WO2020184421A1 - オレフィン系樹脂、その架橋物およびそれらの製造方法 - Google Patents

オレフィン系樹脂、その架橋物およびそれらの製造方法 Download PDF

Info

Publication number
WO2020184421A1
WO2020184421A1 PCT/JP2020/009626 JP2020009626W WO2020184421A1 WO 2020184421 A1 WO2020184421 A1 WO 2020184421A1 JP 2020009626 W JP2020009626 W JP 2020009626W WO 2020184421 A1 WO2020184421 A1 WO 2020184421A1
Authority
WO
WIPO (PCT)
Prior art keywords
olefin
macromonomer
mol
copolymer
polymerization
Prior art date
Application number
PCT/JP2020/009626
Other languages
English (en)
French (fr)
Inventor
誠也 菊地
泰 柳本
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to CN202080019332.8A priority Critical patent/CN113544173A/zh
Priority to EP20769122.1A priority patent/EP3940009A4/en
Priority to US17/437,806 priority patent/US20220162369A1/en
Priority to JP2021505016A priority patent/JP7186856B2/ja
Publication of WO2020184421A1 publication Critical patent/WO2020184421A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • C08F290/042Polymers of hydrocarbons as defined in group C08F10/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • C08F255/04Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms on to ethene-propene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/20Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds unconjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/02Low molecular weight, e.g. <100,000 Da.
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound

Definitions

  • the present invention relates to an olefin resin satisfying a specific requirement, a crosslinked product thereof, and a method for producing the same.
  • Non-Patent Document 1 discloses a crosslinked product of an acrylic or silicone-based bottle brush polymer, exemplifying a new possibility as a soft material.
  • Non-Patent Document 2 exemplifies a crosslinked material of an acrylic bottle brush polymer having uniform pores.
  • olefin resins typified by polyethylene and polypropylene have properties such as light weight, high heat resistance, and chemical resistance, and are excellent in moldability and recyclability. Therefore, automobile parts such as bumpers and instrument panels. , Widely used as packaging materials, sports parts, wire coating materials, etc.
  • the ethylene / ⁇ -olefin copolymer has various physical properties such as thermal properties, mechanical properties, and rheological properties that change depending on the composition of the monomer (composition ratio of ethylene and ⁇ -olefin), and the required performance for each application.
  • the monomer composition is designed according to the above, and it is widely used as a compatibilizer and a modifier.
  • Patent Document 1 discloses an example in which an olefin polymer having a vinyl group at the terminal is homopolymerized by coordination polymerization.
  • Patent Document 2 discloses a method of converting a terminal unsaturated group of an ethylene / propylene copolymer into a radically polymerizable group to carry out radical polymerization.
  • An object of the present invention is to provide an olefin resin containing an olefin-based bottle brush polymer having an unsaturated carbon bond capable of cross-linking, and a cross-linked product thereof, and further to provide a method for producing them.
  • the present inventors have solved the above-mentioned problems by copolymerizing an olefin-based macromonomer and a non-conjugated diene in the presence of a catalyst for olefin polymerization, and completed the present invention.
  • the present invention relates to the following [1] to [8].
  • Olefin resin is containing a copolymer of an olefin macromonomer and a non-conjugated diene.
  • the requirement (iii) is It has a vinyl group of 60 mol% or more with respect to the total unsaturated end.
  • [6] The method for producing an olefin resin according to any one of [1] to [5] above, which comprises the following steps A and B. Step A: A step of polymerizing an olefin in the presence of a catalyst for olefin polymerization to produce an olefin-based macromonomer.
  • Step B A step of copolymerizing an olefin-based macromonomer produced in step A with a non-conjugated diene in the presence of a catalyst for olefin polymerization to produce an olefin-based resin.
  • the olefin-based resin of the present invention contains an olefin-based bottle brush polymer having an unsaturated carbon bond capable of cross-linking, it is possible to provide a cross-linked product having excellent mechanical properties and a precursor thereof, and further, because it is an olefin-based resin.
  • the olefin resin of the present invention and its crosslinked product are also excellent in light weight, chemical resistance and recyclability.
  • the olefin-based resin of the present invention is characterized by containing a copolymer of an olefin-based macromonomer and a non-conjugated diene.
  • the olefin-based macromonomer is a polymer derived from an olefin composed of only carbon atoms and hydrogen atoms, and is polymerizable, for example, in the presence of the olefin polymerization catalyst shown in step B described later. It is a polymer containing a polymer having a vinyl group at the end.
  • macromonomers made of ethylene homopolymers disclosed by the present applicant (International Publication No. 2015/147186) and macromonomers made of propylene homopolymers (International Publication No. 2015/147187).
  • Macromonomer composed of propylene / ethylene copolymer International Publication No. 2017/0882182
  • other macromonomer composed of propylene homopolymer Japanese Patent Laid-Open No. 2009-299046
  • Macromonomers International Publication No. 2012/134719
  • the olefin macromonomer one type may be used alone, or a plurality of types may be used in combination.
  • the olefin-based macromonomer will be described in detail.
  • the olefin-based macromonomer is a polymer derived from an olefin composed of only carbon atoms and hydrogen atoms, and for example, a structural unit derived from an olefin having 2 to 50 carbon atoms, preferably 2 to 12 carbon atoms. It is a polymer containing. It is preferably a homopolymer or copolymer of one or more olefins selected from ethylene and ⁇ -olefins having 3 to 12 carbon atoms.
  • the olefin having 2 carbon atoms is ethylene, and the ⁇ -olefins having 3 to 12 carbon atoms are specifically propylene, 1-butene, 2-methyl-1-propene, 2-methyl-1-butene, 3 -Methyl-1-butene, 1-hexene, 2-ethyl-1-butene, 2,3-dimethyl-1-butene, 2-methyl-1-pentene, 3-methyl-1-pentene, 4-methyl-1 -Pentene, 3,3-dimethyl-1-butene, 1-heptene, methyl-1-hexene, dimethyl-1-pentene, ethyl-1-pentene, trimethyl-1-butene, methylethyl-1-butene, 1- Octene, methyl-1-pentene, ethyl-1-hexene, dimethyl-1-hexene, propyl-1-heptene, methylethyl-1-heptene, trimethyl
  • olefins more preferably, ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-hexadecene, 1-octadecene, 4-methyl-1-pentene, Examples thereof include 3-methyl-1-pentene and 3-methyl-1-butene, and even more preferably ethylene and propylene.
  • the olefin-based macromonomer may be a homopolymer of the olefin, or may be a copolymer selected from at least two or more of the olefins.
  • Preferred examples thereof include an ethylene homopolymer, a propylene homopolymer, and a copolymer of ethylene and the ⁇ -olefin having 3 to 12 carbon atoms, in which case the content of the repeating unit derived from ethylene is 30 to 70 mol. It is preferably in the range of%.
  • ethylene / propylene copolymers are particularly preferable.
  • the content of the structural unit derived from ethylene is preferably 20 to 80 mol%, more preferably 30 to 70 mol%, and the content of the structural unit derived from propylene is It is preferably 80 to 20 mol%, more preferably 70 to 30 mol%.
  • the content of the structural unit derived from ethylene and propylene is in the above range, it becomes an olefin-based macromonomer having a flexible polymer chain, and an olefin-based resin containing a bottle brush polymer obtained by polymerizing the macromonomer. Has excellent flexibility.
  • the polystyrene-equivalent weight average molecular weight of the olefin macromonomer determined by gel permeation chromatography (GPC) is preferably in the range of 1000 to 100,000, more preferably 1000 to 30,000 or 2000 to 50,000. It is more preferably in the range of 2500 to 40,000, and particularly preferably in the range of 3000 to 30000. Within the above range, the olefin resin containing the bottle brush polymer obtained by polymerizing the macromonomer exhibits excellent properties derived from the bottle brush polymer.
  • the olefin-based macromonomer is usually obtained by polymerizing an olefin in the presence of a catalyst for olefin polymerization, as described in step A described later, and is usually chain-transferred to the olefin monomer or ⁇ . It contains a polymer having a carbon-carbon unsaturated bond at the end by a termination reaction such as hydrogen desorption and ⁇ -alkyl desorption.
  • the olefin-based macromonomer preferably contains, for example, a polymer having a vinyl group at the end, which exhibits polymerization reactivity in the presence of the catalyst for olefin polymerization shown in step B described later. Therefore, the ratio of the vinyl group to the total unsaturated end of the olefin-based macromonomer is usually 50 mol% or more, more preferably 60 mol% or more, still more preferably 70 mol% or more.
  • the number of terminal vinyl groups contained in the olefin-based macromonomer is preferably in the range of 0.1 to 10.0 per 1000 carbon atoms, more preferably 0.5 to 8.0, and more preferably. The range is 1.0 to 6.0.
  • the olefin-based macromonomer contained in the olefin-based resin of the present invention and the non-conjugated diene comonomer are co-monomerized. It is preferable in that the proportion of the polymer increases.
  • the terminal vinyl group selectivity and the ratio of the terminal vinyl group per 1000 carbon atoms can be calculated by a conventional method by polymer structure analysis by 1 H-NMR measurement.
  • (2) Non-conjugated diene As the non-conjugated diene, a chain-shaped or cyclic diene can be used. These can be used alone or in combination of two or more.
  • a non-conjugated diene having a vinyl group only at one end is a general non-conjugated diene compound ( ⁇ , ⁇ -).
  • a sulfur compound can be used as a cross-linking agent described later, which is particularly preferable.
  • the use of a sulfur compound as a cross-linking agent can suppress the reduction in molecular weight due to decomposition as compared with the case where a peroxide is used as a cross-linking agent.
  • the non-conjugated diene may contain a polymer structure, and for example, a polyolefin copolymer having vinyl groups at both ends as described in International Publication No. 2008/026628 may be used as the non-conjugated diene. That is, at least selected from the group consisting of ethylene (a), ⁇ -olefin (b) having 3 to 20 carbon atoms, and cyclic olefin (c) represented by the following general formulas [I], [II] and [III].
  • the terminal vinylization rate for both ends of the entire molecular chain is 70% or more, 2) A polyolefin polymer containing vinyl groups at both ends, whose ultimate viscosity [ ⁇ ] measured in a decalin solution at 135 ° C. is in the range of 0.01 to 10 dl / g.
  • R 61 to R 78 and R a1 and R b1 may be the same or different from each other. Often, it is a hydrogen atom, a halogen atom or a hydrocarbon group, and R 75 to R 78 may be bonded to each other to form a monocyclic or polycyclic ring, and the monocyclic or polycyclic ring forms a double bond. It may have, and an alkylidene group may be formed by R 75 and R 76 , or by R 77 and R 78. )
  • R 81 to R 99 may be the same or different from each other, and are a hydrogen atom and a halogen. It is an atom, an aliphatic hydrocarbon group, an aromatic hydrocarbon group or an alkoxy group, and a carbon atom to which R 89 and R 90 are bonded is bonded to a carbon atom or R 91 to which R 93 is bonded.
  • R 100 and R 101 may be the same or different from each other, and represent a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms, and f is an integer of 1 ⁇ f ⁇ 18. .
  • the content of the olefin resin of the present invention is not particularly limited as long as it contains a copolymer of olefinic macromonomer and non-conjugated diene.
  • the content of the copolymer of the olefin-based macromonomer and the non-conjugated diene with respect to the entire olefin-based resin of the present invention is preferably 1% by mass or more, more preferably 5% by mass or more.
  • the content of the copolymer of the olefin macromonomer and the non-conjugated diene is usually 50% by mass or less.
  • the olefin-based resin of the present invention contains an olefin-based macromonomer in addition to a copolymer of an olefin-based macromonomer and a non-conjugated diene.
  • the olefin-based macromonomer is a residual macromonomer that has not been used for copolymerization with a non-conjugated diene.
  • the content of the copolymer of the olefin macromonomer and the non-conjugated diene is compared with, for example, the gel permeation chromatography (GPC) chromatogram of the resin obtained in step B described later and the GPC chromatogram of step A. Then, the newly generated high molecular weight component can be peak-separated and calculated from the area ratio.
  • GPC gel permeation chromatography
  • the degree of polymerization of the copolymer of the olefin-based macromonomer and the non-conjugated diene is preferably 5 or more. It is more preferably 10 or more, still more preferably 15 or more.
  • the content of the structural unit derived from the olefin-based macromonomer is usually 80 to 99.5 mol%, more preferably 90 to 99.5 mol%. It is 99.5 mol%, and even more preferably 95 to 99 mol%.
  • the content of the structural unit derived from the non-conjugated diene is usually 0.5 to 20 mol%, more preferably 0.5 to 10 mol%, still more preferably 1 to 5 mol%.
  • the olefin resin of the present invention can produce a crosslinked product exhibiting good mechanical properties.
  • the copolymer of an olefin-based macromonomer and a non-conjugated diene may contain another monomer, that is, a comonomer, as long as the effect of the present invention is not impaired, and the content of the structural unit derived from the comonomer is usually It is 15 mol% or less, preferably 10 mol% or less, still more preferably 5 mol% or less, but particularly preferably a polymer containing no comonomer other than an olefin macromonomer and a non-conjugated diene.
  • the comonomer include ⁇ -olefins having 2 to 12 carbon atoms described in the above-mentioned “(i) Composition”.
  • the olefin-based resin of the present invention may further have the following characteristics.
  • the polystyrene-equivalent weight average molecular weight determined by gel permeation chromatography (GPC) of the olefin resin of the present invention is preferably in the range of 5000 to 1,000,000.
  • the weight average molecular weight is preferably in the range of 8,000 to 900,000, more preferably 10,000 to 800,000, and even more preferably 10,000 to 600,000.
  • the ultimate viscosity [ ⁇ ] of the olefinic resin of the present invention measured in decalin at 135 ° C. is preferably in the range of 0.1 to 10 dl / g, more preferably 0.2 to 8 dl / g. , More preferably 0.3 to 5 dl / g.
  • the content of the repeating unit derived from ethylene in the olefin resin is preferably in the range of 10 to 90 mol%.
  • the content of the repeating unit is preferably in the range of 20 to 80 mol%, more preferably 30 to 70 mol%.
  • the olefin resin of the present invention can be produced, for example, by a production method including the following steps A and B.
  • Step A A step of polymerizing an olefin in the presence of a catalyst for olefin polymerization to produce an olefin-based macromonomer.
  • Step B A step of copolymerizing an olefin-based macromonomer produced in step A with a non-conjugated diene in the presence of a catalyst for olefin polymerization to produce an olefin-based resin.
  • olefin polymerization catalyst used in step A and the olefin polymerization catalyst used in step B may be the same or different, but usually different catalysts are used depending on the purpose in each step. To.
  • Step A is a step of polymerizing an olefin in the presence of an olefin polymerization catalyst to produce the above-mentioned olefin-based macromonomer, and the step of the olefin polymerization catalyst containing the following components (A) and (C). Is preferable.
  • (A) Transition metal compound of Group 4 of the periodic table (C) (C-1) Organometallic compound, (C-2) Organometallic oxy compound, and (C-3) Transition metal of Group 4 of the periodic table. At least one compound selected from the group consisting of compounds that react with compound (A) to form an ion pair.
  • a process for producing a macromonomer composed of an ethylene homopolymer disclosed by the present applicant International Publication No. 2015/147186 and a process for producing a macromonomer composed of a propylene homopolymer (International Publication No. 1).
  • 2015/147187 a process for producing a macromonomer composed of a propylene / ethylene copolymer
  • International Publication No. 2017/0818282 International Publication No. 2017/0818282
  • a process for producing a macromonomer composed of a propylene homopolymer Japanese Publication No. 2017/0818282
  • a process for producing a macromonomer composed of a propylene homopolymer Japanese Patent Laid-Open No. 2009-). 299046
  • a process for producing a macromonomer composed of a propylene / ethylene copolymer International Publication No. 2012/134719
  • the transition metal compound (A) of Group 4 of the periodic table is preferably a transition metal compound of Group 4 of the periodic table containing a ligand having a dimethylsilylbis indenyl skeleton.
  • transition metal compound (A) of Group 4 of the periodic table containing a ligand having a dimethylsilylbis indenyl skeleton examples include Resconi, L. et al. Compounds exemplified by JACS 1992, 114, 1025-1032 and the like are known, and a catalyst for olefin polymerization for producing terminal unsaturated polypropylene can be preferably used.
  • transition metal compound (A) of Group 4 of the periodic table containing a ligand having a dimethylsilylbis indenyl skeleton JP-A-6-100579, JP-A 2001-525461, JP-A-2005-336091, JP-A-2005-336091 Compounds disclosed in 2009-299046, JP-A-11-130807, JP-A-2008-285443 and the like can be preferably used.
  • the transition metal compound (A) of Group 4 of the periodic table containing a ligand having a dimethylsilyl bisindenyl skeleton is selected from the group consisting of crosslinked bis (indenyl) zirconocenes or hafnocents.
  • a compound can be mentioned as a suitable example. More preferably, it is dimethylsilyl cross-linked bis (indenyl) zirconosen or hafnosen. More preferably, it is dimethylsilyl cross-linked bis (indenyl) hafnosen, and by selecting hafnocene, the proportion of the obtained ethylene / propylene copolymer having a vinyl group at the terminal is increased, which is good as a macromonomer in step B. Shows reactivity.
  • dimethylsilylbis (2-methyl-4-phenylindenyl) hafnium dichloride or dimethylsilylbis (2-methyl-4-phenylindenyl) hafnium dimethyl can be used as a suitable compound.
  • (Compound (C)) The compound (C) used in the step A reacts with the transition metal compound (A) of Group 4 of the periodic table and functions as a catalyst for olefin polymerization.
  • (C-1) organic It is selected from the group consisting of a metal compound, an organoaluminum oxy compound, and a compound that reacts with the transition metal compound (A) to form an ion pair.
  • the compounds (C-1) to (C-3) described in International Publication No. 2015/147186 can be used as they are without limitation.
  • triisobutylaluminum and triphenylcarbenium tetrakis (pentafluorophenyl) borate are used, but the compound (C) is not limited to these compounds.
  • Step A can be carried out by any method of vapor phase polymerization, slurry polymerization, bulk polymerization, and solution (dissolution) polymerization, and the polymerization form is not particularly limited.
  • the polymerization solvent include aliphatic hydrocarbons and aromatic hydrocarbons. Specifically, aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane and kerosene, alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane, benzene, toluene and xylene. Examples thereof include aromatic hydrocarbons such as, and halogenated hydrocarbons such as ethylene chloride, chlorobenzene, and dichloromethane, which can be used alone or in combination of two or more.
  • the polymerization temperature in step A is usually in the range of 50 ° C. to 200 ° C., preferably in the range of 80 ° C. to 150 ° C., more preferably in the range of 80 ° C. to 130 ° C., and by appropriately controlling the polymerization temperature, It is possible to obtain an ethylene / propylene copolymer having a desired molecular weight and a terminal vinyl group content.
  • the polymerization pressure in step A is usually under the condition of normal pressure to 10 MPa gauge pressure, preferably normal pressure to 5 MPa gauge pressure, and the polymerization reaction is carried out by any of batch type, semi-continuous type and continuous type. Can be done. In the present invention, it is preferable to adopt a method in which monomers are continuously supplied to a reactor to carry out copolymerization.
  • the reaction time (average residence time when copolymerization is carried out by a continuous method) varies depending on conditions such as catalyst concentration and polymerization temperature, but is usually 0.5 minutes to 5 hours, preferably 5 minutes to 3 hours. Is.
  • the polymer concentration in the step A is 5 to 50 wt% at the end of polymerization in the case of the batch type and at the time of steady operation in the case of the continuous type.
  • the content of the structural unit derived from ethylene of the ethylene / propylene copolymer macromonomer produced in step A is preferably 20 to 80 mol%, more preferably 30 to 70 mol%, and the structural unit derived from propylene.
  • the content is preferably 80 to 20 mol%, more preferably 70 to 30 mol%.
  • the weight average molecular weight (Mw) measured by gel permeation chromatography of the ethylene / propylene copolymer macromonomer produced in step A is the polystyrene-equivalent weight determined by gel permeation chromatography (GPC).
  • the average molecular weight is preferably in the range of 1000 to 100,000, more preferably 1000 to 30000 or 2000 to 50000, still more preferably 2500 to 40,000, and particularly preferably 3000 to 30000.
  • the olefin-based resin of the present invention exhibits excellent properties derived from the bottle brush polymer.
  • the molecular weight distribution (Mw / Mn) of the ethylene / propylene copolymer macromonomer produced in step A is, for example, 1.5 to 5.0, typically about 1.7 to 4.0. In some cases, a mixture of side chains with different molecular weights may be used.
  • the ratio of the vinyl group to the total unsaturated end of the ethylene / propylene copolymer macromonomer produced in step A is usually 50 mol% or more, more preferably 60 mol% or more, still more preferably 70 mol% or more.
  • the number of terminal vinyl groups produced in step A and contained in the ethylene / propylene copolymer macromonomer is preferably in the range of 0.1 to 10.0 per 1000 carbon atoms, and more preferably 0. The range is 5 to 8.0, more preferably 1.0 to 6.0.
  • the ratio of vinyl groups to the total unsaturated terminals and the ratio of terminal vinyl groups per 1000 carbon atoms are in the above range, the copolymerization of the olefin-based macromonomer and the non-conjugated diene comonomer contained in the olefin-based resin of the present invention It is preferable in that the ratio of coalescence increases.
  • Step B is a step of copolymerizing the olefin-based macromonomer produced in Step A with the non-conjugated diene in the presence of an olefin polymerization catalyst to produce the olefin-based resin of the present invention, and the olefin polymerization catalyst.
  • an olefin polymerization catalyst to produce the olefin-based resin of the present invention, and the olefin polymerization catalyst.
  • the olefin polymerization catalyst Preferably contains the following components (B) and (C).
  • Transition metal compounds of Group 4 of the periodic table (C) (C-1) Organometallic compounds, (C-2) Organometallic oxy compounds, and (C-3) Transition metals of Group 4 of the periodic table. At least one compound selected from the group consisting of compounds that react with compound (B) to form an ion pair.
  • Transition metal compound (B) In step B, since the olefin-based macromonomer and the non-conjugated diene are copolymerized, it is preferable to select a polymerization catalyst having a high polymerization performance of the bulky monomer species and a performance of imparting a high molecular weight compound.
  • the transition metal compound used in the polymerization catalyst the crosslinked metallocene compound disclosed in International Publication No. 2001/27124 and International Publication No. 2004/029062, and the tetradentate phenolate disclosed in International Publication No. 2003/091262. Examples thereof include an ether compound, and specifically, a transition metal compound (B) containing a compound (I) represented by the following general formula [I] is preferable.
  • M is a metal atom selected from groups 3 to 6 of the periodic table of elements.
  • n is an integer from 0 to 5, and when n is 0, X does not exist and X is a neutral, monoanionic, dianionic, trianionic or tetraanionic monocoordinate ligand independently, or is formed by two Xs, either neutral, monoanionic or dianionic.
  • the coordinating ligands, X and n, are selected so that compound (I) is totally neutral.
  • Z is independently O, S, N (C 1 -C 40) hydrocarbyl or P (C 1 -C 40) hydrocarbyl
  • L is (C 1 -C 40) hydrocarbylene or (C 1 -C 40) heteroaryl hydrocarbylene
  • the (C 1 -C 40) hydrocarbylene, 1 carbon atoms linking the Z ⁇ 18 has a portion containing a carbon atom linker backbone
  • said (C 1 -C 40) heteroaryl hydrocarbylene has a portion containing 1 atom to 18 atom linker backbone linking the Z
  • said (C 1- C 40 ) 1 to 18 atoms of heterohydrocarbylene 1 to 18 atoms in the linker main chain are independently carbon atoms or heteroatoms
  • the heteroatoms are independently O, S, S (O).
  • S (O) is 2, Si (R C) 2 , P (R P) or N (R N), wherein R C is a substituted or unsubstituted independently (C 1 -C 18) hydrocarbyl, or (C 1 -C 18) heteroaryl hydrocarbyl, wherein R P is a substituted or unsubstituted independently (C 1 -C 18) hydrocarbyl or (C 1 -C 18) heterohydrocarbyl, said R N is independently represent a substituted or unsubstituted (C 1 -C 18) or a hydrocarbyl or (C 1 -C 18) heterohydrocarbyl, or absent, R 3a, R 4a, R 3b and R 4b are each independently a hydrogen atom, (C 1 -C 40) hydrocarbyl, (C 1 -C 40) heterohydrocarbyl, Si (R C) 3, O (R C) , S (R C), N (R N) 2, P (R P) 2 or hal
  • a ring structure may be formed, which has 3 to 50 atoms in the ring excluding hydrogen atoms.
  • At least one of R 5c and R 5f are independently (C 1 -C 40) hydrocarbyl, (C 1 -C 40) heterohydrocarbyl, Si (R C) 3, O (R C), S (R C) , (R N) is 2, P (R P) 2 or a halogen atom, and the other of R 5c and R 5f are independently a hydrogen atom, (C 1 -C 40) hydrocarbyl, (C 1 -C 40) heterohydrocarbyl, Si (R C) 3, O (R C), S (R C), N (R N) 2, P (R P) 2 or halogen atom, At least one of R 5 cc and R 5 fF are independently (C 1 -C 40) hydrocarbyl, (C 1 -C 40) heterohydrocarbyl, Si (R C) 3, O (R C), S (R C) a
  • hydrocarbyl, heterohydrocarbyl, hydrocarbylene and heterohydrocarbylene groups described above can each be independently unsubstituted or substituted with at least one substituent R s (up to hypersubstitution by R s ).
  • R is unsubstituted (C 1 -C 18) alkyl.
  • M is a metal atom of any one of groups 3 to 6 (eg, group 4) of the periodic table of the element, and the metal M is a formal oxidation state of +2, +3, +4, +5 or +6. .. n is an integer from 0 to 5, and when n is 0, X does not exist (that is, (X) n does not exist).
  • X is a neutral, monoanionic, dianionic, trianionic or tetraanionic monocoordinate ligand independently, or is formed by two Xs, either neutral, monoanionic or dianionic.
  • the coordinating ligands, X and n, are selected so that compound (I) is totally neutral.
  • Z is independently O, S, N (C 1 -C 40) hydrocarbyl or P (C 1 -C 40) hydrocarbyl.
  • L is a (C 1 -C 40) hydrocarbylene or (C 1 -C 40) heteroaryl hydrocarbylene,
  • the (C 1- C 40 ) hydrocarbylene is a 1-carbon atom to 18-carbon atom linker main chain connecting the Z (L is bonded to this Z), preferably a 1-carbon atom to a 12-carbon atom linker.
  • the (C 1- C 40 ) heterohydrocarbylene has a portion containing a 1 to 18 atom linker main chain, preferably a 1 carbon atom to 12 carbon atom linker chain, which connects the Z.
  • 1 to 18 atoms of the (C 1 to C 40 ) heterohydrocarbylene 1 to 18 atoms in the linker main chain are independently carbon atoms or heteroatoms.
  • the heteroatoms are independently O, S, S (O) , S (O) 2, Si (R C) 2, P (R P), or N (R N),
  • R C is a substituted or unsubstituted independently (C 1 -C 18) hydrocarbyl or (C 1 -C 18) heterohydrocarbyl
  • R P is a substituted or unsubstituted independently (C 1 -C 18) hydrocarbyl or (C 1 -C 18) heterohydrocarbyl
  • R 3a, R 4a, R 3b and R 4b are each independently a hydrogen atom, (C 1 -C 40) hydrocarbyl, (C 1 -C 40) heterohydrocarbyl, Si (R C) 3, O (R C) , S (R C), a N (R N) 2, P (R P) 2 or halogen atom, R C, R N and R P are as defined above.
  • R 6c, at least one of R 7c and R 8c, and, at least one of R 6d, R 7d, and R 8d are independently (C 2 -C 40) hydrocarbyl or Si (R C) 3, other R 6c, R 7c, R 8c , R 6d, R 7d and R 8d are independently a hydrogen atom, (C 1 -C 40) hydrocarbyl, (C 1 -C 40) heterohydrocarbyl, Si (R C ) 3, O (R C) , S (R C), N (R N) 2, P (R P) 2 or halogen atom, R C, is R N and R P are as defined above ..
  • R groups arbitrarily selected from R 3a , R 4a , R 3b , R 4b , R 6c , R 7c , R 8c , R 6d , R 7d and R 8d combined to form one or more.
  • a ring structure may be formed, and this ring structure has 3 to 50 atoms in the ring excluding hydrogen atoms.
  • At least one of R 5c and R 5f are independently (C 1 -C 40) hydrocarbyl, (C 1 -C 40) heterohydrocarbyl, Si (R C) 3, O (R C), S (R C) , (R N) is 2, P (R P) 2 or a halogen atom, and the other of R 5c and R 5f are independently a hydrogen atom, (C 1 -C 40) hydrocarbyl, (C 1 -C 40) heterohydrocarbyl, Si (R C) 3, O (R C), S (R C), N (R N) 2, P (R P) 2 or halogen atom, R C, R N and R P is As defined above.
  • At least one of R 5 cc and R 5 fF are independently (C 1 -C 40) hydrocarbyl, (C 1 -C 40) heterohydrocarbyl, Si (R C) 3, O (R C), S (R C) a N (R N) 2, P (R P) 2 or a halogen atom, and the other of R 5 cc and R 5 fF are independently a hydrogen atom, (C 1 -C 40) hydrocarbyl, ((C 1 -C 40) heterohydrocarbyl, Si (R C) 3, O (R C), a S (R C), N ( R N) 2, P (R P) 2 or halogen atom, R C, R N and R P is as defined above.
  • R 9a, R 10a, R 11a , R 9b, R 10b, R 11b, R 9aa, R 10aa, R 11aa, R 9bb, R 10bb and R 11bb each independently represent a hydrogen atom, (C 1 -C 40) hydrocarbyl, (C 1 -C 40) heterohydrocarbyl, Si (R C) 3, O (R C), S (R C), N (R N) 2, P (R P) 2 or halogen atom, R C, R N and R P are as defined above.
  • R groups arbitrarily selected from the substituents on the carbazole group (for example, R 9a , R 10a , R 5a , R 11a , R 9b , R 10b , R 5f , R 11b ) are bonded to 1
  • One or more ring structures may be formed, and this ring structure has 3 to 50 atoms in the ring excluding hydrogen atoms.
  • hydrocarbyl e.g., R C, R N, R P, (C 1 -C 40) hydrocarbyl), heterohydrocarbyl (e.g., (C 1 -C 40) heterohydrocarbyl), hydrocarbylene (e.g., (C 1 -C 40) hydrocarbylene), and hetero hydrocarbylene (e.g., (C 1 -C 40) heteroaryl hydrocarbylene) groups
  • hydrocarbyl e.g., R C, R N, R P, (C 1 -C 40) hydrocarbyl
  • heterohydrocarbyl e.g., (C 1 -C 40) heterohydrocarbyl
  • hydrocarbylene e.g., (C 1 -C 40) hydrocarbylene
  • hetero hydrocarbylene e.g., (C 1 -C 40) heteroaryl hydrocarbylene
  • R s independently represent a halogen atom, a polyfluoro-substituted (at least one of the substituents R s represents at least two fluoro substituents, which formally represent at least two of the substituents when unsubstituted.
  • the compound (I) preferably has O in each Z in the formula [I], and more preferably the compound (Ia) represented by the following formula [Ia].
  • R 7c and R 7d are each independently (C 1 -C 40) hydrocarbyl.
  • M is a metal atom of any one of groups 3 to 6 (eg, group 4) of the periodic table of the element, and the metal M is a formal oxidation state of +2, +3, +4, +5 or +6.
  • n is an integer from 0 to 5, and when n is 0, X does not exist (that is, (X) n does not exist).
  • X is an independently neutral, monoanionic, dianionic, trianionic or tetraanionic monocoordinate ligand, or is formed by two Xs, neutral, monoanionic, or dianionic.
  • the bidentate ligands, X and n, are selected so that compound (Ia) is totally neutral.
  • L is (C 1 -C 40) hydrocarbylene or (C 1 -C 40) heteroaryl hydrocarbylene, wherein the (C 1 -C 40) hydrocarbylene, the Z (L in the Z-bond 1 carbon atom to 18 carbon atoms linker backbone linking the to), preferably, has a portion containing 1 carbon atom to 12 carbon atoms linker, wherein (C 1 -C 40) heteroaryl hydrocarbylene, the It has a 1- to 18-atom linker main chain connecting Z, preferably a 1-carbon to 12-carbon atom linker chain, and 1 to 18 atoms of the (C 1- C 40 ) heterohydrocarbylene.
  • R 3a, R 4a, R 3b and R 4b are each independently a hydrogen atom, (C 1 -C 40) hydrocarbyl, (C 1 -C 40) heterohydrocarbyl, Si (R C) 3, O (R C) , S (R C), a N (R N) 2, P (R P) 2 or halogen atom, R C, R N and R P are as defined above.
  • At least one of R 5c and R 5f are independently (C 1 -C 40) hydrocarbyl, (C 1 -C 40) heterohydrocarbyl, Si (R C) 3, O (R C), S (R C) , N (R N) is 2, P (R P) 2 or a halogen atom, and the other of R 5c and R 5f are independently a hydrogen atom, (C 1 -C 40) hydrocarbyl, (C 1 -C 40 ) heterohydrocarbyl, Si (R C) 3, O (R C), S (R C), N (R N) 2, P (R P) 2 or halogen atom, R C, R N and R P Is as defined above.
  • At least one of R 5 cc and R 5 fF are independently (C 1 -C 40) hydrocarbyl, (C 1 -C 40) heterohydrocarbyl, Si (R C) 3, O (R C), S (R C) a N (R N) 2, P (R P) 2 or a halogen atom, and the other of R 5 cc and R 5 fF are independently a hydrogen atom, (C 1 -C 40) hydrocarbyl, (C 1 -C 40 ) heterohydrocarbyl, Si (R C) 3, O (R C), S (R C), N (R N) 2, P (R P) 2 or halogen atom, R C, R N and R P Is as defined above.
  • hydrocarbyl e.g., R C, R N, R P, (C 1 -C 40) hydrocarbyl), heterohydrocarbyl (e.g., (C 1 -C 40) heterohydrocarbyl), hydrocarbylene (e.g., (C 1 -C 40) hydrocarbylene) and hetero hydrocarbylene (e.g., substituted with (C 1 -C 40) heteroaryl hydrocarbylene) groups
  • R s Up to over-replacement with R s ).
  • R s independently represents a halogen atom, a polyfluoro substituent (one of the at least one substituent R s represents at least two fluoro substituents, which formally represents at least two of the substituents when unsubstituted.
  • the compound (I) is a compound (Ia-1) represented by the following formula [Ia-1].
  • R 7c and R 7d are independently (C 4- C 40 ) hydrocarbyls.
  • M is a metal atom of any one of groups 3 to 6 (eg, group 4) of the periodic table of the element, and the metal M is a formal oxidation state of +2, +3, +4, +5 or +6.
  • n is an integer from 0 to 5, and when n is 0, X does not exist (that is, (X) n does not exist).
  • X is a neutral, monoanionic, dianionic, trianionic or tetraanionic monocoordinate ligand independently, or is formed by two Xs, either neutral, monoanionic or dianionic.
  • the coordinating ligands, X and n, are selected so that compound (Ia-1) is totally neutral.
  • L is (C 1 -C 40) hydrocarbylene or (C 1 -C 40) heteroaryl hydrocarbylene, wherein the (C 1 -C 40) hydrocarbylene, the Z (L in the Z-bond 1 carbon atom to 18 carbon atoms linker backbone linking the to), preferably, has a portion containing 1 carbon atom to 12 carbon atoms linker, wherein (C 1 -C 40) heteroaryl hydrocarbylene, the It has a 1- to 18-atom linker main chain connecting Z, preferably a 1-carbon to 12-carbon atom linker chain, and 1 to 18 atoms of the (C 1- C 40 ) heterohydrocarbylene.
  • R 3a and R 3b are each independently a hydrogen atom, (C 1 -C 40) hydrocarbyl, (C 1 -C 40) heterohydrocarbyl, Si (R C) 3, O (R C), S (R C) a N (R N) 2, P (R P) 2 or halogen atom, R C, R N and R P are as defined above.
  • At least one of R 5c and R 5f are independently (C 1 -C 40) hydrocarbyl, (C 1 -C 40) heterohydrocarbyl, Si (R C) 3, O (R C), S (R C) , N (R N) is 2, P (R P) 2 or a halogen atom, and the other of R 5c and R 5f are independently a hydrogen atom, (C 1 -C 40) hydrocarbyl, (C 1 -C 40 ) heterohydrocarbyl, Si (R C) 3, O (R C), S (R C), N (R N) 2, P (R P) 2 or halogen atom, R C, R N and R P Is as defined above.
  • At least one of R 5 cc and R 5 fF are independently (C 1 -C 40) hydrocarbyl, (C 1 -C 40) heterohydrocarbyl, Si (R C) 3, O (R C), S (R C) a N (R N) 2, P (R P) 2 or a halogen atom, and the other of R 5 cc and R 5 fF are independently a hydrogen atom, (C 1 -C 40) hydrocarbyl, (C 1 -C 40 ) heterohydrocarbyl, Si (R C) 3, O (R C), S (R C), N (R N) 2, P (R P) 2 or halogen atom, R C, R N and R P Is as defined above.
  • hydrocarbyl e.g., R C, R N, R P, (C 1 -C 40) hydrocarbyl, heterohydrocarbyl (e.g., (C 1 -C 40) heterohydrocarbyl), hydrocarbylene (e.g., (C 1 - C 40) hydrocarbylene) and hetero hydrocarbylene (e.g., (C 1 -C 40) heteroaryl hydrocarbylene) groups are unsubstituted or substituted independently or in at least one of the substituents R s (R ( Up to over-replacement by s ).
  • R 5cc + R 5ff + R 7d carbon atoms R 5c + R 5f + R 7c is greater than 5 carbon atoms.
  • the R s independently represent a halogen atom, a polyfluoro Substitution (one of the at least one substituent R s represents at least two fluoro substituents, which formally represents at least two of the substituents when unsubstituted. Substituted with two hydrogen atoms), perfluorosubstituted (ie, the one R s represents the same number of fluoro substituents as the hydrogen atom of the substituent in the case of the substituted substituted thereby), unsubstituted.
  • R 5c, R 5f, R 5cc and R 5 fF are each independently (C 1 -C 40) hydrocarbyl, preferably (C 1 -C 20) hydrocarbyl, more preferably (C 1 -C 10) hydrocarbyl, particularly preferably Is (C 4- C 8 ) alkyl or phenyl
  • R 7c and R 7d are each independently (C 4- C 10 ) hydrocarbyl, preferably (C 4- C 8 ) alkyl.
  • R 3a and R 3b are each independently a (C 1 -C 6) alkyl, (C 1 -C 6) alkyl -O -, ((C 1 -C 6) alkyl) 2 -N -, (C 3 - C 6 ) Cycloalkyl, fluorine atom or chlorine atom, preferably fluorine atom or chlorine atom, more preferably fluorine atom.
  • L is, (C 1 -C 20) hydrocarbylene, preferably (C 1 -C 10) hydrocarbylene, more preferably (C 1 -C 5) hydrocarbylene, more preferably -CH 2 CH 2 CH 2- and M is a Group 4 metal of the Periodic Table of the Elements, preferably hafnium, zirconium or titanium, more preferably hafnium.
  • n is 2 or 3, preferably 2.
  • X is independently (C 1- C 8 ) alkyl, (C 1- C 6 ) alkyl, (C 1- C 4 ) alkyl or (C 1- C 3 ) alkyl, preferably (C 1- C 4 ). Alkyl or (C 1- C 3 ) alkyl, more preferably (C 1- C 3 ) alkyl, even more preferably methyl.
  • the compound (I) include (2', 2''-(propane-l, 3-diylbis (oxy)) bis (3- (3,6-di-tert-butyl-9H-carbazole-). 9-yl) -5'-fluoro-5- (2,4,4-trimethylpentane-2-yl) biphenyl-2-ol) dimethylhafnium, [[2', 2'''-[1,3-Propanediyl bis (oxy-ko)] bis [3- [3,6-bis (1,1-dimethylethyl) -9H-carbazole-9-yl) ] -5'-Fluoro-5- (1,1,3,3-tetramethylbutyl) [1,1'-biphenyl] -2-orato-ko]] (2-)]-Hafnium dimethyl.
  • the compound (C) used in the step B reacts with the transition metal compound (B) of Group 4 of the periodic table and functions as a catalyst for olefin polymerization.
  • (C-1) organic It is selected from the group consisting of a metal compound, an organoaluminum oxy compound, and a compound that reacts with the transition metal compound (A) to form an ion pair. Examples of such compounds (C-1) to (C-3) include compounds similar to the compound (C) used in the above-mentioned step A.
  • Step B can be carried out in solution (dissolution) polymerization, and the polymerization conditions are not particularly limited as long as a solution polymerization process for producing an olefin polymer is used.
  • the macromonomer produced in step A may be charged into the reactor in step B as a solid, or may be charged into the reactor in step B in the form of a solution or a slurry.
  • the method of charging the macromonomer is not particularly limited.
  • step B it is preferable to use the compound described in "(2) Non-conjugated diene" described above as the non-conjugated diene copolymerizing with the olefin macromonomer.
  • the method of charging a non-conjugated diene into a reactor is not particularly limited as long as it is a method used in the production of known olefin resins.
  • the comonomer may be copolymerized as long as the effect of the present invention is not impaired, and examples thereof include olefins having 2 to 12 carbon atoms described in the above-mentioned "(i) Composition".
  • the method for charging the comonomer into the reactor is not particularly limited as long as it is a method used in the production of known olefin resins.
  • Examples of the polymerization solvent in step B include aliphatic hydrocarbons and aromatic hydrocarbons. Specifically, aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane and kerosene, alicyclic hydrocarbons such as cyclopentane, cyclohexane and methylcyclopentane, benzene, toluene and xylene. Examples thereof include aromatic hydrocarbons such as, and halogenated hydrocarbons such as ethylene chloride, chlorobenzene, and dichloromethane, which can be used alone or in combination of two or more.
  • aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane and kerosene
  • alicyclic hydrocarbons such as cyclopentane,
  • the polymerization solvent in step B may be the same as or different from the polymerization solvent in step A.
  • aliphatic hydrocarbons such as hexane and heptane are preferable from an industrial point of view, and hexane is more preferable from the viewpoint of separation and purification from an olefin resin.
  • the polymerization temperature in step B is preferably 30 ° C. or higher, more preferably 30 ° C. to 150 ° C., and even more preferably 40 ° C. to 100 ° C.
  • the polymerization pressure in step B is usually under the conditions of normal pressure to 10 MPa gauge pressure, preferably normal pressure to 5 MPa gauge pressure, and the polymerization reaction is carried out by any of batch type, semi-continuous type and continuous type. Can be done. Further, it is also possible to carry out the polymerization in two or more stages having different reaction conditions. In the present invention, it is preferable to adopt a method in which monomers are continuously supplied to a reactor to carry out copolymerization.
  • the reaction time of step B (average residence time when copolymerization is carried out by a continuous method) varies depending on conditions such as catalyst concentration and polymerization temperature, but is usually 0.5 minutes to 5 hours, preferably 5 minutes. ⁇ 3 hours.
  • the polymer concentration in step B is 5 to 50 wt% at the end of polymerization in the case of the batch type and at the time of steady operation in the case of the continuous type.
  • the molecular weight of the obtained copolymer can also be adjusted by the presence of hydrogen in the polymerization system or by changing the polymerization temperature. Further, it can be adjusted by the amount of the above-mentioned compound (C) used. Specific examples thereof include triisobutylaluminum, methylaluminoxane, and diethylzinc. When hydrogen is added, the amount thereof is appropriately about 0.001 to 100 NL per 1 kg of olefin.
  • the method for producing an olefin resin of the present invention may include, if necessary, a step C for recovering the polymer produced in each step after each step.
  • This step is a step of separating the organic solvent used in each polymerization step, taking out the polymer and converting it into a product form, and if it is a step of producing an existing olefin resin such as solvent concentration, extrusion degassing, and precipitation.
  • the cross-linking method is not particularly limited as long as it can utilize the unsaturated bond derived from the non-conjugated diene described above, and specific examples thereof include cross-linking using an electron beam and cross-linking using a cross-linking agent.
  • a cross-linking reaction using a cross-linking agent is preferably used.
  • cross-linking agent examples include cross-linking agents generally used when cross-linking rubber, and specific examples thereof include peroxides, sulfur compounds, phenolic resins, amino resins, quinone or derivatives thereof, and amines. Examples thereof include system compounds, azo compounds, epoxy compounds, isocyanate compounds, and hydrosilicone compounds. Among these, a sulfur-based compound which is difficult to reduce the molecular weight and has excellent reactivity with the olefin-based resin of the present invention obtained by using a one-terminal vinyl group non-conjugated diene as a non-conjugated diene is preferable.
  • peroxide examples include organic peroxides.
  • organic peroxide examples include dialkyl peroxide, diacyl peroxide, peroxyketal, peroxyester, peroxycarbonate, peroxydicarbonate, ketone peroxide, and hydroperoxide.
  • the amount of the peroxide in the composition is usually 0.1 to 20 parts by mass, preferably 0.15 to 100 parts by mass with respect to 100 parts by mass of the total olefin resin. It is 15 parts by mass, more preferably 0.15 to 10 parts by mass.
  • the blending amount of the peroxide is within the above range, there is no bloom on the surface of the obtained crosslinked product, and the composition exhibits excellent crosslinking characteristics.
  • a peroxide is used as the cross-linking agent, it is preferable to use a cross-linking aid in combination.
  • cross-linking aid examples include sulfur; a quinone-dioxym-based cross-linking aid such as p-quinone dioxime; an acrylic cross-linking aid such as ethylene glycol dimethacrylate and trimethylpropantrimethacrylate; diallyl phthalate and triallyl isocyanurate. Allyl-based cross-linking aids such as; Maleimide-based cross-linking aids; Divinylbenzene; Zinc oxide (for example, ZnO # 1, zinc oxide 2 types, manufactured by Huxitec Co., Ltd.), magnesium oxide, zinc oxide (for example, "META-Z102”) (Product name; zinc oxide such as Inoue Lime Industry Co., Ltd.)) and the like.
  • Allyl-based cross-linking aids such as; Maleimide-based cross-linking aids; Divinylbenzene; Zinc oxide (for example, ZnO # 1, zinc oxide 2 types, manufactured by Huxitec Co., Ltd.), magnesium
  • the cross-linking aid When used, it is usually 0 to 15 parts by mass, preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the total of the olefin resin.
  • the sulfur-based compound sulfurizing agent
  • sulfurizing agent include sulfur, sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, tetramethylthiuram disulfide, and selenium dithiocarbamate.
  • a sulfur-based compound When a sulfur-based compound is used as the cross-linking agent, it is usually 0.3 to 10 parts by mass, preferably 0.5 to 7.0 parts by mass, and more preferably 0.7 parts by mass with respect to a total of 100 parts by mass of the olefin resin. ⁇ 5.0 parts by mass.
  • the blending amount of the sulfur-based compound is within the above range, there is no bloom on the surface of the obtained crosslinked product, and the composition exhibits excellent crosslinking characteristics.
  • a sulfur compound When a sulfur compound is used as the cross-linking agent, it is preferable to use a vulcanization accelerator in combination.
  • the vulcanization accelerator include a thiazole-based vulcanization accelerator, a guanidine-based vulcanization accelerator, an aldehyde amine-based vulcanization accelerator, an imidazoline-based vulcanization accelerator, a thiuram-based vulcanization accelerator, and a dithioate-based additive.
  • examples thereof include vulcanization accelerators, thiourea-based vulcanization accelerators, and zantate-based vulcanization accelerators.
  • the amount of the vulcanization accelerator to be blended in the composition is usually 0.1 to 20 parts by mass, preferably 0.2 to 15 parts by mass with respect to 100 parts by mass of the total olefin resin. It is by mass, more preferably 0.5 to 10 parts by mass.
  • the blending amount of the vulcanization accelerator is within the above range, there is no bloom on the surface of the obtained crosslinked product, and the composition exhibits excellent crosslinking characteristics.
  • a vulcanization aid can be used in combination.
  • the vulcanization aid include zinc oxide, magnesium oxide, and zinc white.
  • the blending amount of the vulcanization aid in the composition is usually 1 to 20 parts by mass with respect to 100 parts by mass in total of the olefin resin.
  • the cross-linking reaction using the above-mentioned cross-linking agent proceeds by reacting unsaturated groups introduced into the polymer chain, but when a diene containing two vinyl groups is used, a cross-linked structure is formed by the polymerization reaction in step B.
  • a crosslinked product may be formed in step B using a polymer containing a vinyl group at both ends as a non-conjugated diene. That is, as described above, when a non-conjugated diene containing a polymer structure, for example, a polyolefin copolymer having vinyl groups at both ends is used as the non-conjugated diene, a crosslinked product may be formed in step B.
  • the olefin resin of the present invention and its crosslinked product can be used by adding various resin additives as exemplified below.
  • Softener examples include petroleum-based softeners such as process oil, lubricating oil, paraffin oil, liquid paraffin, petroleum asphalt, and vaseline; coultar-based softeners such as coal tar; castor oil, linseed oil, rapeseed oil, and large.
  • Fat oil-based softeners such as soybean oil and coconut oil; waxes such as beeswax and carnauba wax; naphthenic acid, pine oil, rosin or derivatives thereof; synthetic polymer substances such as terpene resin, petroleum resin and kumaron inden resin; dioctyl Ester-based softeners such as phthalate and dioctyl adipate; other examples include microcrystallin wax, liquid polybutadiene, modified liquid polybutadiene, hydrocarbon-based synthetic lubricating oil, tall oil, and sub (factis).
  • petroleum-based softeners Is preferable, and process oil is particularly preferable.
  • the blending amount of the softener is usually 2 to 100 parts by mass, preferably 10 to 100 parts by mass with respect to 100 parts by mass of the total of the olefin resin.
  • the inorganic filler include light calcium carbonate, heavy calcium carbonate, talc, and clay.
  • the blending amount of the inorganic filler is usually 2 to 100 parts by mass, preferably 5 to 100 parts by mass with respect to 100 parts by mass of the total of the olefin resin.
  • the blending amount of the inorganic filler is within the above range, the kneading processability is excellent, and a crosslinked product having excellent mechanical properties can be obtained.
  • the reinforcing agent examples include carbon black, carbon black surface-treated with a silane coupling agent, silica, calcium carbonate, activated calcium carbonate, fine powder talc, and differential silicic acid.
  • the blending amount of the reinforcing agent is usually 5 to 300 parts by mass, preferably 10 to 100 parts by mass with respect to 100 parts by mass in total of the olefin resin.
  • Anti-aging agent (stabilizer) By blending an anti-aging agent (stabilizer), the life of the crosslinked product to be formed can be extended.
  • an antiaging agent include conventionally known anti-aging agents such as amine-based anti-aging agents, phenol-based anti-aging agents, and sulfur-based anti-aging agents.
  • the amount of the anti-aging agent to be blended is usually 0.3 to 10 parts by mass, preferably 0.5 to 7.0 parts by mass with respect to 100 parts by mass of the total olefin resin. Is.
  • the blending amount of the anti-aging agent is within the above range, there is no bloom on the surface of the obtained crosslinked product, and the occurrence of vulcanization inhibition can be further suppressed.
  • processing aid those generally blended in rubber as a processing aid can be widely used.
  • the processing aid include fatty acids such as ricinolic acid, stearic acid, palmitic acid and lauric acid, fatty acid salts such as barium stearate, zinc stearate and calcium stearate, ricinol acid ester, stearic acid ester and partimate.
  • fatty acid esters such as lauric acid esters and fatty acid derivatives such as N-substituted fatty acid amides. Of these, stearic acid is preferred.
  • the blending amount of the processing aid is usually 10 parts by mass or less, preferably 8.0 parts by mass or less, based on 100 parts by mass of the total olefin resin.
  • Activators include, for example, amines such as di-n-butylamine, dicyclohexylamine, monoeranolamine; zinc compounds of diethylene glycol, polyethylene glycol, lecithin, trialilute melilate, aliphatic carboxylic acid or aromatic carboxylic acid.
  • Activators zinc peroxide modifiers; octadecyltrimethylammonium bromide, synthetic hydrotalcites, special quaternary ammonium compounds.
  • the blending amount of the activator is usually 0.2 to 10 parts by mass, preferably 0.3 to 5 parts by mass with respect to 100 parts by mass in total of the olefin resin.
  • the hygroscopic agent include calcium oxide, silica gel, sodium sulfate, molecular sieve, zeolite, and white carbon.
  • the blending amount of the hygroscopic agent is usually 0.5 to 15 parts by mass, preferably 1.0 to 12 parts by mass with respect to 100 parts by mass in total of the olefin resin.
  • the crosslinked product of the present invention may be a non-foamed material or a foamed material.
  • a foaming agent can be used in foam formation, for example, an inorganic foaming agent such as sodium bicarbonate, sodium carbonate, ammonium bicarbonate, ammonium carbonate, ammonium nitrite; N, N'-dinitroterephthalamide, N, N.
  • Nitroso compounds such as'-dinitrosopentamethylenetetramine; azo compounds such as azodicarboxylicamide, azobisisobutyronitrile, azocyclohexylnitrile, azodiaminobenzene, barium azodicarboxylate; benzenesulfonylhydrazide, toluenesulfonylhydrazide, p.
  • P'-oxybis (benzenesulphonylhydrazide) diphenylsulphon-3,3'-disulfenylhydrazide and other sulfonylhydrazide compounds ; calcium azide, 4,4'-diphenylsulfonyl azide, paratoluenesulfonyl azide and other azide compounds. Be done.
  • the blending amount of the foaming agent is appropriately selected so that the specific gravity of the foam after cross-linking foaming is usually 0.01 to 0.9.
  • the blending amount of the foaming agent is usually 0.5 to 30 parts by mass, preferably 1 to 20 parts by mass with respect to 100 parts by mass of the total of the olefin resin.
  • the polymer structure of the resin described in the examples is measured by the following method.
  • (measuring device) ECX400P type nuclear magnetic resonance device manufactured by JEOL Ltd., Measurement nucleus: 1 H (400 MHz) (Measurement condition) Measurement mode: single pulse, pulse width: 45 ° (5.25 ⁇ sec), number of points: 32 k, measurement range: 20 ppm (-4 to 16 ppm), repetition time: 7.0 seconds, integration count: 256 times, measurement solvent : Orthodichlorobenzene-d 4 , sample concentration: ca. 20 mg / 0.6 mL, measurement temperature: 120 ° C., window function: exponential (BF: 0.12 Hz), chemical shift standard: orthodichlorobenzene (7.1 ppm).
  • Terminal vinylization rate of macromonomer The polymer composition and terminal vinylization rate of the macromonomer can be analyzed from the 1 H-NMR spectrum, and the ethylene-propylene composition ratio is calculated by a conventional method. Further, here, the terminal vinylization rate is the vinyl group content (unit: mol%) in the totally unsaturated terminal, and is calculated from the ratio.
  • sample pretreatment 30 mg of the resin produced in the examples is dissolved in 20 ml of o-dichlorobenzene at 145 ° C., and the solution is filtered through a sintering filter having a pore size of 1.0 ⁇ m as an analysis sample.
  • GPC analysis Gel permeation chromatography (GPC) is used to determine the weight average molecular weight (Mw), number average molecular weight (Mn) and molecular weight distribution curve. The calculation is done in polystyrene conversion. Mw / Mn is calculated from the obtained weight average molecular weight (Mw) and number average molecular weight (Mn).
  • the sample was set in the measuring device, and the torque change obtained under the conditions of constant temperature and constant shear rate was measured to obtain a vulcanization curve.
  • the minimum torque value S'Min and the maximum torque value S'Max were obtained from this vulcanization curve, and the progress of cross-linking was confirmed by the degree of increase in torque.
  • Step A Production of ethylene-propylene copolymer macromonomer Dimethylsilylbis (2-methyl-4-phenylindenyl) hafnium dichloride used as a catalyst was synthesized by a known method.
  • Step B Copolymerization of olefinic macromonomer and non-conjugated diene
  • the compound (1) represented by the following formula used as a catalyst was synthesized by a known method.
  • the olefin resin was dried under reduced pressure at 130 ° C. for 10 hours to obtain 2.8 g of the olefin resin.
  • the ratio of the copolymer of the macromonomer and 7-methyl-1,6-octadien in the olefin resin was calculated to be 5.3% by mass.
  • the content of the structural unit derived from the macromonomer in the copolymer of the macromonomer and 7-methyl-1,6-octadien was 98.5 mol%.
  • Step B Copolymerization of olefinic macromonomer and non-conjugated diene Under a nitrogen atmosphere, 3.0 g of the macromonomer synthesized in Step A of Example 1 was dissolved in 6.0 mL of toluene in a glass reactor having an internal volume of 100 mL. After degassing with nitrogen for 15 minutes, the temperature was raised to 50 ° C. Toluene solution of 7-methyl-1,6-octadien (0.6 mol / L) is 0.5 mL (0.3 mmol), and toluene solution of triisobutylaluminum (1.0 mol / L) is 6.0 mL (6.0 mmol).
  • the olefin resin was dried under reduced pressure at 130 ° C. for 10 hours to obtain 2.9 g of the olefin resin.
  • the ratio of the copolymer of the macromonomer and 7-methyl-1,6-octadien was calculated to be 17.0% by mass.
  • the content of the structural unit derived from the macromonomer in the copolymer of the macromonomer and 7-methyl-1,6-octadien was 98.3 mol%.
  • Example 3 An ethylene-propylene copolymer containing both terminal vinyl groups was obtained by the same method as in Example 1 described in International Publication No. 2008/026628. That is, the composition of the obtained bi-terminal vinyl group-containing polyolefin polymer was 79.8 mol% in ethylene content, 16.6 mol% in propylene content, 3.6 mol% in 1,3-butadiene content, and 1,3. The breakdown of -butadiene was 0.6 mol% for the 1,4-additional structure, 0.5 mol% for the 1,2-additional structure, 2.3 mol% for the 5-membered ring structure, and 0.2 mol% for the 3-membered ring structure. .. The terminal vinylization rate of the polymer was 77%, and the ultimate viscosity [ ⁇ ] was 0.12 dl / g. This was used as a non-conjugated diene in step B below.
  • Step B Copolymerization of olefinic macromonomer and non-conjugated diene
  • Toluene solution (1.0 mol / L) of triisobutylaluminum is 6.0 mL (6.0 mmol)
  • toluene solution (0.005 mol / L) of the above compound (1) is 8.0 mL (0.040 mmol)
  • triphenyl Toluene solution (10 mmol / L) of carbenium tetrakis (pentafluorophenyl) borate (also referred to as Ph 3 CB (C 6 F 5 ) 4 ) was added in order in 16.0 mL (0.160 mmol), and at 50 ° C. under normal pressure. Polymerization was carried out for 60 minutes. The polymerization was stopped by adding a small amount of isobutanol.
  • the obtained polymerization reaction solution was precipitated in a large amount of methanol to obtain an olefin resin.
  • the olefin resin was dried under reduced pressure at 130 ° C. for 10 hours to obtain 3.1 g of the olefin resin.
  • Example 4 With respect to 100 parts by mass of the olefin resin obtained in Example 2, 5 parts by mass of "Zinc Oxide 2" (trade name: manufactured by Sakai Chemical Industry Co., Ltd.) as a vulcanization aid and as a processing aid.
  • Example 1 The same procedure as in Example 2 was carried out except that 7-methyl-1,6-octadien was not added, to obtain an olefin resin.
  • the olefin resin of the present invention can provide a crosslinked product having excellent mechanical properties by undergoing a crosslinking reaction. Therefore, the olefin resin of the present invention and its crosslinked product can be used as a material used in various fields such as electrical / electronic parts / transportation machinery, civil engineering / construction, building materials, medical care, leisure, and packaging, or as a molded product or a multilayer laminate. Can be expected to be applied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

本発明は、オレフィン系マクロモノマーと非共役ジエンとの共重合体を含むオレフィン系樹脂に関する。

Description

オレフィン系樹脂、その架橋物およびそれらの製造方法
 本発明は、特定の要件を満たすオレフィン系樹脂、その架橋物およびそれらの製造方法に関する。
 分岐構造を持つ高分子材料は分岐度や分岐密度によってさまざまな形態を有し、特に、高密度にポリマー鎖が配列したグラフトポリマーであるいわゆるボトルブラシポリマーは、側鎖間の反発による主鎖の伸張性、柔軟性、分子間の絡み合いにくさなど直鎖ポリマーとは異なる性質を示し、本特性を利用した材料設計が注目されている。例えば、非特許文献1では、アクリル系またはシリコーン系ボトルブラシポリマーの架橋体が開示され、ソフトマテリアルとしての新たな可能性を例示されている。非特許文献2では、アクリル系ボトルブラシポリマーの架橋体で均一な細孔を持つ材料が例示されている。
 一方、ポリエチレンやポリプロピレンに代表されるオレフィン系樹脂は、軽量、高耐熱性、耐薬品性などの性質を有し、成形性、リサイクル性に優れるといった特性から、バンパーやインストルメントパネルなどの自動車部品、包装材料、スポーツ用部品、電線被覆材などとして幅広く用いられている。また、エチレン・α-オレフィン共重合体は、モノマーの組成(エチレンとα-オレフィンの組成比)によって、熱的特性、機械的特性、レオロジー特性などの諸物性が変化し、各用途の要求性能に応じたモノマー組成の設計がなされ、相溶化剤や改質剤などとして幅広く用いられている。
 オレフィン系樹脂に関して、機械物性や成形性などの性能向上を目的として、重合体に分岐鎖を導入する試みがなされている。更に特許文献1には、末端にビニル基を持つオレフィン重合体を配位重合により単独重合する例が開示されている。また、特許文献2には、エチレン・プロピレン共重合体の末端不飽和基をラジカル重合性基に変換し、ラジカル重合を行う方法が開示されている。
 しかしながら、これら先行技術はボトルブラシポリマーの設計を指向したものではなく、また、実際にオレフィン系ボトルブラシポリマーの架橋体を形成する方法論は示されていない。
国際公開第2009/155510号 特開2004-91640号公報
Sheiko,S.Nature 2017,549,497-501. Rzayev,J.ASC Nano 2017,11,8207-8214.
 本発明の課題は、架橋反応可能な不飽和炭素結合を有するオレフィン系ボトルブラシポリマーを含むオレフィン系樹脂、およびその架橋物を提供すること、さらにそれらの製造方法を提供することである。
 本発明者らは、鋭意研究した結果、オレフィン重合用触媒の存在下で、オレフィン系マクロモノマーと非共役ジエンとを共重合することにより、前記課題を解決し、本発明を完成させた。
 すなわち本発明は、次の[1]~[8]に関する。
[1]オレフィン系マクロモノマーと非共役ジエンとの共重合体を含むオレフィン系樹脂。
[2]前記オレフィン系マクロモノマーと前記非共役ジエンとの共重合体において、オレフィン系マクロモノマーから導かれる構造単位の含有量が80~99.5mol%の範囲にある、前記[1]に記載のオレフィン系樹脂。
[3]前記オレフィン系マクロモノマーが、以下の要件(i)~(iii)を満たす、前記[1]または[2]に記載のオレフィン系樹脂。
(i)エチレンおよび炭素数3~12のα-オレフィンから選ばれる1種以上のオレフィンの単独重合体または共重合体である
(ii)重量平均分子量が1000~30000の範囲にある
(iii)総不飽和末端に対して50mol%以上のビニル基を有する
[4]前記要件(i)が、
 エチレンと1種以上の炭素数3~12のα-オレフィンとの共重合体であり、エチレンから導かれる繰り返し単位の含有量が30~70mol%の範囲にある、
である、前記[3]に記載のオレフィン系樹脂。
[5]前記要件(iii)が、
 総不飽和末端に対して60mol%以上のビニル基を有する、
である、前記[3]または[4]に記載のオレフィン系樹脂。
[6]下記の工程A及び工程Bを含む、前記[1]~[5]のいずれかに記載のオレフィン系樹脂の製造方法。
工程A:オレフィン重合用触媒の存在下でオレフィンを重合して、オレフィン系マクロモノマーを製造する工程。
工程B:オレフィン重合用触媒の存在下で、工程Aで生成したオレフィン系マクロモノマーと非共役ジエンとを共重合して、オレフィン系樹脂を製造する工程。
[7]前記[1]~[5]のいずれかに記載のオレフィン系樹脂の、架橋物。
[8]前記[6]に記載の製造方法により得られたオレフィン系樹脂を、架橋剤を用いて架橋する、架橋物の製造方法。
 本発明のオレフィン系樹脂は、架橋反応可能な不飽和炭素結合を有するオレフィン系ボトルブラシポリマーを含むため、機械特性に優れる架橋物、およびその前駆体を提供でき、さらに、オレフィン系樹脂であるため、本発明のオレフィン系樹脂及びその架橋物は、軽量性、耐薬品性、リサイクル性にも優れる。
 以下、本発明について具体的に説明する。なお、以下の説明において、数値範囲を示す「~」は、特に断りがなければ以上から以下を表す。
 <オレフィン系樹脂>
 本発明のオレフィン系樹脂は、オレフィン系マクロモノマーと非共役ジエンとの共重合体を含むことを特徴とする。
 以下、オレフィン系マクロモノマーと非共役ジエンについて順に説明する。
 (1)オレフィン系マクロモノマー
 オレフィン系マクロモノマーは、炭素原子及び水素原子のみから構成されるオレフィン由来の重合体であって、例えば後述の工程Bに示すオレフィン重合用触媒の存在下で重合反応性を示すビニル基を末端に有するポリマーを含む重合体である。
 このようなマクロモノマーとして、本出願人により開示されているエチレン単独重合体からなるマクロモノマー(国際公開第2015/147186号)、プロピレン単独重合体からなるマクロモノマー(国際公開第2015/147187号)、プロピレン・エチレン共重合体からなるマクロモノマー(国際公開第2017/082182号)が挙げられ、その他にプロピレン単独重合体からなるマクロモノマー(特開2009-299046)、プロピレン・エチレン共重合体からなるマクロモノマー(国際公開第2012/134719号)が挙げられるが、これらに限定されない。
 なお、オレフィン系マクロモノマーは、一種を単独で用いることもできるし、複数種を組み合わせて用いることもできる。
 以下、オレフィン系マクロモノマーについて詳述する。
 (i)組成
 オレフィン系マクロモノマーは、炭素原子及び水素原子のみから構成されるオレフィン由来の重合体であり、例えば炭素数2~50、好ましくは炭素数2~12のオレフィンに由来する構造単位を含む重合体である。好ましくはエチレンおよび炭素数3~12のα-オレフィンから選ばれる1種以上のオレフィンの単独重合体または共重合体である。
 炭素数2のオレフィンはエチレンであり、炭素数3~12のα-オレフィンとしては、具体的には、プロピレン、1-ブテン、2-メチル-1-プロペン、2-メチル-1-ブテン、3-メチル-1-ブテン、1-ヘキセン、2-エチル-1-ブテン、2,3-ジメチル-1-ブテン、2-メチル-1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、3,3-ジメチル-1-ブテン、1-ヘプテン、メチル-1-ヘキセン、ジメチル-1-ペンテン、エチル-1-ペンテン、トリメチル-1-ブテン、メチルエチル-1-ブテン、1-オクテン、メチル-1-ペンテン、エチル-1-ヘキセン、ジメチル-1-ヘキセン、プロピル-1-ヘプテン、メチルエチル-1-ヘプテン、トリメチル-1-ペンテン、プロピル-1-ペンテン、ジエチル-1-ブテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-ヘキサデセン、1-オクタデセン等を挙げることができる。
 これらのオレフィンの中でより好ましくは、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ヘキサデセン、1-オクタデセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、3-メチル-1-ブテンを挙げることができ、さらにより好ましくはエチレン、プロピレンが挙げられる。
 オレフィン系マクロモノマーは、上記オレフィンの単独重合体であってもよく、上記オレフィンから少なくとも2種以上選ばれる共重合体であってもよい。
 好ましくは、エチレン単独重合体、プロピレン単独重合体、エチレンと前記炭素数3~12のα-オレフィンとの共重合体が挙げられ、その場合にエチレンから導かれる繰り返し単位の含有量が30~70mol%の範囲にあることが好ましい。共重合体の中でもエチレン・プロピレン共重合体が特に好ましい。前記エチレン・プロピレン共重合体のより好ましい態様として、エチレンから導かれる構造単位の含有量は20~80mol%が好ましく、より好ましくは30~70mol%であり、プロピレンから導かれる構造単位の含有量は80~20mol%が好ましく、より好ましくは70~30mol%である。
 前記エチレンおよびプロピレンから導かれる構造単位の含有量が上記範囲にあることにより、柔軟な重合体鎖を持つオレフィン系マクロモノマーとなり、該マクロモノマーを重合して得られるボトルブラシポリマーを含むオレフィン系樹脂は優れた柔軟性を有する。
 (ii)分子量
 オレフィン系マクロモノマーは、ゲルパーミエーションクロマトグラフィー(GPC)により求められるポリスチレン換算の重量平均分子量が1000~100000の範囲であることが好ましく、より好ましくは1000~30000または2000~50000、さらに好ましくは2500~40000、特に好ましくは3000~30000の範囲である。前記範囲にあることにより、該マクロモノマーを重合して得られるボトルブラシポリマーを含むオレフィン系樹脂はボトルブラシポリマーに由来する優れた特性を発揮する。
 (iii)末端ビニル基
 オレフィン系マクロモノマーは通常、後述の工程Aにおいて説明される通り、オレフィン重合用触媒の存在下でオレフィンを重合することにより得られ、通常はオレフィンモノマーへの連鎖移動やβ水素脱離、βアルキル脱離などの停止反応により、末端に炭素-炭素不飽和結合を有するポリマーを含んで成る。オレフィン系マクロモノマーは、例えば後述の工程Bに示すオレフィン重合用触媒の存在下で重合反応性を示すビニル基を末端に有するポリマーを含むことが好ましい。そのため、オレフィン系マクロモノマーは、総不飽和末端に対するビニル基の割合は、通常は50mol%以上、より好ましくは60mol%以上、さらに好ましくは70mol%以上である。
 更に、オレフィン系マクロモノマーに含まれる末端ビニル基は1000炭素原子あたりで、0.1~10.0個の範囲であることが好ましく、さらに好ましくは0.5~8.0個、より好ましくは1.0~6.0個の範囲である。
 総不飽和末端に対するビニル基の割合、及び1000炭素原子あたり末端ビニル基の割合が上記範囲にあることにより、本発明のオレフィン系樹脂に含まれるオレフィン系マクロモノマーと非共役ジエンのコモノマーとの共重合体の割合が多くなる点で好ましい。
 末端ビニル基選択率および、1000炭素原子あたりの末端ビニル基の割合は、1H-NMR測定によるポリマー構造解析により常法にて算出することが出来る。
 (2)非共役ジエン
 前記非共役ジエンとしては、鎖状または環状ジエンを用いることができる。これらは単独または2種以上を用いることができる。
 なかでも具体的には、1,4-ヘキサジエン、3-メチル-1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、4,5-ジメチル-1,4-ヘキサジエン、7-メチル-1,6-オクタジエン、8-メチル-4-エチリデン-1,7-ノナジエンおよび4-エチリデン-1,7-ウンデカジエン等の鎖状非共役ジエン;メチルテトラヒドロインデン、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、5-ビニリデン-2-ノルボルネン、6-クロロメチル-5-イソプロペニル-2-ノルボルネン、5-ビニル-2-ノルボルネン、5-イソプロペニル-2-ノルボルネン、5-イソブテニル-2-ノルボルネン、シクロペンタジエンおよびノルボルナジエン等の環状非共役ジエンが例示される。中でも、7-メチル-1,6-オクタジエンが好ましい。
 鎖状ジエンについて、上記したように片末端のみがビニル基である非共役ジエン(以降、片末端ビニル基非共役ジエンともいう)を用いることは、一般的な非共役ジビニル化合物(α,ω-ジエン)を非共役ジエンとして用いる場合に比べて、後述する架橋剤として硫黄化合物を用いることができるため特に好ましい。架橋剤として硫黄化合物を用いることは、過酸化物を架橋剤に用いた場合に比べて、分解による低分子量化を抑えることができる。
 また、非共役ジエンはポリマー構造を含んでもよく、例えば、国際公開第2008/026628号に記載の両末端にビニル基を有するポリオレフィン共重合体を非共役ジエンとして用いてもよい。すなわち、エチレン(a)、炭素数3~20のα-オレフィン(b)、下記一般式[I]、[II]および[III]で表される環状オレフィン(c)からなる群より選ばれる少なくとも1つに由来する構成単位を含んでおり、
1)全分子鎖の両末端に対する末端ビニル化率が70%以上、
2)135℃デカリン溶液中で測定した極限粘度[η]が0.01~10dl/gの範囲である両末端ビニル基含有ポリオレフィン重合体、
を非共役ジエンとして用いることができる。このような非共役ジエンを用いることにより、後述するように、工程Bにおいて架橋物を形成しうることから好ましい。
Figure JPOXMLDOC01-appb-C000001
(式[I]中、uは0または1、vは0または1以上の整数、wは0または1であり、R61~R78ならびにRa1およびRb1は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子または炭化水素基であり、R75~R78は、互いに結合して単環または多環を形成していてもよく、かつ該単環または多環が二重結合を有していてもよく、またR75とR76とで、またはR77とR78とでアルキリデン基を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000002
(式[II]中、xおよびdは0または1以上の整数、yおよびzは0、1または2であり、R81~R99は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、脂肪族炭化水素基、芳香族炭化水素基またはアルコキシ基であり、R89およびR90が結合している炭素原子と、R93が結合している炭素原子またはR91が結合している炭素原子とは、直接あるいは炭素原子数1~3のアルキレン基を介して結合していてもよく、またy=z=0のとき、R95とR92またはR95とR99とは互いに結合して単環または多環の芳香族環を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000003
(式[III]中、R100、R101は、互いに同一でも異なっていてもよく、水素原子または炭素原子数1~5の炭化水素基を示し、fは1≦f≦18の整数である。)
 (3)オレフィン系マクロモノマーと非共役ジエンとの共重合体
 本発明のオレフィン系樹脂はオレフィン系マクロモノマーと非共役ジエンとの共重合体を含んでいれば特にその含有量に制限はないが、本発明のオレフィン系樹脂全体に対する、オレフィン系マクロモノマーと非共役ジエンとの共重合体の含有量は、好ましくは1質量%以上、さらに好ましくは5質量%以上である。また、オレフィン系マクロモノマーと非共役ジエンとの共重合体の含有量は通常50質量%以下である。本発明のオレフィン系樹脂には、オレフィン系マクロモノマーと非共役ジエンとの共重合体のほかに、オレフィン系マクロモノマーが含まれる。当該オレフィン系マクロモノマーは、非共役ジエンとの共重合に用いられなかった残存マクロモノマーである。
 オレフィン系マクロモノマーと非共役ジエンとの共重合体の含有量は、例えば、後述の工程Bで得られる樹脂のゲルパーミエーションクロマトグラフィー(GPC)のクロマトグラムと工程AのGPCクロマトグラムとを比較して、新たに生成した高分子量成分をピーク分離してその面積比から算出することができる。
 オレフィン系マクロモノマーと非共役ジエンとの共重合体の重合度は5以上であることが好ましい。より好ましくは10以上、さらに好ましくは15以上である。
 オレフィン系マクロモノマーと非共役ジエンとの共重合体に含まれる構造単位のうち、オレフィン系マクロモノマーから導かれる構造単位の含有量は、通常80~99.5mol%であり、さらに好ましくは90~99.5mol%、さらにより好ましくは95~99mol%である。
 非共役ジエンから導かれる構造単位の含有量は、通常0.5~20mol%であり、さらに好ましくは0.5~10mol%、さらにより好ましくは1~5mol%である。
 オレフィン系マクロモノマーから導かれる構造単位および非共役ジエンから導かれる構造単位が、上記範囲にあることで、本発明のオレフィン樹脂は良好な機械物性を発現する架橋物を生成することができる。
 オレフィン系マクロモノマーと非共役ジエンとの共重合体は、本発明の効果を損なわない範囲で、その他のモノマー、すなわちコモノマーを含んでいてもよく、コモノマーから導かれる構造単位の含有量は、通常15mol%以下、好ましくは10mol%以下、さらにより好ましくは5mol%以下であるが、特に好ましくはオレフィン系マクロモノマーと非共役ジエン以外のコモノマーを含まない重合体である。前記コモノマーとしては前述の「(i)組成」で説明した炭素数2~12のα―オレフィンが挙げられる。
 さらに、本発明のオレフィン系樹脂はさらに以下の特徴を有していてもよい。
 (I)分子量
 本発明のオレフィン系樹脂のゲルパーミエーションクロマトグラフィー(GPC)により求められるポリスチレン換算の重量平均分子量は5000~1000000の範囲であることが好ましい。上記重量平均分子量は好ましくは8000~900000、より好ましくは10000~800000、さらに好ましくは10000~600000の範囲である。
 (II)極限粘度
 本発明のオレフィン系樹脂の135℃のデカリン中で測定した極限粘度[η]は好ましくは0.1~10dl/gの範囲にあり、より好ましくは0.2~8dl/g、さらに好ましくは0.3~5dl/g、である。
 (III)組成
 オレフィン系樹脂中のエチレンより導かれる繰り返し単位の含有量は10~90mol%の範囲にあることが好ましい。上記繰り返し単位の含有量は好ましくは20~80mol%、より好ましくは30~70mol%の範囲である。
 <オレフィン系樹脂の製造方法>
 本発明のオレフィン系樹脂は、例えば下記の工程A及び工程Bを含む製造方法により製造することができる。
工程A:オレフィン重合用触媒の存在下でオレフィンを重合して、オレフィン系マクロモノマーを製造する工程。
工程B:オレフィン重合用触媒の存在下で、工程Aで生成したオレフィン系マクロモノマーと非共役ジエンとを共重合して、オレフィン系樹脂を製造する工程。
 以下、工程Aおよび工程Bについて順に説明する。なお、工程Aで使用されるオレフィン重合用触媒と、工程Bで使用されるオレフィン重合用触媒とは、同一でも異なってもよいが、通常は各工程での目的に応じて異なる触媒が使用される。
 [工程A]
 工程Aは、オレフィン重合用触媒の存在下でオレフィンを重合して、前述のオレフィン系マクロモノマーを製造する工程であり、前記オレフィン重合用触媒が下記(A)および(C)の成分を含む工程であることが好ましい。
(A) 周期表第4族の遷移金属化合物
(C)(C-1)有機金属化合物、(C-2)有機アルミニウムオキシ化合物、および、(C-3)前記周期表第4族の遷移金属化合物(A)と反応してイオン対を形成する化合物からなる群より選択される少なくとも1種の化合物。
 このような工程として、本出願人により開示されているエチレン単独重合体からなるマクロモノマーの製造工程(国際公開第2015/147186号)、プロピレン単独重合体からなるマクロモノマーの製造工程(国際公開第2015/147187号)、プロピレン・エチレン共重合体からなるマクロモノマーの製造工程(国際公開第2017/082182号)が挙げられ、その他にプロピレン単独重合体からなるマクロモノマーの製造工程(特開2009-299046)、プロピレン・エチレン共重合体からなるマクロモノマーの製造工程(国際公開第2012/134719号)が挙げられるが、これらに限定されない。
 以下、オレフィン系マクロモノマーとして特に好ましいエチレン・プロピレン共重合体を例に、工程Aの好ましい態様について説明する。
 (遷移金属化合物(A))
 上記周期表第4族の遷移金属化合物(A)はジメチルシリルビスインデニル骨格を有する配位子を含む周期表第4族の遷移金属化合物であることが好ましい。
 ジメチルシリルビスインデニル骨格を有する配位子を含む周期表第4族の遷移金属化合物(A)としては、Resconi, L. JACS 1992, 114, 1025-1032などで例示されている化合物が知られており、末端不飽和ポリプロピレンを製造するオレフィン重合用触媒を好適に用いることが出来る。
 そのほかに、ジメチルシリルビスインデニル骨格を有する配位子を含む周期表第4族の遷移金属化合物(A)として、特開平6-100579、特表2001-525461、特開2005-336091、特開2009-299046、特開平11-130807、特開2008-285443等により開示されている化合物を好適に用いることができる。
 上記ジメチルシリルビスインデニル骨格を有する配位子を含む周期表第4族の遷移金属化合物(A)としてより具体的には、架橋ビス(インデニル)ジルコノセン類又はハフノセン類からなる群から選択される化合物を好適な例として挙げることができる。より好ましくは、ジメチルシリル架橋ビス(インデニル)ジルコノセン又はハフノセンである。さらに好ましくは、ジメチルシリル架橋ビス(インデニル)ハフノセンであり、ハフノセンを選択することで、得られるエチレン・プロピレン共重合体の末端にビニル基を有する率が高くなり、工程Bにおいてマクロモノマーとして良好な反応性を示す。
 より具体的には、ジメチルシリルビス(2-メチル-4-フェニルインデニル)ハフニウムジクロリド又はジメチルシリルビス(2-メチル-4-フェニルインデニル)ハフニウムジメチルを好適な化合物として用いることができる。
 (化合物(C))
 工程Aで用いられる化合物(C)は、周期表第4族の遷移金属化合物(A)と反応して、オレフィン重合用触媒として機能するものであり、具体的には、(C-1)有機金属化合物、(C-2)有機アルミニウムオキシ化合物、および(C-3)遷移金属化合物(A)と反応してイオン対を形成する化合物からなる群より選択される。このような、(C-1)~(C-3)の化合物については、国際公開第2015/147186号に記載された化合物(C-1)~(C-3)をそのまま制限なく使用できる。後述する実施例においては、トリイソブチルアルミニウムとトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートを用いているが、化合物(C)はこれら化合物に何ら限定されるものではない。
 工程Aは、気相重合、スラリー重合、バルク重合、溶液(溶解)重合のいずれの方法においても実施可能であり、特に重合形態は限定されない。
 工程Aが、溶液重合で実施される場合、重合溶媒としては、例えば、脂肪族炭化水素、芳香族炭化水素などが挙げられる。具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、エチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素が挙げられ、1種単独で、あるいは2種以上組み合わせて用いることができる。
 また、工程Aの重合温度は、通常50℃~200℃、好ましくは80℃~150℃の範囲、より好ましくは、80℃~130℃の範囲であり、重合温度を適切にコントロールすることで、所望の分子量及び末端ビニル基含有量のエチレン・プロピレン共重合体を得ることが可能となる。
 工程Aの重合圧力は、通常常圧~10MPaゲージ圧、好ましくは常圧~5MPaゲージ圧の条件下であり、重合反応は、回分式、半連続式、連続式のいずれの方法においても行うことができる。本発明ではこのうち、モノマーを連続して反応器に供給して共重合を行う方法を採用することが好ましい。
 反応時間(共重合が連続法で実施される場合には平均滞留時間)は、触媒濃度、重合温度などの条件によっても異なるが、通常0.5分間~5時間、好ましくは5分間~3時間である。
 工程Aにおける、ポリマー濃度は、回分式の場合は重合終了時、連続式の場合は定常運転時において、5~50wt%である。
 工程Aにて製造されるエチレン・プロピレン共重合体マクロモノマーのエチレンから導かれる構造単位の含有量は20~80mol%が好ましく、より好ましくは30~70mol%であり、プロピレンから導かれる構造単位の含有量は80~20mol%が好ましく、より好ましくは70~30mol%である。
 さらに、工程Aにて製造されるエチレン・プロピレン共重合体マクロモノマーのゲルパーミエーションクロマトグラフィーで測定される重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)により求められるポリスチレン換算の重量平均分子量が1000~100000の範囲であることが好ましく、より好ましくは1000~30000または2000~50000、さらに好ましくは2500~40000、特に好ましくは3000~30000の範囲である。前記範囲にあることにより、本発明のオレフィン系樹脂はボトルブラシポリマーに由来する優れた特性を発揮する。
 工程Aにて製造されエチレン・プロピレン共重合体マクロモノマーの分子量分布(Mw/Mn)は、例えば1.5~5.0、典型的には1.7~4.0程度である。場合によっては、異なる分子量を有する側鎖の混合物を用いてもよい。
 工程Aにて製造されエチレン・プロピレン共重合体マクロモノマーの総不飽和末端に対するビニル基の割合は、通常は50mol%以上、より好ましくは60mol%以上、さらに好ましくは70mol%以上である。
 更に、工程Aにて製造されエチレン・プロピレン共重合体マクロモノマーに含まれる末端ビニル基は1000炭素原子あたりで、0.1~10.0個の範囲であることが好ましく、さらに好ましくは0.5~8.0個、より好ましくは1.0~6.0個の範囲である。
 総不飽和末端に対するビニル基の割合、及び1000炭素原子あたり末端ビニル基の割合が上記範囲にあることにより、本発明のオレフィン系樹脂に含まれるオレフィン系マクロモノマーと非共役ジエンのコモノマーの共重合体の割合が多くなる点で好ましい。
 末端ビニル基選択率および、1000炭素原子あたりの末端ビニル基の割合は、1H-NMR測定によるポリマー構造解析により常法にて算出することが出来る。
 [工程B]
 工程Bは、オレフィン重合用触媒の存在下で、工程Aで生成したオレフィン系マクロモノマーと非共役ジエンとを共重合して、本発明のオレフィン系樹脂を製造する工程であり、前記オレフィン重合触媒は下記(B)および(C)の成分を含むことが好ましい。
(B) 周期表第4族の遷移金属化合物
(C)(C-1)有機金属化合物、(C-2)有機アルミニウムオキシ化合物、および、(C-3)前記周期表第4族の遷移金属化合物(B)と反応してイオン対を形成する化合物からなる群より選択される少なくとも1種の化合物。
 (遷移金属化合物(B))
 工程Bにおいては、オレフィン系マクロモノマーと非共役ジエンとを共重合するため、嵩高いモノマー種の重合性能が高く、高分子量体を与える性能を持つ重合触媒を選定することが好ましく、そのような重合触媒に用いられる遷移金属化合物として、国際公開第2001/27124号、国際公開第2004/029062号に開示されている架橋メタロセン化合物、国際公開第2003/091262号に開示されている4座フェノラートエーテル化合物が挙げられ、具体的には下記一般式[I]で表される化合物(I)を含む遷移金属化合物(B)であることが好ましい。
Figure JPOXMLDOC01-appb-C000004
 Mは、元素の周期表の3~6族から選ばれる金属原子であり、
 nは0~5の整数であり、nが0の場合にはXは存在せず、
 Xは、独立に中性、モノアニオン性、ジアニオン性、トリアニオン性もしくはテトラアニオン性の一座配位リガンドであるか、または2つのXにより形成される、中性、モノアニオン性もしくはジアニオン性の二座配位リガンドであり、Xとnは、化合物(I)が全体で中性となるように選択され、
 Zは、独立にO、S、N(C1-C40)ヒドロカルビルまたはP(C1-C40)ヒドロカルビルであり、
 Lは、(C1-C40)ヒドロカルビレンまたは(C1-C40)ヘテロヒドロカルビレンであり、前記(C1-C40)ヒドロカルビレンは、前記Zを連結する1炭素原子~18炭素原子リンカー主鎖を含む部分を有し、前記(C1-C40)ヘテロヒドロカルビレンは、前記Zを連結する1原子~18原子リンカー主鎖を含む部分を有し、前記(C1-C40)ヘテロヒドロカルビレンの1原子~18原子リンカー主鎖における1~18原子は、それぞれ独立に炭素原子またはヘテロ原子であり、前記ヘテロ原子は、独立にO、S、S(O)、S(O)2、Si(RC)2、P(RP)またはN(RN)であり、前記RCは、独立に置換もしくは未置換の(C1-C18)ヒドロカルビルまたは(C1-C18)ヘテロヒドロカルビルであり、前記RPは、独立に置換もしくは未置換の(C1-C18)ヒドロカルビルまたは(C1-C18)ヘテロヒドロカルビルであり、前記RNは、独立に置換もしくは未置換の(C1-C18)ヒドロカルビルまたは(C1-C18)ヘテロヒドロカルビルであるか、あるいは存在せず、
 R3a、R4a、R3bおよびR4bは、それぞれ独立に水素原子、(C1-C40)ヒドロカルビル、(C1-C40)ヘテロヒドロカルビル、Si(RC)3、O(RC)、S(RC)、N(RN)2、P(RP)2またはハロゲン原子であり、
 R6c、R7cおよびR8cの少なくとも1つ、ならびに、R6d、R7dおよびR8dの少なくとも1つは、独立に(C2-C40)ヒドロカルビルまたはSi(RC)3であり、それ以外のR6c、R7c、R8c、R6d、R7dおよびR8dは、独立に水素原子、(C1-C40)ヒドロカルビル、(C1-C40)ヘテロヒドロカルビル、Si(RC)3、O(RC)、S(RC)、N(RN)2、P(RP)2またはハロゲン原子であり、
 R3a、R4a、R3b、R4b、R6c、R7c、R8c、R6d、R7dおよびR8dから任意に選択される2つ以上のR基が結合して1つまたは複数の環構造を形成してもよく、この環構造は、環中に水素原子を除く3~50原子を有し、
 R5cおよびR5fの少なくとも1つは、独立に(C1-C40)ヒドロカルビル、(C1-C40)ヘテロヒドロカルビル、Si(RC)3、O(RC)、S(RC)、(RN)2、P(RP)2またはハロゲン原子であり、それ以外のR5cおよびR5fは、独立に水素原子、(C1-C40)ヒドロカルビル、(C1-C40)ヘテロヒドロカルビル、Si(RC)3、O(RC)、S(RC)、N(RN)2、P(RP)2またはハロゲン原子であり、
 R5ccおよびR5ffの少なくとも1つは、独立に(C1-C40)ヒドロカルビル、(C1-C40)ヘテロヒドロカルビル、Si(RC)3、O(RC)、S(RC)、N(RN)2、P(RP)2またはハロゲン原子であり、それ以外のR5ccおよびR5ffは、独立に水素原子、(C1-C40)ヒドロカルビル、((C1-C40)ヘテロヒドロカルビル、Si(RC)3、O(RC)、S(RC)、N(RN)2、P(RP)2またはハロゲン原子であり、
 R9a、R10a、R11a、R9b、R10b、R11b、R9aa、R10aa、R11aa、R9bb、R10bbおよびR11bbは、それぞれ独立に水素原子、(C1-C40)ヒドロカルビル、(C1-C40)ヘテロヒドロカルビル、Si(RC)3、O(RC)、S(RC)、N(RN)2、P(RP)2またはハロゲン原子であり、
 カルバゾール基上の置換基から任意に選択される2つ以上のR基が結合して1つまたは複数の環構造を形成してもよく、この環構造は、環中に水素原子を除く3~50原子を有し、
 上述のヒドロカルビル、ヘテロヒドロカルビル、ヒドロカルビレンおよびヘテロヒドロカルビレン基は、それぞれ独立に、未置換であるか、または少なくとも1つの置換基Rsで置換(Rsによる過置換まで)され、
 R5c+R5f+R7cの炭素原子の合計またはR5cc+R5ff+R7dの炭素原子の合計が5炭素原子を超え、
 Rsは、独立にハロゲン原子、ポリフルオロ置換、パーフルオロ置換、未置換(C1-C18)アルキル、F3C-、FCH2O-、F2HCO-、F3CO-、R3Si-、RO-、RS-、RS(O)-、RS(O)2-、R2P-、R2N-、R2C=N-、NC-、RC(O)O-、ROC(O)-、RC(O)N(R)-またはR2NC(O)-であるか、あるいは、前記Rsの2つが結合して未置換(C1-C18)アルキレンを形成し、前記Rは独立に未置換(C1-C18)アルキルである。
 [化合物(I)]
 前記化合物(I)は下記一般式[I]で表される。
Figure JPOXMLDOC01-appb-C000005
 式[I]中の記号の定義は以下のとおりである。
 Mは、元素の周期表の3~6族のいずれか1つの(例えば、4族の)金属原子であり、前記金属Mは、+2、+3、+4、+5または+6の形式的酸化状態である。
 nは0~5の整数であり、nが0の場合にはXは存在しない(すなわち、(X)nが存在しない)。
 Xは、独立に中性、モノアニオン性、ジアニオン性、トリアニオン性もしくはテトラアニオン性の一座配位リガンドであるか、または2つのXにより形成される、中性、モノアニオン性もしくはジアニオン性の二座配位リガンドであり、Xとnは、化合物(I)が全体で中性となるように選択される。
 Zは、独立にO、S、N(C1-C40)ヒドロカルビルまたはP(C1-C40)ヒドロカルビルである。
 Lは、(C1-C40)ヒドロカルビレンまたは(C1-C40)ヘテロヒドロカルビレンであり、
前記(C1-C40)ヒドロカルビレンは、前記Z(このZにLが結合される)を連結する1炭素原子~18炭素原子リンカー主鎖、好ましくは、1炭素原子~12炭素原子リンカーを含む部分を有し、
前記(C1-C40)ヘテロヒドロカルビレンは、前記Zを連結する1原子~18原子リンカー主鎖、好ましくは、1炭素原子~12炭素原子リンカー鎖を含む部分を有し、
前記(C1-C40)ヘテロヒドロカルビレンの1原子~18原子リンカー主鎖における1~18原子は、独立に炭素原子またはヘテロ原子であり、
前記ヘテロ原子は、独立にO、S、S(O)、S(O)2、Si(RC)2、P(RP)、またはN(RN)であり、
前記RCは、独立に置換もしくは未置換の(C1-C18)ヒドロカルビルまたは(C1-C18)ヘテロヒドロカルビルであり、
前記RPは、独立に置換もしくは未置換の(C1-C18)ヒドロカルビルまたは(C1-C18)ヘテロヒドロカルビルであり、前記RNは、独立に置換もしくは未置換の(C1-C18)ヒドロカルビルまたは(C1-C18)ヘテロヒドロカルビルであるか、あるいは存在しない(例えば、N(RN)が-N=として結合される場合が挙げられる。)。
 R3a、R4a、R3bおよびR4bは、それぞれ独立に水素原子、(C1-C40)ヒドロカルビル、(C1-C40)ヘテロヒドロカルビル、Si(RC)3、O(RC)、S(RC)、N(RN)2、P(RP)2またはハロゲン原子であり、RC、RNおよびRPは上記で定義したとおりである。
 R6c、R7cおよびR8cの少なくとも1つ、ならびに、R6d、R7d、およびR8dの少なくとも1つは、独立に(C2-C40)ヒドロカルビルまたはSi(RC)3であり、それ以外のR6c、R7c、R8c、R6d、R7dおよびR8dは、独立に水素原子、(C1-C40)ヒドロカルビル、(C1-C40)ヘテロヒドロカルビル、Si(RC)3、O(RC)、S(RC)、N(RN)2、P(RP)2またはハロゲン原子であり、RC、RNおよびRPは上記で定義したとおりである。
 R3a、R4a、R3b、R4b、R6c、R7c、R8c、R6d、R7dおよびR8dから任意に選択される2つ以上のR基が結合して1つまたは複数の環構造を形成してもよく、この環構造は、環中に水素原子を除く3~50原子を有する。
 R5cおよびR5fの少なくとも1つは、独立に(C1-C40)ヒドロカルビル、(C1-C40)ヘテロヒドロカルビル、Si(RC)3、O(RC)、S(RC)、(RN)2、P(RP)2またはハロゲン原子であり、それ以外のR5cおよびR5fは、独立に水素原子、(C1-C40)ヒドロカルビル、(C1-C40)ヘテロヒドロカルビル、Si(RC)3、O(RC)、S(RC)、N(RN)2、P(RP)2またはハロゲン原子であり、RC、RNおよびRPは上記で定義したとおりである。
 R5ccおよびR5ffの少なくとも1つは、独立に(C1-C40)ヒドロカルビル、(C1-C40)ヘテロヒドロカルビル、Si(RC)3、O(RC)、S(RC)、N(RN)2、P(RP)2またはハロゲン原子であり、それ以外のR5ccおよびR5ffは、独立に水素原子、(C1-C40)ヒドロカルビル、((C1-C40)ヘテロヒドロカルビル、Si(RC)3、O(RC)、S(RC)、N(RN)2、P(RP)2またはハロゲン原子であり、RC、RNおよびRPは上記で定義したとおりである。
 R9a、R10a、R11a、R9b、R10b、R11b、R9aa、R10aa、R11aa、R9bb、R10bbおよびR11bbは、それぞれ独立に水素原子、(C1-C40)ヒドロカルビル、(C1-C40)ヘテロヒドロカルビル、Si(RC)3、O(RC)、S(RC)、N(RN)2、P(RP)2またはハロゲン原子であり、RC、RNおよびRPは上記で定義したとおりである。
 カルバゾール基上の置換基(例えば、R9a、R10a、R5a、R11a、R9b、R10b、R5f、R11b)から任意に選択される2つ以上のR基が結合して1つまたは複数の環構造を形成してもよく、この環構造は、環中に水素原子を除く3~50原子を有する。
 上述のヒドロカルビル(例えば、RC、RN、RP、(C1-C40)ヒドロカルビル)、ヘテロヒドロカルビル(例えば、(C1-C40)ヘテロヒドロカルビル)、ヒドロカルビレン(例えば、(C1-C40)ヒドロカルビレン)、およびヘテロヒドロカルビレン(例えば、(C1-C40)ヘテロヒドロカルビレン)基は、それぞれ独立に未置換であるか、または少なくとも1つの置換基Rsで置換(Rsによる過置換まで)されている。
 R5c+R5f+R7cの炭素原子の合計またはR5cc+R5ff+R7dの炭素原子の合計は、5炭素原子を超える。
 Rsは、独立にハロゲン原子、ポリフルオロ置換(少なくとも1つの置換基Rsの1つが少なくとも2つのフルオロ置換基を表し、これは、形式上、未置換の場合の前記置換基の少なくとも2つの水素原子を置換する)、パーフルオロ置換(すなわち、1つのRsが、それにより置換される未置換の場合の前記置換基の水素原子と同数のフルオロ置換基を表す)、未置換(C1-C18)アルキル、F3C-、FCH2O-、F2HCO-、F3CO-、R3Si-、RO-、RS-、RS(O)-、RS(O)2-、R2P-、R2N-、R2C=N-、NC-、RC(O)O-、ROC(O)-、RC(O)N(R)-またはR2NC(O)-であるか、あるいは、前記Rsの2つが結合して未置換(C1-C18)アルキレンを形成し、前記Rは独立に未置換(C1-C18)アルキルである。
 前記化合物(I)は、前記式[I]における各ZがOであることが好ましく、下記式[Ia]で表わされる化合物(Ia)であることがより好ましい。
Figure JPOXMLDOC01-appb-C000006
 式[Ia]中の記号の定義は以下のとおりである。
 ZはOである。
 R7cおよびR7dは、それぞれ独立に(C1-C40)ヒドロカルビルである。
 Mは、元素の周期表の3~6族のいずれか1つの(例えば、4族の)金属原子であり、金属Mは、+2、+3、+4、+5または+6の形式的酸化状態である。
 nは0~5の整数であり、nが0の場合にはXは存在しない(すなわち、(X)nが存在しない)。
 Xは、独立に中性、モノアニオン性、ジアニオン性、トリアニオン性もしくはテトラアニオン性の一座配位リガンドであるか、または2つのXにより形成される、中性、モノアニオン性、またはジアニオン性の二座配位リガンドであり、Xとnは、化合物(Ia)が全体で中性となるように選択される。
 Lは、(C1-C40)ヒドロカルビレンまたは(C1-C40)ヘテロヒドロカルビレンであり、前記(C1-C40)ヒドロカルビレンは、前記Z(このZにLが結合される)を連結する1炭素原子~18炭素原子リンカー主鎖、好ましくは、1炭素原子~12炭素原子リンカーを含む部分を有し、前記(C1-C40)ヘテロヒドロカルビレンは、前記Zを連結する1原子~18原子リンカー主鎖、好ましくは、1炭素原子~12炭素原子リンカー鎖を含む部分を有し、前記(C1-C40)ヘテロヒドロカルビレンの1原子~18原子リンカー主鎖における1~18原子は、独立に炭素原子またはヘテロ原子であり、各ヘテロ原子は、独立にO、S、S(O)、S(O)2、Si(RC)2、P(RP)またはN(RN)であり、前記RCは、独立に置換もしくは未置換の(C1-C18)ヒドロカルビルまたは(C1-C18)ヘテロヒドロカルビルであり、前記RPは、独立に置換もしくは未置換の(C1-C18)ヒドロカルビルまたは(C1-C18)ヘテロヒドロカルビルであり、前記RNは、独立に置換もしくは未置換の(C1-C18)ヒドロカルビルまたは(C1-C18)ヘテロヒドロカルビルであるか、あるいは存在しない(例えば、N(RN)が-N=として結合される場合が挙げられる。)。
 R3a、R4a、R3bおよびR4bは、それぞれ独立に水素原子、(C1-C40)ヒドロカルビル、(C1-C40)ヘテロヒドロカルビル、Si(RC)3、O(RC)、S(RC)、N(RN)2、P(RP)2またはハロゲン原子であり、RC、RNおよびRPは上記で定義したとおりである。
 R5cおよびR5fの少なくとも1つは、独立に(C1-C40)ヒドロカルビル、(C1-C40)ヘテロヒドロカルビル、Si(RC)3、O(RC)、S(RC)、N(RN)2、P(RP)2またはハロゲン原子であり、それ以外のR5cおよびR5fは、独立に水素原子、(C1-C40)ヒドロカルビル、(C1-C40)ヘテロヒドロカルビル、Si(RC)3、O(RC)、S(RC)、N(RN)2、P(RP)2またはハロゲン原子であり、RC、RNおよびRPは上記で定義したとおりである。
 R5ccおよびR5ffの少なくとも1つは、独立に(C1-C40)ヒドロカルビル、(C1-C40)ヘテロヒドロカルビル、Si(RC)3、O(RC)、S(RC)、N(RN)2、P(RP)2またはハロゲン原子であり、それ以外のR5ccおよびR5ffは、独立に水素原子、(C1-C40)ヒドロカルビル、(C1-C40)ヘテロヒドロカルビル、Si(RC)3、O(RC)、S(RC)、N(RN)2、P(RP)2またはハロゲン原子であり、RC、RNおよびRPは、上記で定義したとおりである。
 上述のヒドロカルビル(例えば、RC、RN、RP、(C1-C40)ヒドロカルビル)、ヘテロヒドロカルビル(例えば、(C1-C40)ヘテロヒドロカルビル)、ヒドロカルビレン(例えば、(C1-C40)ヒドロカルビレン)およびヘテロヒドロカルビレン(例えば、(C1-C40)ヘテロヒドロカルビレン)基は、独立に未置換であるか、または少なくとも1つの置換基Rsで置換(Rsによる過置換まで)されている。
 R5c+R5f+R7cの炭素原子の合計またはR5cc+R5ff+R7dの炭素原子合計は、5炭素原子を超える。
 Rsは、独立にハロゲン原子、ポリフルオロ置換(前記少なくとも1つの置換基Rsの1つが少なくとも2つのフルオロ置換基を表し、これは、形式上、未置換の場合の前記置換基の少なくとも2つの水素原子を置換する)、パーフルオロ置換(すなわち、前記1つのRsが、それにより置換される未置換の場合の前記置換基の水素原子と同数のフルオロ置換基を表す)、未置換(C1-C18)アルキル、F3C-、FCH2O-、F2HCO-、F3CO-、R3Si-、RO-、RS-、RS(O)-、RS(O)2-、R2P-、R2N-、R2C=N-、NC-、RC(O)O-、ROC(O)-、RC(O)N(R)-またはR2NC(O)-であるか、あるいは、前記Rsの2つが結合して未置換(C1-C18)アルキレンを形成し、前記Rは独立に未置換(C1-C18)アルキルである。
 前記化合物(I)は、下記式[Ia-1]で表わされる化合物(Ia-1)であることがさらにより好ましい。
Figure JPOXMLDOC01-appb-C000007
 式[Ia-1]中の記号の定義は以下のとおりである。
 ZはOである。
 R7cおよびR7dは、それぞれ独立に(C4-C40)ヒドロカルビルである。
 Mは、元素の周期表の3~6族のいずれか1つの(例えば、4族の)金属原子であり、金属Mは、+2、+3、+4、+5または+6の形式的酸化状態である。
 nは0~5の整数であり、nが0の場合にはXは存在しない(すなわち、(X)nが存在しない)。
 Xは、独立に中性、モノアニオン性、ジアニオン性、トリアニオン性もしくはテトラアニオン性の一座配位リガンドであるか、または2つのXにより形成される、中性、モノアニオン性もしくはジアニオン性の二座配位リガンドであり、Xとnは、化合物(Ia-1)が全体で中性となるように選択される。
 Lは、(C1-C40)ヒドロカルビレンまたは(C1-C40)ヘテロヒドロカルビレンであり、前記(C1-C40)ヒドロカルビレンは、前記Z(このZにLが結合される)を連結する1炭素原子~18炭素原子リンカー主鎖、好ましくは、1炭素原子~12炭素原子リンカーを含む部分を有し、前記(C1-C40)ヘテロヒドロカルビレンは、前記Zを連結する1原子~18原子リンカー主鎖、好ましくは、1炭素原子~12炭素原子リンカー鎖を含む部分を有し、前記(C1-C40)ヘテロヒドロカルビレンの1原子~18原子リンカー主鎖における1~18原子は、それぞれ独立に炭素原子またはヘテロ原子であり、前記ヘテロ原子は、独立にO、S、S(O)、S(O)2、Si(RC)2、P(RP)またはN(RN)であり、前記RCは、独立に置換もしくは未置換の(C1-C18)ヒドロカルビルまたは(C1-C18)ヘテロヒドロカルビルであり、前記RPは、独立に置換もしくは未置換の(C1-C18)ヒドロカルビルまたは(C1-C18)ヘテロヒドロカルビルであり、前記RNは、独立に置換もしくは未置換の(C1-C18)ヒドロカルビルまたは(C1-C18)ヘテロヒドロカルビルであるか、あるいは存在しない(例えば、N(RN)が-N=として結合される場合が挙げられる。)。
 R3aおよびR3bは、それぞれ独立に水素原子、(C1-C40)ヒドロカルビル、(C1-C40)ヘテロヒドロカルビル、Si(RC)3、O(RC)、S(RC)、N(RN)2、P(RP)2またはハロゲン原子であり、RC、RNおよびRPは上記で定義したとおりである。
 R5cおよびR5fの少なくとも1つは、独立に(C1-C40)ヒドロカルビル、(C1-C40)ヘテロヒドロカルビル、Si(RC)3、O(RC)、S(RC)、N(RN)2、P(RP)2またはハロゲン原子であり、それ以外のR5cおよびR5fは、独立に水素原子、(C1-C40)ヒドロカルビル、(C1-C40)ヘテロヒドロカルビル、Si(RC)3、O(RC)、S(RC)、N(RN)2、P(RP)2またはハロゲン原子であり、RC、RNおよびRPは上記で定義したとおりである。
 R5ccおよびR5ffの少なくとも1つは、独立に(C1-C40)ヒドロカルビル、(C1-C40)ヘテロヒドロカルビル、Si(RC)3、O(RC)、S(RC)、N(RN)2、P(RP)2またはハロゲン原子であり、それ以外のR5ccおよびR5ffは、独立に水素原子、(C1-C40)ヒドロカルビル、(C1-C40)ヘテロヒドロカルビル、Si(RC)3、O(RC)、S(RC)、N(RN)2、P(RP)2またはハロゲン原子であり、RC、RNおよびRPは上記で定義したとおりである。
 上述のヒドロカルビル(例えば、RC、RN、RP、(C1-C40)ヒドロカルビル、ヘテロヒドロカルビル(例えば、(C1-C40)ヘテロヒドロカルビル)、ヒドロカルビレン(例えば、(C1-C40)ヒドロカルビレン)およびヘテロヒドロカルビレン(例えば、(C1-C40)ヘテロヒドロカルビレン)基は、独立に未置換であるか、または少なくとも1つの置換基Rsで置換(Rsによる過置換まで)されている。
 R5c+R5f+R7cの炭素原子の合計またはR5cc+R5ff+R7dの炭素原子合計は、5炭素原子を超える。
 前記Rsは、独立にハロゲン原子、ポリフルオロ置換(前記少なくとも1つの置換基Rsの1つが少なくとも2つのフルオロ置換基を表し、これは、形式上、未置換の場合の前記置換基の少なくとも2つの水素原子を置換する)、パーフルオロ置換(すなわち、前記1つのRsが、それにより置換される未置換の場合の前記置換基の水素原子と同数のフルオロ置換基を表す)、未置換(C1-C18)アルキル、F3C-、FCH2O-、F2HCO-、F3CO-、R3Si-、RO-、RS-、RS(O)-、RS(O)2-、R2P-、R2N-、R2C=N-、NC-、RC(O)O-、ROC(O)-、RC(O)N(R)-またはR2NC(O)-であるか、あるいは前記Rsの2つが結合して未置換(C1-C18)アルキレンを形成し、前記Rは独立に未置換(C1-C18)アルキルである。
 前記化合物(I)の特に好ましい態様は、前記式[Ia-1]において、
 R5c、R5f、R5ccおよびR5ffが、それぞれ独立に(C1-C40)ヒドロカルビル、好ましくは(C1-C20)ヒドロカルビル、より好ましくは(C1-C10)ヒドロカルビル、特に好ましくは(C4-C8)アルキルまたはフェニルであり、
 R7cおよびR7dが、それぞれ独立に(C4-C10)ヒドロカルビル、好ましくは(C4-C8)アルキルであり、
 R3aおよびR3bが、それぞれ独立に(C1-C6)アルキル、(C1-C6)アルキル-O-、((C1-C6)アルキル)2-N-、(C3-C6)シクロアルキル、フッ素原子または塩素原子、好ましくはフッ素原子または塩素原子、より好ましくはフッ素原子であり、
 Lが、(C1-C20)ヒドロカルビレン、好ましくは(C1-C10)ヒドロカルビレン、より好ましくは(C1-C5)ヒドロカルビレン、さらに好ましくは-CH2CH2CH2-であり、
 Mが、元素の周期表の4族の金属であり、好ましくはハフニウム、ジルコニウムまたはチタニウム、より好ましくはハフニウムであり、
 nは、2または3、好ましくは2であり、
 Xは、独立に(C1-C8)アルキル、(C1-C6)アルキル、(C1-C4)アルキルまたは(C1-C3)アルキル、好ましくは(C1-C4)アルキルまたは(C1-C3)アルキル、より好ましくは(C1-C3)アルキル、さらに好ましくはメチルである。
 前記化合物(I)の具体例としては、(2’,2’’-(プロパン-l,3-ジイルビス(オキシ))ビス(3-(3,6-ジ-tert-ブチル-9H-カルバゾール-9-イル)-5’-フルオロ-5-(2,4,4-トリメチルペンタン-2-イル)ビフェニル-2-オール)ジメチルハフニウム、
[[2’、2’’’-[1,3-プロパンジイルビス(オキシ-kO)]ビス[3-[3,6-ビス(1,1-ジメチルエチル)-9H-カルバゾール-9-イル]-5’-フルオロ-5-(1,1,3,3-テトラメチルブチル)[1,1’-ビフェニル]-2-オラト-kO]](2-)]-ハフニウムジメチルが挙げられる。
 前記化合物(I)は特表2015-500920号公報に記載の態様を引用することができる。
 (化合物(C))
 工程Bで用いられる化合物(C)は、周期表第4族の遷移金属化合物(B)と反応して、オレフィン重合用触媒として機能するものであり、具体的には、(C-1)有機金属化合物、(C-2)有機アルミニウムオキシ化合物、および(C-3)遷移金属化合物(A)と反応してイオン対を形成する化合物からなる群より選択される。このような、(C-1)~(C-3)の化合物については、前述の工程Aで用いる化合物(C)同様の化合物が挙げられる。
 工程Bは、溶液(溶解)重合において実施可能であり、重合条件については、オレフィン系ポリマーを製造する溶液重合プロセスを用いれば、特に限定されない。
 工程Bでは、工程Aにて製造されるマクロモノマーが固形物として工程Bにおける反応器装入されてもよく、また溶液状またはスラリー状にて工程Bにおける反応器に装入されてもよく、マクロモノマーの装入方法は、特段限定されるものではない。
 工程Bにおいて、オレフィン系マクロモノマーと共重合する非共役ジエンは前述の「(2)非共役ジエン」において説明した化合物を用いることが好ましい。非共役ジエンの反応器へ装入法については、公知のオレフィン樹脂の製造で用いられる方法であれば、特に限定されない。
 工程Bにおいて、本発明の効果を損なわない範囲で、コモノマーを共重合しても良く、前述の「(i)組成」で説明した炭素数2~12のオレフィンが挙げられる。前記コモノマーの反応器へ装入法については、公知のオレフィン樹脂の製造で用いられる方法であれば、特に限定されない。
 工程Bの重合溶媒としては、例えば、脂肪族炭化水素、芳香族炭化水素などが挙げられる。具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、エチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素が挙げられ、1種単独で、あるいは2種以上組み合わせて用いることができる。また、工程Bの重合溶媒は、工程Aの重合溶媒と同一でも異なっていてもよい。なお、これらのうち、工業的観点からはヘキサン、ヘプタンなどの脂肪族炭化水素が好ましく、さらにオレフィン系樹脂との分離、精製の観点から、ヘキサンが好ましい。
 また、工程Bの重合温度は、30℃以上が好ましく、30℃~150℃の範囲がより好ましく、さらにより好ましくは、40℃~100℃の範囲である。
 工程Bの重合圧力は、通常常圧~10MPaゲージ圧、好ましくは常圧~5MPaゲージ圧の条件下であり、重合反応は、回分式、半連続式、連続式のいずれの方法においても行うことができる。さらに重合を反応条件の異なる2段以上に分けて行うことも可能である。本発明ではこのうち、モノマーを連続して反応器に供給して共重合を行う方法を採用することが好ましい。
 工程Bの反応時間(共重合が連続法で実施される場合には平均滞留時間)は、触媒濃度、重合温度などの条件によっても異なるが、通常0.5分間~5時間、好ましくは5分間~3時間である。
 工程Bにおける、ポリマー濃度は、回分式の場合は重合終了時、連続式の場合は定常運転時において、5~50wt%である。
 得られる共重合体の分子量は、重合系内に水素を存在させるか、または重合温度を変化させることによっても調節することができる。さらに、前述の化合物(C)の使用量により調節することもできる。具体的には、トリイソブチルアルミニウム、メチルアルミノキサン、ジエチル亜鉛等が挙げられる。水素を添加する場合、その量はオレフィン1kgあたり0.001~100NL程度が適当である。
 [工程C]
 本発明のオレフィン系樹脂の製造方法は、前記工程Aおよび工程Bに加え、必要に応じて各工程の後に各工程で生成する重合体を回収する工程Cを含んでいても良い。本工程は、各重合工程において用いられる有機溶剤を分離してポリマーを取り出し製品形態に変換する工程であり、溶媒濃縮、押出脱気、析出などの既存のオレフィン系樹脂を製造する工程であれば特段制限はない。
 <架橋物>
 架橋方法としては、前述の非共役ジエンに由来する不飽和結合を活用できる方法であれば特に限定はしないが、具体的には、電子線を用いた架橋、架橋剤を用いた架橋が挙げられ、特に架橋剤を用いた架橋反応が好ましく用いられる。
 〈架橋剤、架橋助剤、加硫促進剤および加硫助剤〉
 架橋剤としては、例えば、ゴムを架橋する際に一般的に使用される架橋剤が挙げられ、具体的には、過酸化物、硫黄系化合物、フェノール樹脂、アミノ樹脂、キノンまたはその誘導体、アミン系化合物、アゾ系化合物、エポキシ系化合物、イソシアネート系化合物、ヒドロシリコーン系化合物が挙げられる。これらの中でも、低分子量化がしにくく、片末端ビニル基非共役ジエンを非共役ジエンとして用いて得た本発明のオレフィン系樹脂との反応性が優れる、硫黄系化合物が好ましい。
 過酸化物としては、例えば、有機過酸化物が挙げられる。
 有機過酸化物としては、例えば、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシケタール、パーオキシエステル、パーオキシカーボネート、パーオキシジカーボネート、ケトンパーオキサイド、ハイドロパーオキサイドが挙げられ、具体的には、ジクミルパーオキサイド、tert-ブチルクミルパーオキサイド、ジ-tert-ブチルパーオキサイド、2,5-ジ-(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルパーオキシ)ヘキシン-3、1,3-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン、ベンゾイルパーオキサイド、p-クロロベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、ラウロイルパーオキサイド、ジアセチルパーオキサイド、1,1-ビス(tert-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、n-ブチル-4,4-ビス(tert-ブチルパーオキシ)バレレート、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシイソプロピルカーボネートが挙げられる。
 架橋剤として過酸化物を用いる場合、組成物中の過酸化物の配合量は、オレフィン系樹脂の合計100質量部に対して、通常は0.1~20質量部、好ましくは0.15~15質量部、さらに好ましくは0.15~10質量部である。過酸化物の配合量が上記範囲内であると、得られる架橋物表面へのブルームがなく、組成物が優れた架橋特性を示す。
架橋剤として過酸化物を用いる場合、架橋助剤を併用することが好ましい。
 架橋助剤としては、例えば、イオウ;p-キノンジオキシム等のキノンジオキシム系架橋助剤;エチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート等のアクリル系架橋助剤;ジアリルフタレート、トリアリルイソシアヌレート等のアリル系架橋助剤;マレイミド系架橋助剤;ジビニルベンゼン;酸化亜鉛(例えば、ZnO#1・酸化亜鉛2種、ハクスイテック(株)製)、酸化マグネシウム、亜鉛華(例えば、「META-Z102」(商品名;井上石灰工業(株)製)などの酸化亜鉛)等の金属酸化物が挙げられる。
 架橋助剤を用いる場合、オレフィン系樹脂の合計100質量部に対して、通常は0~15質量部、好ましくは0.1~10質量部である。
 硫黄系化合物(加硫剤)としては、例えば、硫黄、塩化硫黄、二塩化硫黄、モルフォリンジスルフィド、アルキルフェノールジスルフィド、テトラメチルチウラムジスルフィド、ジチオカルバミン酸セレンが挙げられる。
 架橋剤として硫黄系化合物を用いる場合、オレフィン系樹脂の合計100質量部に対して、通常は0.3~10質量部、好ましくは0.5~7.0質量部、さらに好ましくは0.7~5.0質量部である。硫黄系化合物の配合量が上記範囲内であると、得られる架橋物表面へのブルームがなく、組成物が優れた架橋特性を示す。
 架橋剤として硫黄系化合物を用いる場合、加硫促進剤を併用することが好ましい。
 加硫促進剤としては、例えば、チアゾール系加硫促進剤、グアニジン系加硫促進剤、アルデヒドアミン系加硫促進剤、イミダゾリン系加硫促進剤、チウラム系加硫促進剤、ジチオ酸塩系加硫促進剤、チオウレア系加硫促進剤、ザンテート系加硫促進剤が挙げられる。
 加硫促進剤を用いる場合、組成物中の加硫促進剤の配合量は、オレフィン系樹脂の合計100質量部に対して、通常は0.1~20質量部、好ましくは0.2~15質量部、さらに好ましくは0.5~10質量部である。加硫促進剤の配合量が上記範囲内であると、得られる架橋物表面へのブルームがなく、組成物が優れた架橋特性を示す。
 架橋剤として硫黄系化合物を用いる場合、加硫助剤を併用することができる。
 加硫助剤としては、例えば、酸化亜鉛、酸化マグネシウム、亜鉛華が挙げられる。
 加硫助剤を用いる場合、組成物中の加硫助剤の配合量は、オレフィン系樹脂の合計100質量部に対して、通常は1~20質量部である。
 上記架橋剤を用いた架橋反応はポリマー鎖中に導入された不飽和基が反応することにより進行するが、2つのビニル基を含むジエンを用いた場合に工程Bにおける重合反応により架橋構造が形成されてもよく、例えば、非共役ジエンとして両末端ビニル基含有重合体を用いた工程Bにおいて架橋物が形成されてもよい。つまり前述したように、ポリマー構造を含む非共役ジエン、例えば、両末端にビニル基を有するポリオレフィン共重合体を非共役ジエンとして用いる場合には、工程Bにおいて架橋物が形成されてもよい。
 <その他の添加剤>
 本発明のオレフィン系樹脂およびその架橋物は、以下に例示するような各種樹脂用添加剤を加えて用いることができる。
 〈軟化剤〉
 軟化剤としては、例えば、プロセスオイル、潤滑油、パラフィン油、流動パラフィン、石油アスファルト、ワセリン等の石油系軟化剤;コールタール等のコールタール系軟化剤;ヒマシ油、アマニ油、ナタネ油、大豆油、ヤシ油等の脂肪油系軟化剤;蜜ロウ、カルナウバロウ等のロウ類;ナフテン酸、パイン油、ロジンまたはその誘導体;テルペン樹脂、石油樹脂、クマロンインデン樹脂等の合成高分子物質;ジオクチルフタレート、ジオクチルアジペート等のエステル系軟化剤;その他、マイクロクリスタリンワックス、液状ポリブタジエン、変性液状ポリブタジエン、炭化水素系合成潤滑油、トール油、サブ(ファクチス)が挙げられ、これらの中でも、石油系軟化剤が好ましく、プロセスオイルが特に好ましい。
 軟化剤を用いる場合には、軟化剤の配合量は、オレフィン系樹脂の合計100質量部に対して、通常は2~100質量部、好ましくは10~100質量部である。
 〈無機充填剤〉
 無機充填剤としては、例えば、軽質炭酸カルシウム、重質炭酸カルシウム、タルク、クレーが挙げられる。
 無機充填剤を用いる場合には、無機充填剤の配合量は、オレフィン系樹脂の合計100質量部に対して、通常は2~100質量部、好ましくは5~100質量部である。無機充填剤の配合量が上記範囲内であると、混練加工性が優れており、機械特性に優れた架橋物を得ることができる。
 〈補強剤〉
 補強剤としては、例えば、カーボンブラック、シランカップリング剤で表面処理したカーボンブラック、シリカ、炭酸カルシウム、活性化炭酸カルシウム、微粉タルク、微分ケイ酸が挙げられる。
 補強剤を用いる場合には、補強剤の配合量は、オレフィン系樹脂の合計100質量部に対して、通常は5~300質量部、好ましくは10~100質量部である。
 〈老化防止剤(安定剤)〉
 老化防止剤(安定剤)を配合することにより、これから形成される架橋物の寿命を長くすることができる。このような老化防止剤として、従来公知の老化防止剤、例えば、アミン系老化防止剤、フェノール系老化防止剤、イオウ系老化防止剤などがある。
 老化防止剤を用いる場合には、老化防止剤の配合量は、オレフィン系樹脂の合計100質量部に対して、通常は0.3~10質量部、好ましくは0.5~7.0質量部である。老化防止剤の配合量が上記範囲内であると、得られる架橋物表面のブルームがなく、さらに加硫阻害の発生を抑制することができる。
 〈加工助剤〉
 加工助剤としては、一般に加工助剤としてゴムに配合されるものを広く用いることができる。加工助剤としては、例えば、リシノール酸、ステアリン酸、パルミチン酸、ラウリン酸等の脂肪酸、ステアリン酸バリウム、ステアリン酸亜鉛、ステアリン酸カルシウム等の脂肪酸塩、リシノール酸エステル、ステアリン酸エステル、パルチミン酸エステル、ラウリン酸エステル類等の脂肪酸エステル類、N-置換脂肪酸アミドなどの脂肪酸誘導体が挙げられる。これらの中でも、ステアリン酸が好ましい。
 加工助剤を用いる場合には、加工助剤の配合量は、オレフィン系樹脂の合計100質量部に対して、通常は10質量部以下、好ましくは8.0質量部以下である。
 〈活性剤〉
 活性剤としては、例えば、ジ-n-ブチルアミン、ジシクロヘキシルアミン、モノエラノールアミン等のアミン類;ジエチレングリコール、ポリエチレングリコール、レシチン、トリアリルートメリレート、脂肪族カルボン酸または芳香族カルボン酸の亜鉛化合物等の活性剤;過酸化亜鉛調整物;オクタデシルトリメチルアンモニウムブロミド、合成ハイドロタルサイト、特殊四級アンモニウム化合物が挙げられる。
 活性剤を用いる場合には、活性剤の配合量は、オレフィン系樹脂の合計100質量部に対して、通常は0.2~10質量部、好ましくは0.3~5質量部である。
 〈吸湿剤〉
 吸湿剤としては、例えば、酸化カルシウム、シリカゲル、硫酸ナトリウム、モレキュラーシーブ、ゼオライト、ホワイトカーボンが挙げられる。
 吸湿剤を含有する場合には、吸湿剤の配合量は、オレフィン系樹脂の合計100質量部に対して、通常は0.5~15質量部、好ましくは1.0~12質量部である。
 〈発泡剤〉
 本発明の架橋物は、非発泡体であってもよいし、発泡体であってもよい。発泡体形成に際して発泡剤を使用することができ、例えば、重炭酸ナトリウム、炭酸ナトリウム、重炭酸アンモニウム、炭酸アンモニウム、亜硝酸アンモニウム等の無機系発泡剤;N,N’-ジニトロテレフタルアミド、N,N’-ジニトロソペンタメチレンテトラミン等のニトロソ化合物;アゾジカルボンアミド、アゾビスイソブチロニトリル、アゾシクロヘキシルニトリル、アゾジアミノベンゼン、バリウムアゾジカルボキシレート等のアゾ化合物;ベンゼンスルフォニルヒドラジド、トルエンスルフォニルヒドラジド、p,p’-オキシビス(ベンゼンスルフォニルヒドラジド)ジフェニルスルフォン-3,3’-ジスルフェニルヒドラジド等のスルフォニルヒドラジド化合物;カルシウムアジド、4,4’-ジフェニルスルホニルアジド、パラトルエンスルホニルアジド等のアジド化合物が挙げられる。
 発泡剤を用いる場合には、発泡剤の配合量は、架橋発泡後の発泡体の比重が通常は0.01~0.9になるよう適宜選択される。発泡剤の配合量は、オレフィン系樹脂の合計100質量部に対して、通常は0.5~30質量部、好ましくは1~20質量部である。
 以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 以下の実施例において、各物性は、以下の方法により測定あるいは評価した。
 <ポリマーの構造解析>
 実施例に記載される樹脂のポリマー構造は、以下の方法により測定する。
 (測定装置)
 日本電子製ECX400P型核磁気共鳴装置、
 測定核:1H(400MHz)
 (測定条件)
 測定モード:シングルパルス、パルス幅:45°(5.25μ秒)、ポイント数:32k、測定範囲:20ppm(-4~16ppm)、繰り返し時間:7.0秒、積算回数:256回、測定溶媒:オルトジクロロベンゼン-d4、試料濃度:ca.20mg/0.6mL、測定温度:120℃、ウインドウ関数:exponential(BF:0.12Hz)、ケミカルシフト基準:オルトジクロロベンゼン(7.1ppm)。
 (マクロモノマーの末端ビニル化率)
 マクロモノマーのポリマー組成および末端ビニル化率については、1H-NMRスペクトルから解析可能であり、エチレン-プロピレンの組成比は常法により算出される。また、ここで末端ビニル化率は全不飽和末端中のビニル基含量(単位:mol%)であり、その割合から算出される。
 (非共役ジエンの定量)
 下記実施例に記載の共重合体への非共役ジエンコモノマーの導入は1H-NMRスペクトルで観測される不飽和結合のシグナルから確認可能である。
 <GPC測定>
 実施例に記載される共重合体の重量平均分子量および分子量分布は、以下の方法により測定する。
 (試料の前処理)
 実施例で製造する樹脂30mgをo-ジクロロベンゼン20mlに145℃で溶解した後、その溶液を孔径が1.0μmの焼結フィルターで濾過したものを分析試料とする。
 (GPC分析)
 ゲルパーミエーションクロマトグラフィー(GPC)を用いて重量平均分子量(Mw)、数平均分子量(Mn)および分子量分布曲線を求める。計算はポリスチレン換算で行う。求めた重量平均分子量(Mw)、数平均分子量(Mn)からMw/Mnを算出する。
 (測定装置)
 ゲル浸透クロマトグラフHLC-8321 GPC/HT型
                     (東ソー社製)
 (解析装置)
 データ処理ソフトEmpower2(Waters社、登録商標)
 (測定条件)
 カラム:TSKgel GMH6-HTを2本、およびTSKgel GMH6-HTLを2本(いずれも直径7.5mm×長さ30cm、東ソー社)
 カラム温度:140℃
 移動相:o-ジクロロベンゼン(0.025%BHT含有)
 検出器:示差屈折率計
 流速:1mL/分
 試料濃度:0.15%(w/v)
 注入量:0.4mL
 サンプリング時間間隔:1秒
 カラム較正:単分散ポリスチレン(東ソー社)
 分子量換算:PS換算/標品換算法
 (マクロモノマーと7-メチル-1,6-オクタジエンとの共重合体生成の確認)
 マクロモノマーと7-メチル-1,6-オクタジエンとの共重合体の生成はGPCにより得られるクロマトグラムにおいて原料のマクロモノマーよりも高分子量側にピークが見られることから確認ができ、波形解析によりピーク分離し、マクロモノマーと7-メチル-1,6-オクタジエンとの共重合体生成量を確認した。マクロモノマーと両末端ビニル基含有エチレン-プロピレン共重合体(非共役ジエン)との共重合体の場合も同様である。
 <オレフィン系樹脂の架橋性評価>
 実施例および比較例における未架橋のオレフィン系樹脂を用いて、測定装置:MDR2000P(ALPHA TECHNOLOGIES 社製)により、温度160℃および時間20分の測定条件下で、キュアメーター試験を行い、S'Max-S'Minを以下のとおり測定した。
 サンプルを測定装置にセットし、一定温度および一定のせん断速度の条件下で得られるトルク変化を測定し、加硫曲線を得た。この加硫曲線からトルクの最小値S'Minおよび最大値S'Maxを求め、トルクの上昇度により架橋の進行性を確認した。
 <オレフィン系樹脂の製造>
 [実施例1]
 工程A:エチレン-プロピレン共重合体マクロモノマーの製造
 触媒として使用したジメチルシリルビス(2-メチル-4-フェニルインデニル)ハフニウムジクロリドは公知の方法によって合成した。
 充分に窒素置換した内容積1.0Lのガラス製反応器に、キシレン500mlを入れたのち、95℃に保持し600rpmで重合器内部を撹拌しながら、エチレンおよびプロピレンをそれぞれ120リットル/hrおよび53リットル/hrで連続的に供給し、液相および気相を飽和させた。引き続きエチレンおよびプロピレンを連続的に供給した状態で、トリイソブチルアルミニウムのトルエン溶液(1.0mol/L)を4.0mL(4.0mmol)、ジメチルシリルビス(2-メチル-4-フェニルインデニル)ハフニウムジクロリドのトルエン溶液(0.005mol/L)を4.0mL(0.020mmol)、ついでトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート(Ph3CB(C654とも記す)のトルエン溶液(10mmol/L)を8.0mL(0.080mmol)加え、常圧下、95℃で10分間重合を行った。重合の停止は少量のイソブタノールを添加することにより行った。得られた重合反応液を、希塩酸で洗浄し、分液して得られた有機層の溶媒を減圧留去することによりエチレン-プロピレン共重合体マクロモノマーを得た。該共重合体を130℃にて10時間減圧乾燥することにより、マクロモノマー8.2gを得た。得られた共重合体マクロモノマーはMw=11700、Mn=4070、Mw/Mn=2.87、エチレン含量=48mol%、末端ビニル化率=86.8mol%であった。
 工程B:オレフィン系マクロモノマーと非共役ジエンとの共重合
 触媒として使用した下記式で示される化合物(1)は公知の方法によって合成した。
Figure JPOXMLDOC01-appb-C000008
 窒素雰囲気下、30mLシュレンク管に前記工程Aで合成したマクロモノマー3.0gをトルエン6.0mLに溶解し、15分間窒素で脱気したのち、50℃まで昇温した。7-メチル-1,6-オクタジエンのトルエン溶液(0.6mol/L)を0.5mL(0.3mmol)、トリイソブチルアルミニウムのトルエン溶液(1.0mol/L)を4.0mL(4.0mmol)、上記化合物(1)のトルエン溶液(0.005mol/L)を4.0mL(0.020mmol)、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート(Ph3CB(C654とも記す)のトルエン溶液(10mmol/L)を8.0mL(0.080mmol)を順に加え、常圧下、50℃で30分間重合を行った。重合の停止は少量のイソブタノールを添加することにより行った。得られた重合反応液を、大量のメタノールに析出させることにより、オレフィン系樹脂を得た。該オレフィン系樹脂を130℃にて10時間減圧乾燥することにより、オレフィン系樹脂2.8gを得た。該オレフィン系樹脂はMw=14000、Mn=5260、Mw/Mn=2.67であった。また、GPC分析のピーク分離より、オレフィン系樹脂中の、マクロモノマーと7-メチル-1,6-オクタジエンとの共重合体の割合は5.3質量%と算出された。さらに、マクロモノマーと7-メチル-1,6-オクタジエンとの共重合体における、マクロモノマーから導かれる構造単位の含有量は98.5mol%であった。
 [実施例2]
 工程B:オレフィン系マクロモノマーと非共役ジエンとの共重合
 窒素雰囲気下、内容積100mLのガラス製反応器に実施例1の工程Aで合成したマクロモノマー3.0gをトルエン6.0mLに溶解し、15分間窒素で脱気したのち、50℃まで昇温した。7-メチル-1,6-オクタジエンのトルエン溶液(0.6mol/L)を0.5mL(0.3mmol)、トリイソブチルアルミニウムのトルエン溶液(1.0mol/L)を6.0mL(6.0mmol)、上記化合物(1)のトルエン溶液(0.005mol/L)を8.0mL(0.040mmol)、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート(Ph3CB(C654とも記す)のトルエン溶液(10mmol/L)を16.0mL(0.160mmol)を順に加え、常圧下、50℃で60分間重合を行った。重合の停止は少量のイソブタノールを添加することにより行った。得られた重合反応液を、大量のメタノールに析出させることにより、オレフィン系樹脂を得た。該オレフィン系樹脂を130℃にて10時間減圧乾燥することにより、オレフィン系樹脂2.9gを得た。該オレフィン系樹脂はMw=19000、Mn=7300、Mw/Mn=2.60であった。また、GPC分析のピーク分離より、マクロモノマーと7-メチル-1,6-オクタジエンとの共重合体の割合は17.0質量%と算出された。さらに、マクロモノマーと7-メチル-1,6-オクタジエンとの共重合体における、マクロモノマーから導かれる構造単位の含有量は98.3mol%であった。
 [実施例3]
 国際公開第2008/026628号に記載の実施例1と同様の方法により、両末端ビニル基含有エチレン-プロピレン共重合体を得た。すなわち、得られた両末端ビニル基含有ポリオレフィン重合体の組成は、エチレン含量は79.8mol%、プロピレン含量が16.6mol%、1,3-ブタジエン含量が3.6mol%であり、1,3-ブタジエンの内訳は、1,4付加構造が0.6mol%、1,2付加構造が0.5mol%、5員環構造が2.3mol%、3員環構造が0.2mol%であった。上記重合体の末端ビニル化率は77%であり、極限粘度[η]は0.12dl/gであった。これを非共役ジエンとして下記工程Bで用いた。
 工程B:オレフィン系マクロモノマーと非共役ジエンとの共重合
 続いて、窒素雰囲気下、内容積100mLのガラス製反応器に実施例1と同様の操作で合成したマクロモノマー(Mw=12200、Mn=4070、Mw/Mn=3.00、エチレン含量=49mol%、末端ビニル化率=85.5mol%)3.0gと上記両末端ビニル基含有エチレン-プロピレン共重合体(非共役ジエン)0.2gをトルエン6.0mLに溶解し、15分間窒素で脱気したのち、50℃まで昇温した。トリイソブチルアルミニウムのトルエン溶液(1.0mol/L)を6.0mL(6.0mmol)、上記化合物(1)のトルエン溶液(0.005mol/L)を8.0mL(0.040mmol)、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート(Ph3CB(C654とも記す)のトルエン溶液(10mmol/L)を16.0mL(0.160mmol)を順に加え、常圧下、50℃で60分間重合を行った。重合の停止は少量のイソブタノールを添加することにより行った。得られた重合反応液を、大量のメタノールに析出させることにより、オレフィン系樹脂を得た。該オレフィン系樹脂を130℃にて10時間減圧乾燥することにより、オレフィン系樹脂3.1gを得た。該オレフィン系樹脂はMw=21000、Mn=7400、Mw/Mn=2.83であった。また、GPC分析のピーク分離より、マクロモノマーと両末端ビニル基含有エチレン-プロピレン共重合体(非共役ジエン)との共重合体の割合は15.5質量%と算出された。
 <架橋性の評価>
 [実施例4]
 上記実施例2で得られたオレフィン系樹脂100質量部に対して、加硫助剤として「酸化亜鉛2種」(商品名;堺化学工業株式会社製)5質量部、および、加工助剤としてステアリン酸 1質量部を混合した後、加硫促進剤として2-メルカプトベンゾチアゾール(サンセラーM:三新化学工業株式会社製)2質量部、加硫促進剤としてテトラメチルチウラムジスルフィド(サンセラーTT:三新化学工業株式会社製)4質量部、および、架橋剤として粉末イオウ 6質量部を混合した後、MDR2000Pを用いて温度160℃および時間20分反応させた。S'Max-S'Minは0.06N・mであった。
 [比較例1]
 7-メチル-1,6-オクタジエンを加えない以外は実施例2と同様に実施し、オレフィン系樹脂を得た。該オレフィン系樹脂はMw=37900、Mn=8150、Mw/Mn=4.65であった。また、GPC分析のピーク分離より、マクロモノマーの重合体の割合は30.6質量%と算出された。
 得られたオレフィン系樹脂100質量部に対して、加硫助剤として「酸化亜鉛2種」(商品名;堺化学工業株式会社製)5質量部、および、加工助剤としてステアリン酸 1質量部を混合した後、加硫促進剤として2-メルカプトベンゾチアゾール(サンセラーM:三新化学工業株式会社製)2質量部、加硫促進剤としてテトラメチルチウラムジスルフィド(サンセラーTT:三新化学工業株式会社製)4質量部、および、架橋剤として粉末イオウ 6質量部を混合した後、MDR2000Pを用いて温度160℃および時間20分反応させたが、S'Max-S'Minは0.02N・mであった。
 実施例4および比較例1から、本発明のオレフィン系樹脂は架橋反応が進行したことが考えられる。
 本発明のオレフィン系樹脂は、架橋反応することにより、機械特性に優れる架橋物を提供できる。したがって、本発明のオレフィン系樹脂およびその架橋物は、電気・電子部品・輸送機械、土木・建築、建材、医療、レジャー、包装などのさまざま分野で用いられる材料、あるいは成形体や多層積層体としての応用が期待できる。

Claims (8)

  1.  オレフィン系マクロモノマーと非共役ジエンとの共重合体を含むオレフィン系樹脂。
  2.  前記オレフィン系マクロモノマーと前記非共役ジエンとの共重合体において、オレフィン系マクロモノマーから導かれる構造単位の含有量が80~99.5mol%の範囲にある、請求項1に記載のオレフィン系樹脂。
  3.  前記オレフィン系マクロモノマーが、以下の要件(i)~(iii)を満たす、請求項1または2に記載のオレフィン系樹脂。
    (i)エチレンおよび炭素数3~12のα-オレフィンから選ばれる1種以上のオレフィンの単独重合体または共重合体である
    (ii)重量平均分子量が1000~30000の範囲にある
    (iii)総不飽和末端に対して50mol%以上のビニル基を有する
  4.  前記要件(i)が、
     エチレンと1種以上の炭素数3~12のα-オレフィンとの共重合体であり、エチレンから導かれる繰り返し単位の含有量が30~70mol%の範囲にある、
    である、請求項3に記載のオレフィン系樹脂。
  5.  前記要件(iii)が、
     総不飽和末端に対して60mol%以上のビニル基を有する、
    である、請求項3または4に記載のオレフィン系樹脂。
  6.  下記の工程A及び工程Bを含む、請求項1~5のいずれか一項に記載のオレフィン系樹脂の製造方法。
    工程A:オレフィン重合用触媒の存在下でオレフィンを重合して、オレフィン系マクロモノマーを製造する工程。
    工程B:オレフィン重合用触媒の存在下で、工程Aで生成したオレフィン系マクロモノマーと非共役ジエンとを共重合して、オレフィン系樹脂を製造する工程。
  7.  請求項1~5のいずれか一項に記載のオレフィン系樹脂の、架橋物。
  8.  請求項6に記載の製造方法により得られたオレフィン系樹脂を、架橋剤を用いて架橋する、架橋物の製造方法。
PCT/JP2020/009626 2019-03-12 2020-03-06 オレフィン系樹脂、その架橋物およびそれらの製造方法 WO2020184421A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080019332.8A CN113544173A (zh) 2019-03-12 2020-03-06 烯烃系树脂、其交联物及它们的制造方法
EP20769122.1A EP3940009A4 (en) 2019-03-12 2020-03-06 OLEFIN-BASED RESIN, CROSSLINKER THEREOF, AND METHODS OF PRODUCTION THEREOF
US17/437,806 US20220162369A1 (en) 2019-03-12 2020-03-06 Olefin resin, crosslinked product thereof, and production methods thereof
JP2021505016A JP7186856B2 (ja) 2019-03-12 2020-03-06 オレフィン系樹脂、その架橋物およびそれらの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019044850 2019-03-12
JP2019-044850 2019-03-12

Publications (1)

Publication Number Publication Date
WO2020184421A1 true WO2020184421A1 (ja) 2020-09-17

Family

ID=72427522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009626 WO2020184421A1 (ja) 2019-03-12 2020-03-06 オレフィン系樹脂、その架橋物およびそれらの製造方法

Country Status (5)

Country Link
US (1) US20220162369A1 (ja)
EP (1) EP3940009A4 (ja)
JP (1) JP7186856B2 (ja)
CN (1) CN113544173A (ja)
WO (1) WO2020184421A1 (ja)

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100579A (ja) 1992-06-27 1994-04-12 Hoechst Ag アリール置換インデニル誘導体をリガンドとして含んだメタロセン
JPH06172460A (ja) * 1992-12-10 1994-06-21 Tonen Chem Corp 反応性ポリプロピレンの製造方法
JPH09169820A (ja) * 1995-10-03 1997-06-30 Ethyl Corp ビニル末端プロペンポリマー類由来のコポリマー分散剤
WO2001027124A1 (fr) 1999-10-08 2001-04-19 Mitsui Chemicals, Inc. Compose metallocene, son procede de fabrication, catalyseur de polymerisation d'olefine, procede de production de polyolefine et polyolefine
JP2001525461A (ja) 1997-12-10 2001-12-11 エクソンモービル・ケミカル・パテンツ・インク ビニル含有立体特異性ポリプロピレンマクロマー
US20010053838A1 (en) * 2000-03-20 2001-12-20 Fmc Corporation Terminal olefin functionalized macromonomers
WO2003091262A1 (en) 2002-04-24 2003-11-06 Symyx Technologies, Inc. Bridged bi-aromatic ligands, complexes, catalysts and processes for polymerizing and poymers therefrom
JP2004091640A (ja) 2002-08-30 2004-03-25 Mitsui Chemicals Inc ポリオレフィン骨格を有するグラフトポリマー
WO2004029062A1 (ja) 2002-09-27 2004-04-08 Mitsui Chemicals, Inc. オレフィン重合用の架橋メタロセン化合物およびそれを用いたオレフィンの重合方法
JP2005336091A (ja) 2004-05-26 2005-12-08 Mitsubishi Chemicals Corp 新規遷移金属化合物、該遷移金属化合物を用いたプロピレン系重合体の製造方法、および末端にビニル基を有するプロピレン系重合体
WO2008026628A1 (fr) 2006-08-31 2008-03-06 Mitsui Chemicals, Inc. Polymère de polyoléfine contenant des groupements vinyle à ses deux extrémités et composition le contenant
JP2008285443A (ja) 2007-05-18 2008-11-27 Idemitsu Kosan Co Ltd 遷移金属化合物、それを含有するオレフィン重合触媒、それを用いたオレフィン系重合体の製造方法、並びに末端不飽和プロピレン系重合体及びその製造方法
WO2009155510A2 (en) 2008-06-20 2009-12-23 Exxonmobil Chemical Patents Inc. Polymacromonomer and process for production thereof
JP2009299046A (ja) 2008-05-13 2009-12-24 Japan Polypropylene Corp メタロセン化合物を用いたプロピレン系重合体の製造方法
WO2012134719A2 (en) 2011-03-25 2012-10-04 Exxonmobil Chemical Patents Inc. Novel catalysts and methods of use thereof to produce vinyl terminated polymers
JP2015500920A (ja) 2011-12-20 2015-01-08 ダウ グローバル テクノロジーズ エルエルシー エチレン/アルファオレフィン/非共役ポリエン共重合体およびその形成方法
WO2015147186A1 (ja) 2014-03-28 2015-10-01 三井化学株式会社 オレフィン系樹脂およびその製造方法
WO2015147187A1 (ja) 2014-03-28 2015-10-01 三井化学株式会社 オレフィン系樹脂、その製造方法およびプロピレン系樹脂組成物
JP2017025234A (ja) * 2015-07-24 2017-02-02 三井化学株式会社 オレフィン系樹脂、該樹脂の製造方法、ペレット、熱可塑性エラストマーおよび架橋ゴム
JP2017025233A (ja) * 2015-07-24 2017-02-02 三井化学株式会社 オレフィン系樹脂、該樹脂の製造方法、ペレット、熱可塑性エラストマーおよび架橋ゴム
WO2017082182A1 (ja) 2015-11-09 2017-05-18 三井化学株式会社 潤滑油用粘度調整剤、潤滑油用添加剤組成物および潤滑油組成物
JP2018035267A (ja) * 2016-08-31 2018-03-08 Mcppイノベーション合同会社 熱可塑性エラストマー組成物

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100579A (ja) 1992-06-27 1994-04-12 Hoechst Ag アリール置換インデニル誘導体をリガンドとして含んだメタロセン
JPH06172460A (ja) * 1992-12-10 1994-06-21 Tonen Chem Corp 反応性ポリプロピレンの製造方法
JPH09169820A (ja) * 1995-10-03 1997-06-30 Ethyl Corp ビニル末端プロペンポリマー類由来のコポリマー分散剤
JP2001525461A (ja) 1997-12-10 2001-12-11 エクソンモービル・ケミカル・パテンツ・インク ビニル含有立体特異性ポリプロピレンマクロマー
WO2001027124A1 (fr) 1999-10-08 2001-04-19 Mitsui Chemicals, Inc. Compose metallocene, son procede de fabrication, catalyseur de polymerisation d'olefine, procede de production de polyolefine et polyolefine
US20010053838A1 (en) * 2000-03-20 2001-12-20 Fmc Corporation Terminal olefin functionalized macromonomers
WO2003091262A1 (en) 2002-04-24 2003-11-06 Symyx Technologies, Inc. Bridged bi-aromatic ligands, complexes, catalysts and processes for polymerizing and poymers therefrom
JP2004091640A (ja) 2002-08-30 2004-03-25 Mitsui Chemicals Inc ポリオレフィン骨格を有するグラフトポリマー
WO2004029062A1 (ja) 2002-09-27 2004-04-08 Mitsui Chemicals, Inc. オレフィン重合用の架橋メタロセン化合物およびそれを用いたオレフィンの重合方法
JP2005336091A (ja) 2004-05-26 2005-12-08 Mitsubishi Chemicals Corp 新規遷移金属化合物、該遷移金属化合物を用いたプロピレン系重合体の製造方法、および末端にビニル基を有するプロピレン系重合体
WO2008026628A1 (fr) 2006-08-31 2008-03-06 Mitsui Chemicals, Inc. Polymère de polyoléfine contenant des groupements vinyle à ses deux extrémités et composition le contenant
JP2008285443A (ja) 2007-05-18 2008-11-27 Idemitsu Kosan Co Ltd 遷移金属化合物、それを含有するオレフィン重合触媒、それを用いたオレフィン系重合体の製造方法、並びに末端不飽和プロピレン系重合体及びその製造方法
JP2009299046A (ja) 2008-05-13 2009-12-24 Japan Polypropylene Corp メタロセン化合物を用いたプロピレン系重合体の製造方法
WO2009155510A2 (en) 2008-06-20 2009-12-23 Exxonmobil Chemical Patents Inc. Polymacromonomer and process for production thereof
WO2012134719A2 (en) 2011-03-25 2012-10-04 Exxonmobil Chemical Patents Inc. Novel catalysts and methods of use thereof to produce vinyl terminated polymers
JP2015500920A (ja) 2011-12-20 2015-01-08 ダウ グローバル テクノロジーズ エルエルシー エチレン/アルファオレフィン/非共役ポリエン共重合体およびその形成方法
WO2015147186A1 (ja) 2014-03-28 2015-10-01 三井化学株式会社 オレフィン系樹脂およびその製造方法
WO2015147187A1 (ja) 2014-03-28 2015-10-01 三井化学株式会社 オレフィン系樹脂、その製造方法およびプロピレン系樹脂組成物
JP2017025234A (ja) * 2015-07-24 2017-02-02 三井化学株式会社 オレフィン系樹脂、該樹脂の製造方法、ペレット、熱可塑性エラストマーおよび架橋ゴム
JP2017025233A (ja) * 2015-07-24 2017-02-02 三井化学株式会社 オレフィン系樹脂、該樹脂の製造方法、ペレット、熱可塑性エラストマーおよび架橋ゴム
WO2017082182A1 (ja) 2015-11-09 2017-05-18 三井化学株式会社 潤滑油用粘度調整剤、潤滑油用添加剤組成物および潤滑油組成物
JP2018035267A (ja) * 2016-08-31 2018-03-08 Mcppイノベーション合同会社 熱可塑性エラストマー組成物

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
RESCONI, L, JACS, vol. 114, 1992, pages 1025 - 1032
RZAYEV, J, ASC NANO, vol. 11, 2017, pages 8207 - 8214
See also references of EP3940009A4
SHEIKO, S, NATURE, vol. 549, 2017, pages 497 - 501

Also Published As

Publication number Publication date
EP3940009A4 (en) 2023-03-15
US20220162369A1 (en) 2022-05-26
JP7186856B2 (ja) 2022-12-09
CN113544173A (zh) 2021-10-22
EP3940009A1 (en) 2022-01-19
JPWO2020184421A1 (ja) 2020-09-17

Similar Documents

Publication Publication Date Title
JP6788609B2 (ja) ポリマー組成物の製造方法
KR101989206B1 (ko) 에틸렌/알파-올레핀/비공액 폴리엔 혼성중합체 및 그의 형성 방법
KR100307037B1 (ko) 불포화공중합체,이공중합체의제조방법및이공중합체를함유한조성물
JP6042906B2 (ja) 改良された溶融強度を有するエチレン系ポリマーおよびそのプロセス
WO2010064574A1 (ja) 共重合体、ゴム組成物、架橋ゴム、架橋発泡体およびそれらの用途
JP5357643B2 (ja) ゴム組成物およびその用途
EP2885326A1 (en) Highly branched compositions and processes for the production thereof
JP5683840B2 (ja) 発泡成形用エチレン系重合体、発泡成形用樹脂組成物およびそれらから得られる発泡体
JP6941225B2 (ja) エチレン・α−オレフィン・非共役ポリエン共重合体、その製造方法および用途
JP5680678B2 (ja) 発泡剤およびその製造方法・形成剤、ゴム組成物、架橋発泡体およびその製造方法、ならびにゴム成形品
JP5357635B2 (ja) ゴム組成物およびその用途
WO2000059962A1 (fr) CAOUTCHOUC COPOLYMERE D&#39;ETHYLENE/α-OLEFINE/POLYENE NON CONJUGUE, COMPOSITION DE CAOUTCHOUC D&#39;ETANCHEITE, CAOUTCHOUC MOULE D&#39;ETANCHEITE ET PROCEDE DE FABRICATION DU CAOUTCHOUC MOULE
WO2001038410A9 (fr) Caoutchouc de polymere d&#39;ethylene, procede de production correspondant et utilisation
WO2020184421A1 (ja) オレフィン系樹脂、その架橋物およびそれらの製造方法
JP2007039540A (ja) 改質材およびその用途
US9982003B2 (en) Group 3 metal catalyst system and process to produce ethylene polymers therewith
JP6180517B2 (ja) アルキル化フェノールを使用してエチレン系ポリマーを作製するためのフリーラジカルプロセス
JP2019167403A (ja) エチレン・α−オレフィン・ビニルノルボルネン共重合体
EP3510059A1 (en) Group 3 metal catalyst system and process to produce ethylene polymers therewith
WO2018048533A1 (en) Group 3 metal catalyst system and process to produce ethylene polymers therewith
WO2016175963A1 (en) Process to produce ethylene conjugated diene copolymers and copolymers therefrom
JP2023148492A (ja) コンベアベルト用共重合体組成物およびその用途
KR100299078B1 (ko) 불포화 공중합체, 이 공중합체의 제조방법 및 이공중합체를 함유한 조성물
JP2015010101A (ja) 低硬度エチレン系共重合体架橋物及びその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769122

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021505016

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020769122

Country of ref document: EP

Effective date: 20211012