WO2018108143A1 - 模块化电源系统 - Google Patents

模块化电源系统 Download PDF

Info

Publication number
WO2018108143A1
WO2018108143A1 PCT/CN2017/116354 CN2017116354W WO2018108143A1 WO 2018108143 A1 WO2018108143 A1 WO 2018108143A1 CN 2017116354 W CN2017116354 W CN 2017116354W WO 2018108143 A1 WO2018108143 A1 WO 2018108143A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
converter
local
supply system
control signal
Prior art date
Application number
PCT/CN2017/116354
Other languages
English (en)
French (fr)
Inventor
应建平
王明
黄宵驳
刘军
胡志明
Original Assignee
台达电子企业管理(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201611191912.7A external-priority patent/CN108206643A/zh
Priority claimed from CN201711322795.8A external-priority patent/CN108566071B/zh
Application filed by 台达电子企业管理(上海)有限公司 filed Critical 台达电子企业管理(上海)有限公司
Priority to US16/464,733 priority Critical patent/US11101740B2/en
Publication of WO2018108143A1 publication Critical patent/WO2018108143A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4837Flying capacitor converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters

Definitions

  • the present invention relates to the field of power electronics, and in particular to a modular power system.
  • the traditional power unit cascaded topology requires a set of optical fibers, auxiliary power supplies, and local controllers for each power unit, ie, the power converter.
  • This power unit cascaded topology increases with the increase of the voltage level, and the number of power units that need to be cascaded increases, resulting in an increase in the number of optical fibers, auxiliary power supplies, and local controllers.
  • the design is complex, costly, and reduces its reliability.
  • FIG. 1 is a schematic structural view of a three-phase SVG system in the prior art.
  • 2 is a schematic diagram of a more specific three-phase SVG system in the prior art.
  • the SVG system of Figures 1 and 2 includes three phase circuits in which the power cells in each phase are connected in cascade.
  • each phase circuit of the SVG system is formed by cascading a plurality of power units 1.
  • cascade is a common knowledge in the art, i.e., each power cell comprises a first end and a second end T 1 T 2, wherein two adjacent power cell a second terminal T 2 and the other a first connector terminal T 1.
  • Each phase circuit of the first power units through a first end of the filter L T 1 are respectively connected to three-phase network U A, U B and U C on the three-phase line, the last one power unit for each phase circuit The second ends are connected to each other.
  • each phase circuit of the SVG system is formed by cascading eight power units P 1 to P 8 .
  • Each power unit includes a first end and a second end as shown in Figure 1, wherein a second end of one of the adjacent two power units is coupled to the first end of the other.
  • the second end of the power unit P 1 and P power unit 2 is connected to a first end
  • a second end of the power unit P and the power unit P is connected to a first end of the 2 3, and so on, a second power unit P 7
  • the terminal is connected to the first end of the power unit P 8 .
  • the first end of the three power units P 1 in the three-phase circuit is connected to the U A , U B and U C phases of the three-phase power grid G through a filter circuit (composed of the inductor L, the resistor R and the capacitor C), wherein the three phases
  • the U A , U B and U C of the grid G are connected to the load R load .
  • the second ends of the three power units P 8 in the three-phase circuit are connected to each other.
  • Four power switching devices 2 are included in each power unit.
  • Each power switching device 2 consists of a power semiconductor switch S and an anti-parallel body diode or external diode D.
  • the collector of the power semiconductor switch S is connected to the cathode of the diode D, and the emitter of the power semiconductor switch S is connected to the anode of the diode D. Since the power semiconductor switch S and an anti-parallel body diode or external diode D are generally used as a whole, for the sake of brevity, the anti-parallel body diode or external diode D will not be separately mentioned in the following description. .
  • the power unit 1 shown in FIG. 1 may be a full bridge (H bridge) circuit, or may be other circuit topologies such as a half bridge circuit, a rectification-inverter circuit, and the like.
  • 3 is a schematic diagram of an H-bridge circuit (topology) in the prior art.
  • a power unit circuit for example an H-bridge, H-bridge circuit shown in Figure 3, comprises a power semiconductor switch S 1 is to S 4 and the DC bus capacitor C B.
  • the first end of the power semiconductor switch S 1 is connected to the positive terminal of the DC bus capacitor C B and the first terminal of the power semiconductor switch S 3 .
  • a second end of the power semiconductor switch S 1 is coupled to the first end of the power semiconductor switch S 4 .
  • the second end of the power semiconductor switch S 4 is connected to the negative terminal of the DC bus capacitor C B and the second terminal of the power semiconductor switch S 2 .
  • a second terminal of the power semiconductor switch S. 3 is connected to a first terminal of the power semiconductor switch S 2.
  • the second end of the power semiconductor switch S 1 serves as a first output of the H-bridge circuit, that is, the first end T 1 of the power unit 1
  • the second end of the power semiconductor switch S 3 serves as a second output of the H-bridge circuit. That is, the second end T 2 of the power unit 1.
  • FIG. 4 is a schematic diagram of a single phase SVG in the prior art.
  • the single-phase SVG includes a charging portion 3, a power portion 4, and a control portion 5.
  • the single phase SVG also includes a plurality of power units 40, each of which includes a first end and a second end as shown in FIG. 1, a first end of one of the adjacent two power units 40 and another The second end is connected.
  • Figure 4 is a conventional cascaded solution for a 25kV single phase SVG.
  • the SVG is cascaded by a plurality of power units to form a phase that is connected to the grid via filters and contactors.
  • Each power unit 40 of the SVG typically employs an H-bridge circuit.
  • Each power unit 40 of the SVG system further includes a DC bus capacitor C B whose connection relationship is as shown in FIG. 4 , wherein the charging portion 3 is used to precharge the DC bus capacitor C B , and the control portion 5 is used to control the power. Part 4 runs.
  • each power unit 40 as a power converter, such as an H-bridge circuit, needs to be separately provided with a set of locals in addition to a main controller 50.
  • the controller 51, the driving circuit 52, the auxiliary power source 53 and the optical fiber 54 are connected in a relationship as shown in FIG. 4.
  • the main controller 50 outputs a main control signal to the local main controller 51, and the local main controller 51 generates a main control signal according to the main control signal.
  • the local control signal of the corresponding power unit is sent to the driving circuit 52.
  • the driving circuit 52 outputs a driving signal according to the local control signal to drive the corresponding power unit to operate.
  • a 25kV single-phase SVG can usually be implemented in the following two schemes.
  • IGBT Insulated Gate Bipolar Transistor
  • the second scheme the power switching device in the H-bridge circuit uses a high-voltage IGBT, such as a 3300V IGBT or even a 6500V IGBT, to increase the voltage level of a single power unit 40.
  • a high-voltage IGBT such as a 3300V IGBT or even a 6500V IGBT
  • a second scheme can generally be employed.
  • the 3300V IGBT if the 3300V IGBT is selected, the voltage level of each power unit 40 is doubled compared to the 1700V IGBT scheme, and the number of cascades can be reduced from 55 to 28, local controller 51, fiber 54 and auxiliary power supply.
  • the number and cost of 53 can also be reduced by half.
  • the cost of 3300V IGBT is still high. Under the same current specification, the cost is far more than twice the cost of 1700V IGBT. Therefore, the cost of the second option will far exceed the first option. If a 6500V IGBT is chosen, the cost pressure is even higher.
  • FIG. 5 is a schematic illustration of an HVDC-Light system in the prior art.
  • the HVDC-Light includes a three-phase circuit, and each phase circuit includes an upper half arm and a lower half arm, and the upper half arm and the lower half arm of each phase circuit include a plurality of stages.
  • each power unit 40 also includes a first end and a second end as shown in FIG. 1, a first end of one of the adjacent two power units 40 and a second of the other The terminals are connected, the inductance L of each upper arm is connected to the inductance L of the corresponding lower arm, and the connection points between the two inductors L are respectively connected to the power grid, and the connection relationship is as shown in FIG.
  • Each of the HVDC-Light power units 40 employs a half bridge converter. Each power unit 40 of the HVDC-Light further includes a DC bus capacitor. Each power unit 40 of the HVDC-Light also needs to be connected to a driving circuit 52. The power unit 40 operates according to a driving signal output by the driving circuit 52. In addition to the main controller 50, each power unit 40 also needs to be provided with a local controller 51, an optical fiber 54 and an auxiliary power supply 53, the connection relationship of which is shown in FIG.
  • the driving method of the power semiconductor switch needs further consideration and improvement.
  • a modular power supply system comprising: a main controller configured to output a main control signal; N local controllers, wherein each of the local controllers is configured to Receiving the main control signal to output at least one local control signal; and N power units in one-to-one correspondence with the N local controllers, wherein each of the power units includes a first end and a second end, each The second end of one of the power units is coupled to the first end of an adjacent one of the power units, each of the power units being configured to include M power converters, wherein each of the powers The converter includes a third end and a fourth end, the fourth end of each of the power converters being coupled to the third end of an adjacent one of the power converters, and the first one of the power conversions The third end of the power unit is the first end of the power unit, and the fourth end of the Mth power converter is the second end of the power unit, each of the power The converter is configured to According to the local control signal corresponding to the operation of the local controller output,
  • the modular power supply system is configured to further include: N auxiliary power sources in one-to-one correspondence with the N local controllers, wherein each of the auxiliary power sources is configured To provide power to the corresponding local controller.
  • the power converter is any one of an AC/DC converter, a DC/AC converter, and a DC/DC converter.
  • DC bus voltages of the M power converters are all the same, partially identical, or all different.
  • the topologies of the M power converters are all identical, or partially identical.
  • the topology of the M power converters in each of the power units is all a full bridge converter, a half bridge converter, and a neutral point controllable three level One of a converter, a diode clamped three-level converter, a flying capacitor three-level converter, a full-bridge resonant converter, and a half-bridge resonant converter.
  • the topology of the M power converters in each of the power units is a full bridge converter, a half bridge converter, and a neutral point controllable three-level conversion Two or more combinations of a diode, a diode clamped three-level converter, a flying capacitor three-level converter, a full-bridge resonant converter, and a half-bridge resonant converter.
  • each of the power converters is configured to include: at least one power semiconductor switch, wherein each of the local control signals is configured to control a corresponding one of the power semiconductor switches Turn on and off.
  • each of the power units further includes: M driving circuits in one-to-one correspondence with the M power converters, wherein each of the driving circuits is configured to be connected to Corresponding to the power semiconductor switch of the power converter, receiving a corresponding local control signal output by the local controller, to output at least one driving signal to drive the power in the corresponding M power converters
  • the semiconductor switch is turned on and off.
  • each of the power units further includes: a plurality of driving circuits, wherein the number of the plurality of driving circuits is equal to the number of the at least one power semiconductor switches in the power unit
  • Each of the driving circuits is configured to be electrically connected to the power semiconductor switch of the corresponding power converter, receive a corresponding local control signal output by the local controller, to output a driving signal to drive the corresponding Turning on and off the power semiconductor switch.
  • each of the drive circuits is directly electrically coupled to a corresponding one of the local controllers, or is connected by a magnetic isolation device, or is connected by an optical isolation device.
  • each of the local controllers is coupled to the main controller by a magnetic isolation device or by an optical isolation device.
  • each of the drive circuits is identical to each other or different from each other.
  • each of the drive circuits includes a magnetic isolation device that transmits drive logic pulses included in the local control signal; or each of the drive circuits includes a magnetic An isolation device that transmits drive logic pulses and power pulses included in the local control signal; or each of the drive circuits includes a magnetic isolation device, a portion of the magnetic isolation device of the drive circuit transmits the The drive logic pulse included in the local control signal, and the magnetic isolation device of the other portion of the drive circuit transmits the drive logic pulse and the power pulse included in the local control signal.
  • the number of the at least one local control signal is the same as the number of the at least one power semiconductor switch in the power converter, and each of the local control signals is configured To control the corresponding power semiconductor switch to be turned on and off.
  • a switch is connected in parallel between the third end and the fourth end of each of the power converters, and when the power converter is operating normally, the switch Disconnected, when the power converter fails, the switch is turned on.
  • the switch is a semi-controlled device, a fully controlled device, or a mechanical switch.
  • the local controller when any of the power converters fails, the local controller receives a fault signal reflecting a corresponding type of the power converter fault and outputs at least one protection signal.
  • the local controller outputs the protection signal to control a switch of a corresponding switch of the power converter, and the local controller stops outputting the power corresponding to the control The local control signal that the converter is operating on.
  • the local controller outputs each of the protection signals to control the switch of the corresponding power converter to be turned on. And the local controller stops outputting the at least one local control signal that controls operation of the M power converters.
  • the local controller outputs the protection signal to control the switch of the M power converters to be turned on, and The local controller stops outputting the at least one local control signal that controls operation of the M power converters.
  • a switch is connected in parallel between the first end and the second end of the power unit, when the power unit is working normally, the switch is turned off when When the power unit fails, the switch is turned on.
  • the local controller when any of the power converters fails, the local controller receives a fault signal reflecting a corresponding type of the power converter failure, and outputs a A protection signal is provided to control conduction of the switch, and the local controller stops outputting the at least one local control signal that controls operation of the M power converters.
  • the invention combines a plurality of power converters into one power unit, and adopts a set of local controller and optical fiber to control multiple power converters, thereby greatly reducing the number of local controllers and optical fibers, simplifying structural design, reducing costs, and improving reliability.
  • the invention improves the safety and reliability of the modular power supply system by letting the power converter in the power unit be bypassed in the event of a fault and simultaneously stopping the output of the local control signal for controlling the operation of the power converter.
  • the invention is applicable to the topology of all AC/DC, DC/AC, DC/DC power converter connections and is widely used.
  • FIG. 1 is a schematic structural view of a three-phase SVG system in the prior art
  • FIG. 2 is a schematic diagram of a more specific three-phase SVG system in the prior art
  • FIG. 3 is a schematic diagram of an H-bridge circuit (topology) in the prior art
  • FIG. 4 is a schematic diagram of a single phase SVG in the prior art
  • FIG. 5 is a schematic diagram of an HVDC-Light system in the prior art
  • FIG. 6 is a block diagram of a modular power supply system in accordance with one embodiment of the present invention.
  • FIG. 7 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • FIG. 8 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • FIG. 9 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • FIG. 10 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • FIG. 11 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • Figure 12 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • Figure 13 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • Figure 14 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • FIG. 15 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • Figure 16 is a schematic view showing the manner of connection between the local controller and the driving circuit of the present invention.
  • FIG. 17 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • Figure 18 is a schematic view showing the driving mode of the driving circuit of the present invention.
  • Figure 19 is a schematic view showing another driving mode of the driving circuit of the present invention.
  • Figure 20 is a circuit diagram of a driving circuit of one embodiment of the present invention.
  • Figure 21 is a timing chart of a driving circuit of one embodiment of the present invention.
  • Figure 22 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • FIG. 23 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • Figure 24 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • FIG. 25 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • Figure 26 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • FIG. 6 is a block diagram of a modular power system in accordance with one embodiment of the present invention.
  • the power electronic converter of the present invention is configured to include: a main controller 90, N local controllers 91, and N power units 70, where N is a natural number greater than one.
  • the main controller 90 is configured to output a main control signal.
  • the primary control signal is, for example, one or more parameters that are set to control the overall operational state of the modular power system.
  • Each local controller 91 is configured to receive the aforementioned primary control signal to output at least one local control signal.
  • the local control signal is, for example, one or more parameters that are set to control the overall operational state of the corresponding power unit 70, or the local control signal is used to control the operational state of a portion of the power converters in the corresponding power unit 70.
  • the power electronic converter of the present invention may be configured to further include N auxiliary power sources 93, which are in one-to-one correspondence with N local controllers 91, wherein each auxiliary power source 93 is configured to be provided to a corresponding local controller 91 provides power.
  • each of the power unit 70 includes a first end and a second end X 1 X 2, each of the second end of the power unit 70 is connected to the adjacent X 2
  • the first end X 1 of one power unit 70, that is, the second end X 2 of one of the adjacent two power units 70 is coupled to the first end X 1 of the other.
  • Each power unit 70 is configured to include M power converters 701, each of which includes a third end X 3 and a fourth end X 4 , each of which is coupled to a fourth end X 4 o a third terminal 701 of power converter X 3. That is, the fourth end X 4 of one of the adjacent two power converters 701 is connected to the third end X 3 of the other. M is a natural number greater than one. Thus, the third end X 3 of the first power converter 701 is the first end X 1 of the power unit 70, and the fourth end X 4 of the Mth power converter 701 is the second end of the power unit 70. X 2.
  • Each power converter 701 is configured to operate in accordance with a local control signal output by a corresponding local controller 91.
  • the aforementioned main control signal can be transmitted between the main controller 90 and each of the local controllers 91 via an optical isolation device, such as an optical fiber 94.
  • an optical isolation device such as an optical fiber 94.
  • the main controller 90 and each local controller 91 can be connected by a magnetic isolation device, such as an isolation transformer, and the connection between the main controller 90 and each local controller 91 is not limited. The above connection method.
  • the power electronic device of the present invention can be applied to fields such as SVG, MVD, HVDC-Light, and wind power generation systems.
  • the present invention proposes to synthesize M power converters 701 into one power unit 70.
  • One power unit 70 is provided with a local controller 91, an optical fiber 94 and an auxiliary power source 93, that is, a set of local controllers 91.
  • the fiber 94 and the auxiliary power source 93 control the M power converters 701.
  • each power unit 40 that is, the power converter, needs to be configured with a local controller 51, an optical fiber 54, and an auxiliary power supply 53.
  • the number of local controller 91, optical fiber 94 and auxiliary power supply 93 required for the modular power supply system proposed by the present invention will be reduced to 1/M of the conventional solution.
  • the invention greatly simplifies the structural design of the modular power supply system, and the cost is also significantly reduced, and the reliability is greatly improved.
  • the present invention does not limit the DC bus voltage of each power converter 701.
  • the DC bus voltages of the M power converters 701 in the modular power supply system of the present invention may all be the same, partially identical, or all different.
  • Figure 7 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • the present invention also does not limit the topology used in each power converter 701.
  • the M power converters 701 in the modular power system of the present invention may be in an AC/DC converter, a DC/AC converter, and a DC/DC converter. Either of these, the power converter 701 in Figure 7 represents any of all applicable AC/DC, DC/AC, and DC/DC topologies.
  • the present invention does not limit the topology used in the M power converters 701.
  • the topology of the M power converters may be all the same or partially identical.
  • the topology of the M power converters 701 in each power unit 70 of the modular power supply system of the present invention may all be a full bridge converter, a half bridge converter, and a neutral point controllable three level converter.
  • the topology of the M power converters 701 in each power unit 70 in the modular power system of the present invention may be a full bridge converter, a half bridge converter, a neutral point controllable three level converter A combination of two or more of a diode clamped three-level converter, a flying capacitor three-level converter, a full-bridge resonant converter, and a half-bridge resonant converter.
  • Each of the M power converters 701 in each power unit 70 of the modular power supply system of the present invention can be configured to include: at least one power semiconductor switch, wherein each local control signal is configured to Controls the turning on and off of the corresponding power semiconductor switch.
  • each power unit 70 in the modular power supply system of the present embodiment may include: M drive circuits 702, one-to-one corresponding to the M power converters 701, wherein each of the drive circuits 702 is configured to be connected to a power semiconductor switch in the corresponding power converter 701, receive and according to at least one local control signal output by the corresponding local controller 91, to output at least one driving signal to drive the corresponding M power converters
  • the power semiconductor switch in 701 is turned on and off.
  • each power unit in the modular power system can include: a plurality of drive circuits, the number of the plurality of drive circuits being equal to the number of power semiconductor switches in the power unit, each drive circuit being configured to be coupled to A corresponding power semiconductor switch receives and outputs a driving signal to drive the corresponding power semiconductor switch on and off according to the corresponding local control signal.
  • FIG. 8 is a block diagram of a modular power system in accordance with another embodiment of the present invention.
  • the topology of the M power converters 701 of each power unit 70 in the modular power supply system of the present embodiment employs a full bridge converter, such as an H bridge circuit.
  • Each H-bridge circuit 701 includes four power semiconductor switches and a DC bus capacitor, and four power semiconductor switches form two bridge arms.
  • four power semiconductor switches are respectively defined as an upper power semiconductor switch of a bridge arm, a lower power semiconductor switch, an upper power semiconductor switch of the other bridge arm, and a lower power semiconductor switch, wherein one end of the upper power semiconductor switch of one of the bridge arms is connected to one end of the upper power semiconductor switch of the other bridge arm and one end of the DC bus capacitor, The other end of the lower power semiconductor switch of one bridge arm is connected to the other end of the lower power semiconductor switch of the other bridge arm and the other end of the DC bus capacitor, and the upper power semiconductor switch of one bridge arm and the lower power semiconductor switch are connected to the third end X 3 , the upper power semiconductor switch of the other bridge arm and the lower power semiconductor switch are connected to the fourth end X 4 .
  • the power converter 701 includes two bridge arms and a DC bus capacitor, and one end of the upper power semiconductor switch Q M1 of one bridge arm is connected to the upper power semiconductor switch Q M3 of the other bridge arm.
  • One end and one end of the DC bus capacitor C B , the other end of the lower power semiconductor switch Q M2 of one bridge arm is connected to the other end of the lower power semiconductor switch Q M4 of the other bridge arm and the other end of the DC bus capacitor C B
  • one The connection point between the upper power semiconductor switch Q M1 of the bridge arm and the lower power semiconductor switch Q M2 is the third end X 3
  • the connection point of the upper power semiconductor switch Q M3 of the other bridge arm and the lower power semiconductor switch Q M4 is the fourth End X 4 .
  • each of the power unit 70 of an H-bridge circuit 701 of the third terminal X 3 for the power unit of the first end 70 of the X 1 the first H-bridge circuit 701 a fourth terminal X 4 is connected to the third end X 3 of the second H-bridge circuit 701, and so on, the fourth end X 4 of the M-1th H-bridge circuit 701 is connected to the third end X 3 of the M-th H-bridge circuit 701,
  • the fourth end X 4 of the Mth power converter is the second end X 2 of the power unit 70.
  • the local controller 91 corresponding to each power unit 70 outputs at least one local control signal for controlling the turning on and off of the power semiconductor switches in the corresponding H-bridge circuit 701.
  • each H-bridge circuit 701 requires four local control signals to respectively control the corresponding power semiconductor switches to be turned on and off, and each power unit 70 requires 4 ⁇ M local control signals, that is, local control.
  • the device needs to output 4 ⁇ M local control signals for controlling the on and off of the corresponding power semiconductor switches, that is, the power semiconductor switches Q 11 -Q M4 all need a corresponding local control signal.
  • each power unit 70 further includes M driving circuits 702.
  • the driving circuit 702 is in one-to-one correspondence with M H-bridge circuits 701.
  • Each driving circuit 702 receives a corresponding local control signal and outputs at least one driving. The signals respectively drive the on and off of the corresponding power semiconductor switches.
  • each of the driving circuits 702 receives the corresponding four local control signals, and outputs four driving signals to respectively drive the corresponding power semiconductor switches.
  • the driving circuit 702 corresponding to the first H-bridge circuit 701 is taken as an example, and the driving circuit outputs four driving signals for driving the power semiconductor switches Q 11 -Q 14 to be turned on and off, respectively.
  • each power unit 70 further includes a plurality of driving circuits, the number of driving circuits is equal to 4 ⁇ M, each driving circuit is connected to a corresponding one of the power semiconductor switches, and receives a corresponding local control signal for output.
  • a driving signal drives the turn-on and turn-off of the corresponding power semiconductor switch.
  • FIG. 9 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • the topology of the M power converters 701 of each power unit 70 in the modular power supply system of the present embodiment employs a half bridge converter.
  • Each of the half bridge converters 701 includes two power semiconductor switches and a DC bus capacitor, the connection relationship of which is as shown in FIG. One end of a power semiconductor is connected to one end of the DC bus capacitor, the other end is connected to one end of another power semiconductor switch, and the other end of the other power semiconductor switch is connected to the other end of the DC bus capacitor C B .
  • the power converter 701 includes two power semiconductor switches Q 11 , Q 12 and a DC bus capacitor C B .
  • the power semiconductor switch end Q at one end 11 is connected to the DC bus capacitor C B, the power semiconductor switch and the other end Q 11 is connected to the power semiconductor switch end Q 12 is, the power semiconductor switch and the other end Q 12 is connected to the DC bus capacitor C B
  • the connection point of the power semiconductor switch Q 11 and the power semiconductor switch Q 12 is the third end X 3 of the first power converter 701
  • the other end of the power semiconductor switch Q 12 is the first power converter 701. Fourth end X 4 .
  • the third end X 3 of the first half bridge converter in each power unit 70 is the first end X 1 of the power unit 70, and the fourth end X 4 of the first half bridge converter is connected.
  • the third end X 3 of the second half bridge converter, and so on, the fourth end X 4 of the M-1 half bridge converter is connected to the third end X 3 of the Mth half bridge converter, the Mth
  • the fourth end X 4 of the half bridge converter is the second end X 2 of the power unit 70.
  • the local controller corresponding to each power unit 70 can output 2 ⁇ M local control signals for controlling the turning on and off of the power semiconductor switches Q 11 -Q M2 in the half bridge converter 701. That is, both the power semiconductor switches Q 11 -Q M2 require a local control signal.
  • each power unit 70 further includes M driving circuits 702.
  • the driving circuit 702 is in one-to-one correspondence with M half-bridge converters 701.
  • Each driving circuit 702 receives a corresponding local control signal and outputs at least one.
  • the driving signals respectively drive the turning on and off of the corresponding power semiconductor switches.
  • each driving circuit 702 receives the corresponding two local control signals, and outputs two driving signals to respectively drive the corresponding power semiconductor switches. Turning on and off, taking the driving circuit 702 corresponding to the first half-bridge converter 701 as an example, the driving circuit outputs two driving signals to drive the power semiconductor switches Q 11 -Q 12 to be turned on and off, respectively.
  • each power unit 70 further includes a plurality of driving circuits, the number of driving circuits is equal to 2 ⁇ M, each driving circuit is connected to a corresponding one of the power semiconductor switches, and receives a corresponding local control signal for output.
  • a driving signal drives the turn-on and turn-off of the corresponding power semiconductor switch.
  • the two driving circuits are respectively connected to the power semiconductor switch Q 11 -Q 12 And each of the driving circuits outputs a driving signal to drive the on and off of the corresponding power semiconductor switches Q 11 -Q 12 .
  • FIG. 10 is a block diagram of a modular power system in accordance with another embodiment of the present invention.
  • the topology of the M power converters 701 of each power unit 70 in the modular power supply system of the present embodiment employs a neutral point controllable three-level converter.
  • Each of the neutral point controllable three-level converters 701 includes eight power semiconductor switches and two DC bus capacitors, the connection relationship of which is shown in FIG. Taking the first power converter 701 as an example, one end of the power semiconductor switch Q 11 is connected to one end of the DC bus capacitor C 1 and one end of the power semiconductor switch Q 15 , and the other end of the DC bus capacitor C 1 is connected to the DC bus .
  • the third end X 3 of the first neutral point controllable three-level converter in each power unit 70 is the first end X 1 of the power unit 70, and the first neutral point is controllable.
  • three-level converter is connected to a fourth end of the second X 4 controllable neutral point of three-level converter to the third terminal X 3, and so on, the M-1 first controllable three-level neutral point inverter
  • the fourth end X 4 is connected to the third end X 3 of the Mth neutral point controllable three-level converter, and the fourth end X 4 of the Mth neutral point controllable three-level converter is the power unit 70 The second end of X 2 .
  • the local controller corresponding to each power unit can output 8 ⁇ M local control signals for controlling the power semiconductor switches Q 11 -Q M8 in the neutral point controllable three-level converter 701. Turning on and off, that is, both power semiconductor switches Q 11 -Q M8 require a local control signal.
  • each power unit 70 further includes M driving circuits 702.
  • the driving circuit 702 is in one-to-one correspondence with M neutral point controllable three-level converters 701, and each driving circuit 702 receives corresponding local control. And outputting at least one driving signal to respectively drive on and off of the corresponding power semiconductor switch.
  • each driving circuit 702 receives corresponding 8 local control signals, and outputs 8 driving signals to respectively drive
  • the driving circuit 702 corresponding to the first neutral point controllable three-level converter 701 is taken as an example, and the driving circuit outputs eight driving signals to respectively drive the power semiconductor switch Q. 11 - Q 18 is turned on and off.
  • each power unit 70 further includes a plurality of driving circuits, the number of driving circuits is equal to 8 ⁇ M, each driving circuit is connected to a corresponding one of the power semiconductor switches, and receives a corresponding local control signal to output one.
  • the driving signal drives the corresponding power semiconductor switch to be turned on and off.
  • the eight driving circuits corresponding to the first neutral point controllable three-level converter 701 are taken as an example, and the eight driving circuits are respectively connected to the power semiconductor switch.
  • Q 11 - Q 18 and each drive circuit outputs a drive signal to drive the corresponding power semiconductor switches Q 11 - Q 18 on and off.
  • FIG. 11 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • the topology of the M power converters 701 of each power unit 70 in the modular power supply system of the present embodiment employs a diode clamped three-level converter.
  • Each of the diode clamped three-level converters 701 includes eight power semiconductor switches, four clamp diodes, and two DC bus capacitors, the connection relationship of which is shown in FIG.
  • one end of the power semiconductor switch Q 11 is connected to one end of the DC bus capacitor C 1 and one end of the power semiconductor switch Q 15 , and the other end of the power semiconductor switch Q 11 is connected to the power semiconductor switch Q one end of the cathode 12 and the clamp diode D 1, the other end of the power semiconductor switch Q 12 connected to one end of the power semiconductor switch 13 is Q, and the other end of the power semiconductor switch Q 13 is connected to the power semiconductor switch Q and one end of the clamp 14
  • the anode of the diode D 2 , the other end of the DC bus capacitor C 1 is connected to one end of the DC bus capacitor C 2 , and the other end of the power semiconductor switch Q 14 is connected to the other end of the DC bus capacitor C 2 , and the anode of the clamp diode D 1 Connected to the cathode of the clamp diode D 2 and the other end of the DC bus capacitor C 1 , the connection point of the power semiconductor switch Q 12 and the power semiconductor switch Q 13 is the
  • the other end of the power semiconductor switch. 17 Q is connected to the power semiconductor switch Q and one end of the clamp diode D 18 of the anode 4, the other end of the power semiconductor switch Q 18 is connected to the DC bus capacitor C another 2
  • the anode of the clamp diode D 3 is connected to the cathode of the clamp diode D 4 and the other end of the DC bus capacitor C 1
  • the connection point of the power semiconductor switch Q 16 and the power semiconductor switch Q 17 is the first power converter 701
  • the fourth end of the X 4 is the fourth end of the X 4 .
  • the third end X 3 of the first diode clamped three-level converter in each power unit 70 is the first end X 1 of the power unit 70, and the first diode clamps three-level conversion.
  • the fourth end X 4 of the device is connected to the third end X 3 of the second diode clamp three-level converter, and so on, and the fourth end of the M-1 diode clamp three-level converter is connected by X 4
  • the third end X 3 of the M diode clamped three-level converter, the fourth end X 4 of the Mth diode clamped three level converter is the second end X 2 of the power unit 70.
  • the local controller corresponding to each power unit can output 8 ⁇ M local control signals for controlling the power semiconductor switches Q 11 -Q M8 in the neutral point controllable three-level converter 701. Turning on and off, that is, both power semiconductor switches Q 11 -Q M8 require a local control signal.
  • each power unit 70 further includes M driving circuits 702.
  • the driving circuit 702 is in one-to-one correspondence with M diode-clamped three-level converters 701, and each driving circuit 702 receives a corresponding local control signal. And outputting at least one driving signal to respectively drive on and off of the corresponding power semiconductor switch.
  • each driving circuit 702 receives corresponding eight local control signals, and outputs eight driving signals to respectively drive corresponding ones.
  • the driving circuit 702 corresponding to the first diode clamped three-level converter 701 is used as an example.
  • the driving circuit outputs eight driving signals to respectively drive the power semiconductor switches Q 11 -Q 18 . Turn on and off.
  • each power unit 70 further includes a plurality of driving circuits, the number of driving circuits is equal to 8 ⁇ M, each driving circuit is connected to a corresponding one of the power semiconductor switches, and receives a corresponding local control signal to output one.
  • the driving signal drives the corresponding power semiconductor switch to be turned on and off.
  • the eight driving circuits corresponding to the first diode clamped three-level converter 701 are taken as an example, and the eight driving circuits are respectively connected to the power semiconductor switch Q 11 . -Q 18 and each of the drive circuits outputs a drive signal to drive the on and off of the corresponding power semiconductor switches Q 11 -Q 18 .
  • FIG. 12 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • the topology of the M power converters 701 of each power unit 70 in the modular power supply system of the present embodiment employs a flying capacitor three-level converter.
  • Each of the flying capacitor three-level converters 701 includes eight power semiconductor switches, two DC bus capacitors, and two flying capacitors, the connection relationship of which is shown in FIG.
  • one end of the power semiconductor switch Q 11 is connected to one end of the DC bus capacitor C 1 and one end of the power semiconductor switch Q 15 , and the other end of the power semiconductor switch Q 11 is connected to the power semiconductor switch Q and one end of the flying capacitor C 12 at one end, the power semiconductor 3 switches the other end Q 12 is connected to the power semiconductor switch end Q 13 is, the power semiconductor switch and the other end Q 13 is connected to the power semiconductor switch Q and one end of the fly 14 cross the other end of capacitor C 3, the other end of the DC bus capacitor C.
  • the power semiconductor switch Q 16 Q is connected to the power semiconductor switch 17 as a first point of a power converter 701 Fourth end X 4 .
  • the third end X 3 of the first flying capacitor three-level converter in each power unit 70 is the first end X 1 of the power unit 70, and the first flying capacitor three-level conversion
  • the fourth end X 4 of the device is connected to the third end X 3 of the second flying capacitor three-level converter, and so on, and the fourth end X 4 of the M-1 flying capacitor three-level converter is connected.
  • M-th three-level flying capacitor inverter X 4 is a fourth end of the power unit of the second end 70 of X 2.
  • the local controller corresponding to each power unit can output 8 ⁇ M local control signals for controlling the power semiconductor switches Q 11 -Q M8 in the neutral point controllable three-level converter 701. Turning on and off, that is, both power semiconductor switches Q 11 -Q M8 require a local control signal.
  • each power unit 70 further includes M driving circuits 702.
  • the driving circuit 702 is in one-to-one correspondence with M flying capacitor three-level converters 701, and each driving circuit 702 receives a corresponding local control signal. And outputting at least one driving signal to respectively drive on and off of the corresponding power semiconductor switch.
  • each driving circuit 702 receives corresponding eight local control signals, and outputs eight driving signals to respectively drive corresponding ones.
  • the driving circuit 702 corresponding to the first flying capacitor three-level converter 701 is used to drive the power semiconductor switch Q 11 -Q 18 respectively. Turn on and off.
  • each power unit 70 further includes a plurality of driving circuits.
  • the number of driving circuits is equal to 8 ⁇ M.
  • Each driving circuit receives a corresponding local control signal and outputs a driving signal to drive the corresponding power semiconductor switch.
  • eight driving circuits corresponding to the first flying capacitor three-level converter 701 are connected, and eight driving circuits are respectively connected to the power semiconductor switches Q 11 - Q 18 and each driving circuit outputs A drive signal drives the turn-on and turn-off of the corresponding power semiconductor switches Q 11 -Q 18 .
  • the M power converters 701 in the modular power supply system of FIGS. 8-12 may be an AC/DC converter or a DC/AC converter, but not limited thereto. It can be a converter of other topology.
  • FIG. 13 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • the topology of the M power converters 701 of each power unit 70 in the modular power supply system of the present embodiment employs a full bridge resonant converter.
  • Each of the full-bridge resonant converters 701 includes a full-bridge circuit, a resonant circuit, a transformer, and a rectifier bridge, the connection relationship of which is as shown in FIG.
  • the full-bridge circuit includes four power semiconductor switches and one DC bus capacitor. One end of the power semiconductor switch Q 11 is connected to one end of the DC bus capacitor C B ' and the power semiconductor switch.
  • the third end X 3 of the first full bridge resonant converter in each power unit 70 is the first end X 1 of the power unit 70 and the fourth end X 4 of the first full bridge resonant converter Connecting the third end X 3 of the second full-bridge resonant converter, and so on, the fourth end X 4 of the M-1 full-bridge resonant converter is connected to the third end X 3 of the M-th full-bridge resonant converter
  • the fourth end X 4 of the Mth full-bridge resonant converter is the second end X 2 of the power unit 70.
  • the fifth end X 5 of all of the full bridge resonant converters in each power unit 70 are connected together, and the sixth end X 6 is connected together.
  • the local controller corresponding to each power unit can output 4 ⁇ M local control signals for controlling the turn-on and turn-off of the power semiconductor switches Q 11 -Q M4 in the full-bridge resonant converter 701. That is, the power semiconductor switches Q 11 -Q M4 each require a local control signal.
  • each power unit 70 further includes M driving circuits 702.
  • the driving circuit 702 is in one-to-one correspondence with M full-bridge resonant converters 701.
  • Each driving circuit 702 receives a corresponding local control signal and outputs at least a driving signal respectively driving the corresponding power semiconductor switches to be turned on and off.
  • each driving circuit 702 receives corresponding four local control signals, and outputs four driving signals to respectively drive corresponding power semiconductor switches. Turning on and off, taking the driving circuit 702 corresponding to the first full-bridge resonant converter 701 as an example, the driving circuit outputs four driving signals to respectively turn on and off the power semiconductor switches Q 11 -Q 14 . .
  • each power unit 70 further includes a plurality of driving circuits, the number of driving circuits is equal to 4 ⁇ M, each driving circuit is connected to a corresponding one of the power semiconductor switches, and receives a corresponding local control signal to output one.
  • the driving signal drives the corresponding power semiconductor switch to be turned on and off.
  • the four driving circuits are respectively connected to the power semiconductor switch Q 11 -Q 14 .
  • each of the driving circuits outputs a driving signal to drive the on and off of the corresponding power semiconductor switches Q 11 -Q 14 .
  • FIG. 14 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • the topology of the M power converters 701 of each power unit 70 in the modular power supply system of the present embodiment employs a half bridge resonant converter.
  • Each of the half-bridge resonant converters 701 includes a half bridge circuit, a resonant circuit, a transformer, and a rectifier bridge, the connection relationship of which is as shown in FIG.
  • the half-bridge circuit includes two power semiconductor switches and one DC bus capacitor.
  • One end of the power semiconductor switch Q 11 is connected to one end of the DC bus capacitor C B ', and the power semiconductor switch Q the other end 11 is connected to the power semiconductor switch end Q 12, the power semiconductor switch other ends Q 12 is connected to the DC bus capacitor C B ', the power semiconductor switch Q 11 of the power semiconductor switch Q is connected to the point 12 is connected to the 'One end of the primary coil of the transformer T''L and the inductance' end of the resonance circuit composed of the other end of the resonance circuit of the capacitor C is connected to the transformer T, the other end of the primary coil is connected to the power semiconductor switch of another Q 12 of At one end, one end of the DC bus capacitor C B ' is the third end X 3 of the first power converter, and the other end of the DC bus capacitor C B ' is the fourth end X 4 of the first power converter, and the rectifier bridge includes four rectifying diodes, the rectifying diode D 1 'is connected to one end of the rectifying diode D 3' end, a rectifying diode D 1
  • the third end X 3 of the first half-bridge resonant converter in each power unit 70 is the first end X 1 of the power unit 70, and the fourth end X of the first half-bridge resonant converter 4 half-bridge resonant converter connected to the second terminal of the third X 3, and so on, the fourth terminal 4 is connected to the M-X half-bridge resonant converter of a third terminal of the first X M-1 half-bridge resonant converter 3.
  • the fourth end X 4 of the Mth half-bridge resonant converter is the second end X 2 of the power unit 70.
  • the fifth ends X 5 of all of the half-bridge resonant converters in each power unit 70 are connected together, and the sixth ends X 6 are connected together.
  • the local controller corresponding to each power unit can output 2 ⁇ M local control signals for controlling the turn-on and turn-off of the power semiconductor switches Q 11 -Q M2 in the half-bridge resonant converter 701. That is, both the power semiconductor switches Q 11 -Q M2 require a local control signal.
  • each power unit 70 further includes M driving circuits 702.
  • the driving circuit 702 is in one-to-one correspondence with M half-bridge resonant converters 701.
  • Each driving circuit 702 receives a corresponding local control signal and outputs at least a driving signal respectively driving on and off of the corresponding power semiconductor switch, specifically, each driving circuit 702 receives corresponding two local control signals, and outputs two driving signals to respectively drive corresponding power semiconductor switches
  • the driving circuit 702 corresponding to the first half-bridge resonant converter 701 outputs two driving signals for driving the power semiconductor switches Q 11 -Q 12 to be turned on and off. .
  • each power unit 70 further includes a plurality of driving circuits, the number of driving circuits is equal to 2 ⁇ M, each driving circuit is connected to a corresponding one of the power semiconductor switches, and receives a corresponding local control signal and outputs one.
  • the driving signal drives the corresponding power semiconductor switch to be turned on and off.
  • the two driving circuits are respectively connected to the power semiconductor switch Q 11 -Q 12 And each of the driving circuits outputs a driving signal to drive the on and off of the corresponding power semiconductor switches Q 11 -Q 12 .
  • the M power converters 701 in the modular power supply system of FIG. 13 and FIG. 14 may be DC/DC converters, but not limited thereto, and may be converters of other topologies.
  • FIG. 15 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • the topology of the M power converters 701 of each power unit 70 in the modular power supply system of the present embodiment employs a combination of a full bridge converter and a half bridge converter.
  • Each of the full bridge converter power converters 7011' includes four power semiconductor switches, each of which includes two power semiconductor switches, the connection relationship of which is shown in FIG.
  • the specific connection relationship of the full bridge converter is as shown in FIG. 8
  • the specific connection relationship of the half bridge converter is shown in FIG. 9 , and details are not described herein again.
  • the third end X 3 of the first power converter 701 is the first end X 1 of the power unit 70
  • the fourth end X 4 of the first power converter 701 is connected to the second power converter 701.
  • the third end X 3 , and so on, the fourth end X 4 of the M-1th power converter 701 is connected to the third end X 3 of the Mth power converter 701, and the fourth end of the Mth power converter 701 X 4 is the second end X 2 of the power unit 70.
  • the number of local control signals output by the local controller corresponding to each power unit 70 is equal to the number of power semiconductor switches in the power unit 70.
  • These local control signals respectively control the full bridge converter and the half bridge converter 701.
  • the power semiconductor switches are turned on and off, that is, each power semiconductor switch requires a local control signal.
  • each power unit 70 further includes M driving circuits 702.
  • the driving circuit 702 is in one-to-one correspondence with M power converters 7011' and 7012', and each driving circuit 702 receives a corresponding local control signal, and And outputting at least one driving signal to respectively drive on and off of the corresponding power semiconductor switch.
  • the driving circuit 702 corresponding to the power converter 7011 ′ receives the corresponding four local control signals, and outputs four driving signals.
  • Driving the corresponding power semiconductor switch to turn on and off respectively, the corresponding driving circuit 702 of the power converter 7012' receives the corresponding two local control signals, and outputs two driving signals to respectively drive the corresponding power semiconductor switches to be turned on. And disconnected.
  • each power unit 70 further includes a plurality of driving circuits.
  • the number of driving circuits in the power unit is equal to the number of power semiconductor switches in the corresponding power unit, and each driving circuit is connected to a corresponding one of the power semiconductor switches.
  • receiving a corresponding local control signal to output a driving signal to drive the corresponding power semiconductor switch to turn on and off taking the four driving circuits corresponding to the power converter 7011' as an example, the four driving circuits are respectively connected to correspond
  • the power semiconductor switches and each of the driving circuits output a driving signal to drive the corresponding power semiconductor switches to be turned on and off, and the two driving circuits corresponding to the power converter 7012' are taken as an example, and the two driving circuits are respectively connected.
  • Corresponding power semiconductor switches and each drive circuit outputs a drive signal to drive the corresponding power semiconductor switches on and off.
  • FIG. 15 only shows the topology of the M power converters 701 of each power unit 70 in the modular power supply system of the present embodiment, a combination of a full bridge converter and a half bridge converter is employed.
  • the present invention is not limited thereto.
  • the topology of the M power converters 701 in each of the power units 70 in the modular power supply system of the present invention may be a full bridge converter, a half bridge converter, or the like. Two or more of a point-controllable three-level converter, a diode-clamped three-level converter, a flying capacitor three-level converter, a full-bridge LLC resonant converter, and a half-bridge LLC resonant converter combination.
  • Each of the M power converters 701 in each of the power units 70 of the modular power supply system of the present invention can be configured to include: at least one power semiconductor switch, such as the aforementioned power semiconductor switch Q 11 - Q 14 , Q 11 -Q 12 , Q 11 -Q 18 , Q M1 -Q M4 , Q M1 -Q M2 or Q M1 -Q M8 , wherein each of the aforementioned local control signals is configured to control a corresponding power semiconductor switch Turn on and off.
  • at least one power semiconductor switch such as the aforementioned power semiconductor switch Q 11 - Q 14 , Q 11 -Q 12 , Q 11 -Q 18 , Q M1 -Q M4 , Q M1 -Q M2 or Q M1 -Q M8 , wherein each of the aforementioned local control signals is configured to control a corresponding power semiconductor switch Turn on and off.
  • Each of the drive circuits 702 of the modular power supply system of the present invention can be directly electrically connected to the corresponding local controller 91, or connected by magnetic isolation devices, or connected by optical isolation devices.
  • Figure 16 is a diagram showing the manner of connection between the local controller and the drive circuit of the present invention.
  • drive circuit 72 702
  • magnetic isolation device T to transmit local control signals.
  • the use of magnetic isolation devices has the advantages of high reliability, high performance, and low power consumption.
  • the driver circuit 72 (702) and the corresponding local controller 91 may also be connected by an optical isolation device.
  • the optical isolation device has the advantages of one-way signal transmission, complete electrical isolation between the input end and the output end, no influence of the output signal on the input end, strong anti-interference ability, stable operation, no contact, long service life and high transmission efficiency.
  • drive circuit 72 (702) is directly electrically coupled to a corresponding local controller 91.
  • Each of the drive circuits 72 (702) in the modular power supply system of the present invention may be identical to each other or different from each other.
  • each of the drive circuits 702 in the modular power supply system of the present embodiment is identical to each other.
  • FIG. 17 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention. As shown in FIG. 17, a power unit 701 of five H-bridge circuits is included in one power unit in the modular power supply system of the present embodiment. The drive circuit 721 of the four power converters 701 is different from the drive circuit 722 of the intermediate power converter 701.
  • Fig. 18 is a schematic view showing the driving mode of the driving circuit of the present invention.
  • the driving circuit 722 includes a primary circuit 7221, circuit 7222, and the secondary magnetic separator means T 1 18, the primary circuit 7221 receives the signal output from the local controller local control 91, wherein the control signal includes only the local drive The component, the local control signal is a weak signal.
  • the primary side circuit 7221 modulates the local control signal into a high and low level narrow pulse signal, wherein the high and low level narrow pulse signal includes a driving logic pulse, and the narrow pulse signal is via a magnetic isolation device (for example, a high frequency isolation transformer) T 1
  • the transmission secondary circuit 7222, the secondary circuit 7222 restores the high and low voltage narrow pulse signals to PWM signals and performs amplification processing to output drive signals to drive the power semiconductor switches Q to be turned on and off.
  • the power unit 70 further includes a power supply circuit 7223 for supplying power to the primary side circuit 7221 and the secondary side circuit 7222.
  • the power received by the power circuit 7223 may be from the auxiliary source 93, or other external power source, and the power circuit 7223 converts the received power into a voltage V 1 that supplies power to the primary circuit 7221 and a voltage V 2 that supplies power to the secondary side 7222, and The voltages V 1 and V 2 are isolated from each other.
  • the power supply circuit 7223 further includes a primary power supply circuit (not shown), an isolation transformer (not shown), and a secondary power supply circuit (not shown) that converts the received power supply into
  • the primary side power supply supplies the primary side circuit 7221 with direct current V 1
  • the primary side power supply circuit converts the received power supply into a power pulse, that is, the power supply pulse is transmitted to the secondary side power supply circuit through the isolation transformer, and then the power pulse is converted by the secondary side power supply circuit.
  • the secondary side circuit 7222 is supplied with a direct current V 2 for the secondary side power supply.
  • the driving mode of each power converter can adopt "simple driving".
  • Fig. 19 is a schematic view showing another driving mode of the driving circuit of the present invention.
  • each of the drive circuits 721 of the modular power supply system of the present embodiment includes a primary side circuit 7211, a secondary side circuit 7212, and a magnetic isolation device (for example, an isolation transformer) T 2 .
  • a magnetic isolation device for example, an isolation transformer
  • the primary side circuit 7211 receives a local control signal, wherein the local control signal includes a driving component and a power component, the local control signal is a strong signal, and the primary side circuit 7211 modulates the local control signal into a positive and negative narrow pulse signal Y MN , via magnetic isolation
  • the device T 2 is transmitted to the secondary circuit 7212, which demodulates the narrow pulse signal Y MN into a drive signal to drive the on and off of the power semiconductor switch Q, wherein the positive and negative narrow pulse signal Y MN includes drive logic Pulses and power pulses, the power semiconductor switch Q comprises, for example, a gate G, a collector C and an emitter E, the drive signal being output to the gate G of the power semiconductor switch.
  • This "simple driving" eliminates a large number of power supply circuits, so that the device of the driving circuit 721 is reduced a lot, the structure of the entire driving circuit 721 is simplified, and power consumption is reduced. Small, reliability has been improved.
  • Figure 20 is a circuit diagram of a driving circuit of one embodiment of the present invention.
  • Figure 20 is based on Figure 19 and is an embodiment of the secondary side circuit of the drive circuit of Figure 19.
  • Figure 21 is a timing chart of a driving circuit of one embodiment of the present invention.
  • the driving circuit of the present invention mainly comprises a magnetic isolation device T 2 and a bidirectional voltage regulator W, and other resistors R 11 , R 12 , R 13 , R, R 21 , R 22 , R 23 , gate
  • the pole capacitance C GE , the diodes D 11 , D 21 , the Zener diodes W 1 , W 2 and the switching tubes M 1 and M 2 are auxiliary elements, the connection relationship of which is as shown in FIG.
  • the local control signal PWM sent by the local controller 91 is modulated by the primary side circuit to form a positive and negative pulse signal Y MN , as shown by Y NM in FIG. 21 .
  • the positive and negative pulse signals Y NM are transmitted to the secondary circuit via a magnetic isolation device (for example, an isolation transformer) T 2 , and the switching transistors M 1 and M 2 are activated to charge and discharge the IGBT gate capacitance C GE to form a driving power semiconductor switch.
  • the waveforms of the required drive signals V GE , V GE are substantially similar to the local control signals PWM, as shown in FIG.
  • the width of the refresh pulse of the positive and negative pulse signals Y NM may be only a few ⁇ s.
  • the positive pulse of several ⁇ s charges the gate capacitor C GE once, so that the driving signal V GE can be turned on to the gate of the power semiconductor switch. Voltage, for example +15V.
  • the positive pulse required may be several tens of ⁇ s to hundreds of ⁇ s or even longer.
  • the gate capacitance C GE will slowly discharge and the driving signal V GE will gradually decrease.
  • the gate turn-on voltage required for the normal turn-on of the power semiconductor switch is not reached, so the refresh pulse is required to charge the gate capacitance C GE at intervals to maintain the drive signal V GE at the normal gate turn-on voltage.
  • the refresh pulse interval it is mainly determined by the discharge time constant of the gate capacitance C GE .
  • the principle is that the V GE does not drop too much before the next refresh pulse. For example, the drive signal V GE cannot be low before the next refresh pulse arrives. At 14V.
  • the local control signal received by the driving circuit of FIG. 20 includes a driving logic pulse and a power pulse, so that the driving circuit does not need an external power supply, and does not need to amplify the local control signal, which saves a lot of relative to the driving circuit of FIG.
  • the power supply circuit reduces the number of devices of the driving circuit 721, the structure of the entire driving circuit 721 is simplified, the power consumption is reduced, and the reliability is improved.
  • a driving circuit 702 drives each circuit described in FIG. 19 may be employed, magnetically isolated local control signal transmission device T 2 contains the logic pulse, and the driving power pulse.
  • each drive circuit 702 may be employed as the drive circuit described in FIG. 18, magnetic isolation device T 1 is transferred to local control logic driving pulses contained in the signal.
  • a portion of the driving circuit 702 may employ the driving circuit described in FIG. 19, and the magnetic isolation device transmits driving logic pulses and power pulses included in the local control signal; Another portion of the driver circuit 702 employs the driver circuit depicted in FIG. 18, which transmits the drive logic pulses contained in the local control signals.
  • the driving circuit 721 can employ the driving circuit described in FIG. 19, the magnetic isolation device transmits the driving logic pulse and the power pulse included in the local control signal; and the driving circuit 722 adopts The drive circuit depicted in Figure 18, the magnetic isolation device transmits drive logic pulses contained in the local control signal.
  • the driving circuit 722 can adopt the driving circuit described in FIG. 19, the magnetic isolation device transmits the driving logic pulse and the power pulse included in the local control signal; and the driving circuit 721 adopts The drive circuit depicted in Figure 18, the magnetic isolation device transmits drive logic pulses contained in the local control signal.
  • FIG. 22 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • the present embodiment every modular power converter in the power supply system of the embodiment 701 are connected in parallel between the third end and a fourth end X 3 each switching power converter X 4 K 12, e.g., K 12 is a normally open switch, when the power converter is working properly, the switch K 12 turned off, when the power converter 401 fails, the switch K 12 is turned on.
  • the switch K 12 is a semi-controlled device such as a thyristor, or a fully controlled device such as an IGBT, or a mechanical switch.
  • the fault detecting circuit detects various types of faults of the power converter 701, and outputs corresponding fault signals according to the fault type to local controller 91, the controller 91 will receive a local fault types corresponding to the power converter 701 reflects the error signal, and a corresponding protection signal is output to control the converter corresponding to the power switch 12 is turned 701 K, and local control The controller 91 stops outputting a local control signal that controls the operation of the corresponding power converter 701.
  • each of the switching power converter 701 K 12 701 own feedback failure signal is controlled according to the power converter 22.
  • the local controller receives either a fault of the power converter 701 feedback signal 91, according to the switching control signal K corresponding to the failure in the power converter 12 is closed, and stop the output control
  • the local control signal of the faulty power converter 701, ie the faulty power converter 701 is bypassed.
  • the local controller 91 receives a fault signal reflecting the fault type of the first power converter, and outputs a protection signal S F1 to the power converter of a control switch 701 is turned K 12, 91 and the local controller 701 stops outputting the control of the local operation of a first control signal to the power converter.
  • the local controller 91 receives the first power converter and the Mth power.
  • FIG. 23 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • the number of protection signals in the modular power supply system of the present embodiment is M, which corresponds to the foregoing M power converters 701.
  • the local control signal of the modular power supply system of this embodiment is A protection signal S F1 to S FM is used to respectively control the switch K 12 of the corresponding power converter 701 to be turned on, and the local controller 91 stops outputting the local control signal for controlling the operation of each of the power converters 701 in the power unit 70.
  • the local controller 91 outputs a protection signal S F1 according to the fault signal, ..
  • the S FM controls the closing of K 12 in all of the power converters 701 while stopping the output of the local control signal, i.e., the power unit 70 is bypassed as a whole.
  • FIG. 24 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • the number of protection signals S F in the modular power supply system of the present embodiment is 1, and the local controller 91 outputs a protection signal S F to control the switching of the switches K 12 of all the M power converters. And the local controller 91 stops outputting local control signals to control the operation of each of the power converters 701 in the power unit 70.
  • the protection control signal S F 24 in the power switching unit 70 K 12 All the power converter output by the local controller 91.
  • the local controller receives either a fault of the power converter 701 feedback signal 91
  • local controller 91 outputs a failure signal to control the protection signal S F of all the power converters 701
  • the switch K 12 is closed while the output of the local control signal is stopped, i.e., the power unit 70 is bypassed as a whole.
  • FIG. 25 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention. As shown, the present embodiment of the modular power system according to a first end of the power unit 70 and the second end of X 1 X 2 have parallel between the third switch K 3 25, the power unit 70 when the work, K 3 of the third switch is turned off, the power unit 70 when a failure occurs, the third switch K 3 is turned on.
  • the local controller 91 receives a fault signal reflecting the fault type of the corresponding power converter 701, and outputs a protection signal S F ' control switch K 3 is turned on, and the local controller 91 stops the output of the local power control unit 70 of each of the power converter operation 701 the control signal.
  • K 3 is controlled by the local controller 91.
  • the local controller 91 receives the fault signal fed back by any of the power converters 701
  • the local controller 91 outputs a protection signal S F ' according to the fault signal to control the switch K 3 to close while stopping the output. All local control signals within the power unit 70, i.e., the power unit 70, are bypassed as a whole.
  • FIG. 26 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • the power unit 70 in the modular power supply system of the present embodiment is composed of power converters of five cascaded H-bridge circuits.
  • K 3 is controlled by the local controller 91.
  • the local controller 91 outputs a protection signal S F ' according to the fault signal to control the switch K 3 to close.
  • all local control signals that control the operation of the power unit 70 are stopped, i.e., the power unit 70 is bypassed as a whole.
  • the invention combines a plurality of power converters into one power unit, and adopts a set of local controller and optical fiber to control multiple power converters, thereby greatly reducing the number of local controllers and optical fibers, simplifying structural design, reducing costs, and improving reliability.
  • the invention is applicable to the topology of all AC/DC, DC/AC, DC/DC power converter connections and is widely used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

一种模块化电源系统包括:一个主控制器(90),被配置为输出主控制信号;N个本地控制器(91),其中每一个本地控制器被配置为接收主控制信号,以输出至少一个本地控制信号;以及N个功率单元(70),与N个本地控制器一一对应,其中每一个功率单元包括第一端(X1)和第二端(X2),每一个功率单元的第二端连接到相邻的一个功率单元的第一端,每一个功率单元被配置为包括M个功率变换器(701),其中每一个功率变换器包括第三端(X3)和第四端(X4),每一个功率变换器的第四端连接到相邻的一个功率变换器的第三端,每一个功率变换器被配置为根据对应的本地控制器输出的本地控制信号运行,其中N和M均为大于1的自然数。

Description

模块化电源系统 技术领域
本发明涉及电力电子技术领域,特别涉及一种模块化电源系统。
背景技术
目前,在一些较高电压等级(如10kV以上)应用场合,如静止无功发生器(Static Var Generator,SVG)、中压变频器(Medium Variable-frequency Drive,MVD)以及轻型高压直流输电系统(High Voltage Direct Current Transmission Light,HVDC-Light)等,由于系统电压等级较高,受半导体器件的耐压等级和成本所限,通常都采用功率单元级联的电路拓扑结构。
传统的功率单元级联的拓扑结构需要给每一个功率单元即功率变换器配备一套光纤、辅助电源、本地控制器。这种功率单元级联的拓扑结构随着电压等级的提高,需要级联的功率单元的数量也随之增加,导致光纤、辅助电源及本地控制器的数量也随之增加,使得这种拓扑结构的设计复杂,成本高,同时也会降低其可靠性。
图1是现有技术中一个三相SVG系统的结构示意图。图2是现有技术中一个更具体的三相SVG系统的示意图。图1和图2中的SVG系统包括三相电路,每一相电路中的功率单元级联连接。
如图1中所示,该SVG系统的每一相电路都由多个功率单元1级联而成。这里的术语“级联”在本领域中是公知常识,即每一个功率单元包括第一端T 1和第二端T 2,相邻两个功率单元的其中一个的第二端T 2与另一个的第一端T 1连接。每一相电路的第1个功率单元的第一端T 1经滤波器L分别连接到三相电网的U A、U B和U C三相线路上,每一相电路的最后一个功率单元的第二端相互连接。
如图2所述,该SVG系统的每一相电路都由8个功率单元P 1至P 8级联而成。每一个功率单元包括如图1中所示的第一端和第二端,其中相邻两个功率单元的其中一个的第二端与另一个的第一端连接。例如, 功率单元P 1的第二端与功率单元P 2的第一端连接,功率单元P 2的第二端与功率单元P 3的第一端连接,依次类推,功率单元P 7的第二端与功率单元P 8的第一端连接。三相电路中三个功率单元P 1的第一端经过滤波电路(由电感L、电阻R和电容C组成)分别连接于三相电网G的U A、U B和U C相,其中三相电网G的U A、U B和U C相连接负载R load。三相电路中三个功率单元P 8的第二端相互连接。每一个功率单元中包括四个功率开关器件2。每一个功率开关器件2由一个功率半导体开关S与一个反向并联的体二极管或外接二极管D构成。功率半导体开关S的集电极与二极管D的阴极连接,功率半导体开关S的发射极与二极管D的阳极连接。由于功率半导体开关S与一个反向并联的体二极管或外接二极管D二者通常作为一个整体使用,所以为了描述简洁的目的,以下描述中不再单独提及反向并联的体二极管或外接二极管D。
图1中所示的功率单元1可以是全桥(H桥)电路,也可以是其它的电路拓扑结构,如半桥电路、整流-逆变电路等。图3是现有技术中的一个H桥电路(拓扑)的示意图。例如,以功率单元为H桥电路为例,H桥电路如图3中所示,包括功率半导体开关S 1至S 4和直流母线电容C B。功率半导体开关S 1的第一端连接于直流母线电容C B的正极端和功率半导体开关S 3的第一端。功率半导体开关S 1的第二端连接于功率半导体开关S 4的第一端。功率半导体开关S 4的第二端连接于直流母线电容C B的负极端和功率半导体开关S 2的第二端。功率半导体开关S 3的第二端连接功率半导体开关S 2的第一端。功率半导体开关S 1的第二端作为H桥电路的第一输出端,也即功率单元1的第一端T 1,功率半导体开关S 3的第二端作为H桥电路的第二输出端,也即功率单元1的第二端T 2
图4是现有技术中一个单相SVG的示意图。如图4中所示,该单相SVG包括充电部分3、功率部分4和控制部分5。该单相SVG也包括多个功率单元40,每一个功率单元40包括如图1中所示的第一端和第二端,相邻两个功率单元40其中一个的第一端与另一个的第二端连接。图4是应用于25kV单相SVG的传统级联式方案。该SVG由多个功率单元级联后形成一相,经滤波器和接触器接入电网。该SVG的每一个功率单元40 通常采用一个H桥电路。H桥电路的拓扑结构如图3中所示,这里不再赘述。该SVG系统的每一个功率单元40还包括直流母线电容C B,其连接关系如图4中所示,其中充电部分3用以对直流母线电容C B进行预充电,控制部分5用以控制功率部分4的运行。
从图4可以看出,在传统的级联式拓扑结构中,除了包括一个主控制器50之外,每一个功率单元40即作为功率变换器,例如H桥电路,都需要单独配备一套本地控制器51、驱动电路52、辅助电源53及光纤54,其连接关系如图4中所示,主控制器50输出主控制信号至本地主控制器51,本地主控制器51根据主控制信号产生对应的功率单元的本地控制信号至驱动电路52,驱动电路52根据本地控制信号输出驱动信号来驱动对应的功率单元运行。例如25kV单相SVG,通常可以采用以下两种方案来实现。第一种方案:H桥电路中的功率开关器件均采用常用的1700V绝缘栅双极型晶体管(Insulated Gate Bipolar Translator,IGBT),那么单个功率单元40的直流母线电压为1000V,考虑冗余,共需要55级功率单元级联,因此一共需要55套本地控制板51、55套光纤54及55个辅助电源53。如此多的本地控制器51、光纤54、辅助电源53将导致SVG的结构设计极其复杂,成本也相当高昂,同时降低了其可靠性。
第二种方案:H桥电路中的功率开关器件选用高压IGBT,例如3300V IGBT甚至6500V IGBT,将单个功率单元40的电压等级提高。为减少功率单元40的级联数量,减少本地控制器51、光纤54、辅助电源53的数量,通常可以采用第二种方案。在第二种方案中,若选用3300V IGBT,每个功率单元40的电压等级相比1700V IGBT方案提高一倍,级联数量可由55级减少为28级,本地控制器51、光纤54及辅助电源53的数量及成本也可减少一半。但受限于当前的半导体工艺发展水平,3300V IGBT的成本依然居高不下,同样的电流规格下,其成本远远超过1700V IGBT成本的2倍。因此第二种方案的成本将远远超过第一种方案。如果选用6500V IGBT,成本的压力则更高。
因此,目前不管是采用低压IGBT的功率单元级联方案,或是采用高压IGBT的功率单元级联方案,均有其显著的缺点。
图5是现有技术中一个HVDC-Light系统的示意图。如图5中所示,该HVDC-Light包括三相电路,每一相电路包括上半桥臂和下半桥臂,每一相电路的上半桥臂和下半桥臂均包括多个级联的功率单元40和电感L,每一个功率单元40也包括如图1中所示的第一端和第二端,相邻两个功率单元40其中一个的第一端与另一个的第二端连接,每个上桥臂的电感L与相应下桥臂的电感L相连,并且两个电感L之间的连接点分别连接到电网,其连接关系如图5中所示。该HVDC-Light的每一个功率单元40采用了一个半桥变换器。该HVDC-Light的每一个功率单元40还包括直流母线电容,该HVDC-Light的每一个功率单元40还需要连接驱动电路52,功率单元40根据驱动电路52输出的驱动信号进行运行。除了主控制器50之外,每一个功率单元40也都需要配备一套本地控制器51、光纤54及辅助电源53,其连接关系如图5中所示。
由于HVDC-Light的直流电压高达上百千伏,需要级联的功率单元40的数量极其庞大,所以上述提到的问题更加显著,即现有技术中HVDC-Light整体结构复杂、成本高且可靠性低。
另外,功率半导体开关的驱动方式也需要进一步考虑和改进。
另外,针对功率变换器和功率单元的故障的措施也需要进一步考虑和改进。
发明内容
本发明的目的在于提供一种模块化电源系统,以简化电力电子系统的结构,降低成本,并提高可靠性。
根据本发明的一个方面,提供一种模块化电源系统,被配置为包括:一个主控制器,被配置为输出主控制信号;N个本地控制器,其中每一个所述本地控制器被配置为接收所述主控制信号,以输出至少一个本地控制信号;以及N个功率单元,与所述N个本地控制器一一对应,其中每一个所述功率单元包括第一端和第二端,每一个所述功率单元的所述第二端连接到相邻的一个所述功率单元的所述第一端,每一个所述功率单元被配置为包括M个功率变换器,其中每一个所述功率变换器包 括第三端和第四端,每一个所述功率变换器的所述第四端连接到相邻的一个所述功率变换器的所述第三端,且第一个所述功率变换器的所述第三端为所述功率单元的所述第一端,第M个所述功率变换器的所述第四端为所述功率单元的所述第二端,每一个所述功率变换器被配置为根据对应的所述本地控制器输出的所述本地控制信号运行,其中N和M均为大于1的自然数。
在本发明的一些示例性实施例中,所述的模块化电源系统被配置为还包括:N个辅助电源,与所述N个本地控制器一一对应,其中每一个所述辅助电源被配置为给对应的所述本地控制器提供电源。
在本发明的一些示例性实施例中,其中所述功率变换器为AC/DC变换器、DC/AC变换器和DC/DC变换器中的任何一种。
在本发明的一些示例性实施例中,其中所述M个功率变换器的直流母线电压为全部相同,部分相同,或全部不相同。
在本发明的一些示例性实施例中,其中所述M个功率变换器的拓扑结构为全部相同,或部分相同。
在本发明的一些示例性实施例中,其中每一个所述功率单元中的所述M个功率变换器的拓扑结构全部为全桥变换器、半桥变换器、中性点可控三电平变换器、二极管钳位三电平变换器、飞跨电容三电平变换器、全桥谐振变换器和半桥谐振变换器中的一种。
在本发明的一些示例性实施例中,其中每一个所述功率单元中的所述M个功率变换器的拓扑结构为全桥变换器、半桥变换器、中性点可控三电平变换器、二极管钳位三电平变换器、飞跨电容三电平变换器、全桥谐振变换器和半桥谐振变换器中的两种或两种以上的组合。
在本发明的一些示例性实施例中,其中每一个所述功率变换器被配置为包括:至少一个功率半导体开关,其中每一个所述本地控制信号被配置为控制对应的所述功率半导体开关的导通和断开。
在本发明的一些示例性实施例中,其中每一个所述功率单元还包括:M个驱动电路,与所述M个功率变换器一一对应,其中每一个所述驱动电路被配置为连接于对应的所述功率变换器的所述功率半导体开 关,接收对应的所述本地控制器输出的本地控制信号,以输出至少一个驱动信号来驱动对应的所述M个功率变换器中的所述功率半导体开关的导通和断开。
在本发明的一些示例性实施例中,其中每一个所述功率单元还包括:多个驱动电路,其中所述多个驱动电路的数量等于所述功率单元中所述至少一个功率半导体开关的数量,每一个所述驱动电路被配置为电连接于对应的所述功率变换器的所述功率半导体开关,接收对应的所述本地控制器输出的本地控制信号,以输出驱动信号来驱动对应的所述功率半导体开关的导通和断开。
在本发明的一些示例性实施例中,其中每一个所述驱动电路与对应的所述本地控制器直接电连接,或者通过磁隔离器件连接,或者通过光隔离器件连接。
在本发明的一些示例性实施例中,其中每一个所述本地控制器与所述主控制器通过磁隔离器件连接,或者通过光隔离器件连接。
在本发明的一些示例性实施例中,其中各所述驱动电路为彼此相同或彼此不相同。
在本发明的一些示例性实施例中,其中每一个所述驱动电路包括磁隔离器件,所述磁隔离器件传输所述本地控制信号中包含的驱动逻辑脉冲;或者每一个所述驱动电路包括磁隔离器件,所述磁隔离器件传输所述本地控制信号中包含的驱动逻辑脉冲以及功率脉冲;或者每一个所述驱动电路包括磁隔离器件,一部分所述驱动电路的所述磁隔离器件传输所述本地控制信号中包含的驱动逻辑脉冲,另一部分所述驱动电路的所述磁隔离器件传输所述本地控制信号中包含的所述驱动逻辑脉冲以及功率脉冲。
在本发明的一些示例性实施例中,其中所述至少一个本地控制信号的数量与所述功率变换器中的所述至少一个功率半导体开关的数量相同,且每一个所述本地控制信号被配置为控制对应的所述功率半导体开关导通和断开。
在本发明的一些示例性实施例中,其中每一个所述功率变换器的所 述第三端和所述第四端之间并联有开关,当所述功率变换器正常工作时,所述开关断开,当所述功率变换器发生故障时,所述开关导通。
在本发明的一些示例性实施例中,其中所述开关是半控型器件、全控型器件或机械开关。
在本发明的一些示例性实施例中,当任一所述功率变换器发生故障时,所述本地控制器会接收到反映对应的所述功率变换器故障类型的故障信号,并输出至少一个保护信号。
在本发明的一些示例性实施例中,其中所述本地控制器输出所述保护信号以控制对应的所述功率变换器的开关导通,并且所述本地控制器停止输出控制对应的所述功率变换器运行的所述本地控制信号。
在本发明的一些示例性实施例中,其中所述至少一个保护信号的数量为M,所述本地控制器输出每一个所述保护信号以控制对应的所述功率变换器的所述开关导通,并且所述本地控制器停止输出控制所述M个功率变换器运行的所述至少一个本地控制信号。
在本发明的一些示例性实施例中,其中所述至少一个保护信号的数量为1,所述本地控制器输出所述保护信号以控制所述M个功率变换器的所述开关导通,并且所述本地控制器停止输出控制所述M个功率变换器运行的所述至少一个本地控制信号。
在本发明的一些示例性实施例中,其中所述功率单元的所述第一端和所述第二端之间并联有开关,当所述功率单元正常工作时,所述开关断开,当所述功率单元发生故障时,所述开关导通。
在本发明的一些示例性实施例中,其中,当任一所述功率变换器发生故障时,所述本地控制器会接收到反映对应的所述功率变换器故障类型的故障信号,并输出一保护信号以控制所述开关导通,并且所述本地控制器停止输出控制所述M个功率变换器运行的所述至少一个本地控制信号。
本发明通过将多个功率变换器组成一个功率单元,利用一套本地控制器、光纤控制多个功率变换器的方法,可大大减少本地控制器、光纤的数量,简化结构设计,降低成本,提高可靠性。
本发明通过让功率单元中功率变换器在发生故障时被旁路,同时停止输出控制功率变换器运行的本地控制信号,提高模块化电源系统的安全性和可靠性。
本发明适用于所有AC/DC、DC/AC、DC/DC功率变换器连接的拓扑结构,应用广泛。
附图说明
通过参照附图详细描述其示例实施例,本发明的上述和其它目标、特征及优点将变得更加明显。
图1是现有技术中一个三相SVG系统的结构示意图;
图2是现有技术中一个更具体的三相SVG系统的示意图;
图3是现有技术中的一个H桥电路(拓扑)的示意图;
图4是现有技术中一个单相SVG的示意图;
图5是现有技术中一个HVDC-Light系统的示意图;
图6是本发明一个实施例的模块化电源系统的方框图;
图7是本发明另一个实施例的模块化电源系统的方框图;
图8是本发明另一个实施例的模块化电源系统的方框图;
图9是本发明另一个实施例的模块化电源系统的方框图;
图10是本发明另一个实施例的模块化电源系统的方框图;
图11是本发明另一个实施例的模块化电源系统的方框图;
图12是本发明另一个实施例的模块化电源系统的方框图;
图13是本发明另一个实施例的模块化电源系统的方框图;
图14是本发明另一个实施例的模块化电源系统的方框图;
图15是本发明另一个实施例的模块化电源系统的方框图;
图16是说明本发明本地控制器与驱动电路之间连接方式的示意图;
图17是本发明另一个实施例的模块化电源系统的方框图;
图18是说明本发明驱动电路的驱动方式的示意图;
图19是说明本发明驱动电路的另一种驱动方式的示意图;
图20是本发明一个实施例的驱动电路的电路图;
图21是本发明一个实施例的驱动电路的时序图;
图22是本发明另一个实施例的模块化电源系统的方框图;
图23是本发明另一个实施例的模块化电源系统的方框图;
图24是本发明另一个实施例的模块化电源系统的方框图;
图25是本发明另一个实施例的模块化电源系统的方框图;以及
图26是本发明另一个实施例的模块化电源系统的方框图。
具体实施例
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本发明将更加全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。附图仅为本发明的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。
此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本发明的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本发明的技术方案而省略所述特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知结构、方法、装置、实现或者操作以避免喧宾夺主而使得本发明的各方面变得模糊。
图6是本发明一个实施例的模块化电源系统的方框图。如图6中所示,本发明的电力电子变换器被配置为包括:一个主控制器90、N个本地控制器91和N个功率单元70,其中N为大于1的自然数。
主控制器90被配置为输出主控制信号。主控制信号例如是设置来控制该模块化电源系统的整体运行状态的一个或多个参数。
每一个本地控制器91被配置为接收前述的主控制信号,以输出至少一个本地控制信号。本地控制信号例如是设置来控制对应的功率单元70的整体运行状态的一个或多个参数,或者本地控制信号用来控制对应的 功率单元70中部分功率变换器的运行状态。
本发明的电力电子变换器可以被配置为还包括N个辅助电源93,N个辅助电源93与N个本地控制器91一一对应,其中每一个辅助电源93被配置为给对应的本地控制器91提供电源。
N个功率单元70与N个本地控制器91一一对应,每一个功率单元70包括第一端X 1和第二端X 2,每一个功率单元70的第二端X 2连接到相邻的一个功率单元70的第一端X 1,也就是说,相邻两个功率单元70的其中一个的第二端X 2与另一个的第一端X 1连接。
每一个功率单元70被配置为包括M个功率变换器701,其中每一个功率变换器701包括第三端X 3和第四端X 4,每一个功率变换器的第四端X 4连接到相邻的一个功率变换器701的第三端X 3。也就是说,相邻两个功率变换器701的其中一个的第四端X 4与另一个的第三端X 3连接。M为大于1的自然数。这样,第1个功率变换器701的第三端X 3即为该功率单元70的第一端X 1,第M个功率变换器701的第四端X 4为该功率单元70的第二端X 2。每一个功率变换器701被配置为根据对应的本地控制器91输出的本地控制信号运行。
作为本发明的一个实施例,主控制器90与每一个本地控制器91之间可以通过光隔离器件,例如光纤94传输前述的主控制信号。在其他实施例中,主控制器90与每一个本地控制器91之间可以通过磁隔离器件,例如隔离变压器,进行连接,主控制器90与每一个本地控制器91之间的连接方式不仅限于上述连接方式。
本发明的电力电子装置可以应用于SVG、MVD、HVDC-Light以及风力发电系统等领域。
如图6中所示,本发明提出将M个功率变换器701合成为一个功率单元70,一个功率单元70配置一套本地控制器91、光纤94及辅助电源93,即一套本地控制器91、光纤94及辅助电源93控制M个功率变换器701。而在传统的方案中,每个功率单元40即功率变换器均需要配置一套本地控制器51、光纤54及辅助电源53。相比于传统方案,本发明提出的模块化电源系统所需要配置的本地控制器91、光纤94及辅助电源 93的数量将降为传统方案的1/M。本发明使得模块化电源系统的结构设计大大简化,成本也显著降低,同时可靠性得到极大提高。
本发明不限制各个功率变换器701的直流母线电压。本发明的模块化电源系统中的M个功率变换器701的直流母线电压可以为全部相同,部分相同,或全部不相同。基于图6,图7是本发明另一个实施例的模块化电源系统的方框图。如图7中所示,功率单元70内M个功率变换器701的直流母线电压可以分别为V 1、V 2…和V M,其中V 1、V 2...和V M可以全部相同,即V 1=V 2=...=V M,也可以部分相同V 1=V 2,V 1≠V M,或者全部不相同,即V 1≠V 2≠...≠V M
本发明也不限制各个功率变换器701中所用的拓扑结构。本发明的模块化电源系统中的M个功率变换器701可以为交流/直流(AC/DC)变换器、直流/交流(DC/AC)变换器和直流/直流(DC/DC)变换器中的任何一种,因此图7中用功率变换器701代表所有适用的AC/DC、DC/AC和DC/DC拓扑结构中的任何一种。本发明不限制M个功率变换器701中所用的拓扑结构还体现在M个功率变换器的拓扑结构可以为全部相同,或部分相同。例如,本发明的模块化电源系统中的每一个功率单元70中的M个功率变换器701的拓扑结构可以全部为全桥变换器、半桥变换器、中性点可控三电平变换器、二极管钳位三电平变换器、飞跨电容三电平变换器、全桥谐振变换器和半桥谐振变换器中的一种。或者例如,本发明的模块化电源系统中的每一个功率单元70中的M个功率变换器701的拓扑结构可以为全桥变换器、半桥变换器、中性点可控三电平变换器、二极管钳位三电平变换器、飞跨电容三电平变换器、全桥谐振变换器和半桥谐振变换器中的两种或两种以上的组合。
本发明的模块化电源系统中的每一个功率单元70中的M个功率变换器701中每一个功率变换器701可以被配置为包括:至少一个功率半导体开关,其中每一个本地控制信号被配置为控制对应的功率半导体开关的导通和断开。
如图6和图7中所示,本实施例的模块化电源系统中的每一个功率单元70可以包括:M个驱动电路702,与M个功率变换器701一一对应, 其中每一个驱动电路702被配置为连接于对应的功率变换器701中的功率半导体开关,接收并根据对应的本地控制器91输出的至少一个本地控制信号,以输出至少一个驱动信号来驱动对应的M个功率变换器701中的功率半导体开关的导通和断开。
在其它实施例中,模块化电源系统中的每一个功率单元可以包括:多个驱动电路,多个驱动电路的数量等于这个功率单元中功率半导体开关的数量,每一个驱动电路被配置为连接于对应的功率半导体开关,接收并根据对应的本地控制信号以输出一个驱动信号来驱动对应的功率半导体开关的导通和断开。
图8是本发明另一个实施例的模块化电源系统的方框图。如图8中所示,本实施例的模块化电源系统中每一个功率单元70的M个功率变换器701的拓扑结构均采用全桥变换器,例如H桥电路。每一个H桥电路701包括4个功率半导体开关和直流母线电容,4个功率半导体开关构成2个桥臂,为了便于说明,将4个功率半导体开关分别定义为一个桥臂的上功率半导体开关、下功率半导体开关、另一个桥臂的上功率半导体开关和下功率半导体开关,其中一个桥臂的上功率半导体开关的一端连接另一个桥臂的上功率半导体开关的一端和直流母线电容的一端,一个桥臂的下功率半导体开关的另一端连接另一个桥臂的下功率半导体开关的另一端和直流母线电容的另一端,一个桥臂的上功率半导体开关与下功率半导体开关连接于第三端X 3,另一个桥臂的上功率半导体开关与下功率半导体开关连接于第四端X 4。以其中第M个功率变换器70为例,功率变换器701包括两个桥臂和直流母线电容,一个桥臂的上功率半导体开关Q M1的一端连接另一个桥臂的上功率半导体开关Q M3的一端和直流母线电容C B的一端,一个桥臂的下功率半导体开关Q M2的另一端连接另一个桥臂的下功率半导体开关Q M4的另一端和直流母线电容C B的另一端,一个桥臂的上功率半导体开关Q M1与下功率半导体开关Q M2的连接点为第三端X 3,另一个桥臂的上功率半导体开关Q M3与下功率半导体开关Q M4的连接点为第四端X 4
在本实施例中,每一个功率单元70中的第1个H桥电路701的第三 端X 3为该功率单元70的第一端X 1,第1个H桥电路701的第四端X 4连接第二个H桥电路701的第三端X 3,以此类推,第M-1个H桥电路701的第四端X 4连接第M个H桥电路701的第三端X 3,第M个功率变换器的第四端X 4为该功率单元70的第二端X 2
每一个功率单元70所对应的本地控制器91输出至少一个本地控制信号用以控制对应的H桥电路701中功率半导体开关的导通和断开。在本实施例中,每一个H桥电路701需要4个本地控制信号,分别控制对应的功率半导体开关导通和断开,每一个功率单元70需要4×M个本地控制信号,即,本地控制器需要输出4×M个本地控制信号,用以控制对应的功率半导体开关的导通和断开,即,功率半导体开关Q 11-Q M4均需要一个对应的本地控制信号。
如图8所示,每一个功率单元70还包括M个驱动电路702,驱动电路702与M个H桥电路701一一对应,每一个驱动电路702接收对应的本地控制信号,并输出至少一驱动信号来分别驱动对应的功率半导体开关的导通和断开,具体而言,每一个驱动电路702接收对应的4个本地控制信号,并输出4个驱动信号来分别驱动对应的功率半导体开关的导通和断开,以第1个H桥电路701所对应的驱动电路702为例,该驱动电路输出4个驱动信号分别驱动功率半导体开关Q 11-Q 14的导通和断开。
在其它实施例中,每一个功率单元70还包括多个驱动电路,驱动电路的数量等于4×M,每一个驱动电路连接于对应的一个功率半导体开关,并且接收一个对应的本地控制信号以输出一个驱动信号来驱动对应的功率半导体开关的导通和断开,以第1个H桥电路701所对应的4个驱动电路为例,4个驱动电路分别连接功率半导体开关Q 11-Q 14并且每一个驱动电路输出一个驱动信号来驱动对应的功率半导体开关Q M1-Q M4的导通和断开。
图9是本发明另一个实施例的模块化电源系统的方框图。如图9中所示,本实施例的模块化电源系统中每一个功率单元70的M个功率变换器701的拓扑结构均采用半桥变换器。每一个半桥变换器701包括2个功率半导体开关和直流母线电容,其连接关系如图9中所示。一个功 率半导体的一端连接直流母线电容的一端,其另一端连接另一个功率半导体开关的一端,另一个功率半导体开关的另一端连接直流母线电容C B的另一端。2个功率半导体开关相互连接的连接点为第三端X 3,另一个功率半导体开关的另一端为第四端X 4。以第1个功率变换器70为例,功率变换器701包括两个功率半导体开关Q 11、Q 12和直流母线电容C B。功率半导体开关Q 11的一端连接于直流母线电容C B的一端,功率半导体开关Q 11的另一端连接于功率半导体开关Q 12的一端,功率半导体开关Q 12的另一端连接于直流母线电容C B的另一端,功率半导体开关Q 11与功率半导体开关Q 12的连接点为第1个功率变换器701的第三端X 3,功率半导体开关Q 12的另一端为第1个功率变换器701的第四端X 4
在本实施例中,每一个功率单元70中第1个半桥变换器的第三端X 3为功率单元70的第一端X 1,第1个半桥变换器的第四端X 4连接第二个半桥变换器的第三端X 3,依次类推,第M-1个半桥变换器的第四端X 4连接第M个半桥变换器的第三端X 3,第M个半桥变换器的第四端X 4为功率单元70的第二端X 2
在本实施例中,每一个功率单元70对应的本地控制器可以输出2×M个本地控制信号,用以控制半桥变换器701中的功率半导体开关Q 11-Q M2的导通和断开,即,功率半导体开关Q 11-Q M2均需要一个本地控制信号。
如图9所示,每一个功率单元70还包括M个驱动电路702,驱动电路702与M个半桥变换器701一一对应,每一个驱动电路702接收对应的本地控制信号,并输出至少一驱动信号来分别驱动对应的功率半导体开关的导通和断开,具体而言,每一个驱动电路702接收对应的2个本地控制信号,并输出2个驱动信号来分别驱动对应的功率半导体开关的导通和断开,以第1个半桥变换器701所对应的驱动电路702为例,该驱动电路输出2个驱动信号分别驱动功率半导体开关Q 11-Q 12的导通和断开。
在其它实施例中,每一个功率单元70还包括多个驱动电路,驱动电路的数量等于2×M,每一个驱动电路连接于对应的一个功率半导体开 关,并且接收一个对应的本地控制信号以输出一个驱动信号来驱动对应的功率半导体开关的导通和断开,以第1个半桥变换器701所对应的2个驱动电路为例,2个驱动电路分别连接功率半导体开关Q 11-Q 12并且每一个驱动电路输出一个驱动信号来驱动对应的功率半导体开关Q 11-Q 12的导通和断开。
图10是本发明另一个实施例的模块化电源系统的方框图。如图10中所示,本实施例的模块化电源系统中每一个功率单元70的M个功率变换器701的拓扑结构均采用中性点可控三电平变换器。每一个中性点可控三电平变换器701包括8个功率半导体开关和2个直流母线电容,其连接关系如图10中所示。以第1个功率变换器701为例加以说明,功率半导体开关Q 11的一端连接于直流母线电容C 1的一端和功率半导体开关Q 15的一端,直流母线电容C 1的另一端连接于直流母线电容C 2的一端,功率半导体开关Q 11的另一端连接于功率半导体开关Q 12的一端,功率半导体开关Q 11与功率半导体开关Q 12的连接点为第1个功率变换器701的第三端X 3,功率半导体开关Q 12的另一端连接于直流母线电容C 2的另一端和功率半导体开关Q 16的另一端,功率半导体开关Q 15的另一端连接于功率半导体开关Q 16的一端,功率半导体开关Q 15与功率半导体开关Q 16的连接点为第1个功率变换器701的第四端X 4,功率半导体开关Q 13的一端连接于直流母线电容C 1的另一端,功率半导体开关Q 13的另一端连接于功率半导体开关Q 14的一端,功率半导体开关Q 14的另一端连接于功率半导体开关Q 11的另一端,功率半导体开关Q 17的一端连接于直流母线电容C 1的另一端,功率半导体开关Q 17的另一端连接于功率半导体开关Q 18的一端,功率半导体开关Q 18的另一端连接于功率半导体开关Q 15的另一端。
在本实施例中,每一个功率单元70中第1个中性点可控三电平变换器的第三端X 3为功率单元70的第一端X 1,第1个中性点可控三电平变换器的第四端X 4连接第二个中性点可控三电平变换器的第三端X 3,依次类推,第M-1个中性点可控三电平变换器的第四端X 4连接第M个中性点可控三电平变换器的第三端X 3,第M个中性点可控三电平变换器的第 四端X 4为功率单元70的第二端X 2
在本实施例中,每一个功率单元对应的本地控制器可以输出8×M个本地控制信号,用以控制中性点可控三电平变换器701中功率半导体开关Q 11-Q M8的的导通和断开,即,功率半导体开关Q 11-Q M8均需要一个本地控制信号。
如图10所示,每一个功率单元70还包括M个驱动电路702,驱动电路702与M个中性点可控三电平变换器701一一对应,每一个驱动电路702接收对应的本地控制信号,并输出至少一驱动信号来分别驱动对应的功率半导体开关的导通和断开,具体而言,每一个驱动电路702接收对应的8个本地控制信号,并输出8个驱动信号来分别驱动对应的功率半导体开关的导通和断开,以第1个中性点可控三电平变换器701所对应的驱动电路702为例,该驱动电路输出8个驱动信号分别驱动功率半导体开关Q 11-Q 18的导通和断开。
在其它实施例中,每一个功率单元70还包括多个驱动电路,驱动电路的数量等于8×M,每一个驱动电路连接对应的一个功率半导体开关,并且接收一个对应的本地控制信号以输出一个驱动信号来驱动对应的功率半导体开关的导通和断开,以第1个中性点可控三电平变换器701所对应的8个驱动电路为例,8个驱动电路分别连接功率半导体开关Q 11-Q 18并每一个驱动电路输出一个驱动信号来驱动对应的功率半导体开关Q 11-Q 18的导通和断开。
图11是本发明另一个实施例的模块化电源系统的方框图。如图11中所示,本实施例的模块化电源系统中每一个功率单元70的M个功率变换器701的拓扑结构均采用二极管钳位三电平变换器。每一个二极管钳位三电平变换器701包括8个功率半导体开关、4个钳位二极管和2个直流母线电容,其连接关系如图11中所示。以第1个功率变换器701为例,功率半导体开关Q 11的一端连接于直流母线电容C 1的一端和功率半导体开关Q 15的一端,功率半导体开关Q 11的另一端连接于功率半导体开关Q 12的一端和钳位二极管D 1的阴极,功率半导体开关Q 12的另一端连接于功率半导体开关Q 13的一端,功率半导体开关Q 13的另一端连接于 功率半导体开关Q 14的一端和钳位二极管D 2的阳极,直流母线电容C 1的另一端连接于直流母线电容C 2的一端,功率半导体开关Q 14的另一端连接于直流母线电容C 2的另一端,钳位二极管D 1的阳极连接于钳位二极管D 2的阴极和直流母线电容C 1的另一端,功率半导体开关Q 12与功率半导体开关Q 13的连接点为第1个功率变换器701的第三端X 3,功率半导体开关Q 15的另一端连接于功率半导体开关Q 16的一端和钳位二极管D 3的阴极,功率半导体开关Q 16的另一端连接于功率半导体开关Q 17的一端,功率半导体开关Q 17的另一端连接于功率半导体开关Q 18的一端和钳位二极管D 4的阳极,功率半导体开关Q 18的另一端连接于直流母线电容C 2的另一端,钳位二极管D 3的阳极连接于钳位二极管D 4的阴极和直流母线电容C 1的另一端,功率半导体开关Q 16与功率半导体开关Q 17的连接点为第1个功率变换器701的第四端X 4
在本实施例中,每一个功率单元70中第1个二极管钳位三电平变换器的第三端X 3为功率单元70的第一端X 1,第1个二极管钳位三电平变换器的第四端X 4连接第二个二极管钳位三电平变换器的第三端X 3,依次类推,第M-1个二极管钳位三电平变换器的第四端X 4连接第M个二极管钳位三电平变换器的第三端X 3,第M个二极管钳位三电平变换器的第四端X 4为功率单元70的第二端X 2
在本实施例中,每一个功率单元对应的本地控制器可以输出8×M个本地控制信号,用以控制中性点可控三电平变换器701中功率半导体开关Q 11-Q M8的的导通和断开,即,功率半导体开关Q 11-Q M8均需要一个本地控制信号。
如图11所示,每一个功率单元70还包括M个驱动电路702,驱动电路702与M个二极管钳位三电平变换器701一一对应,每一个驱动电路702接收对应的本地控制信号,并输出至少一驱动信号来分别驱动对应的功率半导体开关的导通和断开,具体而言,每一个驱动电路702接收对应的8个本地控制信号,并输出8个驱动信号来分别驱动对应的功率半导体开关的导通和断开,以第1个二极管钳位三电平变换器701所对应的驱动电路702为例,该驱动电路输出8个驱动信号分别驱动功率 半导体开关Q 11-Q 18的导通和断开。
在其它实施例中,每一个功率单元70还包括多个驱动电路,驱动电路的数量等于8×M,每一个驱动电路连接对应的一个功率半导体开关,并且接收一个对应的本地控制信号以输出一个驱动信号来驱动对应的功率半导体开关的导通和断开,以第1个二极管钳位三电平变换器701所对应的8个驱动电路为例,8个驱动电路分别连接功率半导体开关Q 11-Q 18并且每一个驱动电路输出一个驱动信号来驱动对应的功率半导体开关Q 11-Q 18的导通和断开。
图12是本发明另一个实施例的模块化电源系统的方框图。如图12中所示,本实施例的模块化电源系统中每一个功率单元70的M个功率变换器701拓扑结构均采用飞跨电容三电平变换器。每一个飞跨电容三电平变换器701包括8个功率半导体开关、2个直流母线电容和2个飞跨电容,其连接关系如图12中所示。以第1个功率变换器701为例,功率半导体开关Q 11的一端连接于直流母线电容C 1的一端和功率半导体开关Q 15的一端,功率半导体开关Q 11的另一端连接于功率半导体开关Q 12的一端和飞跨电容C 3的一端,功率半导体开关Q 12的另一端连接于功率半导体开关Q 13的一端,功率半导体开关Q 13的另一端连接于功率半导体开关Q 14的一端和飞跨电容C 3的另一端,直流母线电容C 1的另一端连接于直流母线电容C 2的一端,功率半导体开关Q 14的另一端连接于直流母线电容C 2的另一端,功率半导体开关Q 12与功率半导体开关Q 13的连接点为第1个功率变换器701的第三端X 3,功率半导体开关Q 15的另一端连接于功率半导体开关Q 16的一端和飞跨电容C 4的一端,功率半导体开关Q 16的另一端连接于功率半导体开关Q 17的一端,功率半导体开关Q 17的另一端连接于功率半导体开关Q 18的一端和飞跨电容C4的另一端,功率半导体开关Q 18的另一端连接于直流母线电容C 2的另一端,功率半导体开关Q 16与功率半导体开关Q 17的连接点为第1个功率变换器701的第四端X 4
在本实施例中,每一个功率单元70中第1个飞跨电容三电平变换器的第三端X 3为功率单元70的第一端X 1,第1个飞跨电容三电平变换器 的第四端X 4连接第二个飞跨电容三电平变换器的第三端X 3,依次类推,第M-1个飞跨电容三电平变换器的第四端X 4连接第M个飞跨电容三电平变换器的第三端X 3,第M个飞跨电容三电平变换器的第四端X 4为功率单元70的第二端X 2
在本实施例中,每一个功率单元对应的本地控制器可以输出8×M个本地控制信号,用以控制中性点可控三电平变换器701中功率半导体开关Q 11-Q M8的的导通和断开,即,功率半导体开关Q 11-Q M8均需要一个本地控制信号。
如图12所示,每一个功率单元70还包括M个驱动电路702,驱动电路702与M个飞跨电容三电平变换器701一一对应,每一个驱动电路702接收对应的本地控制信号,并输出至少一驱动信号来分别驱动对应的功率半导体开关的导通和断开,具体而言,每一个驱动电路702接收对应的8个本地控制信号,并输出8个驱动信号来分别驱动对应的功率半导体开关的导通和断开,以第1个飞跨电容三电平变换器701所对应的驱动电路702为例,该驱动电路输出8个驱动信号分别驱动功率半导体开关Q 11-Q 18的导通和断开。
在其它实施例中,每一个功率单元70还包括多个驱动电路,驱动电路的数量等于8×M,每个驱动电路接收一个对应的本地控制信号并输出一个驱动信号来驱动对应的功率半导体开关的导通和断开,以第1个飞跨电容三电平变换器701所对应的8个驱动电路为例,8个驱动电路分别连接功率半导体开关Q 11-Q 18并且每一个驱动电路输出一个驱动信号来驱动对应的功率半导体开关Q 11-Q 18的导通和断开。
图8-图12的模块化电源系统中的M个功率变换器701可以为交流/直流(AC/DC)变换器或者直流/交流(DC/AC)变换器,但是不以此为限,还可以是其它拓扑结构的变换器。
图13是本发明另一个实施例的模块化电源系统的方框图。如图13中所示,本实施例的模块化电源系统中每一个功率单元70的M个功率变换器701的拓扑结构均采用全桥谐振变换器。每一个全桥谐振变换器701包括全桥电路、谐振电路、变压器和整流桥,其连接关系如图13中 所示。以第1个全桥LLC谐振变换器701为例,全桥电路包括4个功率半导体开关和一个直流母线电容,功率半导体开关Q 11的一端连接于直流母线电容C B’的一端和功率半导体开关Q 13的一端,功率半导体开关Q 11的另一端连接于功率半导体开关Q 12的一端,功率半导体开关Q 12的另一端连接于直流母线电容C B’的另一端和功率半导体开关Q 14的另一端,功率半导体开关Q 11与功率半导体开关Q 12的连接点连接于电容C’和电感L’构成的谐振电路的一端,谐振电路的另一端连接于变压器T’的原边线圈的一端,变压器T’的原边线圈的另一端连接于功率半导体开关Q 13与功率半导体开关Q 14的连接点,直流母线电容C B’的前述一端为第1个功率变换器的第三端X 3,直流母线电容C B’的另一端为第1个功率变换器的第四端X 4,整流桥包括4个整流二极管,整流二极管D 1’的一端连接于整流二极管D 3’一端,整流二极管D 1’的另一端连接于整流二极管D 2’一端,整流二极管D 3’的另一端连接于整流二极管D 4’一端,整流二极管D 2’的另一端连接于整流二极管D 4’另一端,整流二极管D 1’的前述一端为变换器的第五端X 5,整流二极管D 2’的另一端为变换器的第六端X 6,变压器T’的输出端分别连接于整流二极管D 1’与整流二极管D 2’的连接点以及整流二极管D 3’与整流二极管D 4’的连接点,其中变压器T’可以是中间抽头变压器,具有两个副边线圈,两个副边线圈并联连接,变压器T’也可以具有单个副边线圈。
在实施例中,每一个功率单元70中第1个全桥谐振变换器的第三端X 3为功率单元70的第一端X 1,第1个全桥谐振变换器的第四端X 4连接第二个全桥谐振变换器的第三端X 3,依次类推,第M-1个全桥谐振变换器的第四端X 4连接第M个全桥谐振变换器的第三端X 3,第M个全桥谐振变换器的第四端X 4为功率单元70的第二端X 2。每一个功率单元70中所有的全桥谐振变换器器的第五端X 5连在一起,而第六端X 6连在一起。
在本实施例中,每一个功率单元对应的本地控制器可以输出4×M个本地控制信号,用以控制全桥谐振变换器701中功率半导体开关Q 11-Q M4的的导通和断开,即,功率半导体开关Q 11-Q M4均需要一个本地控制信号。
如图13所示,每一个功率单元70还包括M个驱动电路702,驱动电路702与M个全桥谐振变换器701一一对应,每一个驱动电路702接收对应的本地控制信号,并输出至少一驱动信号来分别驱动对应的功率半导体开关的导通和断开,具体而言,每一个驱动电路702接收对应的4个本地控制信号,并输出4个驱动信号来分别驱动对应的功率半导体开关的导通和断开,以第1个全桥谐振变换器701所对应的驱动电路702为例,该驱动电路输出4个驱动信号分别驱动功率半导体开关Q 11-Q 14的导通和断开。
在其它实施例中,每一个功率单元70还包括多个驱动电路,驱动电路的数量等于4×M,每一个驱动电路连接对应的一个功率半导体开关,并且接收一个对应的本地控制信号以输出一个驱动信号来驱动对应的功率半导体开关的导通和断开,以第1个全桥谐振变换器701所对应的4个驱动电路为例,4个驱动电路分别连接功率半导体开关Q 11-Q 14并且每一个驱动电路输出一个驱动信号来驱动对应的功率半导体开关Q 11-Q 14的导通和断开。
图14是本发明另一个实施例的模块化电源系统的方框图。如图14中所示,本实施例的模块化电源系统中每一个功率单元70的M个功率变换器701的拓扑结构均采用半桥谐振变换器。每一个半桥谐振变换器701包括半桥电路、谐振电路、变压器和整流桥,其连接关系如图14中所示。以第1个半桥谐振变换器701为例,半桥电路包括2个功率半导体开关和一个直流母线电容,功率半导体开关Q 11的一端连接于直流母线电容C B’的一端,功率半导体开关Q 11的另一端连接于功率半导体开关Q 12的一端,功率半导体开关Q 12的另一端连接于直流母线电容C B’的另一端,功率半导体开关Q 11与功率半导体开关Q 12的连接点连接于电容C’和电感L’构成的谐振电路的一端,谐振电路的另一端连接于变压器T’的原边线圈的一端,变压器T’的原边线圈的另一端连接于功率半导体开关Q 12的另一端,直流母线电容C B’的一端为第1个功率变换器的第三端X 3,直流母线电容C B’的另一端为第1个功率变换器的第四端X 4,整流桥包括4个整流二极管,整流二极管D 1’的一端连接于整流二极管D 3’一端, 整流二极管D 1’的另一端连接于整流二极管D 2’一端,整流二极管D 3’的另一端连接于整流二极管D 4’一端,整流二极管D 2’的另一端连接于整流二极管D 4’另一端,整流二极管D 1’的一端为变换器的第五端X 5,整流二极管D 2’的另一端为变换器的第六端X 6,变压器T’的输出端分别连接于整流二极管D 1’与整流二极管D 2’的连接点以及整流二极管D 3’与整流二极管D 4’的连接点,其中变压器T’可以是中间抽头变压器,具有两个副边线圈,两个副边线圈并联连接,变压器T’也可以具有单个副边线圈。
在本实施例中,每一个功率单元70中第1个半桥谐振变换器的第三端X 3为功率单元70的第一端X 1,第1个半桥谐振变换器的第四端X 4连接第二个半桥谐振变换器的第三端X 3,依次类推,第M-1个半桥谐振变换器的第四端X 4连接第M个半桥谐振变换器的第三端X 3,第M个半桥谐振变换器的第四端X 4为功率单元70的第二端X 2。每一个功率单元70中所有的半桥谐振变换器器的第五端X 5连在一起,而第六端X 6连在一起。
在本实施例中,每一个功率单元对应的本地控制器可以输出2×M个本地控制信号,用以控制半桥谐振变换器701中功率半导体开关Q 11-Q M2的的导通和断开,即,功率半导体开关Q 11-Q M2均需要一个本地控制信号。
如图14所示,每一个功率单元70还包括M个驱动电路702,驱动电路702与M个半桥谐振变换器701一一对应,每一个驱动电路702接收对应的本地控制信号,并输出至少一驱动信号来分别驱动对应的功率半导体开关的导通和断开,具体而言,每一个驱动电路702接收对应的2个本地控制信号,并输出2个驱动信号来分别驱动对应的功率半导体开关的导通和断开,以第1个半桥谐振变换器701所对应的驱动电路702为例,该驱动电路输出2个驱动信号分别驱动功率半导体开关Q 11-Q 12的导通和断开。
在其它实施例中,每一个功率单元70还包括多个驱动电路,驱动电路的数量等于2×M,每一个驱动电路连接对应的一个功率半导体开关,并且接收一个对应的本地控制信号并输出一个驱动信号来驱动对应的功率半导体开关的导通和断开,以第1个半桥谐振变换器701所对应的2 个驱动电路为例,2个驱动电路分别连接功率半导体开关Q 11-Q 12并且每一个驱动电路输出一个驱动信号来驱动对应的功率半导体开关Q 11-Q 12的导通和断开。
图13和图14的模块化电源系统中的M个功率变换器701可以为直流/直流(DC/DC)变换器,但是不以此为限,还可以是其它拓扑结构的变换器。
图15是本发明另一个实施例的模块化电源系统的方框图。如图15中所示,本实施例的模块化电源系统中每一个功率单元70的M个功率变换器701的拓扑结构同时采用全桥变换器和半桥变换器的组合。每一个全桥变换器的功率转换器7011’包括4个功率半导体开关,每一个半桥变换器7012’包括2个功率半导体开关,其连接关系如图15中所示。在本实施例中,全桥变换器的具体连接关系如图8所述,半桥变换器的具体连接关系如图9所示,在此不再赘述。类似的,相邻两个功率变换器701的其中一个的第四端X 4与另一个的第三端X 3连接,其中M为大于1的自然数。这样,第1个功率变换器701的第三端X 3即为该功率单元70的第一端X 1,第1个功率变换器701的第四端X 4连接第2个功率变换器701的第三端X 3,依次类推,第M-1个功率变换器701的第四端X 4连接第M个功率变换器701的第三端X 3,第M个功率变换器701的第四端X 4为该功率单元70的第二端X 2
本实施例中,每一个功率单元70对应的本地控制器所输出的本地控制信号的数量等于功率单元70中功率半导体开关的数量,这些本地控制信号分别控制全桥变换器和半桥变换器701中的功率半导体开关的导通和断开,即,每一个功率半导体开关均需要一个本地控制信号。
如图15所示,每一个功率单元70还包括M个驱动电路702,驱动电路702与M个功率变换器7011’和7012’一一对应,每一个驱动电路702接收对应的本地控制信号,并输出至少一驱动信号来分别驱动对应的功率半导体开关的导通和断开,具体而言,功率变换器7011’对应的驱动电路702接收对应的4个本地控制信号,并输出4个驱动信号来分别驱动对应的功率半导体开关的导通和断开,功率变换器7012’对应的驱动电路 702接收对应的2个本地控制信号,并输出2个驱动信号来分别驱动对应的功率半导体开关的导通和断开。
在其它实施例中,每一个功率单元70还包括多个驱动电路,功率单元中驱动电路的数量等于其对应的功率单元中功率半导体开关的数量,每一个驱动电路连接对应的一个功率半导体开关,并且接收一个对应的本地控制信号以输出一个驱动信号来驱动对应的功率半导体开关的导通和断开,以功率变换器7011’所对应的4个驱动电路为例,4个驱动电路分别连接对应的功率半导体开关并且每一个驱动电路输出一个驱动信号来驱动对应的功率半导体开关的导通和断开,以及以功率变换器7012’所对应的2个驱动电路为例,2个驱动电路分别连接对应的功率半导体开关并且每一个驱动电路输出一个驱动信号来驱动对应的功率半导体开关的导通和断开。
尽管图15仅仅示出了本实施例的模块化电源系统中每一个功率单元70的M个功率变换器701的拓扑结构同时采用全桥变换器和半桥变换器的组合。然而本发明不限于此,如前所述,本发明的模块化电源系统中的每一个功率单元70中的M个功率变换器701的拓扑结构可以为全桥变换器、半桥变换器、中性点可控三电平变换器、二极管钳位三电平变换器、飞跨电容三电平变换器、全桥LLC谐振变换器和半桥LLC谐振变换器中的两种或两种以上的组合。
本发明的模块化电源系统中的每一个功率单元70中的M个功率变换器701中每一个功率变换器701可以被配置为包括:至少一个功率半导体开关,例如前述的功率半导体开关Q 11-Q 14、Q 11-Q 12、Q 11-Q 18、Q M1-Q M4、Q M1-Q M2或Q M1-Q M8,其中每一个前述的本地控制信号被配置为控制对应的功率半导体开关的导通和断开。
本发明模块化电源系统中的每一个驱动电路702与对应的本地控制器91可以直接电连接,或者通过磁隔离器件连接,或者通过光隔离器件连接。
图16是说明本发明本地控制器与驱动电路之间连接方式的示意图。如图16中所示,作为一个实施例,驱动电路72(702)与对应的本地控 制器91通过磁隔离器件T连接,传输本地控制信号。采用磁隔离器件具有高可靠性、高性能、低功耗等优点。
作为一个实施例,驱动电路72(702)与对应的本地控制器91也可以通过光隔离器件连接。采用光隔离器件具有信号单向传输、输入端与输出端完全实现了电气隔离、输出信号对输入端无影响、抗干扰能力强、工作稳定、无触点、使用寿命长、传输效率高等优点。
作为一个实施例,驱动电路72(702)与对应的本地控制器91直接电连接。
本发明的模块化电源系统中的各驱动电路72(702)可以为彼此相同或彼此不相同。
如图6-图15中所示,本实施例的模块化电源系统中的各驱动电路702为彼此相同。
图17是本发明另一个实施例的模块化电源系统的方框图。如图17中所示,本实施例的模块化电源系统中的一个功率单元中包括5个H桥电路的功率变换器701。其中4个功率变换器701的驱动电路721不同于中间的功率变换器701的驱动电路722。
图18是说明本发明驱动电路的驱动方式的示意图。如图18中所示,驱动电路722包括原边电路7221、副边电路7222以及磁隔离器件T 1,原边电路7221接收本地控制器91输出的本地控制信号,其中本地控制信号中只包含驱动成分,该本地控制信号是一个弱信号。原边电路7221将本地控制信号调制成为高低电平的窄脉冲信号,其中该高低电平的窄脉冲信号包括驱动逻辑脉冲,该窄脉冲信号经由磁隔离器件(例如,高频隔离变压器)T 1传输副边电路7222,副边电路7222将高低压窄脉冲信号还原成PWM信号并经过放大处理以输出驱动信号来驱动功率半导体开关Q的导通和断开。功率单元70还包括电源电路7223,用以给原边电路7221和副边电路7222提供电源。电源电路7223接收的电源可以来自于辅助源93,或者其他外部电源,电源电路7223将接收到的电源转换为给原边电路7221供电的电压V 1以及给副边7222供电的电压V 2,且电压V 1和V 2之间是相互隔离的。在其它实施例中,电源电路7223还包 括原边电源电路(未示出)、隔离变压器(未示出)以及副边电源电路(未示出),原边电源电路将接收到的电源转换为原边电源给原边电路7221提供直流电V 1,同时原边电源电路将接收到的电源转换为功率脉冲即电源脉冲通过隔离变压器传输给副边电源电路,再由副边电源电路将功率脉冲转换为副边电源给副边电路7222提供直流电V 2
为简化驱动电路722,节省成本,提高驱动电路72的可靠性,本发明中各功率变换器的驱动方式可采用“简易驱动”。
图19是说明本发明驱动电路的另一种驱动方式的示意图。如图19中所示,本实施例的模块化电源系统中每一个驱动电路721包括原边电路7211、副边电路7212和磁隔离器件(例如,隔离变压器)T 2。原边电路7211接收本地控制信号,其中本地控制信号包括驱动成分和功率成分,该本地控制信号是一个强信号,原边电路7211将本地控制信号调制成为正负窄脉冲信号Y MN,经由磁隔离器件T 2传输给副边电路7212,副边电路7212将窄脉冲信号Y MN解调成驱动信号以驱动功率半导体开关Q的导通和断开,其中该正负窄脉冲信号Y MN包括驱动逻辑脉冲以及功率脉冲,功率半导体开关Q例如包括栅极G、集电极C和发射极E,驱动信号被输出至功率半导体开关的栅极G。图19所述的驱动方式为“简易驱动”,这种“简易驱动”省去了大量的电源电路,使得驱动电路721的器件减少了很多,整个驱动电路721的结构得到简化,功耗得以减小,可靠性得到了提高。
图20是本发明一个实施例的驱动电路的电路图。图20基于图19并且为图19中驱动电路的副边电路的具体化。图21是本发明一个实施例的驱动电路的时序图。如图20中所示,本发明的驱动电路主要包括磁隔离器件T 2和一个双向稳压管W,其它电阻R 11、R 12、R 13、R、R 21、R 22、R 23、栅极电容C GE、二极管D 11、D 21、稳压管W 1、W 2和开关管M 1和M 2为辅助元件,其连接关系如图20中所示。
结合图20和图21,本地控制器91发出的本地控制信号PWM经原边电路调制后形成正负脉冲信号Y MN,如图21中Y NM所示。该正负脉冲信号Y NM经磁隔离器件(例如,隔离变压器)T 2传输至副边电路,触发 开关管M 1和M 2动作后向IGBT栅极电容C GE充放电,形成驱动功率半导体开关所需的驱动信号V GE,V GE的波形图基本与本地控制信号PWM相近,如图21所示。为了减小磁隔离器件即隔离变压器T 2的磁芯,且使磁芯不饱和,正负脉冲信号Y NM的刷新脉冲的宽度可能只有几μs。以功率半导体开关Q的栅极-发射级电压V GE为正进行说明,几μs的正脉冲一次给栅极电容C GE充的电,就可以使得驱动信号V GE达到功率半导体开关的栅极开通电压,例如+15V。然而要维持功率半导体开通导通,其需要的正脉冲可能有几十μs到上百μs甚至更长,因此,如果没有刷新脉冲,栅极电容C GE会缓慢放电导致驱动信号V GE逐渐降低,达不到功率半导体开关正常导通所需的栅极开通电压,因此需要刷新脉冲每隔一段时间对栅极电容C GE充电以维持驱动信号V GE在正常的栅极开通电压。至于刷新脉冲的时间间隔,主要由栅极电容C GE的放电时间常数确定,原则是在下一个刷新脉冲来之前,V GE不至于下降太多,例如下一个刷新脉冲到来之前驱动信号V GE不能低于14V。
图20的驱动电路接收的本地控制信号包括驱动逻辑脉冲以及功率脉冲,因而该驱动电路就不需要外接电源,也不需要对本地控制信号进行放大处理,相对于图18的驱动电路省去了大量的电源电路,使得驱动电路721的器件减少了很多,整个驱动电路721的结构得到简化,功耗得以减小,可靠性得到了提高。
在本发明的上述实施例中,如图6-图15所示,每一个驱动电路702可以采用图19所描述的驱动电路,磁隔离器件T 2传输的本地控制信号中包含驱动逻辑脉冲以及功率脉冲。
在本发明的上述实施例中,如图6-图15所示,每一个驱动电路702可以采用图18所描述的驱动电路,磁隔离器件T 1传输本地控制信号中包含的驱动逻辑脉冲。
在本发明的上述实施例中,如图6-图15所示,一部分驱动电路702可以采用图19所描述的驱动电路,磁隔离器件传输本地控制信号中包含的驱动逻辑脉冲以及功率脉冲;以及另一部分驱动电路702采用图18所描述的驱动电路,磁隔离器件传输本地控制信号中包含的驱动逻辑脉冲。
在本发明的上述实施例中,如图17所示,驱动电路721可以采用图19所描述的驱动电路,磁隔离器件传输本地控制信号中包含的驱动逻辑脉冲以及功率脉冲;以及驱动电路722采用图18所描述的驱动电路,磁隔离器件传输本地控制信号中包含的驱动逻辑脉冲。
在本发明的上述实施例中,如图17所示,驱动电路722可以采用图19所描述的驱动电路,磁隔离器件传输本地控制信号中包含的驱动逻辑脉冲以及功率脉冲;以及驱动电路721采用图18所描述的驱动电路,磁隔离器件传输本地控制信号中包含的驱动逻辑脉冲。
图22是本发明另一个实施例的模块化电源系统的方框图。如图22中所示,本实施例的模块化电源系统中的每一个功率变换器701每一个功率变换器的第三端X 3和第四端X 4之间并联有开关K 12,例如,K 12是常开开关,当该功率变换器正常工作时,开关K 12断开,当该功率变换器401发生故障时,开关K 12导通。
作为一个实施例,开关K 12是半控型器件,例如晶闸管,或者全控型器件,例如IGBT,或者机械开关。
如图22中所示,当任一功率变换器701发生故障时,故障检测电路(图22中未示出)检测到功率变换器701的各类故障,并根据故障类型输出对应的故障信号至本地控制器91,本地控制器91会接收到反映对应的功率变换器701的故障类型的故障信号,并输出对应的保护信号以控制对应的功率变换器701的开关K 12导通,并且本地控制器91停止输出控制对应的功率变换器701运行的本地控制信号。
如图22中所示,各功率变换器701中的开关K 12根据该功率变换器701自己反馈的故障信号来控制。在功率单元70的运行过程中,当本地控制器91接收到任一个功率变换器701反馈的故障信号后,根据该故障信号控制对应的功率变换器中的开关K 12闭合,同时停止输出控制该故障的功率变换器701运行的本地控制信号,即该故障的功率变换器701被旁路掉。以一个功率变换器发生故障为例说明,如果第1个功率变换器701发生故障,本地控制器91会接收到反映第1个功率变换器的故障类型的故障信号,并输出保护信号S F1以控制第1个功率变换器701的开 关K 12导通,并且本地控制器91停止输出控制第1个功率变换器701运行的本地控制信号。以2个功率变换器发生故障为例说明,如果第1个功率变换器701和第M个功率变换器均发生故障,本地控制器91会接收到反映第1个功率变换器和第M个功率变换器的故障类型的故障信号,并输出保护信号S F1和S FM以分别控制第1个功率变换器701和第M个功率变换器701的开关K 12导通,并且本地控制器91停止输出控制第1个功率变换器701和第M个功率变换器701运行的本地控制信号。
图23是本发明另一个实施例的模块化电源系统的方框图。如图23中所示,本实施例的模块化电源系统中的保护信号的数量为M,与前述M个功率变换器701一一对应,本实施例的模块化电源系统的本地控制信号根据每一个保护信号S F1至S FM以分别控制对应的功率变换器701的开关K 12导通,并且本地控制器91停止输出控制功率单元70中每一个功率变换器701运行的本地控制信号。
如图23中所示,在功率单元70的运行过程中,当本地控制器91接收到任一个功率变换器701反馈的故障信号后,本地控制器91根据故障信号输出保护信号S F1,...,S FM以控制所有功率变换器701中的K 12闭合,同时停止输出本地控制信号,即该功率单元70整体被旁路。
图24是本发明另一个实施例的模块化电源系统的方框图。如图24中所示,本实施例的模块化电源系统中的保护信号S F的数量为1,本地控制器91输出保护信号S F以控制所有M个功率变换器的开关K 12导通,并且本地控制器91停止输出本地控制信号以控制功率单元70中每一个功率变换器701的运行。
如图24中所示,功率单元70内所有功率变换器的开关K 12由本地控制器91输出的保护信号S F控制。在功率单元70的运行过程中,当本地控制器91接收到任一个功率变换器701反馈的故障信号后,本地控制器91根据故障信号输出一个保护信号S F以控制所有功率变换器701中的开关K 12闭合,同时停止输出本地控制信号,即该功率单元70整体被旁路。
图25是本发明另一个实施例的模块化电源系统的方框图。如图25 中所示,本实施例的模块化电源系统中的功率单元70的第一端X 1和第二端X 2之间并联有第三开关K 3,当功率单元70正常工作时,第三开关K 3断开,当功率单元70发生故障时,第三开关K 3导通。
如图25中所示,当任一所述功率变换器701发生故障时,本地控制器91会接收到反映对应的功率变换器701的故障类型的故障信号,并输出一保护信号S F’以控制开关K 3导通,并且本地控制器91停止输出控制功率单元70中每一个功率变换器701运行的本地控制信号。
如图25中所示,在功率单元70的输出端并联常开开关K 3,K 3受控于本地控制器91。在功率单元70运行过程中,当本地控制器91接收到任一个功率变换器701反馈的故障信号后,本地控制器91根据故障信号输出保护信号S F’以控制开关K 3闭合,同时停止输出该功率单元70内所有本地控制信号,即该功率单元70整体被旁路。
图26是本发明另一个实施例的模块化电源系统的方框图。如图26中所示,本实施例的模块化电源系统中的功率单元70由5个级联的H桥电路的功率变换器组成。在功率单元70的输出端并联常开开关K 3,K 3受控于本地控制器91。在功率单元70运行过程中,任一H桥电路的功率变换器发生故障并向本地控制器91反馈故障信号后,本地控制器91根据故障信号输出保护信号S F’以控制开关K 3闭合,同时停止输出控制该功率单元70运行的所有本地控制信号,即该功率单元70整体被旁路。
本发明通过将多个功率变换器组成一个功率单元,利用一套本地控制器、光纤控制多个功率变换器的方法,可大大减少本地控制器、光纤的数量,简化结构设计,降低成本,提高可靠性。
本发明适用于所有AC/DC、DC/AC、DC/DC功率变换器连接的拓扑结构,应用广泛。
以上具体地示出和描述了本发明的示例性实施例。应可理解的是,本发明不限于这里描述的详细结构、设置方式或实现方法;相反,本发明意图涵盖包含在所附权利要求的精神和范围内的各种修改和等效设置。最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领 域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (27)

  1. 一种模块化电源系统,被配置为包括:
    一个主控制器,被配置为输出主控制信号;
    N个本地控制器,其中每一个所述本地控制器被配置为接收所述主控制信号,以输出至少一个本地控制信号;以及
    N个功率单元,与所述N个本地控制器一一对应,其中每一个所述功率单元包括第一端和第二端,每一个所述功率单元的所述第二端连接到相邻的一个所述功率单元的所述第一端,每一个所述功率单元被配置为包括M个功率变换器,其中每一个所述功率变换器包括第三端和第四端,每一个所述功率变换器的所述第四端连接到相邻的一个所述功率变换器的所述第三端,且第一个所述功率变换器的所述第三端为所述功率单元的所述第一端,第M个所述功率变换器的所述第四端为所述功率单元的所述第二端,每一个所述功率变换器被配置为根据对应的所述本地控制器输出的所述本地控制信号运行,
    其中N和M均为大于1的自然数。
  2. 如权利要求1所述的模块化电源系统,被配置为还包括:
    N个辅助电源,与所述N个本地控制器一一对应,其中每一个所述辅助电源被配置为给对应的所述本地控制器提供电源。
  3. 如权利要求1所述的模块化电源系统,其中所述功率变换器为AC/DC变换器、DC/AC变换器和DC/DC变换器中的任何一种。
  4. 如权利要求1所述的模块化电源系统,其中所述M个功率变换器的直流母线电压为全部相同,部分相同,或全部不相同。
  5. 如权利要求1所述的模块化电源系统,其中所述M个功率变换器的拓扑结构为全部相同,或部分相同。
  6. 如权利要求5所述的模块化电源系统,其中每一个所述功率单元中的所述M个功率变换器的拓扑结构全部为全桥变换器、半桥变换器、中性点可控三电平变换器、二极管钳位三电平变换器、飞跨电容三电平变换器、全桥谐振变换器和半桥谐振变换器中的一种。
  7. 如权利要求5所述的模块化电源系统,其中每一个所述功率单元中的所述M个功率变换器的拓扑结构为全桥变换器、半桥变换器、中性点可控三电平变换器、二极管钳位三电平变换器、飞跨电容三电平变换器、全桥谐振变换器和半桥谐振变换器中的两种或两种以上的组合。
  8. 如权利要求6所述的模块化电源系统,其中每一个所述功率变换器被配置为包括:
    至少一个功率半导体开关,其中每一个所述本地控制信号被配置为控制对应的所述功率半导体开关的导通和断开。
  9. 如权利要求7所述的模块化电源系统,其中每一个所述功率变换器被配置为包括:
    至少一个功率半导体开关,其中每一个所述本地控制信号被配置为控制对应的所述功率半导体开关的导通和断开。
  10. 如权利要求8或9所述的模块化电源系统,其中每一个所述功率单元还包括:
    M个驱动电路,与所述M个功率变换器一一对应,其中每一个所述驱动电路被配置为连接于对应的所述功率变换器的所述功率半导体开关,接收对应的所述本地控制器输出的本地控制信号,以输出至少一个驱动信号来驱动对应的所述M个功率变换器中的所述功率半导体开关的导通和断开。
  11. 如权利要求8或9所述的模块化电源系统,其中每一个所述功率单元还包括:
    多个驱动电路,其中所述多个驱动电路的数量等于所述功率单元中所述至少一个功率半导体开关的数量,每一个所述驱动电路被配置为连接于对应的所述功率变换器的所述功率半导体开关,接收对应的所述本地控制器输出的本地控制信号,以输出驱动信号来驱动对应的所述功率半导体开关的导通和断开。
  12. 如权利要求10所述的模块化电源系统,其中每一个所述驱动电路与对应的所述本地控制器直接电连接,或者通过磁隔离器件连接,或者通过光隔离器件连接。
  13. 如权利要求1所述的模块化电源系统,其中每一个所述本地控制器与所述主控制器通过磁隔离器件连接,或者通过光隔离器件连接。
  14. 如权利要求11所述的模块化电源系统,其中每一个所述驱动电路与对应的所述本地控制器直接电连接,或者通过磁隔离器件连接,或者通过光隔离器件连接。
  15. 如权利要求10所述的模块化电源系统,其中各所述驱动电路为彼此相同或彼此不相同。
  16. 如权利要求11所述的模块化电源系统,其中各所述驱动电路为彼此相同或彼此不相同。
  17. 如权利要求10所述的模块化电源系统,其中每一个所述驱动电路包括磁隔离器件,所述磁隔离器件传输所述本地控制信号中包含的驱动逻辑脉冲;或者每一个所述驱动电路包括磁隔离器件,所述磁隔离器件传输所述本地控制信号中包含的驱动逻辑脉冲以及功率脉冲;或者每一个所述驱动电路包括磁隔离器件,一部分所述驱动电路的所述磁隔离器件传输所述本地控制信号中包含的驱动逻辑脉冲,另一部分所述驱动电路的所述磁隔离器件传输所述本地控制信号中包含的所述驱动逻辑脉冲以及功率脉冲。
  18. 如权利要求11所述的模块化电源系统,其中每一个所述驱动电路包括磁隔离器件,所述磁隔离器件传输所述本地控制信号中包含的驱动逻辑脉冲;或者每一个所述驱动电路包括磁隔离器件,所述磁隔离器件传输所述本地控制信号中包含的驱动逻辑脉冲以及功率脉冲;或者每一个所述驱动电路包括磁隔离器件,一部分所述驱动电路的所述磁隔离器件传输所述本地控制信号中包含的驱动逻辑脉冲,另一部分所述驱动电路的所述磁隔离器件传输所述本地控制信号中包含的所述驱动逻辑脉冲以及功率脉冲。
  19. 如权利要求5所述的模块化电源系统,其中所述至少一个本地控制信号的数量与所述功率变换器中的所述至少一个功率半导体开关的数量相同,且每一个所述本地控制信号被配置为控制对应的所述功率半导体开关导通和断开。
  20. 如权利要求1所述的模块化电源系统,其中每一个所述功率变换器的所述第三端和所述第四端之间并联有开关,当所述功率变换器正常工作时,所述开关断开,当所述功率变换器发生故障时,所述开关导通。
  21. 如权利要求20所述的模块化电源系统,其中所述开关是半控型器件、全控型器件或机械开关。
  22. 如权利要求20所述的模块化电源系统,当任一所述功率变换器发生故障时,所述本地控制器会接收到反映对应的所述功率变换器故障类型的故障信号,并输出至少一个保护信号。
  23. 如权利要求22所述的模块化电源系统,其中所述本地控制器输出所述保护信号以控制对应的所述功率变换器的开关导通,并且所述本地控制器停止输出控制对应的所述功率变换器运行的所述本地控制信号。
  24. 如权利要求22所述的模块化电源系统,其中所述至少一个保护信号的数量为M,所述本地控制器输出每一个所述保护信号以控制对应的所述功率变换器的所述开关导通,并且所述本地控制器停止输出控制所述M个功率变换器运行的所述至少一个本地控制信号。
  25. 如权利要求22所述的模块化电源系统,其中所述至少一个保护信号的数量为1,所述本地控制器输出所述保护信号以控制所述M个功率变换器的所述开关导通,并且所述本地控制器停止输出控制所述M个功率变换器运行的所述至少一个本地控制信号。
  26. 如权利要求1所述的模块化电源系统,其中所述功率单元的所述第一端和所述第二端之间并联有开关,当所述功率单元正常工作时,所述开关断开,当所述功率单元发生故障时,所述开关导通。
  27. 如权利要求26所述的模块化电源系统,其中,当任一所述功率变换器发生故障时,所述本地控制器会接收到反映对应的所述功率变换器故障类型的故障信号,并输出一保护信号以控制所述开关导通,并且所述本地控制器停止输出控制所述M个功率变换器运行的所述至少一个本地控制信号。
PCT/CN2017/116354 2016-12-16 2017-12-15 模块化电源系统 WO2018108143A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/464,733 US11101740B2 (en) 2016-12-16 2017-12-15 Modular power supply system

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201611170857.3 2016-12-16
CN201611170857 2016-12-16
CN201611191912.7A CN108206643A (zh) 2016-12-16 2016-12-21 功率单元及使用该功率单元的电力电子变换装置
CN201611191912.7 2016-12-21
CN201710106946 2017-02-27
CN201710106946.X 2017-02-27
CN201711322795.8A CN108566071B (zh) 2016-12-16 2017-12-12 模块化电源系统
CN201711322795.8 2017-12-12

Publications (1)

Publication Number Publication Date
WO2018108143A1 true WO2018108143A1 (zh) 2018-06-21

Family

ID=62558010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116354 WO2018108143A1 (zh) 2016-12-16 2017-12-15 模块化电源系统

Country Status (1)

Country Link
WO (1) WO2018108143A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023093514A1 (zh) * 2021-11-23 2023-06-01 成都科莱弗生命科技有限公司 一种脉冲电场技术的实现电路及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202616988U (zh) * 2012-05-03 2012-12-19 Abb研究有限公司 具有旁路功能的半桥功率转换器单元
EP2595302A1 (en) * 2011-11-21 2013-05-22 ABB Technology AG Method and device for servicing individual power module during operation of a modular multicell converter
CN204967648U (zh) * 2015-09-18 2016-01-13 山东建筑大学 全桥与半桥子模块混联的模块化多电平换流器
CN105356770A (zh) * 2015-11-16 2016-02-24 特变电工新疆新能源股份有限公司 一种基于h桥的mmc子模块拓扑结构
CN206332626U (zh) * 2016-12-16 2017-07-14 台达电子企业管理(上海)有限公司 功率单元及使用该功率单元的电力电子变换装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2595302A1 (en) * 2011-11-21 2013-05-22 ABB Technology AG Method and device for servicing individual power module during operation of a modular multicell converter
CN202616988U (zh) * 2012-05-03 2012-12-19 Abb研究有限公司 具有旁路功能的半桥功率转换器单元
CN204967648U (zh) * 2015-09-18 2016-01-13 山东建筑大学 全桥与半桥子模块混联的模块化多电平换流器
CN105356770A (zh) * 2015-11-16 2016-02-24 特变电工新疆新能源股份有限公司 一种基于h桥的mmc子模块拓扑结构
CN206332626U (zh) * 2016-12-16 2017-07-14 台达电子企业管理(上海)有限公司 功率单元及使用该功率单元的电力电子变换装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023093514A1 (zh) * 2021-11-23 2023-06-01 成都科莱弗生命科技有限公司 一种脉冲电场技术的实现电路及方法

Similar Documents

Publication Publication Date Title
TWI661634B (zh) 模組化電源系統
CN109861546B (zh) 一种具有真双极性直流输出能力的电力电子变压器及应用控制
US10873254B2 (en) Electrical circuit for zero-voltage soft-switching in DC-DC converter under all load conditions
JP6537749B1 (ja) 自己給電回路および電力変換装置
US10374504B2 (en) Power unit and power electronic converting device
WO2018108142A1 (zh) 模块化电源系统
WO2018108140A1 (zh) 模块化电源系统
US8605470B2 (en) Power converter performing soft switching
WO2018108141A1 (zh) 模块化电源系统
CN112653317B (zh) 一种mmc阀子模块的旁路开关驱动装置
WO2018108143A1 (zh) 模块化电源系统
US9621026B2 (en) Power conversion apparatus
CN111146932A (zh) 一种dc-dc电能传输系统
CN113572362B (zh) 一种用于输入串联结构的均压电容调节器及其控制方法
US9281740B2 (en) Power conversion apparatus
CN115378108A (zh) 一种柔性直流换流阀子模块供电装置和换流阀
KR20240026550A (ko) 전력용 스위칭 소자들의 직렬 연결을 위한 회생형 클램프 회로들

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17880862

Country of ref document: EP

Kind code of ref document: A1