WO2020179523A1 - 硫化物系固体電解質の製造方法 - Google Patents

硫化物系固体電解質の製造方法 Download PDF

Info

Publication number
WO2020179523A1
WO2020179523A1 PCT/JP2020/007280 JP2020007280W WO2020179523A1 WO 2020179523 A1 WO2020179523 A1 WO 2020179523A1 JP 2020007280 W JP2020007280 W JP 2020007280W WO 2020179523 A1 WO2020179523 A1 WO 2020179523A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
solid electrolyte
sulfide
organic solvent
based solid
Prior art date
Application number
PCT/JP2020/007280
Other languages
English (en)
French (fr)
Inventor
伊藤 智弘
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to AU2020231576A priority Critical patent/AU2020231576A1/en
Priority to PL20765973.1T priority patent/PL3936473T3/pl
Priority to EP20765973.1A priority patent/EP3936473B1/en
Priority to KR1020217028953A priority patent/KR20210134664A/ko
Priority to BR112021014519-2A priority patent/BR112021014519A2/pt
Priority to US17/434,876 priority patent/US20220169509A1/en
Priority to CN202080017864.8A priority patent/CN113508089B/zh
Priority to JP2021503976A priority patent/JPWO2020179523A1/ja
Priority to CA3130052A priority patent/CA3130052A1/en
Publication of WO2020179523A1 publication Critical patent/WO2020179523A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a sulfide-based solid electrolyte.
  • lithium-ion secondary batteries demand for lithium-ion secondary batteries is increasing in recent years in applications such as mobile information terminals, mobile electronic devices, electric vehicles, hybrid electric vehicles, and stationary energy storage systems.
  • the current lithium-ion secondary battery uses a flammable organic solvent as an electrolytic solution, and requires a strong exterior so that the organic solvent does not leak.
  • the structure of the device such as the need to have a structure that is prepared for the risk of electrolytic solution leakage.
  • sulfide has a high ionic conductivity and is characterized by being relatively soft and easily forming a solid-solid interface. It is stable to active materials and is being developed as a practical solid electrolyte.
  • sulfide-based solid electrolytes it is known that the sulfide-based solid electrolyte containing Si can obtain good ionic conductivity (Non-Patent Documents 1 and 2), and there are high expectations for its practical application. ..
  • SiS 2 which is a sulfide of Si as a raw material.
  • SiS 2 be provided or not contain high oxygen-containing compounds reactive with the atmosphere and often contain Si as a raw material of the unreacted and SiS 2 does not contain impurities Is difficult. Therefore, in the conventional method for producing a sulfide-based solid electrolyte containing Si, when SiS 2 which easily contains impurities is used as a raw material, it is difficult to obtain a solid electrolyte exhibiting stable performance. ..
  • Li—Si—S containing at least lithium (Li) element, silicon (Si) element, and sulfur (S) element in the organic solvent We have obtained an unexpected finding that it is possible to stably produce a sulfide-based solid electrolyte with few impurities by using a uniform solution as a raw material.
  • the present invention is as follows. ⁇ 1> By mixing Li 2 S and P 2 S 5 in an organic solvent so that the molar ratio of Li 2 S/P 2 S 5 is 0.7 to 1.5, Li—P—S homogeneity is obtained.
  • a solutionizing step 1 for preparing a solution A solutionizing step 2 for preparing a Li—Si—S uniform solution containing at least a lithium (Li) element, a silicon (Si) element, and a sulfur (S) element in an organic solvent;
  • a drying step of removing the organic solvent from the slurry liquid to obtain a precursor And a heat treatment step for obtaining a sulfide-based solid electrolyte by subjecting the precursor to a heat treatment at 200 to 700° C., a method
  • the solution step 2 includes adding Li 2 S and SiS 2 in an organic solvent, mixing them, and filtering the mixture to prepare a Li—Si—S homogeneous solution. 1> or ⁇ 2> is a method for producing a sulfide-based solid electrolyte.
  • the organic solvent in the solution step 1 and the solution step 2 is at least one selected from the group consisting of tetrahydrofuran, acetonitrile, ethyl acetate, and methyl acetate, and the above ⁇ 1> to ⁇ 3> It is a method for producing a sulfide-based solid electrolyte according to any one of the above.
  • Slurrying step 1 for preparing a Li 3 PS 4 containing slurry liquid A solutionizing step of preparing a Li-Si-S uniform solution containing at least a lithium (Li) element, a silicon (Si) element, and a sulfur (S) element in an organic solvent; A slurrying step 2 in which the Li 3 PS 4 containing slurry liquid is mixed with the Li—Si—S uniform solution to prepare a mixed slurry liquid; A slurry forming step 3 in which the mixed slurry liquid and Li 2 S are mixed to prepare a slurry liquid; A drying step of removing the organic solvent from the slurry liquid obtained in the slurry forming step 3 to obtain a precursor; And a heat treatment step for obtaining a sulfide-based solid electrolyte by subjecting the precursor to a heat treatment at 200 to 700° C., a method for producing a sulfide-based solid electrolyte.
  • ⁇ 7> In the slurrying step 1, Li 2 S and P 2 S 5 are mixed in an organic solvent so that the molar ratio of Li 2 S/P 2 S 5 is 0.7 to 1.5.
  • ⁇ 6> which comprises preparing a Li-P-S uniform solution by the above method and mixing the Li-P-S uniform solution with Li 2 S to prepare a Li 3 PS 4 -containing slurry liquid. Is a method for producing a sulfide-based solid electrolyte.
  • the solution process includes adding Li 2 S and SiS 2 to an organic solvent and mixing them to prepare a Li—Si—S uniform solution, according to the above ⁇ 6> or ⁇ 7>.
  • the solution process includes adding Li 2 S and SiS 2 in an organic solvent, mixing the mixture, and filtering the mixture to prepare a Li—Si—S homogeneous solution.
  • the present invention it is possible to provide a method for producing a sulfide-based solid electrolyte which is excellent in productivity, has few impurities, and exhibits stable performance. Further, according to the present invention, it is possible to provide a molded body obtained by heat-molding the sulfide-based solid electrolyte, and an all-solid battery including the sulfide-based solid electrolyte. Moreover, this manufacturing method can be applied to mass production.
  • FIG. 5 is a graph showing the results of X-ray diffraction measurement of the sulfide-based solid electrolysis obtained in Examples 1 to 3 and Comparative Example 1. It is a graph which shows the result of the X-ray diffraction measurement of the white solid, and the filtration obtained in ⁇ solution step 2> in Example 1.
  • Solution step 1 to prepare a Li-PS uniform solution and A solutionizing step 2 for preparing a Li-Si-S uniform solution containing at least a lithium (Li) element, a silicon (Si) element, and a sulfur (S) element in an organic solvent,
  • a method for producing a sulfide-based solid electrolyte which comprises a heat treatment step of heat-treating the precursor at 200 to 700 ° C.
  • a Li—P—S homogeneous solution is defined as a solution containing at least lithium (Li) element, phosphorus (P) element and sulfur (S) element in an organic solvent and having no undissolved precipitate
  • a Li—Si—S uniform solution is defined as a solution containing at least lithium (Li) element, silicon (Si) element, and sulfur (S) element in an organic solvent and having no undissolved precipitate.
  • -S This is a step of preparing a uniform solution.
  • the substrate is in a slurry state in which the substrate is dispersed, but the reaction eventually occurs. No special stirring operation is required to crush the particles, and it is sufficient to provide stirring power sufficient to suspend and disperse the slurry.
  • the reaction temperature in the solution step 1 is such that the reaction proceeds slowly even at room temperature, but heating may be performed to increase the reaction rate.
  • heating it is sufficient to carry out the heating at a temperature not higher than the boiling point of the organic solvent, and although it varies depending on the organic solvent used, it is usually lower than 120°C. It is possible to carry out the process under pressure using an autoclave or the like, but if mixing is carried out at a high temperature of 120° C. or higher, there is a concern that a side reaction will proceed.
  • the reaction time in the solution process 1 varies depending on the type of the organic solvent, the particle size of the raw material, and the concentration, but the reaction can be completed and the solution can be formed by, for example, 0.1 to 24 hours.
  • This solution may contain unreacted Li 2 S and P 2 S 5 .
  • impurities mixed from Li 2 S or P 2 S 5 may be included. Since impurities are hardly dissolved in the solvent and most of them precipitate, the obtained solution is filtered or centrifuged to remove the precipitate, and the solution is separated to make high-purity Li-PS uniform. It is preferred to obtain a solution.
  • P 2 S 5 can be used in both synthetic and commercial products. Write purity of P 2 S 5 is high is preferable because of the impurities mixed in the solid electrolyte is reduced.
  • the diameter of the particles is preferably in the range of 10 nm to 100 ⁇ m, more preferably 100 nm to 30 ⁇ m, and particularly preferably in the range of 300 nm to 10 ⁇ m. Since the contamination of water deteriorates other raw materials and precursors, it is preferably low, more preferably 300 ppm or less, and particularly preferably 50 ppm or less.
  • the solution step 2 is a step of preparing a Li—Si—S uniform solution containing at least a lithium (Li) element, a silicon (Si) element, and a sulfur (S) element in an organic solvent.
  • Li-Si-S uniform solution By using the Li-Si-S uniform solution, it is possible to stably obtain a sulfide-based solid electrolyte having few impurities and high ionic conductivity.
  • SiS 2 When SiS 2 is used as a starting material, it is difficult to uniformly disperse Si in the solid electrolyte during synthesis.
  • SiS 2 be provided or not contain high oxygen-containing compounds reactive with the atmosphere and often contain Si as a raw material of the unreacted and SiS 2 does not contain impurities Is difficult.
  • Li-Si-S solution is a sulfide-based solid that has stable and high ionic conductivity because Si is easily dispersed uniformly in the solid electrolyte during synthesis and side reactions are less likely to occur due to less impurities. It is thought that an electrolyte can be produced.
  • the Li-Si-S homogeneous solution is prepared by mixing Li 2 S and SiS 2 in an organic solvent such that the molar ratio of Li 2 S/SiS 2 is 0.3 to 1.0 and reacting them. It is preferable to use a solution in which Si, Si, and S are dissolved.
  • the solution may contain Li 2 S and SiS 2 unreacted. Further, impurities mixed from Li 2 S and Si S 2 may be contained.
  • the obtained solution is filtered or centrifuged to remove the precipitate, and the solution is separated to obtain a uniform solution of Li—Si—S.
  • the precipitate can be removed by filtration or centrifugation.
  • the pore size of the filter is 10 ⁇ m or less. It is more preferably 5 ⁇ m or less, and particularly preferably 2 ⁇ m or less.
  • What is obtained as a precipitate is raw materials such as unreacted Li 2 S and SiS 2 and impurities mixed from SiS 2 .
  • impurities include oxygen-containing compounds of Si and SiS 2 , SiO 2 and the like.
  • Li 2 S can be used as a synthetic product or a commercially available product. Since the mixing of water deteriorates other raw materials and precursors, the water content is preferably low, more preferably 300 ppm or less, and particularly preferably 50 ppm or less. Particle size of the Li 2 S is preferred because the smaller the reaction rate is faster.
  • the diameter of the particles is preferably in the range of 10 nm to 100 ⁇ m, more preferably 100 nm to 30 ⁇ m, and particularly preferably in the range of 300 nm to 10 ⁇ m.
  • the particle size can be measured by SEM or a particle size distribution measuring device by laser scattering.
  • SiS 2 can be used as a synthetic product or a commercially available product. Higher purity of SiS 2 is preferable because impurities mixed in the solid electrolyte are reduced.
  • the diameter of the particles is preferably in the range of 10 nm to 100 ⁇ m, more preferably 100 nm to 30 ⁇ m, and particularly preferably in the range of 300 nm to 10 ⁇ m.
  • the particle size can be measured by SEM or a particle size distribution measuring device by laser scattering. Even if some of the above raw materials are amorphous, they can be used without any problem. Since the contamination of water deteriorates other raw materials and precursors, it is preferably low, more preferably 300 ppm or less, and particularly preferably 50 ppm or less.
  • the organic solvent may be any organic solvent that does not react with Li 2 S and SiS 2, is not particularly limited.
  • an ether solvent, an ester solvent, a hydrocarbon solvent, a nitrile solvent and the like can be mentioned.
  • Specific examples include tetrahydrofuran, cyclopentyl methyl ether, diisopropyl ether, diethyl ether, dimethyl ether, dioxane, methyl acetate, ethyl acetate, butyl acetate, acetonitrile and the like.
  • the raw material composition from deteriorating, it is preferable to remove oxygen and water in the organic solvent, and in particular, the water content is preferably 100 ppm or less, more preferably 50 ppm or less.
  • the organic solvent used in the solution step 1 the same organic solvent as described above can be preferably used.
  • the total concentration of Li, Si and S in the organic solvent is preferably 0.5 to 20% by weight, more preferably 1 to 15% by weight, and particularly preferably 2 to 10% by weight.
  • the total concentration of Li, Si and S in the organic solvent is higher than 20% by weight, it becomes difficult to form a uniform solution due to precipitation of solids.
  • the total concentration of Li, Si, and S in the organic solvent is lower than 0.5% by weight, a large amount of organic solvent is used, which increases the load of solvent recovery and increases the reactor It causes the size to become excessively large.
  • the solution mixing step is a step of preparing a uniform mixed solution by mixing the Li—P—S uniform solution and the Li—Si—S uniform solution.
  • a homogeneous mixed solution can be prepared by adding a Li—P—S homogeneous solution to a Li—Si—S homogeneous solution.
  • the type and concentration of the elements can be confirmed by, for example, an ICP emission spectrometer. Since the performance of the sulfide-based solid electrolyte changes significantly due to a slight difference in composition, it is preferable to precisely control the elemental composition by performing ICP emission analysis on a uniform solution.
  • a halogen compound can be added here. At this time, it is preferable that the halogen compound is also dissolved in the organic solvent.
  • Specific examples of the halogen compound include LiCl, LiBr, LiI, PCl 5 , PCl 3 , PBr 5 and PBr 3 , and more preferably LiCl, LiBr and LiI. These may be used alone or in combination of two or more.
  • the slurrying step is a step of mixing the homogeneous mixed solution obtained in the solution mixing step and Li 2 S to prepare a slurry liquid.
  • a mixing method mixing using a normal stirring blade is sufficient.
  • the purpose of breaking up the particles of the added Li 2 S it is preferable to crush by stirring.
  • a homogenizer or an ultrasonic disperser may be used.
  • the composition ratio of each element varies, and some have a composition containing halogen, but a composition capable of forming LGPS crystals is more preferable.
  • the LGPS-based solid electrolyte containing Si include Li 9.54 Si 1.74 P 1.44 S 11.7 Cl 0.3 and Li 10 (Si 0.5 Ge 0.5 ) P 2 S 12 , Li 10 (Si 0.5 Sn 0.5 ) P 2 S 12 , Li 10.35 Si 1.35 P 1.65 S 12 , Li 9.42 Si 1.02 P 2.1 S 9.96 O 2.04 etc. are known.
  • the LGPS type crystal structure includes an octahedron O composed of Li element and S element, and a tetrahedron T 1 composed of one or more elements and S element selected from the group consisting of P, Ge, Si and Sn. , and a composed of P element and S elemental tetrahedron T 2 (PS 4 3- anion) tetrahedron T 1 and octahedron O share a crest tetrahedron T 2 and octahedron O vertex It is a crystal structure that shares.
  • a solid electrolyte having an LGPS type crystal structure is more preferable because it has a particularly high ionic conductivity.
  • Li 2 mixing time was additionally added S is preferably from 0.1 to 24 hours, more preferably 4 to 12 hours.
  • the added Li 2 S reacts with Li 2 SP 2 S 5 in a solution state to produce Li 3 PS 4 , but if the reaction time is long, a large amount of Li 3 PS 4 is produced. An impurity layer is formed in the final product.
  • the mixing temperature can be room temperature. There is no problem with heating, but if the temperature is too high, there is a concern that side reactions will occur. In the case of heating, it is sufficient to carry out the heating at a temperature not higher than the boiling point of the organic solvent, and although it varies depending on the organic solvent used, it is usually lower than 120°C.
  • Mixing in the slurry process is preferably performed in an inert gas atmosphere.
  • the inert gas include nitrogen, helium and argon, with argon being particularly preferred.
  • Deterioration of the raw material composition can be suppressed by removing oxygen and water in the inert gas. Both concentrations of oxygen and water in the inert gas are preferably 1000 ppm or less, more preferably 100 ppm or less, and particularly preferably 10 ppm or less.
  • the drying step is a step of obtaining a precursor by drying the obtained slurry liquid and removing the organic solvent.
  • the drying is preferably heat drying or vacuum drying in an inert gas atmosphere.
  • the drying temperature is preferably in the range of 60 to 280 ° C, more preferably 100 to 250 ° C. The optimum range varies slightly depending on the type of organic solvent, but the temperature range is important. If the drying temperature is too high in the presence of an organic solvent, the precursor will be altered in most cases. Further, if the drying temperature is too low, the amount of residual solvent increases, and if the next heat treatment step is carried out as it is, the organic solvent is carbonized and the electron conductivity of the obtained sulfide-based solid electrolyte is increased.
  • the solid electrolyte used in the second part of FIG. 2 is required to have sufficiently low electron conductivity. When used for such applications, it is necessary to reduce the residual solvent as much as possible.
  • the drying time varies somewhat depending on the type of organic solvent and the drying temperature, but the organic solvent can be sufficiently removed by performing the drying for 1 to 24 hours.
  • the temperature for removing the organic solvent can be lowered and the time required can be reduced. Can be shortened. It is also possible to perform the subsequent heat treatment step and the drying step at the same time.
  • the heat treatment step is a step of heat-treating the precursor obtained in the drying step at 200 to 700° C. to obtain a sulfide-based solid electrolyte.
  • the heating temperature varies depending on the type, and those containing Ge, Si or Sn are usually preferably in the range of 200 to 700 ° C, more preferably in the range of 350 to 650 ° C, and particularly preferably in the range of 400 to 600 ° C. Is. If the temperature is lower than the above range, desired crystals are less likely to be produced, while if the temperature is higher than the above range, crystals other than the intended one may be produced.
  • the heating time varies slightly depending on the heating temperature, it is possible to sufficiently crystallize in the range of usually 0.1 to 24 hours. It is not preferable to heat at a high temperature beyond the above range for a long time because the sulfide-based solid electrolyte may deteriorate.
  • the heating can be performed in a vacuum or in an atmosphere of an inert gas, but is preferably in an atmosphere of an inert gas.
  • the inert gas nitrogen, helium, argon or the like can be used, and among them, argon is preferable. It is preferable that oxygen and water are low, and the conditions are the same as those at the time of mixing in the slurrying step.
  • the second embodiment of the present invention includes a slurrying step 1 for preparing a slurry liquid containing Li 3 PS 4 and a slurrying step 1.
  • a solutionizing step of preparing a Li-Si-S uniform solution containing at least a lithium (Li) element, a silicon (Si) element, and a sulfur (S) element in an organic solvent A slurrying step 2 in which the Li 3 PS 4 containing slurry liquid and the Li—Si—S uniform solution are mixed to prepare a mixed slurry liquid;
  • a slurry forming step 3 in which the mixed slurry liquid and Li 2 S are mixed to prepare a slurry liquid;
  • a method for producing a sulfide-based solid electrolyte which comprises a heat treatment step of heat-treating the precursor at 200 to 700 ° C.
  • the slurrying step 1 in the second embodiment is not particularly limited as long as it can prepare a slurry liquid containing Li 3 PS 4, but Li 2 S and P 2 S 5 are combined with Li 2 S / P 2.
  • a Li—P—S homogeneous solution was prepared by mixing in an organic solvent so that the molar ratio of S 5 was 0.7 to 1.5, and the Li—P—S homogeneous solution and Li 2 S were mixed. Is preferably mixed to prepare a Li 3 PS 4 containing slurry solution.
  • the other steps in the second embodiment can be performed according to the steps described in the first embodiment.
  • the production method of this embodiment may use a Li—Si—S uniform solution, and the reaction apparatus and conditions are not particularly limited.
  • a method for producing a sulfide-based solid electrolyte from a raw material for example, solid-phase synthesis by a mechanical milling method using a planetary ball mill, liquid phase synthesis in which a raw material composition is reacted in the presence of an organic solvent
  • Patent No. 5187703 It can be produced by the melt mixing described in 1.
  • the sulfide-based solid electrolyte of the present invention obtained as described above can be formed into a desired molded body by various means and used in various applications including the all-solid-state battery described below.
  • the molding method is not particularly limited. For example, a method similar to the method for molding each layer constituting the all-solid-state battery described in ⁇ All-solid-state battery> described later can be used.
  • the sulfide-based solid electrolyte of the present invention can be used, for example, as a solid electrolyte for all-solid-state batteries. Further, according to a further embodiment of the present invention, there is provided an all-solid-state battery including the above-described solid electrolyte for all-solid-state battery.
  • FIG. 2 is a schematic cross-sectional view of an all-solid-state battery according to an embodiment of the present invention.
  • the all-solid-state battery 10 has a structure in which the solid electrolyte layer 2 is arranged between the positive electrode layer 1 and the negative electrode layer 3.
  • the all-solid-state battery 10 can be used in various devices such as mobile phones, personal computers and automobiles.
  • the sulfide-based solid electrolyte of the present invention may be contained as a solid electrolyte in any one or more of the positive electrode layer 1, the negative electrode layer 3, and the solid electrolyte layer 2.
  • the sulfide-based solid electrolyte of the present invention is used in combination with a known positive electrode active material or negative electrode active material for a lithium ion secondary battery. To do.
  • the amount ratio of the sulfide-based solid electrolyte of the present invention contained in the positive electrode layer 1 or the negative electrode layer 3 is not particularly limited.
  • the sulfide-based solid electrolyte of the present invention may be composed alone, or if necessary, an oxide solid electrolyte (for example, Li 7 La 3 Zr 2 O 12 ) and a sulfide-based solid electrolyte (for example, Li 2).
  • SP 2 S 5 ) and other complex sulfide solid electrolytes for example, LiBH 4 , 3LiBH 4- LiI
  • the all-solid-state battery is manufactured by molding and stacking the above-mentioned layers, but the method of forming and stacking each layer is not particularly limited.
  • a method in which a solid electrolyte and/or an electrode active material is dispersed in a solvent to form a slurry, which is applied by a doctor blade or spin coating, and rolled to form a film a vacuum deposition method, an ion plating method.
  • Vapor phase method in which film formation and lamination are performed using a method, sputtering method, laser ablation method, etc .; there is a pressure molding method in which powder is molded by hot pressing or cold pressing without applying temperature and then laminated. ..
  • the sulfide-based solid electrolyte of the present invention is relatively soft, it is particularly preferable to mold and stack each layer by a pressure molding method to manufacture an all-solid battery.
  • a pressure molding method there are a hot press which is performed by heating and a cold press which is not heated, but the cold press can sufficiently perform the molding.
  • the present invention includes a molded product obtained by heat-molding the sulfide-based solid electrolyte of the present invention.
  • the molded body is preferably used as an all-solid battery.
  • the present invention also includes a method for manufacturing an all-solid-state battery, which includes a step of heat-molding the sulfide-based solid electrolyte of the present invention.
  • Li 2 S + P 2 S 5 of the concentration of 10 wt% and comprising as acetonitrile (manufactured by Wako Pure Chemical Industries, Ltd., super dehydrated grade) with respect to 8.0 g, Li 2 S, in the order of P 2 S 5
  • it was mixed at room temperature for 3 hours. The mixture was gradually dissolved to give a Li-PS homogeneous solution.
  • the obtained solution was filtered through a membrane filter (PTFE, pore size 1.0 ⁇ m) to obtain 2.0 g as a filter and 578 g as a filtrate (Li—Si—S homogeneous solution).
  • PTFE membrane filter
  • the Li/Si molar ratio
  • the concentration of (Li 2 S+SiS 2 ) was 3.07 wt %.
  • ⁇ Heat treatment step> The obtained precursor was placed in a glass reaction tube in a glove box and placed in an electric tubular furnace so that the precursor was not exposed to the atmosphere. Argon (G3 grade) was blown into the reaction tube, the temperature was raised to 550 ° C over 3 hours, and then calcined at 550 ° C for 8 hours to synthesize Li 3.45 Si 0.45 P 0.55 S 4 crystals. did.
  • Li 2 S + P 2 S 5 of the concentration of 10 wt% and comprising as acetonitrile (manufactured by Wako Pure Chemical Industries, Ltd., super dehydrated grade) with respect to 7.5 g, Li 2 S, in the order of P 2 S 5
  • it was mixed at room temperature for 3 hours. The mixture gradually dissolved to obtain a uniform Li-PS solution.
  • ⁇ Solution step 2> The same procedure as in Example 1 was carried out to obtain a Li—Si—S uniform solution.
  • Li 2 S was added to the obtained homogeneous mixed solution with stirring at 627 mg so as to be 6.45 times mol with respect to P 2 S 5 , and mixed at room temperature for 12 hours to prepare a slurry liquid.
  • a series of operations were carried out in a glove box under an argon atmosphere.
  • ⁇ Heat treatment step> The obtained precursor was placed in a glass reaction tube in a glove box and placed in an electric tubular furnace so that the precursor was not exposed to the atmosphere.
  • argon G3 grade
  • Li 2 S + P 2 S 5 of the concentration of 10 wt% and comprising as acetonitrile (manufactured by Wako Pure Chemical Industries, Ltd., super dehydrated grade) with respect to 7.5 g, Li 2 S, in the order of P 2 S 5
  • it was mixed at room temperature for 3 hours.
  • the mixture was gradually dissolved to give a Li-PS homogeneous solution.
  • a mixed slurry liquid was prepared by mixing 8.57 g of a Li 3 PS 4 containing slurry liquid and 23.30 g of a Li—Si—S homogeneous solution so that the molar ratio of Si:P was 1:1. Furthermore, the resulting 0.40-fold molar LiCl against P 2 S 5 in the mixed slurry solution (Sigma-Aldrich Corp., purity of 99.99%) 51.9 mg was added while stirring, 3 at room temperature Mixed for hours.
  • ⁇ Heat treatment step> The obtained precursor was placed in a glass reaction tube in a glove box and placed in an electric tubular furnace so that the precursor was not exposed to the atmosphere.
  • argon G3 grade
  • ⁇ Heat treatment step> The obtained precursor was placed in a glass reaction tube in a glove box and placed in an electric tubular furnace so that the precursor was not exposed to the atmosphere. Argon (G3 grade) was blown into the reaction tube, the temperature was raised to 550 ° C over 3 hours, and then calcined at 550 ° C for 8 hours to synthesize Li 3.45 Si 0.45 P 0.55 S 4 crystals. did.
  • the results of the obtained filtration and the X-ray diffraction measurement of the white solid are shown in FIG.
  • a peak of metallic Si, which is an impurity was visible in the filtration.
  • the impurity peak was not visible in the white solid of the dried filtrate, it is considered that the metallic Si was removed by filtration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明によれば、Li2SとP2S5とをLi2S/P2S5=0.7~1.5のモル比となるように有機溶媒中で混合することによってLi-P-S均一溶液を調製する溶液化工程1と、有機溶媒中に少なくともリチウム(Li)元素、ケイ素(Si)元素、及び硫黄(S)元素を含むLi-Si-S均一溶液を調製する溶液化工程2と、前記Li-P-S均一溶液と前記Li-Si-S均一溶液とを混合して均一混合溶液を調製する溶液混合工程と、前記均一混合溶液とLi2Sとを混合し、スラリー液を調製するスラリー化工程と、前記スラリー液から前記有機溶媒を除去して前駆体を得る乾燥工程と、前記前駆体を200~700℃にて加熱処理して硫化物系固体電解質を得る加熱処理工程と、を含むことを特徴とする硫化物系固体電解質の製造方法を提供することができる。

Description

硫化物系固体電解質の製造方法
 本発明は、硫化物系固体電解質の製造方法に関する。
 近年、携帯情報端末、携帯電子機器、電気自動車、ハイブリッド電気自動車、更には定置型蓄電システムなどの用途において、リチウムイオン二次電池の需要が増加している。しかしながら、現状のリチウムイオン二次電池は、電解液として可燃性の有機溶媒を使用しており、有機溶媒が漏れないように強固な外装を必要とする。また、携帯型のパソコン等においては、万が一、電解液が漏れ出した時のリスクに備えた構造を取る必要があるなど、機器の構造に対する制約も出ている。
 更には、自動車や飛行機等の移動体にまでその用途が広がり、定置型のリチウムイオン二次電池においては大きな容量が求められている。このような状況の下、安全性が従来よりも重視される傾向にあり、有機溶媒等の有害な物質を使用しない全固体リチウムイオン二次電池の開発に力が注がれている。
 例えば、全固体リチウムイオン二次電池における固体電解質として、酸化物、リン酸化合物、有機高分子、硫化物等を使用することが検討されている。
 これらの固体電解質の中で、硫化物はイオン伝導度が高く、比較的やわらかく固体-固体間の界面を形成しやすい特徴がある。活物質にも安定であり、実用的な固体電解質として開発が進んでいる。
 硫化物系固体電解質の中でも、Siが含まれる硫化物系固体電解質は良好なイオン伝導度が得られることが分かっており(非特許文献1、非特許文献2)、実用化への期待が高い。
 従来のSiを含んだ硫化物系固体電解質は原料にSiの硫化物であるSiSを用いていることが多い。しかし、SiSは大気との反応性が高く含酸素化合物が含まれていたり、未反応の原料であるSiが含まれていることが多いなど、不純物が含まれていないSiSを用意することが難しい。
 従って、従来のSiを含んだ硫化物系固体電解質の製造法において、不純物が含まれやすいSiSを原料として用いた場合には、安定した性能を示す固体電解質が得られにくいという課題があった。
Acta Cryst.(2015). B71, 727-736 Nature Energy 1, Article number: 16030 (2016)
 このような状況の下、生産性に優れ、不純物が少なく安定した性能を示す硫化物系固体電解質の製造法を提供することが望まれている。
 そこで、本発明者らは、上記課題に鑑みて鋭意研究を行ったところ、有機溶媒中に少なくともリチウム(Li)元素、ケイ素(Si)元素、及び硫黄(S)元素を含むLi-Si-S均一溶液を原料に用いることで、安定して不純物の少ない硫化物系固体電解質を製造できるという予想外の知見を得た。
 すなわち、本発明は、以下の通りである。
<1> LiSとPとをLiS/P=0.7~1.5のモル比となるように有機溶媒中で混合することによってLi-P-S均一溶液を調製する溶液化工程1と、
 有機溶媒中に少なくともリチウム(Li)元素、ケイ素(Si)元素、及び硫黄(S)元素を含むLi-Si-S均一溶液を調製する溶液化工程2と、
 前記Li-P-S均一溶液と前記Li-Si-S均一溶液とを混合して均一混合溶液を調製する溶液混合工程と、
 前記均一混合溶液とLiSとを混合し、スラリー液を調製するスラリー化工程と、
 前記スラリー液から前記有機溶媒を除去して前駆体を得る乾燥工程と、
 前記前駆体を200~700℃にて加熱処理して硫化物系固体電解質を得る加熱処理工程と、を含むことを特徴とする硫化物系固体電解質の製造方法である。
<2> 前記溶液化工程2が、有機溶媒中にLiS及びSiSを添加して混合しLi-Si-S均一溶液を調製することを含む、上記<1>に記載の硫化物系固体電解質の製造方法である。
<3> 前記溶液化工程2が、有機溶媒中にLiS及びSiSを添加して混合し、該混合物を濾過することによってLi-Si-S均一溶液を調製することを含む、上記<1>または<2>に記載の硫化物系固体電解質の製造方法である。
<4> 前記溶液化工程1及び前記溶液化工程2における有機溶媒が、テトラヒドロフラン、アセトニトリル、酢酸エチル、及び酢酸メチルからなる群より選ばれる少なくとも1種である、上記<1>から<3>のいずれかに記載の硫化物系固体電解質の製造方法である。
<5> 前記溶液混合工程が、更に、ハロゲン化リチウムを添加して均一混合溶液を調製することを含む、上記<1>から<4>のいずれかに記載の硫化物系固体電解質の製造方法である。
<6> LiPS含有スラリー液を調製するスラリー化工程1と、
 有機溶媒中に少なくともリチウム(Li)元素、ケイ素(Si)元素、及び硫黄(S)元素を含むLi-Si-S均一溶液を調製する溶液化工程と、
 前記LiPS含有スラリー液と前記Li-Si-S均一溶液とを混合して混合スラリー液を調製するスラリー化工程2と、
 前記混合スラリー液とLiSとを混合し、スラリー液を調製するスラリー化工程3と、
 前記スラリー化工程3で得られたスラリー液から前記有機溶媒を除去して前駆体を得る乾燥工程と、
 前記前駆体を200~700℃にて加熱処理して硫化物系固体電解質を得る加熱処理工程と、を含むことを特徴とする硫化物系固体電解質の製造方法である。
<7> 前記スラリー化工程1が、LiSとPとをLiS/P=0.7~1.5のモル比となるように有機溶媒中で混合することによってLi-P-S均一溶液を調製し、該Li-P-S均一溶液と、LiSとを混合してLiPS含有スラリー液を調製することを含む、上記<6>に記載の硫化物系固体電解質の製造方法である。
<8> 前記溶液化工程が、有機溶媒中にLiS及びSiSを添加して混合しLi-Si-S均一溶液を調製することを含む、上記<6>または<7>に記載の硫化物系固体電解質の製造方法である。
<9> 前記溶液化工程が、有機溶媒中にLiS及びSiSを添加して混合し、該混合物を濾過することによってLi-Si-S均一溶液を調製することを含む、上記<6>から<8>のいずれかに記載の硫化物系固体電解質の製造方法である。
<10> 前記溶液化工程における有機溶媒が、テトラヒドロフラン、アセトニトリル、酢酸エチル、及び酢酸メチルからなる群より選ばれる少なくとも1種である、上記<6>から<9>のいずれかに記載の硫化物系固体電解質の製造方法である。
<11> 前記スラリー化工程2が、更に、ハロゲン化リチウムを添加して混合スラリー液を調製することを含む、上記<6>から<10>のいずれかに記載の硫化物系固体電解質の製造方法である。
<12> 前記乾燥工程における温度が、60~280℃である、上記<1>から<11>のいずれかに記載の硫化物系固体電解質の製造方法である。
<13> 前記硫化物系固体電解質が、LGPS系固体電解質を含有し、X線回折(CuKα:λ=1.5405Å)において、少なくとも、2θ=20.18°±0.50°、20.44°±0.50°、26.96°±0.50°、及び29.58°±0.50°の位置にピークを有する、上記<1>から<12>のいずれかに記載の硫化物系固体電解質の製造方法である。
 本発明によれば、生産性に優れ、不純物が少なく安定した性能を示す硫化物系固体電解質の製造法を提供することができる。また、本発明によれば、該硫化物系固体電解質を加熱成形してなる成形体、該硫化物系固体電解質を含む全固体電池を提供することができる。しかも、この製造方法であれば、大量製造にも応用可能である。
本発明の一実施形態に係る硫化物系固体電解質の結晶構造を示す概略図である。 本発明の一実施形態に係る全固体電池の概略断面図である。 実施例1~3および比較例1で得られた硫化物系固体電解のX線回折測定の結果を示すグラフである。 実施例1における<溶液化工程2>で得られたろ採と白色固体のX線回折測定の結果を示すグラフである。
 以下、本発明を詳細に説明する。なお、以下に説明する材料及び構成等は本発明を限定するものではなく、本発明の趣旨の範囲内で種々改変することができるものである。
 本発明の第1実施形態は、LiSとPとをLiS/P=0.7~1.5のモル比となるように有機溶媒中で混合することによってLi-P-S均一溶液を調製する溶液化工程1と、
 有機溶媒中に少なくともリチウム(Li)元素、ケイ素(Si)元素、及び硫黄(S)元素を含むLi-Si-S均一溶液を調製する溶液化工程2と、
 前記Li-P-S均一溶液と前記Li-Si-S均一溶液とを混合して均一混合溶液を調製する溶液混合工程と、
 前記均一混合溶液とLiSとを混合し、スラリー液を調製するスラリー化工程と、
 前記スラリー液から前記有機溶媒を除去して前駆体を得る乾燥工程と、
 前記前駆体を200~700℃にて加熱処理して硫化物系固体電解質を得る加熱処理工程と、を含むことを特徴とする硫化物系固体電解質の製造方法である。
 本発明において、Li-P-S均一溶液とは有機溶媒中に少なくともリチウム(Li)元素、リン(P)元素、及び硫黄(S)元素を含み、未溶解の沈殿がない溶液と定義され、Li-Si-S均一溶液とは有機溶媒中に少なくともリチウム(Li)元素、ケイ素(Si)元素、及び硫黄(S)元素を含み、未溶解の沈殿がない溶液と定義される。
<溶液化工程1>
 溶液化工程1は、LiSとPとをLiS/P=0.7~1.5のモル比となるように有機溶媒中で混合することによってLi-P-S均一溶液を調製する工程である。
 溶液化工程1における混合の際には基質が分散されたスラリー状態であるが、やがて反応する。粒子を砕く特別な撹拌操作は不要であり、スラリーが懸濁分散できるだけの撹拌動力を与えれば十分である。
 溶液化工程1における反応温度は、室温下においても反応が緩やかに進行するが、反応速度を上げるために加熱することもできる。加熱する場合には、有機溶媒の沸点以下で行うことで十分であり、使用する有機溶媒によって異なるものの、通常は120℃未満である。オートクレーブ等を用いて加圧状態で行うことも可能であるが、120℃以上の高い温度で混合を行うと、副反応が進行することが懸念される。
 溶液化工程1における反応時間としては、有機溶媒の種類や原料の粒子径、濃度によって異なるものの、例えば0.1~24時間行うことで反応が完結し、溶液化することができる。
 Li-P-S均一溶液は、LiSおよびPをLiS/P=0.7~1.5のモル比となるように有機溶媒中で混合して反応させることによって生成させる。ここで、上記モル比は、好ましくはLiS/P=0.75~1.4であり、より好ましくはLiS/P=0.8~1.35である。LiS/P=0.7~1.5のモル比の範囲であると、室温においてLiSおよびPを溶液化することができる。上記モル比の範囲を外れると、沈殿が生じる場合がある。
 この溶液には、未反応のLiSやPが含まれてもよい。また、LiSやPから混入した不純物が含まれていてもよい。不純物は溶媒中にほとんど溶解せず、多くは沈殿するため、得られた溶液に対し濾過や遠心分離を行い沈殿を除去し、溶液を分離することによって、高純度なLi-P-Sの均一溶液を得ることが好ましい。
 Pは合成品でも、市販品でも使用することができる。Pの純度が高い方が、固体電解質中に混入する不純物が少なくなることから好ましい。Pの粒子径は小さい方が反応速度が速くなるため好ましい。好ましくは粒子の直径として10nm~100μmの範囲であり、より好ましくは100nm~30μmであり、特に好ましくは300nm~10μmの範囲である。水分の混入は、他の原料や前駆体を劣化させることから、低い方が好ましく、より好ましくは300ppm以下であり、特に好ましくは50ppm以下である。
<溶液化工程2>
 溶液化工程2は、有機溶媒中に少なくともリチウム(Li)元素、ケイ素(Si)元素、及び硫黄(S)元素を含むLi-Si-S均一溶液を調製する工程である。Li-Si-S均一溶液を使用することにより、不純物が少なく、高いイオン伝導度を有する硫化物系固体電解質を安定して得ることができる。SiSを出発物質に用いる場合、合成時にSiを固体電解質中に均一に分散させることは困難である。また、SiSは大気との反応性が高く含酸素化合物が含まれていたり、未反応の原料であるSiが含まれていることが多いなど、不純物が含まれていないSiSを用意することが難しい。そして、SiS中からこれらの不純物を除去することは困難である。
 一方、Li-Si-S均一溶液は、合成時に固体電解質中にSiが均一に分散しやすく、不純物が少ないことから副反応が生じにくいため、安定して高いイオン伝導度を有する硫化物系固体電解質を製造できると考えられる。
 Li-Si-S均一溶液は、LiSおよびSiSをLiS/SiS=0.3~1.0のモル比となるように有機溶媒中で混合して反応させることによって、Li、Si、及びSが溶解した溶液とすることが好ましい。ここで、上記モル比は、より好ましくはLiS/SiS=0.35~0.8であり、特に好ましくはLiS/SiS=0.4~0.7である。
 この溶液には、未反応のLiSやSiSが含まれていてもよい。また、LiSやSiSから混入した不純物が含まれていてもよい。
 より好ましくは、得られた溶液を、濾過や遠心分離によって沈殿を除去し、溶液を分離することで、Li-Si-Sの均一溶液が得られる。得られた均一溶液の各元素の濃度はICPにより分析されるが、Li/Si=0.6~2.0のモル比であることが好ましい。ここで、上記モル比は、より好ましくはLi/Si=0.7~1.6であり、特に好ましくはLi/Si=0.8~1.4である。
 沈殿の除去は、濾過や遠心分離により行うことができる。フィルターを用いた濾過を行う場合、フィルターの孔径は10μm以下であることが望ましい。より好ましくは5μm以下であり、特に好ましくは2μm以下である。
 沈殿として得られるのは未反応のLiS、SiSといった原料や、SiSから混入した不純物である。不純物としてはSiやSiSの含酸素化合物、SiOなどが挙げられる。
 LiSは合成品でも、市販品でも使用することができる。水分の混入は、他の原料や前駆体を劣化させることから、水分は低い方が好ましく、より好ましくは300ppm以下であり、特に好ましくは50ppm以下である。LiSの粒子径は小さい方が反応速度が速くなるため好ましい。好ましくは粒子の直径として10nm~100μmの範囲であり、より好ましくは100nm~30μmであり、特に好ましくは300nm~10μmの範囲である。なお、粒子径はSEMによる測定やレーザー散乱による粒度分布測定装置等で測定できる。
 SiSは合成品でも、市販品でも使用することができる。SiSの純度が高い方が、固体電解質中に混入する不純物が少なくなることから好ましい。SiSの粒子径は小さい方が反応速度が速くなるため好ましい。好ましくは粒子の直径として10nm~100μmの範囲であり、より好ましくは100nm~30μmであり、特に好ましくは300nm~10μmの範囲である。粒子径はSEMによる測定やレーザー散乱による粒度分布測定装置等で測定できる。なお、上記の原料の一部はアモルファスであっても問題なく使用することができる。水分の混入は、他の原料や前駆体を劣化させることから、低い方が好ましく、より好ましくは300ppm以下であり、特に好ましくは50ppm以下である。
 有機溶媒は、LiSおよびSiSと反応しない有機溶媒であれば、特に制限はない。例えば、エーテル系溶媒、エステル系溶媒、炭化水素系溶媒、ニトリル系溶媒などが挙げられる。具体的には、テトラヒドロフラン、シクロペンチルメチルエーテル、ジイソプロピルエーテル、ジエチルエーテル、ジメチルエーテル、ジオキサン、酢酸メチル、酢酸エチル、酢酸ブチル、アセトニトリルなどが挙げられる。これらの中でも、テトラヒドロフラン、アセトニトリル、酢酸エチル、及び酢酸メチルからなる群より選ばれる少なくとも1種であることが好ましく、特に好ましくはアセトニトリルである。原料組成物が劣化することを防止するために、有機溶媒中の酸素と水を除去しておくことが好ましく、特に水分については、100ppm以下が好ましく、より好ましくは50ppm以下である。 なお、溶液化工程1で使用される有機溶媒も上記と同様のものを好ましく使用することができる。
 有機溶媒中におけるLi、Si及びSの合計の濃度は、0.5~20重量%が好ましく、1~15重量%がより好ましく、2~10重量%が特に好ましい。有機溶媒中におけるLi、Si及びSの合計の濃度が20重量%より高いと、固体の析出により均一溶液化が困難になる。一方、有機溶媒中におけるLi、Si及びSの合計の濃度が0.5重量%より低い場合には、大量の有機溶媒を使用することになり、溶媒回収の負荷が増大すると共に、反応器の大きさが過度に大きくなる要因となる。
<溶液混合工程>
 溶液混合工程は、Li-P-S均一溶液とLi-Si-S均一溶液とを混合して均一混合溶液を調製する工程である。
 Li-Si-S均一溶液に対し、Li-P-S均一溶液を加えることで均一混合溶液を調製することができる。得られた均一混合溶液を構成する元素の濃度は、P/Si=0.7~1.5のモル比であることが好ましい。より好ましくはP/Si=0.8~1.4であり、特に好ましくはP/Si=0.9~1.3である。このモル比であるとき、高いイオン伝導度を示す硫化物系固体電解質が得られやすい。
 元素の種類、濃度は、例えば、ICP発光分析装置により確認することができる。硫化物系固体電解質は、わずかな組成のずれによって性能が大きく変わることから、均一溶液に対してICP発光分析を行うことにより、元素組成を精密に制御することが好ましい。
なお、ここに、ハロゲン化合物を加えることもできる。この時、ハロゲン化合物も有機溶媒に溶解することが好ましい。ハロゲン化合物としては、具体的には、LiCl、LiBr、LiI、PCl、PCl、PBr及びPBrが好ましく挙げられ、より好ましくはLiCl、LiBr及びLiIである。これらは1種単独で使用してもよく、2種以上を併用してもよい。
<スラリー化工程>
 スラリー化工程は、溶液混合工程で得られた均一混合溶液とLiSとを混合し、スラリー液を調製する工程である。
 混合方法として通常の撹拌羽を用いた混合で十分である。加えたLiSの粒子を砕くことを目的に、撹拌によって解砕させることが好ましい。更には、ホモジナイザーまたは超音波分散機を用いてもよい。
 均一混合溶液にLiSを追加添加する量としては、系内に加える全量の原料比がLiS:P:SiS=6.3:1:1.6のモル比が基本となることが好ましい。好ましい範囲としては、LiS:P:SiS=5.67:1:1.33~8.71:1:2.86のモル比である。より好ましくは、LiS:P:SiS=5.86:1:1.43~8.00:1:2.50であり、特に好ましくは、LiS:P:SiS=6.08:1:1.54~7.44:1:2.22である。用いる元素によって、それぞれの元素組成比には幅があると共に、ハロゲンを含有した組成のものもあるが、LGPS結晶ができる組成であればより好ましい。Siを含んだLGPS系固体電解質としては、例えば、Li9.54Si1.741.4411.7Cl0.3、Li10(Si0.5Ge0.5)P12、Li10(Si0.5Sn0.5)P12、Li10.35Si1.351.6512、Li9.42Si1.022.19.962.04等が知られている。
 LGPS型結晶構造は、Li元素およびS元素から構成される八面体Oと、P、Ge、SiおよびSnからなる群より選択される一種以上の元素およびS元素から構成される四面体Tと、P元素およびS元素から構成される四面体T(PS 3-アニオン)とを有し、四面体Tおよび八面体Oは稜を共有し、四面体Tおよび八面体Oは頂点を共有する結晶構造である。LGPS型結晶構造を有する固体電解質はイオン伝導度が特に高いことから、より好ましい。
 本発明で使用するLGPS型結晶構造を有する固体電解質は、X線回折測定(CuKα:λ=1.5405Å)において、少なくとも、2θ=20.18°±0.50°、20.44°±0.50°、26.96°±0.50°および29.58°±0.50°の位置にピークを有することが好ましい。
 LiSを追添加した後の混合時間は0.1~24時間が好ましく、より好ましくは4~12時間である。なお、追添加したLiSは溶液状態のLiS-Pと反応し、LiPSを生成させるが、反応時間が長いとLiPSを多量に生成してしまい、最終生成物に不純物層が生成してしまう。
 混合する時の温度は、室温下で行うことができる。加温をしても問題はないが、あまり温度を高くしすぎると副反応が生じることが懸念される。加熱する場合には、有機溶媒の沸点以下で行うことで十分であり、使用する有機溶媒によって異なるものの、通常は120℃未満である。
 スラリー工程における混合は、不活性ガス雰囲気下で行うことが好ましい。不活性ガスとしては、窒素、ヘリウム、アルゴンなどが挙げられ、アルゴンが特に好ましい。不活性ガス中の酸素および水分も除去していくことで原料組成物の劣化を抑制できる。不活性ガス中の酸素および水分は、どちらの濃度も1000ppm以下であることが好ましく、より好ましくは100ppm以下であり、特に好ましくは10ppm以下である。
<乾燥工程>
 乾燥工程は、得られたスラリー液を乾燥して有機溶媒を除去することにより前駆体を得る工程である。乾燥は不活性ガス雰囲気での加熱乾燥や真空乾燥が好ましい。
 乾燥温度は、60~280℃の範囲であることが好ましく、より好ましくは100~250℃である。最適な範囲は有機溶媒の種類によって多少異なるが、温度の範囲は重要である。有機溶媒が存在する状態で乾燥温度を高くしすぎると、ほとんどの場合で前駆体が変質してしまう。また、乾燥温度が低すぎる場合には残溶媒が多くなり、そのまま次の加熱処理工程を行うと有機溶媒が炭化し、得られる硫化物系固体電解質の電子伝導性が高くなる。固体電解質の使用方法次第では電子伝導性を有することが好ましいが、図2の2部分に使用する固体電解質は電子伝導性が十分に低いことが求められる。このような用途に用いる場合は残溶媒が極力少なくなるようにする必要がある。
 乾燥時間は有機溶媒の種類と乾燥温度によって多少異なるが、1~24時間実施することで十分に有機溶媒を除去することができる。なお、真空乾燥のように減圧下で有機溶媒を除去することや、十分に水分の少ない窒素やアルゴン等の不活性ガスを流すことで、有機溶媒を除去する際の温度を下げると共に所要時間を短くすることができる。
 なお、後段の加熱処理工程と乾燥工程とを同時に行うことも可能である。
<加熱処理工程>
 加熱処理工程は、乾燥工程で得られた前駆体を200~700℃にて加熱処理して硫化物系固体電解質を得る工程である。
 加熱温度は、種類によって異なり、Ge、SiまたはSnを含有するものは、通常200~700℃の範囲が好ましく、より好ましくは350~650℃の範囲であり、特に好ましくは400~600℃の範囲である。上記範囲よりも温度が低いと所望の結晶が生じにくく、一方、上記範囲よりも温度が高くても、目的とする以外の結晶が生成することがある。
 加熱時間は、加熱温度との関係で若干変化するものの、通常は0.1~24時間の範囲で十分に結晶化することができる。高い温度で上記範囲を超えて長時間加熱することは、硫化物系固体電解質の変質が懸念されることから、好ましくない。
 加熱は、真空もしくは不活性ガス雰囲気下で行うことができるが、好ましくは不活性ガス雰囲気下である。不活性ガスとしては、窒素、ヘリウム、アルゴンなどを使用することができるが、中でもアルゴンが好ましい。酸素や水分が低いことが好ましく、その条件はスラリー化工程の混合時と同じである。
 本発明の第2実施形態は、LiPS含有スラリー液を調製するスラリー化工程1と、
 有機溶媒中に少なくともリチウム(Li)元素、ケイ素(Si)元素、及び硫黄(S)元素を含むLi-Si-S均一溶液を調製する溶液化工程と、
 前記LiPS含有スラリー液と前記Li-Si-S均一溶液とを混合して混合スラリー液を調製するスラリー化工程2と、
 前記混合スラリー液とLiSとを混合し、スラリー液を調製するスラリー化工程3と、
 前記スラリー化工程3で得られたスラリー液から前記有機溶媒を除去して前駆体を得る乾燥工程と、
 前記前駆体を200~700℃にて加熱処理して硫化物系固体電解質を得る加熱処理工程と、を含むことを特徴とする硫化物系固体電解質の製造方法である。
 第2実施形態におけるスラリー化工程1は、LiPS含有スラリー液を調製することができるものであれば特に制限はないが、LiSとPとをLiS/P=0.7~1.5のモル比となるように有機溶媒中で混合することによってLi-P-S均一溶液を調製し、該Li-P-S均一溶液と、LiSとを混合してLiPS含有スラリー液を調製することが好ましい。
 第2実施形態におけるその他の工程は、第1実施形態で説明した工程に準じて行うことができる。
 本実施形態の製造法は、Li-Si-S均一溶液を使用していればよく、反応装置や条件については特に限定されない。原料から硫化物系固体電解質を製造する方法としては、例えば、遊星ボールミルを用いたメカニカルミリング法による固相合成、有機溶媒の存在下で原料組成物を反応させる液相合成、特許第5187703号公報に記載の溶融混合等によって製造することができる。
 上記のようにして得られる本発明の硫化物系固体電解質は、各種手段によって所望の成形体とし、以下に記載する全固体電池をはじめとする各種用途に使用することができる。成形方法は特に限定されない。例えば、後述する<全固体電池>において述べた全固体電池を構成する各層の成形方法と同様の方法を使用することができる。
<全固体電池>
 本発明の硫化物系固体電解質は、例えば、全固体電池用の固体電解質として使用され得る。また、本発明の更なる実施形態によれば、上述した全固体電池用固体電解質を含む全固体電池が提供される。
 ここで「全固体電池」とは、全固体リチウムイオン二次電池である。図2は、本発明の一実施形態に係る全固体電池の概略断面図である。全固体電池10は、正極層1と負極層3との間に固体電解質層2が配置された構造を有する。全固体電池10は、携帯電話、パソコン、自動車等をはじめとする各種機器において使用することができる。
 本発明の硫化物系固体電解質は、正極層1、負極層3および固体電解質層2のいずれか一層以上に、固体電解質として含まれてよい。正極層1または負極層3に本発明の硫化物系固体電解質が含まれる場合、本発明の硫化物系固体電解質と公知のリチウムイオン二次電池用正極活物質または負極活物質とを組み合わせて使用する。正極層1または負極層3に含まれる本発明の硫化物系固体電解質の量比は、特に制限されない。
 本発明の硫化物系固体電解質は単独で構成されてもよいし、必要に応じて、酸化物固体電解質(例えば、LiLaZr12)、硫化物系固体電解質(例えば、LiS-P)やその他の錯体水素化物固体電解質(例えば、LiBH、3LiBH-LiI)などを適宜組み合わせて使用してもよい。
 全固体電池は、上述した各層を成形して積層することによって作製されるが、各層の成形方法および積層方法については、特に制限されない。
 例えば、固体電解質および/または電極活物質を溶媒に分散させてスラリー状としたものをドクターブレードまたはスピンコート等により塗布し、それを圧延することにより製膜する方法;真空蒸着法、イオンプレーティング法、スパッタリング法、レーザーアブレーション法等を用いて製膜および積層を行う気相法;ホットプレスまたは温度をかけないコールドプレスによって粉末を成形し、それを積層していく加圧成形法等がある。
 本発明の硫化物系固体電解質は比較的柔らかいことから、加圧成形法によって各層を成形および積層して全固体電池を作製することが特に好ましい。加圧成形法としては、加温して行うホットプレスと加温しないコールドプレスとがあるが、コールドプレスでも十分に成形することができる。
 なお、本発明には、本発明の硫化物系固体電解質を加熱成形してなる成形体が包含される。該成形体は、全固体電池として好適に用いられる。また、本発明には、本発明の硫化物系固体電解質を加熱成形する工程を含む、全固体電池の製造方法が包含される。
 以下、実施例により本実施形態を更に詳細に説明するが、本実施形態はこれらの実施例に限定されるものではない。
(実施例1)
<溶液化工程1>
 アルゴン雰囲気下のグローブボックス内で、LiS:P:=1:1のモル比となるように、LiS(シグマ・アルドリッチ社製、純度99.8%)を152mg、およびP(シグマ・アルドリッチ社製、純度99%)を734mg量り取った。次に、(LiS+P)の濃度が10wt%となるようにアセトニトリル(和光純薬工業社製、超脱水グレード)8.0gに対して、LiS、Pの順に加え、室温下で3時間混合した。混合物は徐々に溶解し、Li-P-S均一溶液を得た。
<溶液化工程2>
 アルゴン雰囲気下のグローブボックス内で、LiS:SiS=0.5:1のモル比となるように、LiS(シグマ・アルドリッチ社製、純度99.8%)を4g、およびSiS(三津和化学社製)を16g量り取った。次に、(LiS+SiS)の濃度が3wt%となるようにアセトニトリル(和光純薬工業社製、超脱水グレード)610gに対して加え、室温下で24時間混合した。混合物は徐々に溶解したが、この段階では原料中の不純物が残存していた。
 得られた溶液をメンブランフィルター(PTFE、孔径1.0μm)を用いて濾過することで、ろ採として2.0g、ろ液(Li-Si-S均一溶液)として578g得られた。Li-Si-S均一溶液のICP分析を行った結果、Li/Si(モル比)は50.6/49.4であった。また、(LiS+SiS)の濃度は3.07wt%であった。
<溶液混合工程>
 Si:P=9:11のモル比となるように、Li-P-S均一溶液を8.85g、Li-Si-S均一溶液を20.34g混合し、3時間撹拌して均一混合溶液を調製した。
<スラリー化工程>
 得られた均一混合溶液中に、Pに対して6.27倍モルとなるようにLiSを672mg撹拌しながら加え、室温下で12時間混合してスラリー液を調製した。一連の操作は、アルゴン雰囲気下のグローブボックス内で実施した。なお、系内に加えた全ての原料のモル比は、LiS:P:SiS=6.27:1:1.64となった。
<乾燥工程>
 得られたスラリー液を、真空下、180℃で4時間乾燥させることで、溶媒を除去した。溶媒除去は溶液を撹拌しながら行った。その後、室温まで冷却して前駆体を得た。
<加熱処理工程>
 得られた前駆体をグローブボックス内でガラス製反応管に入れて、前駆体が大気に暴露しないように電気管状炉に設置した。反応管にアルゴン(G3グレード)を吹き込み、3時間かけて550℃まで昇温し、その後8時間550℃で焼成することにより、Li3.45Si0.450.55結晶を合成した。
(実施例2)
<溶液化工程1>
 アルゴン雰囲気下のグローブボックス内で、LiS:P:=1:1のモル比となるように、LiS(シグマ・アルドリッチ社製、純度99.8%)を142mg、およびP(シグマ・アルドリッチ社製、純度99%)を687mg量り取った。次に、(LiS+P)の濃度が10wt%となるようにアセトニトリル(和光純薬工業社製、超脱水グレード)7.5gに対して、LiS、Pの順に加え、室温下で3時間混合した。混合物は徐々に溶解し、Li-P-S均一溶液を得た。
<溶液化工程2>
 実施例1と同様に行い、Li-Si-S均一溶液を得た。
<溶液混合工程>
 Si:P=1:1のモル比となるように、Li-P-S均一溶液を8.29g、Li-Si-S均一溶液を23.30g混合して均一混合溶液を調製した。さらに、得られた均一混合溶液中のPに対して0.40倍モルのLiCl(シグマ・アルドリッチ社製、純度99.99%)51.9mgを撹拌しながら加え、室温下で3時間混合した。
<スラリー化工程>
 得られた均一混合溶液中に、Pに対して6.45倍モルとなるようにLiSを627mg撹拌しながら加え、室温下で12時間混合してスラリー液を調製した。一連の操作は、アルゴン雰囲気下のグローブボックス内で実施した。なお、系内に加えた全ての原料のモル比は、LiS:P:SiS:LiCl=6.45:1:2:0.40となった。
<乾燥工程>
 得られたスラリー液を、真空下、180℃で4時間乾燥させることで、溶媒を除去した。溶媒除去は溶液を撹拌しながら行った。その後、室温まで冷却して前駆体を得た。
<加熱処理工程>
 得られた前駆体をグローブボックス内でガラス製反応管に入れて、前駆体が大気に暴露しないように電気管状炉に設置した。反応管にアルゴン(G3グレード)を吹き込み、3時間かけて475℃まで昇温し、その後8時間475℃で焼成することにより、Li3.355Si0.5050.5053.9Cl0.1結晶を合成した。
(実施例3)
<スラリー化工程1>
 アルゴン雰囲気下のグローブボックス内で、LiS:P:=1:1のモル比となるように、LiS(シグマ・アルドリッチ社製、純度99.8%)を142mg、およびP(シグマ・アルドリッチ社製、純度99%)を687mg量り取った。次に、(LiS+P)の濃度が10wt%となるようにアセトニトリル(和光純薬工業社製、超脱水グレード)7.5gに対して、LiS、Pの順に加え、室温下で3時間混合した。混合物は徐々に溶解し、Li-P-S均一溶液を得た。次に、Pに対して2倍モルのLiSを加えて6時間撹拌し、LiPSの沈殿を発生させ、LiPS含有スラリー液を得た。
<溶液化工程>
 実施例1の溶液化工程2と同様に行い、Li-Si-S均一溶液を得た。
<スラリー化工程2>
 Si:P=1:1のモル比となるように、LiPS含有スラリー液を8.57g、Li-Si-S均一溶液を23.30g混合して混合スラリー液を調製した。さらに、得られた混合スラリー液中のPに対して0.40倍モルのLiCl(シグマ・アルドリッチ社製、純度99.99%)51.9mgを撹拌しながら加え、室温下で3時間混合した。
<スラリー化工程3>
 得られた混合スラリー液中に、Pに対して6.45倍モルとなるようにLiSを343mg撹拌しながら加え、室温下で12時間混合してスラリー液を調製した。一連の操作は、アルゴン雰囲気下のグローブボックス内で実施した。なお、系内に加えた全ての原料のモル比は、LiS:P:SiS:LiCl=6.45:1:2:0.40となった。
<乾燥工程>
 得られたスラリー液を、真空下、180℃で4時間乾燥させることで、溶媒を除去した。溶媒除去は溶液を撹拌しながら行った。その後、室温まで冷却して前駆体を得た。
<加熱処理工程>
 得られた前駆体をグローブボックス内でガラス製反応管に入れて、前駆体が大気に暴露しないように電気管状炉に設置した。反応管にアルゴン(G3グレード)を吹き込み、3時間かけて475℃まで昇温し、その後8時間475℃で焼成することにより、Li3.355Si0.5050.5053.9Cl0.1結晶を合成した。
(比較例1)
<溶液化工程>
 実施例1の溶液化工程1と同様に行い、Li-P-S均一溶液を得た。
<スラリー化工程>
 得られたLi-P-S均一溶液中のPに対して1.64倍モルとなるようにSiS(三津和化学社製)498mgを撹拌しながら加え、室温下で12時間混合した。更に上記均一溶液中のPに対して6.27倍モルとなるようにLiSを799mg撹拌しながら加え、室温下で24時間混合してスラリー液を得た。一連の操作は、アルゴン雰囲気下のグローブボックス内で実施した。なお、系内に加えた全ての原料のモル比は、LiS:P:SiS=6.27:1:1.64となった。
<乾燥工程>
 得られたスラリー液を、真空下、180℃で2時間乾燥させることで、溶媒を除去した。溶媒除去は溶液を撹拌しながら行った。その後、室温まで冷却して前駆体を得た。
<加熱処理工程>
 得られた前駆体をグローブボックス内でガラス製反応管に入れて、前駆体が大気に暴露しないように電気管状炉に設置した。反応管にアルゴン(G3グレード)を吹き込み、3時間かけて550℃まで昇温し、その後8時間550℃で焼成することにより、Li3.45Si0.450.55結晶を合成した。
<X線回折測定>
 実施例1~3、比較例1で得られた硫化物系固体電解質の粉末について、Ar雰囲気下、室温(25℃)にて、X線回折測定(PANalytical社製「X’Pert3 Powder」、CuKα:λ=1.5405Å)を実施した。
 実施例1~3、比較例1で得られた硫化物系固体電解質のX線回折測定の結果を図3に示す。
 図3に示したとおり、実施例1~3では、少なくとも、2θ=20.18°±0.50°、20.44°±0.50°、26.96°±0.50°、及び29.58°±0.50°に回折ピークが観測され、このパターンはICSDデータベースのLi10GeP12と一致した。
<リチウムイオン伝導度測定>
 実施例1~3および比較例1で得られた硫化物系固体電解質を一軸成型(420MPa)に供し、厚さ約1mm、直径10mmのディスクを得た。全固体電池評価セル(宝泉株式会社製)を用い、室温(25℃)において、インジウム電極を利用した四端子法による交流インピーダンス測定(Solartron社製「SI1260 IMPEDANCE/GAIN―PHASE ANALYZER」)を行い、リチウムイオン伝導度を算出した。
 具体的には、サンプルを25℃に設定した恒温槽に入れて30分間保持した後にリチウムイオン伝導度を測定した。測定周波数範囲は0.1Hz~1MHz、振幅は50mVとした。リチウムイオン伝導度の測定結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 以下では、実施例1の<溶液化工程2>で行った濾過後のろ採とろ液(Li-Si-S均一溶液)について不純物が取り除けているかどうかを確認した。
 ろ液については、<溶液化工程2>で得られたLi-Si-S均一溶液の一部を採取し、真空下、200℃で2時間乾燥させることで、溶媒を除去し白色の固体を得て分析した。
<SEM-EDX測定>
 得られたろ採および白色固体について、真空条件下、室温(25℃)にて、SEM-EDX測定(日立ハイテクノロジーズ社製走査電子顕微鏡「S-3400N」加速電圧:表面観察時5.0kV, EDX時15.0 kV)を実施した。測定結果を表2、表3に示す。表2、表3に示したとおり、ろ採に比べて、ろ液乾燥品である白色固体では酸素量が少なくなっており、濾過により酸素含有化合物が取り除けたと考えられる。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
<X線回折測定>
 得られたろ採および白色固体について、Ar雰囲気下、室温(25℃)にて、X線回折測定(PANalytical社製「X’Pert3 Powder」、CuKα:λ=1.5405Å)を実施した。
 得られたろ採および白色固体のX線回折測定の結果を図4に示す。図4に示したとおり、ろ採では不純物である金属Siのピークが見えた。一方で、ろ液乾燥品の白色固体では不純物ピークは見えなかったことから、濾過により金属Siが取り除けたと考えられる。
1 正極層
2 固体電解質層
3 負極層
10 全固体電池
 

Claims (13)

  1.  LiSとPとをLiS/P=0.7~1.5のモル比となるように有機溶媒中で混合することによってLi-P-S均一溶液を調製する溶液化工程1と、
     有機溶媒中に少なくともリチウム(Li)元素、ケイ素(Si)元素、及び硫黄(S)元素を含むLi-Si-S均一溶液を調製する溶液化工程2と、
     前記Li-P-S均一溶液と前記Li-Si-S均一溶液とを混合して均一混合溶液を調製する溶液混合工程と、
     前記均一混合溶液とLiSとを混合し、スラリー液を調製するスラリー化工程と、
     前記スラリー液から前記有機溶媒を除去して前駆体を得る乾燥工程と、
     前記前駆体を200~700℃にて加熱処理して硫化物系固体電解質を得る加熱処理工程と、を含むことを特徴とする硫化物系固体電解質の製造方法。
  2.  前記溶液化工程2が、有機溶媒中にLiS及びSiSを添加して混合しLi-Si-S均一溶液を調製することを含む、請求項1に記載の硫化物系固体電解質の製造方法。
  3.  前記溶液化工程2が、有機溶媒中にLiS及びSiSを添加して混合し、該混合物を濾過することによってLi-Si-S均一溶液を調製することを含む、請求項1または2に記載の硫化物系固体電解質の製造方法。
  4.  前記溶液化工程1及び前記溶液化工程2における有機溶媒が、テトラヒドロフラン、アセトニトリル、酢酸エチル、及び酢酸メチルからなる群より選ばれる少なくとも1種である、請求項1から3のいずれかに記載の硫化物系固体電解質の製造方法。
  5.  前記溶液混合工程が、更に、ハロゲン化リチウムを添加して均一混合溶液を調製することを含む、請求項1から4のいずれかに記載の硫化物系固体電解質の製造方法。
  6.  LiPS含有スラリー液を調製するスラリー化工程1と、
     有機溶媒中に少なくともリチウム(Li)元素、ケイ素(Si)元素、及び硫黄(S)元素を含むLi-Si-S均一溶液を調製する溶液化工程と、
     前記LiPS含有スラリー液と前記Li-Si-S均一溶液とを混合して混合スラリー液を調製するスラリー化工程2と、
     前記混合スラリー液とLiSとを混合し、スラリー液を調製するスラリー化工程3と、
     前記スラリー化工程3で得られたスラリー液から前記有機溶媒を除去して前駆体を得る乾燥工程と、
     前記前駆体を200~700℃にて加熱処理して硫化物系固体電解質を得る加熱処理工程と、を含むことを特徴とする硫化物系固体電解質の製造方法。
  7.  前記スラリー化工程1が、LiSとPとをLiS/P=0.7~1.5のモル比となるように有機溶媒中で混合することによってLi-P-S均一溶液を調製し、該Li-P-S均一溶液と、LiSとを混合してLiPS含有スラリー液を調製することを含む、請求項6に記載の硫化物系固体電解質の製造方法。
  8.  前記溶液化工程が、有機溶媒中にLiS及びSiSを添加して混合しLi-Si-S均一溶液を調製することを含む、請求項6または7に記載の硫化物系固体電解質の製造方法。
  9.  前記溶液化工程が、有機溶媒中にLiS及びSiSを添加して混合し、該混合物を濾過することによってLi-Si-S均一溶液を調製することを含む、請求項6から8のいずれかに記載の硫化物系固体電解質の製造方法。
  10.  前記溶液化工程における有機溶媒が、テトラヒドロフラン、アセトニトリル、酢酸エチル、及び酢酸メチルからなる群より選ばれる少なくとも1種である、請求項6から9のいずれかに記載の硫化物系固体電解質の製造方法。
  11.  前記スラリー化工程2が、更に、ハロゲン化リチウムを添加して混合スラリー液を調製することを含む、請求項6から10のいずれかに記載の硫化物系固体電解質の製造方法。
  12.  前記乾燥工程における温度が、60~280℃である、請求項1から11のいずれかに記載の硫化物系固体電解質の製造方法。
  13.  前記硫化物系固体電解質が、LGPS系固体電解質を含有し、X線回折(CuKα:λ=1.5405Å)において、少なくとも、2θ=20.18°±0.50°、20.44°±0.50°、26.96°±0.50°、及び29.58°±0.50°の位置にピークを有する、請求項1から12のいずれかに記載の硫化物系固体電解質の製造方法。
     
     
     
PCT/JP2020/007280 2019-03-05 2020-02-25 硫化物系固体電解質の製造方法 WO2020179523A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
AU2020231576A AU2020231576A1 (en) 2019-03-05 2020-02-25 Method for producing sulfide solid electrolyte
PL20765973.1T PL3936473T3 (pl) 2019-03-05 2020-02-25 Sposób wytwarzania siarczkowego elektrolitu stałego
EP20765973.1A EP3936473B1 (en) 2019-03-05 2020-02-25 Method for producing sulfide solid electrolyte
KR1020217028953A KR20210134664A (ko) 2019-03-05 2020-02-25 황화물계 고체 전해질의 제조 방법
BR112021014519-2A BR112021014519A2 (pt) 2019-03-05 2020-02-25 Método para produzir um eletrólito sólido à base de sulfeto
US17/434,876 US20220169509A1 (en) 2019-03-05 2020-02-25 Method for producing sulfide solid electrolyte
CN202080017864.8A CN113508089B (zh) 2019-03-05 2020-02-25 硫化物系固体电解质的制造方法
JP2021503976A JPWO2020179523A1 (ja) 2019-03-05 2020-02-25
CA3130052A CA3130052A1 (en) 2019-03-05 2020-02-25 Method for producing sulfide solid electrolyte

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-039496 2019-03-05
JP2019039496 2019-03-05

Publications (1)

Publication Number Publication Date
WO2020179523A1 true WO2020179523A1 (ja) 2020-09-10

Family

ID=72337252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007280 WO2020179523A1 (ja) 2019-03-05 2020-02-25 硫化物系固体電解質の製造方法

Country Status (11)

Country Link
US (1) US20220169509A1 (ja)
EP (1) EP3936473B1 (ja)
JP (1) JPWO2020179523A1 (ja)
KR (1) KR20210134664A (ja)
CN (1) CN113508089B (ja)
AU (1) AU2020231576A1 (ja)
BR (1) BR112021014519A2 (ja)
CA (1) CA3130052A1 (ja)
HU (1) HUE062863T2 (ja)
PL (1) PL3936473T3 (ja)
WO (1) WO2020179523A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112397775A (zh) * 2020-10-27 2021-02-23 广东东邦科技有限公司 Li3PS4固态电解质、固态混合电解质、全固态锂硫电池及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114709471A (zh) * 2022-03-29 2022-07-05 上海屹锂新能源科技有限公司 一种硫化物固态电解质的制备方法
WO2023191416A1 (ko) * 2022-03-31 2023-10-05 주식회사 솔리비스 황화물계 고체 전해질의 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5187703B2 (ja) 2008-05-13 2013-04-24 国立大学法人東北大学 固体電解質、その製造方法、および固体電解質を備える二次電池
JP2015232965A (ja) * 2014-06-10 2015-12-24 三星電子株式会社Samsung Electronics Co.,Ltd. 硫化物固体電解質、および硫化物固体電解質の製造方法
WO2018173939A1 (ja) * 2017-03-22 2018-09-27 三菱瓦斯化学株式会社 Lgps系固体電解質の製造方法
JP2020027780A (ja) * 2018-08-16 2020-02-20 三菱瓦斯化学株式会社 Lgps系固体電解質の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5673760B1 (ja) * 2013-09-13 2015-02-18 トヨタ自動車株式会社 硫化物固体電解質の製造方法
JP6044588B2 (ja) * 2014-05-15 2016-12-14 トヨタ自動車株式会社 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP6222134B2 (ja) * 2015-02-25 2017-11-01 トヨタ自動車株式会社 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
WO2017159666A1 (ja) * 2016-03-14 2017-09-21 出光興産株式会社 固体電解質の製造方法
KR20180055086A (ko) * 2016-11-16 2018-05-25 현대자동차주식회사 습식공정을 통한 황화물계 고체전해질의 제조방법
JP6589940B2 (ja) * 2017-06-06 2019-10-16 トヨタ自動車株式会社 硫化物固体電解質材料の製造方法
CN107369828B (zh) * 2017-08-20 2019-12-31 深圳市荣利伟业科技有限公司 一种石墨烯高能电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5187703B2 (ja) 2008-05-13 2013-04-24 国立大学法人東北大学 固体電解質、その製造方法、および固体電解質を備える二次電池
JP2015232965A (ja) * 2014-06-10 2015-12-24 三星電子株式会社Samsung Electronics Co.,Ltd. 硫化物固体電解質、および硫化物固体電解質の製造方法
WO2018173939A1 (ja) * 2017-03-22 2018-09-27 三菱瓦斯化学株式会社 Lgps系固体電解質の製造方法
JP2020027780A (ja) * 2018-08-16 2020-02-20 三菱瓦斯化学株式会社 Lgps系固体電解質の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ACTA CRYST., vol. B71, 2015, pages 727 - 736
NATURE ENERGY, vol. 1, 2016

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112397775A (zh) * 2020-10-27 2021-02-23 广东东邦科技有限公司 Li3PS4固态电解质、固态混合电解质、全固态锂硫电池及其制备方法

Also Published As

Publication number Publication date
EP3936473A4 (en) 2022-04-20
PL3936473T3 (pl) 2023-09-25
CN113508089B (zh) 2024-05-03
AU2020231576A1 (en) 2021-09-09
US20220169509A1 (en) 2022-06-02
CA3130052A1 (en) 2020-09-10
EP3936473B1 (en) 2023-05-31
TW202036973A (zh) 2020-10-01
CN113508089A (zh) 2021-10-15
HUE062863T2 (hu) 2023-12-28
EP3936473A1 (en) 2022-01-12
BR112021014519A2 (pt) 2021-09-28
KR20210134664A (ko) 2021-11-10
JPWO2020179523A1 (ja) 2020-09-10

Similar Documents

Publication Publication Date Title
JP7308147B2 (ja) Lgps系固体電解質の製造方法
US11799128B2 (en) LGPS-based solid electrolyte and production method
JP6996553B2 (ja) Lgps系固体電解質の製造方法
WO2020179523A1 (ja) 硫化物系固体電解質の製造方法
JP6984652B2 (ja) Li3PS4を有する固体電解質の製造方法
WO2021145248A1 (ja) Snを含む硫化物系固体電解質の製造方法
RU2804507C2 (ru) Способ получения сульфидного твердого электролита
JP7400491B2 (ja) Lgps系固体電解質の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20765973

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503976

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021014519

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 3130052

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020231576

Country of ref document: AU

Date of ref document: 20200225

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112021014519

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210723

WWE Wipo information: entry into national phase

Ref document number: 2021123574

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2020765973

Country of ref document: EP

Effective date: 20211005