WO2020184030A1 - 偏光板 - Google Patents

偏光板 Download PDF

Info

Publication number
WO2020184030A1
WO2020184030A1 PCT/JP2020/005103 JP2020005103W WO2020184030A1 WO 2020184030 A1 WO2020184030 A1 WO 2020184030A1 JP 2020005103 W JP2020005103 W JP 2020005103W WO 2020184030 A1 WO2020184030 A1 WO 2020184030A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing plate
resin film
polarizer layer
face
layer
Prior art date
Application number
PCT/JP2020/005103
Other languages
English (en)
French (fr)
Inventor
清孝 稲田
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202080020361.6A priority Critical patent/CN113574426B/zh
Priority to KR1020217022112A priority patent/KR20210138567A/ko
Publication of WO2020184030A1 publication Critical patent/WO2020184030A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a polarizing plate.
  • the polarizing plate usually includes a polarizing element layer containing a dye and a pair of optical resin films provided on both sides of the polarizing element layer, and is used by being bonded to a display panel such as a liquid crystal cell or an organic EL element.
  • the outer periphery of the polarizing plate is usually shaped to match the outer periphery of the display portion of the display panel.
  • the outer peripheral edge of the display portion of the display panel is not rectangular in plan view and has at least one of a concave portion, a convex portion, and a curved portion
  • the outer peripheral edge of the polarizing plate used for this display portion is also this.
  • it has at least one of a concave portion, a convex portion, and a curved portion instead of a rectangular shape (see, for example, Patent Document 1).
  • a polarizing plate having an outer peripheral edge not having a rectangular shape but having at least one of a concave portion, a convex portion, and a curved portion has a wet heat as compared with a polarizing plate having a rectangular outer peripheral edge. It has been found that the dye is easily removed from the polarizing element layer in the environment, and the optical resin film is easily peeled off from the polarizer at the end face. Such a phenomenon is more likely to appear in the concave portion, the convex portion, the curved portion, and the vicinity thereof than in the straight portion.
  • the present invention has been made in view of the above circumstances, and in a polarizing plate having an outer peripheral edge having at least one of a concave portion, a convex portion, and a curved portion, dye loss is unlikely to occur in a moist heat environment, and
  • An object of the present invention is to provide a polarizing plate in which the optical resin film does not easily peel off from the polarizing element layer on the end face.
  • the polarizing plate according to the present invention includes a polarizing element layer, a first optical resin film provided on one surface of the polarizer layer, and a second optical resin film provided on the other surface of the polarizer layer. , Equipped with.
  • the shape of the outer peripheral edge of the polarizing plate has at least one of a concave portion, a convex portion, and a curved portion, and the arithmetic mean height of the end face of the polarizing element layer. Sa is 0.3 to 0.7 ⁇ m.
  • another polarizing plate includes a polarizing element layer, a first optical resin film provided on one surface of the polarizer layer, and a second polarizing plate provided on the other surface of the polarizer layer. It includes an optical resin film.
  • the root mean square height Sq of the end face of the polarizer layer is 0.4 to 0.8 ⁇ m.
  • the arithmetic mean height Sa of the end face can be 0.3 to 0.7 ⁇ m.
  • the polarizing plate of the present invention can have a maximum height Sz of the end face of the polarizer layer of 5.0 ⁇ m or less.
  • a polarizing plate having an outer peripheral edge having at least one of a concave portion, a convex portion, and a curved portion, dye loss does not easily occur in a moist heat environment, and optics from the polarizer layer at the end face.
  • a polarizing plate that prevents the resin film from peeling off is provided.
  • FIG. 1 is a schematic cross-sectional view of a polarizing plate according to an embodiment of the present invention.
  • 2 (a) to 2 (c) are top views of the polarizing plate according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view perpendicular to the axis near the cutting edge of the end mill.
  • FIG. 1 shows an end view of the polarizing plate 100 according to an example of the embodiment of the present invention.
  • the polarizing plate 100 according to the present embodiment includes a first optical resin film 10, an adhesive layer 20, a polarizer layer 30, an adhesive layer 40, and a second optical resin film 50 in this order.
  • the example of the polarizer layer 30 is a resin layer dyed with a dichroic dye such as iodine or a dichroic dye, and may be stretched.
  • the resin constituting this resin layer may be a hydrophobic resin, but is usually a hydrophilic resin.
  • hydrophilic resins are polyvinyl alcohol-based resins, polyvinyl acetate resins and ethylene-vinyl acetate copolymer resins (EVA) resins.
  • hydrophobic resins are polyamide resins and polyester resins.
  • the polarizer layer 30 may be treated with boric acid after staining.
  • a typical example of the polarizer layer 30 is a resin layer in which iodine is adsorbed and oriented on a polyvinyl alcohol film.
  • the resin layer which is the polarizer layer
  • the amount of moisture entering and exiting from the outside is relatively larger than that of the hydrophobic resin, which causes pigment loss in a moist heat environment.
  • the optical resin film is peeled off from the polarizing element layer on the end face.
  • such dye loss and peeling can be suppressed.
  • the thickness of the polarizer layer 30 may be, for example, 2 to 30 ⁇ m, 2 to 15 ⁇ m, or 2 to 10 ⁇ m.
  • the first optical resin film 10 and the second optical resin film 50 are usually colorless and transparent resin films.
  • resin films include protective films, retardation films, brightness-enhancing (reflective polarizer) films, antiglare films, surface antireflection films, reflective films, transflective reflective films, viewing angle compensation films, and optical compensation. Films, touch sensor films, antistatic films and antifouling films.
  • each optical resin film examples include cellulose-based resin (triacetyl cellulose, etc.), polyolefin-based resin (polypropylene-based resin, etc.), cyclic olefin-based resin (norbornen-based resin, etc.), acrylic resin (polymethyl methacrylate, etc.). It may be a based resin, etc.) or a polyester resin (polyethylene terephthalate resin, etc.).
  • the first optical resin film 10 and the second optical resin film 50 may be multilayer films.
  • the thickness of the first optical resin film 10 and the second optical resin film 50 may be, for example, 5 to 200 ⁇ m.
  • the materials and thicknesses of the first optical resin film 10 and the second optical resin film 50 may be the same or different from each other.
  • the adhesive layers 20 and 40 are not particularly limited as long as they are transparent materials capable of adhering the polarizer layer 30 to the first optical resin film 10 or the second optical resin film 50.
  • an adhesive is an epoxy resin.
  • the epoxy resin may be, for example, a hydrogenated epoxy resin, an alicyclic epoxy resin, or an aliphatic epoxy resin.
  • a polymerization initiator photocationic polymerization initiator, thermal cationic polymerization initiator, photoradical polymerization initiator or thermal radical polymerization initiator, etc.
  • other additive may be added to the epoxy resin. ..
  • adhesives are acrylic resins such as acrylamide, acrylate, urethane acrylate, and epoxy acrylate.
  • an adhesive is a water-based adhesive such as a polyvinyl alcohol-based resin.
  • an adhesive is a pressure sensitive adhesive.
  • An example of a pressure-sensitive adhesive is a pressure-sensitive adhesive containing an acrylic resin, a silicone resin, polyester, polyurethane, a polyether, or the like.
  • the polarizer layer 30 and the first optical resin film 10 may be laminated only via the adhesive layer 20, between the polarizer layer 30 and the adhesive layer 20, or between the adhesive layer 20 and the first.
  • An easy-adhesion layer (not shown) may be provided between the optical resin film 10 and the film 10.
  • the polarizer layer 30 and the second optical resin film 50 may be laminated only via the adhesive layer 40, or between the polarizer layer 30 and the adhesive layer 40 or the adhesive layer.
  • An easy-adhesive layer (not shown) may be provided between the 40 and the second optical resin film 50.
  • the easy-adhesion layer can improve the adhesive force between the adhesive layers 20 and 40 and the polarizer layer 30, the first optical resin film 10 or the second optical resin film 50.
  • the thickness of the adhesive layer 20 may be, for example, 0.01 ⁇ m to 5 ⁇ m, 0.05 to 3 ⁇ m, or 0.1 to 1 ⁇ m.
  • the thickness of the adhesive layer 20 may be, for example, 2 to 500 ⁇ m, 2 to 200 ⁇ m, or 2 to 50 ⁇ m.
  • the total thickness of the polarizing plate 100 may be, for example, 10 to 500 ⁇ m, 10 to 300 ⁇ m, or 10 to 200 ⁇ m.
  • a pressure-sensitive adhesive layer (adhesive layer) and a separator film may be further provided under the first optical resin film 10 or on the second optical resin film 50. Further, a protective film may be further provided under the first optical resin film 10 or on the second optical resin film 50.
  • the separator film is a film that can be peeled off from the pressure-sensitive adhesive layer, and prevents foreign matter from adhering to the pressure-sensitive adhesive layer. For example, when the polarizing plate 100 is attached to an image display element, the separator film is peeled off to expose the pressure-sensitive adhesive layer.
  • the resin constituting the separator film may be, for example, a polyethylene resin, a polypropylene resin, or a polyester tree (polyethylene terephthalate or the like).
  • the protective film is a film for preventing the first optical resin film 10 or the second optical resin film 50 from being scratched.
  • the self-adhesive resin film may be used alone, or the resin film and the resin thereof.
  • the protective film may be a multilayer film composed of a pressure-sensitive adhesive laminated on the film.
  • the protective film can be peeled off from the first optical resin film 10 and the second optical resin film 50 on which the protective film is provided.
  • the protective film is a multilayer film in which a pressure-sensitive adhesive is laminated on a resin film
  • the protect film is peeled off from the first optical resin film 10 or the second optical resin film 50 together with the pressure-sensitive adhesive.
  • the resin of the protective film can be the same as that of the separator film.
  • the thickness of the separator film and the protect film may be, for example, 2 to 500 ⁇ m, 2 to 200 ⁇ m, or 2 to 100 ⁇ m.
  • the outer peripheral edge P of the polarizing plate 100 is not formed only of straight lines (for example, a rectangle), but is composed of concave portions, convex portions, and curved portions. Have at least one selected from the group.
  • the outer peripheral edge P has four straight line portions PL that are orthogonal to each other and a chamfered curved portion PR that is provided between the two straight line portions PL. Can have.
  • the outer peripheral edge P of the polarizing plate 100 is provided with a chamfered curved portion PR at each of the four corners of the rectangle.
  • a recess PD may be further provided in one straight portion PL of the outer peripheral edge P of the polarizing plate 100 in FIG. 2 (a).
  • the shape of the concave PD is not limited, but for example, as shown in FIG. 2B, it has a substantially rectangular shape having three straight PDLs orthogonal to each other, and chamfered curved portions are formed between the straight PDLs.
  • the shape may have a PDR and a chamfered curved portion PDR between the straight portion PDL and the straight portion PL, respectively.
  • the curved portion PDR held between the two straight portions PDL has a concave shape toward the in-plane of the polarizing plate 100.
  • the chamfered curved portion PDR held between the straight portion PDL and the straight portion PL has a convex shape toward the outside of the plane of the polarizing plate 100.
  • the convex portion PP is not limited, but for example, as shown in FIG. 2C, it is a substantially rectangular shape having three straight portion PPLs orthogonal to each other, and a chamfer curve between the straight portions PPLs.
  • the shape may have a portion PPR and a chamfered curved portion PPR between the straight portion PPL and the straight portion PL, respectively.
  • the chamfered curved portion PPR between the two straight portions PPL has a concave shape toward the in-plane of the polarizing plate 100.
  • the chamfered curved portion PPR held between the straight portion PPL and the straight portion PL has a convex shape toward the outside of the plane of the polarizing plate 100.
  • the depth of the concave portion PD from the straight portion PL and the height of the convex portion PP from the straight portion PL are not particularly limited, but can typically be 1.0 mm or more. Further, the width of the concave portion PD and the width of the convex portion PP are not particularly limited, but can typically be 3.0 mm or more.
  • the shapes of the concave PD and the convex PP are not limited to rectangles having four corners rounded by chamfered curved portions as shown in FIGS. 2 (b) and 2 (c), but are simply rectangles, semicircles, polygons, etc. It may be.
  • each chamfered curve portion may be an arc, an elliptical arc, or a spline curve.
  • the radius of curvature of each chamfered curved portion can be 1.0 to 40 mm.
  • 1 to 3 of the four chamfered curve portions PR may be simple corner portions that are not chamfered curves.
  • 1 to 4 of the four chamfered curved portions PR may be simple corner portions that are not chamfered curves.
  • the outer peripheral edge P does not have to be a rectangular-based form as shown in FIGS. 2A to 2C, but may be a polygon-based form such as a triangle or a hexagon.
  • the absorption axis of the polarizing element layer 30 can be oriented in any direction of the polarizing plate 100 depending on the image display device or the like used.
  • the arithmetic mean height Sa of the end face of the polarizing element layer 30 of the polarizing plate 100 is 0.3 to 0.7 ⁇ m. Sa may be 0.4 ⁇ m or more, and may be 0.6 ⁇ m or less.
  • the arithmetic mean height Sa of the end face of the polarizer layer 30 is defined as follows in an arbitrary two-dimensional measurement region 30A on the end face.
  • An XYZ coordinate system in which the plane parallel to the end face of the polarizer layer 30 is the XY plane, the height direction perpendicular to the end face is the Z direction, and the position of the average height of the end face in the two-dimensional measurement region 30A is Z 0.
  • the arithmetic average height Sa is expressed by the following equation.
  • A is the area of the two-dimensional measurement region 30A.
  • the height Z (x, y) for each x, y in the two-dimensional measurement region 30A can be obtained by a scanning interference microscope, an atomic force microscope, or the like.
  • the size of the two-dimensional measurement region 30A can be, for example, a rectangular region having a side of 5 to 1000 ⁇ m.
  • Root mean square height Sq (Root mean square height Sq) Further, the root mean square height Sq of the end face of the polarizer layer 30 can be 0.4 to 0.8 ⁇ m. Sq may be 0.5 ⁇ m or more, and may be 0.7 ⁇ m or less.
  • the root mean square height Sq in any two-dimensional measurement region 30A is defined by the following equation.
  • the maximum height Sz of the end face of the polarizer layer 30 can be 5.0 ⁇ m or less. Sz may be 4.0 ⁇ m or less.
  • the maximum height Sz is the sum of the maximum peak height and the absolute value of the maximum valley depth in the two-dimensional measurement area 30A.
  • the measurement of the three-dimensional surface roughness in the two-dimensional measurement area 30A can conform to ISO25178.
  • the two-dimensional measurement region 30A is preferably any straight portion on the outer peripheral edge P, that is, a flat portion on the end face, and may be a concave portion PD and a flat portion in the convex portion PP.
  • the end face of a polarizing plate having a concave portion, a convex portion, or a curved portion cannot be cut by a surface grinding device to adjust the dimensions. .. Therefore, the end face of such a polarizing plate is usually cut by an end mill over the entire outer circumference. Therefore, it has almost the same surface roughness at any place on the end face.
  • the two-dimensional measurement region 30A is located at the end of the polarizer layer 30 in the absorption axis (stretching direction) direction.
  • this region 30A intersects the absorption axis of the polarizer layer 30.
  • the arithmetic mean height Sa on the end face of the polarizer layer 30 When the arithmetic mean height Sa on the end face of the polarizer layer 30 is large, the surface area of the end face is large, so that the dye loss in a moist heat environment tends to be large. On the other hand, if the arithmetic mean height Sa on the end face of the polarizer layer 30 is small, the amount of peeling of the first optical resin film 10 and / or the second optical resin film 50 from the polarizer layer 30 tends to be large. ..
  • the situation where Sa is small corresponds to the state where the end face is not polished while being punched with the Thomson blade, but it is presumed that it is caused by the peeling of the optical resin film due to the impact of punching.
  • Such a polarizing plate can be attached to a display panel such as a liquid crystal cell or an organic EL element and used for an image display device such as a liquid crystal display device or an organic EL display device.
  • the liquid crystal display device may include, for example, a liquid crystal cell and the above-mentioned polarizing plate attached to one surface or both surfaces of the liquid crystal cell.
  • the organic EL display device may include, for example, an organic EL element and the above-mentioned polarizing plate attached to the surface of the organic EL element.
  • two polarizing plates are arranged in the liquid crystal cell.
  • the raw fabric of the polarizing plate 100 having the above-mentioned layer structure is manufactured by a known method.
  • the raw film is punched out with a blade such as a Thomson blade to obtain a polarizing plate having an outer peripheral edge P having a concave portion, a convex portion, or a curved portion.
  • a blade such as a Thomson blade
  • a surface grinding device such as that used for end face grinding of a rectangular polarizing plate, that is, a plurality of bites are provided side by side in the circumferential direction on one main surface. Since it is not possible to grind the entire end face using a device that cuts a rotating disk in contact with the end face of the polarizing plate so that its main surface and the end face of the polarizing plate are parallel to each other, an end mill is used. The entire end face of the polarizing plate is machined.
  • the axial direction of the end mill is parallel to the thickness direction of the polarizing plate, and the end face of the polarizing plate is relatively moved along the end face of the polarizing plate to cut the end face of the polarizing plate to obtain desired dimensions. To match.
  • an end mill having a spiral-shaped blade it is preferable to use an end mill having a spiral-shaped blade, and in particular, it is preferable to use an end mill having a small dZ and dZ / dX in FIG. 3 in the cross-sectional shape of the blade.
  • FIG. 3 is a cross-sectional view of the tip of the blade 80 in a cross section perpendicular to the axis of the end mill, and the rotation direction of the end mill is C.
  • the blade 80 has a cutting edge 80t and a surface 80d behind the cutting edge 80t. This surface 80d may come into contact with the cutting object T immediately after cutting by the cutting edge 80t.
  • scanning interference is performed while moving along a straight line AB that is orthogonal to the straight line Q and passes through the cutting edge 80t, with the cutting line 80t as a reference and the straight line Q connecting the cutting edge 80t and the rotation axis AX of the end mill as a reference.
  • the profile of the height of the surface 80d with respect to the straight line AB is measured with a microscope. Then, from this profile, dZ [ ⁇ m], which is the maximum value of the height of the surface 80d, and the distance dX [ ⁇ m] from the cutting edge 80t in the AB direction, which gives dZ, are obtained.
  • the surface roughness of the end face 20e of the polarizer layer 30 can be easily set within the above range. Even in an end mill having a spiral blade, the surface roughness tends to be too large in an end mill having dZ> 1.0 ⁇ m or dZ / dX> 4.
  • Example 1 A polyvinyl alcohol-based resin film having a thickness of 20 ⁇ m was stretched and dyed with iodine to prepare a polarizer (thickness: 8 ⁇ m) in which iodine was adsorbed and oriented on the polyvinyl alcohol-based resin.
  • a cyclic olefin resin (COP) film (manufactured by Nippon Zeon Corporation, thickness 13 ⁇ m) was attached to one surface of the polarizer via an aqueous adhesive. Further, an acrylic pressure-sensitive adhesive layer A (thickness 20 ⁇ m) formed on the release film was laminated on the COP film.
  • COP cyclic olefin resin
  • a polarizing plate 100 having a concave PD having the shape shown in FIG. 2B was cut out from the original fabric using a Thomson blade.
  • the length of the long side of the rectangle is 140 mm
  • the length of the short side of the rectangle is 70 mm
  • the depth of the dent is 5 mm
  • the width of the dent is 30 mm
  • the radius of curvature of the chamfer curve portion PR is approximately 10 to 12 mm
  • the chamfer curve portion PDR The radius of curvature of was approximately 3 mm.
  • the polarizing plate 100 has one recessed PD.
  • the recess PD is substantially rectangular. This recessed PD has three straight-line portions PDL that are orthogonal to each other.
  • a chamfered curved portion PDR is provided between the straight portion PDLs.
  • a chamfered curved portion PDR is provided between the straight portion PDL and the straight portion PL, respectively.
  • the absorption axis 31 of the polarizing plate 100 was orthogonal to the depth direction of the recess PD, and was in the left-right direction in FIG. 2B.
  • Example 1 Using an end mill having a blade having a spiral diameter with an average dZ of 0.6 ⁇ m and an average dZ / dX of 2.2, the entire circumference of the end face was polished to adjust the dimensions, and the polarizing plate of Example 1 was used. Obtained.
  • Comparative Example 1 A polarizing plate of Comparative Example 1 was obtained in the same manner as in Example 1 except that the end face was polished using an end mill having a blade having an average dZ of 1.4 ⁇ m and an average dZ / dX of 14 spiral diameters. ..
  • Comparative Example 2 A polarizing plate of Comparative Example 2 was obtained in the same manner as in Comparative Example 1 except that the end face was not polished by an end mill and was cut out by a Thomson blade.
  • the height function Z (x, y) of the end face of the polarizer layer was obtained by the following microscope. Scanning White Interference Microscope VS1000 Series Hitachi High-Tech Science Corporation Measurement conditions: Objective lens: 50 x Two-dimensional measurement area: Vertical (thickness direction) 5 to 8 ⁇ m ⁇ horizontal (direction perpendicular to the thickness direction) 150 to the straight portion (plane orthogonal to the absorption axis) of the end face of the polarizing element layer (PVA layer) of the polarizing plate. 300 ⁇ m Based on the obtained function Z, Sa, Sq, and Sz were obtained, respectively, based on the above equation.
  • the end faces on which Sa, Sq and Sz were measured were located on the left and right straight line portions PL in FIG. 2 (b) and were orthogonal to the absorption axis 31.
  • Sa, Sq and Sz in each polarizing plate 100 show the same value over the whole circumference.
  • Example or Comparative Example The polarizing plate obtained in Example or Comparative Example was left in an environment of 65 ° C. and 90% relative humidity for 500 hours. After that, two polarizing plates (one of which is a polarizing plate of an example or a comparative example and the other of which is a commercially available ordinary polarizing plate) are placed on the cross Nicol, and the end portion is observed over the entire circumference using an optical microscope. , The width from the end of the region (light loss) corresponding to the cross Nicol where dimming does not occur was measured. This light leakage is caused by the removal of iodine, which plays a role in developing polarization performance. The light leakage occurred in the vicinity of the concave portion PD in FIG. 2, and the maximum width thereof was determined as iodine leakage.
  • Table 1 shows the conditions and results.
  • the amount of peeling of the brightness improving film could be reduced while reducing the amount of iodine missing.
  • the polarizing plate according to the present invention is attached to, for example, a liquid crystal cell or an organic EL element, and is applied as an optical component constituting an image display device such as a liquid crystal television, an organic EL television, or a smartphone.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

〔要約〕 〔課題〕温度変化に伴うクラックが発生し難い偏光子を提供する。 〔解決手段〕偏光板100は、偏光子層30と、前記偏光子層30の一方の表面に設けられた第一光学樹脂フィルム10と、前記偏光子層30の他方の表面に設けられた第二光学樹脂フィルム50と、を備える。前記偏光板100を厚み方向から見て、前記偏光板100の外周縁の形状は、凹部、凸部、及び曲線部のうちの少なくとも一つを有する。偏光子層30の端面の算術平均高さSaが0.3~0.7μmであるか、または2乗平均平方根高さSqが0.4~0.8μmである。 〔選択図〕図1

Description

偏光板
 本発明は、偏光板に関する。
 偏光板は、通常、色素を含む偏光子層と、偏光子層の両側に設けられた一対の光学樹脂フィルムとを含み、液晶セル又は有機EL素子等の表示パネルに貼合して用いられる。偏光板の外周は通常、表示パネルの表示部の外周縁に合せた形状となっている。
 表示パネルの表示部の外周縁が平面視において、矩形形状でなく、凹部、凸部、及び曲線部のうちの少なくとも一つを有する場合、この表示部に使用される偏光板の外周縁もこれに対応して、矩形形状でなく、凹部、凸部、及び曲線部のうちの少なくとも一つを有する(例えば、特許文献1参照。)。
特開2018-92119号公報
 本発明者らが検討したところ、外周縁が、矩形形状でなく、凹部、凸部、及び曲線部のうちの少なくとも一つを有する偏光板では、外周縁が矩形の偏光板に比べて、湿熱環境で偏光子層から色素抜けが起こりやすかったり、端面において光学樹脂フィルムが偏光子から剥がれやすかったりすることが判明した。このような現象は、直線部よりも、凹部、凸部および曲線部や、その近傍に現れ易い。
 本発明は、上記事情に鑑みてなされたものであり、外周縁が、凹部、凸部、及び曲線部のうちの少なくとも一つを有する偏光板において、湿熱環境での色素抜けが起こりにくく、かつ、端面において偏光子層からの光学樹脂フィルムの剥がれにくい偏光板を提供することを目的とする。
 本発明に係る偏光板は、偏光子層と、前記偏光子層の一方の表面に設けられた第一光学樹脂フィルムと、前記偏光子層の他方の表面に設けられた第二光学樹脂フィルムと、を備える。そして、前記偏光板を厚み方向から見て、前記偏光板の外周縁の形状は、凹部、凸部、及び曲線部のうちの少なくとも一つを有し、前記偏光子層の端面の算術平均高さSaが0.3~0.7μmである。
 また、本発明に係る別の偏光板は、偏光子層と、前記偏光子層の一方の表面に設けられた第一光学樹脂フィルムと、前記偏光子層の他方の面に設けられた第二光学樹脂フィルムと、を備える。そして、前記偏光子層の端面の2乗平均平方根高さSqが0.4~0.8μmである。前記端面の算術平均高さSaは0.3~0.7μmであることができる。
 本発明の偏光板は、前記偏光子層の端面の最大高さSzが5.0μm以下であることができる。
 本発明によれば、外周縁が、凹部、凸部、及び曲線部のうちの少なくとも一つを有する偏光板において、湿熱環境での色素抜けが起こりにくく、かつ、端面において偏光子層からの光学樹脂フィルムの剥がれにくい偏光板が提供される。
図1は、本発明の一実施形態に係る偏光板の模式的な断面図である。 図2の(a)~(c)は、本発明の一実施形態に係る偏光板の上面図である。 図3は、エンドミルの刃先近傍の軸に垂直な断面図である。
 以下、図面を参照しながら、本発明の好適な実施形態について説明する。図面において、同等の構成要素には同等の符号を付す。本発明は下記実施形態に限定されるものではない。
(偏光板)
 本発明の実施形態の一例に係る偏光板100の端面図を図1に示す。本実施形態に係る偏光板100は、第一光学樹脂フィルム10、接着剤層20、偏光子層30、接着剤層40、第二光学樹脂フィルム50をこの順に備える。
 偏光子層30の例は、ヨウ素、二色性染料などの二色性色素によって染色された樹脂層であり、延伸されていてもよい。この樹脂層を構成する樹脂は疎水性樹脂であってもよいが、通常は親水性樹脂である。親水性樹脂の例は、ポリビニルアルコール系樹脂、ポリ酢酸ビニル樹脂およびエチレン・酢酸ビニル共重合樹脂(EVA)樹脂である。疎水性樹脂の例は、ポリアミド樹脂、及び、ポリエステル系樹脂である。偏光子層30は、染色後にホウ酸で処理されてよい。偏光子層30の典型例は、ポリビニルアルコールフィルムにヨウ素が吸着配向した樹脂層である。偏光子層である樹脂層がポリビニルアルコール系樹脂などの親水性樹脂で構成されている場合には、外部との水分の出入りが疎水性樹脂に比べて比較的多く、これが湿熱環境での色素抜けや、端面における偏光子層からの光学樹脂フィルムの剥がれの原因となると考えられるところ、本発明の構成によれば、このような色素抜けや剥がれを抑制することができる。
 偏光子層30の厚さは、例えば、2~30μm、2~15μm、又は2~10μmであってよい。
 第一光学樹脂フィルム10及び第二光学樹脂フィルム50は通常、無色で透明な樹脂フィルムである。このような樹脂フィルムの例は、保護フィルム、位相差フィルム、輝度向上(反射型偏光子)フィルム、防眩フィルム、表面反射防止フィルム、反射フィルム、半透過反射フィルム、視野角補償フィルム、光学補償フィルム、タッチセンサーフィルム、帯電防止フィルムおよび防汚フィルムである。
 各光学樹脂フィルムを構成する樹脂の例は、セルロース系樹脂(トリアセチルセルロース等)、ポリオレフィン系樹脂(ポリプロピレン系樹脂等)、環状オレフィン系樹脂(ノルボルネン系樹脂等)、アクリル系樹脂(ポリメチルメタクリレート系樹脂等)、又は、ポリエステル系樹脂(ポリエチレンテレフタレート系樹脂等)であってよい。第一光学樹脂フィルム10及び第二光学樹脂フィルム50は多層膜であってもよい。
 第一光学樹脂フィルム10及び第二光学樹脂フィルム50の厚みは、例えば、5~200μmであってよい。
 第一光学樹脂フィルム10及び第二光学樹脂フィルム50の材料及び厚みは互いに同一であってもよく、互いに異なってもよい。
 接着剤層20、40は、偏光子層30と第一光学樹脂フィルム10又は第二光学樹脂フィルム50とを接着できる透明材料であれば材料に特段の限定はない。接着剤の一つの例は、エポキシ樹脂である。エポキシ樹脂は、例えば、水素化エポキシ樹脂、脂環式エポキシ樹脂、又は脂肪族エポキシ樹脂であってよい。重合開始剤(光カチオン重合開始剤、熱カチオン重合開始剤、光ラジカル重合開始剤又は熱ラジカル重合開始剤等)、又は他の添加剤(増感剤等)をエポキシ樹脂に添加してもよい。
 接着剤の他の例は、アクリルアミド、アクリレート、ウレタンアクリレート、及びエポキシアクリレート等のアクリル系樹脂である。
 接着剤の他の例は、ポリビニルアルコール系樹脂などの水系接着剤である。
 接着剤の他の例は、感圧性接着剤である。感圧性接着剤の例は、アクリル系樹脂、シリコーン系樹脂、ポリエステル、ポリウレタン、又はポリエーテル等を含む感圧型接着剤である。
 偏光子層30と第一光学樹脂フィルム10とは接着剤層20のみを介して積層されていてもよいし、偏光子層30と接着剤層20との間や、接着剤層20と第一光学樹脂フィルム10との間に易接着層(図示せず)が設けられていてもよい。また、偏光子層30と第二光学樹脂フィルム50との間は接着剤層40のみを介して積層されていてもよいし、偏光子層30と接着剤層40との間や、接着剤層40と第二光学樹脂フィルム50との間に易接着層(図示せず)が設けられていてもよい。易接着層は、接着剤層20、40と、偏光子層30、第一光学樹脂フィルム10または第二光学樹脂フィルム50との間の接着力を向上させ得るものである。
 接着剤層20の厚さは、例えば、0.01μm~5μm、0.05~3μm、又は0.1~1μmであってよい。感圧性接着剤を用いる場合、接着剤層20の厚さは、例えば、2~500μm、2~200μm、又は2~50μmであってよい。
 偏光板100の全体の厚さは、例えば、10~500μm、10~300μm、又は10~200μmであってよい。
 第一光学樹脂フィルム10の下、又は、第二光学樹脂フィルム50の上にさらに、感圧性接着剤層(粘着層)及びセパレータフィルムを設けてもよい。また、第一光学樹脂フィルム10の下、又は、第二光学樹脂フィルム50の上にさらに、プロテクトフィルムを設けてもよい。
 セパレータフィルムは、感圧性接着剤層から剥離可能なフィルムであり、感圧性接着剤層への異物の付着を防止するものである。例えば、偏光板100を画像表示素子に貼着する場合、セパレータフィルムが剥がされて感圧式接着剤層が露出される。セパレータフィルムを構成する樹脂は、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、又はポリエステル系樹(ポリエチレンテレフタレート等)であってよい。
 プロテクトフィルムは、第一光学樹脂フィルム10または第二光学樹脂フィルム50の傷付きを防止するためのフィルムであり、例えば自己粘着性の樹脂フィルム単独であってもよいし、樹脂フィルムと、この樹脂フィルムに積層された感圧性接着剤とで構成される多層フィルムであってもよい。プロテクトフィルムは、これが設けられる第一光学樹脂フィルム10や第二光学樹脂フィルム50から剥離可能である。プロテクトフィルムが樹脂フィルムに感圧性接着剤を積層した多層フィルムである場合に、プロテクトフィルムは、その感圧性接着剤ごと、第一光学樹脂フィルム10または第二光学樹脂フィルム50から剥離される。プロテクトフィルムの樹脂も、セパレータフィルムと同様とすることができる。
 セパレータフィルム及びプロテクトフィルムの厚さは、例えば、2~500μm、2~200μm、又は2~100μmであってよい。
 本実施形態に係る偏光板100は、その厚み方向から見て、偏光板100の外周縁Pが直線のみから形成される(例えば矩形)のではなく、凹部、凸部、及び、曲線部からなる群から選択される少なくとも一つを有する。
 例えば、図2の(a)に示す偏光板100のように、外周縁Pは、隣同士で直交する4つの直線部PLと、2つの直線部PL間にそれぞれ設けられた面取り曲線部PRを有することができる。言い換えると、この偏光板100の外周縁Pは、矩形の4つの角部にそれぞれ面取り曲線部PRが設けられている。
 また、図2の(b)で示す偏光板100のように、図2の(a)の偏光板100の外周縁Pの一つの直線部PLに対して、さらに凹部PDを設けてもよい。凹部PDの形状に限定はないが、例えば、図2の(b)に示すように、隣同士で直交する3つの直線部PDLを有する略矩形形状で有り、直線部PDL間にそれぞれ面取り曲線部PDRを有し、直線部PDLと直線部PLとの間にそれぞれ面取り曲線部PDRを有する形状であることができる。2つの直線部PDL間に有する上記曲線部PDRは、偏光板100の面内に向けて凹形状である。直線部PDLと直線部PLとの間に有する面取り曲線部PDRは、偏光板100の面外に向けて凸形状となっている。
 また、図2の(c)で示す偏光板100のように、図2の(a)の偏光板100の外周縁Pの一つの直線部PLに対して、凸部PPが設けられていてもよい。凸部PPの形状に限定はないが、例えば、図2の(c)に示すように、隣同士で直交する3つの直線部PPLを有する略矩形形状で有り、直線部PPL間にそれぞれ面取り曲線部PPRを有し、直線部PPLと直線部PLとの間にそれぞれ面取り曲線部PPRを有する形状であることができる。2つの直線部PPL間に有する面取り曲線部PPRは、偏光板100の面内に向けて凹形状となっている。直線部PPLと直線部PLとの間に有する面取り曲線部PPRは、偏光板100の面外に向けて凸形状となっている。
 凹部PDの直線部PLからの深さ、及び、凸部PPの直線部PLからの高さに特段の限定はないが、典型的には1.0mm以上であることができる。また、凹部PDの幅、及び、凸部PPの幅にも特段の限定はないが、典型的には、3.0mm以上であることができる。
 凹部PD及び凸部PPの形状は、図2の(b)及び(c)のように、4つ角が面取り曲線部により丸くされた矩形に限定されず、単なる矩形、半円、多角形等でもよい。
 各面取り曲線部の曲線は、円弧、楕円弧、スプライン曲線であってもよい。各面取り曲線部の曲率半径は1.0~40mmとすることができる。
 また、図2の(a)の外周縁Pにおいて、4つの面取り曲線部PRのうちの1~3つは、面取り曲線でない単なる角部でもよい。図2の(b)及び(c)の外周縁Pにおいて、4つの面取り曲線部PRのうちの1~4つは、面取り曲線でない単なる角部でもよい。さらに、外周縁Pは、図2の(a)~(c)に示すような矩形をベースとした形態でなくてもよく、三角形、六角形など、多角形をベースとした形態でもよい。
 また、偏光子層30の吸収軸は、使用される画像表示装置等に応じて、偏光板100の任意の方向を向くことができる。
(算術平均高さSa)
 図1に戻って、本発明の実施形態に係る偏光板100において、偏光板100の偏光子層30の端面の算術平均高さSaは、0.3~0.7μmである。Saは0.4μm以上でもよく、0.6μm以下でもよい。
 偏光子層30の端面の算術平均高さSaは、端面上の任意の2次元測定領域30Aにおいて以下のように定義される。偏光子層30の端面に平行な面をXY面とし、端面から垂直な高さ方向をZ方向とし、端面の2次元測定領域30Aにおける平均高さの位置をZ=0としたXYZ座標系を定義し、2次元測定領域30Aの各x座標及び各y座標における高さをZ(x,y)としたときに、算術平均高さSaは下式で表される。ここで、Aは、2次元測定領域30Aの面積である。
Figure JPOXMLDOC01-appb-I000001
 2次元測定領域30Aにおけるx、y毎の高さZ(x,y)は、走査型干渉顕微鏡、原子間力顕微鏡などにより取得できる。2次元測定領域30Aの大きさは、例えば、一辺5~1000μmの矩形領域とすることができる。
(2乗平均平方根高さSq)
 また、偏光子層30の端面の2乗平均平方根高さSqは0.4~0.8μmであることができる。Sqは0.5μm以上であってもよく、0.7μm以下であってもよい。
 任意の2次元測定領域30Aにおける2乗平均平方根高さSqは、下式により定義される。
Figure JPOXMLDOC01-appb-I000002
(最大高さSz)
 また、偏光子層30の端面の最大高さSzは5.0μm以下であることができる。Szは4.0μm以下でもよい。
 最大高さSzは、2次元測定領域30Aにおける最大山高さと最大谷深さの絶対値との和である。
 2次元測定領域30Aにおける3次元表面粗さの測定はISO25178に準拠することが出来る。
 ここで、2次元測定領域30Aは、外周縁Pにおけるいずれかの直線部、すなわち、端面における平面部であることが好ましく、凹部PD、及び、凸部PP内の平面部であってもよいし、凹部PD及び凸部PP以外の平面部、例えば隣同士で直交する4つの直線部PL上の平面部であってもよい。
 後述するように、外周縁Pが直線部のみから形成される偏光板と異なり、凹部、凸部、又は、曲線部を有する偏光板の端面を平面研削装置で切削して寸法調整することはできない。したがって、このような偏光板の端面は、通常、外周の全体にわたってエンドミルで切削処理される。そのため、端面のいずれの場所であってもおおむね同様の表面粗さを有する。
 外周縁Pにおける直線部、すなわち、端面における平面部は、平均高さが0となる面が平面となり、Z=0の面を決めやすいので2次元測定領域30Aとして好ましい。
 2次元測定領域30Aは、偏光子層30の吸収軸(延伸方向)方向の端部にあることも好ましい。なお、2次元測定領域30Aが吸収軸方向の端部にあると、この領域30Aは偏光子層30の吸収軸と交わることとなる。
 偏光子層30の端面における算術平均高さSaが大きいと、端面の表面積が大きくなるため、湿熱環境における色素抜けが大きくなる傾向がある。一方、偏光子層30の端面における算術平均高さSaが小さいと、偏光子層30からの第一光学樹脂フィルム10及び/又は第二光学樹脂フィルム50の剥離量が大きくなりやすくなる傾向がある。なお、Saが小さい状況は、トムソン刃で打ち抜いたまま、端面の研磨をしていない状態に対応するが、打ち抜きの衝撃に起因する光学樹脂フィルムの剥がれに起因すると推察される。
 偏光子層30の端面における2乗平均平方根高さSqが大きいと、端面の表面積が大きくなるため、湿熱環境における色素素抜けが大きくなる傾向がある。一方、偏光子層30の端面における2乗平均平方根高さSqが小さいと、偏光子層30からの第一光学樹脂フィルム10及び/又は第二光学樹脂フィルム50の剥離量が大きくなりやすくなる傾向がある。
 偏光子層30の端面における最大高さSzが大きいと、端面の表面積が大きくなるため、湿熱環境における色素素抜けが大きくなる傾向がある。
 このような偏光板は、例えば、液晶セルや有機EL素子などの表示パネルに貼合して、液晶表示装置又は有機EL表示装置等の画像表示装置に用いることができる。液晶表示装置は、例えば、液晶セルと、液晶セルの一方の表面又は両表面に貼着された上述の偏光板とを含んでよい。有機EL表示装置は、例えば、有機EL素子と、有機EL素子の表面に貼着された上述の偏光板、とを含んでよい。液晶セルには、通常2枚の偏光板が配置される。
 (偏光板の製造方法)
 続いて、上記の偏光板100の製造方法を説明する。
 まず、公知の方法により、上述の層構成を有する偏光板100の原反を製造する。続いて、原反フィルムをトムソン刃などの刃物で打ち抜いて、外周縁Pが凹部、凸部、又は、曲線部を有する偏光板を得る。ここで、トムソン刃による切断だけでは、外周縁Pにおいて十分な寸法精度を確保することは困難であるため、端面の研削工程を行う。
 外周縁Pが凹部、凸部、又は、曲線部を有する場合、矩形の偏光板の端面研削に用いられるような平面研削装置、すなわち、複数のバイトを一方の主面に周方向に並べて設けた回転円板を、その主面と偏光板の端面とが平行になるように偏光板の端面に接触させて切削する装置を使用して端面全体を研削することが出来ないため、エンドミルを用いて偏光板の端面全体を切削加工する。より具体的には、エンドミルの軸方向を偏光板の厚み方向と平行にし、偏光板の端面に沿ってエンドミルと偏光板とを相対移動させることにより、偏光板の端面を切削し、所望の寸法に合わせる。
 ここで、らせん形状の刃を有するエンドミルを用いることが好適であり、特に、刃の断面形状において、図3におけるdZ及びdZ/dXが小さいエンドミルを用いることが好ましい。
 ここで、図3はエンドミルの軸に垂直な断面における刃80の先端の断面図であり、エンドミルの回転方向がCである。この刃80は、刃先80tと、刃先80tよりも後ろ側の面80dとを有する。この面80dは、刃先80tによる切削直後に切削物Tと接触しうる。本実施形態では、刃先80tとエンドミルの回転軸AXを結ぶ直線Qを基準とし、刃先80tを開始点とし、直線Qと直交しかつ刃先80tを通る直線ABに沿って移動しながら、走査型干渉顕微鏡により、直線ABを基準とした面80dの高さのプロファイルを測定する。そして、このプロファイルから面80dの高さの最大値であるdZ[μm]と、dZを与えるAB方向の刃先80tからの距離dX[μm]を求める。
 このときに、dZ≦1.0μmとなり、dZ/dX≦4となる刃先を有するエンドミルを用いることが好適である。これにより、偏光子層30の端面20eにおける表面粗さを上述の範囲としやすい。らせん状の刃を有するエンドミルであっても、dZ>1.0μm又はdZ/dX>4となるエンドミルでは、表面粗さが大きくなりすぎる傾向がある。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。
 例えば、接着剤層20及び40の一方又は両方が無くても実施は可能である。
 以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明する。なお、本発明は下記実施例に限定されるものではない。
[実施例1]
 厚み20μmのポリビニルアルコール系樹脂フィルムを延伸し、ヨウ素で染色することにより、ポリビニルアルコール系樹脂にヨウ素が吸着配向した偏光子(厚み8μm)を作製した。この偏光子の一方の面に、水系接着剤を介して、環状オレフィン系樹脂(COP)フィルム(日本ゼオン株式会社製、厚み13μm)を貼合した。さらに、COPフィルム上に、剥離フィルム上に形成されたアクリル系粘着剤層A(厚み20μm)を積層した。偏光子の他方の面に、剥離フィルム上に形成されたアクリル系粘着剤層B(厚み5μm)を積層した。剥離フィルムを剥離して露出したアクリル系粘着剤層B上に、プロテクトフィルムを上面に有する輝度向上フィルム(3M社製、APF-V3、厚み30μm、反射型偏光子)を貼合した。
 このようにして、剥離フィルム/アクリル系粘着剤層A/COPフィルム/水系接着剤/偏光子/アクリル系粘着剤層B/輝度向上フィルム/プロテクトフィルムからなる偏光板の原反を作製した。
 原反から、トムソン刃により、図2の(b)の形状の凹部PDを有する偏光板100を切り出した。矩形の長辺の長さは140mm、矩形の短辺の長さは70mm、凹みの深さは5mm、凹みの幅は30mm、面取り曲線部PRの曲率半径は概ね10~12mm、面取り曲線部PDRの曲率半径は概ね3mmとした。なお、この偏光板100は、1つの凹部PDを有する。この凹部PDは、略矩形である。この凹部PDは、隣同士で直交する3つの直線部PDLを有する。直線部PDL間にはそれぞれ面取り曲線部PDRを有する。
直線部PDLと直線部PLとの間にはそれぞれ面取り曲線部PDRを有する。この偏光板100の吸収軸31は、凹部PDの深さ方向に直交しており、図2の(b)において左右方向であった。
 dZが平均で0.6μm、dZ/dXが平均で2.2のらせん径形状の刃を有するエンドミルを用いて、端面の全周を研磨して寸法を調整し、実施例1の偏光板を得た。
 (比較例1)
 dZが平均で1.4μm、dZ/dXが平均で14のらせん径形状の刃を有するエンドミルを用いて端面を研磨する以外は、実施例1と同様にして比較例1の偏光板を得た。
 (比較例2)
 エンドミルで端面を研磨せず、トムソン刃で切り出したままとした以外は、比較例1と同様として、比較例2の偏光板を得た。
 (3次元表面における粗さSa、Sq、Szの測定)
 偏光子層の端面の高さ関数Z(x,y)を、以下の顕微鏡により取得した。
 走査型白色干渉顕微鏡 VS1000シリーズ 株式会社日立ハイテクサイエンス
 測定条件:対物レンズ:50×
 2次元測定領域:偏光板の偏光子層(PVA層)の端面の直線部(吸収軸と直交する面)における、縦(厚み方向)5~8μm×横(厚み方向に垂直な方向)150~300μm
 得られた関数Zに基づいて、上記の式に基づいて、Sa、SqおよびSzをそれぞれ求めた。Sa、SqおよびSzを測定した端面は、図2の(b)における左右の直線部PL上に位置し、吸収軸31に対して直交していた。なお、各偏光板100におけるSa、SqおよびSzは、全周に亘って同様の値を示す。
 (ヨウ素抜けの評価)
 実施例又は比較例で得た偏光板を、65℃及び相対湿度90%の環境に500時間放置した。
 その後、2枚の偏光板(一方は実施例又は比較例の偏光板、他方は市販の通常の偏光板)をクロスニコルに配置し、光学顕微鏡を用いて全周に亘って端部を観察し、クロスニコルに対応する減光が起こらない領域(光抜け)の端部からの幅を測定した。この光抜けは、偏光性能を発現する役割を担うヨウ素が抜けたことによっておこる。なお、光抜けは、図2における凹部PDの近傍で発生しており、その最大の幅をヨウ素抜けとして求めた。
 (輝度向上フィルムの剥離量の評価)
 反射型顕微鏡により評価した。
 条件及び結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 実施例では、ヨウ素抜け量を低減しつつ輝度向上フィルムの剥離量も低減することができた。
 本発明に係る偏光板は、例えば、液晶セル又は有機EL素子等に貼着され、液晶テレビ、有機ELテレビ又はスマートフォン等の画像表示装置を構成する光学部品として適用される。
 10…第一光学樹脂フィルム、30…偏光子層、50…第二光学樹脂フィルム、P…外周縁、PP…凸部、PD…凹部、PR、PDR、PPR…面取り曲線部、100…偏光板。

Claims (4)

  1.  偏光子層と、前記偏光子層の一方の表面に設けられた第一光学樹脂フィルムと、前記偏光子層の他方の表面に設けられた第二光学樹脂フィルムと、を備える偏光板であって、
     前記偏光板を厚み方向から見て、前記偏光板の外周縁の形状は、凹部、凸部、及び曲線部のうちの少なくとも一つを有し、
     前記偏光子層の端面の算術平均高さSaが0.3~0.7μmである、偏光板。
  2.  偏光子層と、前記偏光子層の一方の表面に設けられた第一光学樹脂フィルムと、前記偏光子層の他方の表面に設けられた第二光学樹脂フィルムと、を備える偏光板であって、
     前記偏光板を厚み方向から見て、前記偏光板の外周縁の形状は、凹部、凸部、及び曲線部のうちの少なくとも一つを有し、
    前記偏光子層の端面の2乗平均平方根高さSqが0.4~0.8μmである偏光板。
  3.  前記偏光子層の端面の算術平均高さSaが0.3~0.7μmである請求項2に記載の偏光板。
  4. 前記偏光子層の端面の最大高さSzが5.0μm以下である、請求項1~請求項3のいずれか一項に記載の偏光板。
PCT/JP2020/005103 2019-03-14 2020-02-10 偏光板 WO2020184030A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080020361.6A CN113574426B (zh) 2019-03-14 2020-02-10 偏振板
KR1020217022112A KR20210138567A (ko) 2019-03-14 2020-02-10 편광판

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-046826 2019-03-14
JP2019046826 2019-03-14
JP2019083239 2019-04-24
JP2019-083239 2019-04-24

Publications (1)

Publication Number Publication Date
WO2020184030A1 true WO2020184030A1 (ja) 2020-09-17

Family

ID=72426399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005103 WO2020184030A1 (ja) 2019-03-14 2020-02-10 偏光板

Country Status (5)

Country Link
JP (2) JP2020181184A (ja)
KR (1) KR20210138567A (ja)
CN (1) CN113574426B (ja)
TW (1) TWI842838B (ja)
WO (1) WO2020184030A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022201708A1 (ja) * 2021-03-25 2022-09-29 日東電工株式会社 偏光板の製造方法および偏光板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223021A (ja) * 2006-01-27 2007-09-06 Nitto Denko Corp シート状部材の切削加工方法と製造方法、シート状部材、光学素子及び画像表示装置
JP2009037228A (ja) * 2007-07-06 2009-02-19 Nitto Denko Corp 偏光板
WO2017047510A1 (ja) * 2015-09-16 2017-03-23 シャープ株式会社 異形状偏光板の製造方法
JP2018063401A (ja) * 2016-10-14 2018-04-19 住友化学株式会社 偏光子、偏光板及び画像表示装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026817A (ja) * 1998-07-14 2000-01-25 Teijin Ltd 表面保護フィルム
CN100472251C (zh) * 2004-05-11 2009-03-25 日东电工株式会社 偏振镜保护薄膜、偏振片及图像显示装置
JP5525764B2 (ja) * 2009-06-15 2014-06-18 日東電工株式会社 離型フィルム、該離型フィルムを用いた偏光板用保護フィルム、および該偏光板用保護フィルムを用いた偏光板
JP2011020192A (ja) * 2009-07-14 2011-02-03 Sumitomo Electric Hardmetal Corp ねじれ刃ラジアスエンドミル
JP6172980B2 (ja) * 2012-03-14 2017-08-02 日東電工株式会社 液晶表示パネルの製造方法
JP6656799B2 (ja) * 2013-11-29 2020-03-04 王子ホールディングス株式会社 アンチニュートンリング積層体およびそのアンチニュートンリング積層体を用いた静電容量式タッチパネル
JP5979123B2 (ja) * 2013-12-05 2016-08-24 住友化学株式会社 気泡欠陥の少ない偏光子
JP6348291B2 (ja) * 2014-02-04 2018-06-27 住友化学株式会社 偏光板及び表示装置
JP5886338B2 (ja) * 2014-02-21 2016-03-16 住友化学株式会社 偏光板、光学部材セット及びタッチ入力式画像表示装置
JP6258911B2 (ja) * 2014-12-22 2018-01-10 住友化学株式会社 プロテクトフィルム付偏光板及びそれを含む積層体
JP5976969B1 (ja) * 2015-06-19 2016-08-24 住友化学株式会社 プロテクトフィルム付偏光板の製造方法
JP2017181597A (ja) * 2016-03-28 2017-10-05 住友化学株式会社 光学フィルムおよび偏光板
JP6684630B2 (ja) * 2016-03-31 2020-04-22 住友化学株式会社 偏光板、偏光板の製造方法
JP6495374B2 (ja) 2016-05-30 2019-04-03 住友化学株式会社 画像表示装置用の偏光板、画像表示装置及び画像表示装置用の偏光板の製造方法
JP2018012182A (ja) * 2016-07-22 2018-01-25 日東電工株式会社 偏光板の製造方法およびその製造装置
JP6899721B2 (ja) * 2016-07-22 2021-07-07 日東電工株式会社 偏光板の製造方法およびその製造装置
JP2018031954A (ja) * 2016-08-26 2018-03-01 日東電工株式会社 偏光板およびその製造方法、ならびに該偏光板を用いた画像表示装置
JP6306675B1 (ja) * 2016-11-28 2018-04-04 住友化学株式会社 プロテクトフィルム付偏光性積層フィルムの製造方法及び偏光板の製造方法
KR102510750B1 (ko) * 2017-04-04 2023-03-15 스미또모 가가꾸 가부시키가이샤 프로텍트 필름 부착 편광판 및 액정 패널
JP6634417B2 (ja) * 2017-07-20 2020-01-22 住友化学株式会社 偏光板の製造方法
JP6612294B2 (ja) * 2017-07-20 2019-11-27 住友化学株式会社 切削装置及び偏光板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223021A (ja) * 2006-01-27 2007-09-06 Nitto Denko Corp シート状部材の切削加工方法と製造方法、シート状部材、光学素子及び画像表示装置
JP2009037228A (ja) * 2007-07-06 2009-02-19 Nitto Denko Corp 偏光板
WO2017047510A1 (ja) * 2015-09-16 2017-03-23 シャープ株式会社 異形状偏光板の製造方法
JP2018063401A (ja) * 2016-10-14 2018-04-19 住友化学株式会社 偏光子、偏光板及び画像表示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022201708A1 (ja) * 2021-03-25 2022-09-29 日東電工株式会社 偏光板の製造方法および偏光板
JP2022149242A (ja) * 2021-03-25 2022-10-06 日東電工株式会社 偏光板の製造方法および偏光板
JP7203879B2 (ja) 2021-03-25 2023-01-13 日東電工株式会社 偏光板の製造方法および偏光板

Also Published As

Publication number Publication date
CN113574426B (zh) 2024-03-15
JP2020181184A (ja) 2020-11-05
JP7284141B2 (ja) 2023-05-30
CN113574426A (zh) 2021-10-29
TWI842838B (zh) 2024-05-21
KR20210138567A (ko) 2021-11-19
JP2021047453A (ja) 2021-03-25
TW202041897A (zh) 2020-11-16

Similar Documents

Publication Publication Date Title
JP6899721B2 (ja) 偏光板の製造方法およびその製造装置
WO2018016520A1 (ja) 偏光板の製造方法およびその製造装置
JP6201025B1 (ja) 偏光子、偏光板及び画像表示装置
JP2007223021A (ja) シート状部材の切削加工方法と製造方法、シート状部材、光学素子及び画像表示装置
KR101810367B1 (ko) 편광판 및 액정 표시 장치
JP6172302B2 (ja) 偏光板、液晶パネル及び液晶表示装置
US20190310406A1 (en) Method of producing polarizing plate
KR20170003422A (ko) 편광판, 액정 패널 및 액정 표시 장치
TW201805663A (zh) 偏光板及液晶顯示裝置
WO2020184030A1 (ja) 偏光板
JP2012048181A (ja) 偏光板およびそれを用いた液晶表示装置
JP7221256B2 (ja) 偏光板、位相差層付偏光板、ならびに、該偏光板または該位相差層付偏光板を含む画像表示装置
JP6755223B2 (ja) 偏光子、偏光板及び画像表示装置
JP2003043262A (ja) 積層光学フィルムの製造方法
JP7203879B2 (ja) 偏光板の製造方法および偏光板
KR102256908B1 (ko) 편광판 매엽체의 제조 방법
JP7018272B2 (ja) 偏光板、及び液晶表示装置
KR20230118957A (ko) 편광판 세트 및 액정 패널
KR20210037527A (ko) 광학 적층체 및 화상 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20771062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20771062

Country of ref document: EP

Kind code of ref document: A1