WO2020179637A1 - セラミック構造体および該セラミック構造体を備えてなる支持機構 - Google Patents

セラミック構造体および該セラミック構造体を備えてなる支持機構 Download PDF

Info

Publication number
WO2020179637A1
WO2020179637A1 PCT/JP2020/008128 JP2020008128W WO2020179637A1 WO 2020179637 A1 WO2020179637 A1 WO 2020179637A1 JP 2020008128 W JP2020008128 W JP 2020008128W WO 2020179637 A1 WO2020179637 A1 WO 2020179637A1
Authority
WO
WIPO (PCT)
Prior art keywords
support mechanism
ceramic structure
contact
particles
closed pores
Prior art date
Application number
PCT/JP2020/008128
Other languages
English (en)
French (fr)
Inventor
幸雄 野口
宏司 寺本
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2021504031A priority Critical patent/JP7204879B2/ja
Priority to US17/434,701 priority patent/US20220234957A1/en
Publication of WO2020179637A1 publication Critical patent/WO2020179637A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0061Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity closed porosity
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00405Materials with a gradually increasing or decreasing concentration of ingredients or property from one layer to another
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/58Forming a gradient in composition or in properties across the laminate or the joined articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/62Forming laminates or joined articles comprising holes, channels or other types of openings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/76Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/86Joining of two substrates at their largest surfaces, one surface being complete joined and covered, the other surface not, e.g. a small plate joined at it's largest surface on top of a larger plate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof

Definitions

  • the present disclosure relates to a ceramic structure and a support mechanism including the ceramic structure.
  • a shower plate made of ceramics is used to supply the gas introduced into the semiconductor manufacturing equipment toward the semiconductor substrate. If the outer peripheral side of the shower plate is directly fixed to the supporting member made of metal, the manufacturing process becomes complicated and the cost tends to increase. Further, there is a problem that the shower plate is easily damaged by thermal stress due to the difference in linear expansion coefficient between the shower plate and the support member.
  • Patent Document 1 proposes a shower head in which a shower plate made of ceramics and a support member made of metal are mechanically fixed by a plurality of springs. It is described that the material of the spring is a metal such as nickel alloy, aluminum alloy, and stainless.
  • Patent Document 2 proposes a component assembly in which a gas distribution plate (shower plate) and a supporting member are bonded with an elastomer sheet adhesive in order to reduce thermal stress.
  • the ceramic structure of the present disclosure includes a first member made of a single crystal of sapphire or yttrium aluminum composite oxide, and a second member made of ceramics containing aluminum oxide as a main component that abuts on the first member.
  • the contact particles of the second member that come into contact with the first member have a first curved surface portion that is convex toward the first member.
  • the support mechanism of the present disclosure includes the above-mentioned ceramic structure, the first member is a disk-shaped member provided with a plurality of through holes in the thickness direction, and the second member is the first member.
  • An annular support member that supports the outer peripheral portion, the first member has a first surface and a second surface facing each other in the thickness direction, and the second member is at least one of the first surface and the second surface. It is in contact with the crab.
  • FIG. 1 is a perspective view which shows an example of the ceramic structure of this indication
  • FIG. 2 is sectional drawing in the A-A' line of (a). It is an electron micrograph which shows a part of cross section of the part which the 1st member and the 2nd member contact
  • A) is a perspective view showing an example of a support mechanism provided with a ceramic structure of this indication
  • (b) is a sectional view in the B-B' line of (a).
  • A) is a perspective view showing another example of a support mechanism provided with a ceramic structure of this indication
  • (b) is a sectional view in the line C-C' of (a).
  • (A) is a perspective view showing another example of a support mechanism provided with a ceramic structure of the present disclosure, and (b) is a sectional view taken along the line D-D' of (a).
  • (A) is a perspective view showing another example of the support mechanism including the ceramic structure of the present disclosure, (b) is a cross-sectional view taken along the line EE′ of (a), (c) of (b). It is sectional drawing which expanded the F section.
  • (A) is a perspective view showing another example of the support mechanism including the ceramic structure of the present disclosure, (b) is a cross-sectional view taken along the line GG' of (a), (c) is of (b). It is sectional drawing which enlarged the M part.
  • FIG. 1A and 1B show an example of a ceramic structure of the present disclosure
  • FIG. 1A is a perspective view
  • FIG. 1B is a sectional view taken along the line AA′.
  • the ceramic structure 21 shown in FIG. 1 is a first member 1 made of a single crystal of sapphire or yttrium aluminum composite oxide, and a ceramic whose main component is aluminum oxide or yttrium aluminum composite that abuts on the first member 1. It is provided with two members 2.
  • the first member 1 has a substrate shape
  • the second member 2 has a substrate shape or a ring shape (in the example shown in FIG. 1, a ring shape is shown).
  • the ceramic structure 21 can be used as a semiconductor manufacturing member.
  • the main component in the present disclosure refers to the largest component of the total 100 mass% of all the constituents of the ceramics, and is particularly preferably 70 mass% or more, and further 90 mass% or more.
  • Each component may be identified by an X-ray diffractometer using CuK ⁇ rays, and the content of each component may be determined by, for example, an ICP (Inductively Coupled Plasma) emission spectroscopic analyzer or a fluorescent X-ray analyzer.
  • ICP Inductively Coupled Plasma
  • the first member 1 may contain unavoidable impurities, for example, Si, Na, Mg, Cu, Fe, and Ca each in an amount of 10 mass ppm or less, and the total content of the unavoidable impurities is the unavoidable impurity content of the second member. It should be less than the total amount.
  • unavoidable impurities for example, Si, Na, Mg, Cu, Fe, and Ca each in an amount of 10 mass ppm or less, and the total content of the unavoidable impurities is the unavoidable impurity content of the second member. It should be less than the total amount.
  • the second member 2 contains aluminum oxide as a main component, it is made of, for example, ceramics containing magnesium, silicon, and calcium as oxides.
  • magnesium is 0.2 mass% to 0.4 mass% in terms of oxide (MgO)
  • silicon is 0.03 mass% to 0.05 mass in terms of oxide (SiO 2 ).
  • % Calcium is 0.01% by mass to 0.03% by mass in terms of oxide (CaO).
  • the second member 2 is made of a ceramic having a crystal of ⁇ -Al 2 O 3 and a crystal of a yttrium-aluminum composite oxide, and Al is 70% by mass or more and 98% by mass or less in terms of Al 2 O 3 .
  • Y may be contained in an amount of 2% by mass or more and 30% by mass or less in terms of Y 2 O 3 .
  • the second member contains yttrium aluminum composite oxide as a main component, the total content of unavoidable impurities such as Si, Ca, Cr, Ni, K, Mg and Fe may be 3000 mass ppm.
  • the yttrium-aluminum composite oxide is, for example, at least one of YAG, YAP, and YAM.
  • FIG. 2 is a part of a cross section of a portion where the first member 1 and the second member 2 are in contact with each other in the ceramic structure shown in FIG. 1 (hereinafter, this contacting portion is simply referred to as a contact portion). It is an electron micrograph showing. The electron micrograph shown in FIG. 2 shows a cross section inclined with respect to the contact surface so that the grain boundaries of the crystal grains 2x forming the second member 2 can be easily seen.
  • the contact particles 2x 1 of the second member includes a first convex toward the first member 1 It has one curved surface portion 2y.
  • the contact particles 2x 1 anchor effect of the second member 2 is increased relative to the first member 1, the metal and organic component is interposed between the first member 1 and second member 2 Since it becomes difficult, it is possible to reduce the possibility that these will be generated as particles or gas. Moreover, the airtightness at the contact portion is improved.
  • At least a part of the contact particles 2x 1 may have a concave second curved surface portion 2z in the convex first curved surface portion 2y.
  • the anchor effect is further enhanced, and thus the risk of metal or organic components being generated as particles or gas can be further reduced.
  • Contacting particles 2x 1 in the ceramic structure 21 has an average crystal grain size may be 5 ⁇ m or 10 ⁇ m or less.
  • the average crystal grain size is 5 ⁇ m or more, the grain boundary phase connecting the crystal grains does not extremely decrease, so that even if the grain boundary phase is slightly corroded, the crystal grains are difficult to shed. Moreover, the plastic deformation at high temperature becomes small.
  • the average crystal grain size is 10 ⁇ m or less, fracture toughness, rigidity and mechanical strength can be increased.
  • Crystal grain size of the contact particles 2x 1 is able to use the intercept method, measured. Specifically, first, the mirror surface polished cross section of a portion including an abutment particles 2x 1 of the ceramic structure. Then, using a scanning electron microscope, the magnification is set to 3000 times, and of the mirror surfaces obtained by polishing, for example, an observation range in which the horizontal length is 45 ⁇ m and the vertical length is 34 ⁇ m is set, For example, the average crystal grain size can be obtained by counting the number of particles intersecting a straight line having a length of 20 ⁇ m and dividing the length of the straight line by the number of particles.
  • Height difference H between the plurality of crest portions and valley portions of the abutting grains 2x 1 may be of 15 ⁇ m or less. When the height difference H is in this range, stress is less likely to remain even if heating and cooling are repeated, so that stress concentration near the contact portion can be reduced.
  • the height difference H may be measured in the above observation range. In the electron micrograph shown in FIG. 2, the height difference H is 4.8 ⁇ m.
  • FIG. 3A and 3B show an example of a support mechanism including the ceramic structure of the present disclosure
  • FIG. 3A is a perspective view
  • FIG. 3B is a sectional view taken along line B-B′.
  • the first member 1 is a disk-shaped member having a plurality of through holes 3 in the thickness direction
  • the second member 2 is an annular member that supports the outer peripheral portion of the first member 1. It is a support member.
  • the second member 2 is in contact with at least one of the first surface 4 and the second surface 5 that face each other in the thickness direction of the first member 1 (in the example shown in FIG. 3, the second surface 5 is in contact).
  • the first member 1 is, for example, a shower plate through which the gas for plasma generation passes through the through holes 3, and is used as a thin film forming apparatus (for example, a CVD apparatus) or an etching apparatus (for example, plasma etching) used in a semiconductor device manufacturing process. Used in the device).
  • the first member 1 shown in FIGS. 1 and 3 has an outer diameter of 250 mm to 400 mm and a thickness of 3 mm to 10 mm
  • the second member 2 has an outer diameter of 300 mm to 450 mm and a thickness of 3 mm to 10 mm.
  • the plasma generating gas is, for example, a fluorine-based gas such as SF 6 , CF 4 , CHF 3 , ClF 3 , NF 3 , C 4 F 8 or HF, or a chlorine-based gas such as Cl 2 , HCl, BCl 3 or CCl 4. Is.
  • a fluorine-based gas such as SF 6 , CF 4 , CHF 3 , ClF 3 , NF 3 , C 4 F 8 or HF
  • a chlorine-based gas such as Cl 2 , HCl, BCl 3 or CCl 4.
  • FIG. 4A and 4B show another example of a support mechanism including the ceramic structure of the present disclosure
  • FIG. 4A is a perspective view
  • FIG. 4B is a cross-sectional view taken along the line C-C′.
  • the second member 2 is sandwiched from both sides of the first surface 4 and the second surface 5 of the first member 1.
  • the first member 1 is fixed to the second member 2 in a highly reliable state, and thus the first member 1 is not affected by disturbance such as vibration. It is hard to come off from.
  • FIG. 5A and 5B show another example of the support mechanism including the ceramic structure of the present disclosure
  • FIG. 5A is a perspective view
  • FIG. 5B is a cross-sectional view taken along the line D-D′.
  • the support mechanism 24 shown in FIG. 5 has an annular space 6 between the first member 1 and the second member 2 that is shielded from the outside.
  • FIG. 6A and 6B show another example of a support mechanism including the ceramic structure of the present disclosure.
  • FIG. 6A is a perspective view
  • FIG. 6B is a sectional view taken along line EE′
  • FIG. It is a cross-sectional view which enlarged the F part of.
  • the support mechanism 25 shown in FIG. 6 includes a second space facing the third surface 8 and the second surface 5 of the second member 2 that contacts the first surface 4 from the outer peripheral surface 7 of the first member 1 in the annular space 6.
  • the first covering portion 9 is provided over at least one of the fourth surfaces of the member 2 (the third surface 8 in the example shown in FIG. 6).
  • FIG. 7A and 7B show another example of a support mechanism including the ceramic structure of the present disclosure.
  • FIG. 7A is a perspective view
  • FIG. 7B is a sectional view taken along line GG′
  • FIG. It is an enlarged cross-sectional view of M part of.
  • the support mechanism 26 shown in FIG. 7 is a frame body in which the second member 2 is located around the substrate 2b in contact with the second surface 5 and the first member 1 and has a recess for housing the first member 1. 2a, and has a second coating portion 12 on the main surface 11 located on the frame 2a side of the substrate 2b from the inner peripheral surface 10 of the frame 2a.
  • the second covering portion 12 makes it difficult for metals and organic components to enter between the substrate 2b and the frame body 2a by the second covering portion 12, so that these can be prevented. It is possible to further reduce the possibility of generating particles or gas.
  • the first member 1 shown in FIGS. 5 to 7 has an outer diameter of 250 mm to 400 mm and a thickness of 3 mm to 10 mm
  • the second member 2 has an outer diameter of 300 mm to 450 mm and a thickness of the thickness of the first member 1. Is also 3 to 6 mm thick.
  • the average diameter of the closed pores of at least one of the first coating portion 9 and the second coating portion 12 is 0.8 times or more the average diameter of the closed pores of the support member 2 (2a, 2b) 1.5 or more. It may be double or less.
  • the average diameter of at least one of the closed pores of the first covering portion 9 and the second covering portion 12 is in this range, the closed pores that are the source of destruction are small, so that the average diameter is in this range. It is possible to suppress the destruction of the support mechanism starting from the closed pores in at least one of the covering portion 9 and the second covering portion 12.
  • the average diameter of the closed pores of at least one of the first coating portion 9 and the second coating portion 12 may be smaller than that of the closed pores of the second member 2 (2a, 2b).
  • the average diameter of at least one of the closed pores of the first covering portion 9 and the second covering portion 12 is in this range, the closed pores that are the source of destruction are smaller, so that the average diameter is in this range.
  • the effect of suppressing the destruction of the support mechanism originating from the closed pores in at least one of the first covering portion 9 and the second covering portion 12 is further enhanced.
  • the maximum height H1 of the first covering portion 9 from the outer peripheral surface 7 toward the outer peripheral direction of the second member 2 is, for example, 400 ⁇ m or more and 650 ⁇ m or less.
  • the maximum height H2 of the second covering portion 12 from the inner peripheral surface 10 toward the center of the first member 1 is, for example, 400 ⁇ m or more and 650 ⁇ m or less.
  • the surface of at least one of the first covering portion 9 and the second covering portion 12 may be curved.
  • stress concentration is less likely to occur as compared with the case where the exposed surface has corners, so that mechanical strength can be maintained.
  • the average diameter of the closed pores of each of these members can be measured by the following method.
  • the cross sections of the second member 2 (2a, 2b), the first coating portion 9 and the second coating portion 12 are mirror-finished, and the cross section of each member is set to 500 times magnification using a scanning electron microscope.
  • an observation range is set in which the length in the horizontal direction is 256 ⁇ m and the length in the vertical direction is 192 ⁇ m.
  • image analysis software A image-kun (Ver2.52)" (registered trademark, manufactured by Asahi Kasei Engineering Co., Ltd., hereinafter simply referred to as image analysis software) is used. It can be applied to determine the average diameter of closed pores.
  • the average diameter of the closed pores is the average value of equivalent circle diameters.
  • the lightness of the particles which is the setting condition of the particle analysis, is dark
  • the binarization method is manual
  • the threshold value is 70 to 100
  • the small figure removal area is 0.3 ⁇ m 2
  • the noise removal filter is provided.
  • the threshold value was set to 70 to 100, but the threshold value may be adjusted according to the brightness of the image in the observation range.
  • the threshold value may be adjusted so that the marker appearing in the image matches the shape of the closed pores, after setting the small figure removal area to 0.3 ⁇ m 2 and having a noise removal filter.
  • magnesium hydroxide is converted into oxide (MgO) in an amount of 0.3% by mass
  • silicon oxide is 0.04% by mass
  • calcium carbonate is an oxide.
  • a mixed powder which was weighed so as to be a powder composed of 0.02% by mass (CaO) and the balance being aluminum oxide, was put into a rotary mill together with a solvent such as pure water to have a purity of 99.5% by mass or more. Mixing is performed with a ceramic ball made of aluminum oxide of 99.99 mass% or less.
  • the purity is 95% or more and the BET specific surface area calculated by the BET method is 1 to 9 m. 2 /g, ⁇ -Al 2 O 3 powder having a particle size of 0.1 ⁇ m to 1.2 ⁇ m, a purity of 95% by mass or more, preferably 99.5% by mass or more, a particle size of 5 ⁇ m or less, and a BET specific surface area. 2 to 9 m 2 / g of Y 2 O 3 powder is used.
  • the mixed powders which are weighed so that the ⁇ -Al 2 O 3 powder is 70% by mass to 98% by mass and the Y 2 O 3 powder is 2% by mass to 30% by mass, are mixed by the same method as described above.
  • the total amount of the molding binder added is 2 parts by mass or more and 10 parts by mass or less based on 100 parts by mass of the mixed powder.
  • the powder made of YAG having a purity of 99.9% by mass or more may be replaced with the mixed powder to prepare a slurry.
  • the slurry is spray-dried using a spray dryer to obtain granulated granules.
  • the granules are molded by the CIP method at a pressure of 80 MPa or more and 100 MPa, for example, and the annular precursor is obtained by cutting.
  • the cellulosic polysaccharide is, for example, at least one of methylcellulose, ethylcellulose, ethylmethylcellulose, hydroxymethylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, carboxymethylcellulose, carboxymethylethylcellulose and carboxyethylcellulose.
  • the upper surface of the precursor and the lower surface of the first member are made to face each other so that the precursor and the first member face each other. Is pressurized at, for example, a pressure of 10 kPa or more and 40 kPa or less.
  • the thickness of the paste after application is, for example, 0.1 mm or more and 2 mm or less.
  • the average particle size of the powder after mixing should be, for example, 1.5 ⁇ m or more and 5 ⁇ m or more. Just do it.
  • the height difference of the paste thickness after coating should be, for example, 20 ⁇ m or less. Just do it.
  • the paste is dried by keeping it at room temperature for 12 hours to 48 hours while adjusting the humidity.
  • the ceramic structure 21 shown in FIG. 1 can be obtained by holding and firing at a temperature of 1500° C. or more and 1700° C. or less for 5 hours or more and 8 hours or less in the air atmosphere.
  • a ceramic structure having a concave second curved surface portion in at least a part of abutting particles in a convex first curved surface portion at a temperature of 1600° C. or higher and 1700° C. or lower, 5 hours or longer and 8 hours or longer. The following may be held and fired.
  • the support mechanism 22 shown in FIG. 3 can be obtained.
  • the paste is dried and fired by the above-described method, and as shown in FIG.
  • the support mechanism 23 can be obtained.
  • a concave portion which becomes an annular space portion after firing is provided in the precursor in advance, and in order to obtain the first coating portion shown in FIG.
  • the precursor and the first member may be pressurized at 20 kPa or more and 40 kPa or less.
  • the paste that has exuded to the outside from between the precursor and the first member becomes the first coating portion after firing.
  • a first precursor that becomes a substrate and a second precursor that becomes a frame after firing are prepared in advance, and the lower surface of the second precursor and the first member are prepared. It suffices to apply the paste to the lower surface and the upper surface of and to pressurize the first precursor, the second precursor and the first member at a pressure of, for example, 20 kPa or more and 40 kPa or less. The paste exuded to the outside from between the first precursor and the second precursor becomes the second coating portion after firing.
  • the rotation speed of the stirring device Is 1200 rpm or more and 1600 rpm or less and the rotation time is 5 minutes or more and 15 minutes or less.
  • the same method as that described above may be used. Good.
  • the rotation speed is increased to 1400 rpm or more and 1600 rpm or less, and the rotation time is 5 It may be more than 15 minutes and less than 15 minutes.
  • the same method as described above may be used to obtain a support mechanism in which the average diameter of the closed pores of the second covering portion is smaller than the average diameter of the closed pores of the second member.
  • first member 2 second member 2a frame 2b: substrate 2x: crystal grains 2x 1: abutment particles 2y: first curved portion 2z: second curved portion 3: through-hole 4: first surface 5: second Surface 6: Annular space portion 7: Outer peripheral surface 8: Third surface 9: First covering portion 10: Inner peripheral surface 11: Main surface 12: Second covering portion 21: Ceramic structure 22 to 26: Support mechanism

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Drying Of Semiconductors (AREA)
  • Ceramic Products (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

本開示のセラミック構造体は、サファイアまたはイットリウムアルミニウム複合酸化物の単結晶からなる第1部材と、該第1部材に当接する酸化アルミニウムまたはイットリウムアルミニウム複合酸化物を主成分とするセラミックスからなる第2部材とを備えてなり、第2部材を構成する結晶粒子のうち、第1部材に当接する、第2部材の当接粒子は、第1部材に向かって凸状の第1曲面部を有する。

Description

セラミック構造体および該セラミック構造体を備えてなる支持機構
 本開示は、セラミック構造体および該セラミック構造体を備えてなる支持機構に関する。
 半導体製造装置内に導入するしたガスを半導体基板に向って供給するためにセラミックスからなるシャワープレートが用いられている。シャワープレートの外周側を金属からなる支持部材に直接固定すると、製造工程が煩雑でコストが高くなりやすい。さらに、シャワープレートと支持部材の線膨張係数の違いから、熱応力によってシャワープレートが破損しやすいという問題があった。
 このような問題を解消するために、特許文献1では、セラミックスからなるシャワープレートと金属からなる支持部材とを機械的に複数のばねで固定したシャワーヘッドが提案されている。ばねの材質は、ニッケル合金、アルミニウム合金、ステンレス等の金属であることが記載されている。
 また、特許文献2では、熱応力を緩和するために、ガス分配板(シャワープレート)と支持部材とをエラストマーシート状接着剤で結合したコンポーネント・アセンブリが提案されている。
特開2008-290417号公報 特表2011-508419号公報
 本開示のセラミック構造体は、サファイアまたはイットリウムアルミニウム複合酸化物の単結晶からなる第1部材と、該第1部材に当接する酸化アルミニウムを主成分とするセラミックスからなる第2部材とを備えてなり、第2部材を構成する結晶粒子のうち、第1部材に当接する、第2部材の当接粒子は、第1部材に向かって凸状の第1曲面部を有する。
 本開示の支持機構は、上記のセラミック構造体を備えてなり、第1部材は、厚み方向に複数の貫通孔を備えてなる円板状部材であり、第2部材は、前記第1部材の外周部を支持する環状の支持部材であり、第1部材は厚み方向に対向する第1面および第2面を有しており、第2部材は、前記第1面および第2面の少なくともいずれかに当接している。
(a)は本開示のセラミック構造体の一例を示す斜視図であり、(b)は(a)のA-A’線における断面図である。 図1に示すセラミック構造体における第1部材と第2部材とが当接している部分の断面の一部を示す電子顕微鏡写真である。 (a)は本開示のセラミック構造体を備えてなる支持機構の一例を示す斜視図であり、(b)は(a)のB-B’線における断面図である。 (a)は本開示のセラミック構造体を備えてなる支持機構の他の例を示す斜視図であり、(b)は(a)のC-C’線における断面図である。 (a)は本開示のセラミック構造体を備えてなる支持機構の他の例を示す斜視図であり、(b)は(a)のD-D’線における断面図である。 (a)は本開示のセラミック構造体を備えてなる支持機構の他の例を示す斜視図、(b)は(a)のE-E’線における断面図、(c)は(b)のF部を拡大した断面図である。 (a)は本開示のセラミック構造体を備えてなる支持機構の他の例を示す斜視図、(b)は(a)のG-G’線における断面図、(c)は(b)のM部を拡大した断面図である。
 以下、図面を参照して、本開示の実施形態について詳細に説明する。ただし、本明細書の全図において、混同を生じない限り、同一部分には同一符号を付し、その説明を適時省略する。
 図1は、本開示のセラミック構造体の一例を示す、(a)は斜視図であり、(b)はAA’線における断面図である。
 図1に示すセラミック構造体21は、サファイアまたはイットリウムアルミニウム複合酸化物の単結晶からなる第1部材1と、第1部材1に当接する酸化アルミニウムまたはイットリウムアルミニウム複合を主成分とするセラミックスからなる第2部材2とを備えている。例えば、第1部材1は、基板状であり、第2部材2は、基板状あるいは環状(図1に示す例では、環状を示している。)である。セラミック構造体21は、半導体製造用部材として用いることができる。
 ここで、本開示における主成分とは、セラミックスを構成する全成分の合計100質量%のうち、最も多い成分をいい、特に、70質量%以上、さらに90質量%以上であるとよい。各成分の同定はCuKα線を用いたX線回折装置で行い、各成分の含有量は、例えばICP(Inductively Coupled Plasma)発光分光分析装置または蛍光X線分析装置により求めればよい。
 第1部材1は、不可避不純物、例えば、Si、Na、Mg、Cu、Fe、Caをそれぞれ10質量ppm以下含んでいてもよく、不可避不純物の含有量の合計は第2部材の不可避不純物の含有量の合計よりも少ないとよい。
 第2部材2が、酸化アルミニウムを主成分とする場合、例えば、マグネシウム、珪素、およびカルシウムをそれぞれ酸化物として含むセラミックスからなる。この場合、例えば、マグネシウムは酸化物(MgO)に換算して0.2質量%~0.4質量%、珪素は酸化物(SiO)に換算して0.03質量%~0.05質量%、カルシウムは酸化物(CaO)に換算して0.01質量%~0.03質量%である。
 あるいは、第2部材2は、α-Alの結晶と、イットリウムアルミニウム複合酸化物の結晶、とを有するセラミックスからなり、AlをAl換算で70質量%以上98質量%以下、YをY換算で2質量%以上30質量%以下含んでいてもよい。 第2部材が、イットリウムアルミニウム複合酸化物を主成分とする場合、不可避不純物、例えば、Si、Ca、Cr、Ni、K、MgおよびFeの含有量の合計が3000質量ppmであってもよい。
 イットリウムアルミニウム複合酸化物は、例えば、YAG、YAPおよびYAMの少なくともいずれかである。
 図2は、図1に示すセラミック構造体における第1部材1と第2部材2とが当接している部分(以下、この当接している部分を単に当接部という。)の断面の一部を示す電子顕微鏡写真である。なお、図2に示す電子顕微鏡写真は、第2部材2を構成する結晶粒子2xの粒界が見えやすいように当接面に対して傾斜した断面を示している。
 図2に示すように、第2部材2を構成する結晶粒子2xのうち、第1部材1に当接する、第2部材の当接粒子2xは、第1部材1に向かって凸状の第1曲面部2yを有する。
 このような構成であると、第1部材1に対する第2部材2の当接粒子2xのアンカー効果が高くなり、第1部材1と第2部材2との間に金属や有機成分が介在しにくくなるので、これらがパーティクルやガスとなって発生させるおそれを低減することができる。また、当接部における気密性が向上する。
 当接粒子2xの少なくとも一部は、凸状の第1曲面部2y内に凹状の第2曲面部2zを有していてもよい。
 このような構成であると、アンカー効果がより高くなるので、金属や有機成分がパーティクルやガスとなって発生させるおそれをさらに低減することができる。
 セラミック構造体21における当接粒子2xは、平均結晶粒径が5μm以上10μm以下であってもよい。
 平均結晶粒径が5μm以上であると、結晶粒子同士を結合している粒界相が極端に少なくならないので、粒界相がわずかに腐食しても結晶粒子が脱粒しにくくなる。また、高温における塑性変形が小さくなる。一方、平均結晶粒径が10μm以下であると、破壊靱性、剛性および機械的強度を高くすることができる。
 当接粒子2xの結晶粒径は、インターセプト法を用いて、測定することができる。具体的には、まず、セラミック構造体の当接粒子2xを含む部分の断面を研磨して鏡面とする。そして、走査型電子顕微鏡を用いて倍率を3000倍として、研磨によって得られた鏡面のうち、例えば、横方向の長さを45μm、縦方向の長さを34μmとする観察範囲を設定して、例えば、長さが20μmの直線と交わる粒子の個数を数え、その直線の長さを粒子の個数で除すことで平均結晶粒径を求めることができる。
 複数の当接粒子2xの山頂部と谷底部との高低差Hは15μm以下であってもよい。高低差Hがこの範囲であると、加熱および冷却が繰り返されても、応力が残留しにくくなるので、当接部近傍における応力集中を低減することができる。
 高低差Hは、上記観察範囲を対象として測定すればよい。図2に示す電子顕微鏡写真では、その高低差Hは4.8μmである。
 図3は、本開示のセラミック構造体を備えてなる支持機構の一例を示す、(a)は斜視図であり、(b)はB-B’線における断面図である。
 図3に示す支持機構22は、第1部材1が厚み方向に複数の貫通孔3を備えてなる円板状部材であり、第2部材2が第1部材1の外周部を支持する環状の支持部材である。第2部材2は、第1部材1の厚み方向に対向する第1面4および第2面5の少なくともいずれかに当接している(図3に示す例では第2面5が当接している)。第1部材1は、例えば、プラズマ生成用ガスが貫通孔3を通過するシャワープレートであり、半導体装置の製造工程で使用される薄膜形成装置(例えば、CVD装置)やエッチング装置(例えば、プラズマエッチング装置)で用いられる。
 例えば、図1、3に示す第1部材1は、外径が250mm~400mm、厚みが3mm~10mmであり、第2部材2は、外径が300mm~450mm、厚みが3mm~10mmである。
 プラズマ生成用ガスは、例えば、SF、CF、CHF、ClF、NF、C、HF等のフッ素系ガス、Cl、HCl、BCl、CCl等の塩素系ガスである。
 支持機構22が上述した構成であると、第1部材1と第2部材2との間に金属や有機成分が介在することがないので、これらがパーティクルやガスとなって、半導体製造装置の内部を汚染することがない。また、第1部材1と第2部材2とのそれぞれの線膨張係数がほとんど同じであるため、加熱および冷却を繰り返してもクラックが発生しにくい。
 図4は、本開示のセラミック構造体を備えてなる支持機構の他の例を示す、(a)は斜視図であり、(b)はC-C’線における断面図である。
 図4に示す支持機構23は、第2部材2が第1部材1の第1面4および第2面5の両側から狭持している。
 支持機構23がこのような構成であると、第1部材1は信頼性が高い状態で第2部材2に固定されるので、第1部材1は振動等の外乱を受けても第2部材2から外れにくい。
 図5は、本開示のセラミック構造体を備えてなる支持機構の他の例を示す、(a)は斜視図であり、(b)はD-D’線における断面図である。
 図5に示す支持機構24は、第1部材1と第2部材2との間に外部と遮断された環状空間部6を有する。
 支持機構24がこのような構成であると、加熱および冷却を繰り返して、第1部材1の外周部に生じる応力は、第2部材2で第1部材1の外周面が拘束されないので、残留しにくくなる。
 図6は、本開示のセラミック構造体を備えてなる支持機構の他の例を示す、(a)は斜視図、(b)はE-E’線における断面図、(c)は(b)のF部を拡大した断面図である。
 図6に示す支持機構25は、環状空間部6に、第1部材1の外周面7から第1面4に当接する第2部材2の第3面8および第2面5に対向する第2部材2の第4面の少なくともいずれか(図6に示す例では第3面8)に亘って第1の被覆部9を有する。
 支持機構25がこのような構成であると、第1部材1と第2部材2との間に金属や有機成分が第1の被覆部9によって侵入しにくくなるので、これらがパーティクルやガスとなって発生させるおそれをより低減することができる。また、当接部における気密性がさらに向上する。
 図7は、本開示のセラミック構造体を備えてなる支持機構の他の例を示す、(a)は斜視図、(b)はG-G’線における断面図、(c)は(b)のM部を拡大した断面図である。
 図7に示す支持機構26は、第2部材2が、第2面5に当接した基板2bと、第1部材1の周囲に位置するとともに、第1部材1を収容する凹部を有する枠体2aとを備えてなり、枠体2aの内周面10から基板2bの枠体2a側に位置する主面11に第2の被覆部12を有する。
 支持機構26がこのような構成であると、第2の被覆部12によって、基板2bと枠体2aとの間に金属や有機成分が第2の被覆部12によって侵入しにくくなるので、これらがパーティクルやガスとなって発生させるおそれをより低減することができる。
 図5~7に示す、第1部材1は、外径が250mm~400mm、厚みが3mm~10mmであり、第2部材2は、外径が300mm~450mm、厚みが第1部材1の厚みよりも3~6mm厚い。
 また、第1の被覆部9および第2の被覆部12の少なくともいずれかの閉気孔の平均径は、支持部材2(2a、2b)の閉気孔の平均径の0.8倍以上1.5倍以下であってもよい。
 第1の被覆部9および第2の被覆部12の少なくともいずれかの閉気孔の平均径が、この範囲であると、破壊源となる閉気孔が小さいので、平均径がこの範囲である第1の被覆部9および第2の被覆部12の少なくともいずれかにある閉気孔を起点とする支持機構の破壊を抑制することができる。
 また、第1の被覆部9および第2の被覆部12の少なくともいずれかの閉気孔の平均径は、第2部材2(2a、2b)の閉気孔よりも小さくてもよい。
 第1の被覆部9および第2の被覆部12の少なくともいずれかの閉気孔の平均径が、この範囲であると、破壊源となる閉気孔がより小さいので、平均径がこの範囲である第1の被覆部9および第2の被覆部12の少なくともいずれかにある閉気孔を起点とする支持機構の破壊を抑制する効果がさらに高くなる。
 外周面7から第2部材2の外周方向に向かう第1の被覆部9の最大高さH1は、例えば、400μm以上650μm以下である。
 内周面10から第1部材1の中心方向に向かう第2の被覆部12の最大高さH2は、例えば、400μm以上650μm以下である。
 また、第1の被覆部9および第2の被覆部12の少なくともいずれかの表面を曲面状としてもよい。表面が曲面状であると、露出する表面が角部を有する場合よりも応力集中が生じにくいので、機械的強度を維持することができる。
 これら各部材の閉気孔の平均径は、以下の手法により測定することができる。
 まず、第2部材2(2a、2b)、第1の被覆部9および第2の被覆部12の断面を鏡面加工し、各部材の断面を、走査型電子顕微鏡を用いて倍率を500倍として、例えば、横方向の長さを256μm、縦方向の長さを192μmとする観察範囲を設定する。
 この観察範囲を観察の対象として、画像解析ソフト「A像くん(Ver2.52)」(登録商標、旭化成エンジニアリング(株)製、以下、単に画像解析ソフトと記載する。)の粒子解析という手法を適用して、閉気孔の平均径を求めることができる。なお、閉気孔の平均径は円相当径の平均値である。
 解析に際し、粒子解析の設定条件である粒子の明度を暗、2値化の方法を手動、しきい値を70~100、小図形除去面積を0.3μmおよび雑音除去フィルタを有とする。
 なお、上述の測定に際し、しきい値は70~100としたが、観察範囲である画像の明るさに応じて、しきい値を調整すればよく、粒子の明度を暗、2値化の方法を手動とし、小図形除去面積を0.3μmおよび雑音除去フィルタを有とした上で、画像に現れるマーカーが閉気孔の形状と一致するように、しきい値を調整すればよい。
 次に、本開示のセラミック構造体の製造方法について説明する。
 第2部材を酸化アルミニウムを主成分とするセラミックスで形成する場合、水酸化マグネシウムを酸化物(MgO)に換算して0.3質量%、酸化珪素を0.04質量%、炭酸カルシウムを酸化物(CaO)に換算して0.02質量%、残部が酸化アルミニウムからなる粉末となるように秤量した混合粉末を純水などの溶媒とともに回転ミルに投入して、純度が99.5質量%以上99.99質量%以下の酸化アルミニウムからなるセラミックスボールで混合する。
 第2部材をα-Alの結晶と、イットリウムアルミニウム複合酸化物の結晶、とを有するセラミックスで形成する場合、純度が95%質量以上、BET法により算出したBET比表面積が1~9m/g、粒径が0.1μm~1.2μmのα-Alの粉末と、純度が95質量%以上、好ましくは99.5質量%以上、粒径が5μm以下、BET比表面積が2~9m/gのYの粉末と、を用いる。
 α-Alの粉末を70質量%~98質量%、Yの粉末を2質量%~30質量%となるように秤量した混合粉末を上述した方法と同じ方法で混合する。
 次に、ポリビニルアルコール、ポリエチレングリコールやアクリル樹脂などの成形用バインダを添加した後、混合・撹拌してスラリーを得る。
 ここで、成形用バインダの添加量は混合粉末100質量部に対して合計2質量部以上10質量部以下とする。
 第2部材が、イットリウムアルミニウム複合酸化物を主成分とする場合、例えば、純度99.9質量%以上のYAGからなる粉末を上記混合粉末に代えて、スラリーを作製すればよい。
 次に、噴霧乾燥装置を用いてスラリーを噴霧乾燥させることにより造粒した顆粒を得る。この顆粒を、例えば、圧力を80MPa以上100MPaとしてCIP法により成形して得られる成形体を切削加工によって、環状の前駆体を得る。
 次に、ペーストの製造方法について説明する。
 前駆体の製造方法で説明した混合粉末あるいは純度99.9質量%以上のYAGからなる粉末に対して、純水などの溶媒を、体積比で、混合粉末:溶媒=55~60:40~45となるように加え、この溶媒と混合粉末との合計を100質量部とする。この100質量部に対し、8質量部以上20質量部以下のセルロース系多糖類の少なくともいずれかを加え、これらを撹拌装置内の収納容器に入れ、混合・撹拌して、ペーストを得る。
 ここで、セルロース系多糖類は、例えば、メチルセルロース、エチルセルロース、エチルメチルセルロース、ヒドロキシメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、カルボキシメチルセルロース、カルボキシメチルエチルセルロースおよびカルボキシエチルセルロースの少なくともいずれかである。
 前駆体の上面のうち、サファイアからなる第1部材の下面に当接する部分にペーストを塗布した後、前駆体の上面と第1部材の下面とを向き合った状態にして、前駆体および第1部材を、例えば圧力を10kPa以上40kPa以下として加圧する。塗布後のペーストの厚みは、例えば、0.1mm以上2mm以下である。
 ここで、当接粒子の平均結晶粒径が5μm以上10μm以下であるセラミック構造体を得るには、混合した後の粉末の平均粒径が、例えば、1.5μm以上5μm以上となるようにすればよい。
 また、複数の当接粒子の山頂部と谷底部との高低差は15μm以下であるセラミック構造体を得るには、塗布後のペーストの厚みの高低差が、例えば、20μm以下となるようにすればよい。
 次に、常温で、湿度を調整しながら12時間以上48時間以下保持することによりペーストを乾燥させる。しかる後、大気雰囲気中で、1500℃以上1700℃以下の温度で、5時間以上8時間以下保持して焼成することにより、図1に示すセラミック構造体21を得ることができる。
 ここで、当接粒子の少なくとも一部が凸状の第1曲面部内に凹状の第2曲面部を有するセラミック構造体を得るには、1600℃以上1700℃以下の温度で、5時間以上8時間以下保持して焼成すればよい。
 また、第1部材が厚み方向に複数の貫通孔を備えてなる円板状部材であれば、図3に示す支持機構22を得ることができる。
 また、前駆体の上面のうち、第1部材の下面に当接する部分と、第1部材の外周面とにペーストを塗布した後、上述した方法で、乾燥、焼成することにより、図4に示す支持機構23を得ることができる。
 また、図5、6に示す支持機構24、25を得るには、焼成後に環状空間部となる凹部を予め前駆体に設け、図6に示す第1の被覆部を得るには、圧力を、例えば20kPa以上40kPa以下として前駆体および第1部材を加圧すればよい。前駆体と第1部材との間から外側に滲出したペーストは焼成後に第1の被覆部となる。
 また、図7に示す支持機構26を得るには、予め、焼成後にそれぞれ基板となる第1前駆体、枠体となる第2前駆体を準備して、第2前駆体の下面、第1部材の下面および上面にペーストを塗布して、圧力を、例えば20kPa以上40kPa以下として第1前駆体、第2前駆体および第1部材を加圧すればよい。第1前駆体と第2前駆体との間から外側に滲出したペーストは焼成後に第2の被覆部となる。
 なお、第1の被覆部の閉気孔の平均径が、第2部材の閉気孔の平均径の0.8倍以上1.5倍以下である支持機構を得るには、撹拌装置の自転回転数を1200rpm以上1600rpm以下とし、回転時間を5分以上15分以下とすることによって得られるペーストを用いるとよい。
 第2の被覆部の閉気孔の平均径が、第2部材の閉気孔の平均径の0.8倍以上1.5倍以下である支持機構を得る場合も上述した方法と同じ方法を用いればよい。
 また、第1の被覆部の閉気孔の平均径が、第2部材の閉気孔の平均径よりも小さい支持機構を得るには、回転数を高くして1400rpm以上1600rpm以下とし、回転時間を5分以上15分以下とすればよい。
 第2の被覆部の閉気孔の平均径が、第2部材の閉気孔の平均径よりも小さい支持機構を得る場合も上述した方法と同じ方法を用いればよい。
1 第1部材
2 第2部材
2a:枠体
2b:基板
2x:結晶粒子
2x:当接粒子
2y:第1曲面部
2z:第2曲面部
3 :貫通孔
4 :第1面
5 :第2面
6 :環状空間部
7 :外周面
8 :第3面
9 :第1の被覆部
10:内周面
11:主面
12:第2の被覆部
21:セラミック構造体
22~26:支持機構

Claims (11)

  1.  サファイアまたはイットリウムアルミニウム複合酸化物の単結晶からなる第1部材と、該第1部材に当接する酸化アルミニウムまたはイットリウムアルミニウム複合酸化物を主成分とするセラミックスからなる第2部材とを備えてなり、
     前記第2部材を構成する結晶粒子のうち、前記第1部材に当接する、前記第2部材の当接粒子は、前記第1部材に向かって凸状の第1曲面部を有する、セラミック構造体。
  2.  前記当接粒子の少なくとも一部は、前記凸状の第1曲面部内に凹状の第2曲面部を有する、請求項1に記載のセラミック構造体。
  3.  前記当接粒子は、平均結晶粒径が5μm以上10μm以下である、請求項1または請求項2に記載のセラミック構造体。
  4.  複数の前記当接粒子の山頂部と谷底部との高低差は15μm以下である、請求項1乃至請求項3のいずれかに記載のセラミック構造体。
  5.  請求項1乃至請求項4のいずれかに記載のセラミック構造体を備えてなる支持機構であって、
     前記第1部材は、厚み方向に複数の貫通孔を備えてなる円板状部材であり、前記第2部材は、前記第1部材の外周部を支持する環状の支持部材であり、
     前記第1部材は厚み方向に対向する第1面および第2面を有しており、
     前記第2部材は、前記第1面および第2面の少なくともいずれかに当接している、支持機構。
  6.  前記第2部材は、前記第1部材を前記第1面および前記第2面の両側から狭持する、請求項5に記載の支持機構。
  7.  前記第1部材と前記第2部材との間に外部と遮断された環状空間部を有する、請求項6に記載の支持機構。
  8.  前記環状空間部に、前記第1部材の外周面から前記第1面に当接する前記2部材の第3面および前記第2面に当接する前記第2部材の第4面の少なくともいずれかに亘って第1の被覆部を有する、請求項7に記載の支持機構。
  9.  前記第2部材は、前記第1面に当接した基板と、前記第1部材の周囲に位置するとともに前記第1部材を収容する凹部を有する枠体とを備えてなり、前記枠体の内周面から前記基板の前記枠体側に位置する主面に亘って第2の被覆部を有する、請求項6乃至請求項8のいずれかに記載の支持機構。
  10.  前記第1の被覆部および前記第2の被覆部の少なくともいずれかの閉気孔の平均径は、前記第2部材の閉気孔の平均径の0.8倍以上1.5倍以下である請求項9に記載の支持機構。
  11.  前記第1の被覆部および前記第2の被覆部の少なくともいずれかの閉気孔の平均径は、前記第2部材の閉気孔よりも小さい、請求項9または請求項10に記載の支持機構。
     
                  
PCT/JP2020/008128 2019-03-01 2020-02-27 セラミック構造体および該セラミック構造体を備えてなる支持機構 WO2020179637A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021504031A JP7204879B2 (ja) 2019-03-01 2020-02-27 セラミック構造体および該セラミック構造体を備えてなる支持機構
US17/434,701 US20220234957A1 (en) 2019-03-01 2020-02-27 Ceramic structure and supporting mechanism which is provided with said ceramic structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019037492 2019-03-01
JP2019-037492 2019-03-01

Publications (1)

Publication Number Publication Date
WO2020179637A1 true WO2020179637A1 (ja) 2020-09-10

Family

ID=72338616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008128 WO2020179637A1 (ja) 2019-03-01 2020-02-27 セラミック構造体および該セラミック構造体を備えてなる支持機構

Country Status (3)

Country Link
US (1) US20220234957A1 (ja)
JP (1) JP7204879B2 (ja)
WO (1) WO2020179637A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185970A (ja) * 2004-12-24 2006-07-13 Kyocera Corp マスキングスペーサおよびその製造方法
JP2006240987A (ja) * 2005-03-03 2006-09-14 Osram Sylvania Inc セラミック製アーク放電容器の製造方法及び該方法によって製造されたセラミック製アーク放電容器
WO2007018222A1 (ja) * 2005-08-10 2007-02-15 Ube Industries, Ltd. 発光ダイオード用基板及び発光ダイオード
JP2008208000A (ja) * 2007-02-27 2008-09-11 Kyocera Corp 耐食性部材およびこれを用いたガスノズル
JP2010030280A (ja) * 2008-06-27 2010-02-12 Kyocera Corp セラミック基体、放熱基体および電子装置
WO2017073679A1 (ja) * 2015-10-30 2017-05-04 京セラ株式会社 シャワープレート、半導体製造装置およびシャワープレートの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185970A (ja) * 2004-12-24 2006-07-13 Kyocera Corp マスキングスペーサおよびその製造方法
JP2006240987A (ja) * 2005-03-03 2006-09-14 Osram Sylvania Inc セラミック製アーク放電容器の製造方法及び該方法によって製造されたセラミック製アーク放電容器
WO2007018222A1 (ja) * 2005-08-10 2007-02-15 Ube Industries, Ltd. 発光ダイオード用基板及び発光ダイオード
JP2008208000A (ja) * 2007-02-27 2008-09-11 Kyocera Corp 耐食性部材およびこれを用いたガスノズル
JP2010030280A (ja) * 2008-06-27 2010-02-12 Kyocera Corp セラミック基体、放熱基体および電子装置
WO2017073679A1 (ja) * 2015-10-30 2017-05-04 京セラ株式会社 シャワープレート、半導体製造装置およびシャワープレートの製造方法

Also Published As

Publication number Publication date
JP7204879B2 (ja) 2023-01-16
US20220234957A1 (en) 2022-07-28
JPWO2020179637A1 (ja) 2021-12-23

Similar Documents

Publication Publication Date Title
KR102702566B1 (ko) 이트륨 플루오라이드 분무된 코팅, 이를 위한 분무 물질, 및 분무된 코팅을 포함하는 내식성 코팅
TWI564266B (zh) A laminated structure, a member for a semiconductor manufacturing apparatus, and a method for manufacturing the laminated structure
JP6473830B2 (ja) シャワープレート、半導体製造装置およびシャワープレートの製造方法
KR101457215B1 (ko) 산화이트륨 재료, 반도체 제조 장치용 부재 및 산화이트륨재료의 제조 방법
KR102242191B1 (ko) 반도체 제조 장치용 부재, 및 반도체 제조 장치용 부재를 구비한 반도체 제조 장치, 및 디스플레이 제조 장치
US20130285336A1 (en) Alumina sintered body, member including the same, and semiconductor manufacturing apparatus
JP7397974B2 (ja) 通気性部材、半導体製造装置用部材、プラグおよび吸着部材
KR101961411B1 (ko) 대면적 oled 패널 제조용 챔버의 코팅재 및 그 제조 방법
JP7204893B2 (ja) ガスプラグ、静電吸着用部材およびプラズマ処理装置
JP7089707B2 (ja) 半導体製造装置用部材および半導体製造装置用部材を備えた半導体製造装置並びにディスプレイ製造装置
KR102387056B1 (ko) 세라믹 접합체 및 그 제조 방법
WO2020179637A1 (ja) セラミック構造体および該セラミック構造体を備えてなる支持機構
WO2015008694A1 (ja) 半導体用複合基板のハンドル基板
TW201936551A (zh) 燒成用承燒板
JP2011011929A (ja) セラミックス多孔質焼結体、半導体製造装置用部品及びシャワープレート並びにセラミックス多孔質焼結体の製造方法
US20230080557A1 (en) Spacer for double-layer glass and double-layer glass
WO2024117149A1 (ja) 真空チャックおよびその製造方法
JP4446430B2 (ja) 高圧放電灯用発光容器
JP2004107718A (ja) 積層体、溶射膜および積層体の製造方法
JP7018839B2 (ja) セラミック構造体およびその製造方法
JP2004059397A (ja) 耐プラズマ性部材
WO2023286758A1 (ja) 接合体
JP7181123B2 (ja) 半導体製造装置用部材およびその製造方法
JP7053673B2 (ja) セラミック複合体およびその製造方法ならびに半導体製造装置用部材
EP4375470A1 (en) Spacer and multi-layered glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766309

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504031

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20766309

Country of ref document: EP

Kind code of ref document: A1