WO2020179004A1 - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
WO2020179004A1
WO2020179004A1 PCT/JP2019/008804 JP2019008804W WO2020179004A1 WO 2020179004 A1 WO2020179004 A1 WO 2020179004A1 JP 2019008804 W JP2019008804 W JP 2019008804W WO 2020179004 A1 WO2020179004 A1 WO 2020179004A1
Authority
WO
WIPO (PCT)
Prior art keywords
nth
voltage
power supply
transformers
switch
Prior art date
Application number
PCT/JP2019/008804
Other languages
English (en)
French (fr)
Inventor
俊秀 中野
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to KR1020217002190A priority Critical patent/KR102566565B1/ko
Priority to US17/257,395 priority patent/US11349382B2/en
Priority to PCT/JP2019/008804 priority patent/WO2020179004A1/ja
Priority to JP2019541475A priority patent/JP6666527B1/ja
Priority to CN201980049983.9A priority patent/CN112514221A/zh
Publication of WO2020179004A1 publication Critical patent/WO2020179004A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • H02M1/092Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices the control signals being transmitted optically
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/10Modifications for increasing the maximum permissible switched voltage
    • H03K17/107Modifications for increasing the maximum permissible switched voltage in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/60Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
    • H03K17/68Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors specially adapted for switching ac currents or voltages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/72Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices having more than two PN junctions; having more than three electrodes; having more than one electrode connected to the same conductivity region
    • H03K17/722Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices having more than two PN junctions; having more than three electrodes; having more than one electrode connected to the same conductivity region with galvanic isolation between the control circuit and the output circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/72Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices having more than two PN junctions; having more than three electrodes; having more than one electrode connected to the same conductivity region
    • H03K17/722Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices having more than two PN junctions; having more than three electrodes; having more than one electrode connected to the same conductivity region with galvanic isolation between the control circuit and the output circuit
    • H03K17/723Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices having more than two PN junctions; having more than three electrodes; having more than one electrode connected to the same conductivity region with galvanic isolation between the control circuit and the output circuit using transformer coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0009AC switches, i.e. delivering AC power to a load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0063High side switches, i.e. the higher potential [DC] or life wire [AC] being directly connected to the switch and not via the load

Definitions

  • the present invention relates to a control device, and more particularly to a control device that controls a switch including a plurality of semiconductor switching elements connected in series.
  • Patent Document 1 discloses a control device for controlling a switch including first to Nth semiconductor switching elements connected in series.
  • the control device includes an AC voltage generator that generates first to Nth AC voltages, a DC voltage generator that converts the first to Nth AC voltages into first to Nth DC voltages, and a switch.
  • a driver is provided which applies a first to Nth DC voltage to the gate of the first to Nth semiconductor switching element, respectively, in the case of conducting the above.
  • the AC voltage generator includes first to Nth isolation transformers.
  • the primary winding of the first isolation transformer receives the AC power supply voltage
  • the secondary windings of the first to (N-1)th isolation transformers are respectively the primary windings of the second to Nth isolation transformers.
  • the secondary windings of the first to Nth insulation transformers connected to each other output the first to Nth AC voltages, respectively.
  • the main object of the present invention is to provide a compact and low-cost control device.
  • the control device is a control device that controls a switch including first to Nth semiconductor switching elements connected in series, and includes an AC voltage generator that generates a first to Nth AC voltage.
  • a DC voltage generator for converting the 1st to Nth AC voltages into the 1st to Nth DC voltages, respectively, and when the switch is turned on, the 1st to Nth DC voltages are converted to the 1st to Nth DC voltages, respectively.
  • the AC voltage generator includes first to Nth isolation transformers.
  • the primary windings of the nth and (n+1)th insulating transformers receive the AC power supply voltage, and the primary windings of the first to (n-1)th insulating transformers are respectively connected to the second to nth insulating transformers.
  • the primary windings of the (n+2)th to Nth insulating transformers are connected to the secondary windings, and are connected to the secondary windings of the (n+1)th to (N-1)th insulating transformers, respectively.
  • the secondary windings of the Nth isolation transformer output the first to Nth AC voltages, respectively.
  • N is a natural number of 2 or more
  • n is a natural number smaller than N.
  • the (n+1)th to (N+1)th to (Nth) insulating transformers are sequentially connected while the nth to 1st insulating transformers are sequentially connected.
  • the load capacitances of the first to seventh insulating transformers are P, 2P, 3P, 4P, 3P, 2P, respectively. It becomes P. Therefore, the total sum of the load capacities of the first to Nth insulating transformers can be made smaller than before, and the device can be downsized and the cost can be reduced.
  • FIG. 2 is a circuit block diagram showing a configuration of a portion related to control of a switch in the control device shown in FIG. 1. It is a circuit block diagram which shows the structure of the AC voltage generator shown in FIG. It is a circuit block diagram which shows the structure of the AC power source shown in FIG.
  • FIG. 3 is a circuit diagram showing a configuration of a rectifier and a switching circuit shown in FIG. 2. 7 is a circuit block diagram showing a first comparative example of the first embodiment.
  • FIG. 7 is a circuit block diagram showing another comparative example 2 of the first embodiment.
  • FIG. 1 is a circuit block diagram showing a configuration of an uninterruptible power supply according to Embodiment 1 of the present invention.
  • This uninterruptible power supply supplies three-phase AC power to a load, but for simplification of the drawing and description, FIG. 1 shows only a portion related to one phase. Moreover, such an uninterruptible power supply is also called a voltage sag compensator.
  • this uninterruptible power supply device includes an AC input terminal TI, an AC output terminal TO, a battery terminal TB, a switch 1, a current detector CT, a bidirectional converter 2, and a control device 3.
  • the AC input terminal TI receives a commercial frequency AC voltage VI from the commercial AC power supply 4.
  • the instantaneous value of the AC input voltage VI is detected by the control device 3.
  • Control device 3 determines whether or not AC voltage VI is normally supplied from commercial AC power supply 4 based on the instantaneous value of AC input voltage VI.
  • the AC output terminal TO is connected to the load 5.
  • the load 5 is driven by the AC power supplied from the uninterruptible power supply.
  • the instantaneous value of the AC output voltage VO appearing at the AC output terminal TO is detected by the control device 3.
  • the battery terminal TB is connected to the battery 6.
  • the battery 6 stores DC power.
  • a capacitor may be connected instead of the battery 6.
  • the instantaneous value of the terminal voltage VB of the battery 6 is detected by the control device 3.
  • the switch 1 includes N IGBTs (Insulated Gate Bipolar Transistors) Q1 to QN and N diodes D1 to DN connected in series between one terminal 1a and the other terminal 1b.
  • N is a natural number of 2 or more, for example 7.
  • the diodes D1 to DN are connected to the IGBT Q1 to QN in antiparallel, respectively.
  • the switch 1 is controlled by the control device 3. When the AC voltage VI is normally supplied from the commercial AC power supply 4 (when the commercial AC power supply 4 is healthy), the switch 1 is turned on. When the AC voltage VI is not normally supplied from the commercial AC power supply 4 (during a power failure of the commercial AC power supply 4), the switch 1 is turned off.
  • the current detector CT detects the instantaneous value of the alternating current (load current) IO flowing from the other terminal 1b of the switch 1 to the alternating current output terminal TO, and gives a signal indicating the detected value to the control device 3.
  • the bidirectional converter 2 is connected between the other terminal 1b of the switch 1 and the battery terminal TB, and is controlled by the control device 3.
  • the bidirectional converter 2 converts the AC power supplied from the commercial AC power supply 4 via the switch 1 into DC power and stores it in the battery 6.
  • the control device 3 controls the bidirectional converter 2 so that the inter-terminal voltage VB of the battery 6 becomes the reference voltage VBr.
  • the bidirectional converter 2 converts the DC power of the battery 6 into the AC power of the commercial frequency and supplies it to the load 5 in the event of a power failure of the commercial AC power supply 4.
  • the control device 3 controls the bidirectional converter 2 based on the AC output voltage VO and the AC output current IO so that the AC output voltage VO becomes the reference voltage VOr.
  • the control device 3 stops the operation of the bidirectional converter 2.
  • the switch 1 When the commercial AC power supply 4 fails, the switch 1 is instantly turned off and the commercial AC power supply 4 and the load 5 are electrically disconnected. At the same time, the DC power of the battery 6 is converted into AC power by the bidirectional converter 2 and supplied to the load 5. Therefore, even if a power failure occurs, the operation of the load 5 can be continued while the DC power is stored in the battery 6.
  • FIG. 2 is a circuit block diagram showing a configuration of a part of the control device 3 shown in FIG. 1 that is related to the control of the switch 1.
  • the controller 3 includes a voltage detector 10, a power failure detector 11, optical fibers FA1 to FAN, FB1 to FBN, an AC voltage generator 12, a DC voltage generator 13, and a driver 14.
  • the voltage detector 10 detects the instantaneous value of the AC voltage VI supplied from the commercial AC power supply 4 (FIG. 1) and outputs a signal indicating the detected value.
  • the power failure detector 11 determines whether or not the commercial AC power supply 4 is normal based on the output signal of the voltage detector 10, and outputs the optical signals ⁇ 1 to ⁇ N and ⁇ 1 to ⁇ N indicating the determination result.
  • AC voltage VI is, for example, 6.6 kV.
  • the commercial AC power supply 4 is determined to be normal, the optical signals ⁇ 1 to ⁇ N are output, and the output of the optical signals ⁇ 1 to ⁇ N is stopped.
  • the AC input voltage VI is lower than the lower limit voltage, it is determined that the commercial AC power supply 4 is not normal, the output of the optical signals ⁇ 1 to ⁇ N is stopped, and the optical signals ⁇ 1 to ⁇ N are output.
  • optical signals ⁇ 1 to ⁇ N are given to the driver 14 via the optical fibers FA1 to FAN, respectively, and the optical signals ⁇ 1 to ⁇ N are given to the driver 14 via the optical fibers FB1 to FBN, respectively.
  • the AC voltage generator 12 outputs N AC voltages VA1 to VAN.
  • the magnitudes (for example, effective values) of the AC voltages VA1 to VAN are the same, for example, 200V.
  • the DC voltage generator 13 converts the AC voltages VA1 to VAN into DC voltages VD1 to VDN, respectively.
  • the DC voltages VD1 to VDN have the same magnitude.
  • the DC voltage generator 13 includes N rectifiers R1 to RN.
  • the rectifiers R1 to RN respectively receive the AC voltages VA1 to VAN and output the DC voltages VD1 to VDN, respectively.
  • the rectifier R1 rectifies the AC voltage VA1 to generate the DC voltage VD1.
  • Each of the other rectifiers R2 to RN is similar to the rectifier R1.
  • the driver 14 includes N switching circuits S1 to SN.
  • Switching circuits S1 to SN receive DC voltages VD1 to VDN, respectively, and are connected between the gates and emitters of IGBTs Q1 to QN, respectively.
  • the switching circuits S1 to SN are connected to the power failure detector 11 via the optical fibers FA1 to FAN, respectively, and are connected to the power failure detector 11 via the optical fibers FB1 to FBN, respectively.
  • the switching circuit S1 responds to the optical signal ⁇ 1 from the optical fiber FA1 and applies a DC voltage VD1 between the gate and emitter of the IGBT Q1 to turn on the IGBT Q1. Further, the switching circuit S1 connects the gate and the emitter of the IGBTQ1 and turns off the IGBTQ1 in response to the optical signal ⁇ 1 from the optical fiber FB1.
  • Each of the other switching circuits S2 to SN is similar to switching circuit S1.
  • the switch 1 (IGBTQ1 to QN) is turned on, and when the power failure detector 11 outputs the optical signals ⁇ 1 to ⁇ N, the switch 1 (IGBTQ1 to QN). Turns off.
  • FIG. 3 is a circuit block diagram showing the configuration of the AC voltage generator 12 shown in FIG.
  • the AC voltage generator 12 includes an AC power supply 15 and N insulating transformers T1 to TN.
  • the AC power supply 15 generates an AC power supply voltage V0 having a predetermined frequency f0.
  • the frequency f0 is set to a frequency (for example, 10 kHz) that can be transmitted by a relatively small isolation transformer.
  • the AC power supply 15 includes a DC power supply 21, a reactor 22, a switch 23, an insulating transformer T0, a capacitor 26, and a control unit 27.
  • the switch 23 includes a pair of thyristors 24 and 25.
  • the one terminal of the reactor 22 is connected to the positive electrode of the DC power supply 21, and the other terminal is connected to the negative electrode of the DC power supply 21 via the primary winding W1 of the insulating transformer T0 and the capacitor 26.
  • the anode of the thyristor 24 is connected to the other terminal of the reactor 22, and its cathode is connected to the negative electrode of the DC power supply 21.
  • the thyristor 25 is connected to the thyristor 24 in antiparallel.
  • the primary winding W1 of the isolation transformer T0 and the capacitor 26 form an LC resonance circuit having a predetermined resonance frequency.
  • the control unit 27 alternately turns on the thyristors 24 and 25 at the resonance frequency.
  • the AC voltage VAS is generated in the primary winding W1 of the insulating transformer T0, and the AC power supply voltage VA0 is output from the secondary winding W2.
  • the primary winding W1 of the isolation transformers Tn and T (n + 1) receives the AC power supply voltage V0.
  • the primary windings W1 of the isolation transformers T1 to T(n-1) are connected to the secondary windings W2 of the isolation transformers T2 to Tn, respectively.
  • the primary winding W1 of the insulating transformers T(n+2) to TN is connected to the secondary winding W2 of the insulating transformers T(n+1) to T(N-1), respectively.
  • the secondary windings W2 of the isolation transformers T1 to TN output AC voltages VA1 to VAN, respectively.
  • the insulation transformers Tn to T1 are sequentially connected, and the insulation transformers T(n+1) to TN are sequentially connected.
  • the load capacity of the insulating transformers T1 to T7 becomes P, 2P, 3P, 4P, 3P, 2P, P, respectively.
  • the total of is 16P.
  • the manufacturing efficiency even when an insulating transformer having a load capacity of 4P is used as each of the insulating transformers T1 to T7, the total load capacity is 28P.
  • the ratio of the number of turns of the secondary winding W2 to the number of turns of the primary winding W1 is 1 in each of the isolation transformers T0 to TN, and the transformation ratio of each of the isolation transformers T1 to T0 is 1. Therefore, the magnitudes of the AC voltage VAS, the AC power supply voltage VA0, and the AC voltages VA1 to VAN are the same. However, in the insulating transformer T0, the ratio between the number of turns of the secondary winding W2 and the number of turns of the primary winding W1 does not necessarily have to be 1.
  • the isolation transformer T0 may step down the AC voltage VAS and output the AC power supply voltage VA0.
  • FIG. 5 is a circuit diagram showing configurations of the rectifier R1 and the switching circuit S1 shown in FIG. 5, the rectifier R1 includes input terminals 30a and 30b, output terminals 30c and 30d, capacitors 31 and 38, resistance elements 32 and 33, and diodes 34 to 37, and the switching circuit S1 includes phototransistors 39 and 40. ..
  • the input terminals 30a and 30b of the rectifier R1 receive the AC voltage VA1 from the secondary winding W2 of the corresponding isolation transformer T1.
  • the capacitor 31 is called a matching capacitor and is connected between the input terminals 30a and 30b.
  • the capacitance value of the capacitor 31 is set so that the AC output voltages VA1 to VAN of the insulating transformers T1 to TN are equal in magnitude.
  • One terminals of the resistance elements 32 and 33 are connected to the input terminals 30a and 30b, respectively, and the other terminals thereof are connected to the anodes of the diodes 34 and 35, respectively.
  • the resistance elements 32 and 33 adjust the input current of the rectifier R1.
  • the cathodes of the diodes 34 and 35 are both connected to the output terminal 30c.
  • the anodes of the diodes 36 and 37 are both connected to the output terminal 30d, and their cathodes are connected to the anodes of the diodes 34 and 35, respectively.
  • the diodes 34 to 37 form a full-wave rectifier circuit and convert the AC voltage VA1 into the DC voltage VD1.
  • Capacitor 38 smoothes and stabilizes DC voltage VD1.
  • the collector of the optical transistor 39 is connected to the output terminal 30c of the rectifier R1, its emitter is connected to the gate of the IGBT Q1, and its base is connected to the output end of the optical fiber FA1.
  • the optical transistor 39 is turned on when the optical signal ⁇ 1 is output from the power failure detector 11 (FIG. 2) (when the commercial AC power source 4 is healthy), and when the output of the optical signal ⁇ 1 is stopped (the commercial AC power source). It turns off at the time of power failure of 4).
  • the collector of the optical transistor 40 is connected to the gate of the IGBT Q1, its emitter is connected to the emitter of the IGBT Q1, and its base is connected to the output end of the optical fiber FB1.
  • the optical transistor 40 is turned on when the optical signal ⁇ 1 is being output from the power failure detector 11 (FIG. 2) (when the commercial AC power source 4 is out of power), and when the output of the optical signal ⁇ 1 is stopped (the commercial AC power source). It turns off at the time of 4).
  • the other rectifiers R2 to RN and the switching circuits S2 to SN are the same as the rectifier R1 and the switching circuit S1.
  • the operation of the control device 3 shown in FIGS. 2 to 5 will be described.
  • the instantaneous value of the AC voltage VI supplied from the commercial AC power supply 4 is detected by the voltage detector 10, and based on the detection result, the AC voltage VI is generated from the commercial AC power supply 4 by the power failure detector 11. It is determined whether the supply is normal.
  • the power failure detector 11 When the AC voltage VI is normally supplied from the commercial AC power supply 4 (when the commercial AC power supply 4 is healthy), the power failure detector 11 outputs the optical signals ⁇ 1 to ⁇ N. Further, when the AC voltage VI is not normally supplied from the commercial AC power supply 4 (during a power failure of the commercial AC power supply 4), the power failure detector 11 outputs the optical signals ⁇ 1 to ⁇ N.
  • an AC power supply voltage VA0 is generated by the AC power supply 15 and given to the primary winding W1 of the insulating transformers Tn, T(n+1).
  • the insulating transformers Tn to T1 are sequentially connected, and their secondary windings W2 output AC voltages VAn to VA1, respectively.
  • the insulating transformers T(n+1) to TN are sequentially connected, and their secondary windings W2 output AC voltages VA(n+1) to VAN, respectively.
  • the AC output voltages VA1 to VAN of the isolation transformers T1 to TN are given to the rectifiers R1 to RN, respectively.
  • the AC voltage VA1 is applied between the input terminals 30a and 30b of the rectifier R1 as shown in FIG.
  • a DC voltage VD1 is generated between the terminals of the capacitor 38.
  • the DC voltage VD1 is given to the switching circuit S1.
  • the AC voltages VA2 to VAN are converted into DC voltages VD2 to VDN by the rectifiers R1 to RN and given to the switching circuits S2 to SN.
  • the power failure detector 11 When the commercial AC power supply 4 (FIG. 1) is healthy, the power failure detector 11 (FIG. 2) outputs the optical signals ⁇ 1 to ⁇ N and the output of the optical signals ⁇ 1 to ⁇ N is stopped, and the switching circuits S1 to SN are switched.
  • the phototransistor 39 is turned on and the phototransistor 40 is turned off.
  • the DC voltages VD1 to VDN are applied between the gates and the emitters of the IGBTs Q1 to QN via the phototransistors 39 of the switching circuits S1 to SN, and the IGBTs Q1 to QN (that is, the switch 1) are turned on.
  • the power failure detector 11 (FIG. 2) outputs the optical signals ⁇ 1 to ⁇ N and the output of the optical signals ⁇ 1 to ⁇ N is stopped, and the phototransistor 40 is switched in each of the switching circuits S1 to SN. Is turned on and the phototransistor 39 is turned off. As a result, the gates and emitters of the IGBTs Q1 to QN are connected by the phototransistor 40 of the switching circuits S1 to SN, and the IGBTs Q1 to QN (that is, the switch 1) are turned off.
  • FIG. 6 is a circuit block diagram showing Comparative Example 1 of the first embodiment, and is a diagram to be compared with FIG. Referring to FIG. 6, Comparative Example 1 differs from Embodiment 1 in that AC voltage generator 12 is replaced with AC voltage generator 41.
  • the AC output voltage VA0 of the AC power supply 15 is applied to the primary winding W1 of the isolation transformer T1, and the secondary windings W2 of the insulation transformers T1 to T (N-1) are isolated transformers, respectively.
  • AC voltages VA1 to VAN are output from the secondary windings W2 of the insulating transformers T1 to TN, which are connected to the primary windings W1 of T2 to TN.
  • the load capacities of the insulating transformers T1 to TN are P and P, respectively. It becomes 2P, 3P, 4P, 3P, 2P, P, and the total load capacity becomes 16P.
  • the total load capacitance is 28P.
  • the total load capacity of the isolation transformers T1 to TN can be made smaller than that of the comparative example 1, and the device can be downsized and the cost can be reduced.
  • FIG. 7 is a circuit block diagram showing another Comparative Example 2 of the first embodiment, and is a diagram to be compared with FIG. Referring to FIG. 6, Comparative Example 2 is different from Embodiment 1 in that AC voltage generator 12 is replaced with AC voltage generator 42.
  • the AC output voltage VA0 of the AC power supply 15 is applied to the primary winding W1 of the insulating transformers T1 to TN, and the AC voltages VA1 to VAN are generated from the secondary winding W2 of the insulating transformers T1 to TN. It is output.
  • the voltage of one terminal 1a of the switch 1 is set to V1
  • the voltages of the emitters of the IGBTs Q1 to QN are set to V2 to V(N+1), respectively.
  • the voltages of the emitters of the IGBTs Q1 to Q7 are V2 to V8, respectively.
  • the voltage between the terminals 1a and 1b of the switch 1 is 7 kV
  • the voltage between the collector and the emitter of each of the IGBTs Q1 to Q7 is 1 kV.
  • the voltage V2 of the emitter of the IGBT Q1 is applied to the secondary winding W2 of the corresponding isolation transformer T1 via the diodes 36 and 37 and the resistance elements 32 and 33.
  • the voltage V8 of the emitter of the IGBT Q7 is applied to the secondary winding W2 of the insulating transformer T7.
  • V2 and V3 are applied to the secondary winding W2 and the primary winding W1 of the insulating transformer T1, respectively. It suffices to use a low withstand voltage insulating transformer capable of withstanding 1 kV, that is, a low cost insulating transformer. The same applies to the other isolation transformers T2 to T7.
  • a high withstand voltage isolation transformer is considerably larger and more costly than a low withstand voltage isolation transformer. Therefore, according to the first embodiment, it is possible to use the insulation transformer having a lower breakdown voltage than that of the second comparative example, and it is possible to reduce the size and cost of the device.
  • FIG. 8 is a circuit block diagram showing a main part of the uninterruptible power supply according to the second embodiment of the present invention, and is a diagram to be compared with FIG. Referring to FIG. 8, the second embodiment is different from the first embodiment in that AC voltage generator 12 is replaced with AC voltage generator 45.
  • the AC voltage generator 45 includes an AC power supply 15 and isolation transformers T1 to TN, similarly to the AC voltage generator 12.
  • the primary winding W1 of the isolation transformer Tn receives the AC power supply voltage V0.
  • the primary windings W1 of the isolation transformers T1 to T(n-1) are connected to the secondary windings W2 of the isolation transformers T2 to Tn, respectively.
  • the primary winding W1 of the insulating transformers T(n+1) to TN is connected to the secondary winding W2 of the insulating transformers Tn to T(N-1), respectively.
  • the secondary windings W2 of the isolation transformers T1 to TN output AC voltages VA1 to VAN, respectively.
  • Other configurations and operations are the same as those in the first embodiment, and therefore description thereof will not be repeated.
  • the insulating transformers Tn to T1 are sequentially connected and the insulating transformers Tn to TN are sequentially connected.
  • the load capacity of the insulating transformers T1 to T7 becomes P, 2P, 3P, 7P, 3P, 2P, P, respectively. Will be 19P.
  • the total load capacitance is 25P.
  • FIG. 9 is a circuit block diagram showing a main part of the uninterruptible power supply according to the third embodiment of the present invention, and is a diagram to be compared with FIG. Referring to FIG. 9, the third embodiment differs from the second embodiment in that AC voltage generator 45 is replaced with AC voltage generator 50.
  • the AC voltage generator 50 is obtained by replacing the AC power supply 15 and the isolation transformer Tn of the AC voltage generator 45 with the AC power supply 51.
  • the AC power supply 51 generates an AC voltage VAn having a predetermined frequency f0.
  • the frequency f0 is set to a frequency (for example, 10 kHz) that can be transmitted by a relatively small isolation transformer.
  • FIG. 10 is a circuit block diagram showing the configuration of the AC power supply 51 shown in FIG. 9, and is a diagram to be compared with FIG.
  • AC power supply 51 is obtained by replacing insulation transformer T0 of AC power supply 15 with insulation transformer Tn.
  • One terminal of the primary winding W1 of the insulating transformer Tn is connected to the positive electrode of the DC power supply 21 via the reactor 22, and the other terminal is connected to the negative electrode of the DC power supply 21 via the capacitor 26.
  • the primary winding W1 of the insulating transformer Tn and the capacitor 26 form an LC resonance circuit having a predetermined resonance frequency.
  • the control unit 27 alternately turns on the thyristors 24 and 25 at the resonance frequency.
  • the AC power supply voltage VA0 is generated in the primary winding W1 of the insulating transformer T0, and the AC voltage VAn is output from the secondary winding W2.
  • the isolation transformer Tn is provided in the AC power supply 50, the number of isolation transformers can be reduced as compared with the second embodiment, and the device can be downsized and the price can be reduced. ..

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Power Conversion In General (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

制御装置(3)は、第1~第Nの交流電圧を生成する交流電圧発生器(12)と、第1~第Nの交流電圧をそれぞれ第1~第Nの直流電圧に変換する直流電圧発生器(13)と、第1~第Nの直流電圧に基づいてスイッチ(1)をオンおよびオフさせるドライバ(14)とを備える。交流電圧発生器(12)は、第1~第Nの絶縁トランス(T1~TN)を含む。第nおよび第(n+1)の絶縁トランスの1次巻線は交流電源電圧を受け、第n~第1の絶縁トランスは順次接続され、第(n+1)~第Nの絶縁トランスは順次接続され、第1~第Nの絶縁トランスの2次巻線はそれぞれ第1~第Nの交流電圧を出力する。

Description

制御装置
 この発明は制御装置に関し、特に、直列接続された複数の半導体スイッチング素子を含むスイッチを制御する制御装置に関する。
 たとえば特開昭59-37733号公報(特許文献1)には、直列接続された第1~第Nの半導体スイッチング素子を含むスイッチを制御する制御装置が開示されている。この制御装置は、第1~第Nの交流電圧を生成する交流電圧発生器と、第1~第Nの交流電圧をそれぞれ第1~第Nの直流電圧に変換する直流電圧発生器と、スイッチを導通させる場合に、第1~第Nの直流電圧をそれぞれ第1~第Nの半導体スイッチング素子のゲートに与えるドライバとを備える。
 交流電圧発生器は、第1~第Nの絶縁トランスを含む。第1の絶縁トランスの1次巻線は交流電源電圧を受け、第1~第(N-1)の絶縁トランスの2次巻線はそれぞれ第2~第Nの絶縁トランスの1次巻線に接続され、第1~第Nの絶縁トランスの2次巻線はそれぞれ第1~第Nの交流電圧を出力する。
特開昭59-37733号公報
 特許文献1の制御装置では、第1~第Nの絶縁トランスを順次接続するので、各絶縁トランスの負荷容量を当該絶縁トランスよりも下流側の全絶縁トランスの負荷容量の総和とする必要がある。たとえばN=7とし、第7の絶縁トランスの負荷容量をPとすると、第1~第7の絶縁トランスの負荷容量はそれぞれ7P,6P,5P,…,2P,Pとなる(図6参照)。このため、第1~第Nの絶縁トランスの負荷容量の総和が大きくなり、装置が大型でコスト高になるという問題があった。
 それゆえに、この発明の主たる目的は、小型で低コストの制御装置を提供することである。
 この発明に係る制御装置は、直列接続された第1~第Nの半導体スイッチング素子を含むスイッチを制御する制御装置であって、第1~第Nの交流電圧を生成する交流電圧発生器と、第1~第Nの交流電圧をそれぞれ第1~第Nの直流電圧に変換する直流電圧発生器と、スイッチをオンさせる場合には、第1~第Nの直流電圧をそれぞれ第1~第Nの半導体スイッチング素子のゲートに与え、スイッチをオフさせる場合には、第1~第Nの直流電圧の第1~第Nの半導体スイッチング素子のゲートへの供給を停止するドライバとを備えたものである。
 交流電圧発生器は、第1~第Nの絶縁トランスを含む。第nおよび第(n+1)の絶縁トランスの1次巻線は交流電源電圧を受け、第1~第(n-1)の絶縁トランスの1次巻線はそれぞれ第2~第nの絶縁トランスの2次巻線に接続され、第(n+2)~第Nの絶縁トランスの1次巻線はそれぞれ第(n+1)~第(N-1)の絶縁トランスの2次巻線に接続され、第1~第Nの絶縁トランスの2次巻線はそれぞれ第1~第Nの交流電圧を出力する。Nは2以上の自然数であり、nはNよりも小さな自然数である。
 この発明に係る制御装置では、第n~第1の絶縁トランスを順次接続するとともに、第(n+1)~第Nの絶縁トランスを順次接続する。たとえば、N=7とし、n=4とし、第Nの絶縁トランスの負荷容量をPとすると、第1~第7の絶縁トランスの負荷容量はそれぞれP,2P,3P,4P,3P,2P,Pとなる。したがって、第1~第Nの絶縁トランスの負荷容量の総和を従来よりも小さくすることができ、装置の小型化および低コスト化を図ることができる。
この発明の実施の形態1による無停電電源装置の構成を示す回路ブロック図である。 図1に示した制御装置のうちのスイッチの制御に関連する部分の構成を示す回路ブロック図である。 図2に示した交流電圧発生器の構成を示す回路ブロック図である。 図3に示した交流電源の構成を示す回路ブロック図である。 図2に示した整流器および切換回路の構成を示す回路図である。 実施の形態1の比較例1を示す回路ブロック図である。 実施の形態1の他の比較例2を示す回路ブロック図である。 この発明の実施の形態2による無停電電源装置の要部を示す回路ブロック図である。 この発明の実施の形態3による無停電電源装置の要部を示す回路ブロック図である。 図9に示した交流電源の構成を示す回路ブロック図である。
 [実施の形態1]
 図1は、この発明の実施の形態1による無停電電源装置の構成を示す回路ブロック図である。この無停電電源装置は三相交流電力を負荷に供給するものであるが、図面および説明の簡単化のため、図1では一相に関連する部分のみが示されている。また、このような無停電電源装置は瞬低補償装置とも呼ばれる。
 図1において、この無停電電源装置は、交流入力端子TI、交流出力端子TO、バッテリ端子TB、スイッチ1、電流検出器CT、双方向コンバータ2、および制御装置3を備える。
 交流入力端子TIは、商用交流電源4から商用周波数の交流電圧VIを受ける。交流入力電圧VIの瞬時値は、制御装置3によって検出される。制御装置3は、交流入力電圧VIの瞬時値に基づいて、商用交流電源4から交流電圧VIが正常に供給されているか否かを判別する。
 交流出力端子TOは、負荷5に接続される。負荷5は、無停電電源装置から供給される交流電力によって駆動される。交流出力端子TOに現れる交流出力電圧VOの瞬時値は、制御装置3によって検出される。
 バッテリ端子TBは、バッテリ6に接続される。バッテリ6は、直流電力を蓄える。バッテリ6の代わりにコンデンサが接続されていても構わない。バッテリ6の端子間電圧VBの瞬時値は、制御装置3によって検出される。
 スイッチ1の一方端子1aは交流入力端子TIに接続され、その他方端子1bは交流出力端子TOに接続される。スイッチ1は、一方端子1aおよび他方端子1b間に直列接続されたN個のIGBT(Insulated Gate Bipolar Transistor)Q1~QNと、N個のダイオードD1~DNとを含む。Nは、2以上の自然数であり、たとえば7である。ダイオードD1~DNは、それぞれIGBTQ1~QNに逆並列に接続されている。
 スイッチ1は、制御装置3によって制御される。商用交流電源4から交流電圧VIが正常に供給されている場合(商用交流電源4の健全時)には、スイッチ1はオン状態にされる。商用交流電源4から交流電圧VIが正常に供給されていない場合(商用交流電源4の停電時)には、スイッチ1はオフされる。
 電流検出器CTは、スイッチ1の他方端子1bから交流出力端子TOに流れる交流電流(負荷電流)IOの瞬時値を検出し、その検出値を示す信号を制御装置3に与える。
 双方向コンバータ2は、スイッチ1の他方端子1bとバッテリ端子TBの間に接続され、制御装置3によって制御される。双方向コンバータ2は、商用交流電源4の健全時には、商用交流電源4からスイッチ1を介して供給される交流電力を直流電力に変換してバッテリ6に蓄える。このとき制御装置3は、バッテリ6の端子間電圧VBが参照電圧VBrになるように双方向コンバータ2を制御する。
 また、双方向コンバータ2は、商用交流電源4の停電時には、バッテリ6の直流電力を商用周波数の交流電力に変換して負荷5に供給する。このとき制御装置3は、交流出力電圧VOおよび交流出力電流IOに基づき、交流出力電圧VOが参照電圧VOrになるように双方向コンバータ2を制御する。制御装置3は、バッテリ6の端子間電圧VBが低下して下限電圧に到達した場合には、双方向コンバータ2の運転を停止させる。
 次に、この無停電電源装置の動作について説明する。商用交流電源4の健全時には、スイッチ1がオンされ、商用交流電源4からスイッチ1を介して負荷5に交流電力が供給され、負荷5が運転される。また、商用交流電源4からスイッチ1を介して双方向コンバータ2に交流電力が供給され、その交流電力が直流電力に変換されてバッテリ6に蓄えられる。
 商用交流電源4の停電時には、スイッチ1が瞬時にオフされ、商用交流電源4と負荷5が電気的に切り離される。同時に、バッテリ6の直流電力が双方向コンバータ2によって交流電力に変換されて負荷5に供給される。したがって、停電が発生した場合でも、バッテリ6に直流電力が蓄えられている期間は、負荷5の運転を継続することができる。
 図2は、図1に示した制御装置3のうちのスイッチ1の制御に関連する部分の構成を示す回路ブロック図である。図2において、制御装置3は、電圧検出器10、停電検出器11、光ファイバFA1~FAN,FB1~FBN、交流電圧発生器12、直流電圧発生器13、およびドライバ14を含む。
 電圧検出器10は、商用交流電源4(図1)から供給される交流電圧VIの瞬時値を検出し、その検出値を示す信号を出力する。停電検出器11(判定部)は、電圧検出器10の出力信号に基づいて商用交流電源4が正常であるか否かを判別し、判別結果を示す光信号α1~αN,β1~βNを出力する。交流電圧VIは、たとえば6.6kVである。
 交流入力電圧VIが下限電圧よりも高い場合には、商用交流電源4は正常であると判別され、光信号α1~αNが出力され、光信号β1~βNの出力は停止される。交流入力電圧VIが下限電圧よりも低い場合には、商用交流電源4は正常でないと判別され、光信号α1~αNの出力が停止され、光信号β1~βNが出力される。
 光信号α1~αNはそれぞれ光ファイバFA1~FANを介してドライバ14に与えられ、光信号β1~βNはそれぞれ光ファイバFB1~FBNを介してドライバ14に与えられる。
 交流電圧発生器12は、N個の交流電圧VA1~VANを出力する。交流電圧VA1~VANの大きさ(たとえば実効値)は同一であり、たとえば200Vである。直流電圧発生器13は、交流電圧VA1~VANをそれぞれ直流電圧VD1~VDNに変換する。直流電圧VD1~VDNの大きさは同一である。
 直流電圧発生器13は、N個の整流器R1~RNを含む。整流器R1~RNは、それぞれ交流電圧VA1~VANを受け、それぞれ直流電圧VD1~VDNを出力する。整流器R1は、交流電圧VA1を整流して直流電圧VD1を生成する。他の整流器R2~RNの各々は、整流器R1と同様である。
 ドライバ14は、N個の切換回路S1~SNを含む。切換回路S1~SNは、それぞれ直流電圧VD1~VDNを受けるとともに、それぞれIGBTQ1~QNのゲートおよびエミッタ間に接続される。切換回路S1~SNは、それぞれ光ファイバFA1~FANを介して停電検出器11に接続されるとともに、それぞれ光ファイバFB1~FBNを介して停電検出器11に接続される。
 切換回路S1は、光ファイバFA1からの光信号α1に応答して、IGBTQ1のゲートおよびエミッタ間に直流電圧VD1を与えてIGBTQ1をオンさせる。また、切換回路S1は、光ファイバFB1からの光信号β1に応答して、IGBTQ1のゲートおよびエミッタ間を接続してIGBTQ1をオフさせる。他の切換回路S2~SNの各々は、切換回路S1と同様である。
 したがって、停電検出器11から光信号α1~αNが出力されるとスイッチ1(IGBTQ1~QN)がオンし、停電検出器11から光信号β1~βNが出力されるとスイッチ1(IGBTQ1~QN)がオフする。
 図3は、図2に示した交流電圧発生器12の構成を示す回路ブロック図である。図3において、交流電圧発生器12は、交流電源15およびN個の絶縁トランスT1~TNを含む。交流電源15は、所定周波数f0の交流電源電圧V0を生成する。周波数f0は、比較的小型の絶縁トランスで伝送することが可能な周波数(たとえば10kHz)に設定されている。
 交流電源15は、図4に示すように、直流電源21、リアクトル22、スイッチ23、絶縁トランスT0、コンデンサ26、および制御部27を備える。スイッチ23は、一対のサイリスタ24,25を含む。
 リアクトル22の一方端子は直流電源21の正極に接続され、その他方端子は絶縁トランスT0の1次巻線W1およびコンデンサ26を介して直流電源21の負極に接続される。サイリスタ24のアノードはリアクトル22の他方端子に接続され、そのカソードは直流電源21の負極に接続されている。サイリスタ25は、サイリスタ24に逆並列に接続されている。
 絶縁トランスT0の1次巻線W1とコンデンサ26は、所定の共振周波数を有するLC共振回路を構成する。制御部27は、その共振周波数でサイリスタ24,25を交互にオンさせる。これにより、絶縁トランスT0の1次巻線W1に交流電圧VASが発生し、その2次巻線W2から交流電源電圧VA0が出力される。
 図3に戻って、絶縁トランスTn,T(n+1)の1次巻線W1は交流電源電圧V0を受ける。nはNよりも小さな自然数である。たとえば、N=7、n=3である。絶縁トランスT1~T(n-1)の1次巻線W1は、それぞれ絶縁トランスT2~Tnの2次巻線W2に接続される。
 絶縁トランスT(n+2)~TNの1次巻線W1は、それぞれ絶縁トランスT(n+1)~T(N-1)の2次巻線W2に接続される。絶縁トランスT1~TNの2次巻線W2は、それぞれ交流電圧VA1~VANを出力する。
 この交流電圧発生器12では、絶縁トランスTn~T1を順次接続するとともに、絶縁トランスT(n+1)~TNを順次接続する。たとえば、N=7とし、n=3とし、絶縁トランスT7の負荷容量をPとすると、絶縁トランスT1~T7の負荷容量はそれぞれP,2P,3P,4P,3P,2P,Pとなり、負荷容量の総和は16Pとなる。製造効率を考慮し、絶縁トランスT1~T7の各々として負荷容量が4Pの絶縁トランスを使用する場合でも、負荷容量の総和は28Pとなる。
 なお、絶縁トランスT0~TNの各々において2次巻線W2の巻数と1次巻線W1の巻数との比は1であり、絶縁トランスT1~T0の各々の変圧比は1である。したがって、交流電圧VAS、交流電源電圧VA0、および交流電圧VA1~VANの大きさは同じである。ただし、絶縁トランスT0においては、2次巻線W2の巻数と1次巻線W1の巻数との比は必ずしも1である必要はない。絶縁トランスT0は、交流電圧VASを降圧して交流電源電圧VA0を出力しても構わない。
 図5は、図2に示した整流器R1および切換回路S1の構成を示す回路図である。図5において、整流器R1は、入力端子30a,30b、出力端子30c,30d、コンデンサ31,38、抵抗素子32,33、およびダイオード34~37を含み、切換回路S1は光トランジスタ39,40を含む。
 整流器R1の入力端子30a,30bは、対応する絶縁トランスT1の2次巻線W2から交流電圧VA1を受ける。コンデンサ31は、マッチングコンデンサと呼ばれ、入力端子30a,30b間に接続される。コンデンサ31の容量値は、絶縁トランスT1~TNの交流出力電圧VA1~VANの大きさが等しくなるように設定されている。
 抵抗素子32,33の一方端子はそれぞれ入力端子30a,30bに接続され、それらの他方端子はそれぞれダイオード34,35のアノードに接続される。抵抗素子32,33は、整流器R1の入力電流を調整する。
 ダイオード34,35のカソードはともに出力端子30cに接続される。ダイオード36,37のアノードはともに出力端子30dに接続され、それらのカソードはそれぞれダイオード34,35のアノードに接続される。ダイオード34~37は、全波整流回路を構成し、交流電圧VA1を直流電圧VD1に変換する。コンデンサ38は、直流電圧VD1を平滑化および安定化させる。
 光トランジスタ39のコレクタは整流器R1の出力端子30cに接続され、そのエミッタはIGBTQ1のゲートに接続され、そのベースは光ファイバFA1の出力端に接続される。光トランジスタ39は、停電検出器11(図2)から光信号α1が出力されている場合(商用交流電源4の健全時)にオンし、光信号α1の出力が停止された場合(商用交流電源4の停電時)にオフする。
 光トランジスタ40のコレクタはIGBTQ1のゲートに接続され、そのエミッタはIGBTQ1のエミッタに接続され、そのベースは光ファイバFB1の出力端に接続される。光トランジスタ40は、停電検出器11(図2)から光信号β1が出力されている場合(商用交流電源4の停電時)にオンし、光信号β1の出力が停止された場合(商用交流電源4の健全時)にオフする。他の整流器R2~RNおよび切換回路S2~SNは、整流器R1および切換回路S1と同様である。
 次に、図2~図5で示した制御装置3の動作について説明する。図2に示すように、商用交流電源4から供給される交流電圧VIの瞬時値が電圧検出器10によって検出され、その検出結果に基づき、停電検出器11によって商用交流電源4から交流電圧VIが正常に供給されているか否かが判別される。
 商用交流電源4から交流電圧VIが正常に供給されている場合(商用交流電源4の健全時)には、停電検出器11から光信号α1~αNが出力される。また、商用交流電源4から交流電圧VIが正常に供給されていない場合(商用交流電源4の停電時)には、停電検出器11から光信号β1~βNが出力される。
 また図3に示すように、交流電源15によって交流電源電圧VA0が生成されて絶縁トランスTn,T(n+1)の1次巻線W1に与えられる。絶縁トランスTn~T1は順次接続されており、それらの2次巻線W2からそれぞれ交流電圧VAn~VA1が出力される。また、絶縁トランスT(n+1)~TNは順次接続されており、それらの2次巻線W2からそれぞれ交流電圧VA(n+1)~VANが出力される。
 図2に示すように、絶縁トランスT1~TNの交流出力電圧VA1~VANは、それぞれ整流器R1~RNに与えられる。たとえば交流電圧VA1は、図5に示すように、整流器R1の入力端子30a,30b間に印加される。
 交流電圧VA1が正極性である期間には、入力端子30aから抵抗素子32、ダイオード34、コンデンサ38、ダイオード37、および抵抗素子33を介して入力端子30bに電流が流れ、コンデンサ38が充電される。
 交流電圧VA1が負極性である期間には、入力端子30bから抵抗素子33、ダイオード35、コンデンサ38、ダイオード36、および抵抗素子32を介して入力端子30aに電流が流れ、コンデンサ38が充電される。コンデンサ38の端子間には、直流電圧VD1が発生する。直流電圧VD1は、切換回路S1に与えられる。
 同様に、交流電圧VA2~VANは、整流器R1~RNによって直流電圧VD2~VDNに変換されて切換回路S2~SNに与えられる。
 商用交流電源4(図1)の健全時には、停電検出器11(図2)から光信号α1~αNが出力されるとともに光信号β1~βNの出力が停止され、切換回路S1~SNの各々において、光トランジスタ39がオンするとともに光トランジスタ40がオフする。これにより、直流電圧VD1~VDNが切換回路S1~SNの光トランジスタ39を介してIGBTQ1~QNのゲートおよびエミッタ間に印加され、IGBTQ1~QN(すなわちスイッチ1)がオンする。
 商用交流電源4の停電時には、停電検出器11(図2)から光信号β1~βNが出力されるとともに光信号α1~αNの出力が停止され、切換回路S1~SNの各々において、光トランジスタ40がオンするとともに光トランジスタ39がオフする。これにより、IGBTQ1~QNのゲートおよびエミッタ間が切換回路S1~SNの光トランジスタ40によって接続され、IGBTQ1~QN(すなわちスイッチ1)がオフする。
 図6は、実施の形態1の比較例1を示す回路ブロック図であって、図3と対比される図である。図6を参照して、この比較例1が実施の形態1と異なる点は、交流電圧発生器12が交流電圧発生器41で置換されている点である。
 この交流電圧発生器41では、交流電源15の交流出力電圧VA0が絶縁トランスT1の1次巻線W1に与えられ、絶縁トランスT1~T(N-1)の2次巻線W2がそれぞれ絶縁トランスT2~TNの1次巻線W1に接続され、絶縁トランスT1~TNの2次巻線W2から交流電圧VA1~VANが出力される。
 この比較例1では、絶縁トランスT1~TNを順次接続するので、絶縁トランスT1~TNの負荷容量の和が大きくなる。たとえばN=7の場合には、絶縁トランスT7の負荷容量をPとすると、絶縁トランスT1~T7の負荷容量はそれぞれ7P,6P,5P,4P,3P,2P,Pとなり、負荷容量の総和は28Pとなる。製造効率を考慮し、絶縁トランスT1~T7の各々として負荷容量が7Pの絶縁トランスを使用すると、負荷容量の総和は49Pとなる。
 これに対して実施の形態1の交流電圧発生器12では、図3を用いて説明したように、N=7、n=3の場合には、絶縁トランスT1~TNの負荷容量はそれぞれP,2P,3P,4P,3P,2P,Pとなり、負荷容量の総和は16Pとなる。製造効率を考慮し、絶縁トランスT1~T7の各々として4Pの絶縁トランスを使用した場合でも、負荷容量の総和は28Pとなる。
 一般に、負荷容量の大きな絶縁トランスは、負荷容量の小さな絶縁トランスと比べ、大型で高コストとなる。したがって、本実施の形態1によれば、比較例1よりも絶縁トランスT1~TNの負荷容量の総和を小さくすることができ、装置の小型化および低コスト化を図ることができる。
 図7は、実施の形態1の他の比較例2を示す回路ブロック図であって、図3と対比される図である。図6を参照して、この比較例2が実施の形態1と異なる点は、交流電圧発生器12が交流電圧発生器42で置換されている点である。この交流電圧発生器42では、交流電源15の交流出力電圧VA0が絶縁トランスT1~TNの1次巻線W1に与えられ、絶縁トランスT1~TNの2次巻線W2から交流電圧VA1~VANが出力される。
 この比較例2では、絶縁トランスT1~TNを並列接続するので、絶縁トランスT1~TNの負荷容量の和が小さくなる。たとえばN=7の場合には、絶縁トランスT7の負荷容量をPとすると、絶縁トランスT1~T7の負荷容量は全てPとなり、負荷容量の総和は7Pとなる。しかし、この比較例2では、高耐圧の絶縁トランスT1~TNを使用する必要がある。
 すなわち、図2に示すように、スイッチ1の一方端子1aの電圧をV1とし、IGBTQ1~QNのエミッタの電圧をそれぞれV2~V(N+1)とする。たとえばN=7とすると、IGBTQ1~Q7のエミッタの電圧はそれぞれV2~V8となる。スイッチ1の端子1a,1b間の電圧を7kVとすると、IGBTQ1~Q7の各々のコレクタおよびエミッタ間の電圧は1kVとなる。
 また、図5に示すように、IGBTQ1のエミッタの電圧V2は、ダイオード36,37および抵抗素子32,33を介して対応する絶縁トランスT1の2次巻線W2に印加される。同様に、IGBTQ7のエミッタの電圧V8は、絶縁トランスT7の2次巻線W2に印加される。
 図7に戻って、絶縁トランスT1と絶縁トランスTN(ここではT7)の2次巻線W2間にV8-V2=6kVが印加される。絶縁トランスの構造上、2つの絶縁トランスT1,T7で6kVを均等に分圧することは難しいので、絶縁トランスT1,T7の各々として6kVに耐えることが可能な高耐圧の絶縁トランス、すなわち高価格の絶縁トランスを使用する必要がある。
 これに対して本実施の形態1の交流電圧発生器12(図3)では、絶縁トランスT1の2次巻線W2および1次巻線W1にそれぞれV2,V3が印加されるので、絶縁トランスT1として1kVに耐えることが可能な低耐圧の絶縁トランス、すなわち低価格の絶縁トランスを使用すれば足りる。他の絶縁トランスT2~T7も同様である。
 一般に、高耐圧の絶縁トランスは、低耐圧の絶縁トランスと比べ、かなり大型でコスト高になる。したがって、本実施の形態1によれば、比較例2よりも低耐圧の絶縁トランスを使用することができ、装置の小型化および低コスト化を図ることができる。
 [実施の形態2]
 図8は、この発明の実施の形態2による無停電電源装置の要部を示す回路ブロック図であって、図3と対比される図である。図8を参照して、実施の形態2が実施の形態1と異なる点は、交流電圧発生器12が交流電圧発生器45で置換されている点である。交流電圧発生器45は、交流電圧発生器12と同様に、交流電源15および絶縁トランスT1~TNを含む。
 絶縁トランスTnの1次巻線W1は交流電源電圧V0を受ける。この実施の形態2において、Nは3以上の自然数であり、nはNよりも小さな自然数である。たとえば、N=7、n=4である。絶縁トランスT1~T(n-1)の1次巻線W1は、それぞれ絶縁トランスT2~Tnの2次巻線W2に接続される。
 絶縁トランスT(n+1)~TNの1次巻線W1は、それぞれ絶縁トランスTn~T(N-1)の2次巻線W2に接続される。絶縁トランスT1~TNの2次巻線W2は、それぞれ交流電圧VA1~VANを出力する。他の構成および動作は、実施の形態1と同じであるので、その説明は繰り返さない。
 この交流電圧発生器12では、絶縁トランスTn~T1を順次接続するとともに、絶縁トランスTn~TNを順次接続する。たとえば、N=7とし、n=4とし、絶縁トランスT7の負荷容量をPとすると、絶縁トランスT1~T7の負荷容量はそれぞれP,2P,3P,7P,3P,2P,Pとなり、負荷容量の総和は19Pとなる。製造効率を考慮して絶縁トランスT1~T3,T5~T7の各々を3Pの絶縁トランスを使用する場合でも、負荷容量の総和は25Pとなる。
 したがって、比較例1よりも負荷容量が小さな絶縁トランスを使用することができる。また、比較例2のように高耐圧の絶縁トランスを使用する必要もない。したがって、比較例1,2よりも装置の小型化および低コスト化を図ることができる。
 [実施の形態3]
 図9は、この発明の実施の形態3による無停電電源装置の要部を示す回路ブロック図であって、図8と対比される図である。図9を参照して、実施の形態3が実施の形態2と異なる点は、交流電圧発生器45が交流電圧発生器50で置換されている点である。
 交流電圧発生器50は、交流電圧発生器45の交流電源15および絶縁トランスTnを交流電源51で置換したものである。交流電源51は、所定周波数f0の交流電圧VAnを生成する。周波数f0は、比較的小型の絶縁トランスで伝送することが可能な周波数(たとえば10kHz)に設定されている。
 図10は、図9に示した交流電源51の構成を示す回路ブロック図であって、図4と対比される図である。図10を参照して、交流電源51は、交流電源15の絶縁トランスT0を絶縁トランスTnで置換したものである。絶縁トランスTnの1次巻線W1の一方端子はリアクトル22を介して直流電源21の正極に接続され、その他方端子はコンデンサ26を介して直流電源21の負極に接続される。
 絶縁トランスTnの1次巻線W1とコンデンサ26は、所定の共振周波数を有するLC共振回路を構成する。制御部27は、その共振周波数でサイリスタ24,25を交互にオンさせる。これにより、絶縁トランスT0の1次巻線W1に交流電源電圧VA0が発生し、その2次巻線W2から交流電圧VAnが出力される。
 この実施の形態3では、絶縁トランスTnを交流電源50内に設けたので、実施の形態2よりも絶縁トランスの数を少なくすることができ、装置の小型化および低価格化を図ることができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 TI 交流入力端子、TO 交流出力端子、TB バッテリ端子、1,23 スイッチ、CT 電流検出器、2 双方向コンバータ、3 制御装置、4 商用交流電源、5 負荷、6 バッテリ、Q1~QN IGBT、D1~DN,34~37 ダイオード、10 電圧検出器、11 停電検出器、FA1~FAN,FB1~FBN 光ファイバ、12,41,42,45,50 交流電圧発生器、13 直流電圧発生器、14 ドライバ、R1~RN 整流器、S1~SN 切換回路、15,51 交流電源、T0~TN 絶縁トランス、W1 1次巻線、W2 2次巻線、21 直流電源、22 リアクトル、24,25 サイリスタ、26,31,38 コンデンサ、27 制御部、32,33 抵抗素子、39,40 光トランジスタ。

Claims (9)

  1.  直列接続された第1~第Nの半導体スイッチング素子を含むスイッチを制御する制御装置であって、
     第1~第Nの交流電圧を生成する交流電圧発生器と、
     前記第1~第Nの交流電圧をそれぞれ第1~第Nの直流電圧に変換する直流電圧発生器と、
     前記スイッチをオンさせる場合には、前記第1~第Nの直流電圧をそれぞれ前記第1~第Nの半導体スイッチング素子のゲートに与え、前記スイッチをオフさせる場合には、前記第1~第Nの直流電圧の前記第1~第Nの半導体スイッチング素子のゲートへの供給を停止するドライバとを備え、
     前記交流電圧発生器は、第1~第Nの絶縁トランスを含み、
     第nおよび第(n+1)の絶縁トランスの1次巻線は交流電源電圧を受け、
     第1~第(n-1)の絶縁トランスの1次巻線はそれぞれ第2~第nの絶縁トランスの2次巻線に接続され、
     第(n+2)~第Nの絶縁トランスの1次巻線はそれぞれ第(n+1)~第(N-1)の絶縁トランスの2次巻線に接続され、
     第1~第Nの絶縁トランスの2次巻線はそれぞれ第1~第Nの交流電圧を出力し、
     Nは2以上の自然数であり、nはNよりも小さな自然数である、制御装置。
  2.  前記第1~第Nの半導体スイッチング素子はそれぞれ第1~第Nの絶縁ゲートバイポーラトランジスタである、請求項1に記載の制御装置。
  3.  前記スイッチは、さらに、それぞれ前記第1~第Nの絶縁ゲートバイポーラトランジスタに逆並列に接続された第1~第Nのダイオードを含む、請求項2に記載の制御装置。
  4.  さらに、商用交流電源が正常であるか否かを判定する判定部を備え、
     前記スイッチは前記商用交流電源と負荷の間に接続され、
     前記ドライバは、前記判定部の判定結果に基づいて動作し、前記商用交流電源が正常である場合には前記スイッチをオンさせ、前記商用交流電源が正常でない場合には前記スイッチをオフさせる、請求項1に記載の制御装置。
  5.  直列接続された第1~第Nの半導体スイッチング素子を含むスイッチを制御する制御装置であって、
     第1~第Nの交流電圧を生成する交流電圧発生器と、
     前記第1~第Nの交流電圧をそれぞれ第1~第Nの直流電圧に変換する直流電圧発生器と、
     前記スイッチをオンさせる場合には、前記第1~第Nの直流電圧をそれぞれ前記第1~第Nの半導体スイッチング素子のゲートに与え、前記スイッチをオフさせる場合には、前記第1~第Nの直流電圧の前記第1~第Nの半導体スイッチング素子のゲートへの供給を停止するドライバとを備え、
     前記交流電圧発生器は、第1~第Nの絶縁トランスを含み、
     第nの絶縁トランスの1次巻線は交流電源電圧を受け、
     第1~第(n-1)の絶縁トランスの1次巻線はそれぞれ第2~第nの絶縁トランスの2次巻線に接続され、
     第(n+1)~第Nの絶縁トランスの1次巻線はそれぞれ第n~第(N-1)の絶縁トランスの2次巻線に接続され、
     第1~第Nの絶縁トランスの2次巻線はそれぞれ第1~第Nの交流電圧を出力し、
     Nは3以上の自然数であり、nはNよりも小さな自然数である、制御装置。
  6.  前記交流電圧発生器は、さらに、前記交流電源電圧を生成する交流電源を含み、
     前記第nの絶縁トランスは前記交流電源内に設けられている、請求項5に記載の制御装置。
  7.  前記第1~第Nの半導体スイッチング素子はそれぞれ第1~第Nの絶縁ゲートバイポーラトランジスタである、請求項5に記載の制御装置。
  8.  前記スイッチは、さらに、それぞれ前記第1~第Nの絶縁ゲートバイポーラトランジスタに逆並列に接続された第1~第Nのダイオードを含む、請求項7に記載の制御装置。
  9.  さらに、商用交流電源が正常であるか否かを判定する判定部を備え、
     前記スイッチは前記商用交流電源と負荷の間に接続され、
     前記ドライバは、前記判定部の判定結果に基づいて動作し、前記商用交流電源が正常である場合には前記スイッチをオンさせ、前記商用交流電源が正常でない場合には前記スイッチをオフさせる、請求項5に記載の制御装置。
PCT/JP2019/008804 2019-03-06 2019-03-06 制御装置 WO2020179004A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217002190A KR102566565B1 (ko) 2019-03-06 2019-03-06 제어 장치
US17/257,395 US11349382B2 (en) 2019-03-06 2019-03-06 Controller
PCT/JP2019/008804 WO2020179004A1 (ja) 2019-03-06 2019-03-06 制御装置
JP2019541475A JP6666527B1 (ja) 2019-03-06 2019-03-06 制御装置
CN201980049983.9A CN112514221A (zh) 2019-03-06 2019-03-06 控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/008804 WO2020179004A1 (ja) 2019-03-06 2019-03-06 制御装置

Publications (1)

Publication Number Publication Date
WO2020179004A1 true WO2020179004A1 (ja) 2020-09-10

Family

ID=70000451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008804 WO2020179004A1 (ja) 2019-03-06 2019-03-06 制御装置

Country Status (5)

Country Link
US (1) US11349382B2 (ja)
JP (1) JP6666527B1 (ja)
KR (1) KR102566565B1 (ja)
CN (1) CN112514221A (ja)
WO (1) WO2020179004A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6666526B1 (ja) * 2018-11-21 2020-03-13 東芝三菱電機産業システム株式会社 電源装置
WO2020178969A1 (ja) * 2019-03-05 2020-09-10 東芝三菱電機産業システム株式会社 電源装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937733A (ja) * 1982-07-26 1984-03-01 シ−メンス・アクチエンゲゼルシヤフト 直列接続サイリスタの点弧回路
JPH03237813A (ja) * 1990-02-15 1991-10-23 Mitsubishi Electric Corp パルス発生回路
JPH09162710A (ja) * 1995-12-06 1997-06-20 Mitsubishi Electric Corp 電源供給装置
JP2011229259A (ja) * 2010-04-19 2011-11-10 Toshiba Mitsubishi-Electric Industrial System Corp 無停電電源装置
JP2013226050A (ja) * 2013-08-08 2013-10-31 Hitachi Automotive Systems Ltd 電源回路及び電力変換装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1164841A (en) * 1966-05-06 1969-09-24 English Electric Co Ltd Improvements in Thyristor Circuits
JP3510588B2 (ja) 2000-12-08 2004-03-29 東立通信工業株式会社 スイッチ制御回路
JP3623181B2 (ja) * 2001-08-27 2005-02-23 オリジン電気株式会社 高電圧半導体スイッチ装置および高電圧発生装置
JP4488693B2 (ja) * 2003-06-20 2010-06-23 東芝三菱電機産業システム株式会社 半導体交流スイッチ装置
JP4661139B2 (ja) * 2004-09-07 2011-03-30 富士電機ホールディングス株式会社 ゲート駆動装置への電力供給方式
JP4696554B2 (ja) * 2004-09-07 2011-06-08 富士電機ホールディングス株式会社 ゲート駆動回路への信号伝送方式
JP2006271041A (ja) * 2005-03-23 2006-10-05 Fuji Electric Holdings Co Ltd 電圧駆動型半導体素子のゲート駆動装置
JP4700460B2 (ja) 2005-09-27 2011-06-15 東芝三菱電機産業システム株式会社 直列半導体スイッチ装置
JP2011259665A (ja) * 2010-06-11 2011-12-22 Mitsubishi Electric Corp 高周波交流電源装置
JP6157625B2 (ja) * 2013-08-01 2017-07-05 三菱電機株式会社 ゲート電源装置及びこれを用いた半導体遮断器
FR3036013B1 (fr) * 2015-05-07 2019-01-25 Ge Energy Power Conversion Technology Limited Circuit d'attaque de grille pour reduire le couplage parasite
JP2017022798A (ja) 2015-07-07 2017-01-26 ルネサスエレクトロニクス株式会社 電力変換装置および駆動装置
WO2017179186A1 (ja) * 2016-04-15 2017-10-19 東芝三菱電機産業システム株式会社 無停電電源装置
KR102606225B1 (ko) * 2016-07-18 2023-11-23 삼성전자주식회사 전원 공급 시스템
WO2018154948A1 (ja) * 2017-02-21 2018-08-30 富士電機株式会社 無停電電源システムおよび無停電電源装置
US10790761B2 (en) 2017-02-27 2020-09-29 Mitsubishi Electric Corporation Power conversion device and DC power transmission system
JP6666526B1 (ja) * 2018-11-21 2020-03-13 東芝三菱電機産業システム株式会社 電源装置
WO2020178969A1 (ja) * 2019-03-05 2020-09-10 東芝三菱電機産業システム株式会社 電源装置
US11515790B2 (en) * 2020-07-13 2022-11-29 Delta Electronics (Shanghai) Co., Ltd. Conversion circuit topology

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937733A (ja) * 1982-07-26 1984-03-01 シ−メンス・アクチエンゲゼルシヤフト 直列接続サイリスタの点弧回路
JPH03237813A (ja) * 1990-02-15 1991-10-23 Mitsubishi Electric Corp パルス発生回路
JPH09162710A (ja) * 1995-12-06 1997-06-20 Mitsubishi Electric Corp 電源供給装置
JP2011229259A (ja) * 2010-04-19 2011-11-10 Toshiba Mitsubishi-Electric Industrial System Corp 無停電電源装置
JP2013226050A (ja) * 2013-08-08 2013-10-31 Hitachi Automotive Systems Ltd 電源回路及び電力変換装置

Also Published As

Publication number Publication date
JPWO2020179004A1 (ja) 2021-03-11
KR102566565B1 (ko) 2023-08-11
US20210273549A1 (en) 2021-09-02
US11349382B2 (en) 2022-05-31
JP6666527B1 (ja) 2020-03-13
KR20210024063A (ko) 2021-03-04
CN112514221A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
US11290001B2 (en) Power supply device
TWI661634B (zh) 模組化電源系統
WO2012067167A1 (ja) 交流-交流変換装置
US11139749B2 (en) Semiconductor device
US9692310B2 (en) Power converter
JP6288773B2 (ja) 電力変換装置
US20210058004A1 (en) Dc transformation system
US9178443B2 (en) Electrical frequency converter for coupling an electrical power supply grid with an electrical drive
US11489432B2 (en) Self-power feed circuit and power conversion device
JP6926438B2 (ja) マルチセルコンバータ装置
WO2020179004A1 (ja) 制御装置
US6940188B2 (en) Electric power converting device
US9705362B2 (en) Power converter
US20210126549A1 (en) Power switcher, power rectifier, and power converter
WO2018025449A1 (ja) 電力変換装置および電力変換システム
EP3591825A1 (en) Hybrid flyback converter
US11190107B2 (en) Auxiliary power supply circuit, power supply apparatus, and power supply circuit
EP3817181A1 (en) Dc power supply system
WO2018108143A1 (zh) 模块化电源系统
JP7230633B2 (ja) 電力変換装置
JP6819640B2 (ja) 電力バッファ装置
WO2019049301A1 (ja) コンバータおよびそれを用いた無停電電源装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019541475

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19918068

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217002190

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19918068

Country of ref document: EP

Kind code of ref document: A1