WO2018127054A1 - 具有多输入的混联变换器和使用其的充换电设施 - Google Patents

具有多输入的混联变换器和使用其的充换电设施 Download PDF

Info

Publication number
WO2018127054A1
WO2018127054A1 PCT/CN2018/070270 CN2018070270W WO2018127054A1 WO 2018127054 A1 WO2018127054 A1 WO 2018127054A1 CN 2018070270 W CN2018070270 W CN 2018070270W WO 2018127054 A1 WO2018127054 A1 WO 2018127054A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
input
inputs
inverter unit
hybrid converter
Prior art date
Application number
PCT/CN2018/070270
Other languages
English (en)
French (fr)
Inventor
陈小宇
郝天磊
Original Assignee
上海蔚来汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海蔚来汽车有限公司 filed Critical 上海蔚来汽车有限公司
Publication of WO2018127054A1 publication Critical patent/WO2018127054A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the present invention relates to the field of converter technology, and relates to a DC/DC converter, and more particularly to a converter having a hybrid architecture having a plurality of DC inputs and a charging and replacing facility using the converter.
  • the converter includes a DC/DC converter and an AC/DC converter, which are commonly used components in charging and charging facilities such as charging stations.
  • DC/DC converter and an AC/DC converter, which are commonly used components in charging and charging facilities such as charging stations.
  • AC/DC converter AC/DC converter
  • the power input of the traditional charging station is generally the power grid or the battery.
  • the infrastructure is not perfect, or under special conditions (such as power failure)
  • User experience for example, some charging stations can only be compatible with AC grid input, and there are grid power outages under some environmental conditions. Therefore, the charging station cannot charge the vehicle; for example, some charging stations can only be compatible with PV module power input.
  • the solar cell is not generating enough power to charge the vehicle. With the rapid spread of new energy vehicles, the requirements for charging stations to meet multiple application scenarios are also increasing.
  • the inverter used in the charging and replacing facilities such as the conventional charging station, it is required to provide a switching tube having a high voltage stress level to use the high-voltage system of the charging and discharging facility, and therefore, the charging and replacing facilities are greatly increased. the cost of.
  • One of the objects of the present invention is to provide a novel inverter.
  • Still another object of the present invention is to provide a charging and replacing facility that can satisfy a plurality of application scenarios and to improve the convenience of charging.
  • the present invention provides the following technical solutions.
  • a hybrid converter (100, 200) for converting a direct current input (110) to a direct current output comprising:
  • An inverter circuit module (120, 220) having at least two inverter units arranged in parallel, wherein an input end of each of the inverter units is correspondingly connected to one of the N DC inputs (110), at least The coil outputs of the two inverter units are arranged in parallel outputs, and the DC busbars are shared between the two parallelly arranged inverter units, thereby realizing the switching between the switching tubes of the two parallel inverter units Forming a series connection;
  • the AC/DC conversion circuit module (130) is configured to perform rectification and filtering processing on the AC signal outputted by the N coil output ends of the inverter circuit module (120, 220) to form a DC output.
  • the inverter circuit module (120, 220) has at least N inverter units arranged in parallel, wherein the input terminals of the N inverter units are respectively one by one Correspondingly connecting N said DC inputs (110), the coil outputs of the N said inverter units are arranged as parallel outputs, and the adjacent ones of the N inverter units arranged in parallel are arranged
  • the DC bus bars are shared to form a series connection between the switching tubes of the adjacent inverter units.
  • a first input terminal and a second input terminal of an nth DC input (110) are respectively connected to an nth of the inverter circuit modules (120, 220) a first DC bus and a second DC bus of the inverter unit;
  • the first input end and the second input end of the (n+1)th DC input (110) are respectively connected to the first (n+1)th inverter unit of the inverter circuit module (120, 220) a DC bus and a second DC bus;
  • the second input end of the nth DC input (110) is connected in series to the first input end of the (n+1)th DC input (110), and the second input of the nth DC input (110)
  • the DC bus is shared with the first DC bus of the (n+1)th DC input (110);
  • n is an integer and 1 ⁇ n ⁇ N.
  • a hybrid converter in which N DC inputs (110) have DC voltages of the same magnitude, the two inverter units having the same configuration.
  • a hybrid converter according to an embodiment of the invention wherein the inverter unit is a single-phase or multi-phase full-bridge inverter unit, or a single-phase or multi-phase half-bridge inverter unit.
  • the inverter unit is an H-bridge inverter unit, and a coil output end of the inverter unit is disposed on a bridge of an H-bridge;
  • the switch tube on the main line (W 21 , W 22 ) of the H-bridge inverter unit is connected in series with the switch tube on the main line of the adjacent H-bridge inverter unit.
  • a hybrid converter in which an nth of the N DC inputs (110) is used to supply a DC source to the hybrid converter (100, 200) is controlled by the inverter
  • the switching tube in the unit operates at least one of the inverter units or operates at least two of the inverter units in parallel.
  • a hybrid converter according to an embodiment of the present invention, wherein the AC/DC conversion circuit module (130) has at least two coil input ends and a DC output terminal (131), and the two coil input ends respectively The coil outputs of two parallel inverter units are coupled.
  • a hybrid converter according to an embodiment of the present invention, wherein a middle portion of an inductance coil of each of at least two of the coil input terminals is taken out through a first wire (W 31 ) and then connected in common to the DC output terminal The first end of (131);
  • Two ends of the inductive coil of each of the at least two coil inputs are respectively connected to the second wire (W 32 ) through a rectifier diode, and then connected to the DC output terminal (131) through a second wire (W 32 ) The second end.
  • a charge and exchange facility (10) comprising:
  • N different types of power inputs each corresponding to N DC inputs (110) connected to the hybrid converter (100, 200).
  • a charging and powering facility wherein the power input is connected to a corresponding DC input (110) of the hybrid converter (100, 200) via an AC/DC converter or a DC/DC converter Or directly connected to the respective DC input (110) of the hybrid converter (100, 200).
  • the N-type power supply input includes: a power grid, a generator, and a DC power source.
  • the DC power supply is a photovoltaic module or a power battery of the vehicle.
  • the charging and replacing facility (10) is a vehicle charging and replacing facility.
  • the hybrid converter of the invention has a unique topology structure, has low requirements on the voltage stress level of the switch tube, and is especially suitable for a high voltage conversion system, and the output power of each inverter unit is controllable, and the overall DC output power is also controllable. It is easy to meet various power output requirements, and THD (total harmonic distortion) characteristics are good. When applied to charging and replacing facilities, it can access different types of power input, which can easily solve the charging restriction of charging and replacing facilities in special occasions or special environmental conditions, improve the convenience and robustness of charging, and the user experience is good. And, it can meet the vehicle charging needs of various scenarios.
  • FIG. 1 is a circuit diagram showing the structure of a hybrid converter according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of the inverter unit of FIG. 1.
  • FIG. 2 is a schematic structural view of the inverter unit of FIG. 1.
  • Figure 3 is an equivalent circuit diagram of the hybrid converter of Figure 1 in an operational situation.
  • FIG. 4 is an equivalent circuit diagram of the hybrid converter of FIG. 1 in still another operation.
  • FIG. 5 is a schematic diagram showing the circuit structure of a hybrid converter according to still another embodiment of the present invention.
  • FIG. 6 is a schematic structural view of the inverter unit of FIG. 5.
  • FIG. 7 is a schematic diagram showing the circuit structure of a hybrid converter according to still another embodiment of the present invention.
  • FIG. 8 is a schematic structural view of a charging and replacing facility according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing the circuit structure of a hybrid converter according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of the inverter unit of FIG. 1
  • FIG. 3 is a hybrid converter of FIG. An equivalent circuit diagram of a working situation
  • FIG. 4 is an equivalent circuit diagram of the hybrid converter of FIG. 1 in another working condition.
  • the hybrid converter 100 of the embodiment of the present invention will be described in detail below with reference to FIGS. 1 through 4.
  • the hybrid converter 100 is a DC/DC converter having a plurality of DC inputs 110, an inverter circuit module 120, and an AC/DC conversion circuit module 130 as inputs.
  • the variable circuit module 120 and the AC/DC conversion circuit module 130 are used together to perform the DC-DC conversion function of the converter.
  • the DC input 110 itself does not provide a DC source, which is a port that is used to input or access a DC source.
  • three DC input terminals 110 are specifically described as an example.
  • the inverter circuit module 120 is also described by taking three inverter units (ie, the inverter units 121, 122, and 123) as an example. It should be understood that the specific number of the DC input 110 and the inverter unit in the hybrid converter 100 is not limited to the embodiment of the present invention, and the number setting may be increased or decreased according to the needs of the specific application.
  • three DC inputs 110 1 , 110 2 and 110 3 are respectively provided corresponding to the inverter units 121, 122 and 123 arranged in parallel, which constitute a multi-input hybrid topology of the hybrid converter 100. .
  • the three DC inputs 110 1 , 110 2 and 110 3 are connected in series in series.
  • the input terminals 110 1b of the DC input 110 1 are connected in series. connected to the DC input terminal 1102 110 2a, the DC input terminal 1 102 110 2b connected in series to the DC input terminal 1103 110 3a, in order to achieve in series therebetween.
  • each DC input is a corresponding inverter unit together and arranged in parallel.
  • any one of the three DC inputs 110 1 , 110 2 and 110 3 or a combination of at least two of them can be used as the DC source of the hybrid converter 100, that is, the DC input forming the hybrid converter 100. source.
  • the inverter circuit module 120 is configured to convert the input DC source into an AC output.
  • the inverter circuit module 120 is a composite hybrid structure, that is, a series and a parallel form are mixed to form. Hybrid topology.
  • the three inverter units 121, 122, and 123 are disposed in parallel, and the input terminals of the three inverter units 121, 122, and 123 are also respectively Corresponding to the connection of the DC inputs 110 1 , 110 2 and 110 3 , the coil output terminals L 11 , L 21 and L 31 of the three inverter units 121 , 122 and 123 are also arranged in parallel, that is to say arranged with parallel outputs;
  • a DC bus is shared between adjacent inverter units of the inverter units 121, 122, and 123 disposed in parallel, thereby realizing phase
  • a series connection is formed between the switching tubes of the adjacent inverter units.
  • each inverter unit in the inverter circuit module 120 is a single-phase H-bridge inverter of the embodiment shown in FIG. 2, specifically, it has four switch tubes S, wherein two switch tubes S are disposed in one On the main line, the other two switch tubes S are arranged on the other main line, the two main lines are connected by a bridge, and the inductor coil L is arranged on the bridge to form a coil output end; a capacitor C is also bridged between the two DC bus lines. Capacitor C can also be set on the DC bus.
  • each main line is connected to the upper and lower DC busbars of the inverter unit, and the switch tube may specifically be, but not limited to, a fast thyristor, a turn-off thyristor (GTO), a power transistor (GTR), a power field effect transistor (MOSFET) or Insulated gate transistor (IGBT), etc.
  • the switching transistor can be driven to control its conduction, turn-off or conduction level by various control signals such as PWM.
  • the inverter unit 121 has four switch tubes S 11 , S 12 , S 13 and S 14 , a capacitor C 1 and a capacitor C 12 , and an inductor L 11 ;
  • the DC bus bars W 11 and W 12 of 121 are connected by main lines W 21 and W 22 , and the capacitor C1 is connected across the DC bus lines W 11 and W 12 ; wherein the two switching tubes S 11 and S 13 are arranged in series on the main line On W 21 , two switch tubes S 12 and S 14 are arranged in series on the main line W 22 , and two ends of the bridge are respectively connected between the switch tubes S 12 and S 14 and between the switch tubes S 11 and S 13 , the inductance
  • the coil L 11 is disposed on the bridge as the coil output of the inverter unit 121 and also provides an input to the AC/DC converter circuit module 130; wherein the capacitor C 12 is disposed on the DC bus W 12 .
  • the inductance coil L 11 can be output to different
  • the inverter unit 122 corresponds to the inverter unit 122 in FIG. 1 , and the inverter unit 122 is disposed between the inverter units 121 and 123 .
  • the inverter unit 122 is arranged adjacent to the inverter unit 121 in parallel, and a DC bus W 12 is shared between them.
  • the inverter unit 122 is also arranged in parallel adjacent to the inverter unit 123, and a DC bus W 13 is shared between them.
  • the inverter unit 122 has four switching tubes S 21 , S 22 , S 23 and S 24 , a capacitor C 2 and a capacitor C 23 , and an inductor L 21 ; the DC buses W 12 and W 13 of the inverter unit 122 also pass through the main The lines W 21 and W 22 are connected, and the capacitor C2 is connected across the DC bus lines W 12 and W 13 ; wherein the two switching tubes S 21 and S 23 are arranged in series on the main line W 21 , and the two switching tubes S 22 and S 24 is arranged in series on the main line W 22 , and two ends of the bridge are respectively connected between the switch tubes S 22 and S 24 and between the switch tubes S 21 and S 23 , and the inductor coil L 21 is disposed on the bridge, and a coil output terminal of the inverter unit 122, also provides input AC / DC converter circuit module 130; wherein the capacitor C 23 disposed on the DC bus W 13.
  • the inductance coil L 21 can be output to different levels by controlling the combination of the on and
  • the inverter unit 123 has four switch tubes S 31 , S 32 , S 33 and S 34 , a capacitor C 3 and a capacitor C 23 , and an inductor L 31 ;
  • the DC bus bars W 13 and W 14 of 121 are connected by main lines W 21 and W 22 , and the capacitor C 3 is connected across the DC bus lines W 13 and W 14 ; wherein the two switching tubes S 31 and S 33 are arranged in series in the main On the line W 21 , two switch tubes S 32 and S 34 are arranged in series on the main line W 22 , and two ends of the bridge are respectively connected between the switch tubes S 32 and S 34 and between the switch tubes S 31 and S 33 .
  • the inductor L 31 is disposed on the bridge as an output of the coil of the inverter unit 123 and also provides an input to the AC/DC converter circuit module 130; wherein the capacitor C 23 is disposed on the DC bus W 13 .
  • the inductance coil L 31 can be output to different levels by controlling the combination of the on and off of the four switching transistors S 31 , S 32 , S 33 and S 34 of the H-bridge inverter unit 123.
  • the switching tubes of the inverter units 121, 122, and 123 of the above embodiment form a series connection, for example, S 11 , S 13 , S 21 , S 23 , S 31 , and S 33 on the main line W 21 are connected in series.
  • S 12 , S 14 , S 22 , S 24 , S 32 and S 34 on the main line W 22 are connected in series.
  • the combined form of the series connection is not limited to the above embodiment, for example, different inverter units
  • the switching tubes on the different main lines W 21 and W 22 are also connected in series.
  • the input terminal 110 1a and the input terminal 110 1b of the DC input 110 1 are respectively connected to the DC bus W 11 and the DC bus W 12 of the inverter unit 121, and the input terminal 110 2a and the input terminal of the DC input 110 2 are respectively connected.
  • the DC bus W 12 is a DC bus shared by the inverter unit 121 and the inverter unit 122
  • the DC bus W 13 is a DC bus shared by the inverter unit 122 and the inverter unit 124.
  • the direct current input 110 1 has the same magnitude of the direct current voltage V 0 , and the arrangement of the respective inverter units is substantially the same, for example, the switch tubes S used by the respective inverter units are the same, and the capacitors C 1 , C 2 The capacitance of C 3 is basically the same.
  • the single-phase full-bridge inverter unit is taken as an example, and those skilled in the art will understand that if two-phase or three-phase inverter is required, the above single-phase can be applied analogously.
  • the basic structure of the inverter unit is combined to form a two-phase full-bridge inverter unit or a three-phase full-bridge inverter unit.
  • the full-bridge architecture in the above embodiment is based on a hard-switching tube formation, or a full-bridge architecture based on LLC (combination of inductor L and capacitor C) and phase shifting.
  • LLC combination of inductor L and capacitor C
  • the function of LLC and phase shift is equivalent to that in the above embodiment. "turning tube".
  • the AC/DC conversion circuit module 130 has three inductor coils L 12 , L 22 and L 32 , wherein the inductor coil L 12 is coupled with the inductor coil L 11 to form a transformer.
  • the unit, the inductor L 22 is coupled with the inductor L 21 to form a further transformer unit, and the inductor L 32 is coupled with the inductor L 31 to form a further transformer unit; therefore, the three outputs of the inverter circuit module 120 can be changed.
  • the inductors L 12 , L 22 and L 32 are input to the AC/DC converter circuit module 130, and the inductor coils L 12 , L 22 and L 32 constitute the coil input terminal of the inverter circuit module 120.
  • inductor L 12, and L 22 each central through lines L 32 W 31 leads, in turn connected to the DC output terminal of AC / DC converter circuit module 130 through the first end 131 of the wire W 31 together; inductance Both ends of each of the coils L 12 , L 22 , and L 32 are connected to the wire W 32 through a diode (rectifier diode), and are thereby commonly connected to the DC output terminal 131 of the AC/DC conversion circuit module 130 through the wire W 32 .
  • diode rectififier diode
  • both ends of the inductor L 12 are connected to rectifying diodes D 11 and D 12
  • both ends of the inductor L 22 is connected a diode D 21 and D
  • both ends of the inductor L 32 is connected a diode D 31 and D 32 ;
  • the output of the current in different current directions of the inductor L 11 , L 21 or L 31 is output through different diodes at both ends of the inductor L 12 , L 22 or L 32 and forms a current output in the same direction That is, the rectification function is completed, and after further filtering processing by the RC filter circuit in the AC/DC conversion circuit module 130, a DC output is formed at the output terminal 131, thereby finally completing the full DC conversion function.
  • the RC filter circuit includes a capacitor C 0 that is connected across the DC output terminal 131 and a resistor R 0 that is connected in series at either end of the DC output terminal 131.
  • the rectifying and filtering circuit of the AC/DC converting circuit module 130 is not limited to the embodiment shown in FIG. 1 of the present invention, and any rectifying and filtering circuit capable of forming a single DC output by rectifying and filtering a plurality of AC inputs may be used. Apply here.
  • the rectifying circuit is not limited to the full-wave rectifying circuit of the above embodiment, and a full-bridge rectifying circuit, a synchronous rectifying circuit, or the like is also applied.
  • the hybrid converter 100 of the present invention can select any DC input 130 as a DC source to select the DC input 110 1 as a DC source (the DC voltage is V 0 ), as shown in FIG. 3 and FIG.
  • Different combinations of switching tubes of different inverter units form different equivalent circuits.
  • the switching tubes S 12 and S 13 in the equivalent circuit diagram of FIG. 3 are relatively subjected to relatively small voltage stress.
  • the working principle of the inverter circuit module 120 and the conventional multi-level all The working principle of the bridge inverter circuit is similar.
  • the arrow reflects the current direction and the power flow path; if the output power is large, the inverter processing only by the inverter unit 121 (as shown in FIG. 3) will cause the inverse
  • the switching tube S in the variable unit 121 is subjected to a large voltage stress, and therefore, the stress on the switching tube S is required to be high.
  • the inverter circuit module in the embodiment of the present invention adopts a hybrid structure, and the inverter unit 121 can be operated by the control signal, and the inverter units 122 and 123 also work, that is, the inverter units 121, 122, and 123 work simultaneously.
  • the equivalent circuit diagram at a certain time is as shown in FIG. 4, and the switch tubes S 12 and S 13 in the inverter unit 121 are turned on by the control signal (the switch tubes S 11 and S 14 are turned off), and the inverter unit 122
  • the switch tubes S 21 and S 24 are turned on (the switch tubes S 22 and S 23 are turned off)
  • the switch tubes S 31 and S 34 in the inverter unit 123 are turned on (the switch tubes S 32 and S 33 are turned off)
  • the DC bus bars W 11 and W 14 constitute the DC bus of the inverter circuit module 120
  • the voltage V 0 of the DC input 110 1 is offset between the DC bus bars W 11 and W 14 and between the DC bus bars W 11 and W 14 .
  • the voltage stress of the six switching tubes S connected in series will become 1/3 of the case of Fig. 3, and the voltage drop of the switching tube is also lowered, so that the high voltage conversion system can be formed by the switching tube with a lower voltage stress level.
  • the output of the inverter unit coils 121, 122 and 123 L 11, L 21 and L 31 in parallel to the output power, the collective output AC / DC power converting circuit module 130; by the control unit of each inverter switch tube The output power of the coil output end of each inverter unit can be controlled, that is, the output power of each inverter unit can be controlled, so that the overall DC output power of the hybrid converter 100 can also be controlled.
  • the setting of the number of the inverter units in the inverter circuit module 120 is not limited to the above embodiment, and the number of the selected inverter units may also be set according to a specific situation, for example, in FIG. 4 above,
  • the switching tubes S 31 , S 32 , S 33 and S 34 in the inverter unit 123 can be fully turned off, only the inverter units 121 and 122 operate, and the voltage V 0 of the reverse DC input 110 1 is biased at the DC bus W 11 and On W 13 , the voltage stress of the four switching tubes S connected in series between the DC bus lines W 11 and W 13 will become 1/2 of the case of Fig. 3.
  • the hybrid converter 100 of the present invention can select at least two or more of the three DC inputs 130 as a DC source (not shown in Figures 3 and 4), the selected DC input 130.
  • the corresponding inverter unit is enabled by the switch control signal, and even the inverter unit corresponding to the unselected DC input 130 can be enabled by the switch control signal. Therefore, the hybrid converter 100 can provide various The DC power output meets various power requirements.
  • FIG. 5 is a schematic diagram showing the circuit structure of a hybrid converter according to still another embodiment of the present invention
  • FIG. 6 is a schematic structural view of the inverter unit of FIG.
  • the main difference between the hybrid converter 200 and the hybrid converter 100 of the embodiment shown in FIG. 1 is that the structure of the inverter unit used in the inverter circuit module 220 is different, in FIG. 1 and As shown in FIG. 2, the inverter unit is a full-bridge H-bridge inverter unit 121, 122, and 123.
  • the inverter unit is a half-bridge H-bridge inverter unit 221, 222, and 223. .
  • the inverter unit 221 has two switch tubes S 12 and S 14 disposed on the main line W 22 , two capacitors C 11 and C 13 disposed on the main line W 21 , and an inductor disposed on the bridge. L 11, the capacitor C 1 connected across the same DC bus.
  • 222 has two inverter unit provided on the main line of the switch 22 is W S 22 and S 24, two disposed on the main line W 21 capacitor C 21 and capacitor C 22 , inductor L 21 disposed on the bridge, capacitor C 2 is also bridged between DC bus W 12 and W 13 ;
  • inverter unit 223 has two disposed on main line W 22
  • the upper switch tubes S 32 and S 34 , the two capacitors C 31 and the capacitor C 33 disposed on the main line W 21 , the inductor L 31 disposed on the bridge, and the capacitor C 3 are also connected across the DC bus bars W 13 and W Between 14 .
  • FIG. 7 is a circuit diagram showing the structure of a hybrid converter according to still another embodiment of the present invention.
  • the hybrid converter 300 of the embodiment shown in FIG. 7 has an inverter in the inverter circuit module 120 in the case where the number of DC inputs 110 does not change. The number of units is reduced, wherein only the inverter units 121 and 122 are disposed in the inverter circuit module 120; correspondingly, the corresponding inductor coil L 31 and the rectifier diodes D 31 and D 32 are also reduced in the AC/DC conversion circuit module 130.
  • the arrangement of the same components of the hybrid converter 300 and the hybrid converter 100 will not be repeated here, and it also has a similar type of topology, and therefore has similar effects and advantages of the hybrid converter 100. .
  • the number of the inverter units in the inverter circuit module 120 is not limited to the number of the DC input 110 equal to or smaller than that in the above embodiment. In other embodiments, the number of the DC input 110 is also greater than the DC input 110. The number, for example, can also be set to four.
  • each inverter unit there are two inverter units arranged in parallel, and the input end of each inverter unit is connected to a DC input 110, and the coil outputs of at least two inverter units are arranged as parallel outputs, two A DC bus is shared between the inverter units arranged in parallel, so that a series connection is formed between the switching tubes of the two parallel inverter units, so that a hybrid topology is formed, and therefore, the above hybrid transformation is also performed.
  • the hybrid converter of the embodiment shown in Figures 1 and 5 above is particularly suitable for high voltage charging applications, and the charging of the power battery of the vehicle based on the hybrid converter is exemplified below.
  • FIG. 8 is a schematic structural view of a charging and replacing facility according to an embodiment of the present invention.
  • the charging and replacing facility 10 can be, but is not limited to, a vehicle charging and replacing facility (eg, a vehicle charging station) that charges a power battery of the vehicle. It will be understood that the charging and discharging facility 10 can also be various charging stations (not limited to Vehicle charging station), power station or energy storage power station (such as wind power or solar power storage power station).
  • the charging and discharging facility 10 of FIG. 8 exemplarily uses the hybrid converter 100 of the embodiment shown in FIG. 1.
  • the DC input of the hybrid converter 100 is correspondingly set to a different type of power input, for example, charging and discharging.
  • the facility 10 includes different types of power inputs, such as the power grid 11, the generator 12, and the DC power source 13; the output of the corresponding power grid 11 is AC power. Therefore, the AC/DC converter 11a is provided correspondingly to the power grid 10 for the grid. The AC output of 11 is converted into a DC output and supplied to the inverter circuit module 120; the output of the corresponding generator 12 is also an AC power. Therefore, the AC/DC converter 12a is provided in the charging and discharging facility 10 for the power grid 11 The AC output is converted into a DC output and supplied to the inverter circuit module 120.
  • the AC/DC converter 12a may have a different type or configuration from the AC/DC converter 11a; corresponding to the DC power source 13 output is DC power, therefore, charging and discharging A DC/DC converter 13a is provided in the facility 10 for converting a certain voltage DC output of the power grid 11 into another voltage DC output and supplying it to the inverter circuit module 120.
  • the output voltage of the DC power source 13 is suitable.
  • the DC/DC converter 13a may be omitted.
  • a DC power source of any one or more of the AC/DC converter 11a, the AC/DC converter 12a, and the DC/DC converter 13a is supplied to the hybrid converter 100 for DC-AC-DC conversion and then at the output. Terminal 131 outputs direct current.
  • the vehicle 900 can draw power from the output 131 of the charging and exchange facility 10 to charge the power battery.
  • the charging and discharging facility 10 can have a plurality of different types of power input, and the type of power that can be input is not limited to the power grid 11, the generator 12, and the direct current power source 13, which can be specifically configured according to the environmental conditions of the charging and discharging facility, and the DC power source. 13 may be a photovoltaic component, or even a power battery of the vehicle (in this case, the charging and discharging facility 10 can realize that one electric vehicle charges another electric vehicle). Therefore, the charging and replacing facility 10 can be compatible with various types of power input, and it is easy to solve the charging limitation of the charging and discharging facility 10 under special circumstances or special environmental conditions. For example, when the power grid 11 is out of power, the user can select the connection.
  • the generator 12 When the generator 12 is charged, it can also realize various types of power input and simultaneously charge the charged vehicle with high voltage. When any power input is powered off due to a fault or the like, other power sources can automatically take additional supplementary power, The charging will be interrupted due to insufficient power. Therefore, the convenience and robustness of charging are greatly improved, and the experience of the vehicle user is good, and the vehicle charging demand of various scenarios can be satisfied.
  • the charging and discharging facility 10 also has the advantages of the hybrid converter 100 when using the hybrid converter 100 of the embodiment shown in FIG. 1, for example, the charging and discharging facility 10 can use a relatively low voltage stress level.
  • the switch tube is formed, has low cost, and has good THD characteristics.

Abstract

一种具有多输入的混联变换器(100)和使用其的充换电设施(10),属于变换器技术领域。该混联变换器(100)包括多个直流输入(110 1、110 2、110 3)、具有多个并行设置的逆变单元(121、122、123)的逆变电路模块(120)、AC/DC变换电路模块(130),并且具有复合混联的拓扑结构。使用该混联变换器(100)的充换电设施(10),能够接入不同类型的电源输入。

Description

具有多输入的混联变换器和使用其的充换电设施 技术领域
本发明属于变换器技术领域,涉及DC/DC变换器,尤其涉及具有多个直流输入的具有混联架构的变换器和使用该变换器的充换电设施。
背景技术
变换器包括DC/DC变换器和AC/DC变换器,其是充电站等充换电设施中常用的部件。在汽车充电技术领域,需要构建足够的充电站为电动汽车充电,以解决用户的里程焦虑问题。
传统的充电站的电源输入一般是电网或者电池,然而在一些基础设施不完善的特殊场合、或者在特殊状况下(例如发生供电故障),很难保证能够对汽车及时充电,充电便利性差,影响用户体验;例如,有些充电站只能兼容交流电网输入,在一些环境条件下存在电网断电的情形,因此,充电站不能够为车辆充电;还例如,有些充电站只能兼容光伏组件电源输入,可能存在太阳能电池发电不够而不能够为车辆充电的情形。随着新能源汽车的快速普及,对充电站能够满足多应用场景的要求也越来越高。
并且,传统的充电站等充换电设施中使用的逆变器中要求设置电压应力等级较高的开关管,以使用充换电设施的高压系统需求,因此,也大大增加了充换电设施的成本。
发明内容
本发明的目的之一在于,提供一种新型的变换器。
本发明的又一目的在于,提供一种能满足多应用场景的充换电设施、提高充电的便利性。
为实现以上目的或者其他目的,本发明提供以下技术方案。
按照本发明的一方面,提供一种混联变换器(100,200),其用于将直流输入(110)转换为直流输出,所述变换器(100,200)包括:
N个直流输入(110),其中,N为大于或等于2的整数,N个所述直流输入(110)之间依次串联连接,N个所述直流输入(110)中的任意一个、或者至少两个的组合用来为混联变换器(100,200)提 供直流源;
逆变电路模块(120,220),其具有至少两个并行设置的逆变单元,其中,每个所述逆变单元的输入端对应连接N个所述直流输入(110)的其中一个,至少两个所述逆变单元的线圈输出端被布置为并联的输出,所述两个并行设置的逆变单元之间共用直流母线、从而实现所述两个并行的逆变单元的开关管之间形成串联连接;以及
AC/DC变换电路模块(130),其用于对所述逆变电路模块(120,220)的N个线圈输出端所输出的交流信号进行整流滤波处理形成直流输出。
根据本发明一实施例的混联变换器,其中,所述逆变电路模块(120,220)具有至少N个并行设置的逆变单元,其中,N个所述逆变单元的输入端分别逐一对应连接N个所述直流输入(110),N个所述逆变单元的线圈输出端被布置为并联的输出,N个并行设置的所述逆变单元中相邻的所述逆变单元之间共用直流母线、从而实现相邻的所述逆变单元的开关管之间形成串联连接。
根据本发明一实施例的混联变换器,其中,第n个直流输入(110)的第一输入端和第二输入端分别连接所述逆变电路模块(120,220)中的第n个逆变单元的第一直流母线和第二直流母线;
第(n+1)个直流输入(110)的第一输入端和第二输入端分别连接所述逆变电路模块(120,220)中的第(n+1)个逆变单元的第一直流母线和第二直流母线;
其中,所述第n个直流输入(110)的第二输入端串联连接第(n+1)个直流输入(110)的第一输入端,所述第n个直流输入(110)的第二直流母线与第(n+1)个直流输入(110)的第一直流母线共用;
其中,n为整数,1≤n<N。
根据本发明一实施例的混联变换器,其中,N个直流输入(110)具有相同大小的直流电压,所述两个逆变单元具有相同的配置。
根据本发明一实施例的混联变换器,其中,所述逆变单元为单相或多相全桥逆变单元、或者为单相或多相半桥逆变单元。
具体地,所述逆变单元为H桥逆变单元,所述逆变单元的线圈输出端被布置在H桥的桥上;
其中,所述H桥逆变单元的主线路(W 21,W 22)上的开关管与相 邻的H桥逆变单元的主线路上的开关管串联连接。
根据本发明一实施例的混联变换器,其中,N个所述直流输入(110)的第n个用来为混联变换器(100,200)提供直流源时,通过控制所述逆变单元中的开关管,使至少一个所述逆变单元工作,或者使至少两个所述逆变单元并行地工作。
根据本发明一实施例的混联变换器,其中,所述AC/DC变换电路模块(130)具有至少两个线圈输入端和一个直流输出端(131),两个线圈输入端分别与所述两个并行的逆变单元的线圈输出端相耦合。
根据本发明一实施例的混联变换器,其中,至少两个所述线圈输入端中的每个的电感线圈的中部通过第一导线(W 31)引出,然后共同连接至所述直流输出端(131)的第一端;
至少两个所述线圈输入端的每个的电感线圈的两端分别通过整流二极管连接至第二导线(W 32),然后通过第二导线(W 32)共同连接至所述直流输出端(131)的第二端。
按照本发明的又一方面,提供一种充换电设施(10),其包括:
以上任一所述的混联变换器(100,200);和
N种不同类型的电源输入,其分别对应连接所述混联变换器(100,200)的N个直流输入(110)。
根据本发明一实施例的充换电设施,其中,所述电源输入通过AC/DC变换器或DC/DC变换器连接至所述混联变换器(100,200)的相应直流输入(110),或者直接连接至所述混联变换器(100,200)的相应直流输入(110)。
根据本发明一实施例的充换电设施,其中,所述N种不同类型的电源输入包括:电网、发电机和直流电源。
根据本发明一实施例的充换电设施,其中,所述直流电源为光伏组件或车辆的动力电池。
根据本发明一实施例的充换电设施,其中,所述充换电设施(10)为车辆充换电设施。
本发明的混联变换器具有独特的拓扑架构,对开关管的电压应力等级要求低,尤其适于高压变换系统,而且,每个逆变单元的输出功率可控,整体直流输出功率也可控,容易满足各种功率输出需求,THD(总谐波失真)特性好。在应用于充换电设施时,可以接入不同类型 的电源输入,容易解决充换电设施在特殊场合或特殊环境条件下对充电的限制,提高充电的便利性和健壮性,用户的体验好,并且,能够满足各种场景的车辆充电需求。
附图说明
从结合附图的以下详细说明中,将会使本发明的上述和其他目的及优点更加完整清楚,其中,相同或相似的要素采用相同的标号表示。
图1是按照本发明一实施例的混联变换器的电路结构示意图。
图2是图1中的逆变单元的结构示意图。
图3是图1的混联变换器在一工作情形的等效电路图。
图4是图1的混联变换器在又一工作情形的等效电路图。
图5是按照本发明又一实施例的混联变换器的电路结构示意图。
图6是图5中的逆变单元的结构示意图。
图7是按照本发明再一实施例的混联变换器的电路结构示意图。
图8是按照本发明一实施例的充换电设施的结构示意图。
具体实施方式
现在将参照附图更加完全地描述本发明,附图中示出了本发明的示例性实施例。但是,本发明可按照很多不同的形式实现,并且不应该被理解为限制于这里阐述的实施例。相反,提供这些实施例使得本公开变得彻底和完整,并将本发明的构思完全传递给本领域技术人员。附图中,相同的标号指代相同或类似的元件或部件,因此,将省略对它们的描述。
下面的描述中,为描述的清楚和简明,并没有对图中所示的所有多个部件进行详细描述。附图中示出了本领域普通技术人员为完全能够实现本发明的多个部件,对于本领域技术人员来说,许多部件的操作都是熟悉而且明显的。
图1所示为按照本发明一实施例的混联变换器的电路结构示意图,图2所示为图1中的逆变单元的结构示意图,图3所示为图1的混联变换器在一工作情形的等效电路图,图4所示为图1的混联变换器在又一工作情形的等效电路图。以下结合图1至图4详细说明本发明实施例的混联变换器100。
如图1所示,混联变换器100为DC/DC(直流-直流)变换器,其具有作为输入端的多个直流输入110、一个逆变电路模块120和AC/DC变换电路模块130,逆变电路模块120和AC/DC变换电路模块130共同用来完成该变换器的直流-直流转换的功能。其中,直流输入110本身并不提供直流源,其是示意用来输入或接入直流源的端口。
在图1中,具体以3个直流输入110为示例进行说明,相应的,逆变电路模块120也是以3个逆变单元(即逆变单元121、122和123)为示例进行说明。需要理解的是,混联变换器100中直流输入110和逆变单元的具体数量并不限于本发明实施例,根据具体应用的需要,可以增减其数量设置。
如图1所示,3个直流输入110 1、110 2和110 3是分别对应并行设置的逆变单元121、122和123而设置,它们构成可混联变换器100的多输入混联拓扑结构。从3个直流输入110 1、110 2和110 3自身分离地来看,3个直流输入110 1、110 2和110 3是依次串联连接的,具体地,直流输入110 1的输入端110 1b串联连接至直流输入110 2的输入端110 2a,直流输入110 2的输入端110 2b串联连接至直流输入110 3的输入端110 3a,从而实现了它们之间的依次串联。但是,从3个直流输入110 1、110 2和110 3与逆变单元121、122和123来看,每个直流输入是相应的逆变单元一起并且并行设置的。
需要说明的是,3个直流输入110 1、110 2和110 3中的任意一个或其中至少两个的组合可以作为混联变换器100的直流源,也即形成混联变换器100的直流输入源。
继续如图1所示,逆变电路模块120用来将输入的直流源变换为交流输出,在该实施例中,逆变电路模块120为复合混联结构,即串联与并联形式混合存在从而形成混联拓扑结构。首先,从逆变电路模块120中的多个逆变单元的布置来看,3个逆变单元121、122和123是并行地设置,3个逆变单元121、122和123的输入端也是分别对应连接直流输入110 1、110 2和110 3,3个逆变单元121、122和123的线圈输出端L 11、L 21和L 31也是并联地设置,也即被布置为具有并联的输出;其次,从逆变电路模块120中的多个逆变单元之间的连接关系来看,并行设置的逆变单元121、122和123中相邻的逆变单元之间共用直流母线、从而实现相邻的逆变单元的开关管之间形成串联连接。
逆变电路模块120中的每个逆变单元的结构为图2所示实施例的单相H桥逆变器,具体地,其具有四个开关管S,其中两个开关管S设置在一主线路上,另外两个开关管S设置在另一主线路上,两个主线路之间通过桥连接,电感线圈L设置在桥上形成线圈输出端;两条直流母线之间还跨接有电容C,直流母线上也可以设置电容C。其中,每条主线路连接逆变单元的上下两条直流母线,开关管具体可以但不限于为快速晶闸管、可关断晶闸管(GTO)、功率晶体管(GTR)、功率场效应晶体管(MOSFET)或绝缘栅晶体管(IGBT)等,开关管可以通过PWM等各种控制信号来驱动控制其导通、关断或者导通程度等。
具体对应于图1中的逆变单元121,逆变单元121具有四个开关管S 11、S 12、S 13和S 14,电容C 1和电容C 12,和电感线圈L 11;逆变单元121的直流母线W 11和W 12通过主线路W 21和W 22连接,电容C1跨接在直流母线W 11和W 12之间;其中,两个开关管S 11和S 13串联设置在主线路W 21上,两个开关管S 12和S 14串联设置在主线路W 22上,桥的两端分别连接在开关管S 12和S 14之间、开关管S 11和S 13之间,电感线圈L 11设置在该桥上,其作为逆变单元121的线圈输出端,也为AC/DC变换电路模块130提供输入;其中,电容C 12设置在直流母线W 12上。通过控制H桥逆变单元121的四个开关管S 11、S 12、S 13和S 14导通和关断组合,可以使电感线圈L 11输出不同的电平。
具体对应于图1中的逆变单元122,逆变单元122设置在逆变单元121和123之间,逆变单元122与逆变单元121相邻地并行布置,它们之间共用直流总线W 12,逆变单元122也与逆变单元123相邻地并行布置,它们之间共用直流总线W 13。逆变单元122具有四个开关管S 21、S 22、S 23和S 24,电容C 2和电容C 23,和电感线圈L 21;逆变单元122的直流母线W 12和W 13也通过主线路W 21和W 22连接,电容C2跨接在直流母线W 12和W 13之间;其中,两个开关管S 21和S 23串联设置在主线路W 21上,两个开关管S 22和S 24串联设置在主线路W 22上,桥的两端分别连接在开关管S 22和S 24之间、开关管S 21和S 23之间,电感线圈L 21设置在该桥上,其作为逆变单元122的线圈输出端,也为AC/DC变换电路模块130提供输入;其中,电容C 23设置在直流母线W 13上。通过控制H桥逆变单元121的四个开关管S 21、S 22、S 23和S 24导通和 关断组合,可以使电感线圈L 21输出不同的电平。
具体对应于图1中的逆变单元123,逆变单元123具有四个开关管S 31、S 32、S 33和S 34,电容C 3和电容C 23,和电感线圈L 31;逆变单元121的直流母线W 13和W 14通过主线路W 21和W 22连接,电容C 3跨接在直流母线W 13和W 14之间;其中,两个开关管S 31和S 33串联设置在主线路W 21上,两个开关管S 32和S 34串联设置在主线路W 22上,桥的两端分别连接在开关管S 32和S 34之间、开关管S 31和S 33之间,电感线圈L 31设置在该桥上,其作为逆变单元123的线圈输出端,也为AC/DC变换电路模块130提供输入;其中,电容C 23设置在直流母线W 13上。通过控制H桥逆变单元123的四个开关管S 31、S 32、S 33和S 34导通和关断组合,可以使电感线圈L 31输出不同的电平。
因此,以上实施例的逆变单元121、122和123的开关管形成了串联连接,例如,主线路W 21上的S 11、S 13、S 21、S 23、S 31和S 33是串联连接的,主线路W 22上的S 12、S 14、S 22、S 24、S 32和S 34是串联连接的,当然,串联连接的组合形式并不限于以上实施例,例如不同逆变单元的不同主线路W 21和W 22上的开关管也是串联连接的。
继续如图1所示,直流输入110 1的输入端110 1a和输入端110 1b分别连接逆变单元121的直流母线W 11和直流母线W 12,直流输入110 2的输入端110 2a和输入端110 2b分别连接逆变单元122的直流母线W 12和直流母线W 13,直流输入110 3的输入端110 3a和输入端110 3b分别连接逆变单元123的直流母线W 13和直流母线W 14;其中,直流母线W 12是逆变单元121和逆变单元122共用的直流母线,直流母线W 13是逆变单元122和逆变单元124共用的直流母线。
在一实施例中,优选地,直流输入110 1具有相同大小的直流电压V 0,各个逆变单元的布置基本相同,例如各个逆变单元所使用的开关管S相同,电容C 1、C 2和C 3的电容大小基本相同。
需要说明的是,以上实施例中,以单相全桥逆变单元为示例进行了说明,本领域技术人员将理解到,如果需要进行两相或三相逆变,可以类推地应用以上单相逆变单元的基本结构进行组合形成两相全桥逆变单元或者三相全桥逆变单元。以上实施例中的全桥架构是基于硬开关管形成,也可以是基于LLC(电感L和电容C的组合)和移相的全桥架构,LLC和移相的作用等同于以上实施例中的“开关管”。
继续如图1所示,在该实施例中,AC/DC变换电路模块130具有3个电感线圈L 12、L 22和L 32,其中,电感线圈L 12与电感线圈L 11相耦合形成一变压器单元,电感线圈L 22与电感线圈L 21相耦合形成又一变压器单元,电感线圈L 32与电感线圈L 31相耦合形成再一变压器单元;因此,逆变电路模块120的三个输出可以通过变压处理后从电感线圈L 12、L 22和L 32输入至AC/DC变换电路模块130,电感线圈L 12、L 22和L 32构成了逆变电路模块120的线圈输入端。进一步,电感线圈L 12、L 22和L 32中的每个的中部通过导线W 31引出,进而通过导线W 31共同连接至AC/DC变换电路模块130的直流输出端131的第一端;电感线圈L 12、L 22和L 32中的每个的两端各自通过一个二极管(整流二极管)连接导线W 32,进而通过导线W 32共同地连接至AC/DC变换电路模块130的直流输出端131的第二端,例如,电感线圈L 12的两端分别连接整流二极管D 11和D 12,电感线圈L 22的两端分别连接二极管D 21和D 22,电感线圈L 32的两端分别连接二极管D 31和D 32;这样,电感线圈L 11、L 21或L 31的不同电流方向电流的输出通过电感线圈L 12、L 22或L 32的两端的不同的二极管输出并形成相同方向的电流输出,即完成整流功能,进一步通过AC/DC变换电路模块130中的RC滤波电路滤波处理后,在输出端131形成直流输出,从而最终完全直流转换功能。具体地,RC滤波电路包括跨接在直流输出端131的两端的电容C 0和串接在直流输出端131的两端的任一端上的电阻R 0
需要理解的是,AC/DC变换电路模块130的整流滤波电路并不限于本发明图1所示实施例,任何能够将多个交流输入经过整流滤波处理后形成单个直流输出的整流滤波电路均可以在此应用。例如,整流电路并不限于以上实施例的全波整流电路,还应用全桥整流电路、同步整流电路等。
以下结合图3和图4进一步说明本发明实施例的混联变换器100的基本工作原理。
本发明的混联变换器100可以选择任意一个直流输入130作为直流源,以选择直流输入110 1作为直流源为示例(其直流电压为V 0),如图3和图4所示,通过控制不同的逆变单元的开关管组合的导通,形成不同的等效电路。
在图3所示等效电路中,其中箭头反映了电流方向和功率流路径; 在输出功率较小的情况下,通过控制信号使逆变单元122和123中的所有开关管关断,因此,仅逆变单元121发挥逆变作用,在某一时刻,通过控制信号使能逆变单元121中的开关管S 12和S 13导通(开关管S 11和S 14关断),等效电路图如图3所示,在又一时刻,还可以通过控制信号使能逆变单元121中的开关管S 11和S 14导通(开关管S 12和S 13关断),形成类似图3的等效电路图。在小功率输出的情况下,图3等效电路图中的开关管S 12和S 13相对承受较小的电压应力,这种情形下,逆变电路模块120的工作原理与传统的多电平全桥逆变电路的工作原理类似。
在图4所示等效电路图中,其中箭头反映了电流方向和功率流路径;如果输出功率较大的情况下,仅通过逆变单元121进行逆变处理(如图3所示)将导致逆变单元121中的开关管S承受较大的电压应力,因此,对开关管S的应力要求高。但是,本发明实施例中的逆变电路模块采用混联结构,可以通过控制信号使逆变单元121工作,同时逆变单元122和123也工作,也即逆变单元121、122和123同时工作并且并联输出相同功率或不同功率,在AC/DC变换电路模块130中汇流后输出直流。在某一时刻的等效电路图如图4所示,通过控制信号使能逆变单元121中的开关管S 12和S 13导通(开关管S 11和S 14关断)、逆变单元122中的开关管S 21和S 24导通(开关管S 22和S 23关断)、逆变单元123中的开关管S 31和S 34导通(开关管S 32和S 33关断),此时,直流母线W 11、W 14构成逆变电路模块120的直流母线,直流输入110 1的电压V 0偏置在直流母线W 11和W 14上,直流母线W 11和W 14之间的串联连接的6个开关管S的电压应力将变为图3情形的1/3,开关管电压降也降低,这样可以用电压应力等级较低的开关管形成高压变换系统。并且,逆变单元121、122和123的线圈输出端L 11、L 21和L 31并联地输出功率,在AC/DC变换电路模块130中功率汇总输出;通过控制每个逆变单元的开关管,可以控制每个逆变单元的线圈输出端的输出功率大小,也即每个逆变单元的输出功率可控,从而可以混联变换器100的整体直流输出功率也可控。
需要理解的是,逆变电路模块120中的逆变单元的数量的设置并不限于以上实施例,选择工作的逆变单元的数量也可以根据具体情况来设置,例如,在以上图4中,逆变单元123中的开关管S 31、S 32、S 33 和S 34可以全关断,仅逆变单元121和122工作,逆直流输入110 1的电压V 0偏置在直流母线W 11和W 13上,直流母线W 11和W 13之间的串联的4个开关管S的电压应力将变为图3情形的1/2。
还需要说明的是,单个直流电源110的直流输入通过多个逆变单元并行地进行逆变处理后,在逆变电路模块120的多个线圈输出端的可以输出更多数量的电平,相比于传统的多电平逆变电路的可输出电平数更多,因此,THD(总谐波失真)特性也相应减小。
还需要理解是,本发明的混联变换器100可以选择三个直流输入130中的至少两个或两个以上组合作为直流源(图3和4中未示出),被选择的直流输入130所对应的逆变单元被开关管控制信号使能工作,甚至未被选择的直流输入130所对应的逆变单元也可以被开关管控制信号使能工作,因此,混联变换器100可以提供多样化的直流功率输出,满足各种功率需求。
图5所示为按照本发明又一实施例的混联变换器的电路结构示意图,图6所示为图5中的逆变单元的结构示意图。在该实施例中,混联变换器200相比于图1所示实施例的混联变换器100的主要区别在于逆变电路模块220中使用的逆变单元的结构不相同,在图1和图2所示,逆变单元是全桥H桥逆变单元121、122和123,在图5和图6所示实施例中,逆变单元是半桥H桥逆变单元221、222和223。
如图5和图6所示,半桥H桥逆变单元的其中一条主线路上的设置两个开关管S、另一条主线上设置两个电容C。分别地,逆变单元221具有两个设置在主线路W 22上的开关管S 12和S 14、两个设置在主线路W 21上电容C 11和电容C 13、设置在桥上的电感线圈L 11,电容C 1同样跨接在直流母线W 11和W 12之间;逆变单元222具有两个设置在主线路W 22上的开关管S 22和S 24、两个设置在主线路W 21上电容C 21和电容C 22、设置在桥上的电感线圈L 21,电容C 2同样跨接在直流母线W 12和W 13之间;逆变单元223具有两个设置在主线路W 22上的开关管S 32和S 34、两个设置在主线路W 21上电容C 31和电容C 33、设置在桥上的电感线圈L 31,电容C 3同样跨接在直流母线W 13和W 14之间。
混联变换器200中与混联变换器100的相同部件的设置在此不再一一赘述,并且,其也具有相似类的拓扑结构,因此,也具有混联变换器100的相似效果和优点。
图7所示为按照本发明再一实施例的混联变换器的电路结构示意图。相对比图1所示实施例的混联变换器100,图7中所示实施例的混联变换器300在直流输入110的数量没有发生改变的情况下,逆变电路模块120中的逆变单元数量减少,其中,逆变电路模块120中仅设置了逆变单元121和122;相应地,AC/DC变换电路模块130中也减少了对应的电感线圈L 31和整流二极管D 31和D 32。混联变换器300中与混联变换器100的相同部件的设置在此不再一一赘述,并且,其也具有相似类的拓扑结构,因此,也具有混联变换器100的相似效果和优点。
需要理解的是,逆变电路模块120中的逆变单元的数量并不限于以上实施例中的等于或小于直流输入110的数量,在其他实施例中,直流输入110的数量也大于直流输入110的数量,例如,也可以设置为4个。将理解到,在存在两个并行设置的逆变单元,并且每个逆变单元的输入端对应连接一个直流输入110,至少两个逆变单元的线圈输出端被布置为并联的输出,两个并行设置的逆变单元中之间共用直流母线、从而实现这两个并行的逆变单元的开关管之间形成串联连接,那么即形成了混联拓扑结构,因此,也将具有以上混联变换器100的优点。
以上图1和图5所示实施例的混联变换器尤其适用于高压充电应用场合,以下基于混联变换器对车辆的动力电池的充电进行示例说明。
图8所示为按照本发明一实施例的充换电设施的结构示意图。该充换电设施10可以但不限于为对车辆的动力电池进行充电的车辆充换电设施(例如车辆充电站),将理解到,充换电设施10还可以为各种充电站(不限于车辆充电站)、换电站或储能电站(例如风力发电或太阳能发电的储能电站)等。图8的充换电设施10示例地使用了如图1所示实施例的混联变换器100,混联变换器100的直流输入被对应设置为不同类型的电源输入,示例地,充换电设施10包括电网11、发电机12和直流电源13等不同类型的电源输入;对应电网11输出的是交流电,因此,充换电设施10中对应设置有AC/DC变换器11a,用于将电网11的交流输出变换为直流输出并提供给逆变电路模块120;对应发电机12输出的也是交流电,因此,充换电设施10中对应设置有AC/DC变换器12a,用于将电网11的交流输出变换为直流输出并提供 给逆变电路模块120,AC/DC变换器12a可以与AC/DC变换器11a具有不同的型号或配置;对应直流电源13输出的是直流电,因此,充换电设施10中对应设置有DC/DC变换器13a,用于将电网11的某一电压直流输出变换为又一电压直流输出并提供给逆变电路模块120,在直流电源13的输出电压合适的情况下,也可以省略配置DC/DC变换器13a。AC/DC变换器11a、AC/DC变换器12a和DC/DC变换器13a中的任意一个或多个输出的直流电源将提供给混联变换器100进行DC-AC-DC的变换然后在输出端131输出直流电。车辆900可以从充换电设施10的输出端131的取电,从而对动力电池充电。
充换电设施10可以具有多个不同类型的电源输入,能够输入的电源类型也不限于电网11、发电机12和直流电源13,其可以根据充换电设施的环境条件而具体配置,直流电源13可以是光伏组件,或甚至可以是车辆的动力电池(此时充换电设施10可以实现一辆电动汽车为另一辆电动汽车充电)。因此,充换电设施10可以兼容各种不同类型的电源输入,容易解决充换电设施10在特殊场合或特殊环境条件下对充电的限制,例如,在电网11没电时,用户可以选择接入发电机12进行充电,也能够实现多种类型的电源输入同时对被充电车辆进行高压充电,任意一个电源输入因故障等因素断电时,其他电源自动的就可以承担额外的补充功率,不会因为功率不足而中断充电。因此,大大提高充电的便利性和健壮性,车辆用户的体验好,能够满足各种场景的车辆充电需求。
应当理解,充换电设施10在使用图1所示实施例的混联变换器100时,其同样具有混联变换器100的优点,例如,充换电设施10可以使用电压应力等级相对较低的开关管形成、成本低,并且具有较好的THD特性。
将理解,在本文中,将部件“连接”或“耦合”到另一个部件时,它可以直接连接或耦合到另一个部件或可以存在中间部件。相反,当据称将部件“直接耦合”或“直接连接”到另一个部件时,则不存在中间部件。
以上例子主要说明了本发明的混联变换器及其充换电设施。尽管只对其中一些本发明的实施方式进行了描述,但是本领域普通技术人员应当了解,本发明可以在不偏离其主旨与范围内以许多其他的形式实施。因此,所展示的例子与实施方式被视为示意性的而非限制性的, 在不脱离如所附各权利要求所定义的本发明精神及范围的情况下,本发明可能涵盖各种的修改与替换。

Claims (14)

  1. 一种混联变换器,其用于将直流输入转换为直流输出,其特征在于,所述变换器包括:
    N个直流输入,其中,N为大于或等于2的整数,N个所述直流输入之间依次串联连接,N个所述直流输入中的任意一个、或者至少两个的组合用来为混联变换器提供直流源;
    逆变电路模块,其具有至少两个并行设置的逆变单元,其中,每个所述逆变单元的输入端对应连接N个所述直流输入的其中一个,至少两个所述逆变单元的线圈输出端被布置为并联的输出,所述两个并行设置的逆变单元之间共用直流母线、从而实现所述两个并行的逆变单元的开关管之间形成串联连接;以及
    AC/DC变换电路模块,其用于对所述逆变电路模块的N个线圈输出端所输出的交流信号进行整流滤波处理形成直流输出。
  2. 如权利要求1所述的混联变换器,其特征在于,所述逆变电路模块具有至少N个并行设置的逆变单元,其中,N个所述逆变单元的输入端分别逐一对应连接N个所述直流输入,N个所述逆变单元的线圈输出端被布置为并联的输出,N个并行设置的所述逆变单元中相邻的所述逆变单元之间共用直流母线、从而实现相邻的所述逆变单元的开关管之间形成串联连接。
  3. 如权利要求2所述的混联变换器,其特征在于,第n个直流输入的第一输入端和第二输入端分别连接所述逆变电路模块中的第n个逆变单元的第一直流母线和第二直流母线;
    第(n+1)个直流输入的第一输入端和第二输入端分别连接所述逆变电路模块中的第(n+1)个逆变单元的第一直流母线和第二直流母线;
    其中,所述第n个直流输入的第二输入端串联连接第(n+1)个直流输入的第一输入端,所述第n个直流输入的第二直流母线与第(n+1)个直流输入的第一直流母线共用;
    其中,n为整数,1≤n<N。
  4. 如权利要求1所述的混联变换器,其特征在于,N个直流输入具有相同大小的直流电压,所述两个逆变单元具有相同的配置。
  5. 如权利要求1所述的混联变换器,其特征在于,所述逆变单元为单相或多相全桥逆变单元、或者为单相或多相半桥逆变单元。
  6. 如权利要求5所述的混联变换器,其特征在于,所述逆变单元为H桥逆变单元,所述逆变单元的线圈输出端被布置在H桥的桥上;
    其中,所述H桥逆变单元的主线路上的开关管与相邻的H桥逆变单元的主线路上的开关管串联连接。
  7. 如权利要求1或2所述的混联变换器,其特征在于,N个所述直流输入的第n个用来为混联变换器提供直流源时,通过控制所述逆变单元中的开关管,使至少一个所述逆变单元工作,或者使至少两个所述逆变单元并行地工作。
  8. 如权利要求1所述的混联变换器,其特征在于,所述AC/DC变换电路模块具有至少两个线圈输入端和一个直流输出端,两个线圈输入端分别与所述两个并行的逆变单元的线圈输出端相耦合。
  9. 如权利要求8所述的混联变换器,其特征在于,至少两个所述线圈输入端中的每个的电感线圈的中部通过第一导线引出,然后共同连接至所述直流输出端的第一端;
    至少两个所述线圈输入端的每个的电感线圈的两端分别通过整流二极管连接至第二导线,然后通过第二导线共同连接至所述直流输出端的第二端。
  10. 一种充换电设施,其特征在于,包括:
    如权利要求1至9中任一项所述的混联变换器;和
    N种不同类型的电源输入,其分别对应连接所述混联变换器的N个直流输入(110)。
  11. 如权利要求10所述的充换电设施,其特征在于,所述电源输入通过AC/DC变换器或DC/DC变换器连接至所述混联变换器的相应直流输入(110),或者直接连接至所述混联变换器的相应直流输入。
  12. 如权利要求10所述的充换电设施,其特征在于,所述N种不同类型的电源输入包括:电网、发电机和直流电源。
  13. 如权利要求12所述的充换电设施,其特征在于,所述直流电源为光伏组件或车辆的动力电池。
  14. 如权利要求10所述的充换电设施,其特征在于,所述充换电设施为车辆充换电设施。
PCT/CN2018/070270 2017-01-05 2018-01-03 具有多输入的混联变换器和使用其的充换电设施 WO2018127054A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710006492.9A CN107070231B (zh) 2017-01-05 2017-01-05 具有多输入的混联变换器和使用其的充换电设施
CN201710006492.9 2017-01-05

Publications (1)

Publication Number Publication Date
WO2018127054A1 true WO2018127054A1 (zh) 2018-07-12

Family

ID=59623666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/070270 WO2018127054A1 (zh) 2017-01-05 2018-01-03 具有多输入的混联变换器和使用其的充换电设施

Country Status (2)

Country Link
CN (1) CN107070231B (zh)
WO (1) WO2018127054A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022156466A1 (zh) * 2021-01-20 2022-07-28 华为技术有限公司 通信电路及电子设备
WO2023202411A1 (zh) * 2022-04-19 2023-10-26 华为数字能源技术有限公司 一种功率模块、充电桩及供电设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107070231B (zh) * 2017-01-05 2024-04-09 上海蔚来汽车有限公司 具有多输入的混联变换器和使用其的充换电设施
CN108199601A (zh) * 2018-01-15 2018-06-22 南京理工大学 一种单相级联交流高频链双向变流器调制方法
CN111884501A (zh) * 2019-10-24 2020-11-03 株洲中车时代电气股份有限公司 一种dc/dc变流器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662230A (zh) * 2009-09-22 2010-03-03 南京航空航天大学 非接触多输入电压源型谐振变换器
US20120068663A1 (en) * 2010-09-22 2012-03-22 Kabushiki Kaisha Toyota Jidoshokki Power source device
CN103326393A (zh) * 2012-03-22 2013-09-25 张家港智电柔性输配电技术研究所有限公司 一种h桥级联变流器的冗余供电电源
CN104092382A (zh) * 2014-03-28 2014-10-08 燕山大学 三输入隔离dc/dc变换器
CN105337489A (zh) * 2015-11-17 2016-02-17 中国北车集团大连机车研究所有限公司 Dc600v辅助供电装置及机车
CN107070231A (zh) * 2017-01-05 2017-08-18 上海蔚来汽车有限公司 具有多输入的混联变换器和使用其的充换电设施
CN206611336U (zh) * 2017-01-05 2017-11-03 上海蔚来汽车有限公司 具有多输入的混联变换器和使用其的充换电设施

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE761543A (fr) * 1970-02-19 1971-06-16 Siemens Ag Systeme pour la commutation forcee pour un convertisseur statique autopilote
CN103887981A (zh) * 2014-03-20 2014-06-25 浙江大学 一种全桥dc-dc变换器
CN104777435A (zh) * 2015-02-14 2015-07-15 东莞市冠佳电子设备有限公司 移动电源充放电测试装置
CN106026685A (zh) * 2016-05-23 2016-10-12 清华大学 一种直流母线电容低波动的三相电力电子变压器拓扑结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662230A (zh) * 2009-09-22 2010-03-03 南京航空航天大学 非接触多输入电压源型谐振变换器
US20120068663A1 (en) * 2010-09-22 2012-03-22 Kabushiki Kaisha Toyota Jidoshokki Power source device
CN103326393A (zh) * 2012-03-22 2013-09-25 张家港智电柔性输配电技术研究所有限公司 一种h桥级联变流器的冗余供电电源
CN104092382A (zh) * 2014-03-28 2014-10-08 燕山大学 三输入隔离dc/dc变换器
CN105337489A (zh) * 2015-11-17 2016-02-17 中国北车集团大连机车研究所有限公司 Dc600v辅助供电装置及机车
CN107070231A (zh) * 2017-01-05 2017-08-18 上海蔚来汽车有限公司 具有多输入的混联变换器和使用其的充换电设施
CN206611336U (zh) * 2017-01-05 2017-11-03 上海蔚来汽车有限公司 具有多输入的混联变换器和使用其的充换电设施

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022156466A1 (zh) * 2021-01-20 2022-07-28 华为技术有限公司 通信电路及电子设备
WO2023202411A1 (zh) * 2022-04-19 2023-10-26 华为数字能源技术有限公司 一种功率模块、充电桩及供电设备

Also Published As

Publication number Publication date
CN107070231A (zh) 2017-08-18
CN107070231B (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
WO2018127054A1 (zh) 具有多输入的混联变换器和使用其的充换电设施
CN106208769B (zh) 电力转换装置
CN112970182A (zh) 具有高频中间交流和两个独立输出的交流-直流三电平转换系统
CN108566101A (zh) 模块化电源系统
WO2016119736A1 (zh) 五电平拓扑单元及五电平逆变器
US9203323B2 (en) Very high efficiency uninterruptible power supply
CN101997324A (zh) 具有电隔离的双向能量输送的系统和方法
CN102377324A (zh) 适合于高压应用的变流桥臂及其应用系统
CN102522913A (zh) 基于h全桥子单元的混合多电平变流拓扑及其控制方法
KR100970566B1 (ko) 전력회생이 가능한 h-브리지 방식의 멀티레벨 컨버터
US20070058401A1 (en) Integrated converter having three-phase power factor correction
CN106605360A (zh) 逆变器
US9825470B2 (en) Multi-source power converter
Kan et al. High-frequency-link inverter using combined synchronous rectifiers
US11689115B2 (en) Bidirectional AC-DC converter with multilevel power factor correction
US10873254B2 (en) Electrical circuit for zero-voltage soft-switching in DC-DC converter under all load conditions
Hu et al. Fault-tolerant converter with a modular structure for HVDC power transmitting applications
WO2017028776A1 (zh) 高电压增益的五电平逆变器拓扑电路
CN107370365B (zh) 高压直流输电dc-dc变换器及采用该变换器实现电压充放电的方法
CN105262355B (zh) 一种多端口逆变器
CN104811075B (zh) 一种组合变换器的控制方法
CN103872936A (zh) 一种单电源多电平混合型逆变器
CN111669061B (zh) 反拖系统和风力发电机组
CN104716680A (zh) 具有可再生能源的离线式不间断电源及其控制方法
CN106208788A (zh) 一种基于aac的多模块电压源型逆变器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18735855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 21/08/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 18735855

Country of ref document: EP

Kind code of ref document: A1