JP6133650B2 - 難燃性ポリカーボネート樹脂組成物 - Google Patents

難燃性ポリカーボネート樹脂組成物 Download PDF

Info

Publication number
JP6133650B2
JP6133650B2 JP2013064167A JP2013064167A JP6133650B2 JP 6133650 B2 JP6133650 B2 JP 6133650B2 JP 2013064167 A JP2013064167 A JP 2013064167A JP 2013064167 A JP2013064167 A JP 2013064167A JP 6133650 B2 JP6133650 B2 JP 6133650B2
Authority
JP
Japan
Prior art keywords
component
group
polycarbonate resin
weight
flame retardant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013064167A
Other languages
English (en)
Other versions
JP2014189574A (ja
Inventor
平祐 高橋
平祐 高橋
利往 三宅
利往 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2013064167A priority Critical patent/JP6133650B2/ja
Publication of JP2014189574A publication Critical patent/JP2014189574A/ja
Application granted granted Critical
Publication of JP6133650B2 publication Critical patent/JP6133650B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、芳香族ポリカーボネート樹脂、液晶ポリエステル樹脂およびリン系難燃剤よりなる難燃性ポリカーボネート樹脂組成物に関する。更に詳しくは、耐熱性、難燃性、流動性に優れ、殊に難燃性の要求される薄肉の外装部品に好適な難燃性ポリカーボネート樹脂組成物に関する。
ポリカーボネート樹脂(以下「PC樹脂」と称することがある)は、耐熱性、耐衝撃性、寸法安定性などに優れた樹脂であり、電気・電子部品分野、機構部品分野、自動車部品分野など幅広く使用されている。またABS樹脂を代表とするスチレン系樹脂とポリカーボネート樹脂とのポリマーアロイは、OA機器分野、家電製品などに広く利用されている。これらの用途は、使用する樹脂材料について、難燃化への要望が強く、この要望に応えるために芳香族ポリカーボネート樹脂とABS樹脂とのポリマーアロイにおいて、特に最近大型製品に必要な安全規格であるUL94で5VBなど薄肉難燃化の要求に対応する検討がなされてきた。例えば特許文献1では芳香族ポリカーボネート樹脂とABS樹脂とのポリマーアロイに有機リン系難燃剤、さらにフィブリル形成能を有するポリテトラフルオロエチレンを添加する組成が数多く提案がなされ、その関連する知見が広く知られている。しかしながら、製品のさらなる薄肉化に伴い従来の技術では、薄肉のUL94で5VBを達成することが困難になってきている。加えて、製品の薄肉化に伴い熱変形に耐えうる耐熱性も必要になってきている。
高流動性、耐熱性、難燃性を両立しうるポリカーボネートアロイとして、液晶性を示す液晶ポリエステル樹脂(以下「LCP樹脂」と称することがある)とポリカーボネート樹脂とのアロイを難燃化する試みは多くなされている。特許文献2ではPC樹脂を含む少なくとも一種の熱可塑性樹脂とサーモトロピック液晶ポリマーおよびハロゲン元素を含まないホスファゼン化合物からなる難燃性樹脂組成物が報告されている。しかしながら、OA機器をはじめとする大型機器に要求される薄肉でのUL94 5V規格を満足するほどの難燃性を達成するには不十分である。特許文献3ではPC樹脂、LCP樹脂、ポリテトラフルオロエチレン系混合体、難燃剤および繊維状無機強化充填材からなる難燃性ポリカーボネート樹脂組成物が報告されている。しかしながら、OA機器をはじめとする大型機器に要求される薄肉でのUL94 5V規格を満足するほどの難燃性を達成するには不十分である。特許文献4ではPC樹脂、LCP樹脂、パーフルオロアルカンスルホン酸アルカリ(土類)金属塩からなる樹脂組成物が報告されている。しかしながら、OA機器をはじめとする大型機器に要求される薄肉でのUL94 5V規格を満足するほどの難燃性を達成するには不十分である。
以上のように、PC樹脂とLCP樹脂とのアロイは、高流動性、高耐熱性を持つアロイ材料であるが、OA機器をはじめとする大型機器に要求される薄肉でのUL94 5V規格を満足するほどの難燃性を達成する報告はなされていないのが現状である。
特開平2−115262号公報 特開2000−26741号公報 特開2008−163315号公報 特許第5054265号公報
本発明の目的は、耐熱性および薄肉ながらUL94 5Vを取得できるような優れた難燃性を有する難燃性ポリカーボネート樹脂組成物およびそれからなる成形品を提供することにある。
本発明者らは、かかる課題を解決するため鋭意検討した結果、芳香族ポリカーボネート樹脂、液晶ポリエステル樹脂、リン系難燃剤、フィブリル形成能を有するポリテトラフルオロエチレンおよびリン系安定剤からなる難燃性ポリカーボネート樹脂組成物であって、B成分に含まれるアルカリ金属および/またはアルカリ土類金属の含有量が5〜300ppmの範囲にあり、かつ芳香族ポリカーボネート樹脂と液晶ポリエステル樹脂の一部がエステル交換した難燃性ポリカーボネート樹脂組成物が、上記の課題を解決する樹脂材料であることを見出し、更に検討を進めて本発明を完成した。
すなわち本発明によれば(1)(A)芳香族ポリカーボネート樹脂(A成分)98〜60重量%および(B)液晶ポリエステル樹脂(B成分)2〜40重量%からなる樹脂成分100重量部に対し、(C)リン系難燃剤(C成分)2〜20重量部、(D)フィブリル形成能を有するポリテトラフルオロエチレン(D成分)0.01〜5重量部および(E)リン系安定剤(E成分)を0.001〜2重量部を含んでなる難燃性ポリカーボネート樹脂組成物において、B成分に含まれるアルカリ金属および/またはアルカリ土類金属の含有量が5〜300ppmの範囲にあり、かつ得られた樹脂組成物中のA成分とB成分の一部がエステル交換をしていることを特徴とする難燃性ポリカーボネート樹脂組成物が提供される。
本発明のより好適な態様の一つは(2)B成分が、p−ヒドロキシ安息香酸と6−ヒドロキシ−2−ナフトエ酸を原料として重合された液晶ポリエステル樹脂であることを特徴とする上記構成(1)に記載の難燃性ポリカーボネート樹脂組成物である。
本発明のより好適な態様の一つは(3)C成分が、下記一般式〔1〕で表される有機リン系難燃剤であることを特徴とする上記構成(1)または(2)に記載の難燃性ポリカーボネート樹脂組成物である。
(但し前記式中のMは、二価フェノールから誘導される二価の有機基を表し、R、R、R、およびRはそれぞれ一価フェノールから誘導される一価の有機基を表す。 e、f、g及びhはそれぞれ独立して0または1であり、nは0〜5の整数であり、重合度nの異なるリン酸エステルの混合物の場合はnはその平均値を表し、0〜5の値である。)
本発明のより好適な態様の一つは(4)E成分が下記一般式〔2〕で表されるペンタエリスリトールジホスファイト系化合物であることを特徴とする上記構成(1)〜(3)のいずれかに記載の難燃性ポリカーボネート樹脂組成物である。
[式中AおよびAはそれぞれ独立して、水素原子、炭素数1〜20のアルキル基、炭素数6〜20のアリール基ないしアルキルアリール基、炭素数7〜30のアラルキル基、炭素数4〜20のシクロアルキル基、および炭素数15〜25の2−(4−オキシフェニル)プロピル置換アリール基からなる群より選択される基を示す。尚、シクロアルキル基およびアリール基は、アルキル基で置換されていてもよい。]
本発明のより好適な態様の一つは(5)(F)芳香族ポリカーボネート樹脂(A成分)および液晶ポリエステル樹脂(B成分)を押出機で反応させて調製したA成分とB成分との混合物(F成分)と、(A)ポリカーボネート樹脂(A成分)および/または(B)液晶ポリエステル樹脂(B成分)、(C)リン系難燃剤(C成分)、(D)フィブリル形成能を有するポリテトラフルオロエチレン(D成分)および(E)リン系安定剤(E成分)とを再度溶融混練せしめて調製した樹脂組成物であることを特徴とする上記構成(1)〜(4)のいずれかに記載の難燃性ポリカーボネート樹脂組成物である。
本発明のより好適な態様の一つは(6)成形品の表面をヒドラジンにて処理後、残存するB成分の平均フィブリル径が0.01〜3μmであることを特徴とする上記構成(1)〜(5)のいずれかに記載の難燃性ポリカーボネート樹脂組成物からなる成形品である。
以下、本発明について具体的に説明する。
(A成分:芳香族ポリカーボネート樹脂)
本発明のA成分として使用される芳香族ポリカーボネート樹脂は、通常ジヒドロキシ化合物とカーボネート前駆体とを界面重縮合法、溶融エステル交換法で反応させて得られたものの他、カーボネートプレポリマーを固相エステル交換法により重合させたもの、または環状カーボネート化合物の開環重合法により重合させて得られるものである。ここで使用されるジヒドロキシ成分としては、通常芳香族ポリカーボネートのジヒドロキシ成分として使用されているものであればよい。ジヒドロキシ成分の主成分はビスフェノール類が好ましいが、本発明の趣旨を損なわない範囲であれば脂肪族ジオール類を一部用いることもできる。ビスフェノール類としては、例えば4,4’−ジヒドロキシビフェニル、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシ−3,3’−ビフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−イソプロピルフェニル)プロパン、2,2−ビス(3−t−ブチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)オクタン、2,2−ビス(3−ブロモ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、1,1−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、4,4’−ジヒドロキシジフェニルエ−テル、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルエ−テル、4,4’−スルホニルジフェノール、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシジフェニルスルフィド、2,2’−ジメチル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド、2,2’−ジフェニル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルフィド、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,3−ビス(4−ヒドロキシフェニル)シクロヘキサン、4,8−ビス(4−ヒドロキシフェニル)トリシクロ[5.2.1.02,6]デカン、4,4’−(1,3−アダマンタンジイル)ジフェノール、1,3−ビス(4−ヒドロキシフェニル)−5,7−ジメチルアダマンタン等および下記一般式〔3〕
(上記一般式〔3〕において、R及びRは各々独立して炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基、炭素原子数6〜15の置換若しくは無置換のアリール基、炭素原子数6〜15の置換若しくは無置換のアリールオキシ基、炭素原子数7〜15の置換若しくは無置換のアラルキル基、炭素原子数7〜15の置換若しくは無置換のアラルキルオキシ基であり、R、R、R、R10、R11及びR12は、各々独立して水素原子、炭素数1〜12のアルキル基又は炭素数6〜12の置換若しくは無置換のアリール基であり、a、bは0又は1〜4の自然数であり、c+dは150以下の自然数であり、Xは炭素数2〜8の二価脂肪族基である。)で表されるシロキサン構造を有するビスフェノール化合物等が挙げられる。
脂肪族ジオール類としては、例えば2,2−ビス−(4−ヒドロキシシクロヘキシル)−プロパン、1,14−テトラデカンジオール、オクタエチレングリコール、1,16−ヘキサデカンジオール、4,4’−ビス(2−ヒドロキシエトキシ)ビフェニル、ビス{(2−ヒドロキシエトキシ)フェニル}メタン、1,1−ビス{(2−ヒドロキシエトキシ)フェニル}エタン、1,1−ビス{(2−ヒドロキシエトキシ)フェニル}−1−フェニルエタン、2,2−ビス{(2−ヒドロキシエトキシ)フェニル}プロパン、2,2−ビス{(2−ヒドロキシエトキシ)−3−メチルフェニル}プロパン、1,1−ビス{(2−ヒドロキシエトキシ)フェニル}−3,3,5−トリメチルシクロヘキサン、2,2−ビス{4−(2−ヒドロキシエトキシ)−3,3’−ビフェニル}プロパン、2,2−ビス{(2−ヒドロキシエトキシ)−3−イソプロピルフェニル}プロパン、2,2−ビス{3−t−ブチル−4−(2−ヒドロキシエトキシ)フェニル}プロパン、2,2−ビス{(2−ヒドロキシエトキシ)フェニル}ブタン、2,2−ビス{(2−ヒドロキシエトキシ)フェニル}−4−メチルペンタン、2,2−ビス{(2−ヒドロキシエトキシ)フェニル}オクタン、1,1−ビス{(2−ヒドロキシエトキシ)フェニル}デカン、2,2−ビス{3−ブロモ−4−(2−ヒドロキシエトキシ)フェニル}プロパン、2,2−ビス{3,5−ジメチル−4−(2−ヒドロキシエトキシ)フェニル}プロパン、2,2−ビス{3−シクロヘキシル−4−(2−ヒドロキシエトキシ)フェニル}プロパン、1,1−ビス{3−シクロヘキシル−4−(2−ヒドロキシエトキシ)フェニル}シクロヘキサン、ビス{(2−ヒドロキシエトキシ)フェニル}ジフェニルメタン、9,9−ビス{(2−ヒドロキシエトキシ)フェニル}フルオレン、9,9−ビス{4−(2−ヒドロキシエトキシ)−3−メチルフェニル}フルオレン、1,1−ビス{(2−ヒドロキシエトキシ)フェニル}シクロヘキサン、1,1−ビス{(2−ヒドロキシエトキシ)フェニル}シクロペンタン、4,4’−ビス(2−ヒドロキシエトキシ)ジフェニルエ−テル、4,4’−ビス(2−ヒドロキシエトキシ)−3,3’−ジメチルジフェニルエ−テル、1,3−ビス[2−{(2−ヒドロキシエトキシ)フェニル}プロピル]ベンゼン、1,4−ビス[2−{(2−ヒドロキシエトキシ)フェニル}プロピル]ベンゼン、1,4−ビス{(2−ヒドロキシエトキシ)フェニル}シクロヘキサン、1,3−ビス{(2−ヒドロキシエトキシ)フェニル}シクロヘキサン、4,8−ビス{(2−ヒドロキシエトキシ)フェニル}トリシクロ[5.2.1.02,6]デカン、1,3−ビス{(2−ヒドロキシエトキシ)フェニル}−5,7−ジメチルアダマンタン、3,9−ビス(2−ヒドロキシー1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ(5,5)ウンデカン、1,4:3,6−ジアンヒドロ−D−ソルビトール(イソソルビド)、1,4:3,6−ジアンヒドロ−D−マンニトール(イソマンニド)、1,4:3,6−ジアンヒドロ−L−イジトール(イソイディッド)等が挙げられる。
これらの中で芳香族ビスフェノール類が好ましく、なかでも1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、4,4’−スルホニルジフェノール、2,2’−ジメチル−4,4’−スルホニルジフェノール、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、および1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、が好ましく、殊に2,2−ビス(4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、4,4’−スルホニルジフェノール、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンおよび上記一般式〔3〕が好ましい。中でも強度に優れ、良好な耐久性を有する2,2−ビス(4−ヒドロキシフェニル)プロパンが最も好適である。また、これらは単独または二種以上組み合わせて用いてもよい。
本発明のA成分として使用される芳香族ポリカーボネート樹脂は、分岐化剤を上記のジヒドロキシ化合物と併用して分岐化ポリカーボネート樹脂としてもよい。かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6−ジメチル−2,4,6−トリス(4−ヒドロキジフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノール、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。
これらの芳香族ポリカーボネート樹脂は、通常の芳香族ポリカーボネート樹脂を製造するそれ自体公知の反応手段、例えば芳香族ジヒドロキシ成分にホスゲンや炭酸ジエステルなどのカーボネート前駆物質を反応させる方法により製造される。その製造方法について基本的な手段を簡単に説明する。
カーボネート前駆物質として、例えばホスゲンを使用する反応では、通常酸結合剤および溶媒の存在下に反応を行う。酸結合剤としては、例えば水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物またはピリジンなどのアミン化合物が用いられる。溶媒としては、例えば塩化メチレン、クロロベンゼンなどのハロゲン化炭化水素が用いられる。また反応促進のために例えば第三級アミンまたは第四級アンモニウム塩などの触媒を用いることもできる。その際、反応温度は通常0〜40℃であり、反応時間は数分〜5時間である。カーボネート前駆物質として炭酸ジエステルを用いるエステル交換反応は、不活性ガス雰囲気下所定割合の芳香族ジヒドロキシ成分を炭酸ジエステルと加熱しながら撹拌して、生成するアルコールまたはフェノール類を留出させる方法により行われる。反応温度は生成するアルコールまたはフェノール類の沸点などにより異なるが、通常120〜300℃の範囲である。反応はその初期から減圧にして生成するアルコールまたはフェノール類を留出させながら反応を完結させる。また、反応を促進するために通常エステル交換反応に使用される触媒を使用することもできる。前記エステル交換反応に使用される炭酸ジエステルとしては、例えばジフェニルカーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネートなどが挙げられる。これらのうち特にジフェニルカーボネートが好ましい。
本発明において、重合反応においては末端停止剤を使用する。末端停止剤は分子量調節のために使用され、また得られたポリカーボネート樹脂は、末端が封鎖されているので、そうでないものと比べて熱安定性に優れている。かかる末端停止剤としては、下記一般式〔4〕〜〔6〕で表される単官能フェノール類を示すことができる。
[式中、Aは炭素数1〜10のアルキル基、炭素原子数6〜15の置換若しくは無置換のアリール基、炭素原子数7〜15の置換若しくは無置換のアラルキル基であり、rは0〜5、好ましくは0〜1の整数である。]
[式中、nは炭素数1〜50の整数である。]
[式中、Wは−R−O−、−R−CO−O−または−R−O−CO−である、ここでRは単結合または炭素数1〜10、好ましくは1〜5の二価の脂肪族炭化水素基を示し、nは1〜50の整数である。]
上記一般式〔4〕で表される単官能フェノール類の具体例としては、例えばフェノール、イソプロピルフェノール、p−tert−ブチルフェノール、p−クレゾール、p−クミルフェノール、2−フェニルフェノール、4−フェニルフェノール、およびイソオクチルフェノールなどが挙げられる。また、上記一般式〔5〕〜〔6〕で表される単官能フェノール類は、長鎖のアルキル基あるいは脂肪族エステル基を置換基として有するフェノール類であり、これらを用いてポリカーボネート樹脂の末端を封鎖すると、これらは末端停止剤または分子量調節剤として機能するのみならず、樹脂の溶融流動性が改良され、成形加工が容易になるばかりでなく、樹脂の吸水率を低くする効果があり好ましく使用される。上記一般式〔5〕の置換フェノール類としてはnが10〜30、特に10〜26のものが好ましく、その具体例としては例えばデシルフェノール、ドデシルフェノール、テトラデシルフェノール、ヘキサデシルフェノール、オクタデシルフェノール、エイコシルフェノール、ドコシルフェノールおよびトリアコンチルフェノール等を挙げることができる。また、上記一般式〔6〕の置換フェノール類としてはWが−R−CO−O−であり、Rが単結合である化合物が好ましく、nが10〜30、特に10〜26のものが好適であって、その具体例としては例えばヒドロキシ安息香酸デシル、ヒドロキシ安息香酸ドデシル、ヒドロキシ安息香酸テトラデシル、ヒドロキシ安息香酸ヘキサデシル、ヒドロキシ安息香酸エイコシル、ヒドロキシ安息香酸ドコシルおよびヒドロキシ安息香酸トリアコンチルが挙げられる。これら単官能フェノール類の内、上記一般式〔4〕で表される単官能フェノール類が好ましく、より好ましくはアルキル置換もしくはフェニルアルキル置換のフェノール類であり、特に好ましくはp−tert−ブチルフェノール、p−クミルフェノールまたは2−フェニルフェノールである。これらの単官能フェノール類の末端停止剤は、得られたポリカーボネート樹脂の全末端に対して少なくとも5モル%、好ましくは少なくとも10モル% 末端に導入されることが望ましく、また、末端停止剤は単独でまたは2種以上混合して使用してもよい。
本発明のA成分として用いられる芳香族ポリカーボネート樹脂は、本発明の趣旨を損なわない範囲で、芳香族ジカルボン酸、例えばテレフタル酸、イソフタル酸、ナフタレンジカルボン酸あるいはその誘導体を共重合したポリエステルカーボネートであってもよい。
本発明のA成分として使用される芳香族ポリカーボネート樹脂の粘度平均分子量は、12,000〜50,000の範囲が好ましく、12,000〜30,000がより好ましく、12,000〜25,000の範囲がさらにより好ましく、15,000〜25,000の範囲が最も好ましい。
分子量が50,000を越えると溶融粘度が高くなりすぎて成形性に劣る場合があり、分子量が12,000未満であると機械的強度に問題が生じる場合がある。なお、本発明でいう粘度平均分子量は、まず次式にて算出される比粘度を塩化メチレン100mlにポリカーボネート樹脂0.7gを20℃で溶解した溶液からオストワルド粘度計を用いて求め、求められた比粘度を次式にて挿入して粘度平均分子量Mを求める。
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
[η]=1.23×10−40.83
c=0.7
本発明のA成分として使用されるポリカーボネート樹脂は、樹脂中の全Cl(塩素)量が好ましくは0〜200ppm、より好ましくは0〜150ppmである。ポリカーボネート樹脂中の全Cl量が200ppmを越えると、色相および熱安定性が悪くなるので好ましくない。
(B成分:液晶ポリエステル樹脂)
本発明のB成分として使用される液晶ポリエステル樹脂とは、サーモトロピック液晶ポリエステル樹脂であり、溶融状態でポリマー分子鎖が一定方向に配列する性質を有している。かかる配列状態の形態はネマチック型、スメチック型、コレステリック型、およびディスコチック型のいずれの形態であってもよく、また2種以上の形態を呈するものであってもよい。更に液晶ポリエステル樹脂の構造としては主鎖型、側鎖型、および剛直主鎖屈曲側鎖型などのいずれの構造であってもよいが、好ましいのは主鎖型液晶ポリエステル樹脂である。
上記配列状態の形態、すなわち異方性溶融相の性質は、直交偏光子を利用した慣用の偏光検査法により確認することができる。より具体的には、異方性溶融相の確認は、Leitz偏光顕微鏡を使用し、Leitzホットステージにのせた溶融試料を窒素雰囲気下で40倍の倍率で観察することにより実施できる。本発明のポリマーは直交偏光子の間で検査したときにたとえ溶融静止状態であっても偏光は透過し、光学的に異方性を示す。
また液晶ポリエステル樹脂の耐熱性はいかなる範囲であってもよいが、ポリカーボネート樹脂の加工温度に近い部分で溶融し液晶相を形成するものが適切である。この点で液晶ポリエステル樹脂の荷重たわみ温度が150〜280℃、好ましくは180〜250℃であるものがより好適である。かかる液晶ポリエステル樹脂はいわゆる耐熱性区分のII型に属するものである。かかる耐熱性を有する場合には耐熱性のより高いI型に比較して成形加工性に優れ、および耐熱性のより低いIII型に比較して良好な難燃性が達成される。
本発明のB成分として使用される液晶ポリエステル樹脂は、ポリエステル単位およびポリエステルアミド単位を含むものが好ましく、芳香族ポリエステル樹脂及び芳香族ポリエステルアミド樹脂が好ましく、芳香族ポリエステル単位及び芳香族ポリエステルアミド単位を同一分子鎖中に部分的に含む液晶ポリエステル樹脂も好ましい例である。
特に好ましくは、芳香族ヒドロキシカルボン酸、芳香族ヒドロキシアミン、芳香族ジアミンの群から選ばれた1種または2種以上の化合物由来の単位構成成分として有する全芳香族ポリエステル樹脂、全芳香族ポリエステルアミド樹脂である。より具体的には、
1)主として芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物から合成される液晶ポリエステル樹脂、
2)主としてa)芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、b)芳香族ジカルボン酸、脂環族ジカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、並びにc)芳香族ジオール、脂環族ジオール、脂肪族ジオール及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、から合成される液晶ポリエステル樹脂、
3)主としてa)芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、b)芳香族ヒドロキシアミン、芳香族ジアミン及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、並びにc)芳香族ジカルボン酸、脂環族ジカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、から合成される液晶ポリエステルアミド樹脂、
4)主としてa)芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、b)芳香族ヒドロキシアミン、芳香族ジアミン及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、c)芳香族ジカルボン酸、脂環族ジカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、並びにd) 芳香族ジオール、脂環族ジオール、脂肪族ジオール及びその誘導体からなる群より選ばれる1種又は2種以上の化合物、から合成される液晶ポリエステルアミド樹脂が挙げられるが、1)主として芳香族ヒドロキシカルボン酸及びその誘導体からなる群より選ばれる1種又は2種以上から合成される液晶ポリエステル樹脂が好ましい。
更に上記の構成成分に必要に応じ分子量調整剤を併用しても良い。
本発明のB成分として使用される液晶ポリエステル樹脂の合成に用いられる具体的化合物の好ましい例は、2,6−ナフタレンジカルボン酸、2,6−ジヒドロキシナフタレン、1,4−ジヒドロキシナフタレン及び6−ヒドロキシ−2−ナフトエ酸等のナフタレン化合物、4,4’−ジフェニルジカルボン酸、4,4’−ジヒドロキシビフェニル等のビフェニル化合物、p−ヒドロキシ安息香酸、テレフタル酸、ハイドロキノン、p−アミノフェノール及びp−フェニレンジアミン等のパラ位置換のベンゼン化合物及びそれらの核置換ベンゼン化合物(置換基は塩素、臭素、メチル、フェニル、1−フェニルエチルより選ばれる)、イソフタル酸、レゾルシン等のメタ位置換のベンゼン化合物、並びに下記一般式〔7〕、〔8〕又は〔9〕で表される化合物である。中でも、p−ヒドロキシ安息香酸と6−ヒドロキシ−2−ナフトエ酸が特に好ましく、両者を混合してなる液晶ポリエステル樹脂が好適である。両者の割合は前者が90〜50モル%の範囲が好ましく、80〜65モル%の範囲がより好ましく、後者が10〜50モル%の範囲が好ましく、20〜35モル%の範囲がより好ましい。
(但し、Yは炭素数1〜4のアルキレン基およびアルキリデン基、−O−、−SO−、−SO−、−S−、並びに−CO−よりなる群より選ばれる基であり、Zは−(CH−(n=1〜4)、および−O(CHO−(n=1〜4)よりなる群より選ばれる基である。)
又、本発明のB成分として使用される液晶ポリエステル樹脂は、上述の構成成分の他に同一分子鎖中に部分的に異方性溶融相を示さないポリアルキレンテレフタレート由来単位が存在してもよい。この場合のアルキレン基の炭素数は2〜4である。
本発明のB成分として使用される液晶ポリエステル樹脂は、樹脂中にアルカリ金属および/またはアルカリ土類金属を5〜300ppm含有する。該含有量は10〜150ppmの範囲にあることが好ましく、10〜100ppmの範囲にあることがより好ましく、20〜80ppmの範囲にあることがさらに好ましい。アルカリ金属および/またはアルカリ土類金属の含有量が5ppmより少ない場合、A成分とB成分のエステル交換が進行しないため難燃性、耐熱性が発現せず、また成形品外観が悪化する。一方、300ppmを超えると、溶融混練中に分解反応が進行するため、溶融安定性が悪化し、難燃性、耐熱性が発現しない。
なお液晶ポリエステル樹脂中のアルカリ金属および/またはアルカリ土類金属の含有量は誘導結合プラズマ発光分光分析法(ICP−AES)にて定量した。具体的には、液晶ポリエステル樹脂を硫酸、硝酸で加熱分解後、超純水で定容して検液とし、ICP−AESにより、検液中のアルカリ金属および/またはアルカリ土類金属の元素定量分析を行った。
本発明においてB成分として使用される液晶ポリエステル樹脂の基本的な製造方法は、特に制限がなく、公知の液晶ポリエステル樹脂の重縮合法に準じて製造できる。上記の液晶ポリエステル樹脂はまた、60℃でペンタフルオロフェノールに0.1重量%濃度で溶解したときに、少なくとも約2.0dl/g、たとえば約2.0〜10.0dl/gの対数粘度(IV値)を一般に示す。
本発明の難燃性ポリカーボネート樹脂組成物において、ポリカーボネート樹脂が連続層、液晶ポリエステル樹脂が分散層をそれぞれ形成することが必要であり、この状態でなければ薄肉ながらUL94 5Vを取得できるような優れた難燃性が達成できない。
B成分の含有量は、樹脂成分100重量%中、2〜40重量%であり、5〜40重量%が好ましく、5〜30重量%がより好ましく、5〜20重量%がさらに好ましく、5〜18重量%が最も好ましい。B成分の含有量が2重量%未満の場合、成形品外観、流動性、耐熱性、難燃性が低下する。40重量%を超えた場合、ポリカーボネート樹脂、液晶ポリエステル樹脂の相溶性が乏しく相分離を起こし、成形品外観、耐熱性が低下する。
本発明の難燃性ポリカーボネート樹脂組成物は、本発明で使用されるA成分とB成分の一部がエステル交換していることを特徴としている。なお、ここで一部がエステル交換しているとは下記の方法で算出されるエステル交換率が0.01%以上であることを意味する。A成分とB成分のエステル交換率は0.01〜50%の範囲が好ましく、0.01〜10%の範囲がより好ましく、0.01〜5%の範囲がさらに好ましく、0.01〜1%が特に好ましく、0.01〜0.5%が最も好ましい。A成分とB成分がエステル交換していない場合、ポリカーボネート樹脂、液晶ポリエステル樹脂の相溶性が乏しく分離を起こし成形品外観、難燃性、耐熱性が低下する。50%を超えた場合、液晶ポリエステルの持つ流動性が失われる。なお、本発明で定義されるエステル交換率は、H−NMR測定により、下記式によりで算出される。
エステル交換率(%)=100×(エステル交換反応物由来のピークより算出した積分比)/(エステル交換反応物由来のピークより算出した積分比+ポリカーボネート樹脂由来のピークより算出した積分比)
(C成分:リン系難燃剤)
本発明のC成分として使用されるリン系難燃剤としては、アリールホスフェート化合物が好適である。かかるホスフェート化合物は概して色相に優れるためである。またホスフェート化合物は可塑化効果があるため、成形加工性を高められる点で有利である。かかるホスフェート化合物は、従来難燃剤として公知の各種ホスフェート化合物が使用できるが、より好適には特に下記一般式〔1〕で表される1種または2種以上のホスフェート化合物を挙げることができる。
(但し前記式中のMは、二価フェノールから誘導される二価の有機基を表し、R、R、R、およびRはそれぞれ一価フェノールから誘導される一価の有機基を表す。e、f、g及びhはそれぞれ独立して0または1であり、nは0〜5の整数であり、重合度nの異なるリン酸エステルの混合物の場合はnはその平均値を表し、0〜5の値である。)
前記式のホスフェート化合物は、異なるn数を有する化合物の混合物であってもよく、かかる混合物の場合、平均のn数は好ましくは0.5〜1.5、より好ましくは0.8〜1.2、更に好ましくは0.95〜1.15、特に好ましくは1〜1.14の範囲である。
上記式中のMを誘導する二価フェノールの好適な具体例としては、ハイドロキノン、レゾルシノール、ビス(4−ヒドロキシビフェニル)メタン、ビスフェノールA、ジヒドロキシビフェニル、ジヒドロキシナフタレン、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)ケトン及びビス(4−ヒドロキシフェニル)サルファイドからなる群から選ばれたジヒドロキシ化合物の2個の水酸基を除去して得られる二価の基が挙げられる。R、R、R、およびRの具体例としては、それぞれ独立して1個以上のハロゲン原子で置換されていてもよいフェノール、クレゾール、キシレノール、イソプロピルフェノール、ブチルフェノール及びp−クミルフェノールからなる群から選ばれたモノヒドロキシ化合物の1個の水酸基を除去して得られる一価の基が挙げられる。
上記R、R、R、およびRを誘導する一価フェノールの好適な具体例としては、フェノール、クレゾール、キシレノール、イソプロピルフェノール、ブチルフェノール、およびp−クミルフェノールが例示され、中でも好ましくはフェノール、および2,6−ジメチルフェノールである。
尚、かかる一価フェノールはハロゲン原子で置換されてもよく、該一価フェノールから誘導される基を有するホスフェート化合物の具体例としては、トリス(2,4,6−トリブロモフェニル)ホスフェートおよびトリス(2,4−ジブロモフェニル)ホスフェート、トリス(4−ブロモフェニル)ホスフェートなどが例示される。
一方、ハロゲン原子で置換されていないホスフェート化合物の具体例としては、トリフェニルホスフェートおよびトリ(2,6−キシリル)ホスフェートなどのモノホスフェート化合物、並びにレゾルシノールビスジ(2,6−キシリル)ホスフェート)を主体とするホスフェートオリゴマー、4,4−ジヒドロキシジフェニルビス(ジフェニルホスフェート)を主体とするホスフェートオリゴマー、およびビスフェノールAビス(ジフェニルホスフェート)を主体とするリン酸エステルオリゴマーが好適である(ここで主体とするとは、重合度の異なる他の成分を少量含んでよいことを示し、より好適には前記式〔1〕におけるn=1の成分が80重量%以上、より好ましくは85重量%以上、更に好ましくは90重量%以上含有されることを示す。)。
本発明のC成分として使用されるリン系難燃剤の含有量は、A成分とB成分との合計100重量部に対し、2〜20重量部であり、好ましくは2〜15重量部、より好ましくは5〜15重量部である。C成分が2重量部未満の場合、十分な難燃性、流動性が得られず、また20重量部を超えると、耐熱性、難燃性、溶融熱安定性が低下する。
(D成分:フィブリル形成能を有するポリテトラフルオロエチレン)
本発明のD成分として使用されるフィブリル形成能を有するポリテトラフルオロエチレン(以下、フィブリル化PTFEと称する。)は、フィブリル化PTFE単独であっても、混合形態のフィブリル化PTFEすなわちフィブリル化PTFE粒子と有機系重合体からなるポリテトラフルオロエチレン系混合体であってもよい。フィブリル化PTFEは極めて高い分子量を有し、せん断力などの外的作用によりPTFE同士を結合して繊維状になる傾向を示すものである。その数平均分子量は、150万〜数千万の範囲である。かかる下限はより好ましくは300万である。かかる数平均分子量は、特開平6−145520号公報に開示されているとおり、380℃でのポリテトラフルオロエチレンの溶融粘度に基づき算出される。即ち、B成分のフィブリル化PTFEは、かかる公報に記載された方法で測定される380℃における溶融粘度が10〜1013poiseの範囲であり、好ましくは10〜1012poiseの範囲である。
かかるPTFEは、固体形状の他、水性分散液形態のものも使用可能である。またかかるフィブリル化PTFEは樹脂中での分散性を向上させ、更に良好な難燃性および機械的特性を得るために他の樹脂との混合形態のPTFE混合物を使用することも可能である。また、特開平6−145520号公報に開示されているとおり、かかるフィブリル化PTFEを芯とし、低分子量のポリテトラフルオロエチレンを殻とした構造を有するものも好ましく利用される。
かかるフィブリル化PTFEの市販品としては例えば三井・デュポンフロロケミカル(株)のテフロン(登録商標)6J、ダイキン化学工業(株)のポリフロンMPA FA500、F−201Lなどを挙げることができる。フィブリル化PTFEの水性分散液の市販品としては、旭アイシーアイフロロポリマーズ(株)製のフルオンAD−1、AD−936、ダイキン工業(株)製のフルオンD−1、D−2、三井・デュポンフロロケミカル(株)製のテフロン(登録商標)30Jなどを代表として挙げることができる。
混合形態のフィブリル化PTFEとしては、(1)フィブリル化PTFEの水性分散液と有機重合体の水性分散液または溶液とを混合し共沈殿を行い共凝集混合物を得る方法(特開昭60−258263号公報、特開昭63−154744号公報などに記載された方法)、(2)フィブリル化PTFEの水性分散液と乾燥した有機重合体粒子とを混合する方法(特開平4−272957号公報に記載された方法)、(3)フィブリル化PTFEの水性分散液と有機重合体粒子溶液を均一に混合し、かかる混合物からそれぞれの媒体を同時に除去する方法(特開平06−220210号公報、特開平08−188653号公報などに記載された方法)、(4)フィブリル化PTFEの水性分散液中で有機重合体を形成する単量体を重合する方法(特開平9−95583号公報に記載された方法)、および(5)PTFEの水性分散液と有機重合体分散液を均一に混合後、更に該混合分散液中でビニル系単量体を重合し、その後混合物を得る方法(特開平11−29679号公報などに記載された方法)により得られたものが使用できる。これらの混合形態のフィブリル化PTFEの市販品としては、三菱レイヨン(株)の「メタブレン A3000」(商品名)「メタブレン A3700」(商品名)、「メタブレン A3800」(商品名)で代表されるメタブレンAシリーズ、PIC社のPOLY TS AD001(商品名)、およびGEスペシャリティーケミカルズ社製 「BLENDEX B449」(商品名)などが例示される。
混合形態におけるフィブリル化PTFEの割合としては、かかる混合物100重量%中、フィブリル化PTFEが1重量%〜95重量%であることが好ましく、10重量%〜90重量%であるのがより好ましく、20重量%〜80重量%が最も好ましい。1重量%未満であると、混合形態における有機重合体部分が本発明の難燃性ポリカーボネート樹脂組成物中に占める割合が多くなる方向となるため透明性は低下しやすくなり難燃性改良効果も発現しにくくなる。95重量%を超えると高度なレベルでの表面外観を達成するのが難しくなる。また、90重量%を超えると混合形態でないPTFEとの性能の違いが小さくなり、混合形態でないフィブリル化PTFEを用いた方がコストの面で有利となる。
混合形態におけるフィブリル化PTFEの割合がかかる範囲にある場合は、フィブリル化PTFEの良好な分散性を達成することができる。
本発明のD成分として使用されるフィブリル化PTFEの含有量は、A成分とB成分との合計100重量部に対し、0.01〜5重量部であり、0.01〜2重量部が好ましく、0.1〜2重量部がより好ましく、0.1〜1重量部がさらに好ましい。なお、ここで示す重量部はポリテトラフルオロエチレンが混合形態(混合体)の場合は、混合体全体の重量を示す。D成分が、0.01重量部未満の場合、十分な難燃性改良効果が得られず、5重量部を超えると成形品外観が悪化する。
(E成分:リン系安定剤)
本発明のE成分として使用されるリン系安定剤としては、ホスファイト化合物、ホスホナイト化合物、ホスフィナイト化合物、ホスフィン化合物、ホスフェート化合物、ホスホネート化合物、ホスフィネート化合物、ホスフィンオキシド化合物、ホスファゼン化合物、などが挙げられ、その中でもホスファイト化合物が好ましい。
ホスファイト化合物としては、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ−iso−プロピルフェニル)ホスファイト、トリス(ジ−n−ブチルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−エチルフェニル)ペンタエリスリトールジホスファイト、ビス{2,4−ビス(1−メチル−1−フェニルエチル)フェニル}ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、およびジシクロヘキシルペンタエリスリトールジホスファイトなどが挙げられる。
更に他のホスファイト化合物としては二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2,4−ジ−tert−ブチルフェニル)ホスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、および2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイトなどが例示される。
かかるホスファイト化合物のうち、下記一般式〔2〕で表されるペンタエリスリトールジホスファイト化合物が好ましく、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイトが特に好ましい。
[式中AおよびAはそれぞれ独立して、水素原子、炭素数1〜20のアルキル基、炭素数6〜20のアリール基ないしアルキルアリール基、炭素数7〜30のアラルキル基、炭素数4〜20のシクロアルキル基、および炭素数15〜25の2−(4−オキシフェニル)プロピル置換アリール基からなる群より選択される基を示す。尚、シクロアルキル基およびアリール基は、アルキル基で置換されていてもよい。]
本発明のE成分として使用されるリン系安定剤の含有量は、A成分とB成分との合計100重量部に対し、0.001〜2重量部であり、0.001〜1重量部が好ましく、0.001〜0.5重量部がより好ましい。E成分の含有量が0.001重量部未満の場合、難燃性、耐熱性、溶融熱安定性が低下し、2重量部を超えると溶融熱安定性が低下する。
(その他の成分)
また、本発明の難燃性ポリカーボネート樹脂組成物は本発明の効果を損なわない範囲で通常ポリカーボネート樹脂に配合される各種のC成分以外の難燃剤、強化充填材、添加剤を配合することができる。
かかる添加剤としては、E成分以外のリン系安定剤、ヒンダードフェノール系安定剤、紫外線吸収剤、染顔料、熱安定剤、帯電防止剤などが挙げられる。
(難燃剤)
本発明の難燃性ポリカーボネート樹脂組成物には、本発明のC成分として使用されるリン系難燃剤以外の難燃剤として知られる各種の化合物が配合されてよい。かかる化合物の配合は難燃性の向上をもたらすが、それ以外にも各化合物の性質に基づき、例えば帯電防止性、流動性、剛性、および熱安定性の向上などがもたらされる。かかる難燃剤としては、(i)有機金属塩系難燃剤(例えば有機スルホン酸アルカリ(土類)金属塩、有機ホウ酸金属塩系難燃剤、および有機錫酸金属塩系難燃剤など)、(ii)シリコーン化合物からなるシリコーン系難燃剤が挙げられる。
(i)有機金属塩系難燃剤
有機金属塩系難燃剤は炭素原子数1〜50、好ましくは1〜40の有機酸のアルカリ(土類)金属塩、好ましくは有機スルホン酸アルカリ(土類)金属塩であることが好ましい。この有機スルホン酸アルカリ(土類)金属塩には、炭素原子数1〜10、好ましくは2〜8のパーフルオロアルキルスルホン酸とアルカリ金属またはアルカリ土類金属との金属塩の如きフッ素置換アルキルスルホン酸の金属塩、並びに炭素原子数7〜50、好ましくは7〜40の芳香族スルホン酸とアルカリ金属またはアルカリ土類金属との金属塩が含まれる。
金属塩を構成するアルカリ金属としてはリチウム、ナトリウム、カリウム、ルビジウムおよびセシウムが挙げられ、アルカリ土類金属としては、ベリリウム、マグネシウム、カルシウム、ストロンチウムおよびバリウムが挙げられる。より好適にはアルカリ金属である。かかるアルカリ金属の中でも、透明性の要求がより高い場合にはイオン半径のより大きいルビジウムおよびセシウムが好適である一方、これらは汎用的でなくまた精製もし難いことから、結果的にコストの点で不利となる場合がある。一方、リチウムおよびナトリウムなどのより小さいイオン半径の金属は逆に難燃性の点で不利な場合がある。これらを勘案してスルホン酸アルカリ金属塩中のアルカリ金属を使い分けることができるが、いずれの点においても特性のバランスに優れたスルホン酸カリウム塩が最も好適である。かかるカリウム塩と他のアルカリ金属からなるスルホン酸アルカリ金属塩とを併用することもできる。
パーフルオロアルキルスルホン酸アルカリ金属塩の具体例としては、トリフルオロメタンスルホン酸カリウム、パーフルオロブタンスルホン酸カリウム、パーフルオロヘキサンスルホン酸カリウム、パーフルオロオクタンスルホン酸カリウム、ペンタフルオロエタンスルホン酸ナトリウム、パーフルオロブタンスルホン酸ナトリウム、パーフルオロオクタンスルホン酸ナトリウム、トリフルオロメタンスルホン酸リチウム、パーフルオロブタンスルホン酸リチウム、パーフルオロヘプタンスルホン酸リチウム、トリフルオロメタンスルホン酸セシウム、パーフルオロブタンスルホン酸セシウム、パーフルオロオクタンスルホン酸セシウム、パーフルオロヘキサンスルホン酸セシウム、パーフルオロブタンスルホン酸ルビジウム、およびパーフルオロヘキサンスルホン酸ルビジウム等が挙げられ、これらは1種もしくは2種以上を併用して使用することができる。ここでパーフルオロアルキル基の炭素数は、1〜18の範囲が好ましく、1〜10の範囲がより好ましく、更に好ましくは1〜8の範囲である。これらの中で特にパーフルオロブタンスルホン酸カリウムが好ましい。
アルカリ金属からなるパーフルオロアルキルスルホン酸アルカリ(土類)金属塩中には、通常少なからず弗化物イオン(F)が混入する。かかる弗化物イオンの存在は難燃性を低下させる要因となり得るので、できる限り低減されることが好ましい。かかる弗化物イオンの割合はイオンクロマトグラフィー法により測定できる。弗化物イオンの含有量は、100ppm以下が好ましく、40ppm以下が更に好ましく、10ppm以下が特に好ましい。また製造効率的に0.2ppm以上であることが好適である。かかる弗化物イオン量の低減されたパーフルオロアルキルスルホン酸アルカリ(土類)金属塩は、製造方法は公知の製造方法を用い、かつ含フッ素有機金属塩を製造する際の原料中に含有される弗化物イオンの量を低減する方法、反応により得られた弗化水素などを反応時に発生するガスや加熱によって除去する方法、並びに含フッ素有機金属塩を製造に再結晶および再沈殿等の精製方法を用いて弗化物イオンの量を低減する方法などによって製造することができる。特に有機金属塩系難燃剤は比較的水に溶けやすいこことから、イオン交換水、特に電気抵抗値が18MΩ・cm以上、すなわち電気伝導度が約0.55μS/cm以下を満足する水を用い、かつ常温よりも高い温度で溶解させて洗浄を行い、その後冷却させて再結晶化させる工程により製造することが好ましい。
芳香族スルホン酸アルカリ(土類)金属塩の具体例としては、例えばジフェニルサルファイド−4,4’−ジスルホン酸ジナトリウム、ジフェニルサルファイド−4,4’−ジスルホン酸ジカリウム、5−スルホイソフタル酸カリウム、5−スルホイソフタル酸ナトリウム、ポリエチレンテレフタル酸ポリスルホン酸ポリナトリウム、1−メトキシナフタレン−4−スルホン酸カルシウム、4−ドデシルフェニルエーテルジスルホン酸ジナトリウム、ポリ(2,6−ジメチルフェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,3−フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,4−フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(2,6−ジフェニルフェニレンオキシド)ポリスルホン酸ポリカリウム、ポリ(2−フルオロ−6−ブチルフェニレンオキシド)ポリスルホン酸リチウム、ベンゼンスルホネートのスルホン酸カリウム、ベンゼンスルホン酸ナトリウム、ベンゼンスルホン酸ストロンチウム、ベンゼンスルホン酸マグネシウム、p−ベンゼンジスルホン酸ジカリウム、ナフタレン−2,6−ジスルホン酸ジカリウム、ビフェニル−3,3’−ジスルホン酸カルシウム、ジフェニルスルホン−3−スルホン酸ナトリウム、ジフェニルスルホン−3−スルホン酸カリウム、ジフェニルスルホン−3,3’−ジスルホン酸ジカリウム、ジフェニルスルホン−3,4’−ジスルホン酸ジカリウム、α,α,α−トリフルオロアセトフェノン−4−スルホン酸ナトリウム、ベンゾフェノン−3,3’−ジスルホン酸ジカリウム、チオフェン−2,5−ジスルホン酸ジナトリウム、チオフェン−2,5−ジスルホン酸ジカリウム、チオフェン−2,5−ジスルホン酸カルシウム、ベンゾチオフェンスルホン酸ナトリウム、ジフェニルスルホキサイド−4−スルホン酸カリウム、ナフタレンスルホン酸ナトリウムのホルマリン縮合物、およびアントラセンスルホン酸ナトリウムのホルマリン縮合物などを挙げることができる。これら芳香族スルホン酸アルカリ(土類)金属塩では、特にカリウム塩が好適である。これらの芳香族スルホン酸アルカリ(土類)金属塩の中でも、ジフェニルスルホン−3−スルホン酸カリウム、およびジフェニルスルホン−3,3’−ジスルホン酸ジカリウムが好適であり、特にこれらの混合物(前者と後者の重量比が15/85〜30/70)が好適である。
スルホン酸アルカリ(土類)金属塩以外の有機金属塩としては、硫酸エステルのアルカリ(土類)金属塩および芳香族スルホンアミドのアルカリ(土類)金属塩などが好適に例示される。硫酸エステルのアルカリ(土類)金属塩としては、特に一価および/または多価アルコール類の硫酸エステルのアルカリ(土類)金属塩を挙げることができ、かかる一価および/または多価アルコール類の硫酸エステルとしては、メチル硫酸エステル、エチル硫酸エステル、ラウリル硫酸エステル、ヘキサデシル硫酸エステル、ポリオキシエチレンアルキルフェニルエーテルの硫酸エステル、ペンタエリスリトールのモノ、ジ、トリ、テトラ硫酸エステル、ラウリン酸モノグリセライドの硫酸エステル、パルミチン酸モノグリセライドの硫酸エステル、およびステアリン酸モノグリセライドの硫酸エステルなどを挙げることができる。これらの硫酸エステルのアルカリ(土類)金属塩として好ましくはラウリル硫酸エステルのアルカリ(土類)金属塩が挙げられる。
芳香族スルホンアミドのアルカリ(土類)金属塩としては、例えばサッカリン、N−(p−トリルスルホニル)−p−トルエンスルホイミド、N−(N’−ベンジルアミノカルボニル)スルファニルイミド、およびN−(フェニルカルボキシル)スルファニルイミドのアルカリ(土類)金属塩などが挙げられる。
有機金属塩系難燃剤の含有量は、A成分とB成分との合計100重量部に対し、0.001〜1重量部が好ましく、より好ましくは0.005〜0.5重量部、さらに好ましくは0.01〜0.3重量部、特に好ましくは0.03〜0.15重量部である。
(ii)シリコーン系難燃剤
シリコーン系難燃剤として使用されるシリコーン化合物は、燃焼時の化学反応によって難燃性を向上させるものである。該化合物としては従来芳香族ポリカーボート樹脂の難燃剤として提案された各種の化合物を使用することができる。シリコーン化合物はその燃焼時にそれ自体が結合してまたは樹脂に由来する成分と結合してストラクチャーを形成することにより、または該ストラクチャー形成時の還元反応により、ポリカーボネート樹脂に難燃効果を付与するものと考えられている。したがってかかる反応における活性の高い基を含んでいることが好ましく、より具体的にはアルコキシ基およびハイドロジェン(即ちSi−H基)から選択された少なくとも1種の基を所定量含んでいることが好ましい。かかる基(アルコキシ基、Si−H基)の含有割合としては、0.1〜1.2mol/100gの範囲が好ましく、0.12〜1mol/100gの範囲がより好ましく、0.15〜0.6mol/100gの範囲が更に好ましい。かかる割合はアルカリ分解法より、シリコーン化合物の単位重量当たりに発生した水素またはアルコールの量を測定することにより求められる。尚、アルコキシ基は炭素数1〜4のアルコキシ基が好ましく、特にメトキシ基が好適である。
一般的にシリコーン化合物の構造は、以下に示す4種類のシロキサン単位を任意に組み合わせることによって構成される。すなわち、M単位:(CHSiO1/2、H(CHSiO1/2、H(CH)SiO1/2、(CH(CH=CH)SiO1/2、(CH(C)SiO1/2、(CH)(C)(CH=CH)SiO1/2等の1官能性シロキサン単位、D単位:(CHSiO、H(CH)SiO、HSiO、H(C)SiO、(CH)(CH=CH)SiO、(CSiO等の2官能性シロキサン単位、T単位:(CH)SiO3/2、(C)SiO3/2、HSiO3/2、(CH=CH)SiO3/2、(C)SiO3/2等の3官能性シロキサン単位、Q単位:SiOで示される4官能性シロキサン単位である。
シリコーン系難燃剤に使用されるシリコーン化合物の構造は、具体的には、示性式としてD、T、M、M、M、M、M、M、M、D、D、Dが挙げられる。この中で好ましいシリコーン化合物の構造は、M、M、M、Mであり、さらに好ましい構造は、MまたはMである。
ここで、前記示性式中の係数m、n、p、qは各シロキサン単位の重合度を表す1以上の整数であり、各示性式における係数の合計がシリコーン化合物の平均重合度となる。この平均重合度は好ましくは3〜150の範囲、より好ましくは3〜80の範囲、更に好ましくは3〜60の範囲、特に好ましくは4〜40の範囲である。かかる好適な範囲であるほど難燃性において優れるようになる。更に後述するように芳香族基を所定量含むシリコーン化合物においては透明性や色相にも優れる。その結果良好な反射光が得られる。
またm、n、p、qのいずれかが2以上の数値である場合、その係数の付いたシロキサン単位は、結合する水素原子や有機残基が異なる2種以上のシロキサン単位とすることができる。
シリコーン化合物は、直鎖状であっても分岐構造を持つものであってもよい。またシリコン原子に結合する有機残基は炭素数1〜30、より好ましくは1〜20の有機残基であることが好ましい。かかる有機残基としては、具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、およびデシル基などのアルキル基、シクロヘキシル基の如きシクロアルキル基、フェニル基の如きアリール基、並びにトリル基の如きアラルキル基を挙げることがでる。さらに好ましくは炭素数1〜8のアルキル基、アルケニル基またはアリール基である。アルキル基としては、特にはメチル基、エチル基、およびプロピル基等の炭素数1〜4のアルキル基が好ましい。
さらにシリコーン系難燃剤として使用されるシリコーン化合物はアリール基を含有することが好ましい。一方、二酸化チタン顔料の有機表面処理剤としてのシラン化合物およびシロキサン化合物は、アリール基を含有しない方が好ましい効果が得られる点で、シリコーン系難燃剤とはその好適な態様において明確に区別される。より好適なシリコーン系難燃剤は、下記一般式〔10〕で示される芳香族基が含まれる割合(芳香族基量)が10〜70重量%(より好適には15〜60重量%)のシリコーン化合物である。
(式〔10〕中、Bはそれぞれ独立にOH基、炭素数1〜20の一価の有機残基を示す。jは0〜5の整数を表わす。さらに式〔10〕中においてjが2以上の場合はそれぞれ互いに異なる種類のBを取ることができる。)
シリコーン系難燃剤として使用されるシリコーン化合物は、前記Si−H基およびアルコキシ基以外にも反応基を含有していてもよく、かかる反応基としては例えば、アミノ基、カルボキシル基、エポキシ基、ビニル基、メルカプト基、およびメタクリロキシ基などが例示される。
Si−H基を有するシリコーン化合物としては、下記一般式〔11〕および〔12〕で示される構成単位の少なくとも一種を含むシリコーン化合物が好適に例示される。
(式〔11〕および〔12〕中、Z〜Zはそれぞれ独立に水素原子、炭素数1〜20の一価の有機残基、または下記一般式〔13〕で示される化合物を示す。α1〜α3はそれぞれ独立に0または1を表わす。m1は0もしくは1以上の整数を表わす。さらに式〔11〕中においてm1が2以上の場合の繰返し単位はそれぞれ互いに異なる複数の繰返し単位を取ることができる。)
(式〔13〕中、Z〜Zはそれぞれ独立に水素原子、炭素数1〜20の一価の有機残基を示す。α4〜α8はそれぞれ独立に0または1を表わす。m2は0もしくは1以上の整数を表わす。さらに式〔13〕中においてm2が2以上の場合の繰返し単位はそれぞれ互いに異なる複数の繰返し単位を取ることができる。)
シリコーン系難燃剤に使用されるシリコーン化合物において、アルコキシ基を有するシリコーン化合物としては、例えば一般式〔14〕および一般式〔15〕に示される化合物から選択される少なくとも1種の化合物があげられる。
(式〔14〕中、βはビニル基、炭素数1〜6のアルキル基、炭素数3〜6のシクロアルキル基、並びに炭素数6〜12のアリール基およびアラルキル基を示す。γ、γ、γ、γ、γ、およびγは炭素数1〜6のアルキル基およびシクロアルキル基、並びに炭素数6〜12のアリール基およびアラルキル基を示し、少なくとも1つの基がアリール基またはアラルキル基である。δ、δ、およびδは炭素数1〜4のアルコキシ基を示す。)
(式〔15〕中、βおよびβはビニル基、炭素数1〜6のアルキル基、炭素数3〜6のシクロアルキル基、並びに炭素数6〜12のアリール基およびアラルキル基を示す。γ、γ、γ、γ10、γ11、γ12、γ13およびγ14は炭素数1〜6のアルキル基、炭素数3〜6のシクロアルキル基、並びに炭素数6〜12のアリール基およびアラルキル基を示し、少なくとも1つの基がアリール基またはアラルキルである。δ、δ、δ、およびδは炭素数1〜4のアルコキシ基を示す。)
シリコーン系難燃剤の含有量は、A成分とB成分との合計100重量部に対し、好ましくは0.01〜20重量部、より好ましくは0.5〜10重量部、さらに好ましくは1〜5重量部である。
(強化充填材)
本発明の難燃性ポリカーボネート樹脂組成物には、本発明の効果を損なわない範囲で強化充填材を添加しても良い。強化充填材としては、繊維状強化充填材、板状強化充填材および粒状強化充填材が挙げられ、これらを単独または併用して配合してもよい。
繊維状強化充填材としては、ガラス繊維、炭素繊維、金属繊維、アスベスト、ロックウール、セラミック繊維、スラグ繊維、チタン酸カリウムウィスカー、ボロンウィスカー、硼酸アルミニウムウィスカー、炭酸カルシウムウィスカー、酸化チタンウィスカー、並びにこれらの強化剤に対して金属等の異種材料を表面被覆した繊維等が挙げられ、またこれらの二種以上を組み合わせて使用することもできる。
これらの繊維状強化充填材の中ではガラス繊維、炭素繊維が好ましい。またガラス繊維については、繊維断面が扁平状であるガラス繊維が好ましく用いられ、その繊維断面の長径と短径の比(長径/短径)の平均値は3.2〜8が好ましく、3.2〜6がより好ましく、3.8〜6がさらにより好ましい。
ガラス繊維や炭素繊維は、例えば長繊維タイプ(ロービング)や短繊維状のチョップドストランド、ミルドファイバーなどから選択して用いることができる。尚、ミルドファイバーにおいてはその数平均アスペクト比は5以上であることが好ましい。繊維状強化充填材には、集束剤(例えばポリ酢酸ビニル、ウレタン、アクリル、ポリエステル集束剤等)、カップリング剤(例えばアルキルアルコキシシランやポリオルガノハイドロジェンシロキサンなどを含むシラン化合物、ボロン化合物、チタン化合物等)、その他の表面処理剤で処理されていてもよい。かかるその他の表面処理剤としては、高級脂肪酸エステル、酸化合物(例えば、亜リン酸、リン酸、カルボン酸、およびカルボン酸無水物など)並びにワックスなどが例示される。さらに各種樹脂、高級脂肪酸エステル、およびワックスなどの集束剤で造粒し顆粒状とされていてもよい。
板状強化充填材としてはタルク、マイカ、クレー、モンモンリロナイト、スメクタイト、カオリン、炭酸カルシウム、ガラスフレーク、炭素フレーク、金属フレーク、金属コートガラスフレーク、グラファイト等が挙げられる。板状強化充填材は強化充填材自体の異方性が少なく、高度な寸法安定性が求められる精密部材に適している。かかる板状強化充填材の平均粒径は0.1〜300μmの範囲が好ましく、特に0.1〜200μmの範囲が好ましい。かかる平均粒径は、レーザー回折・散乱法で測定される平均粒径(D50(粒子径分布のメジアン径))をいう。かかる測定は、例えば(株)堀場製作所製レーザー回析・散乱方式粒子径分布測定装置を利用できる。板状強化充填材の平均粒径が300μmを越えると、ゲート部やホットランナーのノズル部に詰まりを生ずる場合があり、高度に自動化された近年の成形現場において、生産効率の低下を招く。特に近年は成形サイクルの向上や成形品の外観向上のためゲート径やノズル径を小径化する傾向にあり、詰まりの問題を、更に高いレベルで解決することが重要となっている。板状強化充填材の平均粒径が0.1μmを下回ると、板状強化充填材の剛性や寸法安定性の改良効果が小さくなる。
粒状強化充填材としては、ガラスビーズ、ガラスバルーン、カーボンビーズ、セラミック粒子、セラミックバルーン、アラミド粒子、シリカ、が挙げられる。
本発明に用いられる強化充填材は、本発明の効果を損なわない範囲でオレフィン系樹脂、スチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、およびウレタン系樹脂等で集束処理されていても良く、シランカップリング剤、高級脂肪酸エステル、およびワックスなどの各種表面処理剤で表面処理されていても良い。また、造粒された形態で使用しても良く、かかる造粒方法としては、バインダーを使用する場合と、実質的に使用しない場合があるが、バインダーを使用しないものがより好適である。バインダーを使用しない場合の造粒方法としては、脱気圧縮の方法(例えば真空状態で脱気しながらブリケッティングマシーンなどでローラー圧縮する方法など)、および転動造粒や凝集造粒の方法などが挙げられる。更に前述のとおり、本発明に用いられる強化充填材は、異種材料が表面被覆されたものを含む。かかる異種材料としては金属および金属酸化物が好適に例示される。金属としては、銀、銅、ニッケル、およびアルミニウムなどが例示される。また金属酸化物としては、酸化チタン、酸化セリウム、酸化ジルコニウム、酸化鉄、酸化アルミニウム、および酸化ケイ素などが例示される。かかる異種材料の表面被覆の方法としては特に限定されるものではなく、例えば公知の各種メッキ法(例えば、電解メッキ、無電解メッキ、溶融メッキなど)、真空蒸着法、イオンプレーティング法、CVD法(例えば熱CVD、MOCVD、プラズマCVDなど)、PVD法、およびスパッタリング法などを挙げることができる。
強化充填材の含有量はA成分とB成分との合計100重量部に対し、1〜200重量部が好ましく、1〜150重量部がより好ましく、10〜150重量部がさらに好ましい。
(調整方法)
本発明の難燃性ポリカーボネート樹脂組成物を製造する方法に特に制限はなく、周知の方法を用いることができる。たとえば、溶液状態で各成分を混合し、溶剤を蒸発させるか、溶剤中に沈殿させる方法が挙げられる。工業的見地からみると溶融状態で各成分を混練する方法が好ましい。溶融混練には一般に使用されている一軸または二軸の押出機、各種のニーダー等の混練装置を用いることができる。特に二軸の高混練機が好ましい。溶融混練に際しては、混練装置のシリンダー設定温度は200〜360℃の範囲が好ましく、さらに好ましくは250〜340℃である。
混練に際しては、各成分は予めタンブラーもしくはヘンシェルミキサーのような装置で各成分を均一に混合してもよいし、必要な場合には混合を省き、混練装置にそれぞれ別個に定量供給する方法も用いることができる。
芳香族ポリカーボネート樹脂と液晶ポリエステル樹脂をあらかじめ溶融混練して混合物を得て、ついでこれとリン系安定剤を溶融混練して難燃性ポリカーボネート樹脂組成物を得ることもできる。
また、芳香族ポリカーボネート樹脂、液晶ポリエステル樹脂を溶融混練し調製した混練物(F成分)を芳香族ポリカーボネート樹脂および/または液晶ポリエステル樹脂、リン系難燃剤、フィブリル形成能を有するポリテトラフルオロエチレンおよびリン系安定剤を配合して、さらに溶融混練して、難燃性ポリカーボネート樹脂組成物を得ることもできる。
この場合、F成分中のA成分とB成分の重量比は1/99〜99/1が好ましく、10/90〜90/10がより好ましく、20/80〜80/20がさらにより好ましく、50/50〜80/20が最も好ましい。また、ポリカーボネート樹脂、液晶ポリエステル樹脂を混練機の第一投入口から投入し、第二投入口からリン系難燃剤、フィブリル形成能を有するポリテトラフルオロエチレンおよびリン系安定剤および、芳香族ポリカーボネート樹脂および/または液晶ポリエステル樹脂を投入して一回の混練で難燃性ポリカーボネート樹脂組成物を得ることもできる。
該樹脂組成物は、射出成形、押出成形、その他各種の成形法によって成形されるが、予め混練の過程を経ず、射出成形や押出成形時にドライブレンドして溶融加工操作中に混練して、本発明の樹脂組成物とし、直接成形加工品を得ることもできる。
本発明の難燃性ポリカーボネート樹脂組成物からなる成形品は、その表面をヒドラジンにて処理後、残存するB成分の平均フィブリル径が0.01〜3μmであることが好ましく、0.01〜2μmであることがより好ましく、0.01〜1μmであることがさらにより好ましい。B成分の平均フィブリル径が0.01μmを下回ると、剛性が発現しにくくなり、3μmを超えると、強度が出なくなるため好ましくない。なお、上記のB成分の平均フィブリル径は、成形品をヒドラジン一水和物に30秒間浸漬し、メタノールにて洗浄した後、成形品表面を走査型電子顕微鏡により観察し残存するB成分の平均フィブリル径を測定することにより算出した。
本発明の難燃性ポリカーボネート樹脂組成物は、耐熱性、難燃性に優れ、各種電子・電気機器、OA機器、車輌部品、機械部品、その他農業資材、搬送容器、遊戯具および雑貨などの各種用途に有用であり、殊に難燃性の要求される薄肉の外装部品に有用であり、その奏する産業上の効果は格別である。
実施例において使用した大型OA機器外装部品模擬成形品の表面斜視概要図である。(外形寸法:縦500mm、横600mm、厚み2.5mm)。
本発明を実施するための形態は、前記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。
以下、実施例により本発明を詳述する。ただし、本発明はこれらに限定されるものではない。
なお、実施例中の各種特性の測定は、以下の方法によった。
1.物性測定方法
1)B成分中のアルカリ(土類)金属量
液晶ポリエステル樹脂を硫酸、硝酸で加熱分解後、超純水で定容して検液とし、誘導結合プラズマ発光分光分析法(ICP−AES)により、検液中のアルカリ金属および/またはアルカリ土類金属の元素定量分析を行った。(装置:エスアイアイ・ナノテクノロジー製 SPS5100型)
2)エステル交換率
下記の方法により得られたペレットをメチレンクロライドに溶解させ、得られた溶液をろ紙(保留粒子径;7μm)を用いてろ過することにより得られたろ過物を90℃で6時間乾燥させた。該ろ過物を重クロロホルムに溶解させ、磁気共鳴装置を用いてH−NMRを測定し、ポリカーボネート樹脂と液晶ポリエステル樹脂との共反応物由来の7.8〜8.1ppmのピークと、ポリカーボネート樹脂由来の7.1〜7.3ppmのピークから算出した積分比から、下記式にてエステル交換率を算出した。
エステル交換率(%)=100×(共反応物由来のピークより算出した積分比)/(共反応物由来のピークより算出した積分比+ポリカーボネート樹脂由来のピークより算出した積分比)
なお、比較例2、8については、樹脂組成物の溶融熱安定性が悪いことによりエステル交換率の測定値が一定しないため、測定不能とした。
3)難燃性
下記の方法により得られたペレットを90℃で5時間熱風乾燥機により乾燥した後、射出成形機(住友重機械工業(株)SG−150U)を用いてUL94規格に従い、厚み2.0mm、1.8mm、1.6mm、1.0mm、および0.6mmで5V燃焼試験を実施した。なお、難燃性の下記基準で評価を行った。
○:UL94規格で 5VBクラスに合格
×:UL94規格で 5VBクラスに不合格
4)耐熱性
下記の方法により得られたペレットを90℃で5時間熱風乾燥機により乾燥した後、射出成形機(住友重機械工業(株)SG−150U)を用いてシリンダー温度260℃、金型温度70℃で曲げ試験片(肉厚4.0mm)を作成し、ISO 75−1および75−2に従い、荷重たわみ温度を測定した。なお、測定荷重は1.80MPaで実施した。
5)流動性
下記の方法により得られたペレットを90℃で5時間熱風乾燥機により乾燥した後、流路厚2mm、流路幅8mmのアルキメデス型スパイラル長を射出成形機(住友重機械工業(株)SG−150U)によりシリンダー温度260℃、金型温度70℃、射出圧力98MPaにて射出成形した際の流動長より測定した。
6)溶融熱安定性
下記の方法により得られたペレットを90℃で5時間熱風乾燥機により乾燥した後、射出成形機(住友重機械工業(株)SG−150U)を用いてシリンダー温度300℃にて20分滞留後、金型温度70℃で曲げ試験片(肉厚4.0mm)を作成し、その外観にて下記基準にて評価を行った。
○ : 成形品のショートショット、シルバー、ヒケ 無し
× : 成形品のショートショット、シルバー、ヒケ あり
7)成形品外観評価
下記の方法により得られたペレットを100℃で5時間、熱風循環式乾燥機により乾燥した。乾燥後、射出成形機(住友重機械工業(株)SG−150U)を用いてシリンダー温度300℃、金型温度70℃で曲げ試験片(肉厚4.0mm)を作成し、その外観にて下記基準にて評価を行った。
○ : 成形品表面のブツおよび相分離 無し
× : 成形品表面のブツおよび相分離 あり
2.成形品の評価方法
1)成形品表面のB成分の平均フィブリル径
下記の方法により得られたペレットを100℃で5時間、熱風循環式乾燥機により乾燥した。乾燥後、射出成形機((株)日本製鋼所製J1300E−C5)を使用し、図1に示す大型OA機器外装部品模擬成形品を成形した。得られた大型OA機器外装部品模擬成形品をヒドラジン一水和物に30秒間浸漬し、メタノールにて洗浄した後、成形品表面を走査型電子顕微鏡により観察し残存するB成分の平均フィブリル径を測定することにより算出した。
3.芳香族ポリカーボネート樹脂(A成分)と液晶ポリエステル樹脂(B成分)のエステル交換反応物(F成分)の調製
芳香族ポリカーボネート樹脂パウダー(A成分)、液晶ポリエステル樹脂(B成分)、およびリン系安定剤(E成分)を表1記載の各配合量で配合し、ブレンダーにて混合した後、ベント式二軸押出機((株)日本製鋼所製:TEX30α(完全かみ合い、同方向回転、2条ネジスクリュー))を用いて溶融混練しペレット(F−1〜F−9)を得た。押出条件は吐出量20kg/h、スクリュー回転数150rpm、ベントの真空度3kPaであり、また押出温度は第1供給口からダイス部分まで280℃とした。得られたペレットのエステル交換率を表1に示す。
なお、表1中記号表記の各成分の内容は下記の通りである。以下“部”は特に断りのない限り“重量部”を、%は“重量%”を示す。
(A成分)
PC−1:4,4’―ジヒドロキシー2,2’―ジフェニルプロパンからなるポリカーボネート
(PC−1の製造方法)
温度計、攪拌機、還流冷却器付き反応器にイオン交換水2340部、25%水酸化ナトリウム水溶液947部、ハイドロサルファイト0.7部を仕込み、攪拌下に2,2−ビス(4−ヒドロキシフェニル)プロパン(以下「ビスフェノールA」と称する事がある)710部を溶解した(ビスフェノールA溶液)後、塩化メチレン2299部と48.5%水酸化ナトリウム水溶液112部を加えて、15〜25℃でホスゲン354部を約90分かけて吹き込みホスゲン化反応を行った。
ホスゲン化終了後、11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液148部と48.5%水酸化ナトリウム水溶液88部を加えて、攪拌を停止し、10分間静置分離後、攪拌を行い乳化させ5分後、ホモミキサー(特殊機化工業(株))で回転数1200rpm、バス回数35回で処理し高乳化ドープを得た。該高乳化ドープを重合槽(攪拌機付き)で、無攪拌条件下、温度35℃で3時間反応し重合を終了した。反応終了後、塩化メチレン5728部を加えて希釈した後、反応混合液から塩化メチレン相を分離し、分離した塩化メチレン相にイオン交換水5000部を加え攪拌混合した後、攪拌を停止し、水相と有機相を分離した。次に水相の導電率がイオン交換水と殆ど同じになるまで水洗浄を繰返し精製ポリカーボネート樹脂溶液を得た。 次いで、この樹脂溶液を温水を張ったニーダーに投入して、攪拌しながら塩化メチレンを蒸発させ、ポリカーボネート樹脂の粒状体を得た。脱水後、熱風循環式乾燥機により120℃で12時間乾燥した。このポリカーボネートの粘度平均分子量は19,700であった。
PC−2:4,4’―ジヒドロキシー2,2’―ジフェニルプロパンおよび下記式〔16〕で表されるポリジメチルシロキサン構造を含むビスフェノール化合物からなるポリカーボネート−ポリジメチルシロキサン共重合体。
(PC−2の製造方法)
PC−1の製造方法において、ホスゲン化終了後、11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液148部と48.5%水酸化ナトリウム水溶液88部を加えて、攪拌しながら下記式〔16〕で表される下記構造のポリジオルガノシロキサン化合物(信越化学工業(株)製 X−22−1821)37重量部を塩化メチレン170部に溶解した溶液を加えた後、SL型ホモミキサーにより回転数8000rpmで2分間攪拌することにより高度の乳化状態として、その後攪拌せずに静置状態で35±1℃に2時間保持して重合反応を行った以外はPC−1の製造方法と同様にしてポリカーボネート−ポリジメチルシロキサン共重合体の粒状体を得た。このポリカーボネートの粘度平均分子量は19,500であった。
(B成分)
LCP−1:アルカリ金属の含有量が35ppmである液晶ポリエステル樹脂
(LCP−1の製造方法)
p−アセトキシ安息香酸5400重量部、2,6−ナフタレンジカルボン酸4320重量部、及び全仕込み量に対し0.01重量%の酢酸カリウムを各々、攪拌機、窒素導入管及び留出管を備えた反応器中に仕込み、窒素気流下でこの混合物を1時間で260℃にまで加熱した。反応器中から酢酸を留出させながら260〜300℃へ2時間かけて加熱し、更に300℃で2時間加熱し、減圧下(2mmHg)で酢酸を留出させた。次いで窒素を導入し、室温にまで冷却して淡黄乳白色の液晶ポリエステル樹脂を得た。この液晶性ポリエステル樹脂中に含まれるアルカリ金属量は35ppmであった。
LCP−2:アルカリ金属の含有量が140ppmである液晶ポリエステル樹脂
(LCP−2の製造方法)
p−アセトキシ安息香酸5400重量部、2,6−ナフタレンジカルボン酸1080重量部、2,7−ナフタレンジカルボン酸1080重量部、4,4’−ジアセトキシビフェニル2070重量部及び全仕込み量に対し0.05重量%の酢酸カリウムを各々、攪拌機、窒素導入管及び留出管を備えた反応器中に仕込み、窒素気流下でこの混合物を1時間で260℃にまで加熱した。反応器中から酢酸を留出させながら260〜300℃へ2時間かけて加熱し、更に300℃で2時間加熱し、減圧下(2mmHg)で酢酸を留出させた。次いで窒素を導入し、室温にまで冷却して淡黄乳白色の液晶ポリエステル樹脂を得た。この液晶性ポリエステル樹脂中に含まれるアルカリ金属量は140ppmであった。
LCP−3:アルカリ金属の含有量が3ppmである液晶ポリエステル樹脂
(LCP−3の製造方法)
p−アセトキシ安息香酸5400重量部、2,6−ナフタレンジカルボン酸1080重量部、2,7−ナフタレンジカルボン酸1080重量部、4,4’−ジアセトキシビフェニル2070重量部及び全仕込み量に対し0.008重量%の酢酸カリウムを各々、攪拌機、窒素導入管及び留出管を備えた反応器中に仕込み、窒素気流下でこの混合物を1時間で260℃にまで加熱した。反応器中から酢酸を留出させながら260〜300℃へ3時間かけて加熱し、更に300℃で6時間加熱し、減圧下(2mmHg)で酢酸を留出させた。次いで窒素を導入し、室温にまで冷却して淡黄色の液晶ポリエステル樹脂を得た。この液晶性ポリエステル樹脂中に含まれるアルカリ金属量は3ppmであった。
LCP−4:アルカリ金属の含有量が350ppmである液晶ポリエステル樹脂
(LCP−4の製造方法)
p−アセトキシ安息香酸5400重量部、2,6−ナフタレンジカルボン酸1080重量部、2,7−ナフタレンジカルボン酸1080重量部、4,4’−ジアセトキシビフェニル2070重量部及び全仕込み量に対し0.13重量%の酢酸カリウムを各々、攪拌機、窒素導入管及び留出管を備えた反応器中に仕込み、窒素気流下でこの混合物を1時間で260℃にまで加熱した。反応器中から酢酸を留出させながら260〜300℃へ2時間かけて加熱し、更に300℃で2時間加熱し、減圧下(2mmHg)で酢酸を留出させた。次いで窒素を導入し、室温にまで冷却して黄色の液晶ポリエステル樹脂を得た。 この液晶性ポリエステル樹脂中に含まれるアルカリ金属量は350ppmであった。
(C成分)
C−1:PX−200(商品名)(大八化学工業(株)製 レゾルノール[ジ(2,6−ジメチルフェニル)ホスフェート]を主成分とするリン酸エステル)
C−2:CR−741(商品名)(大八化学工業(株)製 ビスフェノールAビス(ジフェニルホスフェート)を主成分とするリン酸エステル)
(D成分)
D−1:SN3307(商品名)(Shine polymer社製、 直鎖状ポリテトラフルオロエチレン粒子とスチレン−アクリロニトリル共重合体粒子の混合物)
D−2:SN3300B7(商品名)(Shine polymer社製、分岐状ポリテトラフルオロエチレン粒子とスチレン−アクリロニトリル共重合体粒子の混合物)
(E成分)
E−1:アデカスタブ PEP−8(商品名)(旭電化工業(株)製 ジステアリルペンタエリスリトールジホスファイト)
E−2:アデカスタブ PEP−24G(商品名)(旭電化工業(株)製 ビス(2,4―ジーtert−ブチルフェニル)ペンタエリスリトールジホスファイト)
(その他の成分)
TMP:TMP(商品名)(大八化学工業(株)製 トリメチルホスフェート)
TALC:HST0.8(商品名)(林化成(株)製)
[実施例1〜11、および比較例1〜11]
上記で得られた芳香族ポリカーボネート樹脂パウダー、液晶ポリエステル樹脂、リン系難燃剤、フィブリル形成能を有するポリテトラフルオロエチレン、リン系安定剤および上記方法で得られたペレットを表2記載の各配合量で配合し、ブレンダーにて混合した後、ベント式二軸押出機((株)日本製鋼所製:TEX30α(完全かみ合い、同方向回転、2条ネジスクリュー))を用いて溶融混練しペレットを得た。使用するリン系安定剤は、それぞれ配合量の10〜100倍の濃度を目安に予めポリカーボネート樹脂との予備混合物を作成した後、ブレンダーによる全体の混合を行った。押出条件は吐出量20kg/h、スクリュー回転数150rpm、ベントの真空度3kPaであり、また押出温度は第1供給口からダイス部分まで280℃とした。得られたペレットを90℃で5時間、熱風循環式乾燥機にて乾燥した後、射出成形機を用いて、評価用の試験片を成形した。各評価結果を表2に示した。
[実施例12]
実施例1で得られたペレットからなる大型OA機器外装部品模擬成形品表面のB成分の平均フィブリル径を測定した。その結果を表3に示す。
[比較例12]
比較例7で得られたペレットからなる大型OA機器外装部品模擬成形品表面のB成分の平均フィブリル径を測定した。その結果を表3に示す。
1.成形品本体
2.ピンサイドゲート(サイドゲート部の幅5mm、ゲート厚み1.2mm、ゲートランド長さ6mm、サイドゲートのタブ:幅8mm×長さ15mm、タブ部へのピンゲートの直径1.8mm)
3.B成分の平均フィブリル径の測定位置

Claims (6)

  1. (A)芳香族ポリカーボネート樹脂(A成分)98〜60重量%および(B)液晶ポリエステル樹脂(B成分)2〜40重量%からなる樹脂成分100重量部に対し、(C)リン系難燃剤(C成分)2〜20重量部、(D)フィブリル形成能を有するポリテトラフルオロエチレン(D成分)0.01〜5重量部および(E)リン系安定剤(E成分)0.001〜2重量部を含んでなる難燃性ポリカーボネート樹脂組成物において、B成分に含まれるアルカリ金属および/またはアルカリ土類金属の含有量が5〜300ppmの範囲にあり、かつ得られた樹脂組成物中のA成分とB成分の一部がエステル交換をしており、そのエステル交換率が0.01〜0.5%であることを特徴とする難燃性ポリカーボネート樹脂組成物。
  2. B成分が、p−ヒドロキシ安息香酸と6−ヒドロキシ−2−ナフトエ酸を原料として重合された液晶ポリエステル樹脂であることを特徴とする請求項1に記載の難燃性ポリカーボネート樹脂組成物。
  3. C成分が、下記一般式〔1〕で表される有機リン系難燃剤であることを特徴とする請求項1または2に記載の難燃性ポリカーボネート樹脂組成物。
    (但し式中のMは、二価フェノールから誘導される二価の有機基を表し、R、R、R、およびRはそれぞれ一価フェノールから誘導される一価の有機基を表す。 e、f、g及びhはそれぞれ独立して0または1であり、nは0〜5の整数であり、重合度nの異なるリン酸エステルの混合物の場合はnはその平均値を表し、0〜5の値である。)
  4. E成分が下記一般式〔2〕で表されるペンタエリスリトールジホスファイト系化合物であることを特徴とする請求項1〜3のいずれかに記載の難燃性ポリカーボネート樹脂組成物。
    [式中AおよびAはそれぞれ独立して、水素原子、炭素数1〜20のアルキル基、炭素数6〜20のアリール基ないしアルキルアリール基、炭素数7〜30のアラルキル基、炭素数4〜20のシクロアルキル基、および炭素数15〜25の2−(4−オキシフェニル)プロピル置換アリール基からなる群より選択される基を示す。尚、シクロアルキル基およびアリール基は、アルキル基で置換されていてもよい。]
  5. (F)芳香族ポリカーボネート樹脂(A成分)および液晶ポリエステル樹脂(B成分)を押出機で反応させて調製したA成分とB成分との混合物(F成分)と、(A)ポリカーボネート樹脂(A成分)および/または(B)液晶ポリエステル樹脂(B成分)、(C)リン系難燃剤(C成分)、(D)フィブリル形成能を有するポリテトラフルオロエチレン(D成分)および(E)リン系安定剤(E成分)とを再度溶融混練せしめて調製することを特徴とする請求項1〜4のいずれかに記載の難燃性ポリカーボネート樹脂組成物の製造方法
  6. 成形品の表面をヒドラジンにて処理後、残存するB成分の平均フィブリル径が0.01〜3μmであることを特徴とする請求項1〜のいずれかに記載の難燃性ポリカーボネート樹脂組成物からなる成形品。
JP2013064167A 2013-03-26 2013-03-26 難燃性ポリカーボネート樹脂組成物 Active JP6133650B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013064167A JP6133650B2 (ja) 2013-03-26 2013-03-26 難燃性ポリカーボネート樹脂組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013064167A JP6133650B2 (ja) 2013-03-26 2013-03-26 難燃性ポリカーボネート樹脂組成物

Publications (2)

Publication Number Publication Date
JP2014189574A JP2014189574A (ja) 2014-10-06
JP6133650B2 true JP6133650B2 (ja) 2017-05-24

Family

ID=51836192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013064167A Active JP6133650B2 (ja) 2013-03-26 2013-03-26 難燃性ポリカーボネート樹脂組成物

Country Status (1)

Country Link
JP (1) JP6133650B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018188539A (ja) * 2017-05-01 2018-11-29 住化ポリカーボネート株式会社 難燃性ポリカーボネート樹脂組成物の製造方法
JP6782379B1 (ja) * 2019-05-08 2020-11-11 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物
CN114806128B (zh) * 2022-05-10 2024-02-09 常州杰铭新材料科技有限公司 一种耐低温抗应力开裂阻燃pc料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331051A (ja) * 1994-05-31 1995-12-19 Nippon G Ii Plast Kk 難燃性ポリカーボネート系樹脂組成物
JP5280669B2 (ja) * 2006-12-08 2013-09-04 帝人株式会社 難燃性ポリカーボネート樹脂組成物
JP5226294B2 (ja) * 2007-12-25 2013-07-03 帝人化成株式会社 ポリカーボネート樹脂組成物
JP5855844B2 (ja) * 2011-05-02 2016-02-09 帝人株式会社 ポリカーボネート樹脂組成物
JP5767056B2 (ja) * 2011-08-09 2015-08-19 帝人株式会社 ポリカーボネート樹脂組成物

Also Published As

Publication number Publication date
JP2014189574A (ja) 2014-10-06

Similar Documents

Publication Publication Date Title
JP6092499B2 (ja) 金型磨耗性に優れるガラス繊維強化ポリカーボネート樹脂組成物
JP5280669B2 (ja) 難燃性ポリカーボネート樹脂組成物
KR101866581B1 (ko) 폴리카보네이트 수지 조성물 및 폴리카보네이트 수지 성형체
JP5752990B2 (ja) ハイサイクル成形性熱可塑性樹脂組成物
JP2011026439A (ja) ガラス繊維強化樹脂組成物
JP2011102364A (ja) 熱可塑性樹脂組成物
WO2009145340A1 (ja) 難燃性ポリカーボネート樹脂組成物
JPWO2020184577A1 (ja) インペラ及びその樹脂組成物
JP6073700B2 (ja) 強化ポリカーボネート樹脂組成物
JP5583883B2 (ja) 難燃性ポリカーボネート樹脂組成物
JP5612242B2 (ja) 難燃性ポリカーボネート樹脂組成物
JP6133650B2 (ja) 難燃性ポリカーボネート樹脂組成物
JP7303058B2 (ja) 熱伝導性ポリカーボネート樹脂組成物
JP5767056B2 (ja) ポリカーボネート樹脂組成物
JP6110197B2 (ja) 導電性ポリカーボネート樹脂組成物
JP2008208317A (ja) 難燃性ポリカーボネート樹脂組成物
JP5855844B2 (ja) ポリカーボネート樹脂組成物
JP6991003B2 (ja) 強化ポリカーボネート樹脂組成物
CN110691820B (zh) 增强聚碳酸酯树脂组合物
JP2018119102A (ja) 熱可塑性樹脂組成物およびその成形品
JP6820776B2 (ja) 熱カシメ結合体
JP6956538B2 (ja) 強化ポリカーボネート樹脂組成物
JP7440306B2 (ja) ポリカーボネート樹脂組成物及びその成形体
JP7311356B2 (ja) ポリカーボネート樹脂組成物
JP5614926B2 (ja) ポリカーボネート樹脂組成物およびそれからなる成形品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170420

R150 Certificate of patent or registration of utility model

Ref document number: 6133650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150