimensional measurement can be further improved. In addition, the accuracy of the three-dimensional measurement can be further improved by performing the temperature correction.
  • Three-dimensional measuring machine 10 Measuring machine main body 12: Head 14: Beam 16: Column 18: Plate plate 20: Base 22: Probe 24: Stylus 26: Stylus 30: Measuring machine control device 31: Vibration compensating means 32: Temperature compensating means 40: Controller 50: Robot arm 52, 53: Robot base 52a: Tip portion 55: Arm vibration detecting means 56: Plate vibration detecting means 57: Temperature detecting means 60: Robot arm control device 71, 75: Base 72: Claw 73, 77: Holding surface 76: Chuck 100, 200, 300, 400, 500: Robot arm device 1000, 2000, 3000, 4000 5000: Three-dimensional measurement system A1: First arm A2: 2nd arm A3: 3rd arm B: Block EE: End effector J1: 1st joint part J2: 2nd joint part J3: 3rd joint part J4: 4th joint part L1: Central axis of work W: Work

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

測定精度及び測定効率を向上させた三次元測定システム及び三次元測定方法を提供する。三次元測定システムは定盤18と、測定対象であるワークWを保持し、且つ、ワークWの姿勢を可変なロボットアーム50と、定盤18に対して相対移動可能に構成されたプローブ22であって、ワークWの三次元測定を行うプローブ22とを備える。

Description

三次元測定システム及び三次元測定方法
 本発明は三次元測定システム及び方法に関し、特に三次元測定機とロボットアームとを使用した三次元測定システム及び方法に関する。
 従来より、三次元測定機で測定対象であるワークを測定する際のワークの設置に関して様々な技術が提案されてきた。
 例えば、特許文献1では、定盤上にワークを設置する際に用いられる測定治具が提案されている。特許文献1に記載された測定治具では、板材のパレット上に適宜ブロックを設置することができ、このブロックにより立体形状を有するワークを固定することができる。そして、予めワークを固定した複数のパレットを用意しておき、パレットを交換することにより、自動的にワークを定盤上にセットすることを目的としている。
特開平04-324301号公報
 ここで、測定を行うワークの姿勢は、必ずしも一種類ではなく複数種類に及ぶことがある。このように、一つのワークにおいて複数の姿勢で測定を行う場合には、ワークの姿勢毎にその姿勢に合った測定治具が必要となり、測定治具の設計の工数、及び費用が発生する。また、測定の姿勢毎にワークを測定治具に設置しなければならず、測定の準備に時間を要してしまう。
 上述した特許文献1に記載された測定治具を使用する場合においても、同一のワークに対して複数の姿勢の測定を行う場合には、ワークの姿勢毎に異なるパレットを生成しなければならず、また、測定の姿勢毎にワークを異なる測定治具に設置しなければならない。
 このように、従来の技術では、人が介在してワークを設置しているため、測定効率が悪いという問題があった。また、三次元測定機においては、測定効率の向上とともに測定精度の向上を図ることも重要な技術課題の1つとなっている。
 本発明はこのような事情に鑑みてなされたもので、その目的は、測定精度及び測定効率を向上させた三次元測定システム及び三次元測定方法を提供することである。
 上記目的を達成するために、本発明の第1の態様に係る三次元測定システムは、定盤と、測定対象であるワークを保持するエンドエフェクタを有し、且つ、ワークの姿勢を可変なロボットアームと、定盤に対して相対移動可能に構成されたプローブと、を備える。ワークの姿勢を可変なロボットアームを備えるため、定盤に対して相対移動可能に構成されたプローブを用いて三次元測定を行う際に、容易にワークの姿勢を変更することができる。これにより、三次元測定の効率を向上させることができる。また、ロボットアームを用いてワークの姿勢を変更するため、測定位置のばらつきが少なくなり、測定精度を向上させることができる。
 第1の態様に係る三次元測定システムにおいて、好ましくは、ワークがロボットアームにより保持されている状態で、プローブはワークの三次元測定を行う。ロボットアームのエンドエフェクタによりワークを保持した状態で、プローブよりワークの三次元測定を行うので、ワークの姿勢を簡便に変更することができる。これにより、三次元測定の効率を一層向上させることができる。
 好ましくは、第1の態様に係る三次元測定システムは、定盤とロボットアームとの相対位置の変化を検出する相対位置変化検出手段と、相対位置変化検出手段の検出結果に基づいてプローブによるワークの測定結果を補正する補正手段と、を備える。
 三次元測定の精度に影響を与えうる外部環境(測定環境)の一例として、定盤とロボットアームとの相対位置の変化が挙げられる。定盤とロボットアームとの相対位置の変化を相対位置変化検出手段により検出し、その検出結果に基づいてプローブによるワークの測定結果を補正手段により補正することができるため、ワークの三次元測定の精度を一層向上させることができる。
 第1の態様に係る三次元測定システムにおいて、好ましくは、相対位置変化検出手段は、ロボットアームの振動を検出するアーム振動検出手段を含む。これにより、ロボットアームの振動の影響を低減し、三次元測定の精度を一層向上させることができる。
 第1の態様に係る三次元測定システムにおいて、好ましくは、相対位置変化検出手段は、定盤の振動を検出する定盤振動検出手段、及び/又は、水平方向に対する定盤の傾斜を検出する傾斜検出手段を含む。これにより、定盤の振動、及び/又は傾斜の影響を低減し、三次元測定の精度を一層向上させることができる。
 第1の態様に係る三次元測定システムにおいて、好ましくは、相対位置変化検出手段は、水平方向及び垂直方向のそれぞれについて相対位置の変化量を検出し、補正手段は、水平方向及び垂直方向それぞれについて、プローブによるワークの測定結果に対して相対位置の変化量を加算又は減算する。
 第1の態様に係る三次元測定システムにおいて、好ましくは、相対位置変化検出手段は、相対位置の変化をリアルタイムに検出し、補正手段は、リアルタイムに検出された相対位置の変化に基づいてプローブによるワークの測定結果をリアルタイムに補正する。
 第1の態様に係る三次元測定システムにおいて、好ましくは、相対位置変化検出手段は、リフレクタと、リフレクタに対してレーザ光を照射し、リフレクタからのレーザ光の反射光を受光して、リフレクタの変位を取得するレーザトラッカ本体と、を有するレーザトラッカを備える。
 好ましくは、リフレクタはロボットアームに配置される。リフレクタをロボットアームに配置することにより、ロボットアーム自体の振動がワークWに及ぼす影響をより正確に検出することが可能となる。
 好ましくは、第1の態様に係る三次元測定システムは、ワークの温度を検出する温度検出手段と、温度検出手段の検出結果に基づいてプローブによるワークの測定結果を補正する補正手段とを備える。
 三次元測定の精度に影響を与えうる外部環境(測定環境)の更なる一例として、ワークの温度が挙げられる。温度検出手段によりワークの温度を検出し、ワークの温度に基づいて三次元測定結果を補正手段により補正することができるため、ワークの温度の影響を低減し、三次元測定の精度を一層向上させることができる。
 第1の態様に係る三次元測定システムにおいて、好ましくは、ロボットアームのエンドエフェクタは、ワークの温度を検出する温度検出手段を備える。更に好ましくは、温度検出手段は、エンドエフェクタがワークを保持する保持面に設けられる。これにより、エンドエフェクタに保持されたワークの温度を精度良く検出することができる。また、エンドエフェクタが温度検出手段を備えるため、ロボットアームによりワークを保持すると、自動的に温度検出を開始することができる。延いては、三次元測定の効率を向上させることができる。更に好ましくは、第1の態様に係る三次元測定システムは、温度検出手段の検出結果に基づいてプローブによるワークの測定結果を補正する補正手段を備える。ワークの温度に基づいて三次元測定結果を補正することができるため、ワークの温度の影響を低減し、三次元測定の精度を一層向上させることができる。
 第1の態様に係る三次元測定システムにおいて、好ましくは、温度検出手段は、ロボットアームによりワークが保持されている状態で、ワークの温度を検出する。ワークを定盤に設置しなくとも、ロボットアームによりワークを保持した状態で温度を検出することができるため、例えば、ワークが所定の温度条件を満たさない場合、ワークを定盤に一旦設置することなく速やかに搬出することができる。これにより、三次元測定システムの稼働率を向上させることができる。
 第1の態様に係る三次元測定システムにおいて、好ましくは、温度検出手段は、ロボットアームによりワークが保持されると、ワークの温度の検出を開始する。従来の技術ではワークを定盤に載置してから温度検出を行っていたが、第1の態様に係る三次元測定システムでは従来よりも早いタイミングで温度検出を開始することができる。例えば、温度検出手段の立ち上がりに時間がかかる場合、この利点は顕著になる。
 第1の態様に係る三次元測定システムにおいて、ロボットアームを支持するロボット基台は定盤の外に設けられてもよい。定盤の外にロボット基台を設けるため、比較的大型のロボットアームを用いることができる。
 第1の態様に係る三次元測定システムにおいて、ロボットアームを支持するロボット基台は定盤上に設けられてもよい。定盤上にロボット基台を設けるため、ロボットアームの振動系は定盤の振動系と同じになる。これにより、外部環境の振動による影響を低減させ、三次元測定の精度を一層向上させることができる。
 第1の態様に係る三次元測定システムにおいて、好ましくは、ロボットアームは、プローブによりワークを測定する場合に、定盤に直接的又は間接的に当接する当接部を有する。ロボットアームの当接部を定盤に直接的又は間接的に当接させるため、ロボットアーム自体の振動を低減させることができ、延いては、三次元測定の精度を一層向上させることができる。
 第1の態様に係る三次元測定システムにおいて、定盤上には制振部材が設けられ、ロボットアームの当接部は制振部材を介して定盤に間接的に当接する。ロボットアームの当接部が間接的に定盤に当接するため、測定時におけるロボットアームの姿勢の自由度を向上させることができる。また、ロボットアームと定盤との間に垂直方向(Z方向)の間隙を確保することができるため、垂直方向の長さが比較的長いワークを定盤に接触しないように保持して測定を行うことができる。
 第1の態様に係る三次元測定システムにおいて、好ましくは、ロボットアームは、複数のアームと、複数のアームを回転可能に連結する複数の関節部とを備え、ロボットアームの当接部は複数の関節部の1つである。より好ましくは、ロボットアームの当接部は、複数の関節部のうち最もエンドエフェクタ側にある関節部である。
 また、上記目的を達成するために、本発明の第2の態様に係る三次元測定方法は、測定対象であるワークを、ワークの姿勢を可変なロボットアームにより運搬する運搬ステップと、定盤に対して相対移動可能に構成されたプローブによりワークの三次元測定を行う測定ステップと、を含む。第2の態様に係る三次元測定方法によっても、第1の態様に係る三次元測定システムと同様の効果を得ることができる。
 第2の態様に係る三次元測定方法において、好ましくは、測定ステップにおいて、ロボットアームによりワークを保持した状態で、プローブによりワークの三次元測定を行う。ロボットアームのエンドエフェクタによりワークを保持した状態で、プローブよりワークの三次元測定を行うので、ワークの姿勢を簡便に変更することができる。これにより、三次元測定の効率を一層向上させることができる。
 好ましくは、第2の態様に係る三次元測定方法は、定盤とロボットアームとの相対位置の変化を検出する相対位置変化検出ステップと、相対位置変化検出ステップによる検出結果に基づいて測定ステップによるワークの測定結果を補正する振動補正ステップと、を含む。
 三次元測定の精度に影響を与えうる外部環境(測定環境)の一例として、定盤とロボットアームとの相対位置の変化が挙げられる。相対位置変化検出ステップにおいて定盤とロボットアームとの相対位置の変化を検出し、その検出結果に基づいて振動補正ステップにおいてプローブによるワークの測定結果を補正することができるため、ワークの三次元測定の精度を一層向上させることができる。
 本発明の第2の態様に係る三次元測定方法において、好ましくは、相対位置変化検出ステップはロボットアームの振動を検出するステップを含む。また、好ましくは、相対位置変化検出ステップは定盤の振動を検出するステップを含む。また、好ましくは、相対位置変化検出ステップは定盤の傾斜を検出するステップを含む。
 本発明の第2の態様に係る三次元測定方法において、好ましくは、相対位置変化検出ステップは、水平方向及び垂直方向のそれぞれについて相対位置の変化量を検出するステップを含み、振動補正ステップは、水平方向及び垂直方向のそれぞれについて、プローブによるワークの測定結果に対して相対位置の変化量を加算又は減算するステップを含む。
 本発明の第2の態様に係る三次元測定方法において、好ましくは、相対位置変化検出ステップは、相対位置の変化をリアルタイムに検出し、振動補正ステップは、リアルタイムに検出された相対位置の変化に基づいてプローブによるワークの測定結果をリアルタイムに補正する。
 好ましくは、本発明の第2の態様に係る三次元測定方法は、ワークの温度を検出する温度検出ステップと、温度検出ステップによる検出結果に基づいて測定ステップによるワークの測定結果を補正する温度補正ステップとを含む。
 三次元測定の精度に影響を与えうる外部環境(測定環境)の更なる一例として、ワークの温度が挙げられる。温度検出ステップにおいてワークの温度を検出し、温度補正ステップにおいてワークの温度に基づいて三次元測定結果を補正することができるため、ワークの温度の影響を低減し、三次元測定の精度を一層向上させることができる。
 また、好ましくは、本発明の第2の態様に係る三次元測定方法は、ロボットアームのエンドエフェクタに設けられた温度検出手段により、ワークの温度を検出する温度検出ステップを含む。これにより、エンドエフェクタに保持されたワークの温度を精度良く検出することができる。また、エンドエフェクタが温度検出手段を備えるため、ロボットアームによりワークを保持すると、自動的に温度検出を開始することができる。延いては、三次元測定の効率を向上させることができる。
 更に好ましくは、本発明の第2の態様に係る三次元測定方法は、温度検出ステップによる検出結果に基づいて測定ステップによるワークの測定結果を補正する温度補正ステップを更に含む。
 好ましくは、温度検出ステップは、運搬ステップにおいて行われる。運搬ステップにおいてワークの温度検出を行うことにより、三次元測定の効率を一層向上させることができる。
 第2の態様に係る三次元測定方法において、好ましくは、温度検出ステップは、ロボットアームによりワークが保持された状態で行われる。ワークを定盤に設置しなくとも、ロボットアームによりワークを保持した状態で、温度検出手段により温度を検出することができるため、三次元測定の効率を向上させることができる。
 第2の態様に係る三次元測定方法において、好ましくは、温度検出ステップは、ロボットアームによりワークが保持された際に開始される。従来の技術ではロボットアームによりワークを定盤に載置してから温度検出を行っていたが、第2の態様に係る三次元測定方法では従来よりも早いタイミングで温度検出を開始することができる。
 好ましくは、第2の態様に係る三次元測定方法は、ワークの温度が所定の温度条件を満たすか否か判定する温度判定ステップを含む。これにより、例えば、ワークの温度が三次元測定に適した温度条件を満たすか否か判定することができる。
 ここで、好ましくは、温度判定ステップは、ロボットアームによりワークが保持された状態で行われる。ここで、更に好ましくは、温度判定ステップにおいて所定の温度条件を満たさないと判定された場合、ワークはロボットアームにより保持された状態のまま搬出される。例えば、ワークが所定の温度条件を満たさないと判定された場合、ワークを定盤に一旦載置することなく速やかに搬出することができる。これにより、三次元測定の効率を一層向上させることができる。
 ここで、更に好ましくは、温度検出ステップはロボットアームによりワークが保持された状態でリアルタイムに行われ、温度補正ステップにおいて、測定ステップよるワークの測定結果を、温度検出ステップによる検出結果に基づいてリアルタイムに補正する。ワークをロボットアームにより保持した状態のままで、温度検出、三次元測定、及び測定結果の補正を行うことができるため、温度検出から測定結果の補正までのタイムラグ(時間差)を短縮することができる。
 第2の態様に係る三次元測定方法において、好ましくは、ロボットアームを支持するロボット基台は定盤の外に設けられる。あるいは、好ましくはロボットアームを支持するロボット基台は定盤上に設けられる。
 第2の態様に係る三次元測定方法は、好ましくは、ロボットアームによりワークを保持した状態で、ロボットアームの当接部を、定盤に直接的又は間接的に当接させる設置ステップを含む。また、好ましくは、定盤上には制振部材が設けられており、設置ステップにおいてロボットアームの当接部は制振部材を介して定盤に間接的に当接する。
 第2の態様に係る三次元測定方法において、好ましくは、ロボットアームは、複数のアームと、複数のアームを回転可能に連結する複数の関節部とを備え、ロボットアームの当接部は複数の関節部の1つである。より好ましくは、ロボットアームの当接部は、複数の関節部のうち最もエンドエフェクタ側にある関節部である。
 本発明によれば測定精度及び測定効率を向上させた三次元測定システム及び三次元測定方法を提供することができる。
図1は、第1実施形態に係る三次元測定システムの一例を示す図である。 図2は、三次元測定機の一例を示す図である。 図3は、ロボットアームの一例を示す図である。 図4は、第1実施形態に係る三次元測定方法を示すフローチャートである。 図5は、第1実施形態におけるワークの運搬ステップの一例を説明する図である。 図6は、第1実施形態における設置ステップ及び測定ステップの一例を説明する図である。 図7は、第1実施形態における設置ステップ及び測定ステップの他の例を説明する図である。 図8は、第1実施形態における変更ステップの一例を示した図である。 図9は、第1実施形態において定盤上のブロックに関節部を押しつける例を示す図である。 図10は、第1実施形態においてロボットアームの一部が直接的に定盤に押しつけられた状態で、三次元測定機の門が移動した場合について説明する図である。 図11は、第1実施形態においてロボットアームの一部を定盤に押しつけずに、三次元測定機の門が移動した場合について説明する図である。 図12は、第2実施形態に係る三次元測定システムの概略構成図である。 図13は、第2実施形態に係る三次元測定システムにおいて三次元測定機の門の移動が測定精度に与える影響について説明する図である。 図14は、第2実施形態に係る三次元測定システムにおいてロボットアームの一部が定盤18に直接的又は間接的に当接している状態を示す図である。 図15は、第3実施形態に係る三次元測定システムの概略構成図である。 図16は、相対位置変化検出手段が複数のレーザトラッカを含む場合におけるリフレクタとレーザトラッカ本体の配置例を示す図である。 図17は、第3実施形態に係る三次元測定方法を示すフローチャートである。 図18は、相対位置変化検出手段により検出される相対位置の時間変化を示すグラフの一例である。 図19は、第4実施形態に係る三次元測定システムの概略構成図である。 図20は、第5実施形態に係る三次元測定システムの概略構成図である。 図21は、温度検出手段を有するエンドエフェクタの一例を示す図である。 図22は、温度検出手段を有するエンドエフェクタの一例を示す図である。 図23は、第5実施形態に係る三次元測定方法を示すフローチャートである。 図24は、第5実施形態の変形例1に係る三次元測定方法を示すフローチャートである。 図25は、第5実施形態の変形例3に係る三次元測定方法を示すフローチャートである。
 以下、添付図面に従って本発明に係る測定方法の実施形態について説明する。なお、図面において基本的に同じ構成要素には同じ参照符号を付している。
 <第1実施形態>
 [三次元測定機]
 図1は本実施形態に係る三次元測定システム1000の概略構成図である。図1では、ロボットアーム50を図示するために三次元測定機1のコラム16の一部の図示が省略されている。三次元測定システム1000は、三次元測定機1とロボットアーム装置100とを備える。図1に示すように、本実施形態では、ロボットアーム50のロボット基台52は三次元測定機1の定盤18の外に配置されている。
 図2は、本実施形態で用いられる三次元測定機1の一例を示す図(斜視図及びブロック図)である。なお、以下の説明では、三次元直交座標系を用いて説明する。
 図2に示すように、本実施形態に係る三次元測定機1は、測定機本体10と、測定機制御装置30とを含んでいる。以下の説明では、三次元測定機1として接触式プローブを備える接触式三次元測定機について説明する。当然ながら、三次元測定機1は非接触式三次元測定機でもよい。三次元測定機1が非接触式三次元測定機である場合、例えば、下記の接触式のプローブ22に代えてレーザプローブを用いてもよい。
 まず、測定機本体10について説明する。測定機本体10は、プローブ22(スタイラス24を含む。)の先端に形成された測定子26を、測定対象であるワークWに接触させて走査させることにより、ワークWの形状(輪郭)及び寸法等を測定する装置である。
 図2に示すように、測定機本体10は、基台20と、基台20上に設けられた定盤18とを含んでいる。定盤18の表面は、X-Y平面に平行な平面状に形成されている。
 定盤18には、定盤18の表面から図中上側(+Z方向)に伸びる一対のコラム(支柱)16が取り付けられている。コラム16の上端部(+Z側の端部)には、ビーム(梁)14が架け渡されている。一対のコラム16は、定盤18上をY方向に同期して移動可能となっており、ビーム14は、X方向に平行な状態で、Y方向に移動可能となっている。コラム16を定盤18に対して移動させるための駆動手段としては、モータを使用することができる。なお、ビーム14及びコラム16により門が構成される門型の三次元測定機1である。
 ビーム14には、Z方向に伸びるヘッド12が取り付けられている。ヘッド12は、ビーム14の長さ方向(X方向)に沿って移動可能となっている。ヘッド12をビーム14に対して移動させるための駆動手段としては、モータを使用することができる。
 ヘッド12の下端部(-Z側の端部)には、プローブ22が図中上下方向(Z方向)に移動可能に取り付けられている。プローブ22を上下方向に移動させるための駆動手段としては、モータを使用することができる。
 測定機本体10は、コラム16、ヘッド12及びプローブ22のそれぞれの移動量を測定するための移動量測定部(例えば、リニアエンコーダ。不図示)を含んでいる。
 プローブ22は、剛性が高い軸状の部材(スタイラス24)を含んでいる。このスタイラス24の材料としては、例えば、超硬質合金、チタン、ステンレス、セラミック、カーボンファイバー等を使用することができる。
 プローブ22のスタイラス24の先端部には、測定子26が設けられている。測定子26は、硬度が高く、耐摩耗性に優れた球状の部材である。測定子26の材料としては、例えば、ルビー、窒化珪素、ジルコニア、セラミック等を使用することができる。測定子26の直径(以下、スタイラス径という。)は一例で4.0mmである。
 ワークWの測定を行う場合には、コラム16、ヘッド12及びプローブ22をXYZ方向に移動させて測定子26をワークWに接触させる。そして、測定子26をワークWの外形に沿って走査させながら、測定子26の変位量等を測定する。この変位量の測定値等のデータは測定機制御装置30に送信される。測定機制御装置30は、汎用測定プログラムを使用してこのデータを処理することにより、ワークWの形状(輪郭)及び寸法等を求めることが可能となっている。
 コントローラ40は、測定機本体10との間で通信を行うための手段であり、測定機本体10との間で送受信するデータの変換処理を行う。コントローラ40は、測定機制御装置30から測定機本体10に送信されるデジタルの指令をアナログ信号に変換するためのD/A(digital-to-analog)変換器と、測定機本体10から測定機制御装置30に送られる測定値等のデータをデジタルデータに変換するためのA/D(analog-to-digital)変換器とを含んでいてもよい。
 [ロボットアーム]
 図3は、本実施形態で用いられるロボットアーム装置100の例を示す図(概念図及びブロック図)である。
 ロボットアーム装置100は、ロボットアーム50とロボットアーム制御装置60とから構成されている。ロボットアーム50は、複数の可動部を備えると共に、複数の可動部をそれぞれ駆動する複数のモータを備えている。ロボットアーム制御装置60は、ロボットアーム50に備えられているモータを制御することにより、ロボットアーム50を作動させる。ロボットアーム制御装置60は、コンピュータで構成され、ユーザの操作又は専用のプログラムにより自動で、ロボットアーム50を作動させる。
 ロボットアーム50は、ワークWを保持することが可能に設計されている。具体的には、ロボットアーム50は、第1関節部(手首部分)J1に接続されるエンドエフェクタEEによりワークWを保持(把持)する。また、エンドエフェクタEEは、ワークWの姿勢を自由に変更することができる。例えば、エンドエフェクタEEはY-Z平面と平行に回転し、またはX-Y平面に平行に回転することにより、ワークWの姿勢を変更することができる。
 図3に示すように、ロボットアーム50は、4つの関節部(第1関節部J1~第4関節部J4)、これらの関節によって順次連結される3つのアーム(第1アームA1~第3アームA3)、及びロボット基台52を有する多関節アームである。具体的には、第1関節部J1は、エンドエフェクタEEと第1アームA1とを連結し、エンドエフェクタEEは第1アームA1に対して相対的に回転可能である。第2関節部J2は第1アームA1と第2アームA2とを連結し、第1アームA1の長手方向に伸びる軸回りに第1アームA1は回転可能である。第3関節部J3は第2アームA2と第3アームA3とを連結し、第2アームA2は第3アームA3に対して水平方向に伸びる軸回りに回転可能である。第4関節部J4は第3アームA3とロボット基台52の先端部52aとを連結し、第3アームA3はロボット基台52に対して水平方向に伸びる軸回りに回転可能である。なお、図3に示すロボットアーム装置100は一例であり、他の形態の公知のロボットアーム装置が使用されてもよい。
 [測定方法]
 次に、ロボットアーム装置100と三次元測定機1とを使用した測定方法に関して説明する。図4は、ロボットアーム装置100と三次元測定機1とを使用した測定方法を示すフローチャートである。
 ロボットアーム装置100は、三次元測定機1の測定空間の外にあるワークWをエンドエフェクタEEで保持し(ステップS10)、ワークWを保持した状態で三次元測定機1の測定空間内に運搬する(ステップS11:運搬ステップ)。その後、エンドエフェクタEEでワークWを保持した状態で、ロボットアーム50の一部を定盤18の上面(以下定盤18上と記載する)に直接的に押しつけて(当接させて)、ワークWの測定姿勢を決める(ステップS12:設置ステップ)。その後、三次元測定機1によりワークWの測定を行う(ステップS13:測定ステップ)。次に、ロボットアーム装置100は、エンドエフェクタEEを作動させてワークWを保持しつつワークWの姿勢の変更を行う(ステップS14:変更ステップ)。そして、三次元測定機1により、姿勢を変更した後のワークWの測定を行う(ステップS15)。
 次に、上述した測定方法の主なステップ(工程)に関して詳細な説明を行う。
 [運搬ステップ(搬入ステップ)]
 図5は、ワークWの運搬ステップ(図4のステップS11)の一例を説明する図である。図5に示すようにロボットアーム装置100は、三次元測定機1の測定空間外にあるワークWをエンドエフェクタEEで保持し、保持した状態で三次元測定機1の測定空間内にワークWを運搬する。なお、図5~図11では、測定機制御装置30、コントローラ40、及びロボットアーム制御装置60は省略されている。また、図5~図11では、ロボットアーム50を図示するために三次元測定機1のコラム16の一部の図示が省略されている。
 [設置ステップ及び測定ステップ]
 図6は、設置ステップ(図4のステップS12)及び測定ステップ(図4のステップS13)の一例を説明する図である。ワークWが、三次元測定機1の測定空間に運搬された後に、ロボットアーム50の一部が定盤18の上に直接的に押しつけられてワークWの姿勢決めがされ、その後、三次元測定機1でワークWの測定が行われる。
 図6に示す場合では、ロボットアーム50の一部である最もエンドエフェクタEE側にある第1関節部J1(手首部分)を定盤18上に直接的に押しつけて、ワークWの位置決めが行われている。このように、ロボットアーム50の第1関節部J1(当接部の一例)を定盤18上に直接的に押しつけることにより、地面振動(外部環境の振動)やロボットアーム装置100自体の振動を抑え、ロボットアーム50の先端部及びワークWへの影響を抑制している。
 ここで、定盤18に第1関節部J1が押しつけられていない場合には、ロボットアーム50は、地面振動やロボットアーム装置100自体の振動の影響を受けてしまう。これに対して、本実施形態では、図6に示すようにロボットアーム50の第1関節部J1を定盤18上に押しつけることにより、ワークWへの振動の影響を抑制している。
 また、上述した振動の影響は、ロボットアーム装置100の先端部(ワークWを保持している部分)で受けやすい。図6に示す場合では、ロボットアーム50の先端部である第1関節部J1を定盤18上に押しつけることにより、効果的に振動の影響を抑制している。
 図7は、設置ステップ及び測定ステップの他の例を説明する図である。図7に示す場合では、ロボットアーム50の第3関節部(肘部分、当接部の一例)J3が定盤18上に直接的に押しつけられて、ワークWの位置決めを行っている。このように第3関節部J3が定盤18上に直接的に押しつけられることによっても、地面振動やロボットアーム装置100自体の振動を抑え、ロボットアーム50のエンドエフェクタEEで保持されているワークWへの振動の影響を抑制することができる。
 [変更ステップ]
 図8は、変更ステップ(図4のステップS14)の一例を示した図である。図8に示すように、ワークWの姿勢を変更する場合には、ロボットアーム50の一部(例えば第1関節部J1)を定盤18から離して、ワークWの姿勢を変更する。ロボットアーム50は、エンドエフェクタEEをX-Z平面と平行に回転させることにより、ワークWの姿勢を変更する。例えば、ワークWの表面を測定した後に、ワークWの姿勢を変更してワークWの裏面の測定を行うために、ワークWの姿勢を変更する。ワークWの姿勢を変更した後は、ワークWの姿勢の変更前と同一位置にロボットアーム50の一部を定盤18上に押しつけて、姿勢が変更されたワークWの測定が行われる。なお、ロボットアーム50の一部を押しつける定盤18上の位置は、ワークWの姿勢の変更前と変更後とで異なっていてもよい。このように、エンドエフェクタEEを作動させてワークWの姿勢を変更することができるので、ワークWの姿勢毎に測定治具を用意する必要がなく、簡便にワークWの姿勢を変更することができる。
 <第1実施形態の変形例>
 上述した実施形態では、ロボットアーム50の一部を定盤18に直接的に押しつける態様の一例として、ロボットアーム50の関節部(関節部J1、関節部J3)を定盤18上に押しつける態様を説明した(図4のステップS12)。しかし、本発明はこれに限定されず、図4のステップS12においてロボットアーム50の一部を間接的に定盤18に押しつけてもよい。ロボットアーム50の一部を間接的に定盤18に押しつける態様の一例として、定盤18上の制振部材(ブロック)にロボットアーム50の一部を押しつける場合について説明する。
 図9は、定盤18上のブロックBの上面(以下、ブロックB上と記載する)に、ロボットアーム50の一部として第1関節部J1を押しつける例を示す図である。このように、定盤18上に設置されたブロックB上に第1関節部J1を押しつけることにより、第1関節部J1を定盤18上に直接的に押しつけた場合と同様の効果を得ることができる。具体的には、第1関節部J1をブロックB上に押しつけることにより、地面振動やロボットアーム装置100自体の振動を抑えることができる。更に、第1関節部J1をブロックB上に押しつけることにより、エンドエフェクタEEと定盤18との間にスペースを確保することができ、Z方向の長さが長いワークWLでも定盤18に接触しないように保持して測定を行うことができる。
 なお、ブロックBの形状及び材質は特に限定されるものではない。ブロックBの形状及び材質は、定盤18上に設置されてロボットアーム50の一部が押しつけられること、及びロボットアーム50の一部が押しつけられることにより振動が抑制される効果が奏させることを考慮して選択される。
 また、本実施形態によればロボットアーム50の一部を定盤18上に直接的(または間接的)に押しつけているので、仮に門の移動により定盤18に傾きが生じた場合でも、以下に述べるように、ロボットアーム50を押しつけていない場合に比べて測定精度を維持することができる。
 図10は、ロボットアーム50の一部が直接的に定盤18上に押しつけられた状態で、三次元測定機1の門が移動した場合について説明する図である。なお、図10に示す定盤18の傾きは、説明のために誇張されており、実際には定盤18の傾きは微小である。門がY軸に沿って移動した場合には、門の重さの影響により定盤18がわずかに傾く。具体的には門がY軸の正の方向に移動すると、移動先では定盤18は門の重さで沈み、反対に逆方向では定盤18は浮く、その結果として定盤18がわずかに傾く。また、定盤18は測定空間(測定エリア)Gの基準とされているので、定盤18が傾くのに合わせて、三次元測定機1の測定空間Gも図10に示すように傾く。
 ここで、ロボットアーム50を定盤18に直接的(または間接的)に押しつけずに、ワークWを計測した場合の問題点について説明する。図11は、ロボットアーム50を定盤18に押しつけずに、三次元測定機1の門が移動した場合について説明する図である。ロボットアーム50を定盤18に押しつけていない場合には、ロボットアーム50は定盤18の傾きに追従して移動せず、ロボットアーム50で保持されたワークWは定盤18の傾きとは関係なく、一定の位置に保持(固定)された状態となっている。また、定盤18が傾くのに伴い測定空間GBから測定空間Gに変化するが、ワークWの位置はこの変化に追従することができず一定の位置のままである。その結果、門の移動により定盤18に傾きが生じる場合には、定盤18の傾きに伴って定盤18(測定空間)とワークWとの相対的な位置関係に大きなずれが生じてしまい、測定精度を維持することが困難となる。
 これに対して、本実施形態(図10参照)では、ロボットアーム50の一部(第1関節部J1)を定盤18上に直接的(または間接的)に押しつけた状態で測定が行われる。従って、定盤18に傾きが生じたとしても、定盤18の傾きに応じた分だけロボットアーム50の位置(姿勢)が変化し、その変化に応じてワークWの位置も変化する。すなわち、定盤18の傾きに追従して、ワークWも移動することになるので、定盤18とワークWとの相対的な位置に大きなずれが生じにくい。そのため、門の移動に伴い測定空間Gが移動したとしても、ワークWと測定空間Gとの相対的な位置のずれが生じにくいので、ロボットアーム50の一部を定盤18に押しつけていない場合(図11参照)と比較して、測定精度を維持することができる。
 以上説明をしたように、ロボットアーム50を定盤18に押しつけた場合には、門が移動したとしても、測定空間の変化に追従させてワークWの位置を移動させることができるので、三次元測定機1での測定の精度を維持することができる。
 上述の説明においては、ロボットアーム50の一部として関節部が定盤18上に直接的又は間接的に押しつけられる例について説明したが、ワークWへの振動が抑制されるという効果が得られるのであれば、定盤18に押しつける箇所はロボットアーム50の関節部に限定されるものではない。例えば、ロボットアーム50のアーム(アームA1~アームA3)が定盤18上に直接的又は間接的に押しつけられてもよいし、ロボットアーム50の他の部分が定盤18上に直接的又は間接的に押しつけられてもよい。また、ロボットアーム50の一部を直接的又は間接的に押しつける箇所は定盤18上に限定されるものではなく、例えば、定盤18の側面にロボットアーム50の一部が直接的又は間接的に押しつけられてもよい。
 <第2実施形態>
 次に、第2実施形態に係る三次元測定システム2000について説明する。図12は、第2実施形態に係る三次元測定システム2000の概略構成図である。図12に示すように、第2実施形態に係る三次元測定システム2000は三次元測定機1及びロボットアーム装置200を備える。第1実施形態では、ロボットアーム装置100は三次元測定機1の定盤18の外に配置されたロボット基台52を備えるが、第2実施形態では、ロボットアーム装置200はロボット基台52に代えて、三次元測定機1の定盤18上に配置されるロボット基台53を備える。
 なお、ロボット基台53の位置以外の構成は第1実施形態と基本的に同じであり、第2実施形態の構成によるワークWの測定方法も第1実施形態と基本的に同じであるため、これらについての説明を省略する。また、定盤18に配置する関係上、ロボットアーム装置200は比較的小型であることが望ましい。
 第1実施形態と同様に、第2実施形態でも、ロボットアーム50のエンドエフェクタEEでワークを保持した状態で三次元測定を行うことができるので、ワークの姿勢を簡便に変更することができる。
 更に、第2実施形態に係る三次元測定システム2000では、ロボット基台53が定盤18上に配置されているため、ロボットアーム装置200の振動系は三次元測定機1の水平方向(X方向及びY方向)及び垂直方向(Z方向)の振動系と同じになり、ロボットアーム装置200は外部環境の振動に影響を受けづらくなる。よって、外部環境の振動による影響を低減させ、ワークWの三次元測定の精度を向上させることができる。
 次に、図13を用いて第2実施形態に係る三次元測定システム2000において定盤18の姿勢の変化が測定精度に与える影響について説明する。図13の符号13Aは、第1実施形態に係る三次元測定システム1000において直接的又は間接的にロボットアーム50の一部が定盤18と当接しないで測定する場合(つまり、図11に示す状態と同じ)を示す。
 三次元測定機1の門が移動する前は、定盤18はX-Y平面に平行であり、ワークWの中心軸はZ方向に平行であるとする。符号13Aに示すように、三次元測定機1の門がY軸の正方向に移動して、三次元測定機1の門の位置が二点鎖線で示す位置から実線で示す位置に変化した結果、門の重さの影響によって定盤18が水平方向に対して傾斜するように定盤18の姿勢が変化したと仮定する。すると、図11を参照して説明したように、定盤18の姿勢の変化に伴って測定空間Gも変化する。ロボット基台52は定盤18の外に配置されているため、エンドエフェクタEEにより保持されているワークWの位置(中心軸L1)は定盤18の姿勢の変化に追従しない。その結果、門の移動により定盤18の姿勢が変化すると、定盤18(及び測定空間G)とワークWとの相対的な位置関係が変化してしまい、測定精度に悪影響を与えうる。
 図13の符号13Bは、第2実施形態に係る三次元測定システム2000において三次元測定機1の門が符号13Aと同様に移動した場合を示す。符号13Bに示すように、ロボット基台53は定盤18上に配置されているため、エンドエフェクタEEに保持されているワークWの位置は定盤18の傾きに追従することができる。その結果、門の移動により定盤18が傾斜した場合でも、定盤18の傾きに伴って定盤18(及び測定空間G)とワークWとの相対的な位置は大きく変化せず、測定精度が維持される。このように、第2実施形態に係る三次元測定システム2000によれば、ロボットアーム装置200は定盤18の姿勢の変化に追従することができるため、定盤18の姿勢の変化による影響を低減させ、精度良くワークWの三次元測定を行うことができる。
 第2実施形態に係る三次元測定方法は、図4に示す第1実施形態に係る三次元測定方法からロボットアーム50の一部を定盤18に当接させるステップS12を、除いたものと同じである。そのため、第2実施形態に係る三次元測定方法についての詳しい説明を省略する。
 第1実施形態及びその変形例では、三次元測定機1の門の移動に伴う定盤18の姿勢の変化に追従させるために、ロボットアーム50の一部を直接的又は間接的に定盤18に当接させている。一方、第2実施形態の三次元測定システム2000では、ロボット基台53が定盤18上に配置されているため、測定時にロボットアーム50の一部を定盤18に当接させなくても、定盤18の姿勢の変化に対する追従性を確保することができる。
 そのため、第2実施形態では、第1実施形態に係る三次元測定方法におけるステップS12を省くことができる。従って、第1実施形態と比べて、第2実施形態では測定時におけるロボットアーム50の姿勢の自由度が高くなる。
 <第2実施形態の変形例>
 上述のように、第1実施形態及びその変形例では、測定時に関節部J1及びJ3等のロボットアーム50の一部(当接部)を定盤18に直接的又は間接的に当接させている。第2実施形態でも、同様に、測定時にロボットアーム50の一部を定盤18に直接的又は間接的に当接させてもよい。つまり、第2実施形態の変形例では、例えば、図4に示す第1実施形態に係る三次元測定方法と同様にステップS12を行う。
 図14の符号14Aは、第2実施形態に係る三次元測定システム2000においてロボットアーム50の一部を定盤18に直接的に当接させている状態の一例を示す。符号14Bは、定盤18上の制振部材(図中のブロックB)を介して間接的にロボットアーム50の関節部を定盤18に当接させている状態の一例を示す。ブロックBとして第1実施形態と同様のものを使用することが可能である。
 符号14A及び14Bに示すように、ロボットアーム50の一部を定盤18に直接的又は間接的に当接させるため、ロボットアーム50自体の振動を低減させることができ、延いては、測定精度を一層向上させることができる。また、ブロックBを介して間接的にロボットアーム50の一部を定盤18に当接させる場合(図14の符号14Bの場合)、エンドエフェクタEEと定盤18との間にZ方向の間隔を確保できるため、Z方向の長さが長いワークWを良好に測定することができる。なお、符号14A及び符号14Bに示す例では、ロボットアーム50の関節部を定盤18に直接的又は間接的に当接させているが、当然ながら、第1実施形態の変形例と同様に、当接部は関節部に限定されない。
 <第3実施形態>
 次に、第3実施形態に係る三次元測定システム3000について説明する。図15は、第3実施形態に係る三次元測定システム3000の概略構成図である。図15に示すように、第3実施形態に係る三次元測定システム3000は、三次元測定機2とロボットアーム装置300とを備える。ロボットアーム装置300は、第2実施形態に係るロボットアーム装置200に、相対位置変化検出手段としてアーム振動検出手段55を追加したものである。三次元測定機2は、第1実施形態に係る三次元測定機1に振動補正手段31(補正手段)を追加したものである。
 第3実施形態でも、ロボットアーム50のエンドエフェクタEEでワークを保持した状態で三次元測定を行うことができるので、ワークの姿勢を簡便に変更することができる。
 相対位置変化検出手段は定盤18とロボットアーム50との相対位置の変化を検出する。相対位置変化検出手段は、ロボットアーム50側で相対位置の変化を検出してもよいし、定盤18側で相対位置の変化を検出してもよい。あるいは、相対位置変化検出手段はロボットアーム50側と定盤18側との両方で相対位置の変化を検出してもよい。
 図15において、ロボットアーム50側で相対位置の変化として振動を検出する手段の一例として、アーム振動検出手段55を示す。ロボットアーム装置300において、ワークWをエンドエフェクタEEで保持した状態で、アーム振動検出手段55はロボットアーム50のモータの駆動系等によるロボットアーム50自体の水平方向(X方向及びY方向)及び垂直方向(Z方向)の振動をリアルタイムに検出し、三次元測定機2の補正手段31に出力する。リアルタイムとは、振動(相対位置の変化)の検出が必要な時間(ワークWの三次元測定が行われている時間)内において常時あるいは一定間隔で振動が検出されることを意味する。また、一定時間間隔に限らず、不等時間間隔で振動を検出してもよい。更に、リアルタイムに振動検出する場合に限らず、外部から振動に関するデータを受信することにしてもよい。
 ここで、アーム振動検出手段55として任意の種類の振動検出装置を用いることができる。アーム振動検出手段55として、例えば、位置センサ、振動センサ、レーザトラッカ、変位測定手段等が挙げられる。また、振動センサとして加速度センサ、各種のジャイロセンサが挙げられる。また、変位測定手段として、例えば、静電容量式変位センサ、渦電流式変位センサ、レーザ干渉計等が挙げられる。
 また、アーム振動検出手段55はワークWを保持するエンドエフェクタEEの近傍に設けられることが好ましい。これにより、ロボットアーム50自体の振動がワークWに及ぼす影響をより正確に検出することが可能となる。
 三次元測定機2の振動補正手段31はアーム振動検出手段55から出力されるロボットアーム50のX方向、Y方向及びZ方向の振動に基づいて各方向の振幅を算出し、算出された振幅に基づいてワークWの三次元測定の測定値を、例えばリアルタイムに補正する。これにより、ロボットアーム50の振動の影響を低減し、測定精度を一層向上させることができる。
 なお、アーム振動検出手段55に代えて、定盤18側で定盤18とロボットアーム50との相対位置の変化を検出する定盤振動検出手段56を、相対位置変化検出手段として三次元測定機2に設けてもよい。定盤振動検出手段56は、定盤18の近傍、例えば定盤18上に配置される。定盤振動検出手段56は、相対位置の変化としての定盤18のX方向、Y方向及びZ方向の振動を、例えばリアルタイムに検出する。定盤振動検出手段56としては、アーム振動検出手段55と同様に任意の種類の振動検出装置を用いることができる。
 振動補正手段31は定盤振動検出手段56によって検出された定盤18の各方向における振動に基づいて各方向における振幅を算出し、更に、各方向における振幅に基づいてワークWの三次元測定の測定値をリアルタイムに補正する。これにより、定盤18の振動の影響を低減し、測定精度を一層向上させることができる。
 あるいは、相対位置変化検出手段として、アーム振動検出手段55と定盤振動検出手段56とを三次元測定機2に設けてもよい。この場合、振動補正手段31は、アーム振動検出手段55によって検出されるロボットアーム50の振動と、定盤振動検出手段56によって検出される定盤18の振動とに基づき、ワークWの三次元測定の測定値を補正する。
 以下に、相対位置変化検出手段の具体的構成の一例について説明する。ここでは、相対位置変化検出手段としてのアーム振動検出手段55と定盤振動検出手段56とが、複数のレーザトラッカを有する場合について説明する。図16に複数のレーザトラッカのリフレクタと複数のレーザトラッカ本体との配置例を示す。
 図16に示すように、アーム振動検出手段55としてのレーザトラッカは、リフレクタ55Rとレーザトラッカ本体55Mとを備える。リフレクタ55Rは例えば、エンドエフェクタEEに設けられ、レーザトラッカ本体55Mは、例えば三次元測定機1に設けられる。
 図16においてレーザトラッカ本体55Mは定盤18上に配置されているが、当然ながら、レーザトラッカ本体55Mは定盤18の外に配置されてもよい。
 レーザトラッカ本体55Mはリフレクタ55Rに対向して配置される。レーザトラッカ本体55Mは、リフレクタ55Rに向けてレーザ光を照射し、リフレクタ55Rからの反射されたレーザ光(反射光)を受光して、エンドエフェクタEEと定盤18との相対位置の変化(リフレクタ55Rの変位)を検出する。レーザトラッカの原理及び構成については公知であるため、詳しい説明を省略する。
 更に、定盤振動検出手段56としてのレーザトラッカは、定盤18のX方向及びY方向の側面に設けられた複数のリフレクタ56Rと、複数のリフレクタ56Rのそれぞれに対向して配置された複数のレーザトラッカ本体56Mとを含む。好ましくは、レーザトラッカ本体56Mは定盤18の外に配置される。
 各レーザトラッカ本体56Mは、対向するリフレクタ56Rに向けてレーザ光を照射し、リフレクタ56Rからの反射されたレーザ光(反射光)を受光して、エンドエフェクタEEと定盤18との相対位置の変化(リフレクタ56Rの変位)を検出する。
 定盤振動検出手段56においてレーザトラッカの数は1つでもよいが、定盤18が比較的大型である場合、複数のレーザトラッカにより定盤18の相対位置の変化(リフレクタ56Rの変位)を検出することが好ましい。
 また、定盤振動検出手段56に加えて、定盤18の傾斜(姿勢の変化)を検出する傾斜検出手段(不図示)を三次元測定機1に設けてもよい。傾斜検出手段として、例えば、傾斜センサ、加速度センサ、ジャイロセンサ等が挙げられる。
 この場合、振動補正手段31は、定盤振動検出手段56によって検出された定盤18の各方向における振動と、傾斜検出手段によって検出された定盤18の傾斜とに基づいて、ワークWの三次元測定の測定値を例えばリアルタイムに補正する。これにより、三次元測定の精度を一層向上させることができる。
 なお、定盤振動検出手段56に代えて、傾斜検出手段を設けてもよい。
 図17は第3実施形態に係る三次元測定方法を示すフローチャートである。図17において、図4に示すフローチャートと同じステップについては同じ番号を付け、同じステップについての説明を省略する。
 図17に示すように、第2実施形態と同様に第3実施形態においてもロボット基台53が定盤18上に配置されているため、ロボットアーム50の一部を直接的又は間接的に定盤18に当接させるステップ(例えば、図4におけるステップS12)を省くことができる。
 第3実施形態では、ワークWが測定空間に運搬されると(ステップS11)、相対位置変化検出手段(つまり、アーム振動検出手段55及び/又は定盤振動検出手段56)は定盤18とロボットアーム50との間の相対位置の変化を検出することを開始し(ステップS20)、例えば、リアルタイムに検出結果を振動補正手段31に出力する。三次元測定を行う毎に(ステップS13及びS15)、振動補正手段31は相対位置変化検出手段から出力された検出結果に基づいて三次元測定の測定値を補正する(ステップS21及びS22)。
 より具体的には、例えば、三次元測定システム3000がアーム振動検出手段55と定盤振動検出手段56とを備える場合、振動補正手段31は、定盤18の振動をロボットアーム50の振動と相殺するように、ワークWの三次元測定の測定値を補正する。
 上述のように、本実施形態ではロボット基台53が定盤18上に配置されているため、ロボットアーム装置300は外部環境の振動に影響を受けづらい。また、門の移動により定盤18の姿勢が変化した場合でも、ロボットアーム装置は定盤18の姿勢の変化に追従することができる。しかし、それでも、エンドエフェクタEEによりワークWを保持した状態で三次元測定を行うため、ロボットアーム50自体の振動が三次元測定の測定値に影響を与えうる。
 そこで、ステップS21及びS22において定盤18とロボットアーム50との相対位置の変化に基づいて三次元測定の測定結果を補正することにより、このようなロボットアーム50自体の振動の影響を抑制する。延いては、三次元測定の精度を一層向上させることができる。
 ここで、相対位置の変化の検出結果に基づく三次元測定の測定値の補正についてより詳しく説明する。説明のために、例えば、相対位置変化検出手段によりロボットアーム50のX方向、Y方向及びZ方向の相対位置の時間変化を検出すると仮定する。すると、図18に示すような波形がX方向、Y方向及びZ方向の各方向について得られる。図18は、相対位置変化検出手段により検出された一方向における相対位置の時間変化を示すグラフの一例であり、横軸が時間を示し、縦軸が相対位置の変化量(振幅)を示す。
 振動補正手段31は、図18に示す波形に基づいて各方向の振幅を算出し、算出された振幅に基づいてワークWの三次元測定の測定値を補正する。より具体的には、相対位置の変化による影響を打ち消すように、振動補正手段31は、X方向、Y方向及びZ方向の各方向の三次元測定の測定値(測定された座標)に、相対位置変化検出手段により検出された振幅に相当する値を加算するか、又は三次元測定の測定値から振幅に相当する値を減算する。加算及び減算のいずれを行うのかは、相対位置が変化した方向に基づいて決定される。
 これにより、三次元測定を行う際にロボットアーム50の振動によって生じた測定点のずれを補正することができる。従って、三次元測定の精度を一層向上させることができる。
 <第3実施形態の変形例1>
 第2実施形態の変形例と同様に、第3実施形態でも、測定時にロボットアーム50の一部を直接的又は間接的に定盤18に当接させてもよい。例えば、第3実施形態の変形例では、測定時にロボットアーム50の一部を直接的又は間接的に定盤18に当接させるステップ(例えば、図4のステップS12)を、図17に示す第3実施形態に係る測定方法のステップS11とステップS13との間に追加してもよい。これにより、ロボットアーム50自体の振動を低減させることができるので、測定精度を一層向上させることができる。
 <第3実施形態の変形例2>
 定盤振動検出手段56に加えて、定盤18の傾斜を検出する傾斜検出手段(不図示)を三次元測定機2に設けてもよい。傾斜検出手段として、例えば、傾斜センサ、加速度センサ、ジャイロセンサ等が挙げられる。
 振動補正手段31は、定盤振動検出手段56によって検出された定盤18の各方向における振動と、傾斜検出手段によって検出された定盤18の傾斜とに基づいて、ワークWの三次元測定の測定値を、例えばリアルタイムに補正する。これにより、三次元測定の精度を一層向上させることができる。
 なお、定盤振動検出手段56に代えて、傾斜検出手段を設けてもよい。
 <第4実施形態>
 次に、第4実施形態に係る三次元測定システム4000について説明する。図19は、第4実施形態に係る三次元測定システム4000の概略構成図である。図19に示すように、第4実施形態に係る三次元測定システム4000は、三次元測定機2とロボットアーム装置400とを備える。ロボットアーム装置400は、第3実施形態に係るロボットアーム装置300のロボット基台53をロボット基台52に代えたものである。三次元測定機2は、第3実施形態に係る三次元測定機2と基本的に同じである。
 第4実施形態に係る三次元測定方法は、第3実施形態と基本的に同じであるため、説明を省略する。第4実施形態でも、ロボットアーム50のエンドエフェクタEEでワークを保持した状態で三次元測定を行うことができるので、ワークの姿勢を簡便に変更することができる。
 第4実施形態では、ロボット基台52が定盤18の外に配置されているため、第1実施形態と同様に三次元測定機2の振動系とロボットアーム装置400の振動系とは別系統になっている。しかし、相対位置変化検出手段(つまり、アーム振動補正手段55及び/又は定盤振動検出手段56)及び振動補正手段31を備えるためロボットアーム50の振動の影響及び/又は定盤18の振動の影響を低減することができる。そのため、第3実施形態と同様に、必ずしも第1実施形態のようにロボットアーム50の一部を定盤18に直接的に又は間接的に当接させなくともよい。
 第4実施形態に係る三次元測定システム4000では、ロボット基台52を定盤18上に配置する必要が無いため、ロボットアーム装置400として第3実施形態と比べて大型のロボットアーム装置を用いることができる。
 <第4実施形態の変形例1>
 第1実施形態及びその変形例と同様に、第4実施形態でも、測定時にロボットアーム50の一部を直接的又は間接的に定盤18に当接させてもよい。第4実施形態の変形例に係る三次元測定方法は、第3実施形態の変形例と基本的に同じであるため、説明を省略する。第4実施形態の変形例においても、ロボットアーム50自体の振動を低減させることができるので、ワークWの三次元測定の精度を一層向上させることができる。
 <第4実施形態の変形例2>
 第3実施形態の変形例2と同様に、定盤振動検出手段56に加えて、定盤18の傾斜を検出する傾斜検出手段(不図示)を三次元測定機2に設けてもよい。これにより、第4実施形態の変形例2においても、振動補正手段31は、定盤振動検出手段56によって検出された定盤18の各方向における振動と、傾斜検出手段によって検出された定盤18の傾斜とに基づいて、ワークWの三次元測定の測定値を、例えばリアルタイムに補正することができ、延いては、三次元測定の精度を一層向上させることができる。なお、定盤振動検出手段56に代えて、傾斜検出手段を設けてもよい。
 <第5実施形態>
 次に、第5実施形態に係る三次元測定システム5000について説明する。図20は、第5実施形態に係る三次元測定システム5000の概略構成図である。図20に示すように、第5実施形態に係る三次元測定システム5000は、三次元測定機3とロボットアーム装置500とを備える。
 ロボットアーム装置500は、第1実施形態に係るロボットアーム装置100に温度検出手段57を追加したものである。三次元測定機3は、第1実施形態に係る三次元測定機1に温度補正手段(補正手段)32を追加したものである。
 第1実施形態と同様に、第5実施形態でも、ロボットアーム50のエンドエフェクタEEでワークを保持した状態で三次元測定を行うことができるので、ワークの姿勢を簡便に変更することができる。
 温度検出手段57としては、任意の種類の温度センサを用いることができる。温度検出手段57として、例えば、熱電対温度計、抵抗温度計、赤外線温度計、バイメタル温度計等が挙げられる。
 ロボットアーム装置100において温度検出手段57は、エンドエフェクタEEに保持されたワークWの温度が検出できれば、温度検出手段57はどこに設けられてもよいが、好ましくは、温度検出手段57は、エンドエフェクタEEにおいてワークWを保持する(保持する)保持面に設けられる。これにより、エンドエフェクタEEに保持されたワークWの温度を精度良く検出することができる。
 三次元測定機1において温度補正手段32は、温度検出手段57により検出されたワークWの温度に基づいて三次元測定の可否を判定する。更に、温度補正手段32は、検出されたワークWの温度に基づいて三次元測定の測定値を補正する。
 次に、図21及び図22を参照して、温度検出手段57を備えるエンドエフェクタEEの例について説明する。エンドエフェクタEEはワークWの形状及び材質に応じて適宜交換される。
 図21は、角形状のワークWを保持する際に好適に用いることができるエンドエフェクタEEの一例を示す。図21の符号21AはエンドエフェクタEEの正面図であり、符号21Bは保持面を示す図である。符号21Aに示すように、エンドエフェクタEEは、基部71と一対の爪部72とを備える。基部71の基端側はロボットアーム50の第1アームA1と接続される。一対の爪部72は基部71の先端側に設けられる。一対の爪部72は互いに対して離隔及び近接するように移動可能に構成され、符号21Cに示すようにワークWは一対の爪部72の間隙に保持される。つまり、一対の爪部72の互いに対向する面は、ワークWを保持する一対の保持面73を構成する。
 符号21Bに示すように、保持面73のうち少なくとも1つには、温度検出手段57が設けられる。エンドエフェクタEEにワークWが保持されると、ワークWは保持面73に設けられた温度検出手段57と接触し、温度検出手段57によるワークWの温度検出が開始される。好ましくは、全ての保持面73に温度検出手段57が設けられる。これにより、温度の測定精度を上げることができる。
 図22は、円筒形状のワークWを保持する際に好適に用いることができるエンドエフェクタEEの一例を示す。図22の符号22AはエンドエフェクタEEの正面図であり、符号22Bは底面図である。符号22A及び符号22Bに示すように、エンドエフェクタEEは、基部75と、3つで一組のチャック76とを備える。基部75の基端側は、ロボットアーム50の第1アームA1と接続される。一組のチャック76は基部75の先端側に設けられる。一組のチャック76は、同一円周上に120度間隔に配置され、それぞれ径方向に移動可能に構成される。符号22Cに示すようにワークWは一組のチャック76の間隙に保持される。つまり、一組のチャック76の径方向の中心側の面は、ワークWを保持する一組の保持面77を構成する。
 符号22Bに示すように、保持面77のうち少なくとも1つには、温度検出手段57が設けられる。好ましくは、全ての保持面77に温度検出手段57が設けられる。
 図23は第5実施形態に係る三次元測定方法を示すフローチャートである。図23において、図4に示すフローチャートと同じステップについては同じ番号を付け、同じステップについての説明を省略する。図23から分かるように、第5実施形態に係る三次元測定方法は、第1実施形態に係る三次元測定方法に、ステップS30からS33を追加したものである。なお、第1実施形態では、ロボットアーム50の一部を定盤18に直接的に当接させているが(例えば、ステップS12)、当然ながら、第1実施形態の変形例と同様にロボットアーム50の一部を間接的に定盤18に当接させてもよい。
 第5実施形態では、エンドエフェクタEEがワークWを保持すると(ステップS10)、ワークWと温度検出手段57とが接触し、温度検出手段57はワークWの温度の検出を開始する(ステップS30:温度検出ステップ)。その後、ステップS11からS33に並行して、一定時間間隔で又は不等時間間隔で、又はリアルタイムに、温度検出手段57から温度の検出結果が温度補正手段32に出力される。
 ここで、温度検出手段57から温度の検出結果が温度補正手段32に自動的に出力されない場合、ワークWの姿勢を設定した後(ステップS12)、例えば、温度補正手段32から温度検出手段57に対して温度の検出結果の出力を指示する信号を送ることとしてもよい。
 このように、エンドエフェクタEEがワークWを保持したタイミングで自動的に温度検出手段57はワークWの温度検出を開始できるため、ユーザがワークWの温度を検出するセンサをロボットアーム50等に取り付ける工程を省くことができる。また、エンドエフェクタEEがワークWを保持した状態でワークWの温度を検出し始めるため、ワークWの保持から(ステップS10:保持ステップ)、ワークWの設置(ステップS12)までの時間にワークWの温度検出を行うことができる。温度検出手段57の立ち上がりに比較的長い時間がかかる場合、この利点は顕著である。これにより、三次元測定の効率を向上させることができる。
 ロボットアーム50の一部を直接的又は間接的に定盤18に当接させてワークWの測定姿勢が決定されると(ステップS12)、三次元測定機において、温度補正手段32は温度検出手段57により検出されたワークWの温度が所定の温度条件を満たすか否か判定する(ステップS31:温度判定ステップ)。
 ここで、温度条件は、例えば、三次元測定機3で測定可能なワークWの温度範囲に基づいて予め設定される。例えば、三次元測定する雰囲気の温度が摂氏20度である場合、所定の温度条件を摂氏20度±2度、あるいは、摂氏20度±1度に設定してもよい。
 ワークWの温度が所定の温度条件を満たさないと判定された場合には(ステップS31:No)、その旨をユーザに通知し(不図示)、所定時間経過後に新たに検出された温度に基づいて再度温度判定を行う。ワークWの温度がワークWの測定に適した温度であると判定された場合(ステップS31:Yes)、ワークWの三次元測定が行われる(ステップS13)。
 続いて、ワークWの三次元測定中に温度検出手段57から出力されるワークWの温度の検出結果に基づいて、温度補正手段32はワークWの三次元測定の測定値を補正する(ステップS32)。ここで、温度検出手段57がリアルタイムに温度を検出して温度補正手段32に検出された温度がリアルタイムに出力される場合、リアルタイムに三次元測定の測定値を補正することにしてもよい。
 ステップS12において決定された姿勢での三次元測定が終わると、ロボットアーム50によりワークWの姿勢を変更する(ステップS14)。続いて、姿勢変更後のワークについて同様にして三次元測定(ステップS15)を行い、検出された温度に基づいて三次元測定の測定値を補正する(ステップS32)。
 このように、ワークWの温度に基づいて三次元測定の測定値を補正することにより、ワークWの三次元測定の精度を向上させることができる。なお、上記の説明では、ワークWが所定の温度条件を満たすか否か判定している(図23のステップS31)。しかし、ワークWが所定の温度条件を満たすことが予め分かっている場合、図23のステップS31を省略してもよい。これにより、三次元測定の効率を一層向上させることができる。
 <第5実施形態の変形例1>
 次に、第5実施形態の変形例1について説明する。第5実施形態では、温度判定において温度条件を満たさないと判定されたワークWを移動させていないが、第5実施形態の変形例1では、例として、温度条件を満たさないと判定されたワークWを温度慣らし場に移動させる。
 第5実施形態の変形例1では、三次元測定システム5000の近傍に、ワークWを保管するワークストッカと、所定の温度条件を満たさないワークWを一時保管する場所(温度慣らし場)とが予め設けられる(不図示)。第5実施形態の変形例1に係る三次元測定システムの構成は第5実施形態に係る三次元測定システム5000と同様であるため、システムの構成についての説明を省略する。
 図24に第5実施形態の変形例1に係る三次元測定方法のフローチャートを示す。図24に示すように、第5実施形態の変形例1では、図23に示す第5実施形態に係る三次元測定方法のフローチャートにおいてステップS31で所定の温度条件を満たさないと判定された場合にステップS40を追加し、ステップS33の後にステップS34、ステップS41及びステップS42を追加する。他のステップは第5実施形態と基本的に同じであるため、これらについての説明を省略する。
 第5実施形態の変形例1では、ワークWの温度の検出結果が所定の温度条件を満たすと判定された場合(ステップS31でYes)、第5実施形態と同様にそのワークWについての三次元測定及び温度補正を行った後、そのワークWを三次元測定機3から搬出し(ステップS34)、ステップS41に進む。
 一方、ワークWの温度の検出結果が所定の温度条件を満たさないと判定された場合(ステップS31でNo)、エンドエフェクタEEに保持されているワークWを温度慣らし場に移動させてから(ステップS40:搬出ステップ)、ステップS41に進む。
 第5実施形態の変形例1によれば、ワークWを保持した状態で温度を判定し、ワークWを一旦エンドエフェクタEEから外すことなく、温度条件を満たさないワークWを速やかに三次元測定機3から搬出させることができる。これにより、三次元測定機3の稼働率を向上させることができる。
 続いて、ステップS41において、ワークストッカに別のワークがあるか否か判定する。ワークストッカに別のワークがあると判定された場合(ステップS41でYes)、ステップS10に戻り、ワークストッカ内の別のワークWについてステップS10以降の処理を行う。
 ワークストッカに別のワークがないと判定された場合(ステップS41でNo)、温度慣らし場に別のワークがあるか否か判定する(ステップS42)。温度慣らし場に別のワークがあると判定された場合(ステップS42でYes)、ステップS10に戻り、温度慣らし場内の別のワークWについてステップS10以降の処理を行う。温度慣らし場に別のワークがないと判定された場合(ステップS42でYes)、処理を終了する。
 当然ながら、第5実施形態の変形例1は第5実施形態と同様の効果の効果を得ることができる。更に、第5実施形態の変形例1では所定の温度条件を満たさないと判定されたワークWを、ステップS40において温度慣らし場に一旦移動させる。そして、ワークストッカ取得した別のワークWについて三次元測定を行った後に、温度慣らし場で温度慣らししていた(温度慣らし済み)ワークWについて三次元測定を行う。これにより、三次元測定機3の稼働率を上げることができる。
 <第5実施形態の変形例2>
 上記の第5実施形態では、第1実施形態に係るロボットアーム装置100と三次元測定機1とにそれぞれ温度検出手段57と温度補正手段32とを追加した構成について説明した。しかし、定盤18の外に配置されるロボット基台52に代えて、定盤18の上に配置されるロボット基台53を備える第2及び第3実施形態に係る三次元測定システム2000及び3000に、温度検出手段57と温度補正手段32とを追加してもよい。
 第5実施形態の変形例2に係る三次元測定方法は、図23及び図24に示すフローチャートからロボットアーム50の一部を直接的又は間接的に定盤18に当接させるステップ(ステップS12)を除いたものと同じである。つまり、上記の第5実施形態及び第5実施形態の変形例1に第5実施形態の変形例2を適用することにより、上記の第5実施形態及び第5実施形態の変形例1の効果に加え、ロボットアーム50を直接的に又は間接的に定盤18に当接させなくとも、外部環境の振動による影響を低減させ、且つ、定盤18の姿勢の変化に対する追従性を確保することができるという第2及び第3実施形態の効果も得ることができる。
 <第5実施形態の変形例3>
 第5実施形態の変形例3に係る三次元測定システムの構成は第5実施形態に係る三次元測定システム5000と同様であるため、システムの構成についての説明を省略する。
 図25に、第5実施形態の変形例3に係る三次元測定方法を示すフローチャートを示す。図25に示すように、第5実施形態の変形例3では、図23に示す第5実施形態に係る三次元測定方法のフローチャートのステップS12をステップS50に変更し、更に、ステップS31で所定の温度条件を満たすと判定された場合にステップS51を追加し、ステップS33の後にステップS34及びステップS52を追加する。更に、ステップS31で所定の温度条件を満たさないと判定された場合にステップS53を追加する。他のステップは第5実施形態と基本的に同じであるため、これらについての説明を省略する。
 第5実施形態とその変形例1及び2とでは、ワークWをエンドエフェクタEEで保持した状態で三次元測定を行っている。一方、第5実施形態の変形例3では、ワークWを定盤18上に載置し、ワークWをエンドエフェクタEEから外した状態で三次元測定を行う。
 そのため、第5実施形態の変形例3では、ステップS11でワークWを三次元測定3に搬入した後(ステップS11)、ワークWを測定空間内の所定の測定位置に配置する際に、ワークWを定盤18上に載置する(ステップS50)。ここで、ワークWを定盤18上に直接的に載置してもよいし、治具(不図示)を介して定盤18上に間接的に載置してもよい。
 ステップS50においてワークWを載置した後、少なくとも温度の検出結果が出力されるまでワークWはエンドエフェクタEEにより保持された状態であることが好ましい。エンドエフェクタEEがワークWを外してしまうと、エンドエフェクタEEに設けられた温度検出手段57が外気に触れてしまい、正しくワークWの温度を測定することができない可能性があるからである。
 ステップS50の後、温度検出手段57から温度補正手段32にワークWの温度の検出結果が出力されると、温度補正手段32は、ワークWの温度の検出結果が所定の温度条件を満たすか否か判定する(ステップS31)。なお、ワークWが所定の温度条件を満たすことが予め分かっている場合、例えば、ステップS31を省略してもよい。これにより、三次元測定の効率を一層向上させることができる。
 ワークWの温度の検出結果が所定の温度条件を満たさないと判定された場合(ステップS13でNo)、その旨をユーザに通知する(不図示)。続いて、エンドエフェクタEEは保持しているワークWを測定位置から三次元測定機3外の所定の位置に移動させた後(ステップS53:搬出ステップ)、ステップS52に進む。
 ワークWを保持した状態で温度を判定することができるため、ワークWを一旦エンドエフェクタEEから外すことなく、温度条件を満たさないワークWを速やかに三次元測定機3から搬出させることができる。これにより、三次元測定機3の稼働率を向上させることができる。
 ワークWの温度の検出結果が所定の温度条件を満たすと判定された場合(ステップS13でYes)、エンドエフェクタEEからワークWを外し、ロボットアーム50は退避する(ステップS51)。続いて、第5実施形態と同様にワークWについて三次元測定が行われ、更に、ステップS31の温度判定で用いられた温度に基づいて温度補正が行われる。
 なお、三次元測定を行う際にワークWの姿勢の変更が必要な場合は、エンドエフェクタEEでワークWを再び保持してワークWの姿勢を変更した後に、三次元測定及び温度補正を行う。
 三次元測定が終了すると、ロボットアーム装置500は測定が終わったワークWを三次元測定機3から搬出する(ステップS34)。測定すべきワークWが他に存在する場合(ステップS52でYes)、ステップS10に戻り、新たなワークWについて同様の処理を繰り返す。
 測定すべきワークWが他に存在しない場合(ステップS52でNo)、処理を終了する。当然ながら、第5実施形態の変形例3は第5実施形態と同様に、人手を介して温度検出手段57を取り付けることを不要にすることができるという効果と、温度検出を早いタイミングで開始することができるという効果が得られる。
 また、第5実施形態の変形例3ではワークWをエンドエフェクタEEから外した状態で三次元測定を行うが、その場合であってもワークWをエンドエフェクタEEから外す前にエンドエフェクタEEで保持した状態で温度を検出及び温度判定を行うことができる。これにより、温度条件を満たさないワークWをその状態から速やかに搬出することができるため、三次元測定機3の稼働率を上げることができる。
 また、図25のステップS51及びステップS52を図24のステップS40からステップS42に変更してもよい。これにより、上記の効果に加えて、第5実施形態の変形例1と同様な効果を実現することができる。
 なお、第5実施形態の変形例でも、定盤18の外に配置されるロボット基台52に代えて、定盤18上に配置されるロボット基台53を用いてもよい。
 <第5実施形態の変形例4>
 図20に示す第5実施形態に係る三次元測定システム5000に、第3及び第4実施形態において説明したアーム振動検出手段55及び/又は定盤振動検出手段56と、振動補正手段31とを、更に追加してもよい。
 第5実施形態の変形例4によれば、ロボットアーム50及び/又は定盤18の振動と、ワークWの温度とに基づいてワークWの三次元測定の測定値を補正することができるため、三次元測定の精度を一層向上させることができる。
 <その他>
 また、測定機制御装置30、振動補正手段31、温度補正手段32及びロボットアーム制御装置60は、ワークステーションやパソコン等の汎用コンピュータで実現され、CPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)などのプロセッサ、ROMやRAMなどのメモリ、ハードディスクなどの外部記録装置、入力装置、出力装置、ネットワーク接続装置などを備えて構成される。測定機制御装置30のメモリには、測定機本体10を動かすためのプログラムが記憶されており、このプログラムをプロセッサが読み出し実行することにより、自動で計測が行われてもよい。また、ロボットアーム制御装置60のメモリには、ロボットアーム50を動かすためのプログラムが記憶されており、このプログラムをプロセッサが読み出し実行することにより、ワークWの運搬及び姿勢の変更が自動で行われてもよい。更に、測定機制御装置30とロボットアーム制御装置60とは連携し、測定全般が自動的に行われてもよい。
 <効果>
 以上で説明したように、三次元測定システム1000、2000、3000、4000、5000では、ワークWをエンドエフェクタEEで保持しながらワークWの三次元測定を行うため、ワークWの姿勢を簡便に変更することができる。これにより、三次元測定の効率を向上させることができる。
 三次元測定システム1000、4000、5000では、ワークWをエンドエフェクタEEで保持しながら三次元測定機1の定盤18にロボットアーム50の一部を直接的又は間接的に当接させた状態でワークWの三次元測定を行う。これにより、ロボットアーム50の振動のワークWへの影響を低減できるため、三次元測定の精度を向上させることができる。
 ロボットアーム装置200、300では、ロボット基台53を定盤18の上に配置しているため、ロボットアーム50の一部を定盤18に直接的又は間接的に押しつけずとも、外部環境の振動のワークWへの影響を低減し、定盤18の姿勢変化への追従性を確保できる。延いては、三次元測定の精度を一層向上させることができる。
 上述したように、三次元測定システム2000、3000においても、ロボットアーム50の一部を直接的又は間接的に当接させてもよいことは言うまでもない。
 ロボットアーム装置300、400のアーム振動検出手段55及び/又は定盤振動検出手段56により、ロボットアーム50及び/又は定盤18の振動を検出し、検出された振動に基づいて三次元測定機2の振動補正手段31によりワークWの三次元測定の測定値を補正することができる。これにより、三次元測定の精度を一層向上させることができる。
 エンドエフェクタEEに保持されているワークWの温度をロボットアーム装置400の温度検出手段57により検出し、検出された温度に基づいて三次元測定機3の温度補正手段32によりワークWの三次元測定の測定値を補正することができる。これにより、ユーザがワークWの温度を検出するセンサをロボットアーム50等に取り付ける工程を省くことができる。また、ワークWを運搬して測定位置に設置するまでの時間にワークWの温度測定を行うことができるため、三次元測定の効率を一層向上させることができる。加えて、温度補正を行うことにより、三次元測定の精度を一層向上させることができる。
 ロボットアーム装置100、200、300、400及び三次元測定機1、2、3の構成要素を任意に組み合わせることにより、上記の効果のうちの所望の効果を適宜に得ることができる。
 以上で本発明の例に関して説明してきたが、本発明は上述した実施形態に限定されず、本発明の精神を逸脱しない範囲で種々の変形が可能であることは言うまでもない。
 1、2、3:三次元測定機
10  :測定機本体
12  :ヘッド
14  :ビーム
16  :コラム
18  :定盤
20  :基台
22  :プローブ
24  :スタイラス
26  :測定子
30  :測定機制御装置
31  :振動補正手段
32  :温度補正手段
40  :コントローラ
50  :ロボットアーム
52、53  :ロボット基台
52a :先端部
55  :アーム振動検出手段
56  :定盤振動検出手段
57  :温度検出手段
60  :ロボットアーム制御装置
71、75:基部
72  :爪部
73、77:保持面
76  :チャック
100、200、300、400、500:ロボットアーム装置
1000、2000、3000、4000、5000:三次元測定システム
A1  :第1アーム
A2  :第2アーム
A3  :第3アーム
B   :ブロック
EE  :エンドエフェクタ
J1  :第1関節部
J2  :第2関節部
J3  :第3関節部
J4  :第4関節部
L1  :ワークの中心軸
W   :ワーク

Claims (46)

  1.  定盤と、
     測定対象であるワークを保持し、且つ、前記ワークの姿勢を可変なロボットアームと、
     前記定盤に対して相対移動可能に構成されたプローブであって、前記ワークの三次元測定を行うプローブと、
     を備える三次元測定システム。
  2.  前記ワークが前記ロボットアームにより保持されている状態で、前記プローブは前記ワークの三次元測定を行う、
     請求項1に記載の三次元測定システム。
  3.  前記定盤と前記ロボットアームとの相対位置の変化を検出する相対位置変化検出手段と、
     前記相対位置変化検出手段の検出結果に基づいて前記プローブによる前記ワークの測定結果を補正する補正手段と、
     を備える請求項1又は2に記載の三次元測定システム。
  4.  前記相対位置変化検出手段は、前記ロボットアームの振動を検出するアーム振動検出手段を含む、
     請求項3に記載の三次元測定システム。
  5.  前記アーム振動検出手段は、前記ロボットアームの先端部近傍における振動を検出する、
     請求項4に記載の三次元測定システム。
  6.  前記相対位置変化検出手段は、前記定盤の振動を検出する定盤振動検出手段を含む、
     請求項3から5のいずれか1項に記載の三次元測定システム。
  7.  前記相対位置変化検出手段は、水平方向に対する前記定盤の傾斜を検出する傾斜検出手段を含む、
     請求項3から6のいずれか1項に記載の三次元測定システム。
  8.  前記相対位置変化検出手段は、水平方向及び垂直方向のそれぞれについて相対位置の変化量を検出し、
     前記補正手段は、前記水平方向及び垂直方向のそれぞれについて、前記プローブによる前記ワークの測定結果に対して前記相対位置の変化量を加算又は減算する、
     請求項3から7のいずれか1項に記載の三次元測定システム。
  9.  前記相対位置変化検出手段は、前記相対位置の変化をリアルタイムに検出し、
     前記補正手段は、リアルタイムに検出された前記相対位置の変化に基づいて前記プローブによる前記ワークの測定結果をリアルタイムに補正する、
     請求項3から8のいずれか1項に記載の三次元測定システム。
  10.  前記相対位置変化検出手段は
     リフレクタと、
     前記リフレクタに対してレーザ光を照射し、前記リフレクタからの前記レーザ光の反射光を受光して、前記リフレクタの変位を取得するレーザトラッカ本体と、
     を有するレーザトラッカを備え、
     前記リフレクタは前記ロボットアームに配置される、
     請求項3から9のいずれか1項に記載の三次元測定システム。
  11.  前記ワークの温度を検出する温度検出手段と、
     前記温度検出手段の検出結果に基づいて前記プローブによる前記ワークの測定結果を補正する補正手段と、
     を備える請求項1から10のいずれか1項に記載の三次元測定システム。
  12.  前記ロボットアームのエンドエフェクタは、前記ワークの温度を検出する温度検出手段を備える、
     請求項1から10のいずれか1項に記載の三次元測定システム。
  13.  前記温度検出手段は、前記エンドエフェクタが前記ワークを保持する保持面に設けられる、
     請求項12に記載の三次元測定システム。
  14.  前記温度検出手段の検出結果に基づいて前記プローブによる前記ワークの測定結果を補正する補正手段
     を備える請求項12又は13に記載の三次元測定システム。
  15.  前記温度検出手段は、前記ロボットアームにより前記ワークが保持されている状態で、前記ワークの温度を検出する、
     請求項11から14のいずれか1項に記載の三次元測定システム。
  16.  前記温度検出手段は、前記ロボットアームにより前記ワークが保持されると、前記ワークの温度の検出を開始する、
     請求項15に記載の三次元測定システム。
  17.  前記ロボットアームを支持するロボット基台は前記定盤の外に設けられる、
     請求項1から16のいずれか1項に記載の三次元測定システム。
  18.  前記ロボットアームを支持するロボット基台は前記定盤上に設けられる、
     請求項1から16のいずれか1項に記載の三次元測定システム。
  19.  前記ロボットアームは、前記プローブにより前記ワークを測定する場合に、前記定盤に直接的又は間接的に当接する当接部を有する、
     請求項1から18のいずれか1項に記載の三次元測定システム。
  20.  前記定盤上には制振部材が設けられ、
     前記ロボットアームの当接部は前記制振部材を介して前記定盤に間接的に当接する、
     請求項19に記載の三次元測定システム。
  21.  前記ロボットアームは、複数のアームと、前記複数のアームを回転可能に連結する複数の関節部とを備え、
     前記ロボットアームの当接部は前記複数の関節部の1つである、
     請求項19又は20に記載の三次元測定システム。
  22.  前記ロボットアームの当接部は、前記複数の関節部のうち最もエンドエフェクタ側にある前記関節部である、
     請求項21に記載の三次元測定システム。
  23.  測定対象であるワークを、前記ワークの姿勢を可変なロボットアームにより運搬する運搬ステップと、
     定盤に対して相対移動可能に構成されたプローブにより前記ワークの三次元測定を行う測定ステップと、
     を含む三次元測定方法。
  24.  前記測定ステップにおいて、前記ロボットアームにより前記ワークを保持した状態で、前記プローブにより前記ワークの三次元測定を行う、
     請求項23に記載の三次元測定方法。
  25.  前記定盤と前記ロボットアームとの相対位置の変化を検出する相対位置変化検出ステップと、
     前記相対位置変化検出ステップによる検出結果に基づいて前記測定ステップによる前記ワークの測定結果を補正する振動補正ステップと、
     を含む請求項23又は24に記載の三次元測定方法。
  26.  前記相対位置変化検出ステップは前記ロボットアームの振動を検出するステップを含む、
     請求項25に記載の三次元測定方法。
  27.  前記相対位置変化検出ステップは前記定盤の振動を検出するステップを含む、
     請求項25又は26に記載の三次元測定方法。
  28.  前記相対位置変化検出ステップは、水平方向に対する前記定盤の傾斜を検出するステップを含む、
     請求項25から27のいずれか1項に記載の三次元測定方法。
  29.  前記相対位置変化検出ステップは、水平方向及び垂直方向のそれぞれについて前記相対位置の変化量を検出するステップを含み、
     前記振動補正ステップは、前記水平方向及び垂直方向のそれぞれについて、前記プローブによる前記ワークの測定結果に対して前記相対位置の変化量を加算又は減算するステップを含む、
     請求項25から28のいずれか1項に記載の三次元測定方法。
  30.  前記相対位置変化検出ステップは、前記相対位置の変化をリアルタイムに検出し、
     前記振動補正ステップは、リアルタイムに検出された前記相対位置の変化に基づいて前記プローブによる前記ワークの測定結果をリアルタイムに補正する、
     請求項25から29のいずれか1項に記載の三次元測定方法。
  31.  前記ロボットアームのエンドエフェクタに設けられた温度検出手段により、前記ワークの温度を検出する温度検出ステップ
     を含む請求項25から30のいずれか1項に記載の三次元測定方法。
  32.  前記温度検出ステップによる検出結果に基づいて前記測定ステップによる前記ワークの測定結果を補正する温度補正ステップと、
     を含む請求項31に記載の三次元測定方法。
  33.  前記ワークの温度を検出する温度検出ステップと、
     前記温度検出ステップによる検出結果に基づいて前記測定ステップによる前記ワークの測定結果を補正する温度補正ステップと、
     を含む、請求項25から30のいずれか1項に記載の三次元測定方法。
  34.  前記温度検出ステップは前記ロボットアームにより前記ワークが保持された状態でリアルタイムに行われ、
     前記温度補正ステップにおいて、前記測定ステップよる前記ワークの測定結果を、前記温度検出ステップによる検出結果に基づいてリアルタイムに補正する、
     請求項32又は33に記載の三次元測定方法。
  35.  前記温度検出ステップは、前記運搬ステップにおいて行われる、
     請求項31から34のいずれか1項に記載の三次元測定方法。
  36.  前記温度検出ステップは、前記ロボットアームにより前記ワークが保持された状態で行われる、
     請求項31から35のいずれか1項に記載の三次元測定方法。
  37.  前記温度検出ステップは、前記ロボットアームにより前記ワークが保持された際に開始される、
     請求項36に記載の三次元測定方法。
  38.  前記ワークの温度が所定の温度条件を満たすか否か判定する温度判定ステップ、
     を含む請求項31から37のいずれか1項に記載の三次元測定方法。
  39.  前記温度判定ステップは、前記ロボットアームにより前記ワークが保持された状態で行われる、
     請求項38に記載の三次元測定方法。
  40.  前記温度判定ステップにおいて前記所定の温度条件を満たさないと判定された場合、前記ワークは前記ロボットアームにより保持された状態のまま搬出される、
     請求項39に記載の三次元測定方法。
  41.  前記ロボットアームを支持するロボット基台は前記定盤の外に設けられる、
     請求項23から40のいずれか1項に記載の三次元測定方法。
  42.  前記ロボットアームを支持するロボット基台は前記定盤上に設けられる、
     請求項23から40のいずれか1項に記載の三次元測定方法。
  43.  前記ロボットアームにより前記ワークを保持した状態で、前記ロボットアームの当接部を、前記定盤に直接的又は間接的に当接させる設置ステップ、
     を含む請求項23から42のいずれか1項に記載の三次元測定方法。
  44.  前記定盤上には制振部材が設けられており、
     前記設置ステップにおいて、前記ロボットアームの当接部は前記制振部材を介して前記定盤に間接的に当接する、
     請求項43に記載の三次元測定方法。
  45.  前記ロボットアームは、複数のアームと、前記複数のアームを回転可能に連結する複数の関節部とを備え、
     前記ロボットアームの当接部は前記複数の関節部の1つである、
     請求項43又は44に記載の三次元測定方法。
  46.  前記ロボットアームの当接部は、前記複数の関節部のうち最もエンドエフェクタ側にある前記関節部である、
     請求項45に記載の三次元測定方法。
PCT/JP2020/010912 2019-03-14 2020-03-12 三次元測定システム及び三次元測定方法 WO2020184678A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112020000438.4T DE112020000438B4 (de) 2019-03-14 2020-03-12 Dreidimensionales messsystem, und dreidimensionales messverfahren
CN202080009482.0A CN113330277B (zh) 2019-03-14 2020-03-12 三维测量系统和三维测量方法
GB2112849.1A GB2596439B (en) 2019-03-14 2020-03-12 Three-dimensional measuring system, and three-dimensional measuring method
US17/336,541 US11365959B2 (en) 2019-03-14 2021-06-02 Three-dimensional measuring system, and three-dimensional measuring method

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2019047103 2019-03-14
JP2019-047103 2019-03-14
JP2020-037115 2020-03-04
JP2020-037113 2020-03-04
JP2020037113A JP6725862B1 (ja) 2019-03-14 2020-03-04 三次元測定システム及び三次元測定方法
JP2020037114A JP7458578B2 (ja) 2020-03-04 2020-03-04 三次元測定システム及び三次元測定方法
JP2020-037114 2020-03-04
JP2020037115A JP7400183B2 (ja) 2020-03-04 2020-03-04 三次元測定システム及び三次元測定方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/336,541 Continuation US11365959B2 (en) 2019-03-14 2021-06-02 Three-dimensional measuring system, and three-dimensional measuring method

Publications (1)

Publication Number Publication Date
WO2020184678A1 true WO2020184678A1 (ja) 2020-09-17

Family

ID=72426109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010912 WO2020184678A1 (ja) 2019-03-14 2020-03-12 三次元測定システム及び三次元測定方法

Country Status (5)

Country Link
US (1) US11365959B2 (ja)
CN (1) CN113330277B (ja)
DE (1) DE112020000438B4 (ja)
GB (1) GB2596439B (ja)
WO (1) WO2020184678A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115302519A (zh) * 2022-10-10 2022-11-08 广州太威机械有限公司 一种机器人测量加工方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114695215A (zh) * 2020-12-31 2022-07-01 拓荆科技股份有限公司 机械手手指、机械手及其使用方法
TWI821041B (zh) * 2022-11-23 2023-11-01 林勝男 工業機器人的檢驗方法及裝置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249352A (ja) * 2007-03-29 2008-10-16 Kayaba Ind Co Ltd 寸法測定装置及び寸法測定方法
JP2016109630A (ja) * 2014-12-09 2016-06-20 キヤノン株式会社 情報処理装置、情報処理方法、プログラム
JP2019100904A (ja) * 2017-12-05 2019-06-24 株式会社ミツトヨ 測定ステーションおよび測定方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1144709B (it) * 1981-05-15 1986-10-29 Dea Spa Sistema di misura dimensionale servito da una pluralita di bracci operativi e controllato da un sistema a calcolatore
GB2174216B (en) * 1985-03-19 1988-10-26 Mitutoyo Mfg Co Ltd Method of operating a coordinate measuring instrument
GB8508390D0 (en) * 1985-03-30 1985-05-09 Ae Plc Measurement & machining engineering components
JPS62232006A (ja) * 1986-04-02 1987-10-12 Yokogawa Electric Corp ロボツト・システム
JPH088433B2 (ja) * 1987-01-20 1996-01-29 ヤマハ発動機株式会社 チツプ部品装着装置
US4979093A (en) * 1987-07-16 1990-12-18 Cavro Scientific Instruments XYZ positioner
DE3729644C2 (de) * 1987-09-04 1997-09-11 Zeiss Carl Fa Verfahren zur Bestimmung der Temperatur von Werkstücken in flexiblen Fertigungssystemen
JPH0326480A (ja) * 1989-06-21 1991-02-05 Mitsubishi Electric Corp 産業用ロボツト装置及びこの産業用ロボツト装置のロボツト教示方法
US5198990A (en) * 1990-04-23 1993-03-30 Fanamation, Inc. Coordinate measurement and inspection methods and apparatus
JP2570517B2 (ja) 1991-04-24 1997-01-08 セイコーエプソン株式会社 物体測定装置用被測定体保持装置
US5808888A (en) * 1996-01-11 1998-09-15 Thermwood Corporation Method and apparatus for programming a CNC machine
JPH11190617A (ja) 1997-12-26 1999-07-13 Mitsutoyo Corp 三次元測定機
JP4174342B2 (ja) 2003-02-19 2008-10-29 ファナック株式会社 ワーク搬送装置
JP5380792B2 (ja) * 2007-06-15 2014-01-08 株式会社Ihi 物体認識方法および装置
CN205664790U (zh) * 2016-06-08 2016-10-26 杭州非白三维科技有限公司 一种结合机器人的三维扫描系统
CN208305106U (zh) * 2018-03-05 2019-01-01 中国计量大学 一种用于检测工业机器人轨迹误差的装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249352A (ja) * 2007-03-29 2008-10-16 Kayaba Ind Co Ltd 寸法測定装置及び寸法測定方法
JP2016109630A (ja) * 2014-12-09 2016-06-20 キヤノン株式会社 情報処理装置、情報処理方法、プログラム
JP2019100904A (ja) * 2017-12-05 2019-06-24 株式会社ミツトヨ 測定ステーションおよび測定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115302519A (zh) * 2022-10-10 2022-11-08 广州太威机械有限公司 一种机器人测量加工方法
CN115302519B (zh) * 2022-10-10 2022-12-16 广州太威机械有限公司 一种机器人测量加工方法

Also Published As

Publication number Publication date
DE112020000438T5 (de) 2021-11-25
CN113330277A (zh) 2021-08-31
GB202112849D0 (en) 2021-10-27
DE112020000438B4 (de) 2023-09-28
GB2596439B (en) 2023-04-19
GB2596439A (en) 2021-12-29
US11365959B2 (en) 2022-06-21
CN113330277B (zh) 2022-04-29
US20210293519A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
WO2020184678A1 (ja) 三次元測定システム及び三次元測定方法
JP6420317B2 (ja) 工作物を検査するための方法および装置
US20200055191A1 (en) Robot system with supplementary metrology position coordinates determination system
JP4504818B2 (ja) 加工物検査方法
JP2019512095A (ja) 走査プローブを較正するための方法及び装置
JP2006212765A (ja) 工作機械の熱変位補正方法
CN113195176B (zh) 制造系统及方法
JP6234091B2 (ja) ロボット装置及び教示点設定方法
JP6725862B1 (ja) 三次元測定システム及び三次元測定方法
JP6735735B2 (ja) ワークピースを検査するための座標測定方法および同装置であって、理想的な形態から実質的に逸脱していないことが判っている基準形状を使用して測定補正値を生成するステップを含む、ワークピースを検査するための座標測定方法および同装置
JP7400183B2 (ja) 三次元測定システム及び三次元測定方法
JP6800421B1 (ja) 測定装置及び測定方法
JP2021148559A (ja) 測定システム及び偏心補正方法
JP6474587B2 (ja) 測定値補正方法、測定値補正プログラム及び測定装置
JP2021139721A (ja) 三次元測定システム及び三次元測定方法
KR102006829B1 (ko) 로봇의 교정 시스템 및 이를 이용한 교정 방법
Biro et al. Integration of a scanning interferometer into a robotic inspection system for factory deployment
JP6405195B2 (ja) 測定値補正方法、測定値補正プログラム及び測定装置
WO2024023310A1 (en) Coordinate positioning machine
JP2024106805A (ja) 機械装置、ロボットシステム、制御方法、物品の製造方法
JPH02109662A (ja) トレーサヘッドの検出誤差の補正方法
JP2024050222A (ja) 情報処理方法、製品の製造方法、情報処理システム、プログラム
JP6325768B2 (ja) 計測システム、及びその計測方法
JP6080389B2 (ja) 形状測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770743

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202112849

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20200312

122 Ep: pct application non-entry in european phase

Ref document number: 20770743

Country of ref document: EP

Kind code of ref document: A1