WO2018108141A1 - 模块化电源系统 - Google Patents

模块化电源系统 Download PDF

Info

Publication number
WO2018108141A1
WO2018108141A1 PCT/CN2017/116352 CN2017116352W WO2018108141A1 WO 2018108141 A1 WO2018108141 A1 WO 2018108141A1 CN 2017116352 W CN2017116352 W CN 2017116352W WO 2018108141 A1 WO2018108141 A1 WO 2018108141A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
converter
semiconductor switch
voltage
high voltage
Prior art date
Application number
PCT/CN2017/116352
Other languages
English (en)
French (fr)
Inventor
应建平
王明
黄宵驳
刘军
胡志明
Original Assignee
台达电子企业管理(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201611191912.7A external-priority patent/CN108206643A/zh
Priority claimed from CN201711322796.2A external-priority patent/CN108566072A/zh
Application filed by 台达电子企业管理(上海)有限公司 filed Critical 台达电子企业管理(上海)有限公司
Priority to US16/465,741 priority Critical patent/US11183947B2/en
Priority to AU2017376698A priority patent/AU2017376698B2/en
Priority to EP17879984.7A priority patent/EP3557751A4/en
Priority to BR112019012080-7A priority patent/BR112019012080B1/pt
Publication of WO2018108141A1 publication Critical patent/WO2018108141A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters

Definitions

  • the present invention relates to the field of power electronics, and in particular to a modular power system.
  • the traditional power unit cascaded topology requires a set of optical fibers, auxiliary power supplies, and local controllers for each power unit, ie, the power converter.
  • This power unit cascaded topology increases with the increase of the voltage level, and the number of power units that need to be cascaded increases, resulting in an increase in the number of optical fibers, auxiliary power supplies, and local controllers.
  • the design is complex, costly, and reduces its reliability.
  • FIG. 1 is a schematic structural view of a three-phase SVG system in the prior art.
  • 2 is a schematic diagram of a more specific three-phase SVG system in the prior art.
  • the SVG system of Figures 1 and 2 includes three phase circuits in which the power cells in each phase are connected in cascade.
  • each phase circuit of the SVG system is formed by cascading a plurality of power units 1.
  • cascade is a common knowledge in the art, i.e., each power cell comprises a first end and a second end T 1 T 2, wherein two adjacent power cell a second terminal T 2 and the other The first end T 1 of one is connected.
  • Each phase circuit of the first power units through a first end of the filter L T 1 are respectively connected to three-phase network U A, U B and U C on the three-phase line, the last one power unit for each phase circuit The second ends are connected to each other.
  • each phase circuit of the SVG system is formed by cascading eight power units P 1 to P 8 .
  • Each power unit includes a first end and a second end as shown in Figure 1, wherein a second end of one of the adjacent two power units is coupled to the first end of the other.
  • the second end of the power unit P 1 and P power unit 2 is connected to a first end
  • a second end of the power unit P and the power unit P is connected to a first end of the 2 3, and so on, a second power unit P 7
  • the terminal is connected to the first end of the power unit P 8 .
  • the first end of the three power units P 1 in the three-phase circuit is connected to the U A , U B and U C phases of the three-phase power grid G through a filter circuit (composed of the inductor L, the resistor R and the capacitor C), wherein the three phases
  • the U A , U B and U C of the grid G are connected to the load R load .
  • the second ends of the three power units P 8 in the three-phase circuit are connected to each other.
  • Four power switching devices 2 are included in each power unit.
  • Each power switching device 2 consists of a power semiconductor switch S and an anti-parallel body diode or external diode D.
  • the collector of the power semiconductor switch S is connected to the cathode of the diode D, and the emitter of the power semiconductor switch S is connected to the anode of the diode D. Since the power semiconductor switch S and an anti-parallel body diode or external diode D are generally used as a whole, for the sake of brevity, the anti-parallel body diode or external diode D will not be separately mentioned in the following description. .
  • the power unit 1 shown in FIG. 1 may be a full bridge (H bridge) circuit, or may be other circuit topologies such as a half bridge circuit, a rectification-inverter circuit, and the like.
  • 3 is a schematic diagram of an H-bridge circuit (topology) in the prior art.
  • the H-bridge circuit includes power semiconductor switches S 1 to S 4 and a DC bus capacitor C B .
  • the first end of the power semiconductor switch S 1 is connected to the positive terminal of the DC bus capacitor C B and the first terminal of the power semiconductor switch S 3 .
  • a second end of the power semiconductor switch S 1 is coupled to the first end of the power semiconductor switch S 4 .
  • the second end of the power semiconductor switch S 4 is connected to the negative terminal of the DC bus capacitor C B and the second terminal of the power semiconductor switch S 2 .
  • a second terminal of the power semiconductor switch S. 3 is connected to a first terminal of the power semiconductor switch S 2.
  • the second end of the power semiconductor switch S 1 serves as a first output of the H-bridge circuit, that is, the first end T 1 of the power unit 1
  • the second end of the power semiconductor switch S 3 serves as a second output of the H-bridge circuit. That is, the second end T 2 of the power unit 1.
  • FIG. 4 is a schematic diagram of a single phase SVG in the prior art.
  • the single-phase SVG includes a charging portion 3, a power portion 4, and a control portion 5.
  • the single phase SVG also includes a plurality of power units 40, each of which includes a first end and a second end as shown in FIG. 1, a first end of one of the adjacent two power units 40 and another The second end is connected.
  • Figure 4 is a conventional cascaded solution for a 25kV single phase SVG.
  • the SVG is cascaded by a plurality of power units to form a phase that is connected to the grid via filters and contactors.
  • Each power unit 40 of the SVG typically employs an H-bridge circuit.
  • Each power unit 40 of the SVG system further includes a DC bus capacitor C B whose connection relationship is as shown in FIG. 4 , wherein the charging portion 3 is used to precharge the DC bus capacitor C B , and the control portion 5 is used to control the power. Part 4 runs.
  • each power unit 40 as a power converter, such as an H-bridge circuit, needs to be separately provided with a set of locals in addition to a main controller 50.
  • the controller 51, the driving circuit 52, the auxiliary power source 53 and the optical fiber 54 are connected in a relationship as shown in FIG. 4.
  • the main controller 50 outputs a main control signal to the local main controller 51, and the local main controller 51 generates a main control signal according to the main control signal.
  • the local control signal of the corresponding power unit is sent to the driving circuit 52.
  • the driving circuit 52 outputs a driving signal according to the local control signal to drive the corresponding power unit to operate.
  • a 25kV single-phase SVG can usually be implemented in the following two schemes.
  • IGBT Insulated Gate Bipolar Transistor
  • the second scheme the power switching device in the H-bridge circuit uses a high-voltage IGBT, such as a 3300V IGBT or even a 6500V IGBT, to increase the voltage level of a single power unit 40.
  • a high-voltage IGBT such as a 3300V IGBT or even a 6500V IGBT
  • a second scheme can generally be employed.
  • the 3300V IGBT if the 3300V IGBT is selected, the voltage level of each power unit 40 is doubled compared to the 1700V IGBT scheme, and the number of cascades can be reduced from 55 to 28, local controller 51, fiber 54 and auxiliary power supply.
  • the number and cost of 53 can also be reduced by half.
  • the cost of 3300V IGBT is still high. Under the same current specification, the cost is far more than twice the cost of 1700V IGBT. Therefore, the cost of the second option will far exceed the first option. If a 6500V IGBT is chosen, the cost pressure is even higher.
  • the current cascading scheme using low voltage IGBT power units or the cascading scheme using high voltage IGBT power units has its significant disadvantages.
  • FIG. 5 is a schematic illustration of an HVDC-Light system in the prior art.
  • the HVDC-Light includes a three-phase circuit, and each phase circuit includes an upper half arm and a lower half arm, and the upper half arm and the lower half arm of each phase circuit include a plurality of stages.
  • each power unit 40 also includes a first end and a second end as shown in FIG. 1, a first end of one of the adjacent two power units 40 and a second of the other The terminals are connected, the inductance L of each upper arm is connected to the inductance L of the corresponding lower arm, and the connection points between the two inductors L are respectively connected to the power grid, and the connection relationship is as shown in FIG.
  • Each of the HVDC-Light power units 40 employs a half bridge converter. Each power unit 40 of the HVDC-Light further includes a DC bus capacitor. Each power unit 40 of the HVDC-Light also needs to be connected to a driving circuit 52. The power unit 40 operates according to a driving signal output by the driving circuit 52. In addition to the main controller 50, each power unit 40 also needs to be provided with a local controller 51, an optical fiber 54 and an auxiliary power supply 53, the connection relationship of which is shown in FIG.
  • the power supply mode of the local controller and auxiliary power supply needs further consideration and improvement.
  • the driving method of the power semiconductor switch needs further consideration and improvement.
  • a modular power supply system comprising: a main controller configured to output a main control signal; N local controllers, wherein each of the local controllers is configured to Receiving the main control signal to output at least one local control signal; N auxiliary power sources in one-to-one correspondence with the N local controllers, wherein each of the auxiliary power sources is configured to be corresponding to the local controller Providing a power source; and N power units in one-to-one correspondence with the N local controllers, wherein each of the power units includes a first end and a second end, and the second end of each of the power units is connected And to the first end of an adjacent one of the power units, each of the power units is configured to include M power converters, wherein each of the power converters includes a third end and a fourth end, each The fourth end of one of the power converters is coupled to the third end of an adjacent one of the power converters, and the third end of the first one of the power converters is the power meter The first end of the
  • auxiliary power source draws power from an external power source.
  • each of the auxiliary power sources is configured to draw power from a corresponding one of the power units.
  • each of the auxiliary power sources is configured to draw power from a DC bus capacitor of any one or more of the power units of the corresponding power unit to obtain The DC bus voltage on the DC bus capacitor.
  • a portion of the N auxiliary power sources are powered from an external power source, and another portion of the N auxiliary power sources are powered from a corresponding one of the power units.
  • At least one of the M power converters in the power unit is a high voltage power converter
  • at least one is a low voltage power converter
  • the high voltage power converter operates The voltage is higher than the operating voltage of the low voltage power converter
  • each of the high voltage power converters comprising at least one high voltage power semiconductor switch
  • each of the low voltage power converters comprising at least one low voltage power semiconductor switch
  • the high voltage power semiconductor The operating voltage of the switch is higher than the operating voltage of the low voltage power semiconductor switch.
  • each of the power units further includes at least one high voltage driving circuit and at least one low voltage driving circuit, the number of the at least one high voltage driving circuit and the at least one high voltage power converter
  • each of the high voltage driving circuits is connected to the corresponding high voltage power semiconductor switch, and each of the high voltage driving circuits is configured to receive a corresponding local control signal to output at least one driving signal to respectively drive corresponding The high voltage power semiconductor switch
  • the at least one low voltage driving circuit is in one-to-one correspondence with the at least one low voltage power converter, and each of the low voltage driving circuits is connected to a corresponding low voltage power semiconductor switch, each of the low voltage driving The circuit is configured to receive the corresponding local control signal to output at least one drive signal to drive the respective low voltage power semiconductor switch, respectively.
  • each of the power units further includes at least one high voltage driving circuit and at least one low voltage driving circuit, the number of the at least one high voltage driving circuit being equal to the at least one high voltage power semiconductor switch
  • the number of each of the high voltage drive circuits is coupled to a corresponding one of the high voltage power semiconductor switches, each of the high voltage drive circuits being configured to receive a corresponding local control signal to output a drive signal to drive the corresponding high voltage a power semiconductor switch;
  • the number of the at least one low voltage driving circuit being equal to the number of the at least one low voltage power semiconductor switch, each of the low voltage driving circuits being connected to a corresponding low voltage power semiconductor switch, each of the low voltage driving circuits being configured
  • the corresponding low voltage power semiconductor switch is driven to receive the corresponding local control signal to output a driving signal.
  • each of the corresponding local controllers includes: a high voltage control circuit configured to output the local control signal to a corresponding one of the high voltage driving circuits; and a low voltage control circuit, It is configured to output the local control signal to the corresponding low voltage drive circuit.
  • each of the auxiliary power sources is configured to draw power from a DC bus capacitor of one or more of the corresponding ones of the power units to obtain the DC bus voltage on the DC bus capacitor.
  • each of the auxiliary power sources is a DC/DC converter
  • the DC/DC converter receives the DC bus voltage on the DC bus capacitor and The DC bus voltage is converted to a voltage that powers the corresponding local controller.
  • each of the auxiliary power sources is a DC/DC converter
  • the DC/DC converter receives the DC bus voltage on the DC bus capacitor and Converting a DC bus voltage to a corresponding local controller, or the DC/DC converter receiving the DC bus voltage on the DC bus capacitor, and converting the DC bus voltage to a corresponding one a local controller, the high voltage drive circuit, and a voltage supplied by the low voltage drive circuit.
  • the power converter is any one of an AC/DC converter, a DC/AC converter, and a DC/DC converter.
  • DC bus voltages of the M power converters are all the same, partially identical, or all different.
  • the topologies of the M power converters are all identical, or partially identical.
  • the topology of the M power converters in each of the power units is all a full bridge converter, a half bridge converter, and a neutral point controllable three level One of a converter, a diode clamped three-level converter, a flying capacitor three-level converter, a full-bridge resonant converter, and a half-bridge resonant converter.
  • the topology of the M power converters in each of the power units is a full bridge converter, a half bridge converter, and a neutral point controllable three-level conversion Two or more combinations of a diode, a diode clamped three-level converter, a flying capacitor three-level converter, a full-bridge resonant converter, and a half-bridge resonant converter.
  • the invention can reduce the number of local controllers, optical fibers and auxiliary power sources by simplifying the structure by forming a plurality of power converters into one power unit and using a local controller, an optical fiber, and an auxiliary power source to control multiple power converters. Design, reduce costs and improve reliability.
  • the invention solves the problem that the modular power supply system has a large amount of control, requires many hardware resources, has high cost, and has a large number of power units, resulting in low power density; and at least the input end of the DC converter It is connected to both ends of the low-voltage bus capacitor. Therefore, the withstand voltage of the primary and secondary sides of the transformer of the DC-to-DC converter only needs to reach the voltage of the low-voltage DC bus, thereby avoiding the problem of achieving technical difficulties.
  • the invention is applicable to the topology of all AC/DC, DC/AC, DC/DC power converter connections and is widely used.
  • FIG. 1 is a schematic structural view of a three-phase SVG system in the prior art
  • FIG. 2 is a schematic diagram of a more specific three-phase SVG system in the prior art
  • FIG. 3 is a schematic diagram of an H-bridge circuit (topology) in the prior art
  • FIG. 4 is a schematic diagram of a single phase SVG in the prior art
  • FIG. 5 is a schematic diagram of an HVDC-Light system in the prior art
  • FIG. 6 is a block diagram of a modular power supply system in accordance with one embodiment of the present invention.
  • FIG. 7 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • FIG. 8 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • FIG. 9 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • FIG. 10 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • FIG. 11 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • Figure 12 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • Figure 13 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • Figure 14 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • FIG. 15 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • Figure 16 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • FIG. 17 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • Figure 18 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • Figure 19 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • Figure 20 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • 21 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • Figure 22 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • FIG. 23 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • Figure 24 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • FIG. 6 is a block diagram of a modular power system in accordance with one embodiment of the present invention.
  • the power electronic converter of the present invention is configured to include: a main controller 90, N local controllers 91, N auxiliary power sources 93, and N power units 70, where N is greater than one. Natural number.
  • the main controller 90 is configured to output a main control signal.
  • the primary control signal is, for example, one or more parameters that are set to control the overall operational state of the modular power system.
  • Each local controller 91 is configured to receive the aforementioned primary control signal to output at least one local control signal.
  • the local control signal is, for example, one or more parameters that are set to control the overall operational state of the corresponding power unit 70, or a local control signal is used to control the operational state of a portion of the power converters in the corresponding power unit 70.
  • N auxiliary power sources 93 are in one-to-one correspondence with N local controllers 91, each of which is configured to provide power to a corresponding local controller 91.
  • each of the power unit 70 includes a first end and a second end X 1 X 2, each of the second end of the power unit 70 is connected to the adjacent X 2
  • the first end X 1 of one power unit 70, that is, the second end X 2 of one of the adjacent two power units 70 is coupled to the first end X 1 of the other.
  • Each power unit 70 is configured to include M power converters 701, each of which includes a third end X 3 and a fourth end X 4 , each of which is coupled to a fourth end X 4
  • M is a natural number greater than one.
  • the third end X 3 of the first power converter 701 is the first end X 1 of the power unit 70
  • the fourth end X 4 of the Mth power converter 701 is the second end of the power unit 70.
  • X 2 Each power converter 701 is configured to operate in accordance with a local control signal output by a corresponding local controller 91.
  • the aforementioned main control signal can be transmitted between the main controller 90 and each of the local controllers 91 via an optical isolation device, such as an optical fiber 94.
  • an optical isolation device such as an optical fiber 94.
  • the main controller 90 and each local controller 91 can be connected by a magnetic isolation device, such as an isolation transformer, and the connection between the main controller 90 and each local controller 91 is not only Limited to the above connection method.
  • the power electronic device of the present invention can be applied to fields such as SVG, MVD, HVDC-Light, and wind power generation systems.
  • the present invention proposes to synthesize M power converters 701 into one power unit 70.
  • One power unit 70 is provided with a local controller 91, an optical fiber 94 and an auxiliary power source 93, that is, a set of local controllers 91.
  • the fiber 94 and the auxiliary power source 93 control the M power converters 701.
  • each power unit 40 that is, the power converter
  • the modular power supply system proposed by the present invention needs to be configured.
  • the number of local controllers 91, fibers 94, and auxiliary power supplies 93 will be reduced to 1/M of the conventional solution.
  • the invention greatly simplifies the structural design of the modular power supply system, and the cost is also significantly reduced, and the reliability is greatly improved.
  • the present invention does not limit the DC bus voltage of each power converter 701.
  • the DC bus voltages of the M power converters 701 in the modular power supply system of the present invention may all be the same, partially identical, or all different.
  • Figure 7 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention. As shown in FIG. 7, the DC bus voltages of the M power converters 701 in the power unit 70 may be V 1 , V 2 ... and V M , respectively, where V 1 , V 2 ...
  • the present invention also does not limit the topology used in each power converter 701.
  • the M power converters 701 in the modular power system of the present invention may be in an AC/DC converter, a DC/AC converter, and a DC/DC converter. Either of these, the power converter 701 in Figure 7 represents any of all applicable AC/DC, DC/AC, and DC/DC topologies.
  • the present invention does not limit the topology used in the M power converters 701.
  • the topology of the M power converters may be all the same or partially identical.
  • the topology of the M power converters 701 in each power unit 70 of the modular power supply system of the present invention may all be a full bridge converter, a half bridge converter, and a neutral point controllable three level converter.
  • the topology of the M power converters 701 in each power unit 70 in the modular power system of the present invention may be a full bridge converter, a half bridge converter, a neutral point controllable three level converter A combination of two or more of a diode clamped three-level converter, a flying capacitor three-level converter, a full-bridge resonant converter, and a half-bridge resonant converter.
  • Each of the M power converters 701 in each power unit 70 of the modular power supply system of the present invention can be configured to include: at least one power semiconductor switch, wherein each local control signal is configured to Controls the turning on and off of the corresponding power semiconductor switch.
  • each power unit 70 in the modular power supply system of the present embodiment may include: M driving circuits 702, which are in one-to-one correspondence with M power converters 701, wherein each driving circuit 702 is configured to be connected to a power semiconductor switch in the corresponding power converter 701, receive and according to at least one local control signal output by the corresponding local controller 91, to output at least one driving signal to drive the corresponding M power converters
  • the power semiconductor switch in 701 is turned on and off.
  • each power unit in the modular power system can include: a plurality of drive circuits, the number of the plurality of drive circuits being equal to the number of power semiconductor switches in the power unit, each drive circuit being configured to be coupled to A corresponding power semiconductor switch receives and outputs a driving signal to drive the corresponding power semiconductor switch on and off according to the corresponding local control signal.
  • FIG. 8 is a block diagram of a modular power system in accordance with another embodiment of the present invention.
  • the topology of the M power converters 701 of each power unit 70 in the modular power supply system of the present embodiment employs a full bridge converter, such as an H bridge circuit.
  • Each H-bridge circuit 701 includes four power semiconductor switches and a DC bus capacitor, and four power semiconductor switches form two bridge arms.
  • four power semiconductor switches are respectively defined as an upper power semiconductor switch of a bridge arm, a lower power semiconductor switch, an upper power semiconductor switch of the other bridge arm, and a lower power semiconductor switch, wherein one end of the upper power semiconductor switch of one of the bridge arms is connected to one end of the upper power semiconductor switch of the other bridge arm and one end of the DC bus capacitor, The other end of the lower power semiconductor switch of one bridge arm is connected to the other end of the lower power semiconductor switch of the other bridge arm and the other end of the DC bus capacitor, and the upper power semiconductor switch of one bridge arm and the lower power semiconductor switch are connected to the third end X 3 , the upper power semiconductor switch of the other bridge arm and the lower power semiconductor switch are connected to the fourth end X 4 .
  • the power converter 701 includes two bridge arms and a DC bus capacitor, and one end of the upper power semiconductor switch Q M1 of one bridge arm is connected to the upper power semiconductor switch Q M3 of the other bridge arm.
  • One end and one end of the DC bus capacitor C B , the other end of the lower power semiconductor switch Q M2 of one bridge arm is connected to the other end of the lower power semiconductor switch Q M4 of the other bridge arm and the other end of the DC bus capacitor C B
  • one The connection point between the upper power semiconductor switch Q M1 of the bridge arm and the lower power semiconductor switch Q M2 is the third end X 3
  • the connection point of the upper power semiconductor switch Q M3 of the other bridge arm and the lower power semiconductor switch Q M4 is the fourth End X 4 .
  • the third end X 3 of the first H-bridge circuit 701 in each power unit 70 is the first end X 1 of the power unit 70
  • the fourth end X of the first H-bridge circuit 701 4 is connected to the third end X 3 of the second H-bridge circuit 701
  • the fourth end X 4 of the M-1th H-bridge circuit 701 is connected to the third end X 3 of the M-th H-bridge circuit 701
  • the fourth end X 4 of the Mth power converter is the second end X 2 of the power unit 70.
  • the local controller 91 corresponding to each power unit 70 outputs at least one local control signal for controlling the turning on and off of the power semiconductor switches in the corresponding H-bridge circuit 701.
  • each H-bridge circuit 701 requires four local control signals to respectively control the corresponding power semiconductor switches to be turned on and off, and each power unit 70 requires 4 ⁇ M local control signals, that is, local control.
  • the device needs to output 4 ⁇ M local control signals for controlling the on and off of the corresponding power semiconductor switches, that is, the power semiconductor switches Q 11 -Q M4 all need a corresponding local control signal.
  • each power unit 70 further includes M driving circuits 702.
  • the driving circuit 702 is in one-to-one correspondence with M H-bridge circuits 701.
  • Each driving circuit 702 receives a corresponding local control signal and outputs at least one driving. The signals respectively drive the on and off of the corresponding power semiconductor switches.
  • each of the driving circuits 702 receives the corresponding four local control signals, and outputs four driving signals to respectively drive the corresponding power semiconductor switches.
  • the driving circuit 702 corresponding to the first H-bridge circuit 701 is taken as an example, and the driving circuit outputs four driving signals for driving the power semiconductor switches Q 11 -Q 14 to be turned on and off, respectively.
  • each power unit 70 further includes a plurality of driving circuits, the number of driving circuits is equal to 4 ⁇ M, each driving circuit is connected to a corresponding one of the power semiconductor switches, and receives a corresponding local control signal for output.
  • a driving signal drives the turn-on and turn-off of the corresponding power semiconductor switch.
  • FIG. 9 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • the topology of the M power converters 701 of each power unit 70 in the modular power supply system of the present embodiment employs a half bridge converter.
  • Each of the half bridge converters 701 includes two power semiconductor switches and a DC bus capacitor, the connection relationship of which is as shown in FIG. One end of a power semiconductor is connected to one end of the DC bus capacitor, the other end is connected to one end of another power semiconductor switch, and the other end of the other power semiconductor switch is connected to the other end of the DC bus capacitor C B .
  • the power converter 701 includes two power semiconductor switches Q 11 , Q 12 and a DC bus capacitor C B .
  • the power semiconductor switch end Q at one end 11 is connected to the DC bus capacitor C B, the power semiconductor switch and the other end Q 11 is connected to the power semiconductor switch end Q 12 is, the power semiconductor switch and the other end Q 12 is connected to the DC bus capacitor C B
  • the connection point of the power semiconductor switch Q 11 and the power semiconductor switch Q 12 is the third end X 3 of the first power converter 701
  • the other end of the power semiconductor switch Q 12 is the first power converter 701. Fourth end X 4 .
  • the third end X 3 of the first half bridge converter in each power unit 70 is the first end X 1 of the power unit 70, and the fourth end X 4 of the first half bridge converter is connected.
  • the third end X 3 of the second half bridge converter, and so on, the fourth end X 4 of the M-1 half bridge converter is connected to the third end X 3 of the Mth half bridge converter, the Mth
  • the fourth end X 4 of the half bridge converter is the second end X 2 of the power unit 70.
  • the local controller corresponding to each power unit 70 can output 2 ⁇ M local control signals for controlling the turning on and off of the power semiconductor switches Q 11 -Q M2 in the half bridge converter 701. That is, both the power semiconductor switches Q 11 -Q M2 require a local control signal.
  • each power unit 70 further includes M driving circuits 702.
  • the driving circuit 702 is in one-to-one correspondence with M half-bridge converters 701.
  • Each driving circuit 702 receives a corresponding local control signal and outputs at least one.
  • the driving signals respectively drive the turning on and off of the corresponding power semiconductor switches.
  • each driving circuit 702 receives the corresponding two local control signals, and outputs two driving signals to respectively drive the corresponding power semiconductor switches. Turning on and off, taking the driving circuit 702 corresponding to the first half-bridge converter 701 as an example, the driving circuit outputs two driving signals to drive the power semiconductor switches Q 11 -Q 12 to be turned on and off, respectively.
  • each power unit 70 further includes a plurality of driving circuits, the number of driving circuits being equal to 2 ⁇ M, each driving circuit is electrically connected to a corresponding one of the power semiconductor switches, and receiving a corresponding local control signal to A driving signal is output to drive the corresponding power semiconductor switch to be turned on and off.
  • the two driving circuits are respectively connected to the power semiconductor switch Q 11 -Q 12 and each of the drive circuits outputs a drive signal to drive the on and off of the corresponding power semiconductor switches Q 11 -Q 12 .
  • FIG. 10 is a block diagram of a modular power system in accordance with another embodiment of the present invention.
  • the topology of the M power converters 701 of each power unit 70 in the modular power supply system of the present embodiment employs a neutral point controllable three-level converter.
  • Each of the neutral point controllable three-level converters 701 includes eight power semiconductor switches and two DC bus capacitors, the connection relationship of which is shown in FIG. Taking the first power converter 701 as an example, one end of the power semiconductor switch Q 11 is connected to one end of the DC bus capacitor C 1 and one end of the power semiconductor switch Q 15 , and the other end of the DC bus capacitor C 1 is connected to the DC bus .
  • the third end X 3 of the first neutral point controllable three-level converter in each power unit 70 is the first end X 1 of the power unit 70, and the first neutral point is controllable.
  • the fourth end X 4 of the three-level converter is connected to the third end X 3 of the second neutral point controllable three-level converter, and so on, the M-1th neutral point controllable three-level converter.
  • the fourth end X 4 is connected to the third end X 3 of the Mth neutral point controllable three-level converter, and the fourth end X 4 of the Mth neutral point controllable three-level converter is the power unit 70 The second end of X 2 .
  • the local controller corresponding to each power unit can output 8 ⁇ M local control signals for controlling the power semiconductor switches Q 11 -Q M8 in the neutral point controllable three-level converter 701. Turning on and off, that is, both power semiconductor switches Q 11 -Q M8 require a local control signal.
  • each power unit 70 further includes M driving circuits 702.
  • the driving circuit 702 is in one-to-one correspondence with M neutral point controllable three-level converters 701, and each driving circuit 702 receives corresponding local control. And outputting at least one driving signal to respectively drive on and off of the corresponding power semiconductor switch.
  • each driving circuit 702 receives corresponding 8 local control signals, and outputs 8 driving signals to respectively drive
  • the driving circuit 702 corresponding to the first neutral point controllable three-level converter 701 is taken as an example, and the driving circuit outputs eight driving signals to respectively drive the power semiconductor switch Q. 11 - Q 18 is turned on and off.
  • each power unit 70 further includes a plurality of driving circuits, the number of driving circuits is equal to 8 ⁇ M, each driving circuit is connected to a corresponding one of the power semiconductor switches, and receives a corresponding local control signal to output one.
  • the driving signal drives the corresponding power semiconductor switch to be turned on and off.
  • the eight driving circuits corresponding to the first neutral point controllable three-level converter 701 are taken as an example, and the eight driving circuits are respectively connected to the power semiconductor switch.
  • Q 11 - Q 18 and each drive circuit outputs a drive signal to drive the corresponding power semiconductor switches Q 11 - Q 18 on and off.
  • FIG. 11 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • the topology of the M power converters 701 of each power unit 70 in the modular power supply system of the present embodiment employs a diode clamped three-level converter.
  • Each of the diode clamped three-level converters 701 includes eight power semiconductor switches, four clamp diodes, and two DC bus capacitors, the connection relationship of which is shown in FIG.
  • one end of the power semiconductor switch Q 11 is connected to one end of the DC bus capacitor C 1 and one end of the power semiconductor switch Q 15 , and the other end of the power semiconductor switch Q 11 is connected to the power semiconductor switch Q one end of the cathode 12 and the clamp diode D 1, the other end of the power semiconductor switch Q 12 connected to one end of the power semiconductor switch 13 is Q, and the other end of the power semiconductor switch Q 13 is connected to the power semiconductor switch Q and one end of the clamp 14
  • the anode of the diode D 2 , the other end of the DC bus capacitor C 1 is connected to one end of the DC bus capacitor C 2 , and the other end of the power semiconductor switch Q 14 is connected to the other end of the DC bus capacitor C 2 , and the anode of the clamp diode D 1 Connected to the cathode of the clamp diode D 2 and the other end of the DC bus capacitor C 1 , the connection point of the power semiconductor switch Q 12 and the power semiconductor switch Q 13 is the
  • the other end of the power semiconductor switch. 17 Q is connected to the power semiconductor switch Q and one end of the clamp diode D 18 of the anode 4, the other end of the power semiconductor switch Q 18 is connected to the DC bus capacitor C another 2
  • the anode of the clamp diode D 3 is connected to the cathode of the clamp diode D 4 and the other end of the DC bus capacitor C 1
  • the connection point of the power semiconductor switch Q 16 and the power semiconductor switch Q 17 is the first power converter 701
  • the fourth end of the X 4 is the fourth end of the X 4 .
  • the third end X 3 of the first diode clamped three-level converter in each power unit 70 is the first end X 1 of the power unit 70, and the first diode clamps three-level conversion.
  • the fourth end X 4 of the device is connected to the third end X 3 of the second diode clamp three-level converter, and so on, and the fourth end of the M-1 diode clamp three-level converter is connected by X 4
  • the third end X 3 of the M diode clamped three-level converter, the fourth end X 4 of the Mth diode clamped three level converter is the second end X 2 of the power unit 70.
  • the local controller corresponding to each power unit can output 8 ⁇ M local control signals for controlling the power semiconductor switches Q 11 -Q M8 in the neutral point controllable three-level converter 701. Turning on and off, that is, both power semiconductor switches Q 11 -Q M8 require a local control signal.
  • each power unit 70 further includes M driving circuits 702.
  • the driving circuit 702 is in one-to-one correspondence with M diode-clamped three-level converters 701, and each driving circuit 702 receives a corresponding local control signal. And outputting at least one driving signal to respectively drive on and off of the corresponding power semiconductor switch.
  • each driving circuit 702 receives corresponding eight local control signals, and outputs eight driving signals to respectively drive corresponding ones.
  • the driving circuit 702 corresponding to the first diode clamped three-level converter 701 is used as an example.
  • the driving circuit outputs eight driving signals to respectively drive the power semiconductor switches Q 11 -Q 18 . Turn on and off.
  • each power unit 70 further includes a plurality of driving circuits, the number of driving circuits is equal to 8 ⁇ M, each driving circuit is connected to a corresponding one of the power semiconductor switches, and receives a corresponding local control signal to output one.
  • the driving signal drives the corresponding power semiconductor switch to be turned on and off.
  • the eight driving circuits corresponding to the first diode clamped three-level converter 701 are taken as an example, and the eight driving circuits are respectively connected to the power semiconductor switch Q 11 . -Q 18 and each of the drive circuits outputs a drive signal to drive the on and off of the corresponding power semiconductor switches Q 11 -Q 18 .
  • FIG. 12 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • the topology of the M power converters 701 of each power unit 70 in the modular power supply system of the present embodiment employs a flying capacitor three-level converter.
  • Each of the flying capacitor three-level converters 701 includes eight power semiconductor switches, two DC bus capacitors, and two flying capacitors, the connection relationship of which is shown in FIG.
  • one end of the power semiconductor switch Q 11 is connected to one end of the DC bus capacitor C 1 and one end of the power semiconductor switch Q 15 , and the other end of the power semiconductor switch Q 11 is connected to the power semiconductor switch Q and one end of the flying capacitor C 12 at one end, the power semiconductor 3 switches the other end Q 12 is connected to the power semiconductor switch end Q 13 is, the power semiconductor switch and the other end Q 13 is connected to the power semiconductor switch Q and one end of the fly 14 cross the other end of capacitor C 3, the other end of the DC bus capacitor C.
  • the power semiconductor switch Q 16 Q is connected to the power semiconductor switch 17 as a first point of a power converter 701 Fourth end X 4 .
  • the third end X 3 of the first flying capacitor three-level converter in each power unit 70 is the first end X 1 of the power unit 70, and the first flying capacitor three-level conversion
  • the fourth end X 4 of the device is connected to the third end X 3 of the second flying capacitor three-level converter, and so on, and the fourth end X 4 of the M-1 flying capacitor three-level converter is connected.
  • the third end X 3 of the M flying capacitor three-level converters, the fourth end X 4 of the Mth flying capacitor three-level converter is the second end X 2 of the power unit 70.
  • the local controller corresponding to each power unit can output 8 ⁇ M local control signals for controlling the power semiconductor switches Q 11 -Q M8 in the neutral point controllable three-level converter 701. Turning on and off, that is, both power semiconductor switches Q 11 -Q M8 require a local control signal.
  • each power unit 70 further includes M driving circuits 702.
  • the driving circuit 702 is in one-to-one correspondence with M flying capacitor three-level converters 701, and each driving circuit 702 receives a corresponding local control signal. And outputting at least one driving signal to respectively drive on and off of the corresponding power semiconductor switch.
  • each driving circuit 702 receives corresponding eight local control signals, and outputs eight driving signals to respectively drive corresponding ones.
  • the driving circuit 702 corresponding to the first flying capacitor three-level converter 701 is used to drive the power semiconductor switch Q 11 -Q 18 respectively. Turn on and off.
  • each power unit 70 further includes a plurality of driving circuits.
  • the number of driving circuits is equal to 8 ⁇ M.
  • Each driving circuit receives a corresponding local control signal and outputs a driving signal to drive the corresponding power semiconductor switch.
  • eight driving circuits corresponding to the first flying capacitor three-level converter 701 are connected, and eight driving circuits are respectively connected to the power semiconductor switches Q 11 - Q 18 and each driving circuit outputs A drive signal drives the turn-on and turn-off of the corresponding power semiconductor switches Q 11 -Q 18 .
  • the M power converters 701 in the modular power supply system of FIGS. 8-12 may be an AC/DC converter or a DC/AC converter, but not limited thereto. It can be a converter of other topology.
  • FIG. 13 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • the topology of the M power converters 701 of each power unit 70 in the modular power supply system of the present embodiment employs a full bridge resonant converter.
  • Each of the full-bridge resonant converters 701 includes a full-bridge circuit, a resonant circuit, a transformer, and a rectifier bridge, the connection relationship of which is as shown in FIG.
  • the full-bridge circuit includes four power semiconductor switches and one DC bus capacitor. One end of the power semiconductor switch Q 11 is connected to one end of the DC bus capacitor C B ' and the power semiconductor switch Q.
  • One end 13 of the power semiconductor switch and the other end Q 11 is connected to the power semiconductor switch end Q 12 of the power semiconductor switch and the other end Q 12 is connected to the DC bus capacitor C B 'and the other end of the power semiconductor switch and the other end Q 14 of
  • the connection point of the power semiconductor switch Q 11 and the power semiconductor switch Q 12 is connected to one end of the resonant circuit formed by the capacitor C' and the inductor L', and the other end of the resonant circuit is connected to one end of the primary coil of the transformer T', and the transformer T
  • the other end of the primary coil is connected to the connection point of the power semiconductor switch Q 13 and the power semiconductor switch Q 14 , and the aforementioned end of the DC bus capacitor C B ' is the third end X 3 of the first power converter, the DC bus capacitance C B 'to the other end of the power converter of a fourth end X 4, the rectifier bridge comprising four rectifier diode, the rectifying diode D 1' is connected to one end of the rectifier di
  • the third end X 3 of the first full bridge resonant converter in each power unit 70 is the first end X 1 of the power unit 70 and the fourth end X 4 of the first full bridge resonant converter Connecting the third end X 3 of the second full-bridge resonant converter, and so on, the fourth end X 4 of the M-1 full-bridge resonant converter is connected to the third end X 3 of the M-th full-bridge resonant converter
  • the fourth end X 4 of the Mth full-bridge resonant converter is the second end X 2 of the power unit 70.
  • the fifth end X 5 of all of the full bridge resonant converters in each power unit 70 are connected together, and the sixth end X 6 is connected together.
  • the local controller corresponding to each power unit can output 4 ⁇ M local control signals for controlling the turn-on and turn-off of the power semiconductor switches Q 11 -Q M4 in the full-bridge resonant converter 701. That is, the power semiconductor switches Q 11 -Q M4 each require a local control signal.
  • each power unit 70 further includes M driving circuits 702.
  • the driving circuit 702 is in one-to-one correspondence with M full-bridge resonant converters 701.
  • Each driving circuit 702 receives a corresponding local control signal and outputs at least a driving signal respectively driving the corresponding power semiconductor switches to be turned on and off.
  • each driving circuit 702 receives corresponding four local control signals, and outputs four driving signals to respectively drive corresponding power semiconductor switches. Turning on and off, taking the driving circuit 702 corresponding to the first full-bridge resonant converter 701 as an example, the driving circuit outputs four driving signals to respectively turn on and off the power semiconductor switches Q 11 -Q 14 . .
  • each power unit 70 further includes a plurality of driving circuits, the number of driving circuits is equal to 4 ⁇ M, each driving circuit is connected to a corresponding one of the power semiconductor switches, and receives a corresponding local control signal to output one.
  • the driving signal drives the corresponding power semiconductor switch to be turned on and off.
  • the four driving circuits are respectively connected to the power semiconductor switch Q 11 -Q 14 .
  • each of the driving circuits outputs a driving signal to drive the on and off of the corresponding power semiconductor switches Q 11 -Q 14 .
  • FIG. 14 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • the topology of the M power converters 701 of each power unit 70 in the modular power supply system of the present embodiment employs a half bridge resonant converter.
  • Each of the half-bridge resonant converters 701 includes a half bridge circuit, a resonant circuit, a transformer, and a rectifier bridge, the connection relationship of which is as shown in FIG.
  • the half-bridge circuit includes two power semiconductor switches and one DC bus capacitor.
  • One end of the power semiconductor switch Q 11 is connected to one end of the DC bus capacitor C B ', and the power semiconductor switch Q the other end 11 is connected to the power semiconductor switch end Q 12, the power semiconductor switch other ends Q 12 is connected to the DC bus capacitor C B ', the power semiconductor switch Q 11 of the power semiconductor switch Q is connected to the point 12 is connected to the 'One end of the primary coil of the transformer T''L and the inductance' end of the resonance circuit composed of the other end of the resonance circuit of the capacitor C is connected to the transformer T, the other end of the primary coil is connected to the power semiconductor switch of another Q 12 of At one end, one end of the DC bus capacitor C B ' is the third end X 3 of the first power converter, and the other end of the DC bus capacitor C B ' is the fourth end X 4 of the first power converter, and the rectifier bridge includes four rectifying diodes, the rectifying diode D 1 'is connected to one end of the rectifying diode D 3' end, a rectifying diode D 1
  • the third end X 3 of the first half-bridge resonant converter in each power unit 70 is the first end X 1 of the power unit 70, and the fourth end X of the first half-bridge resonant converter 4 is connected to the third end X 3 of the second half-bridge resonant converter, and so on, and the fourth end X 4 of the M-1 half-bridge resonant converter is connected to the third end X of the M-th half-bridge resonant converter 3.
  • the fourth end X 4 of the Mth half-bridge resonant converter is the second end X 2 of the power unit 70.
  • the fifth ends X 5 of all of the half-bridge resonant converters in each power unit 70 are connected together, and the sixth ends X 6 are connected together.
  • the local controller corresponding to each power unit can output 2 ⁇ M local control signals for controlling the turn-on and turn-off of the power semiconductor switches Q 11 -Q M2 in the half-bridge resonant converter 701. That is, both the power semiconductor switches Q 11 -Q M2 require a local control signal.
  • each power unit 70 further includes M driving circuits 702.
  • the driving circuit 702 is in one-to-one correspondence with M half-bridge resonant converters 701.
  • Each driving circuit 702 receives a corresponding local control signal and outputs at least a driving signal respectively driving on and off of the corresponding power semiconductor switch, specifically, each driving circuit 702 receives corresponding two local control signals, and outputs two driving signals to respectively drive corresponding power semiconductor switches
  • the driving circuit 702 corresponding to the first half-bridge resonant converter 701 outputs two driving signals for driving the power semiconductor switches Q 11 -Q 12 to be turned on and off. .
  • each power unit 70 further includes a plurality of driving circuits, the number of driving circuits is equal to 2 ⁇ M, each driving circuit is connected to a corresponding one of the power semiconductor switches, and receives a corresponding local control signal and outputs one.
  • the driving signal drives the turn-on and turn-off of the corresponding power semiconductor switch.
  • the two driving circuits are respectively connected to the power semiconductor switch Q 11 -Q 12 And each of the driving circuits outputs a driving signal to drive the on and off of the corresponding power semiconductor switches Q 11 -Q 12 .
  • the M power converters 701 in the modular power supply system of FIG. 13 and FIG. 14 may be DC/DC converters, but not limited thereto, and may be converters of other topologies.
  • FIG. 15 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • the topology of the M power converters 701 of each power unit 70 in the modular power supply system of the present embodiment employs a combination of a full bridge converter and a half bridge converter.
  • Each of the full bridge converter power converters 7011' includes four power semiconductor switches, each of which includes two power semiconductor switches, the connection relationship of which is shown in FIG.
  • the specific connection relationship of the full bridge converter is as shown in FIG. 8
  • the specific connection relationship of the half bridge converter is shown in FIG. 9 , and details are not described herein again.
  • the fourth end X 4 of one of the adjacent two power converters 701 is coupled to the third end X 3 of the other, where M is a natural number greater than one.
  • the third end X 3 of the first power converter 701 is the first end X 1 of the power unit 70
  • the fourth end X 4 of the first power converter 701 is connected to the second power converter 701.
  • the third end X 3 , and so on, the fourth end X 4 of the M-1th power converter 701 is connected to the third end X 3 of the Mth power converter 701, and the fourth end of the Mth power converter 701 X 4 is the second end X 2 of the power unit 70.
  • the number of local control signals output by the local controller corresponding to each power unit 70 is equal to the number of power semiconductor switches in the power unit 70.
  • These local control signals respectively control the full bridge converter and the half bridge converter 701.
  • the power semiconductor switches are turned on and off, that is, each power semiconductor switch requires a local control signal.
  • each power unit 70 further includes M driving circuits 702.
  • the driving circuit 702 is in one-to-one correspondence with M power converters 7011' and 7012', and each driving circuit 702 receives a corresponding local control signal, and And outputting at least one driving signal to respectively drive on and off of the corresponding power semiconductor switch.
  • the driving circuit 702 corresponding to the power converter 7011 ′ receives the corresponding four local control signals, and outputs four driving signals.
  • Driving the corresponding power semiconductor switch to turn on and off respectively, the corresponding driving circuit 702 of the power converter 7012' receives the corresponding two local control signals, and outputs two driving signals to respectively drive the corresponding power semiconductor switches to be turned on. And disconnected.
  • each power unit 70 further includes a plurality of driving circuits.
  • the number of driving circuits in the power unit is equal to the number of power semiconductor switches in the corresponding power unit, and each driving circuit is connected to a corresponding one of the power semiconductor switches.
  • receiving a corresponding local control signal to output a driving signal to drive the corresponding power semiconductor switch to turn on and off taking the four driving circuits corresponding to the power converter 7011' as an example, the four driving circuits are respectively connected to correspond
  • the power semiconductor switches and each of the driving circuits output a driving signal to drive the corresponding power semiconductor switches to be turned on and off, and the two driving circuits corresponding to the power converter 7012' are taken as an example, and the two driving circuits are respectively connected.
  • Corresponding power semiconductor switches and each drive circuit outputs a drive signal to drive the corresponding power semiconductor switches on and off.
  • FIG. 15 only shows the topology of the M power converters 701 of each power unit 70 in the modular power supply system of the present embodiment, a combination of a full bridge converter and a half bridge converter is employed.
  • the present invention is not limited thereto.
  • the topology of the M power converters 701 in each of the power units 70 in the modular power supply system of the present invention may be a full bridge converter, a half bridge converter, or the like.
  • Each of the M power converters 701 in each of the power units 70 of the modular power supply system of the present invention can be configured to include: at least one power semiconductor switch, such as the aforementioned power semiconductor switch Q 11 - Q 14 , Q 11 -Q 12 , Q 11 -Q 18 , Q M1 -Q M4 , Q M1 -Q M2 or Q M1 -Q M8 , wherein each of the aforementioned local control signals is configured to control a corresponding power semiconductor switch Turn on and off.
  • at least one power semiconductor switch such as the aforementioned power semiconductor switch Q 11 - Q 14 , Q 11 -Q 12 , Q 11 -Q 18 , Q M1 -Q M4 , Q M1 -Q M2 or Q M1 -Q M8 , wherein each of the aforementioned local control signals is configured to control a corresponding power semiconductor switch Turn on and off.
  • each of the power units 70 in the modular power system of the present embodiment can include: M drive circuits 702, and M power converters 701 (or 7011' or 7012' One-to-one correspondence, wherein each of the driving circuits 702 is configured to be connected to a power semiconductor switch in the corresponding power converter 701 (or 7011' or 7012') to receive a local control signal output by the corresponding local controller 91, At least one drive signal is output to drive the turn-on and turn-off of the power semiconductor switches in the corresponding M power converters 701 (or 7011' or 7012').
  • each power unit 70 in the modular power supply system of the present embodiment may include: a plurality of driving circuits 702, the number of driving circuits in the power unit being equal to the power semiconductor switches in the power unit A quantity, wherein each of the driving circuits 702 is configured to be connected to a power semiconductor switch of the corresponding power converter 701, receive a local control signal output by the corresponding local controller 91, to output a driving signal to drive the corresponding power semiconductor switch Pass and disconnect.
  • each driving circuit includes a local control signal output by the corresponding local controller 91 to output a driving signal to drive the corresponding power semiconductor switch to be turned on and off.
  • Each of the drive circuits 702 of the modular power supply system of the present invention can be directly electrically connected to the corresponding local controller 91, or connected by magnetic isolation devices, or connected by optical isolation devices.
  • Each of the drive circuits 702 in the modular power supply system of the present invention may be identical to each other or different from each other.
  • each of the drive circuits 702 in the modular power supply system of the present embodiment is identical to each other.
  • FIG. 16 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • one power unit in the modular power supply system of the present embodiment includes power converters 701 of five H-bridge circuits.
  • the drive circuit 721 of the four power converters 701 is different from the drive circuit 722 of the intermediate power converter 701.
  • FIG. 17 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • each of the auxiliary power sources 93 of the modular power supply system of the present embodiment can be configured to take power from an external power source, such as powering from a commercial power source or taking power from other circuits, each of which is connected to an auxiliary power source 93.
  • External power supply E C External power supply E C .
  • FIG. 18 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • the N auxiliary power sources 93 in the modular power system of the present embodiment are in one-to-one correspondence with the N power units 70, and each of the auxiliary power sources 93 can be configured to be taken from the corresponding power unit 70. Electricity.
  • FIG. 19 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • the foregoing N auxiliary power sources 93 in the modular power supply system of the present embodiment are in one-to-one correspondence with the N power units 70.
  • a part of the auxiliary power sources 93 can be configured.
  • this part of the auxiliary power source 93 is connected to the external power source E C ; another part of the auxiliary power source 93 in the modular power system of the embodiment, such as in FIG.
  • the middle one can be configured to draw power from the corresponding power unit 70.
  • each of the auxiliary power sources 93 of the present embodiment can be configured to draw power from the DC bus capacitor C B of any one of the corresponding power units 70 to Obtain the DC bus voltage on the DC bus capacitor C B .
  • each of the auxiliary power sources 93 in the modular power supply system of the present embodiment can be configured to draw power from a plurality of DC bus capacitors C B of any one of the corresponding power units 70. To obtain the DC bus voltage on the DC bus capacitor C B .
  • the auxiliary power source 93 in the middle of FIG. 21 can be powered from the DC bus capacitors C B of the two power converters 701.
  • the auxiliary power source 93 can still draw power from the DC bus capacitor C B of another normal power converter 701 to achieve redundant power take-off, improving the reliability of the modular power system. .
  • the auxiliary power source 93 in the modular power supply system of the present embodiment may be a DC/DC converter, for example, a buck circuit, a boost circuit, a flyback circuit, and an LLC. Circuits, etc.
  • the input of the DC/DC converter is coupled to both ends of a DC bus capacitor C B of any one or more power converters 701 that draw power from the DC bus capacitor C B of the power converter 701 To obtain the DC bus voltage on the DC bus capacitor C B4 .
  • the output of the DC/DC converter is connected to the local controller 91 to convert the DC bus voltage to a voltage that supplies power to the local controller 91, such as direct current (24V).
  • FIG. 22 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • at least one of the aforementioned M power converters in the power unit 70 in the modular power supply system of the present embodiment is a high voltage power converter 7012", at least one of which is a low voltage power converter 7011", a high voltage
  • the operating voltage of the power converter 7012" is higher than the operating voltage of the low voltage power converter 7011
  • each high voltage power converter 7012” includes at least one high voltage power semiconductor switch, each low voltage power converter 7011” including at least one low voltage power semiconductor
  • the operating voltage of the switch, the high voltage power semiconductor switch is higher than the operating voltage of the low voltage power semiconductor switch.
  • the topology of the high-voltage power converter 7012 may be one of the following Figures 8-14.
  • the topology of the low-voltage power converter 7011 may be one of the Figures 8-14, high-voltage power.
  • the topology of the converter 7012 may be the same as the topology of the low voltage power converter 7011", or the topology of the high voltage power converter 7012" may be different from the topology of the low voltage power converter 7011".
  • each power unit 70 in the modular power supply system of the present embodiment further includes at least one high voltage driving circuit 724 and at least one low voltage driving circuit 723, and a high voltage driving circuit 724.
  • the number is equal to the number of the aforementioned high voltage power converters 7012", each of the high voltage driving circuits 724 is connected to a corresponding high voltage power semiconductor switch, for example, each high voltage driving circuit 724 is connected to the control terminal of the power semiconductor switch, and the number of low voltage driving circuits 723 Equal to the number of the aforementioned low-voltage power converters 7011", each of the low-voltage driving circuits 723 is connected to a corresponding low-voltage power semiconductor switch, for example, each low-voltage driving circuit 723 is connected to the control terminal of the power semiconductor switch, and each of the high-voltage driving circuits 724 is configured.
  • each of the low voltage driver circuit 723 is configured to receive a local control signal corresponding to the output of the at least one driving signal corresponding to drive the low-voltage power semiconductor switch is turned on and between an open, low-voltage power converter 7011 to adjust the "third end and a fourth end X 3 X 4 between the voltage, e.g., voltage power converter 7011," the third end and a fourth end X 3 X 4
  • the voltage is 1KV.
  • each of the power units 70 in the modular power system of the embodiment further includes at least one high voltage driving circuit 724 and at least one low voltage driving circuit 723, the number of the at least one high voltage driving circuit 724 being equal to Illustrating the number of at least one high voltage power semiconductor switch, each of the high voltage driving circuits 724 being coupled to a corresponding one of the high voltage power semiconductor switches, each of the high voltage driving circuits 724 being configured to receive a corresponding local control signal for output a driving signal for driving the corresponding on and off of the high voltage power semiconductor switch; the number of the at least one low voltage driving circuit 723 is equal to the number of the at least one low voltage power semiconductor switch, and each of the low voltage driving circuits 723 is connected And corresponding to the low voltage power semiconductor switch, each of the low voltage driving circuits 723 is configured to receive the corresponding local control signal to output a driving signal to drive the corresponding turning on and off of the low voltage power semiconductor switch.
  • the auxiliary power source 93 in the modular power supply system of the present embodiment may be a DC/DC converter, for example, a buck circuit, a boost circuit, a flyback circuit, an LLC circuit, etc. .
  • the input of the DC/DC converter is coupled to either end of a DC bus capacitor C B4 of any of the low voltage power converters 7011", wherein the DC bus capacitor C B4 can be as shown in Figures 8 and 9 and Figures 13 and 14.
  • the input of the DC/DC converter is connected to the DC bus capacitor C B (C B ') ends, or the input of DC / DC converter is connected to one end of the DC bus capacitor C DC bus. 1 and the other end of the capacitor C 2, the DC / DC converter from the low voltage power converter 7011 "DC link capacitor C Take power on B4 to obtain the DC bus voltage on DC bus capacitor C B4 .
  • the output of the DC/DC converter is connected to the local controller 91 to convert the DC bus voltage to a voltage that supplies power to the local controller 91, such as direct current (24V).
  • the DC/DC converter as the auxiliary power source 93 can be connected to each of the high voltage driving circuit 724 and each of the low voltage driving circuits 723 in addition to the voltage supplied to the local controller 91, and DC.
  • the bus voltage is converted to a voltage that supplies power to the high voltage drive circuit 724 or the low voltage drive circuit 723, such as direct current (24V).
  • the connections of the high voltage power converter 7012" and the low voltage power converter 7011" in a power unit 70 may be interleaved, for example, in accordance with a high voltage power converter, low voltage power.
  • the converter, the high-voltage power converter, the low-voltage power converter are sequentially connected by analogy; or in the order of high-voltage power converter, low-voltage power converter, low-voltage power converter, high-voltage power converter, or the like; or according to high voltage
  • the power transformer, the high voltage power converter, the low voltage power converter, the high voltage power converter, the low voltage power converter are sequentially connected; or the plurality of low voltage power converters may be connected and then connected to the high voltage power converter; or a plurality of high voltage
  • the power converter is connected and then connected to a low voltage power converter.
  • Embodiments of the present invention do not limit the manner of connection between at least one high voltage power converter and at least one low voltage power converter.
  • the scheme of connecting the high-voltage power converter and the low-voltage power converter in each power unit 70 solves the problem that when the low-voltage power converter is connected, the control amount is large, the hardware resources are required, and the cost is high.
  • the number of low-voltage power converters is large, resulting in low power density; and the input of the DC/DC converter is connected to the DC bus capacitors of the low-voltage power converter, which can make the transformer in the DC/DC converter
  • the withstand voltage of the primary secondary coil only needs to reach the DC bus voltage of the low voltage power converter, thereby avoiding the problem of achieving technical difficulties.
  • FIG. 24 is a block diagram of a modular power supply system in accordance with another embodiment of the present invention.
  • each of the local controllers of the modular power supply system of the present embodiment may include: at least one high voltage control circuit 912 configured to output a local control signal to a corresponding high voltage drive circuit 724; At least one low voltage control circuit 911 is configured to output a local control signal to the corresponding low voltage drive circuit 723.
  • the high voltage control circuit 912 may be one or more. When the high voltage control circuit 912 is plural, each high voltage control circuit 912 may be connected to the high voltage driving circuit 724 of each high voltage power converter 7012" for outputting at least one.
  • the high voltage control signal is coupled to the high voltage drive circuit 724; or a high voltage control circuit 912 is coupled to the high voltage drive circuit 724 of the plurality of high voltage power converters 7012" for outputting at least one high voltage control signal to the corresponding high voltage drive circuit 724.
  • the high voltage control circuit 912 is one, the high voltage control circuit 912 is connected to the high voltage driving circuit 724 of each high voltage power converter 7012" for outputting at least one high voltage control signal to the corresponding high voltage driving circuit 724.
  • the low voltage control circuit 911 can When there are a plurality of low voltage control circuits 911, each low voltage control circuit 911 may be connected to the low voltage driving circuit 723 of each low voltage power converter 7011" for outputting at least one low voltage control signal to the corresponding
  • the low voltage driving circuit 911 is also connected to the low voltage driving circuit 723 of the plurality of low voltage power converters 7011" for outputting at least one low voltage control signal to the corresponding low voltage driving circuit 723.
  • the low voltage control circuit 911 For one time, the low voltage control circuit 911 is coupled to the low voltage drive circuit 911 of each low voltage power converter module 7011" for outputting at least one low voltage control signal to the corresponding low voltage drive circuit 723.
  • the high voltage control circuit 912 has a one-to-one correspondence with the high voltage power converter 7012.
  • the low voltage control circuit 911 has a one-to-one correspondence with the low voltage power converter 7011.
  • a high voltage control circuit 912 may also correspond to two high voltages.
  • the power converter 7012", a low-voltage control circuit 911 corresponds to two low-voltage power converters 7011" and the like, which are not limited in this embodiment of the present invention.
  • At least one high voltage power converter 7012" and at least one low voltage power converter 7011" can be independently controlled by at least one high voltage control circuit 912 and at least one low voltage control circuit 911, thereby reducing the control delay.
  • each of the auxiliary power sources 93 can be configured to draw power from the DC bus capacitor C B4 of the corresponding low voltage power converter 7011" to obtain the DC bus voltage on the DC bus capacitor C B4 . Since the DC bus capacitor C B4 of the low voltage power converter 7011" is powered, the power consumption of the auxiliary power source 93 is reduced.
  • the auxiliary power source 93 can be a DC/DC converter. The input of the DC/DC converter is connected to the DC bus capacitor C B4 of any low voltage power converter 7011", and the DC bus voltage is obtained from the DC bus capacitor C B4 . The output of the DC/DC converter can be connected.
  • the high voltage control circuit 912, the low voltage control circuit 911, the high voltage drive circuit 724, and the low voltage drive circuit 723 convert the DC bus voltage to the local controller 91 (or the high voltage control circuit 912 and the low voltage control circuit 911) and the high voltage drive circuit 724. Or a voltage supplied by the low voltage driving circuit 723, such as a direct current (24V).
  • the topology of the power converters 701 (7011" and 7012") in FIG. 22 to FIG. 24 may be any one of FIG. 8 to FIG. 14, but not limited thereto, and other topologies are not excluded. .
  • the invention can reduce the number of local controllers, optical fibers and auxiliary power sources by simplifying the structure by forming a plurality of power converters into one power unit and using a local controller, an optical fiber, and an auxiliary power source to control multiple power converters. Design, reduce costs and improve reliability.
  • the invention solves the problem that when the method of cascading low-voltage power unit modules is adopted, the control amount is large, the required hardware resources are large, the cost is high, and the number of low-voltage power unit modules is large, resulting in low power density; At least the input end of the DC converter is connected to both ends of the low voltage bus capacitor. Therefore, the withstand voltage of the original secondary side of the transformer of the DC to DC converter only needs to reach the voltage of the low voltage DC bus, thereby avoiding the implementation of the technology. Difficult question.
  • the invention is applicable to the topology of all AC/DC, DC/AC, DC/DC power converter connections and is widely used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

一种模块化电源系统,被配置为包括:一个主控制器(90),被配置为输出主控制信号;N个本地控制器(91),其中每一个本地控制器被配置为接收主控制信号,以输出至少一个本地控制信号;N个辅助电源(93),与N个本地控制器一一对应,其中每一个辅助电源被配置为给对应的本地控制器提供电源;以及N个功率单元(70),与N个本地控制器一一对应,其中每一个功率单元包括第一端(X1)和第二端(X2),每一个功率单元的第二端连接到相邻的一个功率单元的第一端,每一个功率单元被配置为包括M个功率变换器(701),每一个功率变换器被配置为根据对应的本地控制器输出的本地控制信号运行。该模块化电源系统能够简化结构,降低成本,并提高可靠性。

Description

模块化电源系统 技术领域
本发明涉及电力电子技术领域,特别涉及一种模块化电源系统。
背景技术
目前,在一些较高电压等级(如10kV以上)应用场合,如静止无功发生器(Static Var Generator,SVG)、中压变频器(Medium Variable-frequency Drive,MVD)以及轻型高压直流输电系统(High Voltage Direct Current Transmission Light,HVDC-Light)等,由于系统电压等级较高,受半导体器件的耐压等级和成本所限,通常都采用功率单元级联的电路拓扑结构。
传统的功率单元级联的拓扑结构需要给每一个功率单元即功率变换器配备一套光纤、辅助电源、本地控制器。这种功率单元级联的拓扑结构随着电压等级的提高,需要级联的功率单元的数量也随之增加,导致光纤、辅助电源及本地控制器的数量也随之增加,使得这种拓扑结构的设计复杂,成本高,同时也会降低其可靠性。
图1是现有技术中一个三相SVG系统的结构示意图。图2是现有技术中一个更具体的三相SVG系统的示意图。图1和图2中的SVG系统包括三相电路,每一相电路中的功率单元级联连接。
如图1中所示,该SVG系统的每一相电路都由多个功率单元1级联而成。这里的术语“级联”在本领域中是公知常识,即每一个功率单元包括第一端T 1和第二端T 2,相邻两个功率单元的其中一个的第二端T 2与另一个的第一端T 1连接。每一相电路的第1个功率单元的第一端T 1经滤波器L分别连接到三相电网的U A、U B和U C三相线路上,每一相电路的最后一个功率单元的第二端相互连接。
如图2所述,该SVG系统的每一相电路都由8个功率单元P 1至P 8级联而成。每一个功率单元包括如图1中所示的第一端和第二端,其中 相邻两个功率单元的其中一个的第二端与另一个的第一端连接。例如,功率单元P 1的第二端与功率单元P 2的第一端连接,功率单元P 2的第二端与功率单元P 3的第一端连接,依次类推,功率单元P 7的第二端与功率单元P 8的第一端连接。三相电路中三个功率单元P 1的第一端经过滤波电路(由电感L、电阻R和电容C组成)分别连接于三相电网G的U A、U B和U C相,其中三相电网G的U A、U B和U C相连接负载R load。三相电路中三个功率单元P 8的第二端相互连接。每一个功率单元中包括四个功率开关器件2。每一个功率开关器件2由一个功率半导体开关S与一个反向并联的体二极管或外接二极管D构成。功率半导体开关S的集电极与二极管D的阴极连接,功率半导体开关S的发射极与二极管D的阳极连接。由于功率半导体开关S与一个反向并联的体二极管或外接二极管D二者通常作为一个整体使用,所以为了描述简洁的目的,以下描述中不再单独提及反向并联的体二极管或外接二极管D。
图1中所示的功率单元1可以是全桥(H桥)电路,也可以是其它的电路拓扑结构,如半桥电路、整流-逆变电路等。图3是现有技术中的一个H桥电路(拓扑)的示意图。例如,以功率单元为H桥电路为例,H桥电路如图3中所示,包括功率半导体开关S 1至S 4和直流母线电容C B。功率半导体开关S 1的第一端连接于直流母线电容C B的正极端和功率半导体开关S 3的第一端。功率半导体开关S 1的第二端连接于功率半导体开关S 4的第一端。功率半导体开关S 4的第二端连接于直流母线电容C B的负极端和功率半导体开关S 2的第二端。功率半导体开关S 3的第二端连接功率半导体开关S 2的第一端。功率半导体开关S 1的第二端作为H桥电路的第一输出端,也即功率单元1的第一端T 1,功率半导体开关S 3的第二端作为H桥电路的第二输出端,也即功率单元1的第二端T 2
图4是现有技术中一个单相SVG的示意图。如图4中所示,该单相SVG包括充电部分3、功率部分4和控制部分5。该单相SVG也包括多个功率单元40,每一个功率单元40包括如图1中所示的第一端和第二端,相邻两个功率单元40其中一个的第一端与另一个的第二端连接。图4是应用于25kV单相SVG的传统级联式方案。该SVG由多个功率单元级联 后形成一相,经滤波器和接触器接入电网。该SVG的每一个功率单元40通常采用一个H桥电路。H桥电路的拓扑结构如图3中所示,这里不再赘述。该SVG系统的每一个功率单元40还包括直流母线电容C B,其连接关系如图4中所示,其中充电部分3用以对直流母线电容C B进行预充电,控制部分5用以控制功率部分4的运行。
从图4可以看出,在传统的级联式拓扑结构中,除了包括一个主控制器50之外,每一个功率单元40即作为功率变换器,例如H桥电路,都需要单独配备一套本地控制器51、驱动电路52、辅助电源53及光纤54,其连接关系如图4中所示,主控制器50输出主控制信号至本地主控制器51,本地主控制器51根据主控制信号产生对应的功率单元的本地控制信号至驱动电路52,驱动电路52根据本地控制信号输出驱动信号来驱动对应的功率单元运行。例如25kV单相SVG,通常可以采用以下两种方案来实现。第一种方案:H桥电路中的功率开关器件均采用常用的1700V绝缘栅双极型晶体管(Insulated Gate Bipolar Translator,IGBT),那么单个功率单元40的直流母线电压为1000V,考虑冗余,共需要55级功率单元级联,因此一共需要55套本地控制板51、55套光纤54及55个辅助电源53。如此多的本地控制器51、光纤54、辅助电源53将导致SVG的结构设计极其复杂,成本也相当高昂,同时降低了其可靠性。
第二种方案:H桥电路中的功率开关器件选用高压IGBT,例如3300V IGBT甚至6500V IGBT,将单个功率单元40的电压等级提高。为减少功率单元40的级联数量,减少本地控制器51、光纤54、辅助电源53的数量,通常可以采用第二种方案。在第二种方案中,若选用3300V IGBT,每个功率单元40的电压等级相比1700V IGBT方案提高一倍,级联数量可由55级减少为28级,本地控制器51、光纤54及辅助电源53的数量及成本也可减少一半。但受限于当前的半导体工艺发展水平,3300V IGBT的成本依然居高不下,同样的电流规格下,其成本远远超过1700V IGBT成本的2倍。因此第二种方案的成本将远远超过第一种方案。如果选用6500V IGBT,成本的压力则更高。
因此,目前不管是采用低压IGBT功率单元的级联方案,或是采用高 压IGBT功率单元的级联方案,均有其显著的缺点。
图5是现有技术中一个HVDC-Light系统的示意图。如图5中所示,该HVDC-Light包括三相电路,每一相电路包括上半桥臂和下半桥臂,每一相电路的上半桥臂和下半桥臂均包括多个级联的功率单元40和电感L,每一个功率单元40也包括如图1中所示的第一端和第二端,相邻两个功率单元40其中一个的第一端与另一个的第二端连接,每个上桥臂的电感L与相应下桥臂的电感L相连,并且两个电感L之间的连接点分别连接到电网,其连接关系如图5中所示。该HVDC-Light的每一个功率单元40采用了一个半桥变换器。该HVDC-Light的每一个功率单元40还包括直流母线电容,该HVDC-Light的每一个功率单元40还需要连接驱动电路52,功率单元40根据驱动电路52输出的驱动信号进行运行。除了主控制器50之外,每一个功率单元40也都需要配备一套本地控制器51、光纤54及辅助电源53,其连接关系如图5中所示。
由于HVDC-Light的直流电压高达上百千伏,需要级联的功率单元40的数量极其庞大,所以上述提到的问题更加显著,即现有技术中HVDC-Light整体结构复杂、成本高且可靠性低。
同时,本地控制器和辅助电源的供电方式也需要进一步考虑和改进。
另外,功率半导体开关的驱动方式也需要进一步考虑和改进。
发明内容
本发明的目的在于提供一种模块化电源系统,以简化电力电子系统的结构,降低成本,并提高可靠性。
根据本发明的一个方面,提供一种模块化电源系统,被配置为包括:一个主控制器,被配置为输出主控制信号;N个本地控制器,其中每一个所述本地控制器被配置为接收所述主控制信号,以输出至少一个本地控制信号;N个辅助电源,与所述N个本地控制器一一对应,其中每一个所述辅助电源被配置为给对应的所述本地控制器提供电源;以及N个功率单元,与所述N个本地控制器一一对应,其中每一个所述功率单元包括第一端和第二端,每一个所述功率单元的所述第二端连接到相 邻的一个所述功率单元的所述第一端,每一个所述功率单元被配置为包括M个功率变换器,其中每一个所述功率变换器包括第三端和第四端,每一个所述功率变换器的所述第四端连接到相邻的一个所述功率变换器的所述第三端,且第一个所述功率变换器的所述第三端为所述功率单元的所述第一端,第M个所述功率变换器的所述第四端为所述功率单元的所述第二端,每一个所述功率变换器被配置为根据对应的所述本地控制器输出的所述本地控制信号运行,其中N和M均为大于1的自然数。
在本发明的一些示例性实施例中,其中所述辅助电源从外部电源取电。
在本发明的一些示例性实施例中,其中所述N个辅助电源与所述N个功率单元一一对应,每一个所述辅助电源被配置为从对应的所述功率单元取电。
在本发明的一些示例性实施例中,其中每一个所述辅助电源被配置为从对应的所述功率单元中的任一个或多个所述功率变换器的直流母线电容取电,以获取所述直流母线电容上的直流母线电压。
在本发明的一些示例性实施例中,其中部分所述N个辅助电源从外部电源取电,另一部分所述N个辅助电源从对应的所述功率单元取电。
在本发明的一些示例性实施例中,其中所述功率单元中的所述M个功率变换器中至少一个为高压功率变换器,至少一个为低压功率变换器,所述高压功率变换器的工作电压高于所述低压功率变换器的工作电压,每一个所述高压功率变换器包括至少一个高压功率半导体开关,每一个所述低压功率变换器包括至少一个低压功率半导体开关,所述高压功率半导体开关的工作电压高于所述低压功率半导体开关的工作电压。
在本发明的一些示例性实施例中,其中每一个所述功率单元还包括至少一个高压驱动电路和至少一个低压驱动电路,所述至少一个高压驱动电路的数量与所述至少一个高压功率变换器一一对应,每一个所述高压驱动电路连接于对应的所述高压功率半导体开关,每一个所述高压驱动电路被配置为接收对应的所述本地控制信号以输出至少一个驱动信号来分别驱动对应的所述高压功率半导体开关;所述至少一个低压驱动电 路与所述至少一个低压功率变换器一一对应,每一个所述低压驱动电路连接于对应的低压功率半导体开关,每一个所述低压驱动电路被配置为接收对应的所述本地控制信号以输出至少一个驱动信号来分别驱动对应的所述低压功率半导体开关。
在本发明的一些示例性实施例中,其中每一个所述功率单元还包括至少一个高压驱动电路和至少一个低压驱动电路,所述至少一个高压驱动电路的数量等于所述至少一个高压功率半导体开关的数量,每一个所述高压驱动电路连接于对应的所述高压功率半导体开关,每一个所述高压驱动电路被配置为接收对应的所述本地控制信号以输出驱动信号来驱动对应的所述高压功率半导体开关;所述至少一个低压驱动电路的数量等于所述至少一个低压功率半导体开关的数量,每一个所述低压驱动电路连接于对应的低压功率半导体开关,每一个所述低压驱动电路被配置为接收对应的所述本地控制信号以输出驱动信号来驱动对应的所述低压功率半导体开关。
在本发明的一些示例性实施例中,其中每一个对应的所述本地控制器包括:高压控制电路,被配置为输出所述本地控制信号至对应的所述高压驱动电路;以及低压控制电路,被配置为输出所述本地控制信号至对应的所述低压驱动电路。
在本发明的一些示例性实施例中,其中每一个所述辅助电源被配置从对应的所述功率单元中的一个或多个所述低压功率变换器的直流母线电容取电,以获取所述直流母线电容上的直流母线电压。
在本发明的一些示例性实施例中,其中每一个所述辅助电源为DC/DC变换器,所述DC/DC变换器接收所述直流母线电容上的所述直流母线电压,并将所述直流母线电压转换为给对应的所述本地控制器供电的电压。
在本发明的一些示例性实施例中,其中每一个所述辅助电源为DC/DC变换器,所述DC/DC变换器接收所述直流母线电容上的所述直流母线电压,并将所述直流母线电压转换为给对应的所述本地控制器,或者所述DC/DC变换器接收所述直流母线电容上的所述直流母线电压, 并将所述直流母线电压转换为给对应的所述本地控制器、所述高压驱动电路以及所述低压驱动电路供电的电压。
在本发明的一些示例性实施例中,其中所述功率变换器为AC/DC变换器、DC/AC变换器和DC/DC变换器中的任何一种。
在本发明的一些示例性实施例中,其中所述M个功率变换器的直流母线电压为全部相同,部分相同,或全部不相同。
在本发明的一些示例性实施例中,其中所述M个功率变换器的拓扑结构为全部相同,或部分相同。
在本发明的一些示例性实施例中,其中每一个所述功率单元中的所述M个功率变换器的拓扑结构全部为全桥变换器、半桥变换器、中性点可控三电平变换器、二极管钳位三电平变换器、飞跨电容三电平变换器、全桥谐振变换器和半桥谐振变换器中的一种。
在本发明的一些示例性实施例中,其中每一个所述功率单元中的所述M个功率变换器的拓扑结构为全桥变换器、半桥变换器、中性点可控三电平变换器、二极管钳位三电平变换器、飞跨电容三电平变换器、全桥谐振变换器和半桥谐振变换器中的两种或两种以上的组合。
本发明通过将多个功率变换器组成一个功率单元,利用一套本地控制器、光纤、辅助电源控制多个功率变换器的方法,可大大减少本地控制器、光纤、辅助电源的数量,简化结构设计,降低成本,提高可靠性。
本发明解决了模块化电源系统的控制量繁多,所需硬件资源较多,成本较高,同时功率单元数量较多,导致功率密度较低的问题;并且由于至少一直流转直流变换器的输入端连接于低压母线电容的两端,因此直流转直流变换器的变压器原副边的耐压程度只需达到低压直流母线电压以上即可,从而避免了实现技术较难的问题。
本发明适用于所有AC/DC、DC/AC、DC/DC功率变换器连接的拓扑结构,应用广泛。
附图说明
通过参照附图详细描述其示例实施例,本发明的上述和其它目标、特征及优点将变得更加明显。
图1是现有技术中一个三相SVG系统的结构示意图;
图2是现有技术中一个更具体的三相SVG系统的示意图;
图3是现有技术中的一个H桥电路(拓扑)的示意图;
图4是现有技术中一个单相SVG的示意图;
图5是现有技术中一个HVDC-Light系统的示意图;
图6是本发明一个实施例的模块化电源系统的方框图;
图7是本发明另一个实施例的模块化电源系统的方框图;
图8是本发明另一个实施例的模块化电源系统的方框图;
图9是本发明另一个实施例的模块化电源系统的方框图;
图10是本发明另一个实施例的模块化电源系统的方框图;
图11是本发明另一个实施例的模块化电源系统的方框图;
图12是本发明另一个实施例的模块化电源系统的方框图;
图13是本发明另一个实施例的模块化电源系统的方框图;
图14是本发明另一个实施例的模块化电源系统的方框图;
图15是本发明另一个实施例的模块化电源系统的方框图;
图16是本发明另一个实施例的模块化电源系统的方框图;
图17是本发明另一个实施例的模块化电源系统的方框图;
图18是本发明另一个实施例的模块化电源系统的方框图;
图19是本发明另一个实施例的模块化电源系统的方框图;
图20是本发明另一个实施例的模块化电源系统的方框图;
图21是本发明另一个实施例的模块化电源系统的方框图;
图22是本发明另一个实施例的模块化电源系统的方框图;
图23是本发明另一个实施例的模块化电源系统的方框图;以及
图24是本发明另一个实施例的模块化电源系统的方框图。
具体实施例
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够 以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本发明将更加全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。附图仅为本发明的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。
此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本发明的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本发明的技术方案而省略所述特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知结构、方法、装置、实现或者操作以避免喧宾夺主而使得本发明的各方面变得模糊。
图6是本发明一个实施例的模块化电源系统的方框图。如图6中所示,本发明的电力电子变换器被配置为包括:一个主控制器90、N个本地控制器91、N个辅助电源93和N个功率单元70,其中N为大于1的自然数。
主控制器90被配置为输出主控制信号。主控制信号例如是设置来控制该模块化电源系统的整体运行状态的一个或多个参数。
每一个本地控制器91被配置为接收前述的主控制信号,以输出至少一个本地控制信号。本地控制信号例如是设置来控制对应的功率单元70的整体运行状态的一个或多个参数,或者本地控制信号用以控制对应的功率单元70中部分功率变换器的运行状态。
N个辅助电源93与N个本地控制器91一一对应,其中每一个辅助电源93被配置为给对应的本地控制器91提供电源。
N个功率单元70与N个本地控制器91一一对应,每一个功率单元70包括第一端X 1和第二端X 2,每一个功率单元70的第二端X 2连接到相邻的一个功率单元70的第一端X 1,也就是说,相邻两个功率单元70的其中一个的第二端X 2与另一个的第一端X 1连接。
每一个功率单元70被配置为包括M个功率变换器701,其中每一个 功率变换器701包括第三端X 3和第四端X 4,每一个功率变换器的第四端X 4连接到相邻的一个功率变换器701的第三端X 3。也就是说,相邻两个功率变换器701的其中一个的第四端X 4与另一个的第三端X 3连接。M为大于1的自然数。这样,第1个功率变换器701的第三端X 3即为该功率单元70的第一端X 1,第M个功率变换器701的第四端X 4为该功率单元70的第二端X 2。每一个功率变换器701被配置为根据对应的本地控制器91输出的本地控制信号运行。
作为本发明的一个实施例,主控制器90与每一个本地控制器91之间可以通过光隔离器件,例如光纤94传输前述的主控制信号。在其他实施例中,主控制器90与每一个本地控制器91之间可以通过磁隔离器件,例如,隔离变压器,进行连接,主控制器90与每一个本地控制器91之间的连接方式不仅限于上述连接方式。
本发明的电力电子装置可以应用于SVG、MVD、HVDC-Light以及风力发电系统等领域。
如图6中所示,本发明提出将M个功率变换器701合成为一个功率单元70,一个功率单元70配置一套本地控制器91、光纤94及辅助电源93,即一套本地控制器91、光纤94及辅助电源93控制M个功率变换器701。而在传统的方案中,每个功率单元40即功率变换器均需要配置一套本地控制器51、光纤54及辅助电源53,相比于传统方案,本发明提出的模块化电源系统所需要配置的本地控制器91、光纤94及辅助电源93的数量将降为传统方案的1/M。本发明使得模块化电源系统的结构设计大大简化,成本也显著降低,同时可靠性得到极大提高。
本发明不限制各个功率变换器701的直流母线电压。本发明的模块化电源系统中的M个功率变换器701的直流母线电压可以为全部相同,部分相同,或全部不相同。基于图6,图7是本发明另一个实施例的模块化电源系统的方框图。如图7中所示,功率单元70内M个功率变换器701的直流母线电压可以分别为V 1、V 2...和V M,其中V 1、V 2...和V M可以全部相同,即V 1=V 2=...=V M,也可以部分相同V 1=V 2,V 1≠V M,或者全部不相同,即V 1≠V 2≠...≠V M
本发明也不限制各个功率变换器701中所用的拓扑结构。本发明的模块化电源系统中的M个功率变换器701可以为交流/直流(AC/DC)变换器、直流/交流(DC/AC)变换器和直流/直流(DC/DC)变换器中的任何一种,因此图7中用功率变换器701代表所有适用的AC/DC、DC/AC和DC/DC拓扑结构中的任何一种。本发明不限制M个功率变换器701中所用的拓扑结构还体现在M个功率变换器的拓扑结构可以为全部相同,或部分相同。例如,本发明的模块化电源系统中的每一个功率单元70中的M个功率变换器701的拓扑结构可以全部为全桥变换器、半桥变换器、中性点可控三电平变换器、二极管钳位三电平变换器、飞跨电容三电平变换器、全桥谐振变换器和半桥谐振变换器中的一种。或者例如,本发明的模块化电源系统中的每一个功率单元70中的M个功率变换器701的拓扑结构可以为全桥变换器、半桥变换器、中性点可控三电平变换器、二极管钳位三电平变换器、飞跨电容三电平变换器、全桥谐振变换器和半桥谐振变换器中的两种或两种以上的组合。
本发明的模块化电源系统中的每一个功率单元70中的M个功率变换器701中每一个功率变换器701可以被配置为包括:至少一个功率半导体开关,其中每一个本地控制信号被配置为控制对应的功率半导体开关的导通和断开。
如图6和图7中所示,本实施例的模块化电源系统中的每一个功率单元70可以包括:M个驱动电路702,与M个功率变换器701一一对应,其中每一个驱动电路702被配置为连接于对应的功率变换器701中的功率半导体开关,接收并根据对应的本地控制器91输出的至少一个本地控制信号,以输出至少一个驱动信号来驱动对应的M个功率变换器701中的功率半导体开关的导通和断开。
在其它实施例中,模块化电源系统中的每一个功率单元可以包括:多个驱动电路,多个驱动电路的数量等于这个功率单元中功率半导体开关的数量,每一个驱动电路被配置为连接于对应的功率半导体开关,接收并根据对应的本地控制信号以输出一个驱动信号来驱动对应的功率半导体开关的导通和断开。
图8是本发明另一个实施例的模块化电源系统的方框图。如图8中所示,本实施例的模块化电源系统中每一个功率单元70的M个功率变换器701的拓扑结构均采用全桥变换器,例如H桥电路。每一个H桥电路701包括4个功率半导体开关和直流母线电容,4个功率半导体开关构成2个桥臂,为了便于说明,将4个功率半导体开关分别定义为一个桥臂的上功率半导体开关、下功率半导体开关、另一个桥臂的上功率半导体开关和下功率半导体开关,其中一个桥臂的上功率半导体开关的一端连接另一个桥臂的上功率半导体开关的一端和直流母线电容的一端,一个桥臂的下功率半导体开关的另一端连接另一个桥臂的下功率半导体开关的另一端和直流母线电容的另一端,一个桥臂的上功率半导体开关与下功率半导体开关连接于第三端X 3,另一个桥臂的上功率半导体开关与下功率半导体开关连接于第四端X 4。以其中第M个功率变换器70为例,功率变换器701包括两个桥臂和直流母线电容,一个桥臂的上功率半导体开关Q M1的一端连接另一个桥臂的上功率半导体开关Q M3的一端和直流母线电容C B的一端,一个桥臂的下功率半导体开关Q M2的另一端连接另一个桥臂的下功率半导体开关Q M4的另一端和直流母线电容C B的另一端,一个桥臂的上功率半导体开关Q M1与下功率半导体开关Q M2的连接点为第三端X 3,另一个桥臂的上功率半导体开关Q M3与下功率半导体开关Q M4的连接点为第四端X 4
在本实施例中,每一个功率单元70中的第1个H桥电路701的第三端X 3为该功率单元70的第一端X 1,第1个H桥电路701的第四端X 4连接第二个H桥电路701的第三端X 3,以此类推,第M-1个H桥电路701的第四端X 4连接第M个H桥电路701的第三端X 3,第M个功率变换器的第四端X 4为该功率单元70的第二端X 2
每一个功率单元70所对应的本地控制器91输出至少一个本地控制信号用以控制对应的H桥电路701中功率半导体开关的导通和断开。在本实施例中,每一个H桥电路701需要4个本地控制信号,分别控制对应的功率半导体开关导通和断开,每一个功率单元70需要4×M个本地控制信号,即,本地控制器需要输出4×M个本地控制信号,用以控制 对应的功率半导体开关的导通和断开,即,功率半导体开关Q 11-Q M4均需要一个对应的本地控制信号。
如图8所示,每一个功率单元70还包括M个驱动电路702,驱动电路702与M个H桥电路701一一对应,每一个驱动电路702接收对应的本地控制信号,并输出至少一驱动信号来分别驱动对应的功率半导体开关的导通和断开,具体而言,每一个驱动电路702接收对应的4个本地控制信号,并输出4个驱动信号来分别驱动对应的功率半导体开关的导通和断开,以第1个H桥电路701所对应的驱动电路702为例,该驱动电路输出4个驱动信号分别驱动功率半导体开关Q 11-Q 14的导通和断开。
在其它实施例中,每一个功率单元70还包括多个驱动电路,驱动电路的数量等于4×M,每一个驱动电路连接于对应的一个功率半导体开关,并且接收一个对应的本地控制信号以输出一个驱动信号来驱动对应的功率半导体开关的导通和断开,以第1个H桥电路701所对应的4个驱动电路为例,4个驱动电路分别连接功率半导体开关Q 11-Q 14并且每一个驱动电路输出一个驱动信号来驱动对应的功率半导体开关Q M1-Q M4的导通和断开。
图9是本发明另一个实施例的模块化电源系统的方框图。如图9中所示,本实施例的模块化电源系统中每一个功率单元70的M个功率变换器701的拓扑结构均采用半桥变换器。每一个半桥变换器701包括2个功率半导体开关和直流母线电容,其连接关系如图9中所示。一个功率半导体的一端连接直流母线电容的一端,其另一端连接另一个功率半导体开关的一端,另一个功率半导体开关的另一端连接直流母线电容C B的另一端。2个功率半导体开关相互连接的连接点为第三端X 3,另一个功率半导体开关的另一端为第四端X 4。以第1个功率变换器70为例,功率变换器701包括两个功率半导体开关Q 11、Q 12和直流母线电容C B。功率半导体开关Q 11的一端连接于直流母线电容C B的一端,功率半导体开关Q 11的另一端连接于功率半导体开关Q 12的一端,功率半导体开关Q 12的另一端连接于直流母线电容C B的另一端,功率半导体开关Q 11与功率半导体开关Q 12的连接点为第1个功率变换器701的第三端X 3,功率半 导体开关Q 12的另一端为第1个功率变换器701的第四端X 4
在本实施例中,每一个功率单元70中第1个半桥变换器的第三端X 3为功率单元70的第一端X 1,第1个半桥变换器的第四端X 4连接第二个半桥变换器的第三端X 3,依次类推,第M-1个半桥变换器的第四端X 4连接第M个半桥变换器的第三端X 3,第M个半桥变换器的第四端X 4为功率单元70的第二端X 2
在本实施例中,每一个功率单元70对应的本地控制器可以输出2×M个本地控制信号,用以控制半桥变换器701中的功率半导体开关Q 11-Q M2的导通和断开,即,功率半导体开关Q 11-Q M2均需要一个本地控制信号。
如图9所示,每一个功率单元70还包括M个驱动电路702,驱动电路702与M个半桥变换器701一一对应,每一个驱动电路702接收对应的本地控制信号,并输出至少一驱动信号来分别驱动对应的功率半导体开关的导通和断开,具体而言,每一个驱动电路702接收对应的2个本地控制信号,并输出2个驱动信号来分别驱动对应的功率半导体开关的导通和断开,以第1个半桥变换器701所对应的驱动电路702为例,该驱动电路输出2个驱动信号分别驱动功率半导体开关Q 11-Q 12的导通和断开。
在其它实施例中,每一个功率单元70还包括多个驱动电路,驱动电路的数量等于2×M,每一个驱动电路性连接于对应的一个功率半导体开关,并且接收一个对应的本地控制信号以输出一个驱动信号来驱动对应的功率半导体开关的导通和断开,以第1个半桥变换器701所对应的2个驱动电路为例,2个驱动电路分别连接功率半导体开关Q 11-Q 12并且每一个驱动电路输出一个驱动信号来驱动对应的功率半导体开关Q 11-Q 12的导通和断开。
图10是本发明另一个实施例的模块化电源系统的方框图。如图10中所示,本实施例的模块化电源系统中每一个功率单元70的M个功率变换器701的拓扑结构均采用中性点可控三电平变换器。每一个中性点可控三电平变换器701包括8个功率半导体开关和2个直流母线电容, 其连接关系如图10中所示。以第1个功率变换器701为例加以说明,功率半导体开关Q 11的一端连接于直流母线电容C 1的一端和功率半导体开关Q 15的一端,直流母线电容C 1的另一端连接于直流母线电容C 2的一端,功率半导体开关Q 11的另一端连接于功率半导体开关Q 12的一端,功率半导体开关Q 11与功率半导体开关Q 12的连接点为第1个功率变换器701的第三端X 3,功率半导体开关Q 12的另一端连接于直流母线电容C 2的另一端和功率半导体开关Q 16的另一端,功率半导体开关Q 15的另一端连接于功率半导体开关Q 16的一端,功率半导体开关Q 15与功率半导体开关Q 16的连接点为第1个功率变换器701的第四端X 4,功率半导体开关Q 13的一端连接于直流母线电容C 1的另一端,功率半导体开关Q 13的另一端连接于功率半导体开关Q 14的一端,功率半导体开关Q 14的另一端连接于功率半导体开关Q 11的另一端,功率半导体开关Q 17的一端连接于直流母线电容C 1的另一端,功率半导体开关Q 17的另一端连接于功率半导体开关Q 18的一端,功率半导体开关Q 18的另一端连接于功率半导体开关Q 15的另一端。
在本实施例中,每一个功率单元70中第1个中性点可控三电平变换器的第三端X 3为功率单元70的第一端X 1,第1个中性点可控三电平变换器的第四端X 4连接第二个中性点可控三电平变换器的第三端X 3,依次类推,第M-1个中性点可控三电平变换器的第四端X 4连接第M个中性点可控三电平变换器的第三端X 3,第M个中性点可控三电平变换器的第四端X 4为功率单元70的第二端X 2
在本实施例中,每一个功率单元对应的本地控制器可以输出8×M个本地控制信号,用以控制中性点可控三电平变换器701中功率半导体开关Q 11-Q M8的的导通和断开,即,功率半导体开关Q 11-Q M8均需要一个本地控制信号。
如图10所示,每一个功率单元70还包括M个驱动电路702,驱动电路702与M个中性点可控三电平变换器701一一对应,每一个驱动电路702接收对应的本地控制信号,并输出至少一驱动信号来分别驱动对应的功率半导体开关的导通和断开,具体而言,每一个驱动电路702接 收对应的8个本地控制信号,并输出8个驱动信号来分别驱动对应的功率半导体开关的导通和断开,以第1个中性点可控三电平变换器701所对应的驱动电路702为例,该驱动电路输出8个驱动信号分别驱动功率半导体开关Q 11-Q 18的导通和断开。
在其它实施例中,每一个功率单元70还包括多个驱动电路,驱动电路的数量等于8×M,每一个驱动电路连接对应的一个功率半导体开关,并且接收一个对应的本地控制信号以输出一个驱动信号来驱动对应的功率半导体开关的导通和断开,以第1个中性点可控三电平变换器701所对应的8个驱动电路为例,8个驱动电路分别连接功率半导体开关Q 11-Q 18并每一个驱动电路输出一个驱动信号来驱动对应的功率半导体开关Q 11-Q 18的导通和断开。
图11是本发明另一个实施例的模块化电源系统的方框图。如图11中所示,本实施例的模块化电源系统中每一个功率单元70的M个功率变换器701的拓扑结构均采用二极管钳位三电平变换器。每一个二极管钳位三电平变换器701包括8个功率半导体开关、4个钳位二极管和2个直流母线电容,其连接关系如图11中所示。以第1个功率变换器701为例,功率半导体开关Q 11的一端连接于直流母线电容C 1的一端和功率半导体开关Q 15的一端,功率半导体开关Q 11的另一端连接于功率半导体开关Q 12的一端和钳位二极管D 1的阴极,功率半导体开关Q 12的另一端连接于功率半导体开关Q 13的一端,功率半导体开关Q 13的另一端连接于功率半导体开关Q 14的一端和钳位二极管D 2的阳极,直流母线电容C 1的另一端连接于直流母线电容C 2的一端,功率半导体开关Q 14的另一端连接于直流母线电容C 2的另一端,钳位二极管D 1的阳极连接于钳位二极管D 2的阴极和直流母线电容C 1的另一端,功率半导体开关Q 12与功率半导体开关Q 13的连接点为第1个功率变换器701的第三端X 3,功率半导体开关Q 15的另一端连接于功率半导体开关Q 16的一端和钳位二极管D 3的阴极,功率半导体开关Q 16的另一端连接于功率半导体开关Q 17的一端,功率半导体开关Q 17的另一端连接于功率半导体开关Q 18的一端和钳位二极管D 4的阳极,功率半导体开关Q 18的另一端连接于直流母线电容 C 2的另一端,钳位二极管D 3的阳极连接于钳位二极管D 4的阴极和直流母线电容C 1的另一端,功率半导体开关Q 16与功率半导体开关Q 17的连接点为第1个功率变换器701的第四端X 4
在本实施例中,每一个功率单元70中第1个二极管钳位三电平变换器的第三端X 3为功率单元70的第一端X 1,第1个二极管钳位三电平变换器的第四端X 4连接第二个二极管钳位三电平变换器的第三端X 3,依次类推,第M-1个二极管钳位三电平变换器的第四端X 4连接第M个二极管钳位三电平变换器的第三端X 3,第M个二极管钳位三电平变换器的第四端X 4为功率单元70的第二端X 2
在本实施例中,每一个功率单元对应的本地控制器可以输出8×M个本地控制信号,用以控制中性点可控三电平变换器701中功率半导体开关Q 11-Q M8的的导通和断开,即,功率半导体开关Q 11-Q M8均需要一个本地控制信号。
如图11所示,每一个功率单元70还包括M个驱动电路702,驱动电路702与M个二极管钳位三电平变换器701一一对应,每一个驱动电路702接收对应的本地控制信号,并输出至少一驱动信号来分别驱动对应的功率半导体开关的导通和断开,具体而言,每一个驱动电路702接收对应的8个本地控制信号,并输出8个驱动信号来分别驱动对应的功率半导体开关的导通和断开,以第1个二极管钳位三电平变换器701所对应的驱动电路702为例,该驱动电路输出8个驱动信号分别驱动功率半导体开关Q 11-Q 18的导通和断开。
在其它实施例中,每一个功率单元70还包括多个驱动电路,驱动电路的数量等于8×M,每一个驱动电路连接对应的一个功率半导体开关,并且接收一个对应的本地控制信号以输出一个驱动信号来驱动对应的功率半导体开关的导通和断开,以第1个二极管钳位三电平变换器701所对应的8个驱动电路为例,8个驱动电路分别连接功率半导体开关Q 11-Q 18并且每一个驱动电路输出一个驱动信号来驱动对应的功率半导体开关Q 11-Q 18的导通和断开。
图12是本发明另一个实施例的模块化电源系统的方框图。如图12 中所示,本实施例的模块化电源系统中每一个功率单元70的M个功率变换器701拓扑结构均采用飞跨电容三电平变换器。每一个飞跨电容三电平变换器701包括8个功率半导体开关、2个直流母线电容和2个飞跨电容,其连接关系如图12中所示。以第1个功率变换器701为例,功率半导体开关Q 11的一端连接于直流母线电容C 1的一端和功率半导体开关Q 15的一端,功率半导体开关Q 11的另一端连接于功率半导体开关Q 12的一端和飞跨电容C 3的一端,功率半导体开关Q 12的另一端连接于功率半导体开关Q 13的一端,功率半导体开关Q 13的另一端连接于功率半导体开关Q 14的一端和飞跨电容C 3的另一端,直流母线电容C 1的另一端连接于直流母线电容C 2的一端,功率半导体开关Q 14的另一端连接于直流母线电容C 2的另一端,功率半导体开关Q 12与功率半导体开关Q 13的连接点为第1个功率变换器701的第三端X 3,功率半导体开关Q 15的另一端连接于功率半导体开关Q 16的一端和飞跨电容C 4的一端,功率半导体开关Q 16的另一端连接于功率半导体开关Q 17的一端,功率半导体开关Q 17的另一端连接于功率半导体开关Q 18的一端和飞跨电容C4的另一端,功率半导体开关Q 18的另一端连接于直流母线电容C 2的另一端,功率半导体开关Q 16与功率半导体开关Q 17的连接点为第1个功率变换器701的第四端X 4
在本实施例中,每一个功率单元70中第1个飞跨电容三电平变换器的第三端X 3为功率单元70的第一端X 1,第1个飞跨电容三电平变换器的第四端X 4连接第二个飞跨电容三电平变换器的第三端X 3,依次类推,第M-1个飞跨电容三电平变换器的第四端X 4连接第M个飞跨电容三电平变换器的第三端X 3,第M个飞跨电容三电平变换器的第四端X 4为功率单元70的第二端X 2
在本实施例中,每一个功率单元对应的本地控制器可以输出8×M个本地控制信号,用以控制中性点可控三电平变换器701中功率半导体开关Q 11-Q M8的的导通和断开,即,功率半导体开关Q 11-Q M8均需要一个本地控制信号。
如图12所示,每一个功率单元70还包括M个驱动电路702,驱动 电路702与M个飞跨电容三电平变换器701一一对应,每一个驱动电路702接收对应的本地控制信号,并输出至少一驱动信号来分别驱动对应的功率半导体开关的导通和断开,具体而言,每一个驱动电路702接收对应的8个本地控制信号,并输出8个驱动信号来分别驱动对应的功率半导体开关的导通和断开,以第1个飞跨电容三电平变换器701所对应的驱动电路702为例,该驱动电路输出8个驱动信号分别驱动功率半导体开关Q 11-Q 18的导通和断开。
在其它实施例中,每一个功率单元70还包括多个驱动电路,驱动电路的数量等于8×M,每个驱动电路接收一个对应的本地控制信号并输出一个驱动信号来驱动对应的功率半导体开关的导通和断开,以第1个飞跨电容三电平变换器701所对应的8个驱动电路为例,8个驱动电路分别连接功率半导体开关Q 11-Q 18并且每一个驱动电路输出一个驱动信号来驱动对应的功率半导体开关Q 11-Q 18的导通和断开。
图8-图12的模块化电源系统中的M个功率变换器701可以为交流/直流(AC/DC)变换器或者直流/交流(DC/AC)变换器,但是不以此为限,还可以是其它拓扑结构的变换器。
图13是本发明另一个实施例的模块化电源系统的方框图。如图13中所示,本实施例的模块化电源系统中每一个功率单元70的M个功率变换器701的拓扑结构均采用全桥谐振变换器。每一个全桥谐振变换器701包括全桥电路、谐振电路、变压器和整流桥,其连接关系如图13中所示。以第1个全桥谐振变换器701为例,全桥电路包括4个功率半导体开关和一个直流母线电容,功率半导体开关Q 11的一端连接于直流母线电容C B’的一端和功率半导体开关Q 13的一端,功率半导体开关Q 11的另一端连接于功率半导体开关Q 12的一端,功率半导体开关Q 12的另一端连接于直流母线电容C B’的另一端和功率半导体开关Q 14的另一端,功率半导体开关Q 11与功率半导体开关Q 12的连接点连接于电容C’和电感L’构成的谐振电路的一端,谐振电路的另一端连接于变压器T’的原边线圈的一端,变压器T’的原边线圈的另一端连接于功率半导体开关Q 13与功率半导体开关Q 14的连接点,直流母线电容C B’的前述一端为第1个功率变 换器的第三端X 3,直流母线电容C B’的另一端为第1个功率变换器的第四端X 4,整流桥包括4个整流二极管,整流二极管D 1’的一端连接于整流二极管D 3’一端,整流二极管D 1’的另一端连接于整流二极管D 2’一端,整流二极管D 3’的另一端连接于整流二极管D 4’一端,整流二极管D 2’的另一端连接于整流二极管D 4’另一端,整流二极管D 1’的前述一端为变换器的第五端X 5,整流二极管D 2’的另一端为变换器的第六端X 6,变压器T’的输出端分别连接于整流二极管D 1’与整流二极管D 2’的连接点以及整流二极管D 3’与整流二极管D 4’的连接点,其中变压器T’可以是中间抽头变压器,具有两个副边线圈,两个副边线圈并联连接,变压器T’也可以具有单个副边线圈。
在实施例中,每一个功率单元70中第1个全桥谐振变换器的第三端X 3为功率单元70的第一端X 1,第1个全桥谐振变换器的第四端X 4连接第二个全桥谐振变换器的第三端X 3,依次类推,第M-1个全桥谐振变换器的第四端X 4连接第M个全桥谐振变换器的第三端X 3,第M个全桥谐振变换器的第四端X 4为功率单元70的第二端X 2。每一个功率单元70中所有的全桥谐振变换器器的第五端X 5连在一起,而第六端X 6连在一起。
在本实施例中,每一个功率单元对应的本地控制器可以输出4×M个本地控制信号,用以控制全桥谐振变换器701中功率半导体开关Q 11-Q M4的的导通和断开,即,功率半导体开关Q 11-Q M4均需要一个本地控制信号。
如图13所示,每一个功率单元70还包括M个驱动电路702,驱动电路702与M个全桥谐振变换器701一一对应,每一个驱动电路702接收对应的本地控制信号,并输出至少一驱动信号来分别驱动对应的功率半导体开关的导通和断开,具体而言,每一个驱动电路702接收对应的4个本地控制信号,并输出4个驱动信号来分别驱动对应的功率半导体开关的导通和断开,以第1个全桥谐振变换器701所对应的驱动电路702为例,该驱动电路输出4个驱动信号分别驱动功率半导体开关Q 11-Q 14的导通和断开。
在其它实施例中,每一个功率单元70还包括多个驱动电路,驱动电 路的数量等于4×M,每一个驱动电路连接对应的一个功率半导体开关,并且接收一个对应的本地控制信号以输出一个驱动信号来驱动对应的功率半导体开关的导通和断开,以第1个全桥谐振变换器701所对应的4个驱动电路为例,4个驱动电路分别连接功率半导体开关Q 11-Q 14并且每一个驱动电路输出一个驱动信号来驱动对应的功率半导体开关Q 11-Q 14的导通和断开。
图14是本发明另一个实施例的模块化电源系统的方框图。如图14中所示,本实施例的模块化电源系统中每一个功率单元70的M个功率变换器701的拓扑结构均采用半桥谐振变换器。每一个半桥谐振变换器701包括半桥电路、谐振电路、变压器和整流桥,其连接关系如图14中所示。以第1个半桥谐振变换器701为例,半桥电路包括2个功率半导体开关和一个直流母线电容,功率半导体开关Q 11的一端连接于直流母线电容C B’的一端,功率半导体开关Q 11的另一端连接于功率半导体开关Q 12的一端,功率半导体开关Q 12的另一端连接于直流母线电容C B’的另一端,功率半导体开关Q 11与功率半导体开关Q 12的连接点连接于电容C’和电感L’构成的谐振电路的一端,谐振电路的另一端连接于变压器T’的原边线圈的一端,变压器T’的原边线圈的另一端连接于功率半导体开关Q 12的另一端,直流母线电容C B’的一端为第1个功率变换器的第三端X 3,直流母线电容C B’的另一端为第1个功率变换器的第四端X 4,整流桥包括4个整流二极管,整流二极管D 1’的一端连接于整流二极管D 3’一端,整流二极管D 1’的另一端连接于整流二极管D 2’一端,整流二极管D 3’的另一端连接于整流二极管D 4’一端,整流二极管D 2’的另一端连接于整流二极管D 4’另一端,整流二极管D 1’的一端为变换器的第五端X 5,整流二极管D 2’的另一端为变换器的第六端X 6,变压器T’的输出端分别连接于整流二极管D 1’与整流二极管D 2’的连接点以及整流二极管D 3’与整流二极管D 4’的连接点,其中变压器T’可以是中间抽头变压器,具有两个副边线圈,两个副边线圈并联连接,变压器T’也可以具有单个副边线圈。
在本实施例中,每一个功率单元70中第1个半桥谐振变换器的第三端X 3为功率单元70的第一端X 1,第1个半桥谐振变换器的第四端X 4 连接第二个半桥谐振变换器的第三端X 3,依次类推,第M-1个半桥谐振变换器的第四端X 4连接第M个半桥谐振变换器的第三端X 3,第M个半桥谐振变换器的第四端X 4为功率单元70的第二端X 2。每一个功率单元70中所有的半桥谐振变换器器的第五端X 5连在一起,而第六端X 6连在一起。
在本实施例中,每一个功率单元对应的本地控制器可以输出2×M个本地控制信号,用以控制半桥谐振变换器701中功率半导体开关Q 11-Q M2的的导通和断开,即,功率半导体开关Q 11-Q M2均需要一个本地控制信号。
如图14所示,每一个功率单元70还包括M个驱动电路702,驱动电路702与M个半桥谐振变换器701一一对应,每一个驱动电路702接收对应的本地控制信号,并输出至少一驱动信号来分别驱动对应的功率半导体开关的导通和断开,具体而言,每一个驱动电路702接收对应的2个本地控制信号,并输出2个驱动信号来分别驱动对应的功率半导体开关的导通和断开,以第1个半桥谐振变换器701所对应的驱动电路702为例,该驱动电路输出2个驱动信号分别驱动功率半导体开关Q 11-Q 12的导通和断开。
在其它实施例中,每一个功率单元70还包括多个驱动电路,驱动电路的数量等于2×M,每一个驱动电路连接对应的一个功率半导体开关,并且接收一个对应的本地控制信号并输出一个驱动信号来驱动对应的功率半导体开关的导通和断开,以第1个半桥谐振变换器701所对应的2个驱动电路为例,2个驱动电路分别连接功率半导体开关Q 11-Q 12并且每一个驱动电路输出一个驱动信号来驱动对应的功率半导体开关Q 11-Q 12的导通和断开。
图13和图14的模块化电源系统中的M个功率变换器701可以为直流/直流(DC/DC)变换器,但是不以此为限,还可以是其它拓扑结构的变换器。
图15是本发明另一个实施例的模块化电源系统的方框图。如图15中所示,本实施例的模块化电源系统中每一个功率单元70的M个功率变换器701的拓扑结构同时采用全桥变换器和半桥变换器的组合。每一 个全桥变换器的功率转换器7011’包括4个功率半导体开关,每一个半桥变换器7012’包括2个功率半导体开关,其连接关系如图15中所示。在本实施例中,全桥变换器的具体连接关系如图8所述,半桥变换器的具体连接关系如图9所示,在此不再赘述。类似的,相邻两个功率变换器701的其中一个的第四端X 4与另一个的第三端X 3连接,其中M为大于1的自然数。这样,第1个功率变换器701的第三端X 3即为该功率单元70的第一端X 1,第1个功率变换器701的第四端X 4连接第2个功率变换器701的第三端X 3,依次类推,第M-1个功率变换器701的第四端X 4连接第M个功率变换器701的第三端X 3,第M个功率变换器701的第四端X 4为该功率单元70的第二端X 2
本实施例中,每一个功率单元70对应的本地控制器所输出的本地控制信号的数量等于功率单元70中功率半导体开关的数量,这些本地控制信号分别控制全桥变换器和半桥变换器701中的功率半导体开关的导通和断开,即,每一个功率半导体开关均需要一个本地控制信号。
如图15所示,每一个功率单元70还包括M个驱动电路702,驱动电路702与M个功率变换器7011’和7012’一一对应,每一个驱动电路702接收对应的本地控制信号,并输出至少一驱动信号来分别驱动对应的功率半导体开关的导通和断开,具体而言,功率变换器7011’对应的驱动电路702接收对应的4个本地控制信号,并输出4个驱动信号来分别驱动对应的功率半导体开关的导通和断开,功率变换器7012’对应的驱动电路702接收对应的2个本地控制信号,并输出2个驱动信号来分别驱动对应的功率半导体开关的导通和断开。
在其它实施例中,每一个功率单元70还包括多个驱动电路,功率单元中驱动电路的数量等于其对应的功率单元中功率半导体开关的数量,每一个驱动电路连接对应的一个功率半导体开关,并且接收一个对应的本地控制信号以输出一个驱动信号来驱动对应的功率半导体开关的导通和断开,以功率变换器7011’所对应的4个驱动电路为例,4个驱动电路分别连接对应的功率半导体开关并且每一个驱动电路输出一个驱动信号来驱动对应的功率半导体开关的导通和断开,以及以功率变换器7012’ 所对应的2个驱动电路为例,2个驱动电路分别连接对应的功率半导体开关并且每一个驱动电路输出一个驱动信号来驱动对应的功率半导体开关的导通和断开。
尽管图15仅仅示出了本实施例的模块化电源系统中每一个功率单元70的M个功率变换器701的拓扑结构同时采用全桥变换器和半桥变换器的组合。然而本发明不限于此,如前所述,本发明的模块化电源系统中的每一个功率单元70中的M个功率变换器701的拓扑结构可以为全桥变换器、半桥变换器、中性点可控三电平变换器、二极管钳位三电平变换器、飞跨电容三电平变换器、全桥谐振变换器和半桥谐振变换器中的两种或两种以上的组合。
本发明的模块化电源系统中的每一个功率单元70中的M个功率变换器701中每一个功率变换器701可以被配置为包括:至少一个功率半导体开关,例如前述的功率半导体开关Q 11-Q 14、Q 11-Q 12、Q 11-Q 18、Q M1-Q M4、Q M1-Q M2或Q M1-Q M8,其中每一个前述的本地控制信号被配置为控制对应的功率半导体开关的导通和断开。
如上述如图6-图15中所示,本实施例的模块化电源系统中的每一个功率单元70可以包括:M个驱动电路702,与M个功率变换器701(或7011’或7012’)一一对应,其中每一个驱动电路702被配置为连接于对应的功率变换器701(或7011’或7012’)中的功率半导体开关,接收对应的本地控制器91输出的本地控制信号,以输出至少一个驱动信号来驱动对应的M个功率变换器701(或7011’或7012’)中的功率半导体开关的导通和断开。
如图6-图15中所示,本实施例的模块化电源系统中的每一个功率单元70可以包括:多个驱动电路702,功率单元中驱动电路的数量等于该功率单元中功率半导体开关的数量,其中每一个驱动电路702被配置为连接于对应的功率变换器701的功率半导体开关,接收对应的本地控制器91输出的本地控制信号,以输出驱动信号来驱动对应的功率半导体开关的导通和断开。
需要说明的是,图6-图15中一个功率单元包括的驱动电路的数量等 于该功率单元中功率半导体开关的数量,每一个驱动电路被配置为连接于功率变换器的功率半导体开关中对应的一个,每一个驱动电路均接收对应的本地控制器91输出的本地控制信号,以输出一个驱动信号,来驱动对应的功率半导体开关的导通和断开。
本发明的模块化电源系统中的每一个驱动电路702与对应的本地控制器91可以直接电连接,或者通过磁隔离器件连接,或者通过光隔离器件连接。
本发明的模块化电源系统中的各驱动电路702可以为彼此相同或彼此不相同。
如图6-图14中所示,本实施例的模块化电源系统中的各驱动电路702为彼此相同。
图16是本发明另一个实施例的模块化电源系统的方框图。如图16中所示,本实施例的模块化电源系统中的一个功率单元中包括5个H桥电路的功率变换器701。其中4个功率变换器701的驱动电路721不同于中间的功率变换器701的驱动电路722。
图17是本发明另一个实施例的模块化电源系统的方框图。如图17中所示,本实施例的模块化电源系统中每一个辅助电源93可以被配置为从外部电源取电,例如从市电取电或者从其它电路取电,每一个辅助电源93连接外部电源E C
图18是本发明另一个实施例的模块化电源系统的方框图。如图18中所示,本实施例的模块化电源系统中的前述N个辅助电源93与前述N个功率单元70一一对应,每一个辅助电源93可以被配置为从对应的功率单元70取电。
图19是本发明另一个实施例的模块化电源系统的方框图。如图19中所示,本实施例的模块化电源系统中的前述N个辅助电源93与前述N个功率单元70一一对应,本实施例的模块化电源系统中一部分辅助电源93可以被配置为从外部电源取电,例如从市电取电或者从其它电路取电,这一部分辅助电源93连接外部电源E C;本实施例的模块化电源系统中另一部分辅助电源93,例如图19中中部那个,可以被配置为从对应的功率 单元70取电。
图20是本发明另一个实施例的模块化电源系统的方框图。如图20中所示,本实施例的模块化电源系统中的每一个辅助电源93可以被配置为从对应的功率单元70中的任一个功率变换器701的直流母线电容C B取电,以获取直流母线电容C B上的直流母线电压。
图21是本发明另一个实施例的模块化电源系统的方框图。如图21中所示,本实施例的模块化电源系统中的每一个辅助电源93可以被配置为从对应的功率单元70中的任意一个功率变换器701的多个直流母线电容C B取电,以获取直流母线电容C B上的直流母线电压。例如图21中中部那个辅助电源93可以从两个功率变换器701的直流母线电容C B取电。当其中一个功率变换器701发生故障时,辅助电源93仍然可以从另一个正常的功率变换器701的直流母线电容C B上取电,实现冗余取电,提高了模块化电源系统的可靠性。
对应的,作为一个实施例,如图20和图21所示,本实施例的模块化电源系统中的辅助电源93可以是DC/DC变换器,例如,buck电路,boost电路,flyback电路,LLC电路等。DC/DC变换器的输入端连接于任何一个或多个功率变换器701的直流母线电容C B的两端,该DC/DC变换器从该功率变换器701的直流母线电容C B上取电,以获取直流母线电容C B4上的直流母线电压。DC/DC变换器的输出端连接本地控制器91,将直流母线电压转换为给本地控制器91供电的电压,例如直流电(24V)。
图22是本发明另一个实施例的模块化电源系统的方框图。如图22中所示,本实施例的模块化电源系统中的功率单元70中的前述M个功率变换器中至少一个为高压功率变换器7012”,至少一个为低压功率变换器7011”,高压功率变换器7012”的工作电压高于低压功率变换器7011”的工作电压,每一个高压功率变换器7012”包括至少一个高压功率半导体开关,每一个低压功率变换器7011”包括至少一个低压功率半导体开关,高压功率半导体开关的工作电压高于低压功率半导体开关的工作电压。在本实施例中,高压功率变换器7012”的拓扑结构可以是图8-图14的其中一种,低压功率变换器7011”的拓扑结构可以是图8-图14 的其中一种,高压功率变换器7012”的拓扑结构与低压功率变换器7011”的拓扑结构可以相同,或者高压功率变换器7012”的拓扑结构与低压功率变换器7011”的拓扑结构可以不相同。
对应地,作为一个实施例,如图22中所示,本实施例的模块化电源系统中的每一个功率单元70还包括至少一个高压驱动电路724和至少一个低压驱动电路723,高压驱动电路724的数量等于前述高压功率变换器7012”的数量,每一个高压驱动电路724连接于对应的高压功率半导体开关,例如每一个高压驱动电路724与功率半导体开关的控制端连接,低压驱动电路723的数量等于前述低压功率变换器7011”的数量,每一个低压驱动电路723连接于对应的低压功率半导体开关,例如每一个低压驱动电路723与功率半导体开关的控制端连接,每一个高压驱动电路724被配置为接收对应的本地控制信号,以输出至少一个驱动信号来分别驱动对应的高压功率半导体开关的导通和断开,以调节高压功率变换器7012”的第三端X 3和第四端X 4之间的电压,例如,高压功率变换器7012”的第三端X 3和第四端X 4之间的电压为6KV,每一个低压驱动电路723被配置为接收对应的本地控制信号,以输出至少一个驱动信号来分别驱动对应的低压功率半导体开关的导通和断开,以调节低压功率变换器7011”的第三端X 3和第四端X 4之间的电压,例如,低压功率变换器7011”的第三端X 3和第四端X 4之间的电压为1KV。
作为另一个实施例,实施例的模块化电源系统中的每一个所述功率单元70还包括至少一个高压驱动电路724和至少一个低压驱动电路723,所述至少一个高压驱动电路724的数量等于所述至少一个高压功率半导体开关的数量,每一个所述高压驱动电路724连接于对应的所述高压功率半导体开关,每一个所述高压驱动电路724被配置为接收对应的所述本地控制信号以输出驱动信号来驱动对应的所述高压功率半导体开关的导通和断开;所述至少一个低压驱动电路723的数量等于所述至少一个低压功率半导体开关的数量,每一个所述低压驱动电路723连接于对应的低压功率半导体开关,每一个所述低压驱动电路723被配置为接收对应的所述本地控制信号以输出驱动信号来驱动对应的所述低压功率半导 体开关的导通和断开。
对应地,作为一个实施例,如图22中所示,本实施例的模块化电源系统中的辅助电源93可以是DC/DC变换器,例如,buck电路,boost电路,flyback电路,LLC电路等。DC/DC变换器的输入端连接于任何一个低压功率变换器7011”的直流母线电容C B4的两端,其中,直流母线电容C B4可以是图8和图9以及图13和图14中的直流母线电容C B(C B’),或者是图10-图12中的直流母线电容C 1和C 2。DC/DC变换器的输入端连接于直流母线电容C B(C B’)的两端,或者DC/DC变换器的输入端连接于直流母线电容C 1的一端以及直流母线电容C 2的另一端,该DC/DC变换器从该低压功率变换器7011”的直流母线电容C B4上取电,以获取直流母线电容C B4上的直流母线电压。DC/DC变换器的输出端连接本地控制器91,将直流母线电压转换为给本地控制器91供电的电压,例如直流电(24V)。
图23是本发明另一个实施例的模块化电源系统的方框图。如图23中所示,作为辅助电源93的DC/DC变换器除了给本地控制器91供电的电压之外,还可以连接于每一个高压驱动电路724和每一个低压驱动电路723,并将直流母线电压转化为给高压驱动电路724以或低压驱动电路723供电的电压,例如直流电(24V)。
在图22和图23所示的实施例中,一个功率单元70中高压功率变换器7012”与低压功率变换器7011”的连接是可以是相互交错的,例如,按照高压功率变换器、低压功率变换器、高压功率变换器、低压功率变换器依次类推的顺序连接;或者是按照高压功率变换器、低压功率变换器、低压功率变换器、高压功率变换器依次类推的顺序连接;或者是按照高压功率变换器、高压功率变换器、低压功率变换器、高压功率变换器、低压功率变换器的顺序连接;也可以是多个低压功率变换器连接后再与高压功率变换器连接;或者多个高压功率变换器连接之后再与低压功率变换器连接。本发明实施例对至少一个高压功率变换器和至少一个低压功率变换器之间的连接方式不做限制。
本发明实施例中,每一个功率单元70中采用高压功率变换器和低压 功率变换器连接的方案解决了仅仅采用低压功率变换器连接时,控制量繁多,所需硬件资源较多,成本较高,同时低压功率变换器数量较多,导致功率密度较低的问题;并且DC/DC变换器的输入端连接在低压功率变换器的直流母线电容两端,可以使得DC/DC变换器中的变压器原副边线圈的耐压程度只需要达到低压功率变换器的直流母线电压以上即可,从而避免了实现技术较难的问题。
图24是本发明另一个实施例的模块化电源系统的方框图。如图24中所示,本实施例的模块化电源系统中的每一个所述本地控制器可以包括:至少一个高压控制电路912,被配置为输出本地控制信号至对应的高压驱动电路724;以及至少一个低压控制电路911,被配置为输出本地控制信号至对应的所述低压驱动电路723。高压控制电路912可以是一个或者多个,当高压控制电路912为多个时,可以是每个高压控制电路912与每个高压功率变换器7012”的高压驱动电路724连接,用以输出至少一个高压控制信号至高压驱动电路724;也可以是一个高压控制电路912与多个高压功率变换器7012”的高压驱动电路724连接,用以输出至少一个高压控制信号至对应的高压驱动电路724。当高压控制电路912为一个时,高压控制电路912与每一个高压功率变换器7012”的高压驱动电路724连接,用以输出至少一个高压控制信号至对应的高压驱动电路724。低压控制电路911可以是一个或者多个,当低压控制电路911为多个时,可以是每一个低压控制电路911与每一个低压功率变换器7011”的低压驱动电路723连接,用以输出至少一个低压控制信号至对应的低压驱动电路;也可以是一个低压控制电路911与多个低压功率变换器7011”的低压驱动电路723连接,用以输出至少一个低压控制信号至对应的低压驱动电路723。当低压控制电路911为一个时,低压控制电路911与每一个低压功率变换器模块7011”的低压驱动电路911连接,用以输出至少一个低压控制信号至对应的低压驱动电路723。高压控制电路912与高压功率变换器7012”一一对应,低压控制电路911与低压功率变换器7011”一一对应,当然,如图24所示,也可以是一个高压控制电路912对应两个高压功率变换器7012”,一个低压控制电路911 对应两个低压功率变换器7011”等,本发明实施例对此不做限制。
本发明实施例中,通过至少一高压控制电路912和至少一个低压控制电路911,可以独立的控制至少一高压功率变换器7012”和至少一低压功率变换器7011”,从而降低控制时延。
相应地,可结合图22和图24,每一个辅助电源93可以被配置从对应的低压功率变换器7011”的直流母线电容C B4取电,以获取直流母线电容C B4上的直流母线电压。由于从低压功率变换器7011”的直流母线电容C B4取电,从而降低了辅助电源93的取电难度。辅助电源93可以是DC/DC变换器。DC/DC变换器的输入端连接于任何一个低压功率变换器7011”的直流母线电容C B4的两端,从直流母线电容C B4上获取直流母线电压,DC/DC变换器的输出端可以连接于高压控制电路912、低压控制电路911、高压驱动电路724和低压驱动电路723,并将直流母线电压转化为给本地控制器91(或高压控制电路912和低压控制电路911)、高压驱动电路724或低压驱动电路723供电的电压,例如直流电(24V)。
相应的图22至图24中功率变换器701(7011”和7012”)的拓扑结构可以是图8至图14中的任意一种,但并不以此为限,也不排除其他的拓扑结构。
本发明通过将多个功率变换器组成一个功率单元,利用一套本地控制器、光纤、辅助电源控制多个功率变换器的方法,可大大减少本地控制器、光纤、辅助电源的数量,简化结构设计,降低成本,提高可靠性。
本发明解决了当采用级联低压功率单元模块的方式时,控制量繁多,所需硬件资源较多,成本较高,同时低压功率单元模块数量较多,导致功率密度较低的问题;并且由于至少一直流转直流变换器的输入端连接于低压母线电容的两端,因此直流转直流变换器的变压器原副边的耐压程度只需达到低压直流母线电压以上即可,从而避免了实现技术较难的问题。
本发明适用于所有AC/DC、DC/AC、DC/DC功率变换器连接的拓扑结构,应用广泛。
以上具体地示出和描述了本发明的示例性实施例。应可理解的是,本发明不限于这里描述的详细结构、设置方式或实现方法;相反,本发明意图涵盖包含在所附权利要求的精神和范围内的各种修改和等效设置。最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (17)

  1. 一种模块化电源系统,被配置为包括:
    一个主控制器,被配置为输出主控制信号;
    N个本地控制器,其中每一个所述本地控制器被配置为接收所述主控制信号,以输出至少一个本地控制信号;
    N个辅助电源,与所述N个本地控制器一一对应,其中每一个所述辅助电源被配置为给对应的所述本地控制器提供电源;以及
    N个功率单元,与所述N个本地控制器一一对应,其中每一个所述功率单元包括第一端和第二端,每一个所述功率单元的所述第二端连接到相邻的一个所述功率单元的所述第一端,每一个所述功率单元被配置为包括M个功率变换器,其中每一个所述功率变换器包括第三端和第四端,每一个所述功率变换器的所述第四端连接到相邻的一个所述功率变换器的所述第三端,且第一个所述功率变换器的所述第三端为所述功率单元的所述第一端,第M个所述功率变换器的所述第四端为所述功率单元的所述第二端,每一个所述功率变换器被配置为根据对应的所述本地控制器输出的所述本地控制信号运行,
    其中N和M均为大于1的自然数。
  2. 根据权利要求1所述的模块化电源系统,其中所述辅助电源从外部电源取电。
  3. 根据权利要求1所述的模块化电源系统,其中所述N个辅助电源与所述N个功率单元一一对应,每一个所述辅助电源被配置为从对应的所述功率单元取电。
  4. 根据权利要求3所述的模块化电源系统,其中每一个所述辅助电源被配置为从对应的所述功率单元中的任一个或多个所述功率变换器的直流母线电容取电,以获取所述直流母线电容上的直流母线电压。
  5. 根据权利要求1所述的模块化电源系统,其中部分所述N个辅助电源从外部电源取电,另一部分所述N个辅助电源从对应的所述功率单元取电。
  6. 根据权利要求1所述的模块化电源系统,其中所述功率单元中的所述M个功率变换器中至少一个为高压功率变换器,至少一个为低压功率变换器,所述高压功率变换器的工作电压高于所述低压功率变换器的工作电压,每一个所述高压功率变换器包括至少一个高压功率半导体开关,每一个所述低压功率变换器包括至少一个低压功率半导体开关,所述高压功率半导体开关的工作电压高于所述低压功率半导体开关的工作电压。
  7. 根据权利要求6所述的模块化电源系统,其中每一个所述功率单元还包括至少一个高压驱动电路和至少一个低压驱动电路,所述至少一个高压驱动电路的数量与所述至少一个高压功率变换器一一对应,每一个所述高压驱动电路连接于对应的所述高压功率半导体开关,每一个所述高压驱动电路被配置为接收对应的所述本地控制信号以输出至少一个驱动信号来分别驱动对应的所述高压功率半导体开关;所述至少一个低压驱动电路与所述至少一个低压功率变换器一一对应,每一个所述低压驱动电路连接于对应的低压功率半导体开关,每一个所述低压驱动电路被配置为接收对应的所述本地控制信号以输出至少一个驱动信号来分别驱动对应的所述低压功率半导体开关。
  8. 根据权利要求7所述的模块化电源系统,其中每一个所述功率单元还包括至少一个高压驱动电路和至少一个低压驱动电路,所述至少一个高压驱动电路的数量等于所述至少一个高压功率半导体开关的数量,每一个所述高压驱动电路连接于对应的所述高压功率半导体开关,每一个所述高压驱动电路被配置为接收对应的所述本地控制信号以输出驱动信号来驱动对应的所述高压功率半导体开关;所述至少一个低压驱动电路的数量等于所述至少一个低压功率半导体开关的数量,每一个所述低压驱动电路连接于对应的低压功率半导体开关,每一个所述低压驱动电路被配置为接收对应的所述本地控制信号以输出驱动信号来驱动对应的所述低压功率半导体开关。
  9. 根据权利要求7或8所述的模块化电源系统,其中每一个对应的所述本地控制器包括:
    高压控制电路,被配置为输出所述本地控制信号至对应的所述高压驱动电路;以及
    低压控制电路,被配置为输出所述本地控制信号至对应的所述低压驱动电路。
  10. 根据权利要求7或8所述的模块化电源系统,其中每一个所述辅助电源被配置从对应的所述功率单元中的一个或多个所述低压功率变换器的直流母线电容取电,以获取所述直流母线电容上的直流母线电压。
  11. 根据权利要求4所述的模块化电源系统,其中每一个所述辅助电源为DC/DC变换器,所述DC/DC变换器接收所述直流母线电容上的所述直流母线电压,并将所述直流母线电压转换为给对应的所述本地控制器供电的电压。
  12. 根据权利要求10所述的模块化电源系统,其中每一个所述辅助电源为DC/DC变换器,所述DC/DC变换器接收所述直流母线电容上的所述直流母线电压,并将所述直流母线电压转换为给对应的所述本地控制器供电的电压,或者所述DC/DC变换器接收所述直流母线电容上的所述直流母线电压,并将所述直流母线电压转换为给对应的所述本地控制器、所述高压驱动电路以及所述低压驱动电路供电的电压。
  13. 根据权利要求1所述的模块化电源系统,其中所述功率变换器为AC/DC变换器、DC/AC变换器和DC/DC变换器中的任何一种。
  14. 根据权利要求1所述的模块化电源系统,其中所述M个功率变换器的直流母线电压为全部相同,部分相同,或全部不相同。
  15. 根据权利要求1所述的模块化电源系统,其中所述M个功率变换器的拓扑结构为全部相同,或部分相同。
  16. 根据权利要求15所述的模块化电源系统,其中每一个所述功率单元中的所述M个功率变换器的拓扑结构全部为全桥变换器、半桥变换器、中性点可控三电平变换器、二极管钳位三电平变换器、飞跨电容三电平变换器、全桥谐振变换器和半桥谐振变换器中的一种。
  17. 根据权利要求15所述的模块化电源系统,其中每一个所述功率单元中的所述M个功率变换器的拓扑结构为全桥变换器、半桥变换器、 中性点可控三电平变换器、二极管钳位三电平变换器、飞跨电容三电平变换器、全桥谐振变换器和半桥谐振变换器中的两种或两种以上的组合。
PCT/CN2017/116352 2016-12-16 2017-12-15 模块化电源系统 WO2018108141A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/465,741 US11183947B2 (en) 2016-12-16 2017-12-15 Modular power supply system
AU2017376698A AU2017376698B2 (en) 2016-12-16 2017-12-15 Modular power supply system
EP17879984.7A EP3557751A4 (en) 2016-12-16 2017-12-15 MODULAR POWER SUPPLY SYSTEM
BR112019012080-7A BR112019012080B1 (pt) 2016-12-16 2017-12-15 Sistema modular de fornecimento de potência

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201611170857.3 2016-12-16
CN201611170857 2016-12-16
CN201611191912.7A CN108206643A (zh) 2016-12-16 2016-12-21 功率单元及使用该功率单元的电力电子变换装置
CN201611191912.7 2016-12-21
CN201710106946 2017-02-27
CN201710106946.X 2017-02-27
CN201711322796.2 2017-12-12
CN201711322796.2A CN108566072A (zh) 2016-12-16 2017-12-12 模块化电源系统

Publications (1)

Publication Number Publication Date
WO2018108141A1 true WO2018108141A1 (zh) 2018-06-21

Family

ID=62558040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116352 WO2018108141A1 (zh) 2016-12-16 2017-12-15 模块化电源系统

Country Status (1)

Country Link
WO (1) WO2018108141A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467711A (zh) * 2020-10-15 2021-03-09 中船重工远舟(北京)科技有限公司 一种高压直流电子开关电路
CN114079372A (zh) * 2020-08-20 2022-02-22 许继集团有限公司 柔性直流输电子模块冗余供电及切除装置及其方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012028640A2 (de) * 2010-09-03 2012-03-08 Bombardier Transportation Gmbh Elektrische energieversorgungsanordnung für antriebseinrichtungen von schienenfahrzeugen
EP2595302A1 (en) * 2011-11-21 2013-05-22 ABB Technology AG Method and device for servicing individual power module during operation of a modular multicell converter
CN105391313A (zh) * 2015-12-10 2016-03-09 湖南大学 一种模块化多电平换流器的控制方法
CN206332626U (zh) * 2016-12-16 2017-07-14 台达电子企业管理(上海)有限公司 功率单元及使用该功率单元的电力电子变换装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012028640A2 (de) * 2010-09-03 2012-03-08 Bombardier Transportation Gmbh Elektrische energieversorgungsanordnung für antriebseinrichtungen von schienenfahrzeugen
EP2595302A1 (en) * 2011-11-21 2013-05-22 ABB Technology AG Method and device for servicing individual power module during operation of a modular multicell converter
CN105391313A (zh) * 2015-12-10 2016-03-09 湖南大学 一种模块化多电平换流器的控制方法
CN206332626U (zh) * 2016-12-16 2017-07-14 台达电子企业管理(上海)有限公司 功率单元及使用该功率单元的电力电子变换装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3557751A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114079372A (zh) * 2020-08-20 2022-02-22 许继集团有限公司 柔性直流输电子模块冗余供电及切除装置及其方法
CN114079372B (zh) * 2020-08-20 2023-11-17 许继集团有限公司 柔性直流输电子模块冗余供电及切除装置及其方法
CN112467711A (zh) * 2020-10-15 2021-03-09 中船重工远舟(北京)科技有限公司 一种高压直流电子开关电路
CN112467711B (zh) * 2020-10-15 2022-12-02 中船重工远舟(北京)科技有限公司 一种高压直流电子开关电路

Similar Documents

Publication Publication Date Title
TWI661632B (zh) 模組化電源系統
US20190052177A1 (en) Power electronic conversion unit and system
US20220393607A1 (en) Three phase bidirectional ac-dc converter with bipolar voltage fed resonant stages
US11689115B2 (en) Bidirectional AC-DC converter with multilevel power factor correction
US10873254B2 (en) Electrical circuit for zero-voltage soft-switching in DC-DC converter under all load conditions
WO2010124634A1 (zh) 一种高电压功率变换装置
WO2018127054A1 (zh) 具有多输入的混联变换器和使用其的充换电设施
CN110601544A (zh) 基于两级变换结构的模块化组合式中压直流变换器及控制方法
WO2018108140A1 (zh) 模块化电源系统
US20150340962A1 (en) Five-level rectifier
WO2018108141A1 (zh) 模块化电源系统
US10374504B2 (en) Power unit and power electronic converting device
WO2018108142A1 (zh) 模块化电源系统
WO2018108143A1 (zh) 模块化电源系统
Hou et al. Topologies and operations of hybrid-type dc-dc converters interfacing dc-current bus and dc-voltage bus
CN111146932A (zh) 一种dc-dc电能传输系统
Dujic et al. Direct Current Transformer for MVDC Applications
CN114825972A (zh) 模块化级联式多电平交流变换器及其工作方法
CN115864875A (zh) 具有中压直流端口的正偶边形固态变压器拓扑簇
CN117856631A (zh) 一种单向电流型高压大容量直流变压器及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17879984

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017376698

Country of ref document: AU

Date of ref document: 20171215

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019012080

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017879984

Country of ref document: EP

Effective date: 20190716

ENP Entry into the national phase

Ref document number: 112019012080

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190613