WO2020179241A1 - 構造物診断装置、構造物診断方法、及びコンピュータ読み取り可能な記録媒体 - Google Patents

構造物診断装置、構造物診断方法、及びコンピュータ読み取り可能な記録媒体 Download PDF

Info

Publication number
WO2020179241A1
WO2020179241A1 PCT/JP2020/001377 JP2020001377W WO2020179241A1 WO 2020179241 A1 WO2020179241 A1 WO 2020179241A1 JP 2020001377 W JP2020001377 W JP 2020001377W WO 2020179241 A1 WO2020179241 A1 WO 2020179241A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
index
shape information
information
spectrum
Prior art date
Application number
PCT/JP2020/001377
Other languages
English (en)
French (fr)
Inventor
翔平 木下
茂 葛西
裕 清川
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2021503447A priority Critical patent/JPWO2020179241A1/ja
Priority to US17/435,482 priority patent/US20220137003A1/en
Publication of WO2020179241A1 publication Critical patent/WO2020179241A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4427Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0232Glass, ceramics, concrete or stone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays

Definitions

  • the present invention relates to a structure diagnosing device and a structure diagnosing method for diagnosing a structure, and further relates to a computer-readable recording medium recording a program for realizing these.
  • Patent Document 1 describes the relationship between changes in the internal and external temperatures of a concrete building and daily fluctuations in the natural frequency by calculating the natural frequency (natural frequency) using constant tremors generated in the concrete building. Discloses a method of diagnosing the soundness of a concrete building, which is a method of diagnosing the soundness of a concrete building.
  • Patent Document 2 discloses a diagnostic system for a large building. According to the diagnostic system, the natural frequency of a large building is calculated, compared with the natural frequency of a large building when it is healthy, and whether or not there is an abnormality in the large building is diagnosed based on the comparison result. To do.
  • An example of an object of the present invention is to provide a structure diagnostic apparatus, a structure diagnostic method, and a computer-readable recording medium capable of diagnosing the state of a structure having a small change in natural frequency.
  • the structure diagnostic device in one aspect of the present invention is A natural vibration extraction unit that acquires vibration information representing vibration generated in the structure from a plurality of sensors provided in the structure and extracts natural vibration using the vibration information. Extracting spectrum shape information representing the shape of the spectrum using the natural vibration, a spectrum shape extraction unit, An index calculation unit that calculates an index indicating the relationship between the spectrum shape information and the reference spectrum shape information that is a preset reference. A state estimation unit that estimates the state of the structure based on the index, It is characterized by having.
  • the structure diagnosis method From a plurality of sensors provided in the structure, to obtain vibration information representing the vibration generated in the structure, to extract the natural vibration using the vibration information, natural vibration extraction step, Extracting spectrum shape information representing the shape of the spectrum using the natural vibration, a spectrum shape information extraction step, The calculated spectrum shape information, and calculates an index representing the relationship between the reference spectrum shape information that is a preset reference, a calculating step, Estimating the state of the structure based on the index, an estimating step, It is characterized by having.
  • a computer-readable recording medium having a program according to one aspect of the present invention, On the computer, From a plurality of sensors provided in the structure, to obtain vibration information representing the vibration generated in the structure, to extract the natural vibration using the vibration information, natural vibration extraction step, Extracting spectrum shape information representing the shape of the spectrum using the natural vibration, a spectrum shape information extraction step, The calculated spectrum shape information, and calculates an index representing the relationship between the reference spectrum shape information that is a preset reference, a calculating step, Estimating the state of the structure based on the index, an estimating step, It is characterized by recording a program including an instruction to execute.
  • FIG. 1 is a diagram showing an example of a structure diagnostic device.
  • FIG. 2 is a diagram showing an example of a system having a structure diagnostic device.
  • FIG. 3 is a diagram showing an example of a structure.
  • FIG. 4 is a diagram for explaining the spectrum shape.
  • FIG. 5 is a diagram showing an example of the spectral shape.
  • FIG. 6 is a diagram showing an example of the spectrum shape of vertical vibration.
  • FIG. 7 is a diagram showing an example of the operation of the structure diagnostic device.
  • FIG. 8 is a diagram illustrating an example of a computer that realizes the structure diagnostic device.
  • FIG. 1 is a diagram showing an example of a structure diagnostic device.
  • the structure diagnosis device shown in FIG. 1 is a device for diagnosing the state of a structure in which the change in natural frequency is small. Further, as shown in FIG. 1, the structure diagnostic device 1 has a natural vibration extraction unit 2, a spectrum shape extraction unit 3, an index calculation unit 4, and a state estimation unit 5.
  • the natural vibration extraction unit 2 acquires vibration information representing the vibration generated in the structure from a plurality of sensors provided in the structure, and extracts the natural vibration using the vibration information.
  • the spectrum shape extraction unit 3 calculates the spectrum shape information indicating the shape of the spectrum using the natural vibration.
  • the index calculation unit 4 calculates an index indicating the relationship between the spectrum shape information and the reference spectrum shape information that serves as a preset reference.
  • the state estimation unit 5 estimates the state of the structure based on the index.
  • the structure is, for example, a hardened material (concrete, mortar, or the like) solidified by using at least sand, water, or cement, or a metal, or a structure constructed by using them. Further, the structure is the entire building or a part thereof. Further, the structure is the whole machine or a part thereof.
  • the structure is based on an index showing the relationship between the spectral shape information representing the shape of the spectrum using natural vibration and the reference spectral shape information as a reference set in advance. Since the state is estimated, the state of the structure with a small change in the natural frequency can be diagnosed.
  • FIG. 2 is a diagram showing an example of a system having a structure diagnostic device.
  • the system including the structure diagnostic device 1 includes the structure diagnostic device 1, a plurality of sensors 21 (21a to 21n), and an output device 22. Further, the structure diagnostic device 1 has a collection unit 23 in addition to the natural vibration extraction unit 2, the spectrum shape extraction unit 3, the index calculation unit 4, and the state estimation unit 5. Furthermore, the natural vibration extraction unit 2 has a damping free vibration setting unit 24 and a natural frequency extraction unit 25.
  • the structure 20 is, for example, a structure such as a floor slab of a bridge.
  • the members forming the structure 20 are not limited to the floor slab.
  • the sensor 21 is attached to the structure 20, measures at least the magnitude of vibration of the structure 20, and transmits information indicating the measured magnitude of vibration to the structure diagnostic device 1.
  • a triaxial acceleration sensor, a fiber sensor, or the like can be considered.
  • the plurality of sensors 21a to 21n are attached to the structure 20 as shown in FIG. 2, and the acceleration is measured at the position where each sensor 21 is attached. Subsequently, each of the sensors 21a to 21n transmits a signal having the measured acceleration information to the collecting unit 23 of the structure diagnostic device 1. Wired communication, wireless communication, or the like is used for the communication between the sensor 21 and the collection unit 23.
  • the output device 22 acquires the output information converted into a format that can be output by the output information generation unit 26, and outputs the generated image and sound based on the output information.
  • the output device 22 is, for example, an image display device using a liquid crystal, an organic EL (Electro Luminescence), or a CRT (Cathode Ray Tube). Further, the image display device may include an audio output device such as a speaker.
  • the output device 22 may be a printing device such as a printer. The output information will be described later.
  • FIG. 3 is a diagram showing an example of the structure.
  • FIG. 4 is a diagram for explaining the spectrum shape.
  • FIG. 5 is a diagram showing an example of the spectrum shape.
  • FIG. 6 is a diagram showing an example of the spectral shape of longitudinal vibration.
  • the bridge shown in FIG. 3 causes the structure 20 to vibrate one or more times by running the vehicle 30 a plurality of times from the approach side to the exit side on the structure 20 (floor slab), for example. Further, in the example of FIG. 3, when the vehicle 30 passes through the joint P, a shock is applied to the structure 20 with the joint P as a fulcrum, and the structure 20 vibrates. In addition, 31 in FIG. 3 has shown the damaged part.
  • the vehicle 30 is a device used to give vibration to the structure 20.
  • the device that applies vibration is not limited to the vehicle 30.
  • the vibration applying device may be an exciter prepared in advance.
  • vibration may be applied by dropping a weight prepared in advance.
  • the method is not limited to the above method.
  • the collecting unit 23 acquires information on the acceleration measured by the sensor 21. Specifically, the collection unit 23 receives a signal including information on acceleration measured by each of the sensors 21a to 21n attached to the structure 20.
  • the natural vibration extraction unit 2 acquires vibration information representing the vibration generated in the structure 20 from a plurality of sensors 21 provided in the structure 20, and extracts the natural vibration using the acquired vibration information.
  • the natural vibration has information related to the natural vibration such as the natural frequency.
  • the natural vibration is, for example, primary natural vibration.
  • the primary natural vibration is the natural vibration having the smallest natural frequency, that is, the lowest vibration frequency.
  • the natural vibration extraction unit 2 extracts the natural vibration corresponding to the longitudinal vibration as the natural vibration.
  • the longitudinal vibration is, for example, an expansion / contraction motion generated in the longitudinal direction (arrows 32 at both ends) of the structure 20 when a tensile force or a compressive force is applied to the structure 20 as shown in FIG. ..
  • the natural vibration extraction unit 2 calculates the natural frequency using the damping free vibration setting unit 24 and the natural frequency extraction unit 25 shown in FIG.
  • the damping free vibration setting unit 24 sets a damping free vibration section for each piece of vibration information collected from each sensor 21. Specifically, the damping free vibration setting unit 24 acquires, from the collection unit 23, vibration information indicating the acceleration measured by each of the sensors 21a to 21n.
  • the damping free vibration setting unit 24 determines whether or not the acceleration measured by the sensor 21n exceeds the threshold Th1.
  • the damping free vibration setting unit 24 includes a section included in the time from the time when the acceleration exceeds the threshold Th1 (start date and time ts) to the time when a predetermined time elapses (end date and time te). Is the damping free vibration section.
  • the damping free vibration setting unit 24 also sets the damping free vibration section for the vibration information measured by each of the sensors 21a to 21m.
  • the natural frequency extraction unit 25 extracts the natural frequency based on the selected damping free vibration. Specifically, the natural frequency extraction unit 25 converts the amplitude information (acceleration) from the time domain to the frequency domain (for example, Fourier transform) in the damping free vibration section set for each of the sensors 21a to 21n. ..
  • the natural frequency extraction unit 25 extracts the natural frequency fc by using the following extraction method 1 or extraction method 2.
  • the natural frequency extraction unit 25 extracts the frequency (natural frequency) at which the amplitude is equal to or greater than a predetermined value for each of the sensors 21a to 21n.
  • the frequency at which the amplitude is equal to or greater than a predetermined value is, for example, a frequency at which the amplitude has a maximum value, a maximum value, or a peak value.
  • the natural frequency extraction unit 25 for example, the average frequency of the natural frequencies of all the sensors 21, the average frequency of the natural frequencies of two or more preselected sensors 21, or the natural frequency of the preselected sensors 21.
  • the frequency is defined as the natural frequency fc.
  • the natural frequency extraction unit 25 calculates the representative spectrum by combining the spectra of all the sensors 21 or the spectra of two or more sensors 21 selected in advance.
  • the compounding means for example, extracting the maximum value of the spectrum amplitude of all the sensors 21 or two or more preselected sensors 21 at each frequency.
  • the natural frequency extraction unit 25 extracts a frequency (natural frequency) at which the amplitude of the representative spectrum is equal to or higher than a predetermined value and sets it as a natural frequency fc.
  • the frequency at which the amplitude is equal to or higher than a predetermined value is, for example, a frequency at which the amplitude has a maximum value, a maximum value, or a peak value.
  • the method of obtaining the natural frequency fc is not limited to the method described above.
  • the spectrum shape extraction unit 3 extracts the spectrum shape information representing the spectrum shape using the natural vibration. Specifically, the spectrum shape extraction unit 3 first acquires the natural frequency fc extracted by the natural frequency extraction unit 25.
  • the spectrum shape extraction unit 3 sets a frequency band including the natural frequency fc. Then, the spectrum shape extraction unit 3 calculates the measurement spectrum by using the following calculation method 1 or calculation method 2.
  • the spectrum shape extraction unit 3 calculates the measured spectrum by combining the spectra of all the sensors 21 or the spectra of two or more sensors 21 selected in advance.
  • the combination means, for example, extracting the maximum amplitude value of the spectrum of all the sensors 21 or two or more sensors 21 selected in advance at each frequency.
  • the spectrum shape extraction unit 3 uses the spectrum of the sensor 21 selected in advance as the measurement spectrum.
  • the spectrum shape extraction unit 3 generates spectrum shape information used to represent the spectrum shape from the measurement spectrum by using the amplitude and phase of each frequency within the set frequency band.
  • the spectrum shape will be described with reference to FIG.
  • the spectrum of FIG. 4 is a measurement spectrum.
  • the spectrum shape extraction unit 3 generates spectrum shape information using the amplitude and phase of each frequency of the measured spectrum in the set frequency bands f1 to fn.
  • the spectrum shape information can be represented by a vector as shown in Equation 1, for example.
  • the spectral shape is represented by the solid line in FIG.
  • the spectrum shape shown by the broken line in FIG. 5 is obtained. That is, since the new vibration component 40 is generated at a position different from the spectrum shape before the damage, the spectrum shape is different from that before the damage.
  • a new vibration component 50 corresponding to the longitudinal vibration is generated at a position different from the spectral shape before the damage. That is, the generation of a new vibration component changes the spectral shape.
  • the index calculation unit 4 calculates an index indicating the relationship between the spectrum shape information and the reference spectrum shape information. Specifically, the index calculation unit 4 calculates the index using (1) inter-vector distance, (2) inter-vector similarity, or (3) fitness function.
  • the index calculation unit 4 calculates the inter-vector distance between the spectrum shape information and the reference spectrum shape information and uses it as an index.
  • the vector-to-vector distance is, for example, a weighted Minkowski distance, a Euclidean distance, a Chebychev distance, or the like.
  • the weighted Minkowski distance d (q) (a, b) is calculated using the formula shown in Formula 2.
  • the index calculation unit 4 calculates the vector similarity between the spectrum shape information and the reference spectrum shape information and uses it as an index. A method using the similarity between vectors is shown in Expressions 5 and 6.
  • Mathematical Expression 5 uses a value obtained by subtracting the general similarity between vectors (cosine similarity, etc.) from a constant as the dissimilarity d(a, b).
  • Mathematical formula 5 uses an exponential function with a power exponent of a value obtained by multiplying the similarity between general vectors by -1 as the dissimilarity d(a, b).
  • the index calculation unit 4 calculates an index based on the information on the fitting function adapted using the spectrum shape information and the information on the reference fitting function adapted using the reference spectrum shape information.
  • the index calculation unit 4 first calculates a fitting function that fits the spectrum shape.
  • the adaptive function for example, (A) a frequency response function of a one-degree-of-freedom damping system, (B) a polynomial function, or the like is used.
  • A a frequency response function of a one-degree-of-freedom damping system
  • B a polynomial function, or the like is used.
  • the index calculation unit 4 calculates the coefficient of the matching function.
  • the coefficient co of the adaptive function may be calculated using Equation 7.
  • the coefficient co of the adaptive function may be calculated using Equation 8.
  • the coefficient co of the adaptive function may be calculated using Equation 9.
  • the index calculation unit 4 calculates the inter-vector distance or the inter-vector similarity by using the coefficient vector of the adaptive function and the standard coefficient vector of the standard adaptive function.
  • the coefficient vector is generated using the coefficient co described above.
  • the reference coefficient vector is generated using the coefficient co′ described above.
  • the distance between vectors can be, for example, a weighted Minkowski distance, a Euclidean distance, a Chebychev distance, or the like.
  • the inter-vector similarity is, for example, the value obtained by subtracting the general vector-to-vector similarity (cosine similarity, etc.) from the constant, and the value obtained by multiplying the general vector-to-vector similarity by -1 as the exponential. Exponential function etc. can be considered.
  • the adaptation function is not limited to the above function.
  • the index calculation method is not limited to the method described above.
  • the state estimation unit 5 estimates the state of the structure 20 based on the index calculated by the index calculation unit 4. Specifically, the state estimation unit 5 first obtains an index calculated from the index calculation unit 4 using (1) inter-vector distance, (2) inter-vector similarity, or (3) matching function. To do. Subsequently, the state estimation unit 5 estimates whether or not the structure 20 is damaged, using the acquired index and the preset threshold Th2.
  • the spectrum shape is different from the spectrum shape before damage (reference spectrum shape). That is, the index corresponding to the spectrum shape after damage and the index corresponding to the reference spectrum shape have different values.
  • the index is the threshold value Th21 or more, the structure It is determined that the object 20 is damaged.
  • the similarity between vectors is used as an index
  • the greater the difference between the spectral shape after damage and the reference spectral shape the smaller the similarity, that is, the larger the dissimilarity.
  • the index corresponding to the degree of similarity is equal to or greater than the threshold Th22, it is determined that the structure 20 is damaged.
  • the threshold value Th2 (Th21, Th22, Th3), for example, the threshold value corresponding to the index is obtained by experiments and simulations and stored in the storage unit in advance.
  • the state estimation unit 5 may estimate the state (type of damage) of the structure 20 by using a learning model generated by machine learning or the like.
  • the learning model is generated by performing supervised learning by inputting the distance or the degree of similarity and the type of damage associated with them.
  • the output information generation unit 26 generates output information used to output the diagnosis result of the structure 20, the index, the spectral shape, the natural vibration shape, or two or more of them information to the output device 22. Then, the output information generation unit 26 outputs the generated output information to the output device 22.
  • FIG. 7 is a diagram showing an example of the operation of the structure diagnostic apparatus.
  • FIGS. 2 to 6 will be referred to as appropriate.
  • the structure diagnosis method is implemented by operating the structure diagnosis device. Therefore, the description of the structure diagnosis method according to the present embodiment will be replaced with the following description of the operation of the structure diagnosis device.
  • the natural vibration extraction unit 2 acquires vibration information representing the vibration generated in the structure 20 from a plurality of sensors 21 provided in the structure 20 (step A1).
  • the natural frequency is extracted using the vibration information (step A2).
  • the spectrum shape extraction unit 3 extracts the spectrum shape information indicating the shape of the spectrum using the natural frequency (step A3).
  • the index calculation unit 4 calculates an index indicating the relationship between the spectrum shape information and the reference spectrum shape information that is a reference set in advance (step A4). Then, the state estimation part 5 estimates the state of the structure 20 based on an index (step A5). The output information generation unit 26 generates output information and outputs it to the output device 22 (step A6).
  • step A1 first, the collection unit 23 acquires information on acceleration measured by each of the sensors 21. Specifically, in step A1, the collecting unit 23 receives a signal having acceleration information measured by each of the sensors 21a and 21n attached to the structure 20.
  • step A2 the natural vibration extraction unit 2 acquires vibration information representing the vibration generated in the structure 20 from the plurality of sensors 21 provided in the structure 20, and calculates the natural vibration using the acquired vibration information.
  • the natural vibration is, for example, a primary natural vibration. Further, the natural vibration extraction unit 2 extracts the natural vibration corresponding to the longitudinal vibration as the natural vibration.
  • the natural vibration extraction unit 2 calculates the natural frequency of the natural vibrations by using the damping free vibration setting unit 24 and the natural frequency extraction unit 25.
  • step A2 the damping free vibration setting unit 24 first sets the damping free vibration section for each of the vibration information collected from each of the sensors 21. Specifically, the damping free vibration setting unit 24 acquires vibration information representing the acceleration measured by each of the sensors 21a to 21n from the collection unit 23.
  • the damping free vibration setting unit 24 determines whether or not the acceleration measured by the sensor 21n exceeds the threshold Th1.
  • the damping free vibration setting unit 24 includes a section included in the time from the time when the acceleration exceeds the threshold Th1 (start date and time ts) to the time when a predetermined time elapses (end date and time te). Is the damping free vibration section.
  • the damping free vibration setting unit 24 also sets the damping free vibration section for the vibration information measured by each of the sensors 21a to 21m.
  • the natural frequency extraction unit 25 extracts the natural frequency based on the selected damping free vibration. Specifically, the natural frequency extraction unit 25 converts the amplitude information (acceleration) from the time domain to the frequency domain (for example, Fourier transform) in the damping free vibration section set for each of the sensors 21a to 21n. ..
  • step A2 the natural frequency extraction unit 25 extracts the natural frequency fc by using the following extraction method 1 or extraction method 2.
  • the natural frequency extraction unit 25 extracts the frequency (natural frequency) at which the amplitude is equal to or greater than a predetermined value for each of the sensors 21a to 21n.
  • the frequency at which the amplitude is equal to or greater than a predetermined value is, for example, a frequency at which the amplitude has a maximum value, a maximum value, or a peak value.
  • the natural frequency extraction unit 25 for example, the average frequency of the natural frequencies of all the sensors 21, the average frequency of the natural frequencies of two or more preselected sensors 21, or the natural frequency of the preselected sensors 21.
  • the frequency is defined as the natural frequency fc.
  • the natural frequency extraction unit 25 calculates the representative spectrum by combining the spectra of all the sensors 21 or the spectra of two or more sensors 21 selected in advance.
  • the compounding means for example, extracting the maximum value of the spectrum amplitude of all the sensors 21 or two or more preselected sensors 21 at each frequency.
  • the natural frequency extraction unit 25 extracts a frequency (natural frequency) at which the amplitude of the representative spectrum is equal to or higher than a predetermined value and sets it as a natural frequency fc.
  • the frequency at which the amplitude is equal to or higher than a predetermined value is, for example, a frequency at which the amplitude has a maximum value, a maximum value, or a peak value.
  • the method of obtaining the natural frequency fc is not limited to the method described above.
  • step A3 the spectrum shape extracting unit 3 extracts the spectrum shape information indicating the shape of the spectrum using the natural vibration. Specifically, in step A3, the spectral shape extraction unit 3 first acquires the natural frequency generated from the natural frequency extraction unit 25.
  • the spectrum shape extraction unit 3 sets a frequency band including the natural frequency fc. Then, the spectrum shape extraction unit 3 calculates the measurement spectrum by using the following calculation method 1 or calculation method 2.
  • the spectrum shape extraction unit 3 calculates the measured spectrum by combining the spectra of all the sensors 21 or the spectra of two or more sensors 21 selected in advance.
  • the combination means, for example, extracting the maximum amplitude value of the spectrum of all the sensors 21 or two or more sensors 21 selected in advance at each frequency.
  • the spectrum shape extraction unit 3 uses the spectrum of the sensor 21 selected in advance as the measurement spectrum.
  • the spectrum shape extraction unit 3 generates spectrum shape information used to represent the spectrum shape from the measurement spectrum by using the amplitude and phase of each frequency within the set frequency band.
  • the spectrum shape information can be represented by a vector as shown in Equation 1, for example.
  • step A4 the index calculation unit 4 calculates an index indicating the relationship between the spectral shape information and the reference spectral shape information.
  • the index calculation unit 4 calculates the index using (1) inter-vector distance, (2) inter-vector similarity, (3) matching function, or the like.
  • step A4 the index calculation unit 4 calculates the inter-vector distance between the spectrum shape information and the reference spectrum shape information and uses it as an index.
  • the vector-to-vector distance is, for example, a weighted Minkowski distance, a Euclidean distance, a Chebychev distance, or the like.
  • the weighted Minkowski distance d (q) (a, b) is calculated using the formula shown in Formula 2.
  • step A4 the index calculation unit 4 calculates the vector-to-vector similarity between the spectrum shape information and the reference spectrum shape information and uses it as an index.
  • a method using the similarity between vectors is shown in Expressions 5 and 6.
  • Mathematical Expression 5 uses a value obtained by subtracting the general similarity between vectors (cosine similarity, etc.) from a constant as the dissimilarity d(a, b).
  • Formula 6 uses an exponential function having a value obtained by multiplying a general similarity between vectors by ⁇ 1 as a power exponent as the dissimilarity d(a,b).
  • step A4 the index calculation unit 4 calculates an index based on the information of the fitting function adapted using the spectrum shape information and the information of the reference fitting function adapted using the reference spectrum shape information.
  • the index calculating unit 4 first calculates a fitting function that fits the spectrum shape.
  • the adaptive function for example, (A) a frequency response function of a one-degree-of-freedom damping system, (B) a polynomial function, or the like is used.
  • a method of generating the above-mentioned adaptive function it is possible to use a least square method, a maximum likelihood estimation method, or the like.
  • the index calculator 4 calculates the coefficient of the adaptive function.
  • the coefficient co of the adaptive function is calculated using Equation 9.
  • step A4 the index calculation unit 4 calculates the inter-vector distance or inter-vector similarity using the coefficient vector of the conforming function and the reference coefficient vector of the reference conforming function.
  • the coefficient vector is generated using the coefficient co described above.
  • the reference coefficient vector is generated using the coefficient co'described above.
  • the distance between vectors can be, for example, a weighted Minkowski distance, a Euclidean distance, a Chebychev distance, or the like.
  • the inter-vector similarity is, for example, the value obtained by subtracting the general vector-to-vector similarity (cosine similarity, etc.) from the constant, and the value obtained by multiplying the general vector-to-vector similarity by -1 as the exponential. Exponential function etc. can be considered.
  • step A5 will be described.
  • the state estimation unit 5 estimates the state of the structure 20 based on the index calculated by the index calculation unit 4.
  • step A5 the state estimation unit 5 first calculates from the index calculation unit 4 using (1) inter-vector distance, (2) inter-vector similarity, or (3) adaptation function. Get the index you made.
  • step A5 the state estimation unit 5 estimates whether or not the structure 20 is damaged by using the acquired index and the preset threshold value Th2.
  • the spectrum shape is different from the spectrum shape before damage (reference spectrum shape). That is, the index corresponding to the spectrum shape after damage and the index corresponding to the reference spectrum shape have different values.
  • the index is the threshold value Th21 or more, the structure It is determined that the object 20 is damaged.
  • the similarity between vectors is used as an index
  • the greater the difference between the spectral shape after damage and the reference spectral shape the smaller the similarity, that is, the larger the dissimilarity.
  • the index corresponding to the degree of similarity is equal to or greater than the threshold Th22, it is determined that the structure 20 is damaged.
  • Step A6 will be described.
  • the output information generation unit 26 first uses the diagnosis result of the structure 20, the index, the spectrum shape, the natural vibration shape, or two or more pieces of information to output to the output device 22. Generate output information. Subsequently, in step A6, the output information generation unit 26 outputs the generated output information to the output device 22.
  • the structure 20 such as a concrete girder bridge has a large rigidity and is hard to sway, so natural vibrations other than the primary vibration are unlikely to occur. Further, in such a bridge, even if local damage occurs, the occurrence of local damage cannot be detected because the change in the natural frequency of the primary natural vibration due to the local change in rigidity is small.
  • the structure is based on an index showing the relationship between the spectral shape information representing the shape of the spectrum using the natural frequency and the reference spectral shape information which is a preset reference. Since the state can be estimated, the state of the structure can be diagnosed even if the structure has a small change in natural frequency.
  • the natural vibration of the primary natural vibration Even if the number of structures changes little, the state of the structure can be diagnosed.
  • the program in the embodiment of the present invention may be a program that causes a computer to execute steps A1 to A6 shown in FIG.
  • the structure diagnosing apparatus and the structure diagnosing method according to the present embodiment can be realized by installing and executing this program on a computer.
  • the processor of the computer includes the collection unit 23, the natural vibration extraction unit 2 (damped free vibration setting unit 24, natural frequency extraction unit 25), the spectrum shape extraction unit 3, the index calculation unit 4, the state estimation unit 5, and the output. It functions as the information generation unit 26 and performs processing.
  • each computer has a collection unit 23, a natural vibration extraction unit 2 (damping free vibration setting unit 24, natural frequency extraction unit 25), a spectrum shape extraction unit 3, an index calculation unit 4, and a state estimation, respectively. It may function as either a unit 5 or an output information generation unit 26.
  • FIG. 8 is a block diagram showing an example of a computer that realizes the structure diagnosing device according to the embodiment of the present invention.
  • the computer 110 includes a CPU 111, a main memory 112, a storage device 113, an input interface 114, a display controller 115, a data reader/writer 116, and a communication interface 117. Each of these parts is connected to each other via a bus 121 so as to be capable of data communication.
  • the computer 110 may include a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) in addition to the CPU 111 or in place of the CPU 111.
  • the CPU 111 expands the program (code) according to the present embodiment stored in the storage device 113 into the main memory 112 and executes these in a predetermined order to perform various calculations.
  • the main memory 112 is typically a volatile storage device such as a DRAM (Dynamic Random Access Memory).
  • the program in the present embodiment is provided in a state of being stored in computer-readable recording medium 120.
  • the program in the present embodiment may be distributed on the Internet connected via communication interface 117.
  • the storage device 113 include a semiconductor storage device such as a flash memory in addition to a hard disk drive.
  • the input interface 114 mediates data transmission between the CPU 111 and an input device 118 such as a keyboard and a mouse.
  • the display controller 115 is connected to the display device 119 and controls the display on the display device 119.
  • the data reader / writer 116 mediates the data transmission between the CPU 111 and the recording medium 120, reads the program from the recording medium 120, and writes the processing result in the computer 110 to the recording medium 120.
  • the communication interface 117 mediates data transmission between the CPU 111 and another computer.
  • the recording medium 120 a general-purpose semiconductor storage device such as CF (Compact Flash (registered trademark)) and SD (Secure Digital), a magnetic recording medium such as a flexible disk (Flexible Disk), or a CD- An optical recording medium such as a ROM (Compact Disk Read Only Memory) can be given.
  • CF Compact Flash
  • SD Secure Digital
  • a magnetic recording medium such as a flexible disk (Flexible Disk)
  • a CD- An optical recording medium such as a ROM (Compact Disk Read Only Memory)
  • a structure diagnostic device comprising:
  • the structure diagnostic device is a structure diagnostic apparatus characterized in that, as the index, the distance between vectors between the spectral shape information and the reference spectral shape information is calculated.
  • the structure diagnostic device is a structure diagnostic apparatus characterized in that, as the index, the similarity between vectors between the spectral shape information and the reference spectral shape information is calculated.
  • Appendix 4 The structure diagnostic device according to appendix 1, The index calculation unit, based on the information of the adaptive function adapted to the function using the spectral shape information, and the information of the reference adaptive function adapted to the function using the reference spectral shape information, the index, A structure diagnostic device characterized by calculation.
  • a method of diagnosing a structure comprising:
  • the structure diagnosis method according to attachment 7 In the calculating step, the index is calculated based on the information of the fitting function adapted to the function using the spectrum shape information and the information of the reference fitting function adapted to the function using the reference spectrum shape information.
  • a structure diagnostic method characterized by:
  • Appendix 18 A computer-readable recording medium according to any one of Appendix 13 to 17.
  • the natural vibration is a computer-readable recording medium characterized in that it is a longitudinal vibration.
  • the present invention it is possible to diagnose the state of a structure having a small change in natural frequency.
  • INDUSTRIAL APPLICABILITY The present invention is useful in fields in which diagnosis of structures is required.

Abstract

固有振動数の変化が小さい構造物の状態を診断する構造物診断装置1は、構造物20に設けられた複数のセンサ21から、構造物20に発生する振動を表す振動情報を取得し、振動情報を用いて固有振動を抽出する、固有振動抽出部2と、固有振動を用いてスペクトルの形状を表すスペクトル形状情報を抽出する、スペクトル形状抽出部3と、スペクトル形状情報と、あらかじめ設定した基準となる基準スペクトル形状情報との関連性を表す指標を算出する、指標算出部4と、前記指標に基づいて、前記構造物の状態を推定する、状態推定部5と、を有する。

Description

構造物診断装置、構造物診断方法、及びコンピュータ読み取り可能な記録媒体
 本発明は、構造物の診断をする構造物診断装置、構造物診断方法に関し、更には、これらを実現するためのプログラムを記録したしているコンピュータ読み取り可能な記録媒体に関する。
 構造物へ損傷が生じている場合、剛性、粘性などの機械特性に変化が生じ、それにともない振動特性の一つである固有振動にも変化が生じる。そこで、構造物に生じる固有振動の変化に着目して、構造物の局所的な損傷を検知する技術が知られている。
 関連する技術として、特許文献1には、コンクリート建物に生じる常時微動を用いて固有振動数(固有振動周波数)を算出し、コンクリート建物の内外温度の変化と、固有振動数の日変動との関係から、コンクリート建物の健全性を診断する、コンクリート建物の健全性を診断する方法が開示されている。
 また、関連する技術として、特許文献2には、大型建造物の診断システムが開示されている。その診断システムによれば、大型建造物の固有振動数を算出し、健全時における大型建造物の固有振動数と比較し、その比較結果に基づいて大型建造物に異常があるか否かを診断する。
特開2008-008810号公報 特開2008-255571号公報
 しかしながら、剛性が大きく揺れにくい構造物の場合、一次固有振動以外の固有振動が生じ難いことが知られている。また、剛性が大きく揺れにくい構造物においては、局所的な剛性変化に対する一次固有振動の固有振動数の変化が小さいことが知られている。
 そのため、特許文献1、2に開示されている診断では、一次固有振動の固有振動数の変化が小さい場合、その変化に基づいて構造物の損傷を検知できない場合がある。
 本発明の目的の一例は、固有振動数の変化が小さい構造物の状態を診断できる、構造物診断装置、構造物診断方法、及びコンピュータ読み取り可能な記録媒体を提供することにある。
 上記目的を達成するため、本発明の一側面における構造物診断装置は、
 構造物に設けられた複数のセンサから、前記構造物に発生する振動を表す振動情報を取得し、前記振動情報を用いて固有振動を抽出する、固有振動抽出部と、
 前記固有振動を用いてスペクトルの形状を表すスペクトル形状情報を抽出する、スペクトル形状抽出部と、
 前記スペクトル形状情報と、あらかじめ設定した基準となる基準スペクトル形状情報との関連性を表す指標を算出する、指標算出部と、
 前記指標に基づいて、前記構造物の状態を推定する、状態推定部と、
 を有することを特徴とする。
 また、上記目的を達成するため、本発明の一側面における構造物診断方法は、
 構造物に設けられた複数のセンサから、前記構造物に発生する振動を表す振動情報を取得し、前記振動情報を用いて固有振動を抽出する、固有振動抽出ステップと、
 前記固有振動を用いてスペクトルの形状を表すスペクトル形状情報を抽出する、スペクトル形状情報抽出ステップと、
 算出した前記スペクトル形状情報と、あらかじめ設定した基準となる基準スペクトル形状情報との関連性を表す指標を算出する、算出ステップと、
 前記指標に基づいて、前記構造物の状態を推定する、推定ステップと、
 を有することを特徴とする。
 更に、上記目的を達成するため、本発明の一側面におけるプログラムをコンピュータ読み取り可能な記録媒体は、
 コンピュータに、
 構造物に設けられた複数のセンサから、前記構造物に発生する振動を表す振動情報を取得し、前記振動情報を用いて固有振動を抽出する、固有振動抽出ステップと、
 前記固有振動を用いてスペクトルの形状を表すスペクトル形状情報を抽出する、スペクトル形状情報抽出ステップと、
 算出した前記スペクトル形状情報と、あらかじめ設定した基準となる基準スペクトル形状情報との関連性を表す指標を算出する、算出ステップと、
 前記指標に基づいて、前記構造物の状態を推定する、推定ステップと、
 を実行させる命令を含む、プログラムを記録していることを特徴とする。
 以上のように本発明によれば、固有振動数の変化が小さい構造物の状態を診断できる。
図1は、構造物診断装置の一例を示す図である。 図2は、構造物診断装置を有するシステムの一例を示す図である。 図3は、構造物の一例を示す図である。 図4は、スペクトル形状を説明するための図である。 図5は、スペクトル形状の一例を示す図である。 図6は、縦振動のスペクトル形状の一例を示す図である。 図7は、構造物診断装置の動作の一例を示す図である。 図8は、構造物診断装置を実現するコンピュータの一例を示す図である。
(実施の形態)
 以下、本発明の実施の形態について、図1から図8を参照しながら説明する。
[装置構成]
 最初に、図1を用いて、本実施の形態における構造物診断装置1の構成について説明する。図1は、構造物診断装置の一例を示す図である。
 図1に示す構造物診断装置は、固有振動数の変化が小さい構造物の状態を診断する装置である。また、図1に示すように、構造物診断装置1は、固有振動抽出部2と、スペクトル形状抽出部3と、指標算出部4と、状態推定部5とを有する。
 このうち、固有振動抽出部2は、構造物に設けられた複数のセンサから、構造物に発生する振動を表す振動情報を取得し、振動情報を用いて固有振動を抽出する。スペクトル形状抽出部3は、固有振動を用いてスペクトルの形状を表すスペクトル形状情報を算出する。指標算出部4は、スペクトル形状情報と、あらかじめ設定した基準となる基準スペクトル形状情報との関連性を表す指標を算出する。状態推定部5は、指標に基づいて、構造物の状態を推定する。
 ここで、構造物とは、例えば、少なくとも砂、水、セメントを用いて凝固させた硬化物(コンクリート、又はモルタルなど)、又は金属、又はそれらを用いて構築された構造物である。また、構造物は、建築物全体、又はその一部である。さらに、構造物は、機械類の全体、又はその一部である。
 このように、本実施の形態においては、固有振動を用いてスペクトルの形状を表すスペクトル形状情報と、あらかじめ設定した基準となる基準スペクトル形状情報との関連性を表す指標に基づいて、構造物の状態を推定するので、固有振動数の変化が小さい構造物の状態を診断できる。
[システム構成]
 続いて、図2を用いて、本実施の形態における構造物診断装置1の構成をより具体的に説明する。図2は、構造物診断装置を有するシステムの一例を示す図である。
 図2に示すように、本実施の形態における構造物診断装置1を有するシステムは、構造物診断装置1と、複数のセンサ21(21aから21n)と、出力装置22とを有する。また、構造物診断装置1は、固有振動抽出部2と、スペクトル形状抽出部3と、指標算出部4と、状態推定部5とに加えて、収集部23を有する。さらに、固有振動抽出部2は、減衰自由振動設定部24と、固有振動数抽出部25とを有する。
 構造物20は、例えば、橋梁の床版などの構造物である。ただし、構造物20を構成する部材は、床版に限らない。
 センサ21は、構造物20に取り付けられ、構造物20の少なくとも振動の大きさを計測し、計測した振動の大きさを示す情報を構造物診断装置1へ送信する。センサ21は、例えば、三軸加速度センサ、ファイバセンサなどを用いることが考えられる。
 具体的には、複数のセンサ21aから21nは、図2に示すように、構造物20に取り付けられ、センサ21それぞれが取り付けられた位置において加速度を計測する。続いて、センサ21aから21nそれぞれは、計測した加速度の情報を有する信号を、構造物診断装置1の収集部23へ送信する。なお、センサ21と収集部23とのやり取りには、有線通信、又は無線通信などを用いる。
 出力装置22は、出力情報生成部26により、出力可能な形式に変換された、出力情報を取得し、その出力情報に基づいて、生成した画像及び音声などを出力する。出力装置22は、例えば、液晶、有機EL(Electro Luminescence)、CRT(Cathode Ray Tube)を用いた画像表示装置などである。さらに、画像表示装置は、スピーカなどの音声出力装置などを備えていてもよい。なお、出力装置22は、プリンタなどの印刷装置でもよい。出力情報については後述する。
 構造物診断装置について説明をする。
 図3、図4、図5、図6を用いて構造物診断装置について詳細な説明をする。図3は、構造物の一例を示す図である。図4は、スペクトル形状を説明するための図である。図5は、スペクトル形状の一例を示す図である。図6は、縦振動のスペクトル形状の一例を示す図である。
 図3に示す橋梁は、例えば、構造物20(床版)上を、進入側から退出側へ、複数回、車両30を走行させて、構造物20に対して一回以上の振動を与える。また、図3の例では、車両30が継ぎ目Pを通過することで、継ぎ目Pを支点として、構造物20に衝撃が加わり、構造物20が振動をする。なお、図3における31は、損傷部分を示している。
 車両30は、構造物20に対して振動を与えるために用いる装置である。ただし、振動を与える装置は、車両30に限らない。例えば、振動を与える装置は、あらかじめ準備した起振機でもよい。又は、あらかじめ準備した錘を落下させることで、振動を与えてもよい。ただし、上述した方法に限定されるものではない。
 収集部23は、センサ21が計測した加速度の情報を取得する。具体的には、収集部23は、構造物20に取り付けられたセンサ21aから21nそれぞれが計測した加速度の情報を有する信号を受信する。
 固有振動抽出部2は、構造物20に設けられた複数のセンサ21から、構造物20に発生する振動を表す振動情報を取得し、取得した振動情報を用いて固有振動を抽出する。固有振動は、例えば、固有振動数などの固有振動に関係する情報を有する。固有振動は、例えば、一次固有振動などである。一次固有振動は、固有振動において、固有振動数が最も小さい、すなわち振動周波数が最も低い固有振動である。
 また、固有振動抽出部2は、固有振動として、縦振動に対応する固有振動を抽出する。縦振動とは、例えば、構造物20に引っ張り力又は圧縮力が構造物20に加わった場合、図3に示すように構造物20の長手方向(両端矢印32)に発生する伸縮運動などである。
 具体的には、固有振動抽出部2は、図2に示す減衰自由振動設定部24と固有振動数抽出部25とを用いて固有振動数を算出する。
 減衰自由振動設定部24は、センサ21それぞれから収集した振動情報それぞれに対して減衰自由振動区間を設定する。具体的には、減衰自由振動設定部24は、収集部23から、センサ21aから21nそれぞれが計測した加速度を表す振動情報を取得する。
 続いて、減衰自由振動設定部24は、センサ21nが計測した加速度が閾値Th1を超えたか否かを判定する。減衰自由振動設定部24は、加速度が閾値Th1を超えている場合、加速度が閾値Th1を超えた時点(開始日時ts)から、所定時間経過した時点(終了日時te)までの時間に含まれる区間を減衰自由振動区間とする。また、減衰自由振動設定部24は、センサ21aから21mそれぞれが計測した振動情報に対しても、減衰自由振動区間を設定する。
 固有振動数抽出部25は、選択した減衰自由振動に基づき固有振動数を抽出する。具体的には、固有振動数抽出部25は、センサ21aから21nそれぞれに対して設定した減衰自由振動区間において、振幅情報(加速度)を時間領域から周波数領域に変換(例えば、フーリエ変換など)する。
 続いて、固有振動数抽出部25は、次に示す抽出方法1、又は抽出方法2を用いて、固有振動数fcを抽出する。
 抽出方法1において、固有振動数抽出部25は、センサ21aから21nそれぞれについて、振幅が所定値以上となる周波数(固有振動数)を抽出する。振幅が所定値以上となる周波数とは、例えば、振幅が、最大値、又は極大値、又はピーク値をとなる周波数である。
 続いて、固有振動数抽出部25は、例えば、すべてのセンサ21の固有振動数の平均周波数、又はあらかじめ選択した二以上のセンサ21の固有振動数の平均周波数、又はあらかじめ選択したセンサ21の固有振動数を、固有振動数fcとする。
 また、抽出方法2において、固有振動数抽出部25は、すべてのセンサ21のスペクトル、又はあらかじめ選択した二以上のセンサ21のスペクトルを複合して代表スペクトルを算出する。複合とは、例えば、各周波数において、すべてのセンサ21、又はあらかじめ選択した二以上のセンサ21におけるスペクトルの振幅の最大値を抽出することである。
 続いて、固有振動数抽出部25は、代表スペクトルの振幅が所定値以上となる周波数(固有振動数)を抽出し、固有振動数fcとする。振幅が所定値以上となる周波数とは、例えば、振幅が、最大値、又は極大値、又はピーク値をとる周波数である。ただし、固有振動数fcを求める方法は、上述した方法に限定されない。
 スペクトル形状抽出部3は、固有振動を用いてスペクトル形状を表すスペクトル形状情報を抽出する。具体的には、スペクトル形状抽出部3は、まず、固有振動数抽出部25が抽出した固有振動数fcを取得する。
 続いて、スペクトル形状抽出部3は、固有振動数fcを含むような周波数帯域を設定する。続いて、スペクトル形状抽出部3は、次に示す算出方法1、又は算出方法2を用いて、計測スペクトルを算出する。
 算出方法1においては、スペクトル形状抽出部3は、すべてのセンサ21のスペクトル、又はあらかじめ選択した二以上のセンサ21のスペクトルを複合して、計測スペクトルを算出する。複合とは、例えば、各周波数において、すべてのセンサ21、又はあらかじめ選択した二以上のセンサ21のスペクトルの振幅最大値を抽出することである。
 また、算出方法2においては、スペクトル形状抽出部3は、あらかじめ選択したセンサ21のスペクトルを、計測スペクトルとする。
 続いて、スペクトル形状抽出部3は、計測スペクトルから、設定した周波数帯域内における、各周波数の振幅と位相とを用いて、スペクトル形状を表すために用いるスペクトル形状情報を生成する。
 図4を用いて、スペクトル形状を説明する。図4のスペクトルは、計測スペクトルである。図4の例では、スペクトル形状抽出部3は、設定した周波数帯域f1からfnにおける、計測スペクトルの各周波数の振幅と位相とを用いて、スペクトル形状情報を生成する。スペクトル形状情報は、例えば、数1に示すようなベクトルで表すことができる。
Figure JPOXMLDOC01-appb-M000001
 ここで、構造物20に損傷が発生していない場合(図3に示す構造物20の損傷前(正常時:基準))、図5の実線で表されているスペクトル形状となる。また、構造物20に局所的な損傷が発生した場合、図5の破線で表されているスペクトル形状となる。すなわち、損傷前のスペクトル形状と異なる位置に、新しい振動成分40が発生するため、損傷前とスペクトル形状が異なる。
 さらに、構造物20に局所的な損傷が発生した場合、図6に示すように、損傷前のスペクトル形状と異なる位置に、縦振動に対応する新しい振動成分50が発生する。すなわち、新しい振動成分が発生することで、スペクトル形状が変化する。
 指標算出部4は、スペクトル形状情報と、基準スペクトル形状情報との関連性を表す指標を算出する。具体的には、指標算出部4は、(1)ベクトル間距離、又は(2)ベクトル間類似度、又は(3)適合関数などを用いて、指標を算出する。
(1)ベクトル間距離を指標とする場合について説明する。
 指標算出部4は、スペクトル形状情報と、基準スペクトル形状情報との間におけるベクトル間距離を算出して指標とする。ベクトル間距離は、例えば、重み付きミンコフスキー距離、ユークリッド距離、チェビチェフ距離などである。
 重み付きミンコフスキー距離d(q)(a,b)は、数2に示す式を用いて算出する。
Figure JPOXMLDOC01-appb-M000002
 ユークリッド距離d(2)(a,b)は、数3に示す式を用いて算出する。すなわち、数1に示す重みをW=1とし、パラメータをq=2として算出する。
Figure JPOXMLDOC01-appb-M000003
 チェビチェフ距離d(∞)(a,b)は、数4に示す式を用いて算出する。すなわち、数1に示す重みをW=1とし、パラメータをq=∞として算出する。
Figure JPOXMLDOC01-appb-M000004
(2)ベクトル間類似度を指標とする場合について説明する。
 指標算出部4は、スペクトル形状情報と基準スペクトル形状情報との間におけるベクトル間類似度を算出して指標とする。ベクトル間類似度を用いる方法を数5、数6に示す。
 数5は、非類似度d(a,b)として、定数から一般的なベクトル間の類似度(コサイン類似度など)を差し引いた値を用いている。
Figure JPOXMLDOC01-appb-M000005
 数5は、非類似度d(a,b)として、一般的なベクトル間の類似度に-1を掛けた値を冪指数とする指数関数を用いている。
Figure JPOXMLDOC01-appb-M000006
(3)適合関数に基づく指標を用いる場合について説明する。
 指標算出部4は、スペクトル形状情報を用いて適合させた適合関数の情報と、基準スペクトル形状情報を用いて適合させた基準適合関数の情報とに基づいて指標を算出する。
 具体的には、指標算出部4は、まず、スペクトル形状に適合する適合関数を算出する。適合関数としては、例えば、(A)1自由度減衰系の周波数応答関数、(B)多項式関数などを用いる。なお、上述した適合関数の生成方法としては、最小二乗法、最尤推定法など用いることが考えられる。続いて、指標算出部4は、適合関数の係数を算出する。
(A)1自由度減衰系の周波数応答関数の振幅を用いて係数を算出する場合
 適合関数の係数coは、co={m,k,c}となる。適合関数の係数coは、数7、数8、数9を用いて算出する。また、基準適合関数の係数co′は、co′={m′,k′,c′}となる。
 取得する振動情報が変位の場合においては、例えば、数7を用いて適合関数の係数coを算出してもよい
Figure JPOXMLDOC01-appb-M000007
 取得する振動情報が速度の場合においては、例えば、数8を用いて適合関数の係数coを算出してもよい
Figure JPOXMLDOC01-appb-M000008
 取得する振動情報が加速度の場合においては、例えば、数9を用いて適合関数の係数coを算出してもよい
Figure JPOXMLDOC01-appb-M000009
(B)多項式関数を用いて係数を算出する場合
 適合関数の係数coは、co={c0,c1,・・・,cn}となる。適合関数の係数coは、数10を用いて算出する。なお、基準適合関数の係数co′は、co′={c0′,c1′,・・・,cn′}となる。
Figure JPOXMLDOC01-appb-M000010
 続いて、指標算出部4は、適合関数の係数ベクトルと、基準適合関数の基準係数ベクトルとを用いて、ベクトル間距離又はベクトル間類似度を算出する。係数ベクトルは、上述した係数coを用いて生成する。基準係数ベクトルは、上述した係数co′を用いて生成する。
 ベクトル間距離は、例えば、重み付きミンコフスキー距離、ユークリッド距離、チェビチェフ距離などが考えられる。また、ベクトル間類似度は、例えば、定数から一般的なベクトル間の類似度(コサイン類似度など)を差し引いた値、一般的なベクトル間の類似度に-1を掛けた値を冪指数とする指数関数などが考えられる。
 ただし、適合関数は上述した関数に限定されない。また、指標の算出方法は上述した方法に限定されない。
 状態推定部5は、指標算出部4において算出した指標に基づいて、構造物20の状態を推定する。具体的には、状態推定部5は、まず、指標算出部4から、(1)ベクトル間距離、又は(2)ベクトル間類似度、又は(3)適合関数などを用いて算出した指標を取得する。続いて、状態推定部5は、取得した指標と、あらかじめ設定された閾値Th2とを用いて、構造物20に損傷があるか否かを推定する。
 図5、図6に示すように、損傷がある場合、スペクトル形状は、損傷前のスペクトル形状(基準スペクトル形状)と異なる形状となる。すなわち、損傷後のスペクトル形状に対応する指標と、基準スペクトル形状に対応する指標とが異なる値となる。
 そのため、(1)ベクトル間距離を指標として用いた場合、損傷後のスペクトル形状と基準スペクトル形状との間に違いが大きくなるほど、ベクトル間距離が大きくなるので、指標が閾値Th21以上の場合、構造物20に損傷が有ると判定する。
 また、(2)ベクトル間類似度を指標として用いた場合、損傷後のスペクトル形状と基準スペクトル形状との間に違いが大きくなるほど、類似度は小さくなる、すなわち非類似度が大きくなるため、非類似度に対応する指標が閾値Th22以上の場合、構造物20に損傷が有ると判定する。
 さらに、(3)適合関数の係数ベクトル間距離又は非類似度を指標として用いた場合、損傷後のスペクトル形状と基準スペクトル形状との間に違いが大きくなるほど、係数ベクトル間距離又は非類似度は大きくなるため、非類似度に対応する指標が閾値Th23以上の場合、構造物20に損傷が有ると判定する。
 閾値Th2(Th21、Th22、Th3)は、例えば、指標に対応する閾値を、実験、シミュレーションにより求め、あらかじめ記憶部に記憶する。
 なお、状態推定部5は、機械学習などにより生成した学習モデルを用いて、構造物20の状態(損傷の種類)を推定してもよい。学習モデルは、学習フェーズにおいて、距離又は類似度などと、それらに関連付けられた損傷の種類とを入力として、教師あり学習をさせて生成する。
 出力情報生成部26は、構造物20の診断結果、又は指標、又はスペクトル形状、又は固有振動形状、又はそれら二つ以上の情報を、出力装置22に出力するために用いる出力情報を生成する。そして、出力情報生成部26は、生成された出力情報を出力装置22へ出力する。
[装置動作]
 次に、本発明の実施の形態における構造物診断装置の動作について図7を用いて説明する。図7は、構造物診断装置の動作の一例を示す図である。以下の説明においては、適宜図2から図6を参照する。また、本実施の形態では、構造物診断装置を動作させることによって、構造物診断方法が実施される。よって、本実施の形態における構造物診断方法の説明は、以下の構造物診断装置の動作説明に代える。
 図7に示すように、最初に、固有振動抽出部2は、構造物20に設けられた複数のセンサ21から、構造物20に発生する振動を表す振動情報を取得する(ステップA1)。振動情報を用いて固有振動数を抽出する(ステップA2)。続いて、スペクトル形状抽出部3は、固有振動数を用いてスペクトルの形状を表すスペクトル形状情報を抽出する(ステップA3)。
 続いて、指標算出部4は、スペクトル形状情報と、あらかじめ設定した基準となる基準スペクトル形状情報との関連性を表す指標を算出する(ステップA4)。続いて、状態推定部5は、指標に基づいて、構造物20の状態を推定する(ステップA5)。出力情報生成部26は、出力情報を生成し出力装置22に出力する(ステップA6)。
 ステップA1について説明する。
 ステップA1において、まず、収集部23は、センサ21それぞれが計測した加速度の情報を取得する。具体的には、ステップA1において、収集部23は、構造物20に取り付けられたセンサ21aから21nそれぞれが計測した加速度の情報を有する信号を受信する。
 ステップA2について説明する。
 ステップA2において、固有振動抽出部2は、構造物20に設けられた複数のセンサ21から、構造物20に発生する振動を表す振動情報を取得し、取得した振動情報を用いて固有振動を算出する。固有振動は、例えば、一次固有振動である。また、固有振動抽出部2は、固有振動として、縦振動に対応する固有振動を抽出する。
 具体的には、ステップA2において、固有振動抽出部2は、減衰自由振動設定部24と固有振動数抽出部25とを用いて、固有振動のうち固有振動数を算出する。
 ステップA2において、減衰自由振動設定部24は、まず、センサ21それぞれから収集した振動情報それぞれに対して減衰自由振動区間を設定する。具体的には、減衰自由振動設定部24は、収集部23から、センサ21aから21nそれぞれが計測した加速度を表す振動情報を取得する。
 続いて、ステップA2において、減衰自由振動設定部24は、センサ21nが計測した加速度が閾値Th1を超えたか否かを判定する。減衰自由振動設定部24は、加速度が閾値Th1を超えている場合、加速度が閾値Th1を超えた時点(開始日時ts)から、所定時間経過した時点(終了日時te)までの時間に含まれる区間を減衰自由振動区間とする。また、減衰自由振動設定部24は、センサ21aから21mそれぞれが計測した振動情報に対しても、減衰自由振動区間を設定する。
 続いて、ステップA2において、固有振動数抽出部25は、選択した減衰自由振動に基づき固有振動数を抽出する。具体的には、固有振動数抽出部25は、センサ21aから21nそれぞれに対して設定した減衰自由振動区間において、振幅情報(加速度)を時間領域から周波数領域に変換(例えば、フーリエ変換など)する。
 続いて、ステップA2において、固有振動数抽出部25は、次に示す抽出方法1、又は抽出方法2を用いて、固有振動数fcを抽出する。
 抽出方法1において、固有振動数抽出部25は、センサ21aから21nそれぞれについて、振幅が所定値以上となる周波数(固有振動数)を抽出する。振幅が所定値以上となる周波数とは、例えば、振幅が、最大値、又は極大値、又はピーク値をとなる周波数である。
 続いて、固有振動数抽出部25は、例えば、すべてのセンサ21の固有振動数の平均周波数、又はあらかじめ選択した二以上のセンサ21の固有振動数の平均周波数、又はあらかじめ選択したセンサ21の固有振動数を、固有振動数fcとする。
 また、抽出方法2において、固有振動数抽出部25は、すべてのセンサ21のスペクトル、又はあらかじめ選択した二以上のセンサ21のスペクトルを複合して代表スペクトルを算出する。複合とは、例えば、各周波数において、すべてのセンサ21、又はあらかじめ選択した二以上のセンサ21におけるスペクトルの振幅の最大値を抽出することである。
 続いて、固有振動数抽出部25は、代表スペクトルの振幅が所定値以上となる周波数(固有振動数)を抽出し、固有振動数fcとする。振幅が所定値以上となる周波数とは、例えば、振幅が、最大値、又は極大値、又はピーク値をとる周波数である。
 ただし、固有振動数fcを求める方法は、上述した方法に限定されない。
 ステップA3について説明する。
 ステップA3において、スペクトル形状抽出部3は、固有振動を用いてスペクトルの形状を表すスペクトル形状情報を抽出する。具体的には、ステップA3において、スペクトル形状抽出部3は、まず、固有振動数抽出部25から生成した固有振動数を取得する。
 続いて、スペクトル形状抽出部3は、固有振動数fcを含むような周波数帯域を設定する。続いて、スペクトル形状抽出部3は、次に示す算出方法1、又は算出方法2を用いて、計測スペクトルを算出する。
 算出方法1においては、スペクトル形状抽出部3は、すべてのセンサ21のスペクトル、又はあらかじめ選択した二以上のセンサ21のスペクトルを複合して、計測スペクトルを算出する。複合とは、例えば、各周波数において、すべてのセンサ21、又はあらかじめ選択した二以上のセンサ21のスペクトルの振幅最大値を抽出することである。
 また、算出方法2においては、スペクトル形状抽出部3は、あらかじめ選択したセンサ21のスペクトルを、計測スペクトルとする。
 続いて、スペクトル形状抽出部3は、計測スペクトルから、設定した周波数帯域内における、各周波数の振幅と位相とを用いて、スペクトル形状を表すために用いるスペクトル形状情報を生成する。スペクトル形状情報は、例えば、数1に示すようなベクトルで表すことができる。
 ステップA4について説明する。
 ステップA4において、指標算出部4は、スペクトル形状情報と、基準スペクトル形状情報との関連性を表す指標を算出する。
 具体的には、ステップA4において、指標算出部4は、(1)ベクトル間距離、又は(2)ベクトル間類似度、又は(3)適合関数などを用いて、指標を算出する。
(1)ベクトル間距離を指標とする場合について説明する。
 ステップA4において、指標算出部4は、スペクトル形状情報と、基準スペクトル形状情報との間におけるベクトル間距離を算出して指標とする。ベクトル間距離は、例えば、重み付きミンコフスキー距離、ユークリッド距離、チェビチェフ距離などである。重み付きミンコフスキー距離d(q)(a,b)は、数2に示す式を用いて算出する。
 ユークリッド距離d(2)(a,b)は、数3に示す式を用いて算出する。すなわち、数1に示す重みをW=1とし、パラメータをq=2として算出する。
 チェビチェフ距離d(∞)(a,b)については、数4に示す式を用いて算出する。すなわち、数1に示す重みをW=1とし、パラメータをq=∞として算出する。
(2)ベクトル間類似度を指標とする場合について説明する。
 ステップA4において、指標算出部4は、スペクトル形状情報と基準スペクトル形状情報との間におけるベクトル間類似度を算出して指標とする。ベクトル間類似度を用いる方法を数5、数6に示す。
 数5は、非類似度d(a,b)として、定数から一般的なベクトル間の類似度(コサイン類似度など)を差し引いた値を用いている。数6は、非類似度d(a,b)として、一般的なベクトル間の類似度に-1を掛けた値を冪指数とする指数関数を用いている。
(3)適合関数に基づく指標を用いる場合について説明する。
 ステップA4において、指標算出部4は、スペクトル形状情報を用いて適合させた適合関数の情報と、基準スペクトル形状情報を用いて適合させた基準適合関数の情報とに基づいて指標を算出する。
 具体的には、ステップA4において、指標算出部4は、まず、スペクトル形状に適合する適合関数を算出する。適合関数としては、例えば、(A)1自由度減衰系の周波数応答関数、(B)多項式関数などを用いる。なお、上述した適合関数の生成方法としては、最小二乗法、最尤推定法など用いることが考えられる。続いて、ステップA4において、指標算出部4は、適合関数の係数を算出する。
 (A)1自由度減衰系の周波数応答関数の振幅を用いて係数を算出する場合、適合関数の係数coは、co={m,k,c}となる。適合関数の係数coは、数6、数7、数8を用いて算出する。また、基準適合関数の係数co′は、co′={m′,k′,c′}となる。
 (B)多項式関数を用いて係数を算出する場合、適合関数の係数coは、co={c0,c1,・・・,cn}となる。適合関数の係数coは、数9を用いて算出する。なお、基準適合関数の係数co′は、co′={c0′,c1′,・・・,cn′}となる。
 続いて、ステップA4において、指標算出部4は、適合関数の係数ベクトルと、基準適合関数の基準係数ベクトルとを用いて、ベクトル間距離又はベクトル間類似度を算出する。係数ベクトルは、上述した係数coを用いて生成する。基準係数ベクトルは、上述した係数co′を用いて生成する。
 ベクトル間距離は、例えば、重み付きミンコフスキー距離、ユークリッド距離、チェビチェフ距離などが考えられる。また、ベクトル間類似度は、例えば、定数から一般的なベクトル間の類似度(コサイン類似度など)を差し引いた値、一般的なベクトル間の類似度に-1を掛けた値を冪指数とする指数関数などが考えられる。
 ステップA5について説明する。
 ステップA5において、状態推定部5は、指標算出部4において算出した指標に基づいて、構造物20の状態を推定する。
 具体的には、ステップA5において、状態推定部5は、まず、指標算出部4から、(1)ベクトル間距離、又は(2)ベクトル間類似度、又は(3)適合関数などを用いて算出した指標を取得する。
 続いて、ステップA5において、状態推定部5は、取得した指標と、あらかじめ設定された閾値Th2とを用いて、構造物20に損傷があるか否かを推定する。
 図5、図6に示すように、損傷がある場合、スペクトル形状は、損傷前のスペクトル形状(基準スペクトル形状)と異なる形状となる。すなわち、損傷後のスペクトル形状に対応する指標と、基準スペクトル形状に対応する指標とが異なる値となる。
 そのため、(1)ベクトル間距離を指標として用いた場合、損傷後のスペクトル形状と基準スペクトル形状との間に違いが大きくなるほど、ベクトル間距離が大きくなるので、指標が閾値Th21以上の場合、構造物20に損傷が有ると判定する。
 また、(2)ベクトル間類似度を指標として用いた場合、損傷後のスペクトル形状と基準スペクトル形状との間に違いが大きくなるほど、類似度は小さくなる、すなわち非類似度が大きくなるため、非類似度に対応する指標が閾値Th22以上の場合、構造物20に損傷が有ると判定する。
 さらに、(3)適合関数の係数ベクトル間距離又は非類似度を指標として用いた場合、損傷後のスペクトル形状と基準スペクトル形状との間に違いが大きくなるほど、係数ベクトル間距離又は非類似度は大きくなるため、非類似度に対応する指標が閾値Th23以上の場合、構造物20に損傷が有ると判定する。
 ステップA6について説明する。
 ステップA6において、出力情報生成部26は、まず、構造物20の診断結果、又は指標、又はスペクトル形状、又は固有振動形状、又はそれら二つ以上の情報を、出力装置22に出力するために用いる出力情報を生成する。続いて、ステップA6において、出力情報生成部26は、生成された出力情報を出力装置22へ出力する。
[本実施の形態の効果]
 以上のように本実施の形態によれば、固有振動数の変化が小さい構造物の状態を診断できる。
 例えば、コンクリート桁橋などの構造物20は、剛性が大きく揺れにくいため、一次以外の固有振動が発生しにくい。また、そのような橋梁においては、局所的な損傷が発生しても、局所的な剛性変化に対する一次固有振動の固有振動数の変化が小さいため、局所的な損傷の発生を検知できない。
 しかし、本実施の形態によれば、固有振動数を用いてスペクトルの形状を表すスペクトル形状情報と、あらかじめ設定した基準となる基準スペクトル形状情報との関連性を表す指標に基づいて、構造物の状態を推定できるので、固有振動数の変化が小さい構造物であっても、構造物の状態を診断できる。
 すなわち、局所的な損傷の発生により、新たに発生した振動成分の影響を含むスペクトル形状と、基準となるスペクトル形状とを比較し、比較結果に基づいて診断することで、一次固有振動の固有振動数の変化が小さな構造物であっても、構造物の状態を診断できる。
[プログラム]
 本発明の実施の形態におけるプログラムは、コンピュータに、図7に示すステップA1からA6を実行させるプログラムであればよい。このプログラムをコンピュータにインストールし、実行することによって、本実施の形態における構造物診断装置と構造物診断方法とを実現することができる。この場合、コンピュータのプロセッサは、収集部23、固有振動抽出部2(減衰自由振動設定部24、固有振動数抽出部25)、スペクトル形状抽出部3、指標算出部4、状態推定部5、出力情報生成部26として機能し、処理を行なう。
 また、本実施の形態におけるプログラムは、複数のコンピュータによって構築されたコンピュータシステムによって実行されてもよい。この場合は、例えば、各コンピュータが、それぞれ、収集部23、固有振動抽出部2(減衰自由振動設定部24、固有振動数抽出部25)、スペクトル形状抽出部3、指標算出部4、状態推定部5、出力情報生成部26のいずれかとして機能してもよい。
[物理構成]
 ここで、実施の形態におけるプログラムを実行することによって、構造物診断装置を実現するコンピュータについて図8を用いて説明する。図8は、本発明の実施の形態における構造物診断装置を実現するコンピュータの一例を示すブロック図である。
 図8に示すように、コンピュータ110は、CPU111と、メインメモリ112と、記憶装置113と、入力インターフェイス114と、表示コントローラ115と、データリーダ/ライタ116と、通信インターフェイス117とを備える。これらの各部は、バス121を介して、互いにデータ通信可能に接続される。なお、コンピュータ110は、CPU111に加えて、又はCPU111に代えて、GPU(Graphics Processing Unit)、又はFPGA(Field-Programmable Gate Array)を備えていてもよい。
 CPU111は、記憶装置113に格納された、本実施の形態におけるプログラム(コード)をメインメモリ112に展開し、これらを所定順序で実行することにより、各種の演算を実施する。メインメモリ112は、典型的には、DRAM(Dynamic Random Access Memory)などの揮発性の記憶装置である。また、本実施の形態におけるプログラムは、コンピュータ読み取り可能な記録媒体120に格納された状態で提供される。なお、本実施の形態におけるプログラムは、通信インターフェイス117を介して接続されたインターネット上で流通するものであってもよい。
 また、記憶装置113の具体例としては、ハードディスクドライブの他、フラッシュメモリなどの半導体記憶装置があげられる。入力インターフェイス114は、CPU111と、キーボード及びマウスといった入力機器118との間のデータ伝送を仲介する。表示コントローラ115は、ディスプレイ装置119と接続され、ディスプレイ装置119での表示を制御する。
 データリーダ/ライタ116は、CPU111と記録媒体120との間のデータ伝送を仲介し、記録媒体120からのプログラムの読み出し、及びコンピュータ110における処理結果の記録媒体120への書き込みを実行する。通信インターフェイス117は、CPU111と、他のコンピュータとの間のデータ伝送を仲介する。
 また、記録媒体120の具体例としては、CF(Compact Flash(登録商標))及びSD(Secure Digital)などの汎用的な半導体記憶デバイス、フレキシブルディスク(Flexible Disk)などの磁気記録媒体、又はCD-ROM(Compact Disk Read Only Memory)などの光学記録媒体があげられる。
[付記]
 以上の実施の形態に関し、更に以下の付記を開示する。上述した実施の形態の一部又は全部は、以下に記載する(付記1)から(付記18)により表現することができるが、以下の記載に限定されるものではない。
(付記1)
 構造物に設けられた複数のセンサから、前記構造物に発生する振動を表す振動情報を取得し、前記振動情報を用いて固有振動を抽出する、固有振動抽出部と、
 前記固有振動を用いてスペクトルの形状を表すスペクトル形状情報を抽出する、スペクトル形状抽出部と、
 前記スペクトル形状情報と、あらかじめ設定した基準となる基準スペクトル形状情報との関連性を表す指標を算出する、指標算出部と、
 前記指標に基づいて、前記構造物の状態を推定する、状態推定部と、
 を有することを特徴とする構造物診断装置。
(付記2)
 付記1に記載の構造物診断装置であって、
 前記指標算出部は、前記指標として、前記スペクトル形状情報と前記基準スペクトル形状情報との間におけるベクトル間距離を算出する
 ことを特徴とする構造物診断装置。
(付記3)
 付記1に記載の構造物診断装置であって、
 前記指標算出部は、前記指標として、前記スペクトル形状情報と前記基準スペクトル形状情報との間におけるベクトル間類似度を算出する
 ことを特徴とする構造物診断装置。
(付記4)
 付記1に記載の構造物診断装置であって、
 前記指標算出部は、前記スペクトル形状情報を用いて関数に適合させた適合関数の情報と、前記基準スペクトル形状情報を用いて関数に適合させた基準適合関数の情報とに基づいて、前記指標を算出する
 ことを特徴とする構造物診断装置。
(付記5)
 付記1から4のいずれか一つに記載の構造物診断装置であって、
 前記固有振動は、一次固有振動である
 ことを特徴とする構造物診断装置。
(付記6)
 付記1から5のいずれか一つに記載の構造物診断装置であって、
 前記固有振動は、縦振動である
 ことを特徴とする構造物診断装置。
(付記7)
 構造物に設けられた複数のセンサから、前記構造物に発生する振動を表す振動情報を取得し、前記振動情報を用いて固有振動を抽出する、固有振動抽出ステップと、
 前記固有振動を用いてスペクトルの形状を表すスペクトル形状情報を抽出する、スペクトル形状情報抽出ステップと、
 算出した前記スペクトル形状情報と、あらかじめ設定した基準となる基準スペクトル形状情報との関連性を表す指標を算出する、算出ステップと、
 前記指標に基づいて、前記構造物の状態を推定する、推定ステップと、
 を有することを特徴とする構造物診断方法。
(付記8)
 付記7に記載の構造物診断方法であって、
 前記算出ステップにおいて、前記指標として、前記スペクトル形状情報と前記基準スペクトル形状情報との間におけるベクトル間距離を算出する
 ことを特徴とする構造物診断方法。
(付記9)
 付記7に記載の構造物診断方法であって、
 前記算出ステップにおいて、前記指標として、前記スペクトル形状情報と前記基準スペクトル形状情報との間におけるベクトル間類似度を算出する
 ことを特徴とする構造物診断方法。
(付記10)
 付記7に記載の構造物診断方法であって、
 前記算出ステップにおいて、前記スペクトル形状情報を用いて関数に適合させた適合関数の情報と、前記基準スペクトル形状情報を用いて関数に適合させた基準適合関数の情報とに基づいて、前記指標を算出する
 ことを特徴とする構造物診断方法。
(付記11)
 付記7から10のいずれか一つに記載の構造物診断方法であって、
 前記固有振動は、一次固有振動である
 ことを特徴とする構造物診断方法。
(付記12)
 付記7から11のいずれか一つに記載の構造物診断方法であって、
 前記固有振動は、縦振動である
 ことを特徴とする構造物診断方法。
(付記13)
 コンピュータに、
 構造物に設けられた複数のセンサから、前記構造物に発生する振動を表す振動情報を取得し、前記振動情報を用いて固有振動を抽出する、固有振動抽出ステップと、
 前記固有振動を用いてスペクトルの形状を表すスペクトル形状情報を抽出する、スペクトル形状情報抽出ステップと、
 算出した前記スペクトル形状情報と、あらかじめ設定した基準となる基準スペクトル形状情報との関連性を表す指標を算出する、算出ステップと、
 前記指標に基づいて、前記構造物の状態を推定する、推定ステップと、
 を実行させる命令を含む、プログラムを記録しているコンピュータ読み取り可能な記録媒体。
(付記14)
 付記13に記載のコンピュータ読み取り可能な記録媒体であって、
 前記算出ステップにおいて、前記指標として、前記スペクトル形状情報と前記基準スペクトル形状情報との間におけるベクトル間距離を算出する
 ことを特徴とするコンピュータ読み取り可能な記録媒体。
(付記15)
 付記13に記載のコンピュータ読み取り可能な記録媒体であって、
 付記算出ステップにおいて、前記指標として、前記スペクトル形状情報と前記基準スペクトル形状情報との間におけるベクトル間類似度を算出する
 ことを特徴とするコンピュータ読み取り可能な記録媒体。
(付記16)
 付記13に記載のコンピュータ読み取り可能な記録媒体であって、
 前記算出ステップにおいて、前記スペクトル形状情報を用いて関数に適合させた適合関数の情報と、前記基準スペクトル形状情報を用いて関数に適合させた基準適合関数の情報とに基づいて、前記指標を算出する
 ことを特徴とするコンピュータ読み取り可能な記録媒体。
(付記17)
 付記13から16のいずれか一つに記載のコンピュータ読み取り可能な記録媒体であって、
 前記固有振動は、一次固有振動である
 ことを特徴とするコンピュータ読み取り可能な記録媒体。
(付記18)
 付記13から17のいずれか一つに記載のコンピュータ読み取り可能な記録媒体であって、
 前記固有振動は、縦振動である
 ことを特徴とするコンピュータ読み取り可能な記録媒体。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記実施の形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2019年3月5日に出願された日本出願特願2019-040049を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上のように本発明によれば、固有振動数の変化が小さい構造物の状態を診断できる。本発明は、構造物の診断が必要な分野において有用である。
  1 構造物診断装置
  2 固有振動抽出部
  3 スペクトル形状抽出部
  4 指標算出部
  5 状態推定部
 20 構造物
 21 センサ
 22 出力装置
 23 収集部
 24 減衰自由振動設定部
 25 固有振動数抽出部
 26 出力情報生成部
110 コンピュータ
111 CPU
112 メインメモリ
113 記憶装置
114 入力インターフェイス
115 表示コントローラ
116 データリーダ/ライタ
117 通信インターフェイス
118 入力機器
119 ディスプレイ装置
120 記録媒体
121 バス

Claims (18)

  1.  構造物に設けられた複数のセンサから、前記構造物に発生する振動を表す振動情報を取得し、前記振動情報を用いて固有振動を抽出する、固有振動抽出手段と、
     前記固有振動を用いてスペクトルの形状を表すスペクトル形状情報を抽出する、スペクトル形状抽出手段と、
     前記スペクトル形状情報と、あらかじめ設定した基準となる基準スペクトル形状情報との関連性を表す指標を算出する、指標算出手段と、
     前記指標に基づいて、前記構造物の状態を推定する、状態推定手段と、
     を有することを特徴とする構造物診断装置。
  2.  請求項1に記載の構造物診断装置であって、
     前記指標算出手段は、前記指標として、前記スペクトル形状情報と前記基準スペクトル形状情報との間におけるベクトル間距離を算出する
     ことを特徴とする構造物診断装置。
  3.  請求項1に記載の構造物診断装置であって、
     前記指標算出手段は、前記指標として、前記スペクトル形状情報と前記基準スペクトル形状情報との間におけるベクトル間類似度を算出する
     ことを特徴とする構造物診断装置。
  4.  請求項1に記載の構造物診断装置であって、
     前記指標算出手段は、前記スペクトル形状情報を用いて関数に適合させた適合関数の情報と、前記基準スペクトル形状情報を用いて関数に適合させた基準適合関数の情報とに基づいて、前記指標を算出する
     ことを特徴とする構造物診断装置。
  5.  請求項1から4のいずれか一つに記載の構造物診断装置であって、
     前記固有振動は、一次固有振動である
     ことを特徴とする構造物診断装置。
  6.  請求項1から5のいずれか一つに記載の構造物診断装置であって、
     前記固有振動は、縦振動である
     ことを特徴とする構造物診断装置。
  7.  構造物に設けられた複数のセンサから、前記構造物に発生する振動を表す振動情報を取得し、前記振動情報を用いて固有振動を抽出し、
     前記固有振動を用いてスペクトルの形状を表すスペクトル形状情報を抽出し、
     算出した前記スペクトル形状情報と、あらかじめ設定した基準となる基準スペクトル形状情報との関連性を表す指標を算出し、
     前記指標に基づいて、前記構造物の状態を推定する、
     を有することを特徴とする構造物診断方法。
  8.  請求項7に記載の構造物診断方法であって、
     前記指標として、前記スペクトル形状情報と前記基準スペクトル形状情報との間におけるベクトル間距離を算出する
     ことを特徴とする構造物診断方法。
  9.  請求項7に記載の構造物診断方法であって、
     前記指標として、前記スペクトル形状情報と前記基準スペクトル形状情報との間におけるベクトル間類似度を算出する
     ことを特徴とする構造物診断方法。
  10.  請求項7に記載の構造物診断方法であって、
     前記スペクトル形状情報を用いて関数に適合させた適合関数の情報と、前記基準スペクトル形状情報を用いて関数に適合させた基準適合関数の情報とに基づいて、前記指標を算出する
     ことを特徴とする構造物診断方法。
  11.  請求項7から10のいずれか一つに記載の構造物診断方法であって、
     前記固有振動は、一次固有振動である
     ことを特徴とする構造物診断方法。
  12.  請求項7から11のいずれか一つに記載の構造物診断方法であって、
     前記固有振動は、縦振動である
     ことを特徴とする構造物診断方法。
  13.  コンピュータに、
     構造物に設けられた複数のセンサから、前記構造物に発生する振動を表す振動情報を取得し、前記振動情報を用いて固有振動を抽出させ、
     前記固有振動を用いてスペクトルの形状を表すスペクトル形状情報を抽出させ、
     算出した前記スペクトル形状情報と、あらかじめ設定した基準となる基準スペクトル形状情報との関連性を表す指標を算出させ、
     前記指標に基づいて、前記構造物の状態を推定させる、
     命令を含む、プログラムを記録したコンピュータ読み取り可能な記録媒体。
  14.  請求項13に記載のコンピュータ読み取り可能な記録媒体であって、
     前記指標として、前記スペクトル形状情報と前記基準スペクトル形状情報との間におけるベクトル間距離を算出させる
     ことを特徴とするコンピュータ読み取り可能な記録媒体。
  15.  請求項13に記載のコンピュータ読み取り可能な記録媒体であって、
     前記指標として、前記スペクトル形状情報と前記基準スペクトル形状情報との間におけるベクトル間類似度を算出させる
     ことを特徴とするコンピュータ読み取り可能な記録媒体。
  16.  請求項13に記載のコンピュータ読み取り可能な記録媒体であって、
     前記スペクトル形状情報を用いて関数に適合させた適合関数の情報と、前記基準スペクトル形状情報を用いて関数に適合させた基準適合関数の情報とに基づいて、前記指標を算出させる
     ことを特徴とするコンピュータ読み取り可能な記録媒体。
  17.  請求項13から16のいずれか一つに記載のコンピュータ読み取り可能な記録媒体であって、
     前記固有振動は、一次固有振動である
     ことを特徴とするコンピュータ読み取り可能な記録媒体。
  18.  請求項13から17のいずれか一つに記載のコンピュータ読み取り可能な記録媒体であって、
     前記固有振動は、縦振動である
     ことを特徴とするコンピュータ読み取り可能な記録媒体。
PCT/JP2020/001377 2019-03-05 2020-01-16 構造物診断装置、構造物診断方法、及びコンピュータ読み取り可能な記録媒体 WO2020179241A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021503447A JPWO2020179241A1 (ja) 2019-03-05 2020-01-16 構造物診断装置、構造物診断方法、及びプログラム
US17/435,482 US20220137003A1 (en) 2019-03-05 2020-01-16 Structure diagnosis apparatus, structure diagnosis method, and computer-readable recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019040049 2019-03-05
JP2019-040049 2019-03-05

Publications (1)

Publication Number Publication Date
WO2020179241A1 true WO2020179241A1 (ja) 2020-09-10

Family

ID=72336964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001377 WO2020179241A1 (ja) 2019-03-05 2020-01-16 構造物診断装置、構造物診断方法、及びコンピュータ読み取り可能な記録媒体

Country Status (3)

Country Link
US (1) US20220137003A1 (ja)
JP (1) JPWO2020179241A1 (ja)
WO (1) WO2020179241A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113155262A (zh) * 2021-05-17 2021-07-23 北京助创科技有限公司 带诊断功能的振动传感器及其动设备振动检测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001296214A (ja) * 2000-04-17 2001-10-26 Token Koei:Kk コンクリート構造物の劣化測定装置、および、その測定方法。
US20070052426A1 (en) * 2005-08-01 2007-03-08 Wells Charles H On-line transformer condition monitoring
JP2013040774A (ja) * 2011-08-11 2013-02-28 Ntt Data Corp 異常検出装置、異常検出方法、異常検出プログラム
CN103530275A (zh) * 2013-10-23 2014-01-22 青岛理工大学 基于振动传递率函数主成分置信度的结构损伤预警方法
JP2015102363A (ja) * 2013-11-22 2015-06-04 日本電気株式会社 振動解析装置
JP2016218032A (ja) * 2014-10-15 2016-12-22 株式会社toor データ解析装置及びデータ解析方法
US20170363504A1 (en) * 2016-06-21 2017-12-21 Thomas Arthur Winant System and method for determining the risk of failure of a structure
JP2018179863A (ja) * 2017-04-19 2018-11-15 富士通株式会社 評価プログラム、情報処理装置、及び評価方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128190A (ja) * 2005-11-02 2007-05-24 Mitsubishi Electric Corp 分類基準生成装置および異常判定装置および分類基準生成方法および分類基準生成プログラム
JP5820618B2 (ja) * 2011-05-24 2015-11-24 東日本旅客鉄道株式会社 強風時微動を利用した橋脚健全度評価方法
CN103530375A (zh) * 2013-10-15 2014-01-22 北京国双科技有限公司 数据源的匹配方法和装置
JP6272133B2 (ja) * 2014-05-16 2018-01-31 株式会社日立ハイテクノロジーズ 弁状態診断システムおよび弁状態診断方法
US20160109355A1 (en) * 2014-10-15 2016-04-21 Toor Inc. Data analysis apparatus and data analysis method
KR101523696B1 (ko) * 2014-12-22 2015-05-28 세종대학교산학협력단 충격음을 이용한 노면 손상 분석 시스템 및 방법과, 그 방법을 수행하기 위한 프로그램이 기록된 기록매체

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001296214A (ja) * 2000-04-17 2001-10-26 Token Koei:Kk コンクリート構造物の劣化測定装置、および、その測定方法。
US20070052426A1 (en) * 2005-08-01 2007-03-08 Wells Charles H On-line transformer condition monitoring
JP2013040774A (ja) * 2011-08-11 2013-02-28 Ntt Data Corp 異常検出装置、異常検出方法、異常検出プログラム
CN103530275A (zh) * 2013-10-23 2014-01-22 青岛理工大学 基于振动传递率函数主成分置信度的结构损伤预警方法
JP2015102363A (ja) * 2013-11-22 2015-06-04 日本電気株式会社 振動解析装置
JP2016218032A (ja) * 2014-10-15 2016-12-22 株式会社toor データ解析装置及びデータ解析方法
US20170363504A1 (en) * 2016-06-21 2017-12-21 Thomas Arthur Winant System and method for determining the risk of failure of a structure
JP2018179863A (ja) * 2017-04-19 2018-11-15 富士通株式会社 評価プログラム、情報処理装置、及び評価方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113155262A (zh) * 2021-05-17 2021-07-23 北京助创科技有限公司 带诊断功能的振动传感器及其动设备振动检测方法
CN113155262B (zh) * 2021-05-17 2021-10-26 北京助创科技有限公司 带诊断功能的振动传感器及其动设备振动检测方法

Also Published As

Publication number Publication date
JPWO2020179241A1 (ja) 2021-12-16
US20220137003A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
Perez-Ramirez et al. New methodology for modal parameters identification of smart civil structures using ambient vibrations and synchrosqueezed wavelet transform
EP2904368B1 (en) Turbine blade fatigue life analysis using non-contact measurement and dynamical response reconstruction techniques
US9495646B2 (en) Monitoring health of dynamic system using speaker recognition techniques
JP6237774B2 (ja) 情報処理システム、情報処理方法及びプログラム
Jana et al. Computer vision‐based real‐time cable tension estimation algorithm using complexity pursuit from video and its application in Fred‐Hartman cable‐stayed bridge
Basu Identification of stiffness degradation in structures using wavelet analysis
WO2015174067A1 (ja) 情報処理装置、異常検出方法、及び、記録媒体
WO2020179241A1 (ja) 構造物診断装置、構造物診断方法、及びコンピュータ読み取り可能な記録媒体
US20200278241A1 (en) Vibration determination device, vibration determination method, and program
JP7036209B2 (ja) 診断装置、診断方法、及びプログラム
JP6981526B2 (ja) システム同定装置、システム同定方法及びコンピュータプログラム
WO2019180943A1 (ja) 異常診断装置、異常診断方法、及びコンピュータ読み取り可能な記録媒体
JPWO2020044565A1 (ja) 診断装置、診断方法、及びプログラム
EP3708992A1 (en) Estimating device, estimating method, and program storing medium
JP6964872B2 (ja) 船舶エンジン回転数推定装置、船舶エンジン回転数推定方法および船舶エンジン回転数推定プログラム
JP7188553B2 (ja) 支承診断装置、支承診断方法、及びプログラム
JP6696742B2 (ja) 免震部材応答推定装置及び免震部材応答推定方法
JP2020180819A (ja) 異常検知システム、異常検知装置、異常検知方法およびプログラム
JP7147973B2 (ja) 重量推定装置、重量推定方法、及びプログラム
US20220291077A1 (en) Damage detection apparatus, damage detection method, and computer-readable recording medium
WO2018180880A1 (ja) 分析装置、診断装置、分析方法及びコンピュータ読み取り可能記録媒体
WO2020157810A1 (ja) 状態推定装置、状態推定方法、及びコンピュータ読み取り可能な記録媒体
Vigsø et al. Indirect Wave Load Estimates Using Operational Modal Analysis-Preliminary Findings
WO2015194171A1 (ja) 検知装置、検知方法とそのプログラムを記録した記録媒体
Vigsø et al. Indirect wave load estimates using operational modal analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20767334

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503447

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20767334

Country of ref document: EP

Kind code of ref document: A1