WO2020184577A1 - インペラ及びその樹脂組成物 - Google Patents

インペラ及びその樹脂組成物 Download PDF

Info

Publication number
WO2020184577A1
WO2020184577A1 PCT/JP2020/010374 JP2020010374W WO2020184577A1 WO 2020184577 A1 WO2020184577 A1 WO 2020184577A1 JP 2020010374 W JP2020010374 W JP 2020010374W WO 2020184577 A1 WO2020184577 A1 WO 2020184577A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
weight
parts
resin
impeller
Prior art date
Application number
PCT/JP2020/010374
Other languages
English (en)
French (fr)
Inventor
俊介 奥澤
雅嗣 古木
菊池 清治
之欣 附田
早紀 麻生
岩田 浩一
Original Assignee
帝人株式会社
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社, 日本電産株式会社 filed Critical 帝人株式会社
Priority to CN202080020305.2A priority Critical patent/CN113557270B/zh
Priority to US17/438,723 priority patent/US12084572B2/en
Priority to JP2021505090A priority patent/JP7023410B2/ja
Publication of WO2020184577A1 publication Critical patent/WO2020184577A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/026Selection of particular materials especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced

Definitions

  • the present invention comprises a resin component composed of a specific ratio polycarbonate resin and a liquid crystal polyester resin, a halogenated carbonate compound, a drip inhibitor, glass fiber and / or carbon fiber, an epoxy resin, and a resin composition composed of a phosphorus stabilizer. It is about the impeller.
  • An impeller is an impeller used for centrifugal pumps, generators, etc. for liquid or gaseous fluids, in the form of pressure and velocity with respect to the fluid that receives the output of the prime mover and passes through the impeller. It gives energy.
  • an impeller made of a single metal part is known.
  • this metal impeller has a problem that it is heavy in weight, and there is a problem that it is difficult to form a delicate aspect with metal.
  • resin impeller molded using resin.
  • resin impeller those made of fiber reinforced resin such as carbon fiber reinforced polyetheretherketone resin (PEEK) and glass fiber reinforced polyphenylene sulfide resin (PPS) are used.
  • PEEK carbon fiber reinforced polyetheretherketone resin
  • PPS glass fiber reinforced polyphenylene sulfide resin
  • Polycarbonate resin is a resin with excellent heat resistance, impact resistance, dimensional stability, etc., and is widely used in the fields of electrical and electronic parts, mechanical parts, automobile parts, OA equipment parts, and the like. So far, a method of using a polycarbonate resin as a resin material for an impeller has been disclosed, but it has not been possible to obtain sufficient properties such as tensile strength, specific strength, dimensional accuracy and flame retardancy. (See Patent Documents 1 and 2)
  • Patent Document 5 As a method for improving the tensile strength of the polycarbonate resin, a technique for increasing the strength by adding a component for improving the adhesion with the filler to the glass fiber or carbon fiber reinforced polycarbonate resin is known. (See Patent Documents 3 and 4) Further, a method of blending a glass fiber with an alloy of a polycarbonate resin and a liquid crystal polyester to further improve the tensile strength is known. (Patent Document 5) However, neither of them has achieved both sufficient tensile strength and specific strength in a high temperature environment exceeding 80 ° C.
  • flame retardants such as phosphoric acid ester flame retardants, metal salt flame retardants, and brominated epoxy carbonates have been reported in flame retardant formulations, but they have a good balance of characteristics such as sufficient heat resistance, strength, and dimensional accuracy. It was difficult to impart flame retardancy in the best conditions. (See Patent Documents 6 and 7)
  • JP-A-57-119105 Japanese Unexamined Patent Publication No. 8-4688 JP-A-2009-292953 Japanese Patent No. 6195904 Japanese Unexamined Patent Publication No. 2012-188578 Japanese Unexamined Patent Publication No. 7-331051 JP-A-2008-163315
  • an object of the present invention relates to an impeller made of a polycarbonate resin composition having excellent dimensional accuracy and flame retardancy in addition to excellent tensile strength and high specific strength in a high temperature environment.
  • the present inventor has added a carbonate carbonate compound, a drip inhibitor, glass fiber and / or carbon fiber, and an epoxy to a component composed of a specific ratio of polycarbonate resin and liquid crystal polyester resin.
  • a method for obtaining an impeller made of a polycarbonate resin composition having excellent dimensional accuracy and flame retardancy in addition to excellent tensile strength and high specific strength in a high temperature environment by blending a resin and a phosphorus-based stability. has been completed.
  • Aspect 1 (A) Polycarbonate resin (A component), (B) Liquid crystal polyester resin (B component), 3 to 40 parts by weight of (C) halogenated carbonate compound (C component) with respect to a total of 100 parts by weight of A component and B component.
  • ⁇ Aspect 3 The impeller according to aspect 1 or 2, wherein the component B is a liquid crystal polyester resin containing a repeating unit derived from p-hydroxybenzoic acid and a repeating unit derived from 6-hydroxy-2-naphthoic acid.
  • the E component is a flat cross-section glass fiber in which the average value of the major axis of the fiber cross section is 10 to 50 ⁇ m and the average value of the ratio of the major axis to the minor axis (major axis / minor axis) is 1.5 to 8.
  • ⁇ Aspect 5 >> The impeller according to any one of aspects 1 to 4, wherein the F component is a bisphenol A type epoxy resin.
  • ⁇ Aspect 6 The impeller according to any one of aspects 1 to 5, wherein the dimensional change rate in the vertical direction of the blade tip with respect to the diameter after being rotated at 12,000 rpm for 10 days in an atmosphere of 85 ° C. is 0.4% or less.
  • ⁇ Aspect 7 The impeller according to any one of aspects 1 to 6, which is used as an impeller for cooling, ventilation, air conditioning fan, vehicle air conditioning, and blower fan of home electric appliances, OA equipment, and industrial equipment.
  • Aromatic polycarbonate resin component A
  • B Liquid crystal polyester resin
  • C Halogenated carbonate compound
  • D Drip inhibitor
  • E 25 to 150 parts by weight of glass fiber and / or carbon fiber
  • F epoxy resin
  • G phosphorus-based stabilizer
  • a component and B component [ (A) / (B)] is 98/2 to 60/40, a resin composition.
  • the impeller of the present invention has high tensile strength, specific strength, dimensional accuracy and flame retardancy in a high temperature environment, and these characteristics are not found in the prior art. Therefore, the industrial effect of the present invention is exhibited. Is extremely large.
  • the impeller of the present invention (A) Aromatic polycarbonate resin (component A), (B) Liquid crystal polyester resin (B component), For a total of 100 parts by weight of component A and component B (C) Halogenated carbonate compound (C component) 3 to 40 parts by weight, (D) Drip inhibitor (D component) 0.1 to 3 parts by weight, (E) 25 to 150 parts by weight of glass fiber and / or carbon fiber (component E), It contains 0.1 to 8 parts by weight of (F) epoxy resin (F component) and 0.01 to 3 parts by weight of (G) phosphorus-based stabilizer (G component), and the weight ratio of A component and B component [ (A) / (B)] is composed of a resin composition of 98/2 to 60/40.
  • the polycarbonate resin used as the component A in the present invention is obtained by reacting a divalent phenol with a carbonate precursor.
  • the reaction method include an interfacial polymerization method, a melt transesterification method, a solid phase transesterification method of a carbonate prepolymer, and a ring-opening polymerization method of a cyclic carbonate compound.
  • dihydric phenol used here are hydroquinone, resorcinol, 4,4'-biphenol, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl).
  • Propane (commonly known as bisphenol A), 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl)- 1-phenylethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxyphenyl) Pentan, 4,4'-(p-phenylenediisopropyridene) diphenol, 4,4'-(m-phenylenediisopropylidene) diphenol, 1,1-bis (4-hydroxyphenyl) -4-isopropylcyclohexane , Bis
  • BPM 4,4'-(m-phenylenediisopropyridene) diphenol
  • 1,1-bis (4-hydroxy) as a part or all of the divalent phenol component.
  • BCF 9,9-bis (4-hydroxyphenyl)
  • BCF 9,9-bis (4-hydroxy-3-methylphenyl) fluorene
  • these dihydric phenols other than BPA in an amount of 5 mol% or more, particularly 10 mol% or more, based on the whole dihydric phenol component constituting the polycarbonate.
  • the component A constituting the resin composition is the following copolymerized polycarbonates (1) to (3). is there.
  • BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, further preferably 45 to 65 mol%) and BCF in 100 mol% of the divalent phenol component constituting the polycarbonate.
  • Copolymerized polycarbonate in an amount of 20 to 80 mol% (more preferably 25 to 60 mol%, still more preferably 35 to 55 mol%).
  • BPA is 10 to 95 mol% (more preferably 50 to 90 mol%, further preferably 60 to 85 mol%) and BCF in 100 mol% of the divalent phenol component constituting the polycarbonate.
  • Polycarbonate having a content of 5 to 90 mol% (more preferably 10 to 50 mol%, still more preferably 15 to 40 mol%).
  • BPM is 20 to 80 mol% (more preferably 40 to 75 mol%, further preferably 45 to 65 mol%) and Bis in 100 mol% of the divalent phenol component constituting the polycarbonate.
  • These special polycarbonates may be used alone or in admixture of two or more. Further, these can also be used by mixing them with a widely used bisphenol A type polycarbonate.
  • those in which the water absorption rate and Tg (glass transition temperature) are within the following ranges by adjusting the copolymerization composition and the like have good hydrolysis resistance of the polymer itself and. Since it is remarkably excellent in low warpage after molding, it is particularly suitable in fields where morphological stability is required.
  • Tg is 160 to 250 ° C., preferably 170 to 230 ° C., and the water absorption rate is 0.10 to 0.30%, preferably 0.13 to 0.30%, more preferably 0.14 to 0.14 to Polycarbonate which is 0.27%.
  • the water absorption of polycarbonate is a value obtained by measuring the water content after dipping it in water at 23° C. for 24 hours in accordance with ISO62-1980 using a disc-shaped test piece having a diameter of 45 mm and a thickness of 3.0 mm. is there.
  • the Tg glass transition temperature
  • DSC differential scanning calorimetry
  • carbonate precursor carbonyl halide, carbonic acid diester or haloformate is used, and specific examples thereof include phosgene, diphenyl carbonate or dihaloformate of divalent phenol.
  • the aromatic polycarbonate resin of the present invention is a branched polycarbonate resin obtained by copolymerizing a trifunctional or higher polyfunctional aromatic compound, or a polyester obtained by copolymerizing an aromatic or aliphatic (including alicyclic) bifunctional carboxylic acid.
  • It includes a carbonate resin, a copolymerized polycarbonate resin obtained by copolymerizing a bifunctional alcohol (including an alicyclic type), and a polyester carbonate resin obtained by copolymerizing both the bifunctional carboxylic acid and the bifunctional alcohol. Further, it may be a mixture of two or more of the obtained aromatic polycarbonate resins.
  • the branched polycarbonate resin can impart drip prevention performance and the like to the resin composition of the present invention.
  • Examples of the trifunctional or higher polyfunctional aromatic compound used in such a branched polycarbonate resin include fluoroglusin, fluorogluside, or 4,6-dimethyl-2,4,6-tris (4-hydroxidiphenyl) hepten-2, 2.
  • the structural unit derived from the polyfunctional aromatic compound in the branched polycarbonate is preferably a total of 100 mol% of the structural unit derived from divalent phenol and the structural unit derived from such a polyfunctional aromatic compound. It is 0.01 to 1 mol%, more preferably 0.05 to 0.9 mol%, still more preferably 0.05 to 0.8 mol%.
  • a branched structural unit may be generated as a side reaction, and the amount of the branched structural unit is preferably 100 mol% in total with the structural unit derived from the dihydric phenol, preferably It is preferably 0.001 to 1 mol %, more preferably 0.005 to 0.9 mol %, and further preferably 0.01 to 0.8 mol %.
  • the ratio of such a branched structure can be calculated by 1 1 H-NMR measurement.
  • the aliphatic bifunctional carboxylic acid is preferably ⁇ , ⁇ -dicarboxylic acid.
  • the aliphatic bifunctional carboxylic acid include linear saturated aliphatic dicarboxylic acids such as sebacic acid (decanedioic acid), dodecanedioic acid, tetradecanedioic acid, octadecanedioic acid, and icosandioic acid, and cyclohexanedicarboxylic acid.
  • Such as alicyclic dicarboxylic acid is preferably mentioned.
  • the bifunctional alcohol an alicyclic diol is more preferable, and examples thereof include cyclohexanedimethanol, cyclohexanediol, and tricyclodecanedimethanol.
  • Reaction formats such as interfacial polymerization method, melt transesterification method, carbonate prepolymer solid phase transesterification method, and ring-opening polymerization method of cyclic carbonate compound, which are methods for producing a polycarbonate resin, may be described in various documents and patent publications. It is a known method.
  • the viscosity average molecular weight (M) of the polycarbonate resin is not particularly limited, but is preferably 1 ⁇ 10 4 to 5 ⁇ 10 4 , and more preferably 1.4 ⁇ 10. It is 4 to 3 ⁇ 10 4 , more preferably 1.4 ⁇ 10 4 to 2.4 ⁇ 10 4 . Particularly preferably, it is 1.7 ⁇ 10 4 to 2.1 ⁇ 10 4 .
  • the viscosity-average molecular weight of 1 ⁇ 10 4 less than the polycarbonate resin may not good mechanical properties, in particular high tensile strength obtained.
  • the resin composition obtained from an aromatic polycarbonate resin having a viscosity-average molecular weight is more than 5 ⁇ 10 4 is inferior in versatility in that poor flowability during injection molding.
  • the polycarbonate resin may be obtained by mixing those having a viscosity average molecular weight outside the above range.
  • a polycarbonate resin having a viscosity average molecular weight exceeding the above range (5 ⁇ 10 4 ) improves the entropy elasticity of the resin.
  • good molding processability is exhibited in gas-assisted molding and foam molding, which may be used when molding a reinforced resin material into a structural member.
  • Such improvement in molding processability is even better than that of the branched polycarbonate.
  • the A component is a polycarbonate resin having a viscosity average molecular weight of 7 ⁇ 10 4 to 3 ⁇ 10 5 (A-1-1 component), and an aroma having a viscosity average molecular weight of 1 ⁇ 10 4 to 3 ⁇ 10 4 .
  • a polycarbonate resin (A-1 component) composed of a group polycarbonate resin (A-1-2 component) and having a viscosity average molecular weight of 1.6 ⁇ 10 4 to 3.5 ⁇ 10 4 (hereinafter, “high molecular weight component”). (Sometimes referred to as "containing polycarbonate resin”) can also be used.
  • the molecular weight of A-1-1 component is preferably 7 ⁇ 10 4 ⁇ 2 ⁇ 10 5, more preferably 8 ⁇ 10 4 ⁇ 2 ⁇ 10 5, more preferably 1 ⁇ 10 5 ⁇ 2 ⁇ 10 5, and particularly preferably 1 ⁇ 10 5 ⁇ 1.6 ⁇ 10 5.
  • the molecular weight of the A-1-2 component is preferably 1 ⁇ 10 4 to 2.5 ⁇ 10 4 , more preferably 1.1 ⁇ 10 4 to 2.4 ⁇ 10 4 , and even more preferably 1.2 ⁇ 10 4. It is ⁇ 2.4 ⁇ 10 4 , particularly preferably 1.2 ⁇ 10 4 to 2.3 ⁇ 10 4 .
  • the high molecular weight component-containing polycarbonate resin (A-1 component) can be obtained by mixing the A-1-1 component and the A-1-2 component in various ratios and adjusting them so as to satisfy a predetermined molecular weight range. it can. It is preferable that the A-1-1 component is 2 to 40% by weight, more preferably the A-1-1 component is 3 to 30% by weight, and further preferably. The A-1-1 component is 4 to 20% by weight, and particularly preferably the A-1-1 component is 5 to 20% by weight.
  • a method for preparing the A-1 component (1) a method in which the A-1-1 component and the A-1-2 component are independently polymerized and mixed, and (2) JP-A-5-306336.
  • A- A method for producing so as to satisfy the condition of one component and (3) the aromatic polycarbonate resin obtained by the manufacturing method ((2)), and the separately produced A-1-1 component and / or Examples thereof include a method of mixing the A-1-2 component.
  • the viscosity average molecular weight referred to in the present invention is first determined by using an Ostwald viscometer from a solution of 0.7 g of polycarbonate in 100 ml of methylene chloride at 20 ° C. for the specific viscosity ( ⁇ SP ) calculated by the following formula.
  • Specific viscosity ( ⁇ SP ) (tt 0 ) / t 0 [T 0 is the number of seconds for methylene chloride to fall, t is the number of seconds for the sample solution to fall]
  • the viscosity average molecular weight M is calculated by the following formula.
  • the viscosity average molecular weight of the polycarbonate resin is calculated as follows. That is, the composition is mixed with 20 to 30 times the weight of methylene chloride to dissolve the soluble component in the composition. Such soluble matter is collected by Celite filtration. The solvent in the resulting solution is then removed. The solid after removing the solvent is sufficiently dried to obtain a solid having a component that dissolves in methylene chloride. From a solution prepared by dissolving 0.7 g of such a solid in 100 ml of methylene chloride, the specific viscosity at 20 ° C. is obtained in the same manner as described above, and the viscosity average molecular weight M is calculated from the specific viscosity in the same manner as described above.
  • a polycarbonate-polydiorganosiloxane copolymer resin can also be used as the polycarbonate resin (component A).
  • Polycarbonate-polydiorganosiloxane copolymer resin is a divalent phenol that induces a structural unit represented by the following general formula (1) and a hydroxyaryl-terminated polydiorganosiloxane that induces a structural unit represented by the following general formula (3). It is a copolymer resin prepared by copolymerizing.
  • R 1 and R 2 are independently hydrogen atom, halogen atom, alkyl group having 1 to 18 carbon atoms, alkoxy group having 1 to 18 carbon atoms, and 6 to 6 carbon atoms, respectively.
  • E and f are each an integer of 1 to 4, and W is at least one group selected from the group consisting of a single bond or a group represented by
  • R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are independently hydrogen atoms, alkyl groups having 1 to 18 carbon atoms, and carbon.
  • R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are independently substituted with a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or 6 to 12 carbon atoms, respectively.
  • R 9 and R 10 are independently hydrogen atoms, halogen atoms, alkyl groups having 1 to 10 carbon atoms, and alkoxy groups having 1 to 10 carbon atoms
  • p is a natural number.
  • Q is 0 or a natural number
  • p + q is a natural number from 10 to 300.
  • X is a divalent aliphatic group having 2 to 8 carbon atoms.
  • Examples of the divalent phenol (I) for deriving the structural unit represented by the general formula (1) include 4,4'-dihydroxybiphenyl, bis (4-hydroxyphenyl) methane, and 1,1-bis (4-). Hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) -1-phenyl ethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) Propane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxy-3,3'-biphenyl) propane, 2,2-bis (4-) Hydroxy-3-isopropylphenyl) propane, 2,2-bis (3-t-butyl-4-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxy) Phenyl) octane, 2,2-bis (3-bromo-4-hydroxyphenyl) propane,
  • 1,1-bis (4-hydroxyphenyl) -1-phenylethane 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 4,4'-sulfonyldiphenol, 2,2'-dimethyl- 4,4'-sulfonyldiphenol, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 1,3-bis ⁇ 2- (4-hydroxyphenyl) propyl ⁇ benzene, 1,4-bis ⁇ 2- (4-Hydroxyphenyl) propyl ⁇ benzene is preferred, especially 2,2-bis (4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane (BPZ), 4,4'-.
  • BPZ 1,1-bis (4-hydroxyphenyl)
  • Sulfonyldiphenol 9,9-bis (4-hydroxy-3-methylphenyl) fluorene is preferred.
  • 2,2-bis (4-hydroxyphenyl) propane which has excellent strength and good durability, is most suitable.
  • these may be used individually or in combination of 2 or more types.
  • hydroxyaryl-terminated polydiorganosiloxane that induces the structural unit represented by the above general formula (3)
  • the compounds shown below are preferably used.
  • the hydroxyaryl-terminated polydiorganosiloxane (II) prescribes phenols having an olefinic unsaturated carbon-carbon bond, preferably vinylphenol, 2-allylphenol, isopropenylphenol, and 2-methoxy-4-allylphenol. It is easily produced by subjecting the terminal of the polysiloxane chain having the degree of polymerization of the above to a hydrosilylation reaction.
  • (2-allylphenol)-terminated polydiorganosiloxane and (2-methoxy-4-allylphenol)-terminated polydiorganosiloxane are preferable, and particularly (2-allylphenol)-terminated polydimethylsiloxane and (2-methoxy-4) -Allylphenol) -terminated polydimethylsiloxane is preferred.
  • the hydroxyaryl-terminated polydiorganosiloxane (II) preferably has a molecular weight distribution (Mw / Mn) of 3 or less.
  • the molecular weight distribution (Mw / Mn) is more preferably 2.5 or less, still more preferably 2 or less, in order to exhibit more excellent low outgassing property and low temperature impact property during high temperature molding. If the upper limit of the suitable range is exceeded, the amount of outgas generated during high-temperature molding is large, and the low-temperature impact resistance may be inferior.
  • the degree of polymerization (p + q) of the hydroxyaryl-terminated polydiorganosiloxane (II) is appropriately 10 to 300.
  • the degree of polymerization of diorganosiloxane (p + q) is preferably 10 to 200, more preferably 12 to 150, and even more preferably 14 to 100. If it is less than the lower limit of the preferred range, the impact resistance, which is a characteristic of the polycarbonate-polydiorganosiloxane copolymer, is not effectively exhibited, and if it exceeds the upper limit of the preferred range, poor appearance appears.
  • the content of polydiorganosiloxane in the total weight of the polycarbonate-polydiorganosiloxane copolymer resin used in component A is preferably 0.1 to 50% by weight.
  • the content of the polydiorganosiloxane component is more preferably 0.5 to 30% by weight, still more preferably 1 to 20% by weight.
  • Above the lower limit of the suitable range impact resistance and flame retardancy are excellent, and below the upper limit of the suitable range, a stable appearance that is not easily affected by molding conditions can be easily obtained.
  • the degree of polymerization of polydiorganosiloxane and the content of polydiorganosiloxane can be calculated by 1H-NMR measurement.
  • hydroxyaryl-terminated polydiorganosiloxane (II) may be used, or two or more types may be used.
  • a comonomer other than the dihydric phenol (I) and the hydroxyaryl-terminated polydiorganosiloxane (II) within a range of 10% by weight or less based on the total weight of the copolymer. It can also be used together.
  • a mixed solution containing an oligomer having a terminal chloroformate group is prepared in advance by a reaction of a dihydric phenol (I) and a carbonic acid ester-forming compound in a mixed solution of an organic solvent insoluble in water and an alkaline aqueous solution. To do.
  • the entire amount of divalent phenol (I) used in the method of the present invention may be made into an oligomer at a time, or a part thereof may be used as a post-added monomer at the subsequent interface. It may be added as a reaction raw material to the polycondensation reaction. The post-addition monomer is added in order to accelerate the subsequent polycondensation reaction, and it is not necessary to intentionally add it when it is not necessary.
  • the method of this oligomer formation reaction is not particularly limited, but usually a method performed in a solvent in the presence of an acid binder is suitable.
  • the proportion of the carbonic acid ester forming compound used may be appropriately adjusted in consideration of the stoichiometric ratio (equivalent weight) of the reaction. Further, when a gaseous carbonic acid ester-forming compound such as phosgene is used, a method of blowing it into the reaction system can be preferably adopted.
  • the acid binder for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof are used.
  • the ratio of the acid binder used may be appropriately determined in consideration of the stoichiometric ratio (equivalent) of the reaction. Specifically, it is preferable to use 2 equivalents or slightly excess amount of the acid binder with respect to the number of moles of dihydric phenol (I) used for forming the oligomer (usually 1 mole corresponds to 2 equivalents). ..
  • a solvent inert to various reactions such as those used for producing known polycarbonate may be used alone or as a mixed solvent.
  • Typical examples include hydrocarbon solvents such as xylene, halogenated hydrocarbon solvents such as methylene chloride and chlorobenzene, and the like.
  • a halogenated hydrocarbon solvent such as methylene chloride is preferably used.
  • the reaction pressure for oligomer formation is not particularly limited and may be normal pressure, pressurization or reduced pressure, but it is usually advantageous to carry out the reaction under normal pressure.
  • the reaction temperature is selected from the range of ⁇ 20 to 50 ° C., and in many cases, heat is generated during polymerization, so water cooling or ice cooling is desirable.
  • the reaction time depends on other conditions and cannot be unconditionally defined, but is usually 0.2 to 10 hours.
  • the pH range of the oligomer formation reaction is the same as known interfacial reaction conditions, and the pH is always adjusted to 10 or more.
  • the molecular weight distribution (Mw / Mn) is up to 3 or less while stirring the mixed solution.
  • the highly purified hydroxyaryl-terminated polydiorganosiloxane (II) represented by the general formula (4) is added to the divalent phenol (I), and the hydroxyaryl-terminated polydiorganosiloxane (II) and the oligomer are polycondensed. Thereby, a polycarbonate-polydiorganosiloxane copolymer is obtained.
  • R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are independently substituted with a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or 6 to 12 carbon atoms, respectively.
  • R 9 and R 10 are independently hydrogen atoms, halogen atoms, alkyl groups having 1 to 10 carbon atoms, and alkoxy groups having 1 to 10 carbon atoms
  • p is a natural number.
  • Q is 0 or a natural number
  • p + q is a natural number of 10 to 300.
  • X is a divalent aliphatic group having 2 to 8 carbon atoms.
  • an acid binder may be added as appropriate in consideration of the stoichiometric ratio (equivalent) of the reaction.
  • the acid binder for example, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof are used.
  • the hydroxyaryl-terminated polydiorganosiloxane (II) to be used or a part of the dihydric phenol (I) as described above is added as a post-addition monomer to this reaction step, two of the post-additions are added.
  • Polycondensation by the intercondensation polycondensation reaction between the oligomer of divalent phenol (I) and the hydroxyaryl-terminated polydiorganosiloxane (II) is carried out by vigorously stirring the above mixed solution.
  • a terminal terminator or a molecular weight modifier is usually used.
  • the terminal terminator include compounds having a monovalent phenolic hydroxyl group, and in addition to ordinary phenols, p-tert-butylphenols, p-cumylphenols, tribromophenols, etc., long-chain alkylphenols and aliphatic carboxylic acids Examples thereof include chloride, aliphatic carboxylic acid, hydroxybenzoic acid alkyl ester, hydroxyphenylalkyl acid ester, and alkyl ether phenol.
  • the amount used is in the range of 100 to 0.5 mol, preferably 50 to 2 mol, based on 100 mol of all dihydric phenol compounds used, and it is naturally possible to use two or more compounds in combination. is there.
  • a catalyst such as a tertiary amine such as triethylamine or a quaternary ammonium salt may be added to accelerate the polycondensation reaction.
  • the reaction time of the polymerization reaction is preferably 30 minutes or more, more preferably 50 minutes or more. If desired, a small amount of an antioxidant such as sodium sulfite or hydrosulfide may be added.
  • the branching agent can be used in combination with the above divalent phenolic compound to obtain branched polycarbonate-polydiorganosiloxane.
  • examples of the trifunctional or higher polyfunctional aromatic compound used in such a branched polycarbonate-polydiorganosiloxane copolymer resin include fluoroglusin, fluorogluside, or 4,6-dimethyl-2,4,6-tris (4-hydrokidiphenyl).
  • the ratio of the polyfunctional compound in the branched polycarbonate-polydiorganosiloxane copolymer resin is preferably 0.001 to 1 mol%, more preferably 0.005 to 0, based on the total amount of the aromatic polycarbonate-polydiorganosiloxane copolymer resin. It is 9.9 mol%, more preferably 0.01 to 0.8 mol%, and particularly preferably 0.05 to 0.4 mol%.
  • the amount of the branched structure can be calculated by 1H-NMR measurement.
  • the reaction pressure can be reduced pressure, normal pressure, or pressurization, but usually, normal pressure or the self-pressure of the reaction system can be preferably used.
  • the reaction temperature is selected from the range of ⁇ 20 to 50 ° C., and in many cases, heat is generated during polymerization, so water cooling or ice cooling is desirable. Since the reaction time varies depending on other conditions such as the reaction temperature, it cannot be unconditionally specified, but it is usually carried out in 0.5 to 10 hours.
  • the obtained polycarbonate-polydiorganosiloxane copolymer resin is appropriately subjected to physical treatment (mixing, fractionation, etc.) and / or chemical treatment (polymer reaction, cross-linking treatment, partial decomposition treatment, etc.) to reduce the desired amount. It can also be obtained as a polycarbonate-polydiorganosiloxane copolymer resin having a viscosity [ ⁇ SP / c].
  • the obtained reaction product (crude product) can be recovered as a polycarbonate-polydiorganosiloxane copolymer resin having a desired purity (purification degree) by performing various post-treatments such as a known separation and purification method.
  • the average size of the polydiorganosiloxane domain in the polycarbonate-polydiorganosiloxane copolymer resin molded product is preferably in the range of 1 to 40 nm.
  • the average size is more preferably 1 to 30 nm, still more preferably 5 to 25 nm. If it is less than the lower limit of such a suitable range, impact resistance and flame retardancy may not be sufficiently exhibited, and if it exceeds the upper limit of such a suitable range, impact resistance may not be stably exhibited.
  • the average domain size and standardized dispersion of the polydiorganosiloxane domain of the polycarbonate-polydiorganosiloxane copolymer resin molded product in the present invention were evaluated by the small-angle X-ray scattering method (SAXS).
  • SAXS small-angle X-ray scattering method
  • the small-angle X-ray scattering method is a method for measuring diffuse scattering / diffraction that occurs in a small-angle region within a scattering angle (2 ⁇ ) ⁇ 10 °. In this small-angle X-ray scattering method, if there are regions having different electron densities with a size of about 1 to 100 nm in a substance, diffuse scattering of X-rays is measured by the difference in electron densities.
  • the particle size of the object to be measured is determined based on the scattering angle and the scattering intensity.
  • a polycarbonate-polydiorganosiloxane copolymer resin having an aggregate structure in which polydiorganosiloxane domains are dispersed in a matrix of a polycarbonate polymer diffuse scattering of X-rays occurs due to a difference in electron density between the polycarbonate matrix and the polydiorganosiloxane domains.
  • the scattering intensity I at each scattering angle (2 ⁇ ) in the range where the scattering angle (2 ⁇ ) is less than 10 ° is measured, the small angle X-ray scattering profile is measured, the polydiorganosiloxane domain is a spherical domain, and the particle size distribution varies.
  • the average size and particle size distribution (standardized dispersion) of the polydiorganosiloxane domain are obtained by performing a simulation using commercially available analysis software from the temporary particle size and the temporary particle size distribution model, assuming that there is.
  • the average size and particle size distribution of polydiorganosiloxane domains dispersed in a matrix of polycarbonate polymer which cannot be measured accurately by observation with a transmission electron microscope, can be accurately, easily, and reproducibly measured.
  • the average domain size means the number average of individual domain sizes.
  • Normalized dispersion means a parameter in which the spread of the particle size distribution is standardized by the average size. Specifically, it is a value obtained by normalizing the dispersion of the polydiorganosiloxane domain size with the average domain size, and is represented by the following formula (1).
  • is the standard deviation of the polydiorganosiloxane domain size
  • Dav is the average domain size
  • average domain size and normalized dispersion used in connection with the present invention are to measure a thickness of 1.0 mm of a three-stage plate produced by the method described in the examples by such a small angle X-ray scattering method.
  • the measured value obtained by the analysis was performed using an isolated particle model that does not consider the interaction between particles (interference between particles).
  • the liquid crystal polyester resin used as the B component in the present invention is a thermotropic liquid crystal polyester resin, and has a property of arranging polymer molecular chains in a certain direction in a molten state.
  • the form of such an arrangement state may be any of a nematic type, a smetic type, a cholesteric type, and a discotic type, and may exhibit two or more kinds of forms.
  • the structure of the liquid crystal polyester resin may be any of a main chain type, a side chain type, a rigid main chain bent side chain type, and the like, but the main chain type liquid crystal polyester resin is preferable.
  • the form of the above-mentioned arrangement state that is, the property of the anisotropic molten phase can be confirmed by a conventional polarization inspection method using an orthogonal polarizing element. More specifically, the confirmation of the anisotropic molten phase can be carried out by observing the molten sample placed on the Leitz hot stage at a magnification of 40 times under a nitrogen atmosphere using a Leiz polarizing microscope.
  • the polymer of the present invention transmits polarized light and is optically anisotropy when inspected between orthogonal polarizers, even in a molten and stationary state.
  • the heat resistance of the liquid crystal polyester resin may be in any range, but the one that melts at a portion close to the processing temperature of the polycarbonate resin to form a liquid crystal phase is suitable.
  • the deflection temperature under load (ISO 75-1 / 2, load 1.8 Mpa condition) of the liquid crystal polyester is preferably 150 to 280 ° C, more preferably 150 to 250 ° C.
  • Such a liquid crystal polyester resin belongs to the so-called heat resistance category type II. When it has such heat resistance, it is excellent in molding processability as compared with type I having higher heat resistance, and good flame retardancy is achieved as compared with type III having lower heat resistance.
  • the liquid crystal polyester resin used in the present invention preferably contains a polyester unit and a polyesteramide unit, preferably an aromatic polyester resin and an aromatic polyesteramide resin, and the aromatic polyester unit and the aromatic polyesteramide unit are contained in the same molecular chain.
  • a liquid polyester resin partially contained in is also a preferable example.
  • examples thereof include a liquid crystal polyesteramide resin synthesized from, and 1) a liquid crystal polyester resin synthesized from one or more compounds selected mainly from the group consisting of aromatic hydroxycarboxylic acids and derivatives thereof is preferable.
  • a molecular weight adjusting agent may be used in combination with the above components as needed.
  • Preferred examples of the specific compounds used in the synthesis of the liquid crystal polyester resin in the resin composition used in the present invention are 2,6-naphthalenedicarboxylic acid, 2,6-dihydroxynaphthalene, 1,4-dihydroxynaphthalene and 6-.
  • Naphthalene compounds such as hydroxy-2-naphthoic acid, biphenyl compounds such as 4,4'-diphenyldicarboxylic acid and 4,4'-dihydroxybiphenyl, p-hydroxybenzoic acid, terephthalic acid, hydroquinone, p-aminophenol and p- Para-substituted benzene compounds such as phenylenediamine and their nuclear-substituted benzene compounds (substituents are selected from chlorine, bromine, methyl, phenyl, 1-phenylethyl), meta-substituted benzene compounds such as isophthalic acid and resorcin.
  • p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid are particularly preferable, and a liquid crystal polyester resin obtained by mixing both is preferable.
  • the ratio of both is preferably in the range of 90 to 50 mol% for the former, more preferably in the range of 80 to 65 mol%, preferably in the range of 10 to 50 mol% for the latter, and more preferably in the range of 20 to 35 mol%.
  • X is a group selected from the group consisting of an alkylene group having 1 to 4 carbon atoms and an alkylidene group, -O-, -SO-, -SO 2- , -S-, and -CO-, and Y is a group.
  • liquid crystal polyester resin used in the present invention in addition to the above-mentioned constituent components, a polyalkylene terephthalate-derived unit that does not partially exhibit an anisotropic molten phase may be present in the same molecular chain.
  • the alkyl group in this case has 2 to 4 carbon atoms.
  • the basic manufacturing method of the liquid crystal polyester resin used in the present invention is not particularly limited, and can be manufactured according to a known polycondensation method of a liquid crystal polyester resin.
  • the above liquid crystal polyester resin also has a logarithmic viscosity of at least about 2.0 dl / g, for example about 2.0 to 10.0 dl / g, when dissolved in pentafluorophenol at a concentration of 0.1 wt% at 60 ° C. IV value) is generally shown.
  • the liquid crystal polyester resin becomes a fine fibril form during injection molding, and the shape is maintained in the process of cooling and solidification to exert a reinforcing effect on the matrix. Therefore, it is possible to impart tensile strength with the liquid crystal polyester resin. There is also an effect that the injection speed and the resin pressure can be reduced by reducing the viscosity of the resin composition due to the liquid crystal polyester resin.
  • the weight ratio [(A) / (B)] of the (A) aromatic polycarbonate resin to the (B) liquid crystal polyester resin used in the present invention is 98/2 to 60/40, preferably 95/5 to.
  • the range is 70/30, more preferably 95/5 to 75/25, still more preferably 95/5 to 80/20, and even more preferably 95/5 to 85/15. If the proportion of the liquid crystal polyester resin is larger than this range, the tensile strength and flame retardancy decrease. Further, when the ratio is smaller than this range, the effect of improving the tensile strength by blending the liquid crystal polyester resin cannot be obtained.
  • the halogenated carbonate compound used as the C component in the present invention contains at least 60 mol% of the structural units represented by the following general formula (8) and has a specific viscosity of 0.015 to 0.1.
  • a carbonate compound is preferably used.
  • X is a bromine atom
  • R is an alkylene group having 1 to 4 carbon atoms, an alkylidene group having 1 to 4 carbon atoms, or SO 2- .
  • R is a methylene group, an ethylene group, an isopropylidene group, -SO 2 - shows a particularly preferably isopropylidene group.
  • the brominated polycarbonate has a small amount of residual chlorohomate group terminals, and the amount of terminal chlorine is preferably 0.3 ppm or less, more preferably 0.2 ppm or less.
  • the amount of terminal chlorine is preferably 0.3 ppm or less, more preferably 0.2 ppm or less.
  • dissolve the sample in methylene chloride add 4- (p-nitrobenzyl) pyridine to react with terminal chlorine (terminal chlorohomet), and use this as an ultraviolet-visible spectrophotometer (U, manufactured by Hitachi, Ltd.). It can be obtained by measuring according to -3200).
  • the amount of terminal chlorine is 0.3 ppm or less, the thermal stability of the polycarbonate resin composition becomes better, and molding at a higher temperature becomes possible, and as a result, a resin composition having better molding processability may be provided. is there.
  • the brominated polycarbonate preferably has few remaining hydroxyl group terminals. More specifically, the amount of terminal hydroxyl groups is preferably 0.0005 mol or less, and more preferably 0.0003 mol or less, with respect to 1 mol of the constituent unit of the brominated polycarbonate.
  • the amount of terminal hydroxyl groups can be determined by dissolving the sample in deuterated chloroform and measuring by 1 1 H-NMR method. With such a terminal hydroxyl group amount, the thermal stability of the polycarbonate resin composition may be further improved.
  • the specific viscosity of the brominated polycarbonate is preferably in the range of 0.015 to 0.1, more preferably in the range of 0.015 to 0.08.
  • the specific viscosity of the brominated polycarbonate was calculated according to the above-mentioned specific viscosity calculation formula used in calculating the viscosity average molecular weight of the polycarbonate resin which is the component A of the present invention.
  • halogenated carbonate compounds are commercially available, and examples thereof include tetrabromobisphenol A carbonate oligomers (trade names FG-7000 and FG-8500) manufactured by Teijin Limited, which can be used in the present invention. it can.
  • the content of the C component is 3 to 40 parts by weight, preferably 5 to 30 parts by weight, and more preferably 10 to 30 parts by weight with respect to 100 parts by weight of the total of the A component and the B component. If the content of the C component is less than 3 parts by weight, sufficient flame retardancy cannot be obtained, and if it exceeds 40 parts by weight, the mechanical properties and the like are greatly deteriorated.
  • Examples of the drip inhibitor used as the D component in the present invention include a fluorine-containing polymer having a fibril-forming ability, and examples of such a polymer include polytetrafluoroethylene and tetrafluoroethylene-based copolymers (for example, tetrafluoroethylene /). Hexafluoropropylene copolymer, etc.), partially fluorinated polymers as shown in US Pat. No. 4,379,910, polycarbonate resins made from fluorinated diphenols, and the like. Of these, polytetrafluoroethylene (hereinafter sometimes referred to as PTFE) is preferable.
  • PTFE polytetrafluoroethylene
  • the molecular weight of PTFE having the ability to form fibrils has an extremely high molecular weight, and exhibits a tendency to bond PTFE to each other to form fibers due to external actions such as shearing force. Its molecular weight is 1 million to 10 million, more preferably 2 million to 9 million in the number average molecular weight obtained from the standard specific gravity.
  • the PTFE not only a solid form but also an aqueous dispersion form can be used. Further, the PTFE having such a fibril-forming ability improves the dispersibility in the resin, and it is also possible to use a PTFE mixture in a mixed form with another resin in order to obtain better flame retardancy and mechanical properties. is there.
  • Examples of commercially available PTFE products having such fibril-forming ability include Teflon (registered trademark) 6-J of Mitsui-Kemers Fluoro Products Co., Ltd., Polyflon MPA FA500H and F-201 of Daikin Industries, Ltd. it can.
  • Examples of commercially available aqueous dispersions of PTFE include the Fluon D series manufactured by Daikin Industries, Ltd. and Teflon (registered trademark) 31-JR manufactured by Mitsui-Kemers Fluoro Products Co., Ltd.
  • Examples of the mixed form of PTFE include (1) a method of mixing an aqueous dispersion of PTFE and an aqueous dispersion or solution of an organic polymer and co-precipitating to obtain a coaggregating mixture (Japanese Patent Laid-Open No. 60-258263, Special Publication No. 60-258263). (Method described in Kaisho 63-154744, etc.), (2) Method of mixing an aqueous dispersion of PTFE with dried organic polymer particles (method described in JP-A-4-272957).
  • the proportion of PTFE in the mixed form is preferably 1 to 60% by weight, more preferably 5 to 55% by weight, based on 100% by weight of the PTFE mixture.
  • the proportion of PTFE is in such a range, good dispersibility of PTFE can be achieved.
  • the styrene-based monomer as the organic polymer used in the polytetrafluoroethylene-based mixture was selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, and a halogen.
  • Styrene that may be substituted with one or more groups, such as ortho-methylstyrene, meta-methylstyrene, para-methylstyrene, dimethylstyrene, ethyl-styrene, para-tert-butylstyrene, methoxystyrene, fluorostyrene, Examples include, but are not limited to, monobromostyrene, dibromostyrene, and tribromostyrene, vinylxylene, vinylnaphthalene.
  • the styrene-based monomer can be used alone or in combination of two or more types.
  • the acrylic monomer used as the organic polymer used in the polytetrafluoroethylene-based mixture contains a (meth) acrylate derivative which may be substituted. Specifically, the acrylic monomer is substituted with one or more groups selected from the group consisting of an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an aryl group, and a glycidyl group.
  • (meth) acrylate derivatives such as (meth) acrylonitril, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, amyl (meth) acrylate, hexyl ( Meta) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, octyl (meth) acrylate, dodecyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate and glycidyl (meth)
  • maleimides which may be substituted with acrylates, alkyl groups having 1 to 6 carbon atoms, or aryl groups, such as maleimide, N-methyl-maleimide and N-phenyl-maleimide, maleic acid, phthalic acid and ita
  • the amount of the acrylic monomer-derived unit contained in the organic polymer is preferably 8 to 11 parts by weight, more preferably 8 to 10 parts by weight, still more preferably 8 to 10 parts by weight, based on 100 parts by weight of the styrene-based monomer-derived unit. It is 8 to 9 parts by weight. If the amount of the acrylic monomer-derived unit is less than 8 parts by weight, the coating strength may be lowered, and if it is more than 11 parts by weight, the surface appearance of the molded product may be deteriorated.
  • the polytetrafluoroethylene-based mixture of the present invention preferably has a residual water content of 0.5% by weight or less, more preferably 0.2 to 0.4% by weight, still more preferably 0.1 to 0%. 3% by weight. If the residual water content is more than 0.5% by weight, the flame retardancy may be adversely affected.
  • a coating layer containing one or more monomers selected from the group consisting of styrene-based monomers and acrylic monomers in the presence of an initiator includes the step of forming the outer part of the branched polytetrafluoroethylene. Further, after the step of forming the coating layer, the residual water content is dried to 0.5% by weight or less, preferably 0.2 to 0.4% by weight, and more preferably 0.1 to 0.3% by weight. It is preferable to include steps. The drying step can be performed using methods known in the art, such as hot air drying or vacuum drying methods.
  • the initiator used in the polytetrafluoroethylene-based mixture of the present invention can be used without limitation as long as it is used for the polymerization reaction of styrene-based and / or acrylic-based monomers.
  • examples of the initiator include, but are not limited to, cumyl hydroperoxide, di-tert-butyl peroxide, benzoyl peroxide, hydrogen peroxide, and potassium peroxide.
  • one or more of the initiators can be used depending on the reaction conditions.
  • the amount of the initiator is freely selected within the range used in consideration of the amount of polytetrafluoroethylene and the type / amount of the monomer, and is 0.15 to 0. Based on the amount of the total composition. It is preferable to use 25 parts by weight.
  • the polytetrafluoroethylene-based mixture of the present invention was produced by the suspension polymerization method according to the following procedure.
  • Such a suspension polymerization method does not require a polymerization step by emulsion dispersion in the emulsion polymerization method exemplified in Japanese Patent No. 3469391, it does not require an emulsifier and electrolyte salts for coagulating and precipitating the latex after polymerization. Further, in the polytetrafluoroethylene mixture produced by the emulsification polymerization method, the emulsifier and the electrolyte salts in the mixture are easily mixed and difficult to remove, so that the emulsifier, the sodium metal ion derived from the electrolyte salt and the potassium metal ion are reduced. It's difficult.
  • the polytetrafluoroethylene-based mixture (component B) used in the present invention is produced by a suspension polymerization method and therefore does not use such emulsifiers and electrolyte salts, sodium metal ions and potassium metal ions in the mixture are not used. Can be reduced, and thermal stability and hydrolysis resistance can be improved.
  • coated branched PTFE can be used as a drip inhibitor.
  • the coated branched PTFE is a polytetrafluoroethylene-based mixture composed of branched polytetrafluoroethylene particles and an organic polymer, and is derived from an organic polymer, preferably a styrene-based monomer, outside the branched polytetrafluoroethylene. It has a coating layer made of a polymer containing units and / or units derived from an acrylic monomer. The coating layer is formed on the surface of branched polytetrafluoroethylene. Further, the coating layer preferably contains a copolymer of a styrene-based monomer and an acrylic-based monomer.
  • the polytetrafluoroethylene contained in the coated branched PTFE is branched polytetrafluoroethylene.
  • the branched polytetrafluoroethylene is in the form of particles, preferably having a particle size of 0.1 to 0.6 ⁇ m, more preferably 0.3 to 0.5 ⁇ m, and even more preferably 0.3 to 0.4 ⁇ m.
  • the number average molecular weight of the polytetrafluoroethylene used in the present invention is preferably 1 ⁇ 10 4 to 1 ⁇ 10 7 , more preferably 2 ⁇ 10 6 to 9 ⁇ 10 6 , and generally has a high molecular weight of polytetra. Fluoroethylene is more preferred in terms of stability. Either powder or dispersion can be used.
  • the content of branched polytetrafluoroethylene in the coated branched PTFE is preferably 20 to 60 parts by weight, more preferably 40 to 55 parts by weight, still more preferably 47 to 47 to 100 parts by weight of the total weight of the coated branched PTFE. It is 53 parts by weight, particularly preferably 48 to 52 parts by weight, and most preferably 49 to 51 parts by weight.
  • the ratio of the branched polytetrafluoroethylene is in such a range, good dispersibility of the branched polytetrafluoroethylene can be achieved.
  • the content of the D component is 0.1 to 3 parts by weight, preferably 0.15 to 2 parts by weight, more preferably 0.5 to 1.5 parts by weight, based on 100 parts by weight of the total of the A component and the B component. It is a department. If it is larger than this range, the cost will increase and the extrusion processability will be insufficient. On the other hand, if it is smaller than this range, flame retardancy is insufficient.
  • the ratio of the D component indicates the amount of the net anti-drip agent, and in the case of the mixed form of PTFE, it indicates the net amount of PTFE.
  • the average value of the fiber length cross section of the flat cross-section glass fiber is preferably 15 to 40 ⁇ m, more preferably 15 to 35 ⁇ m, and even more preferably 20 to 35 ⁇ m.
  • the average value of the major axis to minor axis ratio (major axis / minor axis) is preferably 2 to 6, more preferably 2 to 5, and even more preferably 2.5 to 5.
  • Examples of the flat cross-sectional shape include a non-circular cross-sectional shape having an elliptical shape, an eyebrows shape, a trefoil shape, or a similar shape in addition to the flat shape. Among them, improvements in mechanical strength and low anisotropy A flat shape is preferable.
  • the glass composition of the above glass fibers is not particularly limited as various glass compositions typified by A glass, C glass, E glass and the like are applied.
  • Such glass fibers may contain components such as TiO 2 , SO 3 , and P 2 O 5 , if necessary.
  • E glass non-alkali glass
  • Such glass fibers are preferably surface-treated with a well-known surface treatment agent such as a silane coupling agent, a titanate coupling agent, or an aluminate coupling agent from the viewpoint of improving mechanical strength.
  • the amount of the focusing agent adhered to the focused glass fiber is preferably 0.1 to 3% by weight, more preferably 0.2 to 1% by weight, based on 100% by weight of the glass fiber.
  • Examples of the carbon fiber used as the E component in the present invention include carbon fibers such as metal-coated carbon fiber, carbon milled fiber, and vapor-grown carbon fiber, and carbon nanotubes.
  • the carbon nanotubes may have a fiber diameter of 0.003 to 0.1 ⁇ m, may be single-walled, double-walled, or multi-walled, and are preferably multi-walled (so-called MWCNT).
  • MWCNT multi-walled
  • carbon fiber is preferable in terms of excellent mechanical strength.
  • any of cellulosic type, polyacrylonitrile type, pitch type and the like can be used. Further, it is obtained by a method of spinning or molding a raw material composition consisting of a polymer and a solvent by a methyle-type bond of aromatic sulfonic acids or salts thereof, and then spinning without undergoing an infusibilization step represented by a method such as carbonization. Can also be used. Further, any of a general-purpose type, a medium elastic modulus type, and a high elastic modulus type can be used. Among these, a polyacrylonitrile-based high elastic modulus type is particularly preferable.
  • the surface of the carbon fiber is oxidized for the purpose of improving the adhesion with the matrix resin and improving the mechanical strength.
  • the oxidation treatment method is not particularly limited, and for example, (1) a method of treating carbon fibers with an acid or an alkali or a salt thereof, or an oxidizing gas, and (2) carbon fibers that can be converted into carbon fibers or carbon fibers are oxygen-containing. Preferable examples thereof include a method of firing at a temperature of 700 ° C. or higher in the presence of an inert gas containing a compound, and (3) a method of oxidizing carbon fibers and then heat-treating in the presence of an inert gas.
  • Metal-coated carbon fiber is a carbon fiber coated with a metal layer on the surface.
  • the metal include silver, copper, nickel, and aluminum, and nickel is preferable from the viewpoint of corrosion resistance of the metal layer.
  • the metal coating method include known methods such as a plating method and a vapor deposition method, and among them, the plating method is preferably used. Further, also in the case of such a metal-coated carbon fiber, the carbon fiber mentioned above can be used as the original carbon fiber.
  • the thickness of the metal coating layer is preferably 0.1 to 1 ⁇ m, more preferably 0.15 to 0.5 ⁇ m. More preferably, it is 0.2 to 0.35 ⁇ m.
  • the carbon fiber and the metal-coated carbon fiber are preferably those which have been focused with an olefin resin, a styrene resin, an acrylic resin, a polyester resin, an epoxy resin, a urethane resin, or the like.
  • urethane-based resin and carbon fiber treated with epoxy-based resin are suitable in the present invention because of their excellent mechanical strength.
  • the content of the E component is 25 to 150 parts by weight, preferably 30 to 140 parts by weight, and more preferably 40 to 120 parts by weight with respect to 100 parts by weight of the total of the A component and the B component. If the content of the E component is less than 25 parts by weight, the improvement of the tensile strength becomes insufficient. On the other hand, if it exceeds 150 parts by weight, the strength and flame retardancy are lowered.
  • F component epoxy resin
  • examples of the epoxy resin used as the F component in the present invention include an epoxy resin represented by the following general formula (9).
  • X is at least one group selected from the group consisting of the groups represented by the following general formula (10), and n is an integer of 0 or more.
  • the epoxy resin represented by the above formula (9) can be easily produced from divalent phenols and epichlorohydrin.
  • divalent phenols include bisphenol A type epoxy resin such as 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], 1,1-bis (4-hydroxyphenyl) ethane or 4,4'-dihydroxy. Biphenyl and the like are used.
  • a commercially available product can also be used as the epoxy resin.
  • examples of commercially available epoxy resins bisphenol A type
  • the weight average molecular weight of the epoxy resin is not particularly limited, but is usually 5,000 to 100,000, preferably 8,000 to 80,000, and more preferably 10,000 to 50,000. When the weight average molecular weight is in the range of 5,000 to 100,000, the mechanical properties are particularly good.
  • the epoxy equivalent of the epoxy resin is not particularly limited, but is usually 100 to 12,000, preferably 150 to 10,000, and more preferably 200 to 8,000. When the epoxy equivalent is in the range of 100 to 12,000, the mechanical properties are particularly good.
  • the content of the F component is 0.1 to 8 parts by weight, preferably 1 to 7 parts by weight, and more preferably 3 to 6 parts by weight with respect to 100 parts by weight of the total of the A component and the B component. If the content exceeds the above range and is too small, the tensile strength becomes low. On the other hand, when the content exceeds the above range, the flame retardancy deteriorates and the tensile strength becomes low.
  • G component phosphorus-based stabilizer
  • a phosphorus-based stabilizer which is a G component
  • a phosphate compound having a molecular weight of less than 300 is preferable. When the molecular weight is 300 or more, the dispersion in the resin becomes poor, and the effect as a stabilizer may be lowered.
  • esters of phosphite are also preferable, and specifically, tetrakis (2,4-di-t-butylphenyl) -4,4'-biphenylene phosphonite and bis (2,6-di-t-butyl-4).
  • -Methylphenyl) pentaerythritol-diphosphite, bis (2,4-di-t-butylphenyl) pentaerythritol-diphosfite, tris (2,4-di-t-butylphenyl) phosphite and the like are exemplified. Butyl.
  • the content of the G component is 0.01 to 3 parts by weight, preferably 0.01 to 1 part by weight, and 0.02 to 0.1 parts by weight with respect to 100 parts by weight of the total of the A component and the B component. Is more preferable. If the content of the G component exceeds 3 parts by weight, a large amount of volatile gas is generated during extrusion processing, and mold deposit is generated during molding even when pelletized. It also tends to be disadvantageous in terms of cost. If it is less than 0.01 parts by weight, the thermal stability is deteriorated and the tensile strength peculiar to this composition is not exhibited.
  • the resin composition of the present invention includes other thermoplastic resins (for example, polyarylate resin, fluororesin, polyester resin, etc.) and antioxidants (for example, hinder) as long as the object of the present invention is not impaired.
  • thermoplastic resins for example, polyarylate resin, fluororesin, polyester resin, etc.
  • antioxidants for example, hinder
  • Dophenol-based compounds, etc.), impact improvers, ultraviolet absorbers, light stabilizers, mold release agents, lubricants, colorants, inorganic fillers (talc, mica, etc.) and the like can be blended.
  • any method is adopted for producing the resin composition of the present invention.
  • a method of premixing each component and optionally other components, then melt-kneading and pelletizing can be mentioned.
  • the premixing means include a Nauter mixer, a V-type blender, a Henschel mixer, a mechanochemical device, and an extrusion mixer.
  • granulation can be performed by an extrusion granulator, a briquetting machine, or the like, depending on the case.
  • melt-kneading is performed with a melt-kneader represented by a bent twin-screw extruder, and pelletization is performed with equipment such as a pelletizer.
  • melt kneader examples include a Banbury mixer, a kneading roll, and a constant heat stirring vessel, but a vent type twin-screw extruder is preferable.
  • a method of independently supplying each component and optionally other components to a melt kneader typified by a twin-screw extruder can be adopted without premixing.
  • the resin composition of the present invention obtained as described above can usually be injection-molded from pellets produced as described above to produce an impeller.
  • injection molding not only ordinary molding methods, but also injection compression molding, injection press molding, gas-assisted injection molding, foam molding (including those by injection of supercritical fluid), insert molding, and insert molding, depending on the intended purpose.
  • Molded products can be obtained using injection molding methods such as in-mold coating molding, heat insulating mold molding, rapid heating and cooling mold molding, two-color molding, sandwich molding, and ultra-high speed injection molding.
  • injection molding methods such as in-mold coating molding, heat insulating mold molding, rapid heating and cooling mold molding, two-color molding, sandwich molding, and ultra-high speed injection molding.
  • the advantages of these various molding methods are already widely known. Further, either a cold runner method or a hot runner method can be selected for molding.
  • the impeller of the present invention can have various shapes, and can be, for example, an impeller for cooling, ventilation, air conditioning fan, vehicle air conditioning, blower fan, etc. of home appliances, OA equipment, and industrial equipment.
  • the impeller of the present invention has high tensile strength, specific strength, dimensional accuracy and flame retardancy in a high temperature environment. Specifically, when a test piece having a thickness of 2 mm is tested at a tensile speed of 5 mm / min at 85 ° C., it exhibits a tensile strength of 125 MPa or more, preferably 130 MPa or more.
  • the specific strength (kN ⁇ m / kg) calculated by the tensile strength (MPa) / density (kg / m 3 ) is 75 or more, preferably 80 or more.
  • the dimensional accuracy is such that the rate of dimensional change in the direction perpendicular to the diameter after rotating at 12,000 rpm for 10 days in an atmosphere of 85 ° C. is 0.4% or less, preferably 0.35% or less.
  • the flame retardancy indicates V-0 when a V test (vertical combustion test) at a thickness of 0.8 mm is performed according to UL94 using a test piece.
  • Molding shrinkage rate A square plate having a width of 50 mm, a length of 100 mm, and a thickness of 2 mm obtained by the following method is left to stand in an atmosphere of 23 ° C. and a relative humidity of 50% for 24 hours, and then the square plate dimensions are measured three-dimensionally.
  • the molding shrinkage rate was calculated by measuring with a machine (manufactured by Mitutoyo Co., Ltd.).
  • the molded product is formed by using a mold cavity having a film gate at one end in the length direction. Therefore, the length direction is the flow direction, and the width direction is the direction perpendicular to the flow direction.
  • V Flame retardancy
  • Impeller characteristics With respect to the impeller (total length L: 120 mm) obtained by the following method, 12,000 r.I. p. m.
  • the displacement amount of the part a was measured by a laser displacement sensor and evaluated according to the following criteria.
  • the dimensional change after the test is 0.5 mm or less. : ⁇
  • the dimensional change after the test is 0.5 mm or more, or the molded product has cracks or cracks. : ⁇
  • Examples 1 to 16, Comparative Examples 1 to 12 A mixture having the compositions shown in Tables 1 and 2 and consisting of components excluding the component E was supplied from the first supply port of the extruder. Such a mixture was obtained by mixing with a V-type blender. The E component was supplied from the second supply port using a side feeder. For extrusion, a vent type twin-screw extruder with a diameter of 30 mm ⁇ (Japan Steel Works, Ltd. TEX30 ⁇ -38.5BW-3V) was used, and the screw rotation speed was 200 r. p. m. , A discharge rate of 25 kg / h and a vacuum degree of vent of 3 kPa were melt-kneaded to obtain pellets. The extrusion temperature was 300 ° C. from the first supply port to the die portion.
  • a part of the obtained pellets is dried at 120 ° C. for 6 hours in a hot air circulation type dryer, and then a tensile test piece having a thickness of 2 mm at a cylinder temperature of 300 ° C. and a mold temperature of 80 ° C. using an injection molding machine.
  • JIS K6251 dumbbell-shaped No. 3 type JIS K6251 dumbbell-shaped No. 3 type
  • a test piece for measuring the molding shrinkage rate, and a UL test piece were molded.
  • the impeller shown in FIG. 1 was formed by using a part of pellets and using an injection molding machine at a cylinder temperature of 300 ° C. and a mold temperature of 100 ° C.
  • A-1 Aromatic polycarbonate resin (polycarbonate resin powder with a viscosity average molecular weight of 22,400 made from bisphenol A and phosgene by a conventional method, Panlite L-1225WP (product name) manufactured by Teijin Limited)
  • A-2 Aromatic polycarbonate resin (polycarbonate resin powder with a viscosity average molecular weight of 19,700 made from bisphenol A and phosgene by a conventional method, Panlite L-1225WX (product name) manufactured by Teijin Limited)
  • A-3 Aromatic polycarbonate resin (polycarbonate resin powder with a viscosity average molecular weight of 16,000 made from bisphenol A and phosgene by a conventional method, Panlite CM-1000 (product name) manufactured by Teijin Limited)
  • A-4 Aromatic polycarbonate resin (polycarbonate resin powder with a viscosity average molecular weight of 25,100 made from bisphenol A and phosgene by a conventional method, Panlite L-1250
  • (C component) C-1 Halogenated carbonate compound (brominated carbonate oligomer having a bisphenol A skeleton, Fireguard FG-7000 manufactured by Teijin Limited (product name))
  • D component D-1 Drip inhibitor (Polytetrafluoroethylene (Polyflon MPA FA-500H (trade name) manufactured by Daikin Industries, Ltd.))
  • E component Glass fiber: Flat cross-section chopped glass fiber (manufactured by Nitto Boseki Co., Ltd .: CSG 3PA-830 (product name), major axis 28 ⁇ m, minor axis 7 ⁇ m, cut length 3 mm, epoxy-based focusing agent)
  • E-2 Carbon fiber: PAN-based carbon fiber (HTC422 (product name) manufactured by Teijin Limited, fiber diameter 7 ⁇ m, cut length 6 mm, urethane-based sizing agent)
  • E-3 Glass fiber: Flat cross-section chopped glass fiber (manufactured by Nitto Boseki Co., Ltd .: CSG 3PL-830 (product name), major axis 20 ⁇ m, minor axis 10 ⁇ m, cut length 3 mm, epoxy-based focusing agent)
  • F component F-1 Bisphenol A type epoxy resin (jER1256 (trade name) manufactured by Mitsubishi Chemical Corporation, epoxy equivalent: 75,000 to 8,000 g / eq, weight average molecular weight 50,000)
  • G component Phosphorus stabilizer (trimethyl phosphate (TMP) manufactured by Daihachi Chemical Industry Co., Ltd.)
  • G-2 Phosphorus stabilizer (bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite (SONGNOX6260PW) manufactured by Songwon International Japan Co., Ltd.)
  • G-3 Phosphorus stabilizer (Tris (2,4-di-t-butylphenyl) phosphite manufactured by ADEKA Corporation (ADEKA STAB 2112))
  • Release agent-1 Rikemar SL-900 (manufactured by RIKEN Vitamin Co., Ltd., main component: stearyl stearate)
  • Release agent-2 Licowax E powder (manufactured by Clariant Japan Co., Ltd.) Colorant: 40 parts by weight of carbon black (manufactured by Mitsubishi Chemical Co., Ltd .: carbon black MA-100 (trade name)), 3 parts by weight of white mineral oil (manufactured by Exxon Mobile: Plymol N382 (trade name)), 0 .2 parts by weight of montanic acid ester wax (manufactured by Clariant Japan Co., Ltd .: Licowax E powerer (trade name)) and 56.8 parts by weight of bisphenol A type polycarbonate resin (manufactured by Teijin Co., Ltd .: CM-1000 (commodity) A carbon black master pellet produced by melting and mixing 100 parts by weight of the four components of (name) and vis
  • the resin composition is excellent in tensile strength and specific strength at high temperature, has low anisotropy of molding shrinkage, has high dimensional accuracy, and is also excellent in flame retardancy. It can be seen that the impeller made of an object has excellent strength at high temperatures, little dimensional change, and excellent characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、高温環境下における高い引張り強度及び比強度及び、高い寸法精度及び難燃性に優れた樹脂組成物よりなるインペラを提供する。 本発明のインペラは、(A)芳香族ポリカーボネート系樹脂(A成分)、(B)液晶ポリエステル樹脂(B成分)、A成分とB成分の合計100重量部に対し、(C)ハロゲン化カーボネート化合物(C成分)3~40重量部、(D)ドリップ防止剤(D成分)0.1~3重量部、(E)ガラス繊維及び/又は炭素繊維(E成分)25~150重量部、(F)エポキシ樹脂(F成分)0.1~8重量部並びに(G)リン系安定剤(G成分)0.01~3重量部を含有し、A成分とB成分の重量比[(A)/(B)]が98/2~60/40である樹脂組成物からなる。

Description

インペラ及びその樹脂組成物
 本発明は、特定比率のポリカーボネート系樹脂及び液晶ポリエステル樹脂からなる樹脂成分、ハロゲン化カーボネート化合物、ドリップ防止剤、ガラス繊維及び/又は炭素繊維、エポキシ樹脂並びにリン系安定剤よりなる樹脂組成物からなるインペラに関するものである。
 インペラとは、液体もしくは気体の流体用の遠心力ポンプや発電機等に使用される羽根車のことであり、原動機の出力を受けてインペラを通過する流体に対して、圧力及び速度の形でエネルギーを与えるものである。従来、金属製の単一部品よりなるインペラが知られている。しかしながら、この金属製インペラは、重量が重い問題があり、また金属では、微妙な局面を形成することが困難であるという問題があった。
 そこで、樹脂を用いて成形した樹脂製インペラが開発されている。樹脂製インペラとしては、炭素繊維強化ポリエーテルエーテルケトン樹脂(PEEK)、ガラス繊維強化ポリフェニレンスルフィド樹脂(PPS)などの繊維強化樹脂製のものなどが用いられている。
 近年、インペラは高温高速回転環境下で使用されることが多く、樹脂材料には、高温環境下における引張り強度とともに比強度の高い材料が求められている。炭素繊維強化PEEKは高温時の引張り強度及び比強度に優れているが、現状ではかなり高価な材料である。また、ガラス強化PPS樹脂などが使用されるケースがあるが、PPS樹脂はガラス転移温度(Tg)が約90℃であるため、Tg付近の使用環境になると強度が低下する課題があり、材料価格と性能のバランスの良い樹脂製インペラが求められている。
 ポリカーボネート樹脂は、耐熱性、耐衝撃性、寸法安定性などに優れた樹脂であり、電気・電子部品分野、機構部品分野、自動車部品分野、OA機器部品分野など幅広く使用されている。これまで、ポリカーボネート樹脂をインペラの樹脂材料として使用する方法が開示されているが、引張り強度、比強度、寸法精度及び難燃性などの特性が十分なものを得るに至っていない。(特許文献1、2参照)
 ポリカーボネート樹脂の引張り強度を向上させる方法としては、ガラス繊維あるいは炭素繊維強化ポリカーボネート樹脂にフィラーとの密着性向上成分を添加することで強度を上げる技術が知られている。(特許文献3、4参照)また、ポリカーボネート樹脂と液晶ポリエステルのアロイにガラス繊維を配合し、より引張り強度を向上させる方法なども知られている。(特許文献5)しかし、いずれも80℃を超える高温環境下において、十分な引張り強度と比強度を両立するに至っていない。また、難燃処方においてもリン酸エステル系難燃剤及び金属塩系難燃剤、臭素化エポキシカーボネートなどでの難燃化が報告されているが、十分な耐熱性、強度、寸法精度など特性バランスのとれた状況で難燃性を付与することが困難であった。(特許文献6、7参照)
特開昭57-119105号公報 特開平8-4688号公報 特開2009-292953号公報 特許6195904号公報 特開2012-188578号公報 特開平7-331051号公報 特開2008-163315号公報
 上記に鑑み、本発明の目的は高温環境下での優れた引張り強度、高い比強度に加え、寸法精度及び難燃性に優れたポリカーボネート樹脂組成物よりなるインペラに関するものである。
 本発明者は上記課題を解決すべく鋭意検討を行った結果、特定比率のポリカーボネート系樹脂及び液晶ポリエステル樹脂からなる成分に、ハロゲン化カーボネート化合物、ドリップ防止剤、ガラス繊維及び/又は炭素繊維、エポキシ樹脂並びにリン系安定を配合することにより高温環境下での優れた引張り強度、高い比強度に加え、寸法精度及び難燃性に優れたポリカーボネート樹脂組成物よりなるインペラを得る方法を見出し、本発明を完成するに至った。
 本発明者らは、以下の態様を有する本発明により、上記課題を解決できることを見出した。
《態様1》
 (A)ポリカーボネート系樹脂(A成分)、(B)液晶ポリエステル樹脂(B成分)、A成分とB成分の合計100重量部に対し、(C)ハロゲン化カーボネート化合物(C成分)3~40重量部、(D)ドリップ防止剤(D成分)0.1~3重量部、(E)ガラス繊維及び/又は炭素繊維(E成分)25~150重量部、(F)エポキシ樹脂(F成分)0.1~8重量部並びに(G)リン系安定剤(G成分)0.01~3重量部を含有し、A成分とB成分との重量比[(A)/(B)]が98/2~60/40である樹脂組成物からなるインペラ。
《態様2》
 A成分の粘度平均分子量が1.7×10~2.1×10である、態様1に記載のインペラ。
《態様3》
 B成分が、p-ヒドロキシ安息香酸から誘導される繰返し単位と6-ヒドロキシ-2-ナフトエ酸から誘導される繰返し単位を含有する液晶ポリエステル樹脂である、態様1又は2に記載のインペラ。
《態様4》
 E成分が、繊維断面の長径の平均値が10~50μm、長径と短径の比(長径/短径)の平均値が1.5~8である扁平状断面ガラス繊維である、態様1~3のいずれかに記載のインペラ。
《態様5》
 F成分が、ビスフェノールA型エポキシ樹脂である、態様1~4のいずれかに記載のインペラ。
《態様6》
 85℃雰囲気下、12,000rpmで10日間回転させた後の、直径に対する羽根先端部の垂直方向の寸法変化率が0.4%以下である、態様1~5のいずれかに記載のインペラ。
《態様7》
 家電機器、OA機器、産業機器の冷却、換気、空調用ファン、車両用の空調、送風ファン用のインペラとして用いる、態様1~6のいずれかに記載のインペラ。
《態様8》
 (A)芳香族ポリカーボネート系樹脂(A成分)、
 (B)液晶ポリエステル樹脂(B成分)、
 A成分とB成分の合計100重量部に対し、
 (C)ハロゲン化カーボネート化合物(C成分)3~40重量部、
 (D)ドリップ防止剤(D成分)0.1~3重量部、
 (E)ガラス繊維及び/又は炭素繊維(E成分)25~150重量部、
 (F)エポキシ樹脂(F成分)0.1~8重量部、並びに
 (G)リン系安定剤(G成分)0.01~3重量部
を含有し、A成分とB成分との重量比[(A)/(B)]が98/2~60/40である、樹脂組成物。
 本発明のインペラは、高温環境下における高い引張り強度、比強度、寸法精度及び難燃性を有し、これらの特性は、従来の技術にはないものであるため、本発明の奏する工業的効果は極めて大である。
実施例で評価に使用したインペラの概略図である。
 以下、本発明の詳細について説明する。
 本発明のインペラは、
 (A)芳香族ポリカーボネート系樹脂(A成分)、
 (B)液晶ポリエステル樹脂(B成分)、
 A成分とB成分の合計100重量部に対し、
 (C)ハロゲン化カーボネート化合物(C成分)3~40重量部、
 (D)ドリップ防止剤(D成分)0.1~3重量部、
 (E)ガラス繊維及び/又は炭素繊維(E成分)25~150重量部、
 (F)エポキシ樹脂(F成分)0.1~8重量部、並びに
 (G)リン系安定剤(G成分)0.01~3重量部
を含有し、A成分とB成分との重量比[(A)/(B)]が98/2~60/40である、樹脂組成物からなる。
 (A成分:ポリカーボネート系樹脂)
 本発明でA成分として用いられるポリカーボネート系樹脂は、二価フェノールとカーボネート前駆体とを反応させて得られるものである。反応方法の一例として界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、及び環状カーボネート化合物の開環重合法などを挙げることができる。
 ここで使用される二価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’-ビフェノール、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、4,4’-(p-フェニレンジイソプロピリデン)ジフェノール、4,4’-(m-フェニレンジイソプロピリデン)ジフェノール、1,1-ビス(4-ヒドロキシフェニル)-4-イソプロピルシクロヘキサン、ビス(4-ヒドロキシフェニル)オキシド、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホキシド、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)ケトン、ビス(4-ヒドロキシフェニル)エステル、ビス(4-ヒドロキシ-3-メチルフェニル)スルフィド、9,9-ビス(4-ヒドロキシフェニル)フルオレン及び9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンなどが挙げられる。好ましい二価フェノールは、ビス(4-ヒドロキシフェニル)アルカンであり、なかでも耐衝撃性の点からビスフェノールAが特に好ましく、汎用されている。
 本発明では、汎用のポリカーボネートであるビスフェノールA系のポリカーボネート以外にも、他の2価フェノール類を用いて製造した特殊なポリカーボネ-トをA成分として使用することが可能である。
 例えば、2価フェノール成分の一部又は全部として、4,4’-(m-フェニレンジイソプロピリデン)ジフェノール(以下“BPM”と略称することがある)、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン(以下“Bis-TMC”と略称することがある)、9,9-ビス(4-ヒドロキシフェニル)フルオレン及び9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン(以下“BCF”と略称することがある)を用いたポリカーボネ-ト(単独重合体又は共重合体)は、吸水による寸法変化や形態安定性の要求が特に厳しい用途に適当である。これらのBPA以外の2価フェノールは、該ポリカーボネートを構成する2価フェノール成分全体の5モル%以上、特に10モル%以上、使用するのが好ましい。
 殊に、高剛性かつより良好な耐加水分解性が要求される場合には、樹脂組成物を構成するA成分が次の(1)~(3)の共重合ポリカーボネートであるのが特に好適である。
 (1)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20~80モル%(より好適には40~75モル%、さらに好適には45~65モル%)であり、かつBCFが20~80モル%(より好適には25~60モル%、さらに好適には35~55モル%)である共重合ポリカーボネート。
 (2)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPAが10~95モル%(より好適には50~90モル%、さらに好適には60~85モル%)であり、かつBCFが5~90モル%(より好適には10~50モル%、さらに好適には15~40モル%)である共重合ポリカーボネート。
 (3)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20~80モル%(より好適には40~75モル%、さらに好適には45~65モル%)であり、かつBis-TMCが20~80モル%(より好適には25~60モル%、さらに好適には35~55モル%)である共重合ポリカーボネート。
 これらの特殊なポリカーボネートは、単独で用いてもよく、2種以上を適宜混合して使用してもよい。また、これらを汎用されているビスフェノールA型のポリカーボネートと混合して使用することもできる。
 これらの特殊なポリカーボネートの製法及び特性については、例えば、特開平6-172508号公報、特開平8-27370号公報、特開2001-55435号公報及び特開2002-117580号公報等に詳しく記載されている。
 なお、上述した各種のポリカーボネートの中でも、共重合組成等を調整して、吸水率及びTg(ガラス転移温度)を下記の範囲内にしたものは、ポリマー自体の耐加水分解性が良好で、かつ成形後の低反り性においても格段に優れているため、形態安定性が要求される分野では特に好適である。
 (i)吸水率が0.05~0.15%、好ましくは0.06~0.13%であり、かつTgが120~180℃であるポリカーボネート、あるいは
 (ii)Tgが160~250℃、好ましくは170~230℃であり、かつ吸水率が0.10~0.30%、好ましくは0.13~0.30%、より好ましくは0.14~0.27%であるポリカーボネート。
 ここで、ポリカーボネートの吸水率は、直径45mm、厚み3.0mmの円板状試験片を用い、ISO62-1980に準拠して23℃の水中に24時間浸漬した後の水分率を測定した値である。また、Tg(ガラス転移温度)は、JIS K7121に準拠した示差走査熱量計(DSC)測定により求められる値である。
 カーボネート前駆体としてはカルボニルハライド、炭酸ジエステル又はハロホルメートなどが使用され、具体的にはホスゲン、ジフェニルカーボネート又は二価フェノールのジハロホルメートなどが挙げられる。
 前記二価フェノールとカーボネート前駆体を界面重合法によって芳香族ポリカーボネート樹脂を製造するに当っては、必要に応じて触媒、末端停止剤、二価フェノールが酸化するのを防止するための酸化防止剤などを使用してもよい。また本発明の芳香族ポリカーボネート樹脂は三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂、芳香族又は脂肪族(脂環式を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂、二官能性アルコール(脂環式を含む)を共重合した共重合ポリカーボネート樹脂、並びにかかる二官能性カルボン酸及び二官能性アルコールを共に共重合したポリエステルカーボネート樹脂を含む。また、得られた芳香族ポリカーボネート樹脂の2種以上を混合した混合物であってもよい。
 分岐ポリカーボネート樹脂は、本発明の樹脂組成物に、ドリップ防止性能などを付与できる。かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、又は4,6-ジメチル-2,4,6-トリス(4-ヒドロキジフェニル)ヘプテン-2、2,4,6-トリメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプタン、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、4-{4-[1,1-ビス(4-ヒドロキシフェニル)エチル]ベンゼン}-α,α-ジメチルベンジルフェノール等のトリスフェノール、テトラ(4-ヒドロキシフェニル)メタン、ビス(2,4-ジヒドロキシフェニル)ケトン、1,4-ビス(4,4-ジヒドロキシトリフェニルメチル)ベンゼン、又はトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸及びこれらの酸クロライド等が挙げられ、中でも1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタンが好ましく、特に1,1,1-トリス(4-ヒドロキシフェニル)エタンが好ましい。
 分岐ポリカーボネートにおける多官能性芳香族化合物から誘導される構成単位は、2価フェノールから誘導される構成単位とかかる多官能性芳香族化合物から誘導される構成単位との合計100モル%中、好ましくは0.01~1モル%、より好ましくは0.05~0.9モル%、さらに好ましくは0.05~0.8モル%である。
 また、特に溶融エステル交換法の場合、副反応として分岐構造単位が生ずる場合があるが、かかる分岐構造単位量についても、2価フェノールから誘導される構成単位との合計100モル%中、好ましくは0.001~1モル%、より好ましくは0.005~0.9モル%、さらに好ましくは0.01~0.8モル%であるものが好ましい。なお、かかる分岐構造の割合についてはH-NMR測定により算出することが可能である。
 脂肪族の二官能性のカルボン酸は、α,ω-ジカルボン酸が好ましい。脂肪族の二官能性のカルボン酸としては例えば、セバシン酸(デカン二酸)、ドデカン二酸、テトラデカン二酸、オクタデカン二酸、イコサン二酸などの直鎖飽和脂肪族ジカルボン酸、並びにシクロヘキサンジカルボン酸などの脂環族ジカルボン酸が好ましく挙げられる。二官能性アルコールとしては脂環族ジオールがより好適であり、例えばシクロヘキサンジメタノール、シクロヘキサンジオール、及びトリシクロデカンジメタノールなどが例示される。
 ポリカーボネート系樹脂の製造方法である界面重合法、溶融エステル交換法、カーボネートプレポリマー固相エステル交換法、及び環状カーボネート化合物の開環重合法などの反応形式は、各種の文献及び特許公報などで良く知られている方法である。
 本発明の樹脂組成物を製造するにあたり、ポリカーボネート系樹脂の粘度平均分子量(M)は、特に限定されないが、好ましくは1×10~5×10であり、より好ましくは1.4×10~3×10、さらに好ましくは1.4×10~2.4×10である。特に好ましくは1.7×10~2.1×10である。粘度平均分子量が1×10未満のポリカーボネート系樹脂では、良好な機械的特性、特に高い引張強度が得られない場合がある。一方、粘度平均分子量が5×10を超える芳香族ポリカーボネート系樹脂から得られる樹脂組成物は、射出成形時の流動性に劣る点で汎用性に劣る。
 なお、前記ポリカーボネート系樹脂は、その粘度平均分子量が前記範囲外のものを混合して得られたものであってもよい。殊に、前記範囲(5×10)を超える粘度平均分子量を有するポリカーボネート系樹脂は、樹脂のエントロピー弾性が向上する。その結果、強化樹脂材料を構造部材に成形する際に使用されることのあるガスアシスト成形、及び発泡成形において、良好な成形加工性を発現する。かかる成形加工性の改善は前記分岐ポリカーボネートよりもさらに良好である。より好適な態様としては、A成分が粘度平均分子量7×10~3×10のポリカーボネート系樹脂(A-1-1成分)、及び粘度平均分子量1×10~3×10の芳香族ポリカーボネート樹脂(A-1-2成分)からなり、その粘度平均分子量が1.6×10~3.5×10であるポリカーボネート系樹脂(A-1成分)(以下、“高分子量成分含有ポリカーボネート系樹脂”と称することがある)も使用できる。
 かかる高分子量成分含有ポリカーボネート系樹脂(A-1成分)において、A-1-1成分の分子量は7×10~2×10が好ましく、より好ましくは8×10~2×10、さらに好ましくは1×10~2×10、特に好ましくは1×10~1.6×10である。またA-1-2成分の分子量は1×10~2.5×10が好ましく、より好ましくは1.1×10~2.4×10、さらに好ましくは1.2×10~2.4×10、特に好ましくは1.2×10~2.3×10である。
 高分子量成分含有ポリカーボネート系樹脂(A-1成分)は前記A-1-1成分とA-1-2成分を種々の割合で混合し、所定の分子量範囲を満足するよう調整して得ることができる。好ましくは、A-1成分100重量%中、A-1-1成分が2~40重量%の場合であり、より好ましくはA-1-1成分が3~30重量%であり、さらに好ましくはA-1-1成分が4~20重量%であり、特に好ましくはA-1-1成分が5~20重量%である。
 また、A-1成分の調製方法としては、(1)A-1-1成分とA-1-2成分とを、それぞれ独立に重合しこれらを混合する方法、(2)特開平5-306336号公報に示される方法に代表される、GPC法による分子量分布チャートにおいて複数のポリマーピークを示す芳香族ポリカーボネート樹脂を同一系内において製造する方法を用い、かかる芳香族ポリカーボネート樹脂を本発明のA-1成分の条件を満足するよう製造する方法、及び(3)かかる製造方法((2)の製造法)により得られた芳香族ポリカーボネート樹脂と、別途製造されたA-1-1成分及び/又はA-1-2成分とを混合する方法などを挙げることができる。
 本発明でいう粘度平均分子量は、まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
  比粘度(ηSP)=(t-t)/t
  [tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
 求められた比粘度(ηSP)から次の数式により粘度平均分子量Mを算出する。
  ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
  [η]=1.23×10-40.83
  c=0.7
 尚、ポリカーボネート系樹脂の粘度平均分子量の算出は次の要領で行なわれる。すなわち、該組成物を、その20~30倍重量の塩化メチレンと混合し、組成物中の可溶分を溶解させる。かかる可溶分をセライト濾過により採取する。その後得られた溶液中の溶媒を除去する。溶媒除去後の固体を十分に乾燥し、塩化メチレンに溶解する成分の固体を得る。かかる固体0.7gを塩化メチレン100mlに溶解した溶液から、上記と同様にして20℃における比粘度を求め、該比粘度から上記と同様にして粘度平均分子量Mを算出する。
 ポリカーボネート系樹脂(A成分)としてポリカーボネート-ポリジオルガノシロキサン共重合樹脂を使用することも出来る。ポリカーボネート-ポリジオルガノシロキサン共重合樹脂とは下記一般式(1)で表される構成単位を誘導する二価フェノール及び下記一般式(3)で表される構成単位を誘導するヒドロキシアリール末端ポリジオルガノシロキサンを共重合させることにより調製される共重合樹脂である。
Figure JPOXMLDOC01-appb-C000001
 [上記一般式(1)において、R及びRは夫々独立して水素原子、ハロゲン原子、炭素原子数1~18のアルキル基、炭素原子数1~18のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数2~10のアルケニル基、炭素原子数6~14のアリール基、炭素原子数6~14のアリールオキシ基、炭素原子数7~20のアラルキル基、炭素原子数7~20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、e及びfは夫々1~4の整数であり、Wは単結合もしくは下記一般式(2)で表される基からなる群より選ばれる少なくとも一つの基である。]
Figure JPOXMLDOC01-appb-C000002
 [上記一般式(2)においてR11,R12,R13,R14,R15,R16,R17及びR18は夫々独立して水素原子、炭素原子数1~18のアルキル基、炭素原子数6~14のアリール基及び炭素原子数7~20のアラルキル基からなる群から選ばれる基を表し、R19及びR20は夫々独立して水素原子、ハロゲン原子、炭素原子数1~18のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数2~10のアルケニル基、炭素原子数6~14のアリール基、炭素原子数6~10のアリールオキシ基、炭素原子数7~20のアラルキル基、炭素原子数7~20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、複数ある場合はそれらは同一でも異なっていても良く、gは1~10の整数、hは4~7の整数である。]
Figure JPOXMLDOC01-appb-C000003
 [上記一般式(3)において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1~12のアルキル基又は炭素数6~12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは10~300の自然数である。Xは炭素数2~8の二価脂肪族基である。]
 一般式(1)で表される構成単位を誘導する二価フェノール(I)としては、例えば、4,4’-ジヒドロキシビフェニル、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシ-3,3’-ビフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-イソプロピルフェニル)プロパン、2,2-ビス(3-t-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、1,1-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)シクロヘキサン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、4,4’-ジヒドロキシジフェニルエ-テル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエ-テル、4,4’-スルホニルジフェノール、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシジフェニルスルフィド、2,2’-ジメチル-4,4’-スルホニルジフェノール、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド、2,2’-ジフェニル-4,4’-スルホニルジフェノール、4,4’-ジヒドロキシ-3,3’-ジフェニルジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジフェニルジフェニルスルフィド、1,3-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,3-ビス(4-ヒドロキシフェニル)シクロヘキサン、4,8-ビス(4-ヒドロキシフェニル)トリシクロ[5.2.1.02,6]デカン、4,4’-(1,3-アダマンタンジイル)ジフェノール、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン等が挙げられる。なかでも、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、4,4’-スルホニルジフェノール、2,2’-ジメチル-4,4’-スルホニルジフェノール、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、1,3-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼン、1,4-ビス{2-(4-ヒドロキシフェニル)プロピル}ベンゼンが好ましく、殊に2,2-ビス(4-ヒドロキシフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(BPZ)、4,4’-スルホニルジフェノール、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンが好ましい。中でも強度に優れ、良好な耐久性を有する2,2-ビス(4-ヒドロキシフェニル)プロパンが最も好適である。また、これらは単独又は二種以上組み合わせて用いてもよい。
 上記一般式(3)で表される構成単位を誘導するヒドロキシアリール末端ポリジオルガノシロキサンとしては、例えば下記に示すような化合物が好適に用いられる。
Figure JPOXMLDOC01-appb-C000004
 ヒドロキシアリール末端ポリジオルガノシロキサン(II)は、オレフィン性の不飽和炭素-炭素結合を有するフェノール類、好適にはビニルフェノール、2-アリルフェノール、イソプロペニルフェノール、2-メトキシ-4-アリルフェノールを所定の重合度を有するポリシロキサン鎖の末端に、ハイドロシリレーション反応させることにより容易に製造される。なかでも、(2-アリルフェノール)末端ポリジオルガノシロキサン、(2-メトキシ-4-アリルフェノール)末端ポリジオルガノシロキサンが好ましく、殊に(2-アリルフェノール)末端ポリジメチルシロキサン、(2-メトキシ-4-アリルフェノール)末端ポリジメチルシロキサンが好ましい。ヒドロキシアリール末端ポリジオルガノシロキサン(II)は、その分子量分布(Mw/Mn)が3以下であることが好ましい。さらに優れた高温成形時の低アウトガス性と低温衝撃性を発現させるために、かかる分子量分布(Mw/Mn)はより好ましくは2.5以下であり、さらに好ましくは2以下である。かかる好適な範囲の上限を超えると高温成形時のアウトガス発生量が多く、また、低温衝撃性に劣る場合がある。
 また、高度な耐衝撃性を実現するためにヒドロキシアリール末端ポリジオルガノシロキサン(II)のジオルガノシロキサン重合度(p+q)は10~300が適切である。かかるジオルガノシロキサン重合度(p+q)は好ましくは10~200、より好ましくは12~150、更に好ましくは14~100である。かかる好適な範囲の下限未満では、ポリカーボネート-ポリジオルガノシロキサン共重合体の特徴である耐衝撃性が有効に発現せず、かかる好適な範囲の上限を超えると外観不良が現れる。
 A成分で使用されるポリカーボネート-ポリジオルガノシロキサン共重合樹脂全重量に占めるポリジオルガノシロキサン含有量は0.1~50重量%が好ましい。かかるポリジオルガノシロキサン成分含有量はより好ましくは0.5~30重量%、さらに好ましくは1~20重量%である。かかる好適な範囲の下限以上では、耐衝撃性や難燃性に優れ、かかる好適な範囲の上限以下では、成形条件の影響を受けにくい安定した外観が得られやすい。かかるポリジオルガノシロキサン重合度、ポリジオルガノシロキサン含有量は、1H-NMR測定により算出することが可能である。
 本発明において、ヒドロキシアリール末端ポリジオルガノシロキサン(II)は1種のみを用いてもよく、また、2種以上を用いてもよい。
 また、本発明の妨げにならない範囲で、上記二価フェノール(I)、ヒドロキシアリール末端ポリジオルガノシロキサン(II)以外の他のコモノマーを共重合体の全重量に対して10重量%以下の範囲で併用することもできる。
 本発明においては、あらかじめ水に不溶性の有機溶媒とアルカリ水溶液との混合液中における二価フェノール(I)と炭酸エステル形成性化合物の反応により末端クロロホルメート基を有するオリゴマーを含む混合溶液を調製する。
 二価フェノール(I)のオリゴマーを生成するにあたり、本発明の方法に用いられる二価フェノール(I)の全量を一度にオリゴマーにしてもよく、又は、その一部を後添加モノマーとして後段の界面重縮合反応に反応原料として添加してもよい。後添加モノマーとは、後段の重縮合反応を速やかに進行させるために加えるものであり、必要のない場合には敢えて加える必要はない。
 このオリゴマー生成反応の方式は特に限定はされないが、通常、酸結合剤の存在下、溶媒中で行う方式が好適である。
 炭酸エステル形成性化合物の使用割合は、反応の化学量論比(当量)を考慮して適宜調整すればよい。また、ホスゲン等のガス状の炭酸エステル形成性化合物を使用する場合、これを反応系に吹き込む方法が好適に採用できる。
 前記酸結合剤としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、ピリジン等の有機塩基あるいはこれらの混合物などが用いられる。酸結合剤の使用割合も、上記同様に、反応の化学量論比(当量)を考慮して適宜定めればよい。具体的には、オリゴマーの形成に使用する二価フェノール(I)のモル数(通常1モルは2当量に相当)に対して2当量若しくはこれより若干過剰量の酸結合剤を用いることが好ましい。
 前記溶媒としては、公知のポリカーボネートの製造に使用されるものなど各種の反応に不活性な溶媒を1種単独であるいは混合溶媒として使用すればよい。代表的な例としては、例えば、キシレン等の炭化水素溶媒、塩化メチレン、クロロベンゼンをはじめとするハロゲン化炭化水素溶媒などが挙げられる。特に塩化メチレン等のハロゲン化炭化水素溶媒が好適に用いられる。
 オリゴマー生成の反応圧力は特に制限はなく、常圧、加圧、減圧のいずれでもよいが、通常常圧下で反応を行うことが有利である。反応温度は-20~50℃の範囲から選ばれ、多くの場合、重合に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は他の条件に左右され一概に規定できないが、通常、0.2~10時間で行われる。オリゴマー生成反応のpH範囲は、公知の界面反応条件と同様であり、pHは常に10以上に調製される。
 本発明はこのようにして、末端クロロホルメート基を有する二価フェノール(I)のオリゴマーを含む混合溶液を得た後、該混合溶液を攪拌しながら分子量分布(Mw/Mn)が3以下まで高度に精製された一般式(4)で表わされるヒドロキシアリール末端ポリジオルガノシロキサン(II)を二価フェノール(I)に加え、該ヒドロキシアリール末端ポリジオルガノシロキサン(II)と該オリゴマーを界面重縮合させることによりポリカーボネート-ポリジオルガノシロキサン共重合体を得る。
Figure JPOXMLDOC01-appb-C000005
 (上記一般式(4)において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1~12のアルキル基又は炭素数6~12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは10~300の自然数である。Xは炭素数2~8の二価脂肪族基である。)
 界面重縮合反応を行うにあたり、酸結合剤を反応の化学量論比(当量)を考慮して適宜追加してもよい。酸結合剤としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、ピリジン等の有機塩基あるいはこれらの混合物などが用いられる。具体的には、使用するヒドロキシアリール末端ポリジオルガノシロキサン(II)、又は上記の如く二価フェノール(I)の一部を後添加モノマーとしてこの反応段階に添加する場合には、後添加分の二価フェノール(I)とヒドロキシアリール末端ポリジオルガノシロキサン(II)との合計モル数(通常1モルは2当量に相当)に対して2当量若しくはこれより過剰量のアルカリを用いることが好ましい。
 二価フェノール(I)のオリゴマーとヒドロキシアリール末端ポリジオルガノシロキサン(II)との界面重縮合反応による重縮合は、上記混合液を激しく攪拌することにより行われる。
 かかる重合反応においては、末端停止剤或いは分子量調節剤が通常使用される。末端停止剤としては一価のフェノール性水酸基を有する化合物が挙げられ、通常のフェノール、p-tert-ブチルフェノール、p-クミルフェノール、トリブロモフェノールなどの他に、長鎖アルキルフェノール、脂肪族カルボン酸クロライド、脂肪族カルボン酸、ヒドロキシ安息香酸アルキルエステル、ヒドロキシフェニルアルキル酸エステル、アルキルエーテルフェノールなどが例示される。その使用量は用いる全ての二価フェノール系化合物100モルに対して、100~0.5モル、好ましくは50~2モルの範囲であり、二種以上の化合物を併用することも当然に可能である。
 重縮合反応を促進するために、トリエチルアミンのような第三級アミン又は第四級アンモニウム塩などの触媒を添加してもよい。
 かかる重合反応の反応時間は、好ましくは30分以上、更に好ましくは50分以上である。所望に応じ、亜硫酸ナトリウム、ハイドロサルファイドなどの酸化防止剤を少量添加してもよい。
 分岐化剤を上記の二価フェノール系化合物と併用して分岐化ポリカーボネート-ポリジオルガノシロキサンとすることができる。かかる分岐ポリカーボネート-ポリジオルガノシロキサン共重合樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、又は4,6-ジメチル-2,4,6-トリス(4-ヒドロキジフェニル)ヘプテン-2、2,4,6-トリメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプタン、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、4-{4-[1,1-ビス(4-ヒドロキシフェニル)エチル]ベンゼン}-α,α-ジメチルベンジルフェノール等のトリスフェノール、テトラ(4-ヒドロキシフェニル)メタン、ビス(2,4-ジヒドロキシフェニル)ケトン、1,4-ビス(4,4-ジヒドロキシトリフェニルメチル)ベンゼン、又はトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸及びこれらの酸クロライド等が挙げられ、中でも1,1,1-トリス(4-ヒドロキシフェニル)エタン、1,1,1-トリス(3,5-ジメチル-4-ヒドロキシフェニル)エタンが好ましく、特に1,1,1-トリス(4-ヒドロキシフェニル)エタンが好ましい。分岐ポリカーボネート-ポリジオルガノシロキサン共重合樹脂中の多官能性化合物の割合は、芳香族ポリカーボネート-ポリジオルガノシロキサン共重合樹脂全量中、好ましくは0.001~1モル%、より好ましくは0.005~0.9モル%、さらに好ましくは0.01~0.8モル%、特に好ましくは0.05~0.4モル%である。なお、かかる分岐構造量については1H-NMR測定により算出することが可能である。
 反応圧力は、減圧、常圧、加圧のいずれでも可能であるが、通常は、常圧若しくは反応系の自圧程度で好適に行い得る。反応温度は-20~50℃の範囲から選ばれ、多くの場合、重合に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は反応温度等の他の条件によって異なるので一概に規定はできないが、通常、0.5~10時間で行われる。
 場合により、得られたポリカーボネート-ポリジオルガノシロキサン共重合樹脂に適宜物理的処理(混合、分画など)及び/又は化学的処理(ポリマー反応、架橋処理、部分分解処理など)を施して所望の還元粘度[ηSP/c]のポリカーボネート-ポリジオルガノシロキサン共重合樹脂として取得することもできる。
 得られた反応生成物(粗生成物)は公知の分離精製法等の各種の後処理を施して、所望の純度(精製度)のポリカーボネート-ポリジオルガノシロキサン共重合樹脂として回収することができる。
 ポリカーボネート-ポリジオルガノシロキサン共重合樹脂成形品中のポリジオルガノシロキサンドメインの平均サイズは、1~40nmの範囲が好ましい。かかる平均サイズはより好ましくは1~30nm、更に好ましくは5~25nmである。かかる好適な範囲の下限未満では、耐衝撃性や難燃性が十分に発揮されず、かかる好適な範囲の上限を超えると耐衝撃性が安定して発揮されない場合がある。
 本発明におけるポリカーボネート-ポリジオルガノシロキサン共重合樹脂成形品のポリジオルガノシロキサンドメインの平均ドメインサイズ、規格化分散は、小角エックス線散乱法(Small Angle X-ray Scattering:SAXS)により評価した。小角エックス線散乱法とは、散乱角(2θ)<10°以内の小角領域で生じる散漫な散乱・回折を測定する方法である。この小角エックス線散乱法では、物質中に1~100nm程度の大きさの電子密度の異なる領域があると、その電子密度差によりエックス線の散漫散乱が計測される。この散乱角と散乱強度に基づいて測定対象物の粒子径を求める。ポリカーボネートポリマーのマトリックス中にポリジオルガノシロキサンドメインが分散した凝集構造となるポリカーボネート-ポリジオルガノシロキサン共重合樹脂の場合、ポリカーボネートマトリックスとポリジオルガノシロキサンドメインの電子密度差により、エックス線の散漫散乱が生じる。散乱角(2θ)が10°未満の範囲の各散乱角(2θ)における散乱強度Iを測定して、小角エックス線散乱プロファイルを測定し、ポリジオルガノシロキサンドメインが球状ドメインであり、粒径分布のばらつきが存在すると仮定して、仮の粒径と仮の粒径分布モデルから、市販の解析ソフトウェアを用いてシミュレーションを行い、ポリジオルガノシロキサンドメインの平均サイズと粒径分布(規格化分散)を求める。小角エックス線散乱法によれば、透過型電子顕微鏡による観察では正確に測定できない、ポリカーボネートポリマーのマトリックス中に分散したポリジオルガノシロキサンドメインの平均サイズと粒径分布を、精度よく、簡便に、再現性良く測定することができる。平均ドメインサイズとは個々のドメインサイズの数平均を意味する。規格化分散とは、粒径分布の広がりを平均サイズで規格化したパラメータを意味する。具体的には、ポリジオルガノシロキサンドメインサイズの分散を平均ドメインサイズで規格化した値であり、下記式(1)で表される。
Figure JPOXMLDOC01-appb-M000006
 上記式(1)において、δはポリジオルガノシロキサンドメインサイズの標準偏差、Davは平均ドメインサイズである。
 本発明に関連して用いる用語「平均ドメインサイズ」、「規格化分散」は、かかる小角エックス線散乱法により、実施例記載の方法で作製した3段型プレートの厚み1.0mm部を測定することにより得られる測定値を示す。また、粒子間相互作用(粒子間干渉)を考慮しない孤立粒子モデルにて解析を行った。
 (B成分:液晶ポリエステル樹脂)
 本発明でB成分として用いられる液晶ポリエステル樹脂とは、サーモトロピック液晶ポリエステル樹脂であり、溶融状態でポリマー分子鎖が一定方向に配列する性質を有している。かかる配列状態の形態はネマチック型、スメチック型、コレステリック型、及びディスコチック型のいずれの形態であってもよく、また2種以上の形態を呈するものであってもよい。更に液晶ポリエステル樹脂の構造としては主鎖型、側鎖型、及び剛直主鎖屈曲側鎖型などのいずれの構造であってもよいが、好ましいのは主鎖型液晶ポリエステル樹脂である。
 上記配列状態の形態、すなわち異方性溶融相の性質は、直交偏光子を利用した慣用の偏光検査法により確認することができる。より具体的には、異方性溶融相の確認は、Leiz偏光顕微鏡を使用し、Leitzホットステージにのせた溶融試料を窒素雰囲気下で40倍の倍率で観察することにより実施できる。本発明のポリマーは直交偏光子の間で検査したときにたとえ溶融静止状態であっても偏光は透過し、光学的に異方性を示す。
 また液晶ポリエステル樹脂の耐熱性はいかなる範囲であってもよいが、ポリカーボネート樹脂の加工温度に近い部分で溶融し液晶相を形成するものが適切である。液晶ポリエステルの荷重たわみ温度(ISO75-1/2、荷重1.8Mpa条件)は150~280℃であることが好ましく、より好ましくは150~250℃である。かかる液晶ポリエステル樹脂はいわゆる耐熱性区分のII型に属するものである。かかる耐熱性を有する場合には耐熱性のより高いI型に比較して成形加工性に優れ、及び耐熱性のより低いIII型に比較して良好な難燃性が達成される。
 本発明で用いられる液晶ポリエステル樹脂は、ポリエステル単位及びポリエステルアミド単位を含むものが好ましく、芳香族ポリエステル樹脂及び芳香族ポリエステルアミド樹脂が好ましく、芳香族ポリエステル単位及び芳香族ポリエステルアミド単位を同一分子鎖中に部分的に含む液晶ポリエステル樹脂も好ましい例である。
 特に好ましくは、芳香族ヒドロキシカルボン酸、芳香族ヒドロキシアミン、芳香族ジアミンの群から選ばれた1種又は2種以上の化合物由来の単位構成成分として有する全芳香族ポリエステル樹脂、全芳香族ポリエステルアミド樹脂である。より具体的には、1)主として芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物から合成される液晶ポリエステル樹脂、2)主としてa)芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、b)芳香族ジカルボン酸、脂環族ジカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、並びにc)芳香族ジオール、脂環族ジオール、脂肪族ジオール及びその誘導体からなる群より選ばれる1種又は2種以上の化合物から合成される液晶ポリエステル樹脂、3)主としてa)芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、b)芳香族ヒドロキシアミン、芳香族ジアミン及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、並びにc)芳香族ジカルボン酸、脂環族ジカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物から合成される液晶ポリエステルアミド樹脂、4)主としてa)芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、b)芳香族ヒドロキシアミン、芳香族ジアミン及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、c)芳香族ジカルボン酸、脂環族ジカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、並びにd)芳香族ジオール、脂環族ジオール、脂肪族ジオール及びその誘導体からなる群より選ばれる1種又は2種以上の化合物から合成される液晶ポリエステルアミド樹脂が挙げられるが、1)主として芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物から合成される液晶ポリエステル樹脂が好ましい。
 更に上記の構成成分に必要に応じ分子量調整剤を併用しても良い。
 本発明に使用される樹脂組成物における液晶ポリエステル樹脂の合成に用いられる具体的化合物の好ましい例は、2,6-ナフタレンジカルボン酸、2,6-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン及び6-ヒドロキシ-2-ナフトエ酸等のナフタレン化合物、4,4’-ジフェニルジカルボン酸、4,4’-ジヒドロキシビフェニル等のビフェニル化合物、p-ヒドロキシ安息香酸、テレフタル酸、ハイドロキノン、p-アミノフェノール及びp-フェニレンジアミン等のパラ位置換のベンゼン化合物及びそれらの核置換ベンゼン化合物(置換基は塩素、臭素、メチル、フェニル、1-フェニルエチルより選ばれる)、イソフタル酸、レゾルシン等のメタ位置換のベンゼン化合物、並びに下記一般式(5)、(6)又は(7)で表される化合物である。中でも、p-ヒドロキシ安息香酸と6-ヒドロキシ-2-ナフトエ酸が特に好ましく、両者を混合してなる液晶ポリエステル樹脂が好適である。両者の割合は前者が90~50モル%の範囲が好ましく、80~65モル%の範囲がより好ましく、後者が10~50モル%の範囲が好ましく、20~35モル%の範囲がより好ましい。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 (但し、Xは炭素数1~4のアルキレン基及びアルキリデン基、-O-、-SO-、-SO-、-S-、並びに-CO-よりなる群より選ばれる基であり、Yは-(CH)n-(n=1~4)、及びO(CH)nO-(n=1~4)よりなる群より選ばれる基である。)
 又、本発明に使用される液晶ポリエステル樹脂は、上述の構成成分の他に同一分子鎖中に部分的に異方性溶融相を示さないポリアルキレンテレフタレート由来単位が存在してもよい。この場合のアルキル基の炭素数は2~4である。
 本発明に使用される液晶ポリエステル樹脂の基本的な製造方法は、特に制限がなく、公知の液晶ポリエステル樹脂の重縮合法に準じて製造できる。上記の液晶ポリエステル樹脂はまた、60℃でペンタフルオロフェノールに0.1重量%濃度で溶解したときに、少なくとも約2.0dl/g、たとえば約2.0~10.0dl/gの対数粘度(IV値)を一般に示す。
 以上のような特徴から液晶ポリエステル樹脂は射出成形時に微細なフィブリル状となり、冷却固化の過程で形状が保持されてマトリックスに対して補強効果を発現する。そのため、液晶ポリエステル樹脂による引張り強度の付与が可能となる。液晶ポリエステル樹脂による樹脂組成物の粘度低下によっても射出速度や樹脂圧力を低減することができる効果がある。
 本発明に使用される(A)芳香族ポリカーボネート系樹脂と(B)液晶ポリエステル樹脂との重量比[(A)/(B)]は、98/2~60/40、好ましくは95/5~70/30、更に好ましくは95/5~75/25、更に好ましくは95/5~80/20、更に好ましくは95/5~85/15の範囲である。液晶ポリエステル樹脂の割合が、この範囲より大きいと引張り強度及び難燃性が低下する。また割合がこの範囲より小さいときには、液晶ポリエステル樹脂配合による引張り強度向上効果が得られない。
 (C成分:ハロゲン化カーボネート化合物)
 本発明でC成分として用いられるハロゲン化カーボネート化合物としては、下記一般式(8)で表される構成単位が全構成単位の少なくとも60モル%で、比粘度が0.015~0.1のハロゲン化カーボネート化合物が好適に用いられる。
Figure JPOXMLDOC01-appb-C000010
 [一般式(8)中、Xは臭素原子、Rは炭素数1~4のアルキレン基、炭素数1~4のアルキリデン基又はSO-である。]
 また、かかる式(8)において、好適にはRはメチレン基、エチレン基、イソプロピリデン基、-SO-、特に好ましくはイソプロピリデン基を示す。
 臭素化ポリカーボネートは、残存するクロロホーメート基末端が少なく、末端塩素量が0.3ppm以下であることが好ましく、より好ましくは0.2ppm以下である。かかる末端塩素量は、試料を塩化メチレンに溶解し、4-(p-ニトロベンジル)ピリジンを加えて末端塩素(末端クロロホーメート)と反応させ、これを紫外可視分光光度計(日立製作所製U-3200)により測定して求めることができる。末端塩素量が0.3ppm以下であると、ポリカーボネート樹脂組成物の熱安定性がより良好となり、更に高温の成型が可能となり、その結果成型加工性により優れた樹脂組成物が提供される場合がある。
 また臭素化ポリカーボネートは、残存する水酸基末端が少ないことが好ましい。より具体的には臭素化ポリカーボネートの構成単位1モルに対して、末端水酸基量が0.0005モル以下であることが好ましく、より好ましくは0.0003モル以下である。末端水酸基量は、試料を重クロロホルムに溶解し、H-NMR法により測定して求めることができる。かかる末端水酸基量であると、ポリカーボネート樹脂組成物の熱安定性が更に向上する場合がある。
 臭素化ポリカーボネートの比粘度は、好ましくは0.015~0.1の範囲、より好ましくは0.015~0.08の範囲である。臭素化ポリカーボネートの比粘度は、前述した本発明のA成分であるポリカーボネート系樹脂の粘度平均分子量を算出するに際し使用した上記比粘度の算出式に従って算出されたものである。
 また、かかるハロゲン化カーボネート化合物は市販されており、例えば帝人(株)製のテトラブロモビスフェノールAカーボネートオリゴマー(商品名FG-7000、FG-8500)が挙げられ、これらを本発明で使用することができる。
 C成分の含有量は、A成分とB成分との合計100重量部に対し、3~40重量部であり、好ましくは5~30重量部、より好ましくは10~30重量部である。C成分の含有量が3重量部未満の場合、十分な難燃性が得られず、40重量部を超えた場合、機械特性などの低下が大きい。
 (D成分:ドリップ防止剤)
 本発明でD成分として用いられるドリップ防止剤は、フィブリル形成能を有する含フッ素ポリマーを挙げることができ、かかるポリマーとしてはポリテトラフルオロエチレン、テトラフルオロエチレン系共重合体(例えば、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体、など)、米国特許第4379910号公報に示されるような部分フッ素化ポリマー、フッ素化ジフェノールから製造されるポリカーボネート樹脂などを挙げることができる。中でも好ましくはポリテトラフルオロエチレン(以下PTFEと称することがある)である。
 フィブリル形成能を有するPTFEの分子量は極めて高い分子量を有し、せん断力などの外的作用によりPTFE同士を結合して繊維状になる傾向を示すものである。その分子量は、標準比重から求められる数平均分子量において100万~1000万、より好ましく200万~900万である。かかるPTFEは、固体形状の他、水性分散液形態のものも使用可能である。またかかるフィブリル形成能を有するPTFEは樹脂中での分散性を向上させ、さらに良好な難燃性及び機械的特性を得るために他の樹脂との混合形態のPTFE混合物を使用することも可能である。
 かかるフィブリル形成能を有するPTFEの市販品としては例えば三井・ケマーズフロロプロダクツ(株)のテフロン(登録商標)6-J、ダイキン工業(株)のポリフロンMPA FA500H及びF-201などを挙げることができる。PTFEの水性分散液の市販品としては、ダイキン工業(株)製のフルオンDシリーズ、三井・ケマーズフロロプロダクツ(株)のテフロン(登録商標)31-JRなどを代表として挙げることができる。
 混合形態のPTFEとしては、(1)PTFEの水性分散液と有機重合体の水性分散液又は溶液とを混合し共沈殿を行い共凝集混合物を得る方法(特開昭60-258263号公報、特開昭63-154744号公報などに記載された方法)、(2)PTFEの水性分散液と乾燥した有機重合体粒子とを混合する方法(特開平4-272957号公報に記載された方法)、(3)PTFEの水性分散液と有機重合体粒子溶液を均一に混合し、かかる混合物からそれぞれの媒体を同時に除去する方法(特開平06-220210号公報、特開平08-188653号公報などに記載された方法)、(4)PTFEの水性分散液中で有機重合体を形成する単量体を重合する方法(特開平9-95583号公報に記載された方法)、及び(5)PTFEの水性分散液と有機重合体分散液を均一に混合後、さらに該混合分散液中でビニル系単量体を重合し、その後混合物を得る方法(特開平11-29679号などに記載された方法)により得られたものが使用できる。これら混合形態のPTFEの市販品としては、三菱ケミカル(株)の「メタブレン A3800」(商品名)、「メタブレンA3750」などを挙げることができる。
 混合形態におけるPTFEの割合としては、PTFE混合物100重量%中、PTFEが1~60重量%が好ましく、より好ましくは5~55重量%である。PTFEの割合がかかる範囲にある場合は、PTFEの良好な分散性を達成することができる。
 ポリテトラフルオロエチレン系混合体に使用される有機系重合体としてスチレン系単量体としては、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基及びハロゲンからなる群より選ばれた1つ以上の基で置換されてもよいスチレン、例えば、オルト-メチルスチレン、メタ-メチルスチレン、パラ-メチルスチレン、ジメチルスチレン、エチル-スチレン、パラ-tert-ブチルスチレン、メトキシスチレン、フルオロスチレン、モノブロモスチレン、ジブロモスチレン、及びトリブロモスチレン、ビニルキシレン、ビニルナフタレンが例示されるが、これらに制限されない。前記スチレン系単量体は単独又は2つ以上の種類を混合して使用することができる。
 ポリテトラフルオロエチレン系混合体に使用される有機系重合体として使用されるアクリル系単量体は、置換されてもよい(メタ)アクリレート誘導体を含む。具体的に前記アクリル系単量体としては、炭素数1~20のアルキル基、炭素数3~8のシクロアルキル基、アリール基、及びグリシジル基からなる群より選ばれた1つ以上基により置換されてもよい(メタ)アクリレート誘導体、例えば(メタ)アクリロ二トリル、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、アミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルへキシル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート及びグリシジル(メタ)アクリレート、炭素数1~6のアルキル基、又はアリール基により置換されてもよいマレイミド、例えば、マレイミド、N-メチル-マレイミド及びN-フェニル-マレイミド、マレイン酸、フタル酸及びイタコン酸が例示されるが、これらに制限されない。前記アクリル系単量体は単独又は2つ以上の種類を混合して使用することができる。これらの中でも(メタ)アクリロ二トリルが好ましい。
 有機重合体に含まれるアクリル系単量体由来単位の量は、スチレン系単量体由来単位100重量部に対して好ましくは8~11重量部、より好ましくは8~10重量部、さらに好ましくは8~9重量部である。アクリル系単量体由来単位が8重量部より少ないとコーティング強度が低下することがあり、11重量部より多いと成形品の表面外観が悪くなり得る。
 本発明のポリテトラフルオロエチレン系混合体は、残存水分含量が0.5重量%以下であることが好ましく、より好ましくは0.2~0.4重量%、さらに好ましくは0.1~0.3重量%である。残存水分量が0.5重量%より多いと難燃性に悪影響を与えることがある。
 本発明のポリテトラフルオロエチレン系混合体の製造工程には、開始剤の存在下でスチレン系単量体及びアクリル単量体からなるグループより選ばれた1つ以上の単量体を含むコーティング層を分岐状ポリテトラフルオロエチレンの外部に形成するステップが含まれる。さらに、前記コーティング層形成のステップ後に残存水分含量を0.5重量%以下、好ましくは0.2~0.4重量%、より好ましくは0.1~0.3重量%となるように乾燥させるステップを含むことが好ましい。乾燥のステップは、例えば、熱風乾燥又は真空乾燥方法のような当業界に公知にされた方法を用いて行うことができる。
 本発明のポリテトラフルオロエチレン系混合体に使用される開始剤は、スチレン系及び/又はアクリル系単量体の重合反応に使用されるものであれば制限なく使用され得る。前記開始剤としては、クミルハイドロパーオキサイド、ジ-tert-ブチルパーオキサイド、ベンゾイルパーオキサイド、ハイドロゲンパーオキサイド、及びポタシウムパーオキサイドが例示されるが、これらに制限されない。本発明のポリテトラフルオロエチレン系混合体には、反応条件に応じて前記開始剤を1種以上使用することができる。前記開始剤の量は、ポリテトラフルオロエチレンの量及び単量体の種類/量を考慮して使用される範囲内で自由に選択され、全組成物の量を基準として0.15~0.25重量部使用することが好ましい。
 本発明のポリテトラフルオロエチレン系混合体は、懸濁重合法により下記の手順にて製造を行った。
 まず、反応器中に水及び分岐状ポリテトラフルオロエチレンディスパージョン(固形濃度:60%、ポリテトラフルオロエチレン粒子径:0.15~0.3μm)を入れた後、攪拌しながらアクリルモノマー、スチレンモノマー及び水溶性開始剤としてクメンハイドロパーオキサイドを添加し80~90℃にて9時間反応を行なった。反応終了後、遠心分離機にて30分間遠心分離を行うことにより水分を除去し、ペースト状の生成物を得た。その後、生成物のペーストを熱風乾燥機にて80~100℃にて8時間乾燥した。その後、かかる乾燥した生成物の粉砕を行い本発明のポリテトラフルオロエチレン系混合体を得た。
 かかる懸濁重合法は、特許3469391号公報などに例示される乳化重合法における乳化分散による重合工程を必要としないため、乳化剤及び重合後のラテックスを凝固沈殿するための電解質塩類を必要としない。また乳化重合法で製造されたポリテトラフルオロエチレン混合体では、混合体中の乳化剤及び電解質塩類が混在しやすく取り除きにくくなるため、かかる乳化剤、電解質塩類由来のナトリウム金属イオン、カリウム金属イオンを低減することは難しい。本発明で使用するポリテトラフルオロエチレン系混合体(B成分)は、懸濁重合法で製造されているため、かかる乳化剤、電解質塩類を使用しないことから混合体中のナトリウム金属イオン、カリウム金属イオンが低減することができ、熱安定性及び耐加水分解性を向上することができる。
 また、本発明ではドリップ防止剤として被覆分岐PTFEを使用することができる。被覆分岐PTFEは分岐状ポリテトラフルオロエチレン粒子及び有機系重合体からなるポリテトラフルオロエチレン系混合体であり、分岐状ポリテトラフルオロエチレンの外部に有機系重合体、好ましくはスチレン系単量体由来単位及び/又はアクリル系単量体由来単位を含む重合体からなるコーティング層を有する。前記コーティング層は、分岐状ポリテトラフルオロエチレンの表面上に形成される。また、前記コーティング層はスチレン系単量体及びアクリル系単量体の共重合体を含むことが好ましい。
 被覆分岐PTFEに含まれるポリテトラフルオロエチレンは分岐状ポリテトラフルオロエチレンである。含まれるポリテトラフルオロエチレンが分岐状ポリテトラフルオロエチレンでない場合、ポリテトラフルオロエチレンの添加が少ない場合の滴下防止効果が不十分となる。分岐状ポリテトラフルオロエチレンは粒子状であり、好ましくは0.1~0.6μm、より好ましくは0.3~0.5μm、さらに好ましくは0.3~0.4μmの粒子径を有する。0.1μmより粒子径が小さい場合には成形品の表面外観に優れるが、0.1μmより小さい粒子径を有するポリテトラフルオロエチレンを商業的に入手することは難しい。また0.6μmより粒子径が大きい場合には成形品の表面外観が悪くなる場合がある。本発明に使用されるポリテトラフルオロエチレンの数平均分子量は1×10~1×10が好ましく、より好ましくは2×10~9×10であり、一般的に高い分子量のポリテトラフルオロエチレンが安定性の側面においてより好ましい。粉末又は分散液の形態いずれも使用され得る。
 被覆分岐PTFEにおける分岐状ポリテトラフルオロエチレンの含有量は、被覆分岐PTFEの総重量100重量部に対して、好ましくは20~60重量部、より好ましくは40~55重量部、さらに好ましくは47~53重量部、特に好ましくは48~52重量部、最も好ましくは49~51重量部である。分岐状ポリテトラフルオロエチレンの割合がかかる範囲にある場合は、分岐状ポリテトラフルオロエチレンの良好な分散性を達成することができる。
 D成分の含有量は、A成分とB成分との合計100重量部に対し、0.1~3重量部、好ましくは0.15~2重量部、より好ましくは0.5~1.5重量部である。この範囲より大きいとコストアップにつながるうえ、押出加工性が不十分となる。一方、この範囲より小さいと難燃化が不十分である。なお、上記D成分の割合は正味のドリップ防止剤の量を示し、混合形態のPTFEの場合には、正味のPTFE量を示す。
 (E成分:ガラス繊維及び/又は炭素繊維)
 本発明でE成分として用いられるガラス繊維としては、丸型断面を有するガラス繊維、繊維長断面の長径の平均値が10~50μm、長径と短径の比(長径/短径)の平均値が1.5~8である扁平断面ガラス繊維、ガラスミルドファイバーが好適に例示されるが、特に繊維長断面の長径の平均値が10~50μm、長径と短径の比(長径/短径)の平均値が1.5~8である扁平断面ガラス繊維が引張り強度、寸法精度の点でより好ましい。上記扁平断面ガラス繊維の繊維長断面の平均値は15~40μmであることが好ましく、15~35μmであることがより好ましく、20~35μmであることがさらに好ましい。また、長径と短径の比(長径/短径)の平均値は2~6であることが好ましく、2~5であることがより好ましく、2.5~5であることがさらに好ましい。また扁平断面形状としては扁平の他、楕円状、まゆ状、及び三つ葉状、あるいはこれに類する形状の非円形断面形状を挙げることができ、なかでも機械的強度、低異方性の改良の点から扁平形状が好ましい。
 上記のガラス繊維のガラス組成は、Aガラス、Cガラス、及びEガラス等に代表される各種のガラス組成が適用され、特に限定されない。かかるガラス繊維は、必要に応じてTiO、SO、及びP等の成分を含有するものであってもよい。これらの中でもEガラス(無アルカリガラス)がより好ましい。かかるガラス繊維は、周知の表面処理剤、例えばシランカップリング剤、チタネートカップリング剤、又はアルミネートカップリング剤等で表面処理が施されたものが機械的強度の向上の点から好ましい。また、オレフィン系樹脂、スチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、及びウレタン系樹脂等で集束処理されたものが好ましく、エポキシ系樹脂、ウレタン系樹脂が機械的強度の点から特に好ましい。集束処理されたガラス繊維の集束剤付着量は、ガラス繊維100重量%中、好ましくは0.1~3重量%、より好ましくは0.2~1重量%である。
 本発明でE成分として用いられる炭素繊維としては、例えば金属コートカーボンファイバー、カーボンミルドファイバー、気相成長カーボンファイバー等のカーボンファイバー、及びカーボンナノチューブ等が挙げられる。カーボンナノチューブは繊維径0.003~0.1μm、単層、2層、及び多層のいずれであってもよく、多層(いわゆるMWCNT)が好ましい。これらの中でも機械的強度に優れる点において、カーボンファイバーが好ましい。
 カーボンファイバーとしては、セルロース系、ポリアクリロニトリル系、及びピッチ系などのいずれも使用可能である。また芳香族スルホン酸類又はそれらの塩のメチレ型結合による重合体と溶媒よりなる原料組成を紡糸又は成形し、次いで炭化するなどの方法に代表される不融化工程を経ない紡糸を行う方法により得られたものも使用可能である。更に汎用タイプ、中弾性率タイプ、及び高弾性率タイプのいずれも使用可能である。これらの中でも特にポリアクリロニトリル系の高弾性率タイプが好ましい。
 また、カーボンファイバーの表面はマトリックス樹脂との密着性を高め、機械的強度を向上する目的で酸化処理されることが好ましい。酸化処理方法は特に限定されないが、例えば、(1)炭素繊維を酸もしくはアルカリ又はそれらの塩、あるいは酸化性気体により処理する方法、(2)炭素繊維化可能な繊維又は炭素繊維を、含酸素化合物を含む不活性ガスの存在下、700℃以上の温度で焼成する方法、及び(3)炭素繊維を酸化処理した後、不活性ガスの存在下で熱処理する方法などが好適に例示される。
 金属コートカーボンファイバーは、カーボンファイバーの表面に金属層をコートしたものである。金属としては、銀、銅、ニッケル、及びアルミニウムなどが挙げられ、ニッケルが金属層の耐腐食性の点から好ましい。金属コートの方法としては、メッキ法及び蒸着法等の公知の方法が挙げられ、中でもメッキ法が好適に利用される。また、かかる金属コートカーボンファイバーの場合も、元となるカーボンファイバーとしては上記のカーボンファイバーとして挙げたものが使用可能である。金属被覆層の厚みは好ましくは0.1~1μm、より好ましくは0.15~0.5μmである。更に好ましくは0.2~0.35μmである。
 かかるカーボンファイバー、金属コートカーボンファイバーは、オレフィン系樹脂、スチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、及びウレタン系樹脂等で集束処理されたものが好ましい。特にウレタン系樹脂、エポキシ系樹脂で処理された炭素繊維は、機械的強度に優れることから本発明において好適である。
 E成分の含有量は、A成分とB成分との合計100重量部に対して、25~150重量部であり、好ましくは30~140重量部、より好ましくは40~120重量部である。E成分の含有量が25重量部未満では引張り強度の向上が不十分となる。一方、150重量部を超える場合には、逆に強度、難燃性が低下する。
 (F成分:エポキシ樹脂)
 本発明でF成分として用いられるエポキシ樹脂としては、例えば、下記一般式(9)で表わされるエポキシ樹脂などが挙げられる。
Figure JPOXMLDOC01-appb-C000011
 (式中、Xは下記一般式(10)で表される基からなる群より選ばれる少なくとも一つの基であり、nは0以上の整数である。)
Figure JPOXMLDOC01-appb-C000012
 (式中、Phはフェニル基を示す。)
 上記式(9)で表わされるエポキシ樹脂は、二価のフェノール類とエピクロルヒドリンから容易に製造することができる。二価フェノール類としては、2,2-ビス(4-ヒドロキシフェニル)プロパン〔ビスフェノールA〕などのビスフェノールA型エポキシ樹脂、1,1-ビス(4-ヒドロキシフェニル)エタン又は4,4’-ジヒドロキシビフェニルなどが用いられる。
 エポキシ樹脂として、市販品を用いることもできる。エポキシ樹脂(ビスフェノールA型)の市販品としては、jER1256(三菱ケミカル(株)製、Mw=50,000)等が挙げられる。
 エポキシ樹脂の重量平均分子量としては特に限定されるものではないが、通常5,000~100,000、好ましくは8,000~80,000、更に好ましくは10,000~50,000である。重量平均分子量が5,000~100,000の範囲であると、特に機械的物性が良好である。
 エポキシ樹脂のエポキシ当量としては特に限定されるものではないが、通常100~12,000、好ましくは150~10,000、更に好ましくは200~8,000である。エポキシ当量が100~12,000の範囲であると、特に機械的物性が良好である。
 F成分の含有量は、A成分とB成分との合計100重量部に対し、0.1~8重量部、好ましくは1~7重量部、より好ましくは3~6重量部である。含有量が上記範囲を超えて少なすぎる場合には引張り強度が低くなる。一方、含有量が上記範囲を超えている場合には難燃性が悪くなり、かつ引張り強度が低くなる。
 (G成分:リン系安定剤)
 本発明において射出成形時にB成分の液晶ポリエステル樹脂の繊維化による機械特性向上効果をより有効に発揮させるためには、予めマトリックス相中で液晶性ポリエステル樹脂がミクロ分散していると効率的である。そのため、液晶性ポリエステル樹脂がマトリックス相中でミクロ分散するための分散助剤として、G成分であるリン系安定剤を添加することが必要である。リン系安定剤として、分子量が300未満のホスフェート化合物が好ましい。分子量が300以上になると樹脂中への分散が悪くなり、安定剤としての効果が低下する場合がある。具体的にはトリメチルホスフェートが例示される。また、亜燐酸のエステルも好ましく、具体的には、テトラキス(2,4ジ-t-ブチルフェニル)-4,4’-ビフェニレンフォスフォナイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトール-ジフォスファイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトール-ジフォスファイト、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト等が例示される。これらリン系安定剤は、単独でも併用添加してもよい。G成分の含有量は、A成分とB成分との合計100重量部に対し、0.01~3重量部であり、0.01~1重量部が好ましく、0.02~0.1重量部がより好ましい。G成分の含有量が3重量部を超えると、押出加工時の揮発ガスが多く、またペレット化しても成形時モールドデポジットが発生する。また、コスト的にも不利になる傾向がある。また0.01重量部より少ない場合は、熱安定性が悪化し、本組成特有の引張り強度が発現しない。
 (その他の添加剤について)
 また、本発明の樹脂組成物には、更に本発明の目的を損なわない範囲で、他の熱可塑性樹脂(例えば、ポリアリレート樹脂、フッ素樹脂、ポリエステル樹脂等)、酸化防止剤(例えば、ヒンダ-ドフェノ-ル系化合物等)、衝撃改良剤、紫外線吸収剤、光安定剤、離型剤、滑剤、着色剤、無機充填剤(タルク・マイカなど)等を配合することができる。
 本発明の樹脂組成物を製造するには、任意の方法が採用される。例えば各成分、並びに任意に他の成分を予備混合し、その後溶融混練し、ペレット化する方法を挙げることができる。予備混合の手段としては、ナウターミキサー、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、押出混合機などを挙げることができる。予備混合においては場合により押出造粒器やブリケッティングマシーンなどにより造粒を行うこともできる。予備混合後、ベント式二軸押出機に代表される溶融混練機で溶融混練、及びペレタイザー等の機器によりペレット化する。溶融混練機としては他にバンバリーミキサー、混練ロール、恒熱撹拌容器などを挙げることができるが、ベント式ニ軸押出機が好ましい。他に、各成分、並びに任意に他の成分を予備混合することなく、それぞれ独立に二軸押出機に代表される溶融混練機に供給する方法も取ることもできる。
 上記の如く得られた本発明の樹脂組成物は通常前記の如く製造されたペレットを射出成形してインペラを製造することができる。かかる射出成形においては、通常の成形方法だけでなく、適宜目的に応じて、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体の注入によるものを含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、サンドイッチ成形、及び超高速射出成形などの射出成形法を用いて成形品を得ることができる。これら各種成形法の利点は既に広く知られるところである。また成形はコールドランナー方式及びホットランナー方式のいずれも選択することができる。
 本発明のインペラは、様々な形状とすることができ、また例えば家電機器、OA機器、産業機器の冷却、換気、空調用ファン、車両用の空調、送風ファンなどのインペラとすることができる。
 本発明のインペラは、高温環境下における高い引張り強度、比強度、寸法精度及び難燃性を有する。具体的には、85℃において厚み2mmの試験片を5mm/minの引張り速度で試験を行った場合に、125MPa以上、好ましくは130MPa以上の引張り強度を示す。また、引張り強度(MPa)/密度(kg/m)で算出した比強度(kN・m/kg)は75以上、好ましくは80以上である。寸法精度は、85℃雰囲気下、12,000rpmで10日間回転させた後の、直径に対する羽根先端部の垂直方向の寸法変化率が0.4%以下、好ましくは0.35%以下である。難燃性は、試験片を用いて、UL94に従い、厚み0.8mmにおけるV試験(垂直燃焼試験)を行った場合に、V-0を示す。
 本発明者が現在最良と考える発明の形態は、上記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。
 以下に実施例をあげて本発明を更に説明する。なお、評価は下記の方法によって実施した。
 (インペラ及びその樹脂組成物の評価)
 (i)密度:下記方法で得られた引張り試験片を幅10mm×長さ80mm×厚み4mmサイズに切削、その試験片を用いてミラージュ貿易(株)電子比重計MD-200Sにて23℃環境下の密度を測定した。
 (ii)引張り強度:下記の方法で得られた引張り試験片を用い、引張り強度の測定を実施した。(引張り速度:5mm/min.試験温度:23℃及び85℃)
 (iii)比強度:下記で算出した値を比強度とした。
 比強度(kN・m/kg)=引張り強度(MPa)/密度(kg/m
 (iv)成形収縮率:下記の方法で得られた幅50mm×長さ100mm×厚み2mmの角板を23℃、相対湿度50%雰囲気にて24時間放置した後、角板寸法を3次元測定機(ミツトヨ(株)製)により測定し、成形収縮率を算出した。成形品はフィルムゲートを長さ方向の一端に有する金型キャビティを用いて成形されたものである。したがって長さ方向が流れ方向、及び幅方向が流れ方向と直角の方向となる。
 (v)難燃性
 下記の方法で得られたUL試験片を用いて、UL94に従い、厚み0.8mmにおけるV試験(垂直燃焼試験)を実施した。
 (vi)押出加工性
 押出時の安定性に関して以下の基準で評価を実施した。
 押出時のストランドが安定している。:〇
 押出時のストランドがやや不安定であるが、ペレット化は可能である。:△
 押出時のストランドがかなり不安定であり、ペレット化が困難であるか、揮発ガスなどが多い。:×
 (vii)インペラ特性
 下記方法で得られたインペラ(全長L:120mm)に関して、85℃雰囲気下、12,000r.p.m.で10日間回転させ、aの部分の変位量をレーザー変位センサにて測定、以下の基準で評価を実施した。
 試験後の寸法変化が0.5mm以下である。:〇
 試験後の寸法変化が0.5mm以上あるいは、成形品に割れ、亀裂などがある。:×
 [実施例1~16、比較例1~12]
 表1及び表2に示す組成で、E成分を除く成分からなる混合物を押出機の第1供給口から供給した。かかる混合物はV型ブレンダーで混合して得た。E成分は、第2供給口からサイドフィーダーを用いて供給した。押出は径30mmφのベント式二軸押出機((株)日本製鋼所TEX30α-38.5BW-3V)を使用し、スクリュー回転数200r.p.m.、吐出量25kg/h、ベントの真空度3kPaで溶融混練しペレットを得た。なお、押出温度については、第1供給口からダイス部分まで300℃で実施した。
 得られたペレットの一部は、120℃で6時間熱風循環式乾燥機にて乾燥した後、射出成形機を用いて、シリンダー温度300℃、金型温度80℃にて厚み2mmの引張り試験片(JIS K6251 ダンベル状3号型)、成形収縮率測定用試験片、UL試験片を成形した。なお、図1に示すインペラは、ペレットの一部を用い、射出成形機を用いて、シリンダー温度300℃、金型温度100℃にて成形した。
 なお、表1及び表2中の記号表記の各成分は下記の通りである。
 (A成分)
 A-1:芳香族ポリカーボネート樹脂(ビスフェノールAとホスゲンから常法によって作られた粘度平均分子量22,400のポリカーボネート樹脂粉末、帝人(株)製 パンライトL-1225WP(製品名))
 A-2:芳香族ポリカーボネート樹脂(ビスフェノールAとホスゲンから常法によって作られた粘度平均分子量19,700のポリカーボネート樹脂粉末、帝人(株)製 パンライトL-1225WX(製品名))
 A-3:芳香族ポリカーボネート樹脂(ビスフェノールAとホスゲンから常法によって作られた粘度平均分子量16,000のポリカーボネート樹脂粉末、帝人(株)製 パンライトCM-1000(製品名))
 A-4:芳香族ポリカーボネート樹脂(ビスフェノールAとホスゲンから常法によって作られた粘度平均分子量25,100のポリカーボネート樹脂粉末、帝人(株)製 パンライトL-1250WQ(製品名))
 (B成分)
 B-1:液晶ポリエステル樹脂(p-ヒドロキシ安息香酸から誘導される繰返し単位と6-ヒドロキシ-2-ナフトエ酸から誘導される繰返し単位を含有する液晶ポリエステル樹脂ペレット、ポリプラスチックス(株)製 ラペロスA-950RX(製品名))融点=275~285℃
 (C成分)
 C-1:ハロゲン化カーボネート化合物(ビスフェノールA骨格を有する臭素化カーボネートオリゴマー、帝人(株)製 ファイヤーガードFG-7000(製品名))
 (D成分)
 D-1:ドリップ防止剤(ポリテトラフルオロエチレン(ダイキン工業(株)製 ポリフロンMPA FA-500H(商品名))
 (E成分)
 E-1:ガラス繊維:扁平断面チョップドガラス繊維(日東紡績(株)製:CSG 3PA-830(製品名)、長径28μm、短径7μm、カット長3mm、エポキシ系集束剤)
 E-2:炭素繊維:PAN系炭素繊維(帝人(株)製 HTC422(製品名)、繊維径7μm、カット長6mm、ウレタン系集束剤)
 E-3:ガラス繊維:扁平断面チョップドガラス繊維(日東紡績(株)製:CSG 3PL-830(製品名)、長径20μm、短径10μm、カット長3mm、エポキシ系集束剤)
 (F成分)
 F-1:ビスフェノールA型エポキシ樹脂(三菱ケミカル(株)製 jER1256(商品名)、エポキシ当量:7,5000~8,000g/eq、重量平均分子量50,000)
 (G成分)
 G-1:リン系安定剤(大八化学工業(株)製 トリメチルホスフェート(TMP)
 G-2:リン系安定剤(ソンウォンインターナショナルジャパン(株)製 ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト(SONGNOX6260PW))
 G-3:リン系安定剤(株式会社ADEKA製 トリス(2,4-ジ-t-ブチルフェニル)フォスファイト(アデカスタブ2112))
 (その他の成分)
 離型剤-1:リケマールSL-900(理研ビタミン(株)製、主成分:ステアリルステアレート)
 離型剤-2:Licowax E powder(クラリアントジャパン株(製))
 着色剤:40重量部のカーボンブラック(三菱ケミカル(株)製:カーボンブラックMA-100(商品名))、3重量部のホワイトミネラルオイル(エクソンモービル製:プライモールN382(商品名))、0.2重量部のモンタン酸エステルワックス(クラリアントジャパン(株)製:Licowax E powder(商品名))、及び56.8重量部のビスフェノールA型ポリカーボネート樹脂(帝人(株)製:CM-1000(商品名)、粘度平均分子量16,000)の4成分の合計100重量部を二軸押出機を用いて溶融混合して製造された、カーボンブラックマスターペレット。
Figure JPOXMLDOC01-appb-T000013

Figure JPOXMLDOC01-appb-T000014
 上記表1及び表2から本発明の配合により、高温時の引張り強度、比強度に優れ、成形収縮率の異方性が少なく高い寸法精度を有し、かつ難燃性にも優れた樹脂組成物よりなるインペラは、高温時の強度に優れ、寸法変化が少なく特性が優れることが分かる。
 AX  インペラ中心軸
 CD  回転方向
 1  ファン
 2  ロータホルダ
 3  インペラ
 a  変位量測定ポイント
 L  インペラ製品全長

Claims (8)

  1.  (A)芳香族ポリカーボネート系樹脂(A成分)、
     (B)液晶ポリエステル樹脂(B成分)、
     A成分とB成分の合計100重量部に対し、
     (C)ハロゲン化カーボネート化合物(C成分)3~40重量部、
     (D)ドリップ防止剤(D成分)0.1~3重量部、
     (E)ガラス繊維及び/又は炭素繊維(E成分)25~150重量部、
     (F)エポキシ樹脂(F成分)0.1~8重量部、並びに
     (G)リン系安定剤(G成分)0.01~3重量部
    を含有し、A成分とB成分の重量比[(A)/(B)]が98/2~60/40である、樹脂組成物からなるインペラ。
  2.  A成分の粘度平均分子量が1.7×10~2.1×10である請求項1に記載のインペラ。
  3.  B成分が、p-ヒドロキシ安息香酸から誘導される繰返し単位と6-ヒドロキシ-2-ナフトエ酸から誘導される繰返し単位を含有する液晶ポリエステル樹脂である請求項1又は2に記載のインペラ。
  4.  E成分が、繊維断面の長径の平均値が10~50μm、長径と短径の比(長径/短径)の平均値が1.5~8である扁平状断面ガラス繊維である請求項1~3のいずれか一項に記載のインペラ。
  5.  F成分が、ビスフェノールA型エポキシ樹脂である請求項1~4のいずれか一項に記載のインペラ。
  6.  85℃雰囲気下、12,000rpmで10日間回転させた後の、直径に対する羽根先端部の垂直方向の寸法変化率が0.4%以下である、請求項1~5のいずれか一項に記載のインペラ。
  7.  家電機器、OA機器、産業機器の冷却、換気、空調用ファン、車両用の空調、送風ファン用のインペラとして用いる、請求項1~6のいずれか一項に記載のインペラ。
  8.  (A)芳香族ポリカーボネート系樹脂(A成分)、
     (B)液晶ポリエステル樹脂(B成分)、
     A成分とB成分の合計100重量部に対し、
     (C)ハロゲン化カーボネート化合物(C成分)3~40重量部、
     (D)ドリップ防止剤(D成分)0.1~3重量部、
     (E)ガラス繊維及び/又は炭素繊維(E成分)25~150重量部、
     (F)エポキシ樹脂(F成分)0.1~8重量部、並びに
     (G)リン系安定剤(G成分)0.01~3重量部
    を含有し、A成分とB成分との重量比[(A)/(B)]が98/2~60/40である、樹脂組成物。
PCT/JP2020/010374 2019-03-14 2020-03-10 インペラ及びその樹脂組成物 WO2020184577A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080020305.2A CN113557270B (zh) 2019-03-14 2020-03-10 叶轮及其树脂组合物
US17/438,723 US12084572B2 (en) 2019-03-14 2020-03-10 Impeller and resin composition therefor
JP2021505090A JP7023410B2 (ja) 2019-03-14 2020-03-10 インペラ及びその樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-047259 2019-03-14
JP2019047259 2019-03-14

Publications (1)

Publication Number Publication Date
WO2020184577A1 true WO2020184577A1 (ja) 2020-09-17

Family

ID=72426585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010374 WO2020184577A1 (ja) 2019-03-14 2020-03-10 インペラ及びその樹脂組成物

Country Status (4)

Country Link
US (1) US12084572B2 (ja)
JP (1) JP7023410B2 (ja)
CN (1) CN113557270B (ja)
WO (1) WO2020184577A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152886A (ja) * 2019-03-14 2020-09-24 帝人株式会社 ポリカーボネート樹脂組成物
JP2020152885A (ja) * 2019-03-14 2020-09-24 帝人株式会社 ポリカーボネート樹脂組成物
WO2024053274A1 (ja) * 2022-09-05 2024-03-14 帝人株式会社 ポリカーボネート樹脂組成物およびそれからなる成形品

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114656756B (zh) * 2022-03-29 2024-03-26 珠海万通特种工程塑料有限公司 一种液晶聚酯组合物及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239543A (ja) * 1998-12-24 2000-09-05 Polyplastics Co 難燃性樹脂組成物
JP2002080274A (ja) * 2000-09-08 2002-03-19 Natl Science Council Of Roc 電子回路デバイス及びその製造方法
WO2004061008A1 (ja) * 2002-12-27 2004-07-22 Polyplastics Co., Ltd. 難燃性樹脂組成物
JP2004210882A (ja) * 2002-12-27 2004-07-29 Polyplastics Co 難燃性樹脂組成物
JP2008163315A (ja) * 2006-12-08 2008-07-17 Teijin Chem Ltd 難燃性ポリカーボネート樹脂組成物
JP2012188578A (ja) * 2011-03-11 2012-10-04 Teijin Chem Ltd 金型磨耗性に優れるガラス繊維強化ポリカーボネート樹脂組成物
JP2013209629A (ja) * 2012-02-29 2013-10-10 Toray Ind Inc ポリカーボネート樹脂成形材料、および成形品

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119105A (en) * 1981-01-16 1982-07-24 Toho Rayon Co Ltd Turbo charger light weight impeller for internal combustion engine
JPS6195904U (ja) 1984-11-30 1986-06-20
JPH07331051A (ja) 1994-05-31 1995-12-19 Nippon G Ii Plast Kk 難燃性ポリカーボネート系樹脂組成物
JPH084688A (ja) 1994-06-21 1996-01-09 Nok Corp インペラ
US6043610A (en) 1998-07-16 2000-03-28 Durel Corporation Battery operated power supply including a low level boost and a high level boost
JP2000080274A (ja) * 1998-09-04 2000-03-21 Matsushita Electric Works Ltd 電子部品封止用樹脂組成物およびその製造方法、ならびにこの電子部品封止用樹脂組成物を用いた封止電子部品
JP2004061008A (ja) 2002-07-30 2004-02-26 Mitsubishi Heavy Ind Ltd 排ガス熱回収システム
JP5275689B2 (ja) 2008-06-05 2013-08-28 出光興産株式会社 繊維強化ポリカーボネート系樹脂組成物及びその成形体
JP5111456B2 (ja) 2009-07-24 2013-01-09 帝人化成株式会社 芳香族ポリカーボネート樹脂組成物をoa機器若しくは家電製品の外装材に使用する方法
WO2014148641A1 (ja) 2013-03-21 2014-09-25 帝人株式会社 ガラス繊維強化ポリカーボネート樹脂組成物
JP2015059138A (ja) * 2013-09-17 2015-03-30 帝人株式会社 難燃性ガラス繊維強化ポリカーボネート樹脂組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000239543A (ja) * 1998-12-24 2000-09-05 Polyplastics Co 難燃性樹脂組成物
JP2002080274A (ja) * 2000-09-08 2002-03-19 Natl Science Council Of Roc 電子回路デバイス及びその製造方法
WO2004061008A1 (ja) * 2002-12-27 2004-07-22 Polyplastics Co., Ltd. 難燃性樹脂組成物
JP2004210882A (ja) * 2002-12-27 2004-07-29 Polyplastics Co 難燃性樹脂組成物
JP2008163315A (ja) * 2006-12-08 2008-07-17 Teijin Chem Ltd 難燃性ポリカーボネート樹脂組成物
JP2012188578A (ja) * 2011-03-11 2012-10-04 Teijin Chem Ltd 金型磨耗性に優れるガラス繊維強化ポリカーボネート樹脂組成物
JP2013209629A (ja) * 2012-02-29 2013-10-10 Toray Ind Inc ポリカーボネート樹脂成形材料、および成形品

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020152886A (ja) * 2019-03-14 2020-09-24 帝人株式会社 ポリカーボネート樹脂組成物
JP2020152885A (ja) * 2019-03-14 2020-09-24 帝人株式会社 ポリカーボネート樹脂組成物
JP7311355B2 (ja) 2019-03-14 2023-07-19 帝人株式会社 ポリカーボネート樹脂組成物
JP7311356B2 (ja) 2019-03-14 2023-07-19 帝人株式会社 ポリカーボネート樹脂組成物
WO2024053274A1 (ja) * 2022-09-05 2024-03-14 帝人株式会社 ポリカーボネート樹脂組成物およびそれからなる成形品

Also Published As

Publication number Publication date
CN113557270A (zh) 2021-10-26
US20220127455A1 (en) 2022-04-28
JPWO2020184577A1 (ja) 2021-10-14
US12084572B2 (en) 2024-09-10
CN113557270B (zh) 2023-07-28
JP7023410B2 (ja) 2022-02-21

Similar Documents

Publication Publication Date Title
WO2020184577A1 (ja) インペラ及びその樹脂組成物
JP5280669B2 (ja) 難燃性ポリカーボネート樹脂組成物
KR101931669B1 (ko) 난연성 폴리카보네이트 조성물, 이의 제조방법 및 이를 포함하는 물품
JP5073203B2 (ja) ポリカーボネート樹脂組成物、その成形品並びにフィルム及びシート
JP5819587B2 (ja) ポリカーボネート−ポリジオルガノシロキサン共重合体
JP6092499B2 (ja) 金型磨耗性に優れるガラス繊維強化ポリカーボネート樹脂組成物
JP2013001801A (ja) 難燃性ポリカーボネート樹脂組成物
TWI398463B (zh) An aromatic polycarbonate resin composition and a molded body using the same
JP7111602B2 (ja) 熱伝導性ポリカーボネート樹脂組成物
JP7303058B2 (ja) 熱伝導性ポリカーボネート樹脂組成物
JP6073700B2 (ja) 強化ポリカーボネート樹脂組成物
JP6495683B2 (ja) 絶縁熱伝導性ポリカーボネート樹脂組成物
JP6133650B2 (ja) 難燃性ポリカーボネート樹脂組成物
JP7311355B2 (ja) ポリカーボネート樹脂組成物
JP7332389B2 (ja) ポリカーボネート-ポリジオルガノシロキサン共重合体
JP7311356B2 (ja) ポリカーボネート樹脂組成物
JP5855844B2 (ja) ポリカーボネート樹脂組成物
JP7311357B2 (ja) 熱伝導性ポリカーボネート樹脂組成物
JP2024124629A (ja) ポリカーボネート樹脂組成物およびそれからなる成形品
WO2024053274A1 (ja) ポリカーボネート樹脂組成物およびそれからなる成形品
JP6250409B2 (ja) 熱伝導性ポリカーボネート樹脂組成物及び成形品
JP2024126088A (ja) ポリカーボネート樹脂組成物およびそれからなる成形品
JP2024035935A (ja) ポリカーボネート樹脂組成物およびそれからなる成形品
JP2024080311A (ja) ポリカーボネート樹脂組成物およびそれからなる成形品
JP2024075019A (ja) 熱可塑性樹脂組成物およびそれからなる成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770298

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021505090

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20770298

Country of ref document: EP

Kind code of ref document: A1