WO2020175184A1 - バルブタイミング調整装置 - Google Patents

バルブタイミング調整装置 Download PDF

Info

Publication number
WO2020175184A1
WO2020175184A1 PCT/JP2020/005797 JP2020005797W WO2020175184A1 WO 2020175184 A1 WO2020175184 A1 WO 2020175184A1 JP 2020005797 W JP2020005797 W JP 2020005797W WO 2020175184 A1 WO2020175184 A1 WO 2020175184A1
Authority
WO
WIPO (PCT)
Prior art keywords
drain
oil passage
oil
spool
advance
Prior art date
Application number
PCT/JP2020/005797
Other languages
English (en)
French (fr)
Inventor
哲朗 満谷
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112020001008.2T priority Critical patent/DE112020001008T5/de
Priority to CN202080012976.4A priority patent/CN113396273B/zh
Publication of WO2020175184A1 publication Critical patent/WO2020175184A1/ja
Priority to US17/411,502 priority patent/US11428126B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/34409Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear by torque-responsive means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0207Variable control of intake and exhaust valves changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/34433Location oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34436Features or method for avoiding malfunction due to foreign matters in oil
    • F01L2001/3444Oil filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34473Lock movement perpendicular to camshaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2250/00Camshaft drives characterised by their transmission means
    • F01L2250/02Camshaft drives characterised by their transmission means the camshaft being driven by chains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2250/00Camshaft drives characterised by their transmission means
    • F01L2250/04Camshaft drives characterised by their transmission means the camshaft being driven by belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/01Absolute values

Definitions

  • the present disclosure relates to a valve timing adjustment device.
  • valve timing adjustment device that is provided in a power transmission path that transmits power from a drive shaft of an internal combustion engine to a driven shaft and that adjusts the valve timing of a valve that is driven to open and close by the driven shaft.
  • the valve timing adjustment device includes a housing that rotates in conjunction with one of a drive shaft and a driven shaft, and a vane rotor fixed to the other end of the drive shaft and the driven shaft, By supplying hydraulic oil to one of the retard chamber and the advance chamber defined by the vane rotor in the housing, the vane rotor is relatively rotated in the retard direction or the advance direction with respect to the housing.
  • the hydraulic oil supplied to the retard chamber and the advance chamber is controlled by the hydraulic control valve.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 1 8 _ 1 7 8 9 7 2
  • the hydraulic oil control valve includes a retard oil supply passage connecting a hydraulic oil supply source and a retard chamber, and a hydraulic oil supply source and an advance chamber.
  • the flow of hydraulic oil supplied to the retard chamber and the advancing chamber is controlled by controlling the hydraulic oil flowing through the advancing oil passage that connects the.
  • the hydraulic oil control valve has a drain port, a partition and a recycle oil passage.
  • the drain port has a function to store the hydraulic oil discharged from the retard chamber or the advance chamber. ⁇ 2020/175 184 2 (:171? 2020/005797
  • the partition part partitions the drain oil passage connecting the retard chamber or advance chamber and the oil discharge portion from the retard supply oil passage or the advance supply oil passage.
  • the recycle oil passage connects the partition of the drain oil passage and the drain port to the retarded angle supply oil passage or the advanced angle supply oil passage.
  • the hydraulic oil control valve has a drain throttle portion formed between the partition portion and the drain port in the drain oil passage.
  • the flow passage cross-sectional area of the drain throttle is relatively large.
  • An object of the present disclosure is to provide a valve timing adjustment device having high responsiveness.
  • the present disclosure is a valve timing adjustment device that adjusts the valve timing of a valve of an internal combustion engine, and includes a phase conversion unit and a hydraulic oil control unit.
  • the phase conversion unit has a retard angle chamber and an advance angle chamber, and the hydraulic oil supplied from the hydraulic oil supply source to the retard angle chamber and the advance angle chamber causes a difference between the drive shaft and the driven shaft of the internal combustion engine.
  • the valve timing of the valve can be adjusted by converting the rotation phase.
  • the hydraulic oil control unit connects the retard oil supply path connecting the hydraulic oil supply source and the retard chamber and the advance supply oil passage connecting the hydraulic oil source and the advance chamber. By controlling the hydraulic oil that flows, the flow of hydraulic oil that is supplied to the retard chamber and the advance chamber can be controlled.
  • the hydraulic oil control section has a drain port, a partition section, a recycle oil passage, and a drain throttle section.
  • the drain port is connected to the oil discharge part that stores the hydraulic oil discharged from the retard chamber or the advance chamber.
  • the partition section connects the delay angle chamber or advance angle chamber to the oil discharge section and the delay angle oil supply passage or advance angle oil supply passage. ⁇ 2020/175 184 3 (: 171-1? 2020/005797
  • the recycle oil passage connects between the partition part and the drain port of the drain oil passage and the retarded angle supply oil passage or the advanced angle supply oil passage.
  • the drain throttle part is formed between the partition part and the drain port in the drain oil passage, and has a flow passage cross-sectional area that is smaller than the minimum flow passage cross-sectional area of the recycle oil passage and is constant. This reduces the amount of hydraulic oil discharged to the oil discharge part via the drain throttle part, while reducing the amount of hydraulic oil re-supplied to the retard chamber or advance chamber via the recycle oil passage. Can be a lot. Therefore, the responsiveness of the valve timing adjusting device can be improved.
  • FIG. 1 is a sectional view showing a valve timing adjusting device according to a first embodiment.
  • Fig. 2 is a cross-sectional view taken along line ⁇ _ _ ⁇ of Fig. 1.
  • FIG. 3 is a cross-sectional view showing a hydraulic oil control section of the valve timing adjusting device according to the first embodiment.
  • Fig. 4 is a cross-sectional view taken along the line V-V in Fig. 3.
  • FIG. 5 is a diagram showing the relationship between the throttle diameter of the drain throttle and the response speed of the phase converter at a predetermined rotation speed of the internal combustion engine.
  • FIG. 6 is a cross-sectional view showing a hydraulic oil control section of a valve timing adjusting device according to a second embodiment.
  • Fig. 7 is a cross-sectional view taken along the line V-I-V I of Fig. 6.
  • FIG. 8 is a cross-sectional view showing a hydraulic oil control section of a valve timing adjusting device according to a third embodiment.
  • Fig. 9 is a hydraulic oil control unit of the valve timing adjusting device according to the fourth embodiment. ⁇ 2020/175184 4 (:171? 2020/005797
  • FIG. 1 A first figure.
  • FIG. 10 is a sectional view showing a part of a valve timing adjusting device according to a fifth embodiment.
  • valve timing adjusting devices according to a plurality of embodiments will be described with reference to the drawings.
  • the substantially same components are denoted by the same reference numerals, and the description thereof will be omitted.
  • substantially the same constituent parts in a plurality of embodiments have the same or similar effects.
  • the valve timing adjusting device 10 changes the rotational phase of the camshaft 3 with respect to the crankshaft 2 of the engine 1 as an internal combustion engine, so that the intake valve 4 or the exhaust valve 5 of which the camshaft 3 is driven to open and close.
  • the valve timing of 4 is adjusted.
  • the valve timing adjusting device 10 is provided in the power transmission path from the crankshaft 2 to the camshaft 3.
  • Crankshaft 2 corresponds to the “drive shaft”.
  • the cam shaft 3 corresponds to the “driven shaft”.
  • the intake valve 4 and the exhaust valve 5 correspond to the “valve”.
  • the configuration of the valve timing adjusting device 10 will be described with reference to FIGS.
  • the valve timing adjustment device 10 is provided with a phase conversion section ⁇ 3 and a hydraulic oil control section XX.
  • the phase converter ⁇ has a housing 20 and a vane rotor 30.
  • the housing 20 has a gear 21 and a case 22.
  • the case 2 2 has a tubular portion 2 21 and plate portions 2 2 2 and 2 2 3.
  • the tubular portion 2 21 is formed in a tubular shape.
  • the plate portion 2 22 1 is formed integrally with the tubular portion 2 2 1 so as to close one end of the tubular portion 2 2 1.
  • the plate portion 2 23 is provided so as to close the other end of the tubular portion 2 21.
  • a space 200 is formed inside the housing 20.
  • the plate portion 2 2 3 is fixed to the tubular portion 2 2 1 with a bolt 1 2.
  • the gear portion 21 is formed on the outer edge of the plate portion 2 23. ⁇ 2020/175184 5 (:171? 2020/005797
  • the plate portion 2 23 is fitted to the end portion of the cam shaft 3.
  • Camshaft 3 is the housing
  • the case 22 has a plurality of partition walls 23 protruding radially inward from the cylindrical portion 2 21. At the center of the plate portion 2 22 of the case 22 is formed an opening 24 that opens to the space outside the case 22. Openings 24 are vane rotors
  • the vane rotor 30 has a boss 31 and a plurality of vanes 32.
  • the boss 31 has a cylindrical shape and is fixed to the end of the cam shaft 3.
  • the vane 32 projects from the boss 31 toward the outside in the radial direction between the partition walls 23.
  • the space 200 inside the housing 20 is divided into a retard chamber 20 1 and an advance chamber 20 2 by a vane 32. That is, the housing 20 forms a retard chamber 20 1 and an advance chamber 20 2 with the vane rotor 30.
  • the retard chamber 20 1 is located on one side in the circumferential direction with respect to the vane 32.
  • the advance chamber 202 is located on the other side in the circumferential direction with respect to the vane 32.
  • the vane rotor 30 rotates relative to the housing 20 in the retarding direction or the advancing direction according to the hydraulic pressure of the hydraulic oil as the fluid supplied to the retarding chamber 20 1 and the advancing chamber 20 2. ..
  • the retard chamber 20 1 and the advance chamber 20 2 correspond to the “hydraulic chamber” as the fluid supply target.
  • the phase converter ⁇ 3 has the retarding chamber 20 1 and the advancing chamber 20 2, and from the oil pump 8 as the hydraulic oil supply source 0 3 to the retarding chamber 20 1 It is possible to adjust the valve timing of the intake valve 4 by changing the rotational phases of the crankshaft 2 and the camshaft 3 with the hydraulic oil supplied to the advance chamber 202.
  • the hydraulic oil control valve 1 1 as the hydraulic oil control unit ⁇ ⁇ 3 is a retard oil supply valve that connects the hydraulic oil supply source ⁇ 3 and the retard chamber 20 1
  • the retard chamber 2 01 and the advance chamber 2 02 can be created. It is possible to control the flow of supplied hydraulic oil. ⁇ 2020/175 184 6 ⁇ (:171? 2020 /005797
  • the hydraulic oil control valve 11 includes a sleeve 400 and a spool.
  • valve seat surface 56 valve seat surface 56, drain port mouth, partition part [3 ⁇ 4 3, partition part 8 3, recycle oil passage [3 ⁇ 4 " 6 , drain throttle part 80, retarded supply check valve as check valve 7 1 Equipped with advance feed check valve 7 2 and recycle check valve 8 1.
  • the sleeve 400 has an outer sleeve 40 serving as an outer tubular portion and an inner sleeve 50 serving as an inner tubular portion.
  • the outer sleeve 40 is made of a material having a relatively high hardness, such as iron, and is formed into a substantially cylindrical shape.
  • the outer sleeve 40 has an inner peripheral wall formed into a substantially cylindrical surface. As shown in FIG. 3, a screw portion 41 is formed on the outer peripheral wall of one end of the outer sleeve 40. On the other end side of the outer sleeve 40, a locking portion 49 extending radially outward from the outer peripheral wall is formed.
  • a shaft hole portion 100 and a supply hole portion 10 1 are formed at the end portion of the camshaft 3 on the valve timing adjusting device 10 side.
  • the shaft hole 100 is formed so as to extend in the axial direction of the cam shaft 3 from the center of the end surface of the cam shaft 3 on the valve timing adjusting device 100 side.
  • the supply hole portion 101 is formed so as to extend radially inward from the outer wall of the cam shaft 3 and communicate with the shaft hole portion 100 (see FIG. 1).
  • a shaft side screw portion 1 10 which can be screwed to the screw portion 4 1 of the outer sleeve 40.
  • the outer sleeve 40 passes through the inside of the boss 31 of the vane rotor 30 and is fixed to the camshaft 3 so that the screw portion 41 is connected to the shaft side screw portion 110 of the camshaft 3.
  • the locking portion 49 locks the end face of the boss 31 of the vane rotor 30 opposite to the cam shaft 3.
  • the vane rotor 30 is fixed to the cam shaft 3 so as to be sandwiched between the cam shaft 3 and the locking portion 49.
  • the outer sleeve 40 is provided at the center of the vane rotor 30.
  • the oil pump 8 serving as the hydraulic oil supply source 03 pumps up the hydraulic oil stored in the oil pan 7 serving as the oil discharge port ⁇ and supplies it to the supply hole portion 101. As a result, hydraulic oil flows into the shaft hole 100. ⁇ 2020/175 184 7 ⁇ (:171? 2020/005797
  • the inner sleeve 50 is made of a material having a relatively low hardness, such as aluminum, and is formed into a substantially cylindrical shape. That is, the inner sleeve 50 is made of a material having a hardness lower than that of the outer sleeve 40.
  • the inner sleeve 50 has an inner peripheral wall and an outer peripheral wall formed in a substantially cylindrical surface shape.
  • the inner sleeve 50 has a surface subjected to a surface hardening treatment such as alumite, and has a surface layer having a hardness higher than that of the base material on the surface.
  • the inner sleeve 50 is provided inside the outer sleeve 40 so that the outer peripheral wall fits the inner peripheral wall of the outer sleeve 40.
  • the inner sleeve 50 is immovable relative to the outer sleeve 40.
  • a sleeve sealing portion 5 1 is provided at one end of the inner sleeve 50.
  • the sleeve sealing portion 51 closes one end of the inner sleeve 50.
  • the inner sleeve 50 corresponds to the “sleeve”.
  • the spool 60 is formed of, for example, metal into a substantially cylindrical shape.
  • spool _ le 6 0 corresponds to the "tubular member”.
  • Spool _ le 6 0 the outer peripheral wall is the inner wall and the sliding Lee emissions donor sleeve 5 0, axially reciprocally displaceable as inner - provided on the inside of the sleeve 5 0. That is, the spool 60 is provided inside the inner sleeve 50 so as to be movable in the axial direction relative to the inner sleeve 50.
  • a spool sealing portion 62 is provided at one end of the spool 60. The spool sealing portion 62 blocks one end of the spool 60.
  • a volume variable space 3 V is formed between the sleeve sealing portion 5 1 and the other end of the spool 60 inside the inner sleeve 50.
  • the volume of the variable volume space 3 V changes when the spool 60 moves axially with respect to the inner sleeve 50. That is, the sleeve sealing portion 5 1 forms a variable volume space 3 V in which the volume changes with the spool 60.
  • a spring 63 is provided in the variable volume space 3V. Spring 6
  • a so-called coil spring 3 has one end abutting on the sleeve sealing portion 51 and the other end abutting on the other end of the spool 60.
  • Spring 6 3 is spool 6 ⁇ 2020/175 184 8 (:171? 2020/005797
  • a locking portion 59 is provided on the inner side in the radial direction of the other end portion of the outer sleeve 40.
  • the locking portion 59 is formed in a plate shape, and the outer edge portion is provided so as to fit into the inner peripheral wall of the outer sleeve 40.
  • a hole is formed in the center of the locking portion 59, and the spool sealing portion 62 is located inside the hole.
  • the locking portion 59 can lock one end of the spool 60 by the inner edge portion.
  • the locking portion 59 can regulate the movement of the spool 60 to the side opposite to the sleeve sealing portion 51 of the spool 60. As a result, the spool 60 is prevented from coming off from the inside of the inner sleeve 50.
  • the spool 60 is movable in the axial direction from a position where it abuts the locking portion 59 to a position where it abuts the sleeve sealing portion 51. That is, the movable range with respect to the sleeve 400 is from the position where it contacts the locking portion 59 (see FIG. 3) to the position where it contacts the sleeve sealing portion 51.
  • the movable range of the spool 60 will be appropriately referred to as a "stroke section".
  • the end portion of the inner sleeve 50 on the sleeve sealing portion 51 side has an outer diameter smaller than the inner diameter of the outer sleeve 40.
  • a cylindrical space 3 I 1 are formed between the outer peripheral wall of the end portion of the inner sleeve 50 on the sleeve sealing portion 51 side and the inner peripheral wall of the outer sleeve 40.
  • the inner sleeve 50 is formed with annular recesses 1 to 11:.
  • the annular recesses 1 to 11: are formed to be recessed annularly inward in the radial direction from a position corresponding to the locking portion 49 of the outer peripheral wall of the inner sleeve 50. This allows the annular recess
  • An annular space 32 which is an annular space, is formed between the outer peripheral sleeve 40 and the inner peripheral wall of the outer sleeve 40.
  • the inner sleeve 50 is provided with a flow path groove portion 52.
  • the flow path groove portion 52 is formed so as to be recessed radially inward from the outer peripheral wall of the inner sleeve 50 and extend in the axial direction of the inner sleeve 50 (see FIG. 3).
  • Two flow channel grooves 52 are formed at equal intervals in the circumferential direction of the inner sleeve 50. ⁇ 2020/175 184 9 ⁇ (:171? 2020 /005797
  • the flow channel groove 52 forms an axial supply oil passage 38 as an axial flow channel. That is, the axial oil supply passage 38 is formed so as to extend in the axial direction of the sleeve 400 at the interface 1 between the outer sleeve 40 and the inner sleeve 50. One end of the axial oil supply passage 8 38 is connected to the cylindrical space 3 11 and the other end is connected to the annular space 3 12.
  • the inner sleeve 50 is formed with restriction groove portions 5 1 1 and 5 1 2.
  • the restriction groove portion 5 11 is formed so as to be annularly recessed radially outward from a position corresponding to the end portion of the cylindrical space 3 I 1 on the inner peripheral wall of the inner sleeve 50.
  • the restriction groove portion 5 12 is formed so as to be recessed radially outward from the position corresponding to the annular recesses 1 to 11 on the inner peripheral wall of the inner sleeve 50.
  • the valve seat surface 56 is formed in a substantially cylindrical shape on the bottom surfaces of the restricting groove portions 5 11 and 5 12 which are the inner wall of the inner sleeve 50 as a sleeve.
  • the inner sleeve 50 is formed with a movement restricting portion 513.
  • the movement restricting portion 5 13 is formed between the restriction groove portion 5 11 and the restriction groove portion 5 12 so as to be annularly recessed radially inward from the outer peripheral wall of the inner sleeve 50. Therefore, a part of the movement restricting section 5 13 in the circumferential direction is connected to the flow channel groove section 52.
  • the movement restricting portion 5 13 forms an annular flow passage portion "". That is, the annular flow passage portion "" is supplied in the axial direction between the outer sleeve 40 and the inner sleeve 50. It is formed in an annular shape so as to extend in the circumferential direction of the sleeve 400 while being connected to the oil passage 83.
  • the sleeve 400 has a retarded angle supply opening ⁇ [3 ⁇ 4 3, an advanced angle supply opening ⁇ , a retarded angle opening ⁇ [3 ⁇ 4, an advanced angle opening 08, a recycled opening ⁇ “6. There is.
  • the retarded-angle supply opening ⁇ [3 ⁇ 43 extends in the radial direction of the sleeve 400 and extends to the valve seat surface 5 6 of the inner sleeve 50, the cylindrical space 3 11 and the axial supply oil passage [. It is formed so as to connect to 3 ⁇ 4 3 (see Fig. 3). That is, the retard angle supply opening Connects the outside of the inner sleeve 50 as a sleeve and the valve seat surface 5 6. Retard supply opening 3 is open to the valve seat surface 56. In addition, retarded supply ⁇ 2020/175 184 10 (:171? 2020/005797
  • a plurality of openings ⁇ [3 ⁇ 4 3 are formed in the circumferential direction of the inner sleeve 50.
  • the advance feed opening 083 extends in the radial direction of the sleeve 400 and extends to the valve seat surface 56 of the inner sleeve 50, the annular space 312 and the axial feed oil passage [3 ⁇ 43 It is formed to connect to and (see Fig. 3). That is, the advance feed opening 083 communicates the outside of the inner sleeve 50 as a sleeve with the valve seat surface 56.
  • the advance feed opening 03 is opened in the valve seat surface 56.
  • a plurality of advance angle supply openings 083 are formed in the circumferential direction of the inner sleeve 50.
  • the retarded opening ⁇ [3 ⁇ 4 extends in the radial direction of the sleeve 400 and the inner sleeve 5
  • the advance opening 08 extends in the radial direction of the sleeve 400 and the inner sleeve 5
  • the advance opening ⁇ is formed on the locking portion 49 side with respect to the retard opening ⁇ [3 ⁇ 4. It should be noted that a plurality of advance openings 08 are formed in the circumferential direction of the sleeve 400.
  • the advancing opening 08 communicates with the advancing chamber 202 via the advancing oil passage 302.
  • a substantially cylindrical valve seat surface 5 5 is formed on the movement restricting portion 5 13 of the inner sleeve 50 (see FIG. 3). That is, the valve seat surface 55 is formed in a tubular shape on the inner side of the annular flow path portion “on the side of the inner sleeve 50. Recycling opening ⁇ “ ⁇ extends in the radial direction of the sleeve 400 and the valve seat surface It is formed so as to connect the surface 55 and the inner side of the inner sleeve 50. That is, the recycling opening ⁇ Connects the annular flow path “” to the space inside the inner sleeve 50. A plurality of recycling openings ⁇ “ 6 ” are formed in the circumferential direction of the inner sleeve 50. In the present embodiment. , Recycling opening ⁇ There are four “ 6 ” (see Fig. 4).
  • the spool 60 is provided with the retard supply concave portions 1 to 1 [3 ⁇ 4 3 , the retard drain concave portion. Advance drain ⁇ 2020/175 184 1 1 ⁇ (:171? 2020 /005797
  • Recess It has advance angle supply recesses 1 to 13.
  • Advancement supply recesses 1 to 1 3 are respectively radially inward from the outer peripheral wall of the spool 60. It is formed in an annular shape so as to be depressed. Recessed feeding recess The retarded drain recessed portions 1 to 1 [3 ⁇ 40 ⁇ , the advanced angle drain recessed portions 1 to 18 and the advanced angle supply recessed portions 1 to 18 3 are formed to be arranged in this order in the axial direction of the spool 60. Further, the retard angle drain concave portions!
  • the advance angle drain concave portions 1 to 18 are integrally formed. Retarded drain recess! ⁇ 1 Further, the advance angle drain recesses 1 to 18 form a specific space 33 between the inner sleeve 50 and the inner peripheral wall. That is, the spool 60 forms a specific space 33 with the sleeve 400.
  • Delayed supply oil passage Connects the oil pump 8 and the retard chamber 20 1 via the hydraulic oil control valve 1 1.
  • the advancing oil passage 8 3 connects the oil pump 8 and the advancing chamber 20 2 via the hydraulic oil control valve 1 1.
  • a retarded drain oil passage as a drain oil passage The retard chamber 201 and oil pan
  • Advance angle drain oil path 8 connects the advance angle chamber 202 and the oil pan 7.
  • the oil pump 8 and the retard chamber 201 are connected via the retard opening ⁇ [3 ⁇ 4, the retard oil passage 301. That is, the hydraulic oil between the oil pump 8 and the retard chamber 20 1 can flow through the retard supply opening 03 as a flow passage.
  • the advancing oil passage 83 is provided with a supply hole portion 101, a shaft hole portion 100, a cylindrical space 3I1, an axial supply oil passage 83, an advancing supply opening portion 03, and a regulation.
  • the oil pump 8 and the advancing chamber 20 2 are connected via the groove portion 5 1 2, the advancing angle supplying concave portions 1 to 18 3, the advancing angle opening 08, and the advancing oil passage 3 02. That is, hydraulic oil can be circulated between the oil pump 8 and the advance chamber 20 2 through the advance supply opening 083 serving as a flow passage. ⁇ 2020/175 184 12 (:171? 2020/005797
  • a drain opening 02 is formed in the spool 60.
  • the drain opening 02 is formed so as to penetrate through the spool sealing portion 62 in the radial direction, and communicates between the space inside the spool 60 and the outside of the spool 60 (see FIG. 3).
  • the drain port mouth corresponds to the drain opening 02. That is, the drain port port is formed so as to penetrate the spool sealing portion 62 in the radial direction, and communicates between the space inside the spool 60 and the outside of the spool 60 (see Fig. 3). ..
  • the drain port port is connected to an oil pan 7 that serves as an oil discharge part OO that stores the hydraulic oil discharged from the retard chamber 201 or the advance chamber 202.
  • Partition [[3 is spool It is formed at the end opposite to the drain recesses 1 to 1. Delayed drain oil passage And retard oil passage And the space between them (see Fig. 3).
  • the partition portion 8 3 is formed at the end portion on the opposite side of the advance angle drain concave portions 1 to 18 of the spool 60 from the retard angle drain concave portion!.
  • the partition part 3 separates the advance drain oil passage from the advance supply oil passage 3 (see Fig. 3).
  • Recycle oil passage Is the delay angle drain oil passage as a drain oil passage And advance drain oil passage
  • the spool 60 has a drain opening ⁇ 11.
  • the drain opening ⁇ 1 is formed so as to communicate with the space inside the spool 60 and the retard angle drain concave portion ! ⁇ 1 and the advance angle drain concave portion ! ⁇ 1 8, that is, the specific space 33.
  • the drain diaphragm ⁇ corresponds to the drain opening ⁇ 1. That is, the drain throttle 80 is formed on the spool 60.
  • the drain throttle 80 has a space inside the spool 60 and a retard drain recess! ⁇ 1 and an advance drain recess. That is, it is formed so as to communicate with the specific space 33.
  • One drain throttle 80 is formed in the circumferential direction of the spool 60 so as to extend in the radial direction of the spool 60.
  • the drain throttle 80 is provided with the delay angle drain oil passage [3 ⁇ 4
  • the drain throttle 80 has a flow passage cross-sectional area of a recycled oil passage. It is smaller than the minimum flow passage cross-sectional area of 6 and is constant regardless of the relative position of the spool 60 with respect to the sleeve 400.
  • the flow passage cross-sectional area of the drain throttle 80 corresponds to the area of the cross section perpendicular to the axis of the drain throttle 0, that is, the drain opening 0111.
  • recycled oil passages The minimum flow passage area of 6 is the recycled oil passage Four recycling openings forming 6 ⁇ Corresponds to the total area of the cross section of 6 perpendicular to each axis (see Fig.
  • the flow port cross-sectional area of the drain port opening or drain opening ⁇ 2 Is larger than the flow passage cross-sectional area of the drain throttle portion 0, that is, the drain opening portion 0 1. Further, if the flow passage cross-sectional area of the drain throttle portion 0 is 3 "1 and the cross-sectional area is 3" 2, Is.
  • the drain throttle unit 0 is formed so that the flow path cross section has a perfect circular shape.
  • the aperture diameter which is the diameter of the drain aperture portion 0, is 1.5 to 2.
  • Advance drain oil passage Goes through the advancing oil passage 302, the advancing opening 08, the advancing drain recess 1 to 18, the drain throttling part 80, the drain port opening, advancing chamber 2 02 and the oil pan 7 And connect.
  • the advance angle drain oil passage 8 is partially formed inside the hydraulic oil control valve 11. Further, the axial supply oil passage [38] is formed so as to extend in the axial direction of the sleeve 400 in the advance supply oil passage 83. That is, the sleeve 400 has an axial supply oil passage [38] extending in the axial direction of the sleeve 400 in the advance oil supply passage 83.
  • the drain throttle unit 80 is connected to the specific space 33 in the drain oil passage and connected to the specific space.
  • Recycling opening ⁇ "6 is the recycling oil passage At 6, it is formed so as to connect to the specific space 33 and extend from the specific space 33 to the side opposite to the drain throttle section 0. Recycling oilway Delayed drain oil passage in specific space 3 3 And the lead angle oil passage (see Figures 3 and 4).
  • the oil pump 8 is Advance supply oil passage 8 3 Supply hole 1 0 1, Shaft hole 1 0 0, Cylindrical Axial supply oil passage [3 ⁇ 4 3, advance angle supply opening ⁇ 3, restriction groove 5 1 2, advance angle supply recesses 1 to 1 3 , advance angle opening ⁇ , advance angle oil passage 3 0 2 It communicates with the corner room 202. At this time, the retard oil supply passage The oil pump 8 communicates with the retard chamber 20 1.
  • the advance oil supply passage The hydraulic oil can be supplied to the retard chamber 201 and the advance chamber 202 via the.
  • the partition of spool 60 The hydraulic oil is not discharged from the retard chamber 20 1 and the advancing chamber 20 2 to the oil pan 7 because the and advancing drain oil passage 8 is closed, that is, is blocked.
  • a filter 58 is provided inside the end of the outer sleeve 40 on the side of the sleeve sealing portion 51, that is, in the middle of the retard oil supply passage 883 and the advance oil supply passage 83. ing.
  • the filter 58 is, for example, an annular mesh.
  • the filter 58 can collect foreign substances contained in the hydraulic oil. Therefore, it is possible to suppress the flow of foreign matter on the downstream side of the filter 58, that is, on the side opposite to the oil pump 8.
  • Advance feed check valve 72 rolls a rectangular metal sheet as a single sheet material ⁇ 2020/175 184 16 ⁇ (: 171-1? 2020/005797
  • the advance supply check valve 7 2 is provided in the restriction groove portion 5 1 2 so that the outer peripheral wall can contact the valve seat surface 5 6.
  • the advance supply check valve 7 2 is provided in the restriction groove portion 5 12 so as to be elastically deformable in the radial direction.
  • the advance feed check valve 72 is provided radially inside the inner sleeve 50 with respect to the advance feed opening 083.
  • the advance feed check valve 7 2 is provided in the restriction groove portion 5 12 and is in the circumferential direction in the state where no hydraulic oil flows in the advance feed oil passage 83, that is, when no external force is applied. The end part of is overlapped with the part on the other end side.
  • the advance angle supply check valve 7 2 When the hydraulic oil flows from the advance angle supply opening 083 side to the advance angle supply concave portion ! ⁇ 13 side in the advance angle oil supply passage 83, the advance angle supply check valve 7 2 has It is pushed by hydraulic oil and contracts inward in the radial direction, that is, it contracts so as to deform. As a result, the outer peripheral wall of the advance feed check valve 72 is opened by being separated from the valve seat surface 56, and the hydraulic oil is opened through the advance feed opening ⁇ Advance feed check valve 7 2. It is possible to flow to the advance angle supply recesses 1 to 13 side. At this time, the advance feed check valve 72 maintains a state in which one end portion overlaps while expanding the length of the overlapping range with the other end side portion.
  • the advance angle supply check valve 72 is deformed so as to expand radially outward, that is, to expand. .. Furthermore, when the hydraulic oil flows from the advance feed recess ! ⁇ 13 side to the advance feed opening 083 side, the inner wall of the advance feed check valve 7 2 is pushed radially outward by the hydraulic oil, and The valve closes when the wall contacts the valve seat surface 56. This restricts the flow of hydraulic oil from the advance angle supply recess ! ⁇ 13 side to the advance angle supply opening ⁇ 3 side.
  • the advance feed check valve 72 functions as a check valve, and allows the flow of hydraulic oil from the advance feed opening 03 side to the advance feed recesses ! ⁇ 13 side. , It is possible to regulate the flow of hydraulic oil from the advance feed recess! ⁇ 13 side to the advance feed opening ⁇ 3 side. That is, the advance supply check valve 7 2 is connected to the advance supply oil passage [8 ⁇ 2020/175 184 17 ⁇ (:171? 2020/005797
  • the configuration of the retard supply check valve 71 is similar to that of the advance supply check valve 72, and is formed in a tubular shape by winding a rectangular thin metal plate as a single plate material.
  • the retarded supply check valve 71 is provided in the control groove 511 so that the outer peripheral wall can abut the valve seat surface 56.
  • the retarded supply check valve 71 is provided in the restriction groove portion 511 so as to be elastically deformable in the radial direction.
  • the retard supply check valve 7 1 is equipped with a retard supply opening. It is located on the inner side of the inner sleeve 50 in the radial direction.
  • the retarded supply check valve 7 1 is provided in the restriction groove portion 5 1 1, and the retarded supply oil passage is provided.
  • the hydraulic oil is a retard oil supply passage. Delayed feed opening at 3 Delayed supply recess from 3 side!
  • the retarded angle supply check valve 71 When flowing toward the 3 side, the retarded angle supply check valve 71 is deformed so that the outer peripheral wall is pushed by the hydraulic oil and contracts radially inward, that is, the diameter decreases.
  • the outer peripheral wall of the retarded-angle supply check valve 71 is separated from the valve seat surface 5 6 to open the valve, and the hydraulic oil flows into the retarded-angle supply opening portion.
  • Retard supply check Can flow to.
  • one end of the retard supply check valve 71 is maintained in a partially overlapped state while expanding the length of the overlapping range with the other end side portion.
  • the retard supply check valve 71 functions as a check valve, ⁇ 2020/175 184 18 ⁇ (:171? 2020 /005797
  • the retard supply check valve 71 is It is installed on the oil pump 8 side with respect to the spool 60 of the hydraulic oil control valve 11 and allows only the flow of hydraulic oil from the side oil pump 8 side to the retard chamber 20 1 side.
  • the configuration of the recycle check valve 8 1 is the same as that of the advance feed check valve 7 2 except for the difference in the outer diameter, and is made cylindrical by winding a rectangular metal thin plate as a single plate material. Has been formed.
  • the recycle check valve 8 1 is provided in the movement restricting part 5 1 3, that is, the annular flow path part
  • the recycle check valve 8 1 is provided so as to be elastically deformable in the radial direction in the annular flow passage portion “.”
  • the recycle check valve 8 1 is provided on the outer side in the radial direction of the inner sleeve 50 with respect to the valve seat surface 5 5.
  • the recycle check valve 8 1 is installed in the annular flow passage section " When the hydraulic oil is not flowing in 6 , that is, when no external force is applied, one end portion in the circumferential direction overlaps with the other end side portion.
  • the recycle check valve 81 functions as a check valve, and the recycle opening ⁇ " “Allow the flow of hydraulic oil to the side, It is possible to regulate the flow of hydraulic oil from the side of the recycle opening to the side of the “6” side of the recycle opening. In, only the flow of hydraulic oil from the drain oil passage side to the retarded angle supply oil passage [3 ⁇ 4 3 side and the advanced angle supply oil passage 8 3 side is allowed.
  • the movement restricting unit 5 13 can restrict the movement of the recycle check valve 8 1 in the axial direction.
  • a linear solenoid 9 is provided on the side of the spool 60 opposite to the camshaft 3.
  • the linear solenoid 9 is provided so as to abut the spool sealing portion 62.
  • the linear solenoid 9 presses the spool 60 toward the camshaft 3 side against the biasing force of the spring 6 3 via the spool sealing portion 62.
  • the spool 60 changes its axial position with respect to the sleeve 400 in the stroke section.
  • variable volume space 3 V is a retard angle drain oil passage. And it communicates with the advance drain oil passage. Therefore, the variable volume space 3 V is opened to the atmosphere via the delay angle drain oil passage [3 ⁇ 4[3 ⁇ 4 and the drain opening 02 of the advance angle drain oil passage 8]. As a result, the pressure in the variable volume space 3 V can be made equal to the atmospheric pressure. Therefore, the spool 60 can be smoothly moved in the axial direction.
  • the recycle check valve 81 is used to open the recycle oil passage. Backflow from the axial oil supply passage [38 side to the drain oil passage side in 6 is suppressed.
  • the hydraulic oil is Pump 8 to retard oil passage It is supplied to the retard room 20 1 via 3. Further, at this time, the hydraulic oil is supplied from the oil pump 8 to the advance chamber 20 2 via the advance supply oil passage [8 3 ]. At this time, the spool 60 delays the retard oil passage. And the advance angle drain oil passage 8 are closed, the hydraulic oil does not flow to the drain oil passage and the hydraulic oil is recycled. It cannot be returned to the side of oil supply in the axial direction 8 3 8 via 6 .
  • the hydraulic oil is advanced from the oil pump 8. It is supplied to the advance chamber 20 2 via the supply oil passage 83. In addition, at this time, the hydraulic oil flows from the retard chamber 201 to the retard drain oil passage. It is discharged to the oil pan 7 via the. In addition, the retard angle oil passage Some of the hydraulic oil flowing through the recycled oil passage It is returned to the axial supply oil passage 3 8 side and the advanced supply oil passage 8 3 side via 6 . As a result, the hydraulic oil discharged from the retard chamber 201 can be reused. At this time, the recycle check valve 81 suppresses the reverse flow from the axial oil supply passage [38 side to the drain oil passage side in the recycling oil passage [3 ⁇ 46].
  • the present embodiment further includes a lock pin 33 (see FIGS. 1 and 2).
  • the hook pin 33 is formed in a cylindrical shape with a bottom, and is housed in a housing hole 3 21 formed in the vane 32 so as to be axially reciprocally movable.
  • a spring 3 4 is provided inside the lock pin 3 3.
  • the spring 34 urges the lock pin 3 3 toward the plate 2 2 2 side of the case 22.
  • a fitting recess 25 is formed on the vane 3 2 side of the plate 2 2 2 of the case 22.
  • the lock pin 33 is located at the most retarded position of the vane rotor 30 with respect to the housing 20. ⁇ 2020/175184 21 It is possible to fit in the fitting recess 25 when it is in the range (:171? 2020/005797. When the lock pin 3 3 is fitted in the fitting recess 25, the vane rotor 3 with respect to the housing 20 Relative rotation of 0 is restricted.On the other hand, when the lock pin 33 is not fitted in the fitting recess 25, relative rotation of the vane rotor 30 with respect to the housing 20 is allowed.
  • a pin control oil passage 30 4 communicating with the advance chamber 20 2 is formed (see FIG. 2). ..
  • the pressure of the hydraulic oil flowing from the advance chamber 20 2 into the pin control oil passage 30 4 acts in the direction in which the lock pin 3 3 withdraws from the fitting recess 25 against the biasing force of the spring 3 4.
  • valve timing adjustment device 10 presses the spool 60 of the hydraulic oil control valve 11 by driving the linear solenoid 9 to connect the hydraulic oil control valve 11 to the oil pump 8 and the retard chamber 20 1. While the advance chamber 2 02 and the oil pan 7 are connected in the first operating state, and the oil pump 8 and the advance chamber 20 2 are connected, the retard chamber 2 01 and the il pan 7 are connected. While connecting the oil pump 8 to the retard chamber 20 1 and the advance chamber 20 2, the second operation state to be connected, the retard chamber 2 01 and the advance chamber 20 2 to the oil pan 7 And the phase conversion part? The phase hold state that holds the phase of 0 is activated.
  • Ren Oilway Hydraulic oil is returned to the advance oil supply passage 83.
  • the valve timing adjusting device 10 sets the hydraulic oil control valve 1 1 to the first operating state when the rotation phase of the cam shaft 3 is on the advance side of the target value.
  • the vane rotor 30 rotates relative to the housing 20 in the retard direction, and the rotation phase of the camshaft 3 changes to the retard side.
  • valve timing adjusting device 10 sets the hydraulic oil control valve 11 to the second operating state when the rotation phase of the camshaft 3 is on the retard side with respect to the target value.
  • the vane rotor 30 rotates relative to the housing 20 in the advance direction, and the rotation phase of the force shaft 3 changes to the advance side.
  • valve timing adjusting device 10 brings the hydraulic oil control valve 1 1 into the phase holding state when the rotation phase of the camshaft 3 matches the target value. As a result, the rotation phase of the cam shaft 3 is maintained.
  • Hydraulic fluid is returned to the 3 side or the advance oil supply passage 8 side. As a result, the hydraulic oil discharged from the advance chamber 202 or the retard chamber 201 can be reused.
  • the recycle check valve 8 1 causes a reverse flow from each supply oil passage side in the recycling oil passage [3 ⁇ 4 to the drain oil passage side. Suppressed.
  • FIG. 5 shows a throttle diameter that is the diameter of the drain throttle portion 80 when the engine 1 has a low rotation speed (100 rotations) and when it has a high rotation speed (600 rotations). ) It is a figure which shows the relationship with.
  • the response speed of the phase converter ⁇ 3 (Rei_1 6 9 ⁇ eight / 3) corresponds to the rotational speed of Nrota 3 0 base relative to the housing 2 ⁇ . ⁇ 2020/175 184 23 ⁇ (:171? 2020 /005797
  • the cam torque amplitude corresponds to the average value of positive and negative fluctuations of the torque input to the camshaft 3.
  • the generated torque is a torque generated between the housing 20 and the vane rotor 30 for each of the hydraulic pressures of 1001 ⁇ 3 applied to the retard chamber 201 and the advance chamber 202 as hydraulic chambers.
  • the aperture diameter is 1.5 to 2.
  • the response speed of the phase converter ⁇ 3 can be improved regardless of the engine speed.
  • the aperture diameter which is the diameter of the drain aperture portion 80, is 1.5 to 2. Is set to. Therefore, the response speed of the phase converter ⁇ 3 can be improved regardless of the engine speed.
  • the present embodiment is a valve timing adjustment device 10 that adjusts the valve timing of the intake valve 4 of the engine 1, and includes a phase conversion unit ⁇ and a hydraulic oil control unit ⁇ ⁇ 3. I have it.
  • the phase converter ⁇ 3 has the retard chamber 201 and the advance chamber 202, and supplies the hydraulic oil. ⁇ 2020/175 184 24 ⁇ (: 171? 2020 /005797
  • the rotation timing between the crankshaft 2 and the camshaft 3 of the engine 1 is converted by the hydraulic oil supplied from the source 0 3 to the retard chamber 20 1 and the advance chamber 20 2, and the valve timing of the intake valve 4 is changed. It is adjustable.
  • the hydraulic oil control valve 1 1 as the hydraulic oil control unit ⁇ ⁇ 3 is a retard oil supply valve that connects the hydraulic oil supply source 0 3 and the retard chamber 20 1
  • the retard chamber 2 01 and the advance chamber 2 02 can be created. It is possible to control the flow of supplied hydraulic oil.
  • the hydraulic oil control valve 11 has a drain port port, Partition 8 3 ⁇ Recycled oil passage 6 and drain throttle 80.
  • the drain port port is connected to the 0 port of the oil discharge part that stores the hydraulic oil discharged from the retard chamber 20 1 or the advance chamber 20 2.
  • Partition part [3 ⁇ 4 3, partition part 3 is a retarded angle drain oil passage that connects the retarded angle chamber 201 or advanced angle chamber 202 and the oil discharge part XX. , 3 or advance supply oil passage [separates between 3 ⁇ 4 3 and. Recycling oilway Delayed drain oil passage as a drain oil passage And advance drain oil passage
  • the drain throttle part 0 is a retarded drain oil passage as a drain oil passage.
  • advance drain oil passage Is formed between the drain and the drain port, and the cross-sectional area of the flow passage is a recycled oil passage. It is smaller than the minimum channel cross-sectional area of 6 and is constant. As a result, the amount of hydraulic oil discharged to the oil discharge port ⁇ 0 via the drain throttle unit 80 is reduced, while the retard angle chamber 20 1 or It is possible to increase the amount of hydraulic oil that is re-supplied to the advance chamber 202. Therefore, the valve timing adjustment device ⁇ 2020/175 184 25 ⁇ (: 171? 2020 /005797
  • the responsiveness of 10 can be improved.
  • the retarded angle drain oil passage as the drain oil passage.
  • lead angle oil passage Eight and recycled oil passage 6 is a common partition Connected to 3 ⁇ 1, partition section 3 ⁇ 1.
  • the partition part [3 ⁇ 4 301, partition part 83 is not used as a branch point between the recycling oil passage [3 ⁇ 4 “6 and the drain oil passage, The configuration of can be simplified.
  • the hydraulic oil control unit 0 ⁇ 3 has the spool 60 as a tubular member which is a tubular member.
  • the advanced angle drain oil passages 8 are formed on the radially outer side (specific space 33) and the radially inner side (space inside the spool 60) of the spool 60.
  • the drain throttle portion 80 extends in the radial direction of the spool 60 and connects the drain oil passage on the radially outer side of the spool 60 and the drain oil passage on the radially inner side of the spool 60. In this way, by forming the drain oil passage connection holes (drain opening ⁇ ⁇ 11) formed inside and outside the cylindrical spool 60 as the drain squeeze portion 80, the drain squeeze handle 680 Can be easily formed.
  • the drain throttle 80 is formed so as to extend in the radial direction of the spool 60, the axial position of the spool 60 with respect to the sleeve 400 is changed by the fluid force generated in the axial direction of the spool 60. Can be suppressed.
  • the hydraulic oil control unit XX reciprocates in the axial direction inside the cylindrical sleeve 400 and the sleeve 400 to delay the retard angle chamber 20. 1 and a cylindrical spool 60 capable of controlling the flow of hydraulic oil supplied to the advance chamber 20 2.
  • the drain throttle 80 is formed only on the spool 60 of the spool 60 or the sleeve 400. As a result, the axial position of the spool 60 with respect to the sleeve 400 can be suppressed from varying due to the fluid force generated due to the abrupt pressure change around the drain throttle 680.
  • the drain throttle portion 80 is formed on the spool 60.
  • the space inside the spool 60 is connected to the drain port port.
  • the center of the spool 60 which is the rotating body, becomes part of the drain oil passage.
  • the flow passage cross-sectional area of the drain throttle portion 0 is set to 1.77 to 4. Therefore, the response speed of the phase converter ⁇ 3 can be improved regardless of the engine speed (see Fig. 5).
  • the drain throttle portion 0 is formed such that the cross section of the flow path has a perfect circular shape. Therefore, the drain drawing part 80 can be easily formed by a basic tool such as a drill.
  • Fig. 6 shows a part of the valve timing adjusting device according to the second embodiment.
  • the second embodiment is different from the first embodiment in the configuration of the spool 60.
  • the spool 60 has a partition wall 64 and a drain opening 03.
  • the partition wall 64 is formed so as to separate the space inside the spool 60 from the drain opening 0, ie, the drain port opening.
  • the drain opening 0 3 is formed in the partition wall 64 so as to connect the space inside the spool 60 and the drain opening 0 12, that is, the drain port opening.
  • the drain opening 03 is formed so as to extend in the axial direction of the spool 60.
  • two drain openings 0 1 are formed at equal intervals in the circumferential direction of the spool 60 (see Fig. 7).
  • the drain diaphragm unit 0 corresponds to the drain opening unit 03.
  • the drain throttle unit 80 has a flow passage cross-sectional area of a recycled oil passage. It is smaller than the minimum flow passage cross-sectional area of 6 and is constant regardless of the relative position of the spool 60 with respect to the sleeve 400.
  • the flow passage cross-sectional area of the drain throttle portion 80 corresponds to the area of a cross section perpendicular to the axis of the drain throttle portion 0, that is, the drain opening OO13.
  • the flow passage cross-sectional area of the drain port opening that is, the drain opening portion 02 is larger than the flow passage cross-sectional area of the drain throttle portion 0, that is, the drain opening portion 03.
  • the amount of hydraulic oil discharged to the oil discharge part ⁇ via the drain throttle part 0 is reduced, and the recycling oil passage [3 ⁇ 4 "6 It is possible to increase the amount of hydraulic oil that is re-supplied to the retarding chamber 201 or the advancing chamber 202 via the valve.
  • FIG. 8 shows a part of the valve timing adjusting device according to the third embodiment.
  • the third embodiment differs from the first embodiment in the configuration of the sleeve 400, the spool 60, and the like.
  • the inner sleeve 50 includes a supply flow path section 501, an axial flow path section 502, a circumferential flow path section 503, a radial flow path section 504, and a breathing path. It has holes 505 and drain holes 506.
  • a plurality of supply passage portions 50 1 are formed in the circumferential direction of the inner sleeve 50 so that the inner wall and the outer wall of the end portion of the inner sleeve 50 on the sleeve sealing portion 51 side communicate with each other.
  • the supply flow path section 50 1 is formed on the side opposite to the spool 60 with respect to the sleeve sealing section 5 1.
  • the axial flow passage portion 50 2 is formed so as to extend inward in the radial direction from the outer wall of the end portion of the inner sleeve 50 on the sleeve sealing portion 5 1 side to the radial inner side.
  • the circumferential flow passage portion 503 is formed in an annular shape so as to be recessed radially inward from the outer wall of the end portion of the inner sleeve 50 on the sleeve sealing portion 51 side and extend in the circumferential direction.
  • the circumferential flow passage portion 50 3 connects the supply flow passage portion 50 1 and the axial flow passage portion 50 2.
  • the radial flow path portion 504 is formed so as to connect the outer wall and the inner wall of the inner sleeve 50.
  • the radial flow passage portion 50 4 is connected to the end portion of the axial flow passage portion 50 2 opposite to the circumferential flow passage portion 50 3. ⁇ 2020/175 184 28 ⁇ (:171? 2020 /005797
  • the breathing hole portion 50 is formed so as to extend in the radial direction from the outer wall of the inner sleeve 50 inward in the radial direction to the end portion on the locking portion 59 side.
  • One end of the breathing hole 505 is connected to the variable volume space 3V.
  • the other end of the breathing hole portion 505 is connected to a drain hole portion 590 formed at the center of the locking portion 59.
  • the drain hole portion 506 is formed in the inner sleeve 50 so as to connect the inner wall and the outer wall of the inner sleeve 50.
  • the drain hole 506 is connected to the breathing hole 505.
  • the spool 60 includes a spool sealing portion 6 1, a spool sealing portion 6 2 and a supply recess 6
  • the spool sealing portion 61 is formed so as to close the end portion of the spool 60 on the sleeve sealing portion 51 side.
  • a variable volume space 3 V is formed between the spool sealing portion 61 and the sleeve sealing portion 51, and a spring 63 is provided.
  • the spool sealing portion 62 is provided so as to close the end of the spool 60 on the side of the locking portion 59.
  • the spool sealing portion 62 is located inside the drain hole portion 590 of the locking portion 59.
  • a drain port port is formed between the spool sealing part 62 and the drain hole part 590 to connect to the oil discharge part ⁇ port.
  • the supply recess 60 1 is formed in an annular shape so as to be recessed radially inward from the outer wall of the end of the spool 60 on the spool sealing portion 61 side and extend in the circumferential direction.
  • the supply concave portion 60 1 can be connected to the radial flow passage portion 50 4.
  • the drain recess 60 2 is formed in an annular shape so as to extend radially inward from the outer wall of the spool 60 and extend in the circumferential direction.
  • the drain recess 60 2 is formed on the spool sealing portion 6 2 side with respect to the supply recess 60 1.
  • the drain recess 60 2 is connected to the breathing hole 5 05 via the drain hole 50 6.
  • the first control oil passage 6 11 is formed so as to connect the outer wall and the inner wall of the end portion of the spool 60 on the spool sealing portion 61 side.
  • the first control oil passage 6 11 is formed on the spool sealing portion 6 2 side with respect to the spool sealing portion 6 1 and is connected to the supply concave portion 60 1.
  • the second control oil passage 6 12 is formed so as to connect the outer wall and the inner wall of the end portion of the spool 60 on the spool sealing portion 62 side.
  • the spool 60 is axially movable in a range from a position where it abuts the locking portion 59 (see Fig. 8) to a position where it abuts the sleeve sealing portion 5 1 (not shown).
  • the retarded oil supply passage RR s is composed of the supply flow passage portion 501, the circumferential flow passage portion 503, the axial flow passage portion 52, the radial flow passage portion 5044, and the supply concave portion 6. It is formed so as to connect the hydraulic oil supply source OS and the retarding chamber 20 1 via the retarding opening OR and the retarding oil passage 3 0 1 (see FIG. 8).
  • the advancing oil passage RA s includes a supply flow passage portion 501, a circumferential flow passage portion 503, an axial flow passage portion 52, a radial flow passage portion 5044, and a supply concave portion 6.
  • the retarded drain oil passage RR d as a drain oil passage has a retarded opening ⁇ R and a drain concave ⁇ 2020/175184 30 box (: 171? 2020/005797 part 60 2, drain hole part 50 6, breathing hole part 5 05, retard angle chamber 20 1 via the drain port port and oil discharge part ⁇ Formed to connect to mouth (not shown)
  • Advance angle drain oil passage as a drain oil passage [3 ⁇ 4 has the advance angle opening 08, drain recess 60 2, drain hole 5 06, breathing hole 5 05, drain port mouth It is formed so as to connect the retard chamber 201 and the oil discharge part ⁇ via
  • Partition part [3 ⁇ 4 3 is the spool sealing part 6 of the drain concave part 60 2 of the spool 60.
  • the partition 8 3 is a spool sealing portion 6 of the drain recess 60 2 of the spool 60.
  • Partition Is the advance drain oil passage And the advance oil passage 3 are separated.
  • Recycle oil passage Is the recycle opening ⁇ 6, the space inside the spool 60, the first control oil passage 6 1 1, and the advance drain oil passage in the drain recess 60 2 And the retard oil supply passage in the supply recess 60 1. Connect to 3 (see Figure 8).
  • recycled oilways Is the recycle opening ⁇ “6, the space inside the spool 60, the second control oil passage 6 12 and the retard angle drain oil passage in the drain recess 60 2 Connect with advance oil supply passage 3 (not shown).
  • the drain diaphragm unit 0 corresponds to the drain hole unit 506. That is, the drain throttle 80 is formed on the inner sleeve 50.
  • the drain throttle portion 80 is formed so as to connect the space inside the inner sleeve 50 and the breathing hole portion 55, that is, the outer side in the radial direction of the inner sleeve 50.
  • One drain throttle portion 80 is formed in the circumferential direction of the inner sleeve 50 so as to extend in the radial direction of the inner sleeve 50.
  • the inner sleeve 50 corresponds to the “cylindrical member”.
  • the drain throttle 80 is provided with the delay angle drain oil passage [3 ⁇ 4 ⁇ 2020/175 184 31 ⁇ (: 171-1? 2020 /005797
  • the drain throttle unit 80 has a flow passage cross-sectional area of recycled oil passage. It is smaller than the minimum flow passage cross-sectional area of 6 and is constant regardless of the relative position of the spool 60 with respect to the sleeve 400.
  • the flow passage cross-sectional area of the drain throttle section 80 corresponds to the area of the section perpendicular to the axis of the drain throttle section 80, that is, the drain hole section 506.
  • recycled oil passage The minimum flow passage area of 6 is the recycled oil passage Four recycling openings that form 6 ⁇ Corresponds to the total area of the cross sections perpendicular to the respective axes of 6.
  • the flow passage cross-sectional area of the drain port is the eight constrictions of the drain throttle, that is, the drain hole. It is larger than the channel cross-sectional area of 506.
  • the drain throttle section 80 that is, the drain hole section 506 is formed so that the flow path cross section has a perfect circular shape.
  • the diameter of the drain throttle section 80 that is, the diameter of the drain hole section 506, is 1.5 to 2.5. Is set to. That is, the flow passage cross-sectional area of the drain throttle 80 is...! .7 7 to 4. Is set to.
  • a filler 58 is provided on the inner side in the radial direction of the inner sleeve 50 with respect to the supply flow path unit 50 1.
  • the filter 58 can collect foreign matter contained in the hydraulic oil.
  • a supply check valve 73 is provided on the outer side in the radial direction of the inner sleeve 50 with respect to the supply flow path portion 5011.
  • the supply check valve 7 3 is formed in a tubular shape by winding a rectangular thin metal plate as a single plate material, like the retarded supply check valve 7 1 of the first embodiment, and is provided on the side of the supply flow path 5 01.
  • the flow of hydraulic oil from the circumferential flow passage portion 5031 side to the supply flow passage portion 501 side is regulated while allowing the flow of hydraulic fluid from the circumferential flow passage portion 5031 side to the circumferential flow passage portion 5031 side.
  • Recycle openings ⁇ "radially inwardly of the spool 6 0 to 6, recycling check valve 81 is provided.
  • Recycle check valve 81 is retarded supply Chiwekku the first implementation embodiment Similar to valve 71, it is formed into a tubular shape by winding a rectangular thin metal plate as a single plate material, and it is sprinkled from the recycling opening ⁇ side. ⁇ 2020/175 184 32 units (:171? 2020 /005797
  • the hydraulic oil control valve 11 includes the drain port inlet, Partition 8 3 ⁇ Recycled oil passage And a drain diaphragm 80.
  • the drain port ⁇ is connected to the oil discharge unit ⁇ that stores the hydraulic oil discharged from the retard chamber 201 or the advance chamber 202.
  • Partition The partition part 8 3 is a retard angle drain oil passage that connects the retard angle chamber 201 or the advance angle chamber 202 to the oil discharge part ⁇ .
  • advance drain oil passage 8 and retard supply oil passage Alternatively, partition with the advance oil passage 3.
  • Recycle oil passage “6 is a retard angle drain oil passage as a drain oil passage. And advance drain oil passage Between the drain port and the drain port Or connect with advance oil supply passage 3.
  • the drain throttle 80 is a retard angle drain oil passage as a drain oil passage.
  • advance drain oil passage Is formed between the drain and the drain port, and the cross-sectional area of the flow passage is a recycled oil passage. It is smaller than the minimum channel cross-sectional area of 6 and is constant. As a result, the amount of hydraulic oil discharged to the oil discharge port ⁇ 0 via the drain throttle unit 80 is reduced, while the retard angle chamber 20 1 or It is possible to increase the amount of hydraulic oil re-supplied to the advance chamber 20 2. Therefore, the responsiveness of the valve timing adjustment device 10 can be improved.
  • the hydraulic oil control unit 0 ⁇ 3 has the inner sleeve 50 as a tubular member which is a tubular member.
  • the retarded angle drain and the advanced angle drain oil passage 8 as the drain oil passage are formed on the radially outer side (the breathing hole portion 50 5) and the radially inner side (the drain recessed portion 60 2) of the inner sleeve 50.
  • the drain throttle 80 is formed by extending the inner sleeve 50 in the radial direction. ⁇ 2020/175 184 33 ⁇ (:171? 2020/005797
  • drain oil passage connection holes drain hole portion 506 formed inside and outside the cylindrical inner sleeve 50 as the drain throttle portion 0
  • the drain throttle portion 0 can be easily formed. Can be formed into
  • the drain throttle portion 80 is formed only on the inner sleeve 50 of the sleeve 400 of the spool 60 or the sleeve 400. As a result, the axial position of the spool 60 with respect to the sleeve 400 can be prevented from varying due to the fluid force generated due to the rapid pressure change around the drain throttle 80.
  • the drain throttle portion 80 is formed on the inner sleeve 50 of the sleeve 400. Therefore, in the configuration in which drain oil is discharged from the inner side of the inner sleeve 50 in the radial direction to the outer side in the radial direction, the drain throttle 680 can be easily provided.
  • FIG. 9 shows a part of the valve timing adjusting device according to the fourth embodiment.
  • the fourth embodiment differs from the first embodiment in the configuration of the sleeve 400, the spool 60, and the like.
  • the outer sleeve 40 and the inner sleeve 50 of the sleeve 400 are integrally formed.
  • the sleeve 400 has a sleeve supply hole portion 401.
  • the sleeve supply hole portion 401 is formed so as to connect the outer wall and the inner wall of the sleeve 400 between the retard opening portion O and the advance opening portion 08.
  • the retarded angle opening ⁇ [3 ⁇ 4 is formed on the side of the locking portion 49 with respect to the three-dimensional supply hole 401, and is advanced toward the side of the threaded portion 41 with respect to the three-dimensional supply hole 40 1.
  • a square opening ⁇ is formed.
  • a drain port opening is formed at the end of the sleeve 400 opposite to the engaging portion 59.
  • the drain port port is connected to the oil outlet ⁇ port.
  • the spool 60 is formed in a substantially cylindrical shape.
  • the spool sealing portion 62 is formed in a substantially columnar shape and closes the end of the spool 60 on the side of the locking portion 59. ⁇ 2020/175 184 34 ⁇ (:171? 2020 /005797
  • a retard angle recycle oil passage member 91 and an advance angle recycle oil passage member 92 are provided on the radially outer side of the spool 60.
  • the retarded angle recycle oil passage member 91 is formed in a tubular shape, and the inner wall is fitted to the outer wall at the end of the spool 60 on the spool sealing portion 62 side.
  • the advanced angle recycled oil passage member 92 is formed in a tubular shape, and the inner wall thereof is fitted to the outer wall of the end portion of the spool 60 on the threaded portion 41 side.
  • the retard angle recycled oil passage member 91 has the retard angle recycled oil passage 910.
  • the retard angle recycled oil passage 9 10 is formed so as to connect the end face of the retard angle recycled oil passage member 9 1 on the advance angle recycled oil passage member 9 2 side to the outer wall and the inner wall of the retard angle recycled oil passage member 9 1. Has been done.
  • a plurality of retarded angle recycle oil passages 9 10 are formed in the circumferential direction of the retarded angle recycle oil passage member 9 1.
  • the advance angle recycled oil passage member 92 has an advance angle recycled oil passage 920.
  • the advance angle recycled oil passage 9 20 is formed so as to connect the end surface of the advance angle recycled oil passage member 9 2 on the retard angle recycle oil passage member 9 1 side to the outer wall and the inner wall of the advance angle recycled oil passage member 9 2.
  • a plurality of advance angle recycle oil passages 92 are formed in the circumferential direction of the advance angle recycle oil passage member 92.
  • the spool 60 has a spool drain hole portion 651 and a spool drain hole portion 652.
  • One spool drain hole 651 is formed in the circumferential direction of the spool 60 so as to connect the inner wall of the spool 60 and the retarded angle recycle oil passage 910.
  • One spool drain hole portion 65 2 is formed in the circumferential direction of the spool 6 0 so as to connect the inner wall of the spool 6 0 and the advance angle recycle oil passage 9 20.
  • the space inside the spool 60 communicates with the drain port port.
  • the spring 63 is provided between the advance angle recycled oil passage member 92 and the stepped surface of the inner wall of the sleeve 400, and biases the spool 60 toward the locking portion 59 side.
  • the icle oil passage member 92 is movable in the axial direction up to a position (not shown) in which it contacts the sleeve step surface 410 of the inner wall of the sleeve 400.
  • the spool 60 is separated from the locking portion 59 by a predetermined distance, and the advance recycle oil passage member is formed.
  • Retarded oil supply passage [3 ⁇ 4 3 includes sleeve supply hole 4 01, space 3 1, retarded opening ⁇ [Through hydraulic oil supply 0 3 and retard chamber 20 1 Are formed to connect (see Figure 9).
  • advance supply oil passage [3 ⁇ 4 eight 3, the sleeve feed holes 4 0 1, space 3 1, the advance hydraulic fluid supply source through the opening ⁇ 80 3 and the advancing chamber 2 0 2 Are formed to connect to each other (not shown).
  • Delayed drain oil passage as a drain oil passage Is the retarded angle opening ⁇ 3 ⁇ 4, the retarded angle recycle oil passage 9 1 0, the spool drain hole 6 5 1, the space inside the spool 6 0, and the retarded angle chamber 2 0 1 via the drain port port. It is formed so as to connect with the oil discharge port ⁇ (not shown).
  • the advance angle drain oil passage 8 as the drain oil passage includes the advance angle opening portion 08, the advance angle recycle oil passage 9 20, the spool drain hole portion 6 52, the space inside the spool 60, and the drain. Connect the retard chamber 201 and the oil discharge port ⁇ through the port ⁇ 2020/175 184 36 ⁇ (:171? 2020 /005797
  • the partition [[3] is formed in the opening of the retard angle recycle oil passage 910 in the outer wall of the retard angle recycle oil passage member 91. Delayed drain oil passage And retard oil passage Partition between and.
  • the partition 83 is formed in the opening of the advance recycle oil passage 92 in the outer wall of the advance recycle oil passage member 92.
  • the partition section 8 3 partitions the advance angle drain oil passage 8 and the advance angle supply oil passage 8 3.
  • Recycle oil passage 6 is an advance drain oil passage 8 in the advance recycle oil passage 920 and a retard supply oil passage in the space 3 1 via the advance recycle oil passage 920. And (see Figure 9).
  • recycled oil passages 6 indicates the retarded angle drain oil passage in the retarded angle recycled oil passage 910 via the retarded angle recycled oil passage 910. Connect with advance oil passage 883 in space 31 (not shown).
  • the drain throttle section 80 corresponds to each of the spool drain hole section 651 and the spool drain hole section 652. That is, the drain diaphragm 680 is formed on the spool 60.
  • the drain throttle 80 is formed so that the space inside the spool 60 and the outside of the spool 60 communicate with each other.
  • the drain throttle 80 is formed on the spool 60 so as to extend in the radial direction of the spool 60.
  • the spool 60 corresponds to the “cylindrical member”.
  • the drain throttle 80 is provided with the delay angle drain oil passage [3 ⁇ 4
  • the drain throttle 80 has a flow passage cross-sectional area of recycled oil passage. It is smaller than the minimum flow passage cross-sectional area of 6 and is constant regardless of the relative position of the spool 60 with respect to the sleeve 400.
  • the flow passage cross-sectional area of the drain throttle portion 80 corresponds to the area of the cross section of the drain throttle portion 80, that is, the spool drain hole portion 6 51 or the spool drain hole portion 6 52 perpendicular to the axis.
  • recycled oil passages The minimum flow path cross-sectional area of 6 is the advanced oil flow passage forming the recycled oil passage [3 ⁇ 4 ⁇ 2020/175 184 37 ⁇ (:171? 2020 /005797
  • the flow passage cross-sectional area of the drain port port is larger than the flow passage cross-sectional area of the drain throttle portion 80, that is, the spool drain hole portion 65 1 or the spool drain hole portion 6 52.
  • the drain throttle portion 80 that is, the spool drain hole portion 651 or the spool drain hole portion 652 is formed so that the cross section of the flow path has a perfect circular shape.
  • the throttle diameter which is the diameter of the drain throttle portion 80, that is, the spool drain hole portion 651 or the spool drain hole portion 652 is 1.5 to 2. Is set to. That is, the flow passage cross-sectional area of the drain throttle 80 is 1.77 to 4. Is set to.
  • a supply check valve 73 is provided radially inside the sleeve 400 with respect to the sleeve supply hole 401.
  • the supply check valve 7 3 is formed in a cylindrical shape by winding a rectangular thin metal plate as a single plate material in the same manner as the retarded supply check valve 7 1 of the first embodiment, and is provided on the sleeve supply hole 40 1 side. From the space to the space 31 side, while restricting the flow of the hydraulic oil from the space 3 1 side to the sleeve supply hole 4 01 side.
  • the space 3 1 is provided with a retard angle recycle check valve 8 1 1, an advance angle recycle check valve 8 1 2 and a spring 65.
  • the retarded angle recycle check valve 8 1 1 is formed in an annular shape, and can come into contact with the end face of the retarded angle recycled oil passage member 9 1 on the side of the advanced angle recycled oil passage member 9 2 and the retarded angle recycle oil passage. It is provided on the outside in the radial direction of the spool 6 0 so that it can block the 9 10
  • the retarded recycle check valve 8 1 1 is axially movable relative to the spool 6 0.
  • the advance angle recycle check valve 8 1 2 is formed in an annular shape and can come into contact with the end face of the advance angle recycle oil passage member 9 2 on the side of the retard angle recycle oil passage member 9 1 and the advance angle recycle oil passage. It is provided on the outside in the radial direction of the spool 6 0 so that it can block the 9 20.
  • the advance recycle check valve 8 1 2 can move relative to the spool 60 in the axial direction. ⁇ 2020/175 184 38 ⁇ (:171? 2020 /005797
  • the spring 6 5 is provided between the retard angle recycle check valve 8 1 1 and the advance angle recycle check valve 8 1 2, and the retard angle recycle check valve 8 1 1 and the advance angle recycle check valve 8 1 2 Are urged toward the retarded angle recycled oil passage member 91 and the advanced angle recycled oil passage member 92, respectively.
  • the retard angle recycle check valve 8 1 1 allows the flow of hydraulic oil from the retard angle recycle oil passage 9 10 side to the space 3 1 side while allowing the retard angle recycle oil passage 9 from the space 3 1 side. Restrict the flow of hydraulic oil to the 10 side.
  • the advancing recycle check valve 8 1 2 allows the flow of hydraulic oil from the advancing recycle oil passage 9 20 side to the space 3 1 side, while advancing the advancing recycle oil passage 9 from the space 3 1 side. 20 Restricts the flow of hydraulic oil to the 0 side.
  • the hydraulic oil control section ⁇ 3 has the spool 60 as a tubular member which is a tubular member.
  • Delay angle as a drain oil passage Drain oil passage
  • the advance angle drain oil passage 8 is formed on the radially outer side and the radially inner side (the space inside the spool 60) of the spool 60.
  • the drain throttle 80 extends the spool 60 in the radial direction and connects the drain oil passage on the radially outer side of the spool 60 and the drain oil passage on the radially inner side of the spool 60. In this way, the drain oil passage connection holes (spool drain hole 6 5 1, spool drain hole 6 52) formed inside and outside the cylindrical spool 60 should be the drain throttle 80.
  • the drain throttle portion 80 can be easily formed. Further, since the drain throttle 80 is formed so as to extend in the radial direction of the spool 60, the axial position of the spool 60 relative to the sleeve 400 due to the fluid force generated in the axial direction of the spool 60. Can be suppressed.
  • FIG. 5 A part of the valve timing adjusting device according to the fifth embodiment is shown in FIG.
  • the fifth embodiment is different from the first embodiment in the configuration of the sleeve 400, the spool 60, and the like.
  • the outer sleeve 40 and the inner sleeve 50 of the sleeve 400 are integrally formed. ⁇ 2020/175 184 39 (:171? 2020/005797
  • the sleeve 400 has a sleeve supply hole portion 401, a sleeve drain hole portion 402, a retard opening portion 08, and an advance opening portion 0.
  • the sleeve supply hole portion 401 is formed so as to connect the outer wall and the inner wall of the sleeve 400.
  • the sleeve supply hole 40 1 is connected to the hydraulic oil supply source ⁇ 3 via the cylindrical space between the shaft hole 100 and the outer wall of the sleeve 400, the supply hole 1 0 1. ing.
  • the sleeve drain hole portion 40 2 is formed so as to connect the outer wall and the inner wall of the sleeve 4 00 at the locking portion 49 of the sleeve supply hole portion 4 0 1.
  • a vane drain hole 30 is formed in the vane port 30.
  • the port drain hole portion 310 is formed so as to connect the sleeve drain hole portion 402 to the end surface of the vane rotor 30 opposite to the cam shaft 3.
  • a drain port is formed in the opening of the mouth drain hole 310 on the end surface of the vane rotor 30 opposite to the cam shaft 3.
  • the drain port ⁇ is connected to the oil discharge port ⁇ through the opening 24.
  • the retarded angle opening ⁇ is formed so as to connect the outer wall and the inner wall of the sleeve 400 with each other between the sleeve supply hole 401 and the sleeve drain hole 402. Retarded opening It communicates with the retard room 20 1.
  • the advance opening 08 is formed so as to connect the outer wall and the inner wall of the sleeve 400 between the sleeve drain hole 402 and the locking portion 49.
  • the advance opening 08 communicates with the advance chamber 202.
  • the spool 60 has spool supply holes 661, drain recesses 60, and retarded holes.
  • a plurality of spool supply hole portions 6 61 are formed in the circumferential direction of the spool 60 so that the outer wall and the inner wall of the end portion of the spool 6 0 on the spool sealing portion 61 side communicate with each other.
  • the drain recessed portion 660 is formed in an annular shape so as to be recessed radially inward from the outer wall on the spool sealing portion 62 side of the spool supply hole portion 661 and to extend in the circumferential direction. ⁇ 2020/175 184 40 units (:171? 2020 /005797
  • a plurality of advance holes 663 are formed in the circumferential direction of the spool 60 so that the inner wall and the outer wall of the spool 60 communicate with each other between the drain recessed portion 60 and the locking portion 49. ing.
  • a plurality of recycling openings ⁇ 6 are formed in the circumferential direction of the spool 60 so that the inner wall of the spool 60 and the drain recess 6060 communicate with each other.
  • the spring 63 is provided between the spool sealing portion 61 and the inner wall of the sleeve 400, and biases the spool 60 toward the locking portion 59.
  • the spool 60 starts from the position (not shown) at which it abuts on the locking portion 59, and the sleeve 4 moves.
  • the advance oil supply passage 3 includes a supply hole 1 0 1, a sleeve supply hole 4 0 1, a spool supply hole 6 6 1, a space inside the spool 60, and an advance hole 6 6 3. It is configured to connect the hydraulic oil supply source 0 3 and the advance chamber 20 2 via the advance opening 0 (see Fig. 10).
  • Delayed drain oil passage as a drain oil passage Is the delay opening ⁇ 3 ⁇ 4, drain recess 660, sleeve drain hole 40 2, mouth drain hole 3 10 and drain hole through the delay port 2 01 and oil discharge. It is formed so as to connect with the part ⁇ port (see Fig. 10).
  • Advance drain oil passage as a drain oil passage [3 ⁇ 4 indicates advance opening ⁇ 8, drain concave portion 660, sleeve drain hole portion 402, mouth drain hole portion 310, drain port — It is formed so as to connect the advancing chamber 202 and the oil discharge port ⁇ via a port (not shown).
  • Partition part [3 ⁇ 4 3 is the spool sealing part 6 of the drain concave part 60 of the spool 60.
  • the partition 8 3 is the drain sealing portion 6 60 of the spool 60 and the spool sealing portion 6 60.
  • Partition Is the advance drain oil passage And the advance oil passage 3 are separated.
  • Recycle oil passage Connects the advanced angle drain oil passage 8 in the drain recessed portion 660 and the retarded angle oil supply passage 883 in the space inside the spool 60 via the recycle opening ⁇ 6. (Not shown).
  • recycled oil passages Via the recycle apertures ⁇ "6 connects the retard angle drain oil passage [3 ⁇ 4 in de Len recess 6 6 0, the advance oil supply passage 3 between the empty inner spool 6 0 (Fig. 1 0 See).
  • the drain throttle portion 0 corresponds to the sleeve drain hole portion 402. That is, the drain throttle 80 is formed on the sleeve 400.
  • the drain throttle part 0 is formed so as to connect the inside and the outside of the sleeve 400.
  • the drain throttle 80 should extend in the radial direction of the sleeve 400. ⁇ 2020/175 184 42 ⁇ (:171? 2020 /005797
  • the sleeve 400 corresponds to the “cylindrical member”.
  • the drain throttle 80 is provided with the delay angle drain oil passage [3 ⁇ 4
  • the drain throttle 80 is a recycled oil passage whose flow passage cross-sectional area is It is smaller than the minimum flow passage cross-sectional area of 6 and is constant regardless of the relative position of the spool 60 with respect to the sleeve 400.
  • the flow passage cross-sectional area of the drain throttle portion 80 corresponds to the area of the cross section of the drain throttle portion 80, that is, the cross section of the sleeve drain hole portion 402 perpendicular to the axis.
  • recycled oil passages The minimum flow passage cross-sectional area of 6 is
  • the cross-sectional area of the flow channel at the drain port port is the drain throttle 80 or sleeve drain hole. It is larger than the flow passage cross-sectional area of part 402.
  • the drain throttle portion 80 that is, the sleeve drain hole portion 402 is formed so that the flow path cross section has a perfect circular shape.
  • the diameter of the drain throttle 80 that is, the diameter of the sleeve drain hole 402 is 1.5 to 2.5. Is set to. That is, the flow path cross-sectional area of de Len throttle portion 80 is 1.7 7-4. Is set to 9 1 2
  • the hydraulic oil control unit ⁇ 3 has the sleeve 400 as a tubular member which is a tubular member. Delayed drain oil passage as a drain oil passage And the advanced angle drain oil passage 8 is formed on the radially outer side (rotor drain hole 3 10) and the radially inner side (drain recess 660) of the sleeve 400.
  • the drain throttle section 80 extends in the radial direction of the sleeve 400 and connects the drain oil passage on the radially outer side of the sleeve 400 and the drain oil passage on the radially inner side of the sleeve 400.
  • the flow path cross-sectional area of the drain aperture portion 1. 7 7 less than 2, was or 4. 9 1 01 01 may be set larger than two.
  • the drain throttle part may be formed in any shape such as an elliptical shape, a rectangular shape, a polygonal shape, etc., without being limited to a perfect circular cross section. ..
  • the housing 20 and the crankshaft 2 may be connected by a transmission member such as a belt.
  • the vane rotor 30 may be fixed to the end of the crankshaft 2 and the housing 20 may rotate in conjunction with the camshaft 3.
  • valve timing adjusting device 10 may adjust the valve timing of the exhaust valve 5 of the engine 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

作動油制御部(OC)のドレンポート(PD)は、オイル排出部に接続する。仕切部(PRsd)、仕切部(PAsd)は、遅角室または進角室とオイル排出部とを接続するドレン油路(RRd)およびドレン油路(RAd)と、遅角供給油路(RRs)または進角供給油路(RAs)との間を仕切る。リサイクル油路(Rre)は、ドレン油路(RRd)およびドレン油路(RAd)のうち仕切部(PRsd)または仕切部(PAsd)とドレンポート(PD)との間と、遅角供給油路(RRs)または進角供給油路(RAs)とを接続する。ドレン絞り部(AD)は、ドレン油路(RRd)およびドレン油路(RAd)のうち仕切部(PRsd)または仕切部(PAsd)とドレンポート(PD)との間に形成され、流路断面積がリサイクル油路(Rre)の最小流路断面積より小さく、かつ、一定である。

Description

〇 2020/175184 1 卩(:171? 2020 /005797 明 細 書
発明の名称 : バルブタイミング調整装置
関連出願の相互参照
[0001 ] 本出願は、 2 0 1 9年2月 2 8日に出願された特許出願番号 2 0 1 9 _ 0
3 5 1 9 0号に基づくものであり、 ここにその記載内容を援用する。
技術分野
[0002] 本開示は、 バルブタイミング調整装置に関する。
背景技術
[0003] 従来、 内燃機関の駆動軸から従動軸まで動力を伝達する動力伝達経路に設 けられ、 従動軸により開閉駆動されるバルブのバルブタイミングを調整する バルブタイミング調整装置が知られている。
[0004] バルブタイミング調整装置は、 油圧式の場合、 駆動軸および従動軸の一方 と連動して回転するハウジングと、 駆動軸および従動軸の他方の端部に固定 されるベーンロータと、 を備え、 ハウジング内でベーンロータが区画形成す る遅角室および進角室の一方に作動油を供給することによって、 ハウジング に対してべーンロータを遅角方向または進角方向へ相対回転させる。 遅角室 および進角室に供給される作動油は、 作動油制御弁により制御される。 先行技術文献
特許文献
[0005] 特許文献 1 :特開 2 0 1 8 _ 1 7 8 9 7 2号公報
発明の概要
[0006] 例えば、 特許文献 1のバルブタイミング調整装置では、 作動油制御弁は、 作動油供給源と遅角室とを接続する遅角供給油路、 および、 作動油供給源と 進角室とを接続する進角供給油路を流れる作動油を制御することで遅角室お よび進角室に供給される作動油の流れを制御する。 作動油制御弁は、 ドレン ポート、 仕切部およびリサイクル油路を有する。
ドレンポートは、 遅角室または進角室から排出される作動油を貯留する才 〇 2020/175184 2 卩(:171? 2020 /005797
イル排出部に接続する。 仕切部は、 遅角室または進角室とオイル排出部とを 接続するドレン油路と、 遅角供給油路または進角供給油路との間を仕切る。 リサイクル油路は、 ドレン油路のうち仕切部とドレンポートとの間と、 遅角 供給油路または進角供給油路とを接続する。 これにより、 進角室または遅角 室から排出されてドレン油路を流れる作動油の一部を、 リサイクル油路を経 由して遅角室または進角室へ再び供給することで、 作動油を再利用できる。
[0007] また、 特許文献 1のバルブタイミング調整装置では、 作動油制御弁は、 ド レン油路のうち仕切部とドレンポートとの間に形成されたドレン絞り部を有 している。 ここで、 ドレン絞り部の流路断面積は、 比較的大きい。 そのため 、 ドレン絞り部を経由してオイル排出部へ排出される作動油の量が多くなり 、 リサイクル油路を経由して遅角室または進角室へ再供給される作動油の量 が少なくなるおそれがある。 これにより、 バルブタイミング調整装置の応答 性が低下するおそれがある。
[0008] 本開示の目的は、 応答性の高いバルブタイミング調整装置を提供すること にある。
[0009] 本開示は、 内燃機関のバルブのバルブタイミングを調整するバルブタイミ ング調整装置であって、 位相変換部と作動油制御部とを備えている。
[0010] 位相変換部は、 遅角室および進角室を有し、 作動油供給源から遅角室およ び進角室に供給される作動油により内燃機関の駆動軸と従動軸との回転位相 を変換し、 バルブのバルブタイミングを調整可能である。
[001 1 ] 作動油制御部は、 作動油供給源と遅角室とを接続する遅角供給油路、 およ び、 作動油供給源と進角室とを接続する進角供給油路を流れる作動油を制御 することで、 遅角室および進角室に供給される作動油の流れを制御可能であ る。
[0012] 作動油制御部は、 ドレンポート、 仕切部、 リサイクル油路およびドレン絞 り部を有する。 ドレンポートは、 遅角室または進角室から排出される作動油 を貯留するオイル排出部に接続する。 仕切部は、 遅角室または進角室とオイ ル排出部とを接続するドレン油路と、 遅角供給油路または進角供給油路との 〇 2020/175184 3 卩(:171? 2020 /005797
間を仕切る。 リサイクル油路は、 ドレン油路のうち仕切部とドレンポートと の間と、 遅角供給油路または進角供給油路とを接続する。 これにより、 進角 室または遅角室から排出されてドレン油路を流れる作動油の一部を、 リサイ クル油路を経由して遅角室または進角室へ再び供給することで、 作動油を再 利用できる。
[0013] ドレン絞り部は、 ドレン油路のうち仕切部とドレンポートとの間に形成さ れ、 流路断面積がリサイクル油路の最小流路断面積より小さく、 かつ、 一定 である。 これにより、 ドレン絞り部を経由してオイル排出部へ排出される作 動油の量を少なく しつつ、 リサイクル油路を経由して遅角室または進角室へ 再供給される作動油の量を多くすることができる。 したがって、 バルブタイ ミング調整装置の応答性を高めることができる。
図面の簡単な説明
[0014] 本開示についての上記目的およびその他の目的、 特徴や利点は、 添付の図 面を参照しながら下記の詳細な記述により、 より明確になる。 その図面は、 [図 1]図 1は、 第 1実施形態によるバルブタイミング調整装置を示す断面図で あり、
[図 2]図 2は、 図 1の丨 丨 _ 丨 丨線断面図であり、
[図 3]図 3は、 第 1実施形態によるバルブタイミング調整装置の作動油制御部 を示す断面図であり、
[図 4]図 4は、 図 3の丨 V— 丨 V線断面図であり、
[図 5]図 5は、 内燃機関の所定の回転数におけるドレン絞り部の絞り径と位相 変換部の応答速度との関係を示す図であり、
[図 6]図 6は、 第 2実施形態によるバルブタイミング調整装置の作動油制御部 を示す断面図であり、
[図 7]図 7は、 図 6の V 丨 I - V I 丨線断面図であり、
[図 8]図 8は、 第 3実施形態によるバルブタイミング調整装置の作動油制御部 を示す断面図であり、
[図 9]図 9は、 第 4実施形態によるバルブタイミング調整装置の作動油制御部 〇 2020/175184 4 卩(:171? 2020 /005797
を示す断面図であり、
[図 10]図 1 0は、 第 5実施形態によるバルブタイミング調整装置の一部を示 す断面図である。
発明を実施するための形態
[0015] 以下、 複数の実施形態によるバルブタイミング調整装置を図面に基づき説 明する。 なお、 複数の実施形態において実質的に同一の構成部位には同一の 符号を付し、 説明を省略する。 また、 複数の実施形態において実質的に同一 の構成部位は、 同一または同様の作用効果を奏する。
[0016] (第 1実施形態)
第 1実施形態によるバルブタイミング調整装置を図 1、 2に示す。 バルブ タイミング調整装置 1 〇は、 内燃機関としてのエンジン 1のクランク軸 2に 対するカム軸 3の回転位相を変化させることによって、 カム軸 3が開閉駆動 する吸気弁 4または排気弁 5のうち吸気弁 4のバルブタイミングを調整する ものである。 バルブタイミング調整装置 1 0は、 クランク軸 2からカム軸 3 までの動力伝達経路に設けられている。 クランク軸 2は、 「駆動軸」 に対応 する。 カム軸 3は、 「従動軸」 に対応する。 吸気弁 4、 排気弁 5は、 「バル ブ」 に対応する。
[0017] バルブタイミング調整装置 1 0の構成について図 1、 2に基づき説明する 。 バルブタイミング調整装置 1 0は、 位相変換部 <3および作動油制御部〇 〇等を備えている。
[0018] 位相変換部 〇は、 ハウジング 2 0、 ベーンロータ 3 0を有している。 ハ ウジング 2 0は、 ギア部 2 1およびケース 2 2を有している。 ケース 2 2は 、 筒部 2 2 1、 板部 2 2 2、 2 2 3を有している。 筒部 2 2 1は、 筒状に形 成されている。 板部 2 2 2は、 筒部 2 2 1の一端を塞ぐよう筒部 2 2 1 と一 体に形成されている。 板部 2 2 3は、 筒部 2 2 1の他端を塞ぐよう設けられ ている。 これにより、 ハウジング 2 0の内側に空間 2 0 0が形成されている 。 板部 2 2 3は、 ボルト 1 2により筒部 2 2 1 に固定されている。 ギア部 2 1は、 板部 2 2 3の外縁部に形成されている。 〇 2020/175184 5 卩(:171? 2020 /005797
[0019] 板部 2 2 3は、 カム軸 3の端部に嵌合している。 カム軸 3は、 ハウジング
2 0を回転可能に支持している。 ギア部 2 1 とクランク軸 2とには、 チェー ン 6が巻き掛けられている。 ギア部 2 1は、 クランク軸 2と連動して回転す る。 ケース 2 2は、 筒部 2 2 1から径方向内側に突き出す複数の隔壁部 2 3 を形成している。 ケース 2 2の板部 2 2 2の中央には、 ケース 2 2の外側の 空間に開口する開口部 2 4が形成されている。 開口部 2 4は、 ベーンロータ
3 0に対してカム軸 3とは反対側に位置する。
[0020] ベーンロータ 3 0は、 ボス 3 1、 および、 複数のベーン 3 2を有している 。 ボス 3 1は、 筒状であり、 カム軸 3の端部に固定される。 ベーン 3 2は、 ボス 3 1から径方向外側に向かって各隔壁部 2 3間に突き出している。 ハウ ジング 2 0の内側の空間 2 0 0は、 ベーン 3 2により遅角室 2 0 1 と進角室 2 0 2とに仕切られている。 すなわち、 ハウジング 2 0は、 ベーンロータ 3 0との間に遅角室 2 0 1および進角室 2 0 2を形成している。 遅角室 2 0 1 は、 ベーン 3 2に対して周方向の一方に位置している。 進角室 2 0 2は、 ベ —ン 3 2に対して周方向の他方に位置している。 ベーンロータ 3 0は、 遅角 室 2 0 1および進角室 2 0 2に供給される流体としての作動油の油圧に応じ て、 ハウジング 2 0に対して遅角方向または進角方向へ相対回転する。 ここ で、 遅角室 2 0 1および進角室 2 0 2は、 流体供給対象としての 「油圧室」 に対応する。
[0021 ] このように、 位相変換部 <3は、 遅角室 2 0 1および進角室 2 0 2を有し 、 作動油供給源〇3としてのオイルポンプ 8から遅角室 2 0 1および進角室 2 0 2に供給される作動油によりクランク軸 2とカム軸 3との回転位相を変 換し、 吸気弁 4のバルブタイミングを調整可能である。
[0022] 作動油制御部〇 <3としての作動油制御弁 1 1は、 作動油供給源〇 3と遅角 室 2 0 1 とを接続する遅角供給油
Figure imgf000007_0001
および、 作動油供給源 0 3と進 角室 2 0 2とを接続する進角供給油路 八 3を流れる作動油を制御すること で、 遅角室 2 0 1および進角室 2 0 2に供給される作動油の流れを制御可能 である。 〇 2020/175184 6 卩(:171? 2020 /005797
[0023] 図 3、 4に示すように、 作動油制御弁 1 1は、 スリーブ 4 0 0、 スプール
6 0、 弁座面 5 6、 ドレンポート 口、 仕切部 [¾ 3 、 仕切部 八 3 、 リサイクル油路[¾ 「 6、 ドレン絞り部八〇、 チェック弁としての遅角供給チ ェック弁 7 1、 進角供給チェック弁 7 2、 リサイクルチェック弁 8 1等を備 えている。
[0024] スリーブ 4 0 0は、 外筒部としてのアウタースリーブ 4 0、 内筒部として のインナースリーブ 5 0を有している。 アウタースリーブ 4 0は、 例えば鉄 を含む比較的硬度が高い材料により略円筒状に形成されている。 アウタース リーブ 4 0は、 内周壁が略円筒面状に形成されている。 図 3に示すように、 アウタースリーブ 4 0の一方の端部の外周壁には、 ねじ部 4 1が形成されて いる。 アウタースリーブ 4 0の他方の端部側には、 外周壁から径方向外側へ 環状に延びる係止部 4 9が形成されている。
[0025] カム軸 3のバルブタイミング調整装置 1 0側の端部には、 軸穴部 1 0 0、 供給穴部 1 0 1が形成されている。 軸穴部 1 〇〇は、 カム軸 3のバルブタイ ミング調整装置 1 〇側の端面の中央からカム軸 3の軸方向に延びるようにし て形成されている。 供給穴部 1 〇 1は、 カム軸 3の外壁から径方向内側に延 びて軸穴部 1 0 0に連通するよう形成されている (図 1参照) 。
[0026] カム軸 3の軸穴部 1 0 0の内壁には、 アウタースリーブ 4 0のねじ部 4 1 にねじ結合可能な軸側ねじ部 1 1 〇が形成されている。 アウタースリーブ 4 0は、 ベーンロータ 3 0のボス 3 1の内側を通り、 ねじ部 4 1がカム軸 3の 軸側ねじ部 1 1 〇に結合するようにしてカム軸 3に固定される。 このとき、 係止部 4 9は、 ベーンロータ 3 0のボス 3 1のカム軸 3とは反対側の端面を 係止する。 これにより、 ベーンロータ 3 0は、 カム軸 3と係止部 4 9とに挟 み込まれるようにしてカム軸 3に固定される。 このように、 アウタースリー ブ 4 0は、 ベーンロータ 3 0の中央部に設けられる。
[0027] 作動油供給源 0 3としてのオイルポンプ 8は、 オイル排出部〇口としての オイルパン 7に貯留されている作動油を汲み上げ、 供給穴部 1 〇 1 に供給す る。 これにより、 軸穴部 1 0 0には、 作動油が流入する。 〇 2020/175184 7 卩(:171? 2020 /005797
[0028] インナースリーブ 5 0は、 例えばアルミニウムを含む比較的硬度が低い材 料により略円筒状に形成されている。 つまり、 インナースリーブ 5 0は、 ア ウタースリーブ 4 0よりも硬度が低い材料により形成されている。 インナー スリーブ 5 0は、 内周壁および外周壁が略円筒面状に形成されている。 イン ナースリーブ 5 0は、 表面にアルマイ ト等の表面硬化処理が施されており、 表面に母材と比較して高硬度の表面層を有する。
[0029] 図 3に示すように、 インナースリーブ 5 0は、 外周壁がアウタースリーブ 4 0の内周壁に嵌合するようアウタースリーブ 4 0の内側に設けられている 。 インナースリーブ 5 0は、 アウタースリーブ 4 0に対し相対移動不能であ る。 インナースリーブ 5 0の一端には、 スリーブ封止部 5 1が設けられてい る。 スリーブ封止部 5 1は、 インナースリーブ 5 0の一端を塞いでいる。 こ こで、 インナースリーブ 5 0は、 「スリーブ」 に対応する。
[0030] スプール 6 0は、 例えば金属により略円筒状に形成されている。 ここで、 スプ _ル 6 0は、 「筒部材」 に対応している。 スプ _ル 6 0は、 外周壁がイ ンナースリーブ 5 0の内周壁と摺動し、 軸方向に往復移動可能なようインナ —スリーブ 5 0の内側に設けられている。 すなわち、 スプール 6 0は、 イン ナースリーブ 5 0の内側においてインナースリーブ 5 0に対し軸方向に相対 移動可能に設けられている。 スプール 6 0の一端には、 スプール封止部 6 2 が設けられている。 スプール封止部 6 2は、 スプール 6 0の一端を塞いでい る。
[0031 ] インナースリーブ 5 0の内側におけるスリーブ封止部 5 1 とスプール 6 0 の他端との間には、 容積可変空間 3 Vが形成されている。 容積可変空間 3 V は、 スプール 6 0がインナースリーブ 5 0に対し軸方向へ移動するとき、 容 積が変化する。 すなわち、 スリーブ封止部 5 1は、 スプール 6 0との間に、 容積が変化する容積可変空間 3 Vを形成している。
[0032] 容積可変空間 3 Vには、 スプリング 6 3が設けられている。 スプリング 6
3は、 所謂コイルスプリングであり、 一端がスリーブ封止部 5 1 に当接し、 他端がスプール 6 0の他端に当接している。 スプリング 6 3は、 スプール 6 〇 2020/175184 8 卩(:171? 2020 /005797
0をスリーブ封止部 5 1 とは反対側へ付勢している。
[0033] アウタースリーブ 4 0の他方の端部の径方向内側には、 係止部 5 9が設け られている。 係止部 5 9は板状に形成され、 外縁部がアウタースリーブ 4 0 の内周壁に嵌合するよう設けられている。 係止部 5 9の中央には、 穴部が形 成されており、 当該穴部の内側にスプール封止部 6 2が位置している。
[0034] 係止部 5 9は、 内縁部により、 スプール 6 0の一端を係止可能である。 係 止部 5 9は、 スプール 6 0のスリーブ封止部 5 1 とは反対側へのスプール 6 0の移動を規制可能である。 これにより、 スプール 6 0は、 インナースリー ブ 5 0の内側からの脱落が抑制されている。
[0035] スプール 6 0は、 係止部 5 9に当接する位置から、 スリーブ封止部 5 1 に 当接する位置まで、 軸方向に移動可能である。 すなわち、 係止部 5 9に当接 する位置 (図 3参照) から、 スリーブ封止部 5 1 に当接する位置までが、 ス リーブ 4 0 0に対する移動可能範囲である。 以下、 このスプール 6 0の移動 可能範囲を適宜 「ストローク区間」 と呼ぶ。
[0036] 図 3に示すように、 インナースリーブ 5 0のスリーブ封止部 5 1側の端部 は、 外径がアウタースリーブ 4 0の内径より小さく形成されている。 これに より、 インナースリーブ 5 0のスリーブ封止部 5 1側の端部の外周壁とアウ 夕ースリーブ 4 0の内周壁との間には、 略円筒状の空間である筒状空間 3 I 1が形成されている。
[0037] また、 インナースリーブ 5 0には、 環状凹部1~1 1:が形成されている。 環状 凹部 1~1 1:は、 インナースリーブ 5 0の外周壁の係止部 4 9に対応する位置か ら径方向内側へ環状に凹むよう形成されている。 これにより、 環状凹部
Figure imgf000010_0001
とアウタースリーブ 4 0の内周壁との間には、 環状の空間である環状空間 3 2が形成されている。
[0038] また、 インナースリーブ 5 0には、 流路溝部 5 2が形成されている。 流路 溝部 5 2は、 インナースリーブ 5 0の外周壁から径方向内側へ凹み、 かつ、 インナースリーブ 5 0の軸方向へ延びるようにして形成されている (図 3参 照) 。 流路溝部 5 2は、 インナースリーブ 5 0の周方向に等間隔で 2つ形成 〇 2020/175184 9 卩(:171? 2020 /005797
されている (図 4参照) 。 流路溝部 5 2は、 軸方向流路部としての軸方向供 給油路 3八を形成している。 すなわち、 軸方向供給油路 3八は、 アウタ —スリーブ 4 0とインナースリーブ 5 0との界面丁 1 においてスリーブ 4 0 〇の軸方向に延びるよう形成されている。 軸方向供給油路 8 3八は、 一端が 筒状空間 3 1 1 に接続し、 他端が環状空間 3 1 2に接続している。
[0039] 図 3に示すように、 インナースリーブ 5 0には、 規制溝部 5 1 1 , 5 1 2 が形成されている。 規制溝部 5 1 1は、 インナースリーブ 5 0の内周壁の筒 状空間 3 I 1の端部に対応する位置から径方向外側へ環状に凹むよう形成さ れている。 規制溝部 5 1 2は、 インナースリーブ 5 0の内周壁の環状凹部 1~1 1:に対応する位置から径方向外側へ環状に凹むよう形成されている。
[0040] 弁座面 5 6は、 スリーブとしてのインナースリーブ 5 0の内壁である規制 溝部 5 1 1 , 5 1 2の底面において略円筒状に形成されている。
[0041] また、 インナースリーブ 5 0には、 移動規制部 5 1 3が形成されている。
移動規制部 5 1 3は、 規制溝部 5 1 1 と規制溝部 5 1 2との間においてイン ナースリーブ 5 0の外周壁から径方向内側へ環状に凹むよう形成されている 。 そのため、 移動規制部 5 1 3の周方向の一部は、 流路溝部 5 2に接続して いる。
[0042] 移動規制部 5 1 3は、 環状流路部 「 丨 を形成している。 つまり、 環状流 路部 「 丨 は、 アウタースリーブ 4 0とインナースリーブ 5 0との間におい て軸方向供給油路 8 3 に接続しつつスリーブ 4 0 0の周方向に延びるよう 環状に形成されている。
[0043] スリーブ 4 0 0は、 遅角供給開口部〇[¾ 3、 進角供給開口部〇 遅角 開口部〇[¾、 進角開口部〇八、 リサイクル開口部〇 「 6を有している。
[0044] 遅角供給開口部〇[¾ 3は、 スリーブ 4 0 0の径方向に延びてインナースリ —ブ 5 0の弁座面 5 6と筒状空間 3 1 1および軸方向供給油路[¾ 3 とを接 続するよう形成されている (図 3参照) 。 すなわち、 遅角供給開口部
Figure imgf000011_0001
は、 スリーブとしてのインナースリーブ 5 0の外側と弁座面 5 6とを連通す る。 遅角供給開口部
Figure imgf000011_0002
3は、 弁座面 5 6に開口している。 なお、 遅角供給 〇 2020/175184 10 卩(:171? 2020 /005797
開口部〇[¾ 3は、 インナースリーブ 5 0の周方向に複数形成されている。
[0045] 進角供給開口部〇八 3は、 スリーブ 4 0 0の径方向に延びてインナースリ —ブ 5 0の弁座面 5 6と環状空間 3 1 2および軸方向供給油路[¾ 3 とを接 続するよう形成されている (図 3参照) 。 すなわち、 進角供給開口部〇八 3 は、 スリーブとしてのインナースリーブ 5 0の外側と弁座面 5 6とを連通す る。 進角供給開口部〇 3は、 弁座面 5 6に開口している。 なお、 進角供給 開口部〇八 3は、 インナースリーブ 5 0の周方向に複数形成されている。
[0046] 遅角開口部〇[¾は、 スリーブ 4 0 0の径方向に延びてインナースリーブ 5
0の内側の空間とアウタースリーブ 4 0の外側の空間とを接続するよう形成 されている。 なお、 遅角開口部〇[¾は、 スリーブ 4 0 0の周方向に複数形成 されている。 遅角開口部〇[¾は、 遅角油路 3 0 1 を経由して遅角室 2 0 1 に 連通している。
[0047] 進角開口部〇八は、 スリーブ 4 0 0の径方向に延びてインナースリーブ 5
0の内側の空間とアウタースリーブ 4 0の外側の空間とを接続するよう形成 されている。 進角開口部〇 は、 遅角開口部〇[¾に対し係止部 4 9側に形成 されている。 なお、 進角開口部〇八は、 スリーブ 4 0 0の周方向に複数形成 されている。 進角開口部〇八は、 進角油路 3 0 2を経由して進角室 2 0 2に 連通している。
[0048] インナースリーブ 5 0の移動規制部 5 1 3には、 略円筒状の弁座面 5 5が 形成されている (図 3参照) 。 すなわち、 弁座面 5 5は、 環状流路部 「 丨 のインナースリーブ 5 0側に筒状に形成されている。 リサイクル開口部〇 「 ㊀は、 スリーブ 4 0 0の径方向に延びて弁座面 5 5とインナースリーブ 5 0 の内側とを連通するよう形成されている。 つまり、 リサイクル開口部〇
Figure imgf000012_0001
は、 環状流路部 「 丨 とインナースリーブ 5 0の内側の空間とを接続してい る。 リサイクル開口部〇 「 6は、 インナースリーブ 5 0の周方向に複数形成 されている。 本実施形態では、 リサイクル開口部〇 「 6は、 4つ形成されて いる (図 4参照) 。
[0049] スプール 6 0は、 遅角供給凹部1~1[¾ 3、 遅角ドレン凹
Figure imgf000012_0002
進角ドレ 〇 2020/175184 1 1 卩(:171? 2020 /005797
ン凹部
Figure imgf000013_0001
進角供給凹部 1~1 3等を有している。 遅角供給凹部1 1 [¾ 3、 遅角ドレン凹部1~| [¾〇^、 進角ドレン凹部 進角供給凹部 1~1 3は、 そ れそれ、 スプール 6 0の外周壁から径方向内側へ凹むようにして環状に形成 されている。 遅角供給凹部
Figure imgf000013_0002
遅角ドレン凹部1~1 [¾〇^、 進角ドレン凹部 1~1八 、 進角供給凹部 1~1八 3は、 この順でスプール 6 0の軸方向に並ぶよう 形成されている。 また、 遅角ドレン凹部! ~1 と進角ドレン凹部 1~1八 とは 、 一体に形成されている。 遅角ドレン凹部! ~1
Figure imgf000013_0003
および進角ドレン凹部 1~1八 は、 インナースリーブ 5 0の内周壁との間に特定空間 3 3を形成している 。 すなわち、 スプール 6 0は、 スリーブ 4 0 0との間に特定空間 3 3を形成 している。
[0050] 遅角供給油路
Figure imgf000013_0004
は、 作動油制御弁 1 1 を経由してオイルポンプ 8と遅 角室 2 0 1 とを接続する。 進角供給油路 八 3は、 作動油制御弁 1 1 を経由 してオイルポンプ 8と進角室 2 0 2とを接続する。
[0051 ] ドレン油路としての遅角ドレン油路
Figure imgf000013_0005
は、 遅角室 2 0 1 とオイルパン
7とを接続する。 ドレン油路としての進角ドレン油路 八 は、 進角室 2 0 2とオイルパン 7とを接続する。
[0052] 遅角供給油路
Figure imgf000013_0006
供給穴部 1 0 1、 軸穴部 1 0 0、 筒状空間 3 I 1 、 軸方向供給油路8 3 、 遅角供給開口部
Figure imgf000013_0007
規制溝部 5 1 1、 遅角供 給凹部
Figure imgf000013_0008
遅角開口部〇[¾、 遅角油路 3 0 1 を経由して、 オイルポンプ 8と遅角室 2 0 1 とを接続する。 すなわち、 流路部としての遅角供給開口部 〇 3には、 オイルポンプ 8と遅角室 2 0 1 との間の作動油が流通可能であ る。
[0053] 進角供給油路 八 3は、 供給穴部 1 0 1、 軸穴部 1 0 0、 筒状空間 3 I 1 、 軸方向供給油路8 3 、 進角供給開口部〇 3、 規制溝部 5 1 2、 進角供 給凹部 1~1八 3、 進角開口部〇八、 進角油路 3 0 2を経由して、 オイルポンプ 8と進角室 2 0 2とを接続する。 すなわち、 流路部としての進角供給開口部 〇八 3には、 オイルポンプ 8と進角室 2 0 2との間の作動油が流通可能であ る。 〇 2020/175184 12 卩(:171? 2020 /005797
[0054] スプール 6 0には、 ドレン開口部〇 2が形成されている。 ドレン開口部 〇 2は、 スプール封止部 6 2を径方向に貫くよう形成され、 スプール 6 0 の内側の空間とスプール 6 0の外部とを連通するよう形成されている (図 3 参照) 。
[0055] 本実施形態では、 ドレンポート 口は、 ドレン開口部〇 2に対応してい る。 すなわち、 ドレンポート 口は、 スプール封止部 6 2を径方向に貫くよ う形成され、 スプール 6 0の内側の空間とスプール 6 0の外部とを連通する よう形成されている (図 3参照) 。 ドレンポート 口は、 遅角室 2 0 1 また は進角室 2 0 2から排出される作動油を貯留するオイル排出部〇〇としての オイルパン 7に接続する。
[0056] 仕切部 [¾ 3 は、 スプール
Figure imgf000014_0001
ドレン凹 部 1~1 とは反対側の端部に形成されている。
Figure imgf000014_0002
遅角ドレ ン油路
Figure imgf000014_0003
と遅角供給油路
Figure imgf000014_0004
との間を仕切る (図 3参照) 。
[0057] 仕切部 八 3 は、 スプール 6 0の進角ドレン凹部 1~1八 の遅角ドレン凹 部! とは反対側の端部に形成されている。 仕切部 3 は、 進角ドレ ン油路 と進角供給油路 3との間を仕切る (図 3参照) 。
[0058] リサイクル油路
Figure imgf000014_0006
は、 ドレン油路としての遅角ドレン油路
Figure imgf000014_0005
およ び進角ドレン油路
Figure imgf000014_0007
ンポート 口との間と、 遅角供給油路
Figure imgf000014_0008
または進角供給油路 八 3とを 接続する。
[0059] 図 3に示すように、 リサイクル油路
Figure imgf000014_0009
特定空間 3 3からリサイク ル開口部〇 「 6、 移動規制部 5 1 3、 環状流路部 「 丨 を経由して遅角供給
Figure imgf000014_0010
および進角供給油路[¾八 3、 すなわち、 軸方向供給油路[¾ 3八に 接続している。
[0060] スプール 6 0には、 ドレン開口部〇 ¢1 1が形成されている。 ドレン開口部 〇 1は、 スプール 6 0の内側の空間と遅角ドレン凹部! ~1 および進角ド レン凹部 !~1八 、 すなわち、 特定空間 3 3とを連通するよう形成されている 〇 2020/175184 13 卩(:171? 2020 /005797
[0061] 本実施形態では、 ドレン絞り部 〇は、 ドレン開口部〇 1 に対応してい る。 すなわち、 ドレン絞り部八 0は、 スプール 6 0に形成されている。 ドレ ン絞り部八 0は、 スプール 6 0の内側の空間と遅角ドレン凹部! ~1 および 進角ドレン凹部
Figure imgf000015_0001
すなわち、 特定空間 3 3とを連通するよう形成され ている。 ドレン絞り部八 0は、 スプール 6 0の径方向に延びるようスプール 6 0の周方向に 1つ形成されている。
[0062] このように、 ドレン絞り部八 0は、 ドレン油路としての遅角ドレン油路[¾
Figure imgf000015_0002
とドレンポート 口との間に形成されている。
[0063] ドレン絞り部八 0は、 流路断面積がリサイクル油路
Figure imgf000015_0003
6の最小流路断面 積より小さく、 かつ、 スリーブ 4 0 0に対するスプール 6 0の相対位置にか かわらず一定である。 ここで、 ドレン絞り部八 0の流路断面積は、 ドレン絞 り部 0すなわちドレン開口部〇〇1 1の軸に垂直な断面の面積に対応する。 また、 リサイクル油路
Figure imgf000015_0004
6の最小流路断面積は、 リサイクル油路
Figure imgf000015_0005
6を 形成する 4つのリサイクル開口部〇 「 6のそれぞれの軸に垂直な断面の面積 の合計に対応する (図 4参照) 。 なお、 ドレンポート 口すなわちドレン開 口部〇 2の流路断面積は、 ドレン絞り部 0すなわちドレン開口部〇 1 の流路断面積より大きい。 また、 ドレン絞り部 0の流路断面積を 3 「 1、 断面積を 3 「 2とすると、 本実施形態では 、
Figure imgf000015_0006
である。
[0064] 本実施形態では、 ドレン絞り部 0は、 流路断面が真円形状となるよう形 成されている。
[0065] 本実施形態では、 ドレン絞り部 0の直径である絞り径は、 1 . 5〜 2 .
5 に設定されている。 すなわち、 ドレン絞り部八 0の流路断面積は、 1
. 7 7〜 4 .
Figure imgf000015_0007
に設定されている。
[0066] 遅角ドレン油路
Figure imgf000015_0008
遅角油路 3 0 1、 遅角開口部〇[¾、 遅角ドレン 凹部1~|[¾ 、 ドレン絞り部八 0、 ドレンポート 口を経由して、 遅角室 2 0 1 とオイルパン 7とを接続する。 〇 2020/175184 14 卩(:171? 2020 /005797
[0067] 進角ドレン油路
Figure imgf000016_0001
は、 進角油路 3 0 2、 進角開口部〇八、 進角ドレン 凹部 1~1八 、 ドレン絞り部八 0、 ドレンポート 口を経由して、 進角室 2 0 2とオイルパン 7とを接続する。
[0068] このように、 遅角供給油路[¾[¾ 3、 進角供給油路[¾八 3、 遅角ドレン油路
8 8 、 進角ドレン油路 八 は、 一部が作動油制御弁 1 1の内部に形成さ れる。 また、 軸方向供給油路[¾ 3八は、 進角供給油路 八 3においてスリー ブ 4 0 0の軸方向に延びるよう形成されている。 すなわち、 スリーブ 4 0 0 は、 進角供給油路 8 3においてスリーブ 4 0 0の軸方向に延びる軸方向供 給油路[¾ 3八を有している。
[0069] ドレン絞り部八〇は、 ドレン油路において特定空間 3 3に接続し特定空間
3 3からスリーブ 4 0 0またはスプール 6〇の径方向へ延びるよう形成され ている。 リサイクル開口部〇 「 6は、 リサイクル油路
Figure imgf000016_0002
6において特定空 間 3 3に接続し特定空間 3 3からドレン絞り部 0とは反対側へ延びるよう 形成されている。 リサイクル油路
Figure imgf000016_0003
特定空間 3 3において遅角ドレ ン油路
Figure imgf000016_0004
および進角ドレン油路 に接続している (図 3、 4参照)
[0070] スプール 6 0が係止部 5 9に当接しているとき (図 3参照) 、 すなわち、 スプール 6 0がストローク区間の _方の端部に位置するとき、 スプール 6 0 が遅角開口部〇 8を開いているため、 オイルポンプ 8は、 遅角供給油路[¾[¾ 3の供給穴部 1 0 1、 軸穴部 1 0 0、 筒状空間 3 1 1、 軸方向供給油路[¾ 3 八、 遅角供給開口部
Figure imgf000016_0005
規制溝部 5 1 1、 遅角供給凹部1~1[¾ 3、 遅角開 口部〇[¾、 遅角油路 3 0 1 を経由して遅角室 2 0 1 に連通する。 これにより 、 オイルポンプ 8から遅角供給油路
Figure imgf000016_0006
3を経由して遅角室 2 0 1 に作動油 を供給することができる。 また、 このとき、 進角室 2 0 2は、 進角ドレン油 路
Figure imgf000016_0007
、 ドレ ン絞り部八 0、 ドレンポート 口を経由してオイルパン 7に連通する。 これ により、 進角室 2 0 2から進角ドレン油路 八 を経由してオイルパン 7に 作動油を排出することができる。 〇 2020/175184 15 卩(:171? 2020 /005797
[0071] スプール 6 0が係止部 5 9とスリーブ封止部 5 1 との間に位置していると き、 すなわち、 スプール 6 0がストローク区間の中間に位置するとき、 オイ ルポンプ 8は、 進角供給油路 八 3の供給穴部 1 0 1、 軸穴部 1 0 0、 筒状
Figure imgf000017_0001
軸方向供給油路[¾ 3 、 進角供給開口部〇 3、 規制溝部 5 1 2、 進角供給凹部 1~1 3、 進角開口部〇 、 進角油路 3 0 2を経由して進角 室 2 0 2に連通する。 なお、 このとき、 遅角供給油路
Figure imgf000017_0002
りオイルポ ンプ 8と遅角室 2 0 1 とは連通している。 これにより、 オイルポンプ 8から 遅角供給油路[¾[¾ 3、 進角供給油路
Figure imgf000017_0003
を経由して遅角室 2 0 1、 進角室 2 0 2に作動油を供給することができる。 ただし、 スプール 6 0の仕切部
Figure imgf000017_0004
および進角ドレン 油路 八 は閉じられている、 すなわち、 遮断されているため、 作動油は、 遅角室 2 0 1および進角室 2 0 2からオイルパン 7に排出されない。
[0072] スプール 6 0がスリーブ封止部 5 1 に当接しているとき、 すなわち、 スプ —ル 6 0がストローク区間の他方の端部に位置するとき、 遅角室 2 0 1は、 の遅角油路 3 0 1、 遅角開口部〇[¾、 遅角ドレン凹部
Figure imgf000017_0005
部八 0、 ドレンポート 〇を経由してオイルパン 7に連 通する。 なお、 このとき、 進角供給油路[¾八 3によりオイルポンプ 8と進角 室 2 0 2とは連通している。 これにより、 遅角室 2 0 1から遅角ドレン油路 を経由してオイルパン 7に作動油を排出することができるとともに、 オイルポンプ 8から進角供給油路 八 3を経由して進角室 2 0 2に作動油を 供給することができる。
[0073] アウタースリーブ 4〇のスリーブ封止部 5 1側の端部の内側、 すなわち、 遅角供給油路 8 8 3および進角供給油路 八 3の途中には、 フィルタ 5 8が 設けられている。 フィルタ 5 8は、 例えば円環状のメッシュである。 フィル 夕 5 8は、 作動油に含まれる異物を捕集可能である。 そのため、 フィルタ 5 8の下流側、 すなわち、 オイルポンプ 8とは反対側に異物が流れるのを抑制 することができる。
[0074] 進角供給チェック弁 7 2は、 単一の板材としての長方形の金属薄板を巻く 〇 2020/175184 16 卩(:171? 2020 /005797
ことにより筒状に形成され外周壁が弁座面 5 6に当接可能に設けられている 。 進角供給チェック弁 7 2は、 外周壁が弁座面 5 6に当接可能なよう規制溝 部 5 1 2に設けられている。 進角供給チェック弁 7 2は、 規制溝部 5 1 2に おいて径方向に弾性変形可能に設けられている。 進角供給チヱック弁 7 2は 、 進角供給開口部〇八 3に対しインナースリーブ 5 0の径方向内側に設けら れている。 進角供給チェック弁 7 2は、 規制溝部 5 1 2に設けられ、 進角供 給油路 八 3に作動油が流れていない状態、 すなわち、 外力が作用していな い状態では、 周方向の一方の端部が他方の端部側の部位に重なった状態であ る。
[0075] 作動油が進角供給油路 八 3において進角供給開口部〇八 3側から進角供 給凹部 !~1 3側へ流れるとき、 進角供給チェック弁 7 2は、 外周壁が作動油 により押され径方向内側へ縮まるよう、 すなわち、 縮径するようにして変形 する。 これにより、 進角供給チェック弁 7 2の外周壁が弁座面 5 6から離間 することにより開弁し、 作動油は、 進角供給開口部〇 進角供給チェッ ク弁 7 2を経由して進角供給凹部 1~1 3側へ流れることができる。 このとき 、 進角供給チヱック弁 7 2は、 一方の端部は、 他方の端部側の部位との重な り範囲の長さを拡大しながら一部が重なった状態を維持する。
[0076] 進角供給油路 3を流れる作動油の流量が所定値以下になると、 進角供 給チェック弁 7 2は、 径方向外側へ拡がるよう、 すなわち、 拡径するように して変形する。 さらに、 作動油が進角供給凹部 !~1 3側から進角供給開口部 〇八 3側へ流れる場合、 進角供給チェック弁 7 2の内周壁が作動油により径 方向外側へ押され、 外周壁が弁座面 5 6に当接することにより閉弁する。 こ れにより、 進角供給凹部 !~1 3側から進角供給開口部〇 3側への作動油の 流れが規制される。
[0077] このように、 進角供給チェック弁 7 2は、 逆止弁として機能し、 進角供給 開口部〇 3側から進角供給凹部 !~1 3側への作動油の流れを許容し、 進角 供給凹部 !~1 3側から進角供給開口部〇 3側への作動油の流れを規制可能 である。 すなわち、 進角供給チェック弁 7 2は、 進角供給油路[¾八 3におい 〇 2020/175184 17 卩(:171? 2020 /005797
て作動油制御弁 1 1のスプール 6 0に対しオイルポンプ 8側に設けられ、 才 イルポンプ 8側から進角室 2 0 2側への作動油の流れのみ許容する。
[0078] 遅角供給チェック弁 7 1の構成は、 進角供給チェック弁 7 2と同様であり 、 単一の板材としての長方形の金属薄板を巻くことにより筒状に形成されて いる。 遅角供給チヱック弁 7 1は、 外周壁が弁座面 5 6に当接可能なよう規 制溝部 5 1 1 に設けられている。 遅角供給チェック弁 7 1は、 規制溝部 5 1 1 において径方向に弾性変形可能に設けられている。 遅角供給チヱック弁 7 1は、 遅角供給開口部
Figure imgf000019_0001
しインナースリーブ 5 0の径方向内側に設 けられている。 遅角供給チェック弁 7 1は、 規制溝部 5 1 1 に設けられ、 遅 角供給油路
Figure imgf000019_0002
3に作動油が流れていない状態、 すなわち、 外力が作用して いない状態では、 周方向の一方の端部が他方の端部側の部位に重なった状態 である。
[0079] 作動油が遅角供給油路
Figure imgf000019_0003
3において遅角供給開口部〇
Figure imgf000019_0004
3側から遅角供 給凹部!
Figure imgf000019_0005
3側へ流れるとき、 遅角供給チェック弁 7 1は、 外周壁が作動油 により押され径方向内側へ縮まるよう、 すなわち、 縮径するようにして変形 する。 これにより、 遅角供給チェック弁 7 1の外周壁が弁座面 5 6から離間 することにより開弁し、 作動油は、 遅角供給開口部
Figure imgf000019_0006
遅角供給チェッ
Figure imgf000019_0007
へ流れることができる。 このとき 、 遅角供給チヱック弁 7 1は、 一方の端部は、 他方の端部側の部位との重な り範囲の長さを拡大しながら一部が重なった状態を維持する。
[0080] 遅角供給油路
Figure imgf000019_0008
3を流れる作動油の流量が所定値以下になると、 遅角供 給チェック弁 7 1は、 径方向外側へ拡がるよう、 すなわち、 拡径するように して変形する。 さらに、 作動油が遅角供給凹部 !~1 3側から遅角供給開口部 側へ流れる場合、 遅角供給チェック弁 7 1の内周壁が作動油により径 方向外側へ押され、 外周壁が弁座面 5 6に当接することにより閉弁する。 こ れにより、 遅角供給凹部
Figure imgf000019_0009
から遅角供給開口部〇[¾ 3側への作動油の 流れが規制される。
[0081 ] このように、 遅角供給チェック弁 7 1は、 逆止弁として機能し、 遅角供給 〇 2020/175184 18 卩(:171? 2020 /005797
開口部〇
Figure imgf000020_0001
ら遅角供給凹部
Figure imgf000020_0002
遅角 供給凹部 ! ! 3側から遅角供給開口部〇 3側への作動油の流れを規制可能 である。 すなわち、 遅角供給チェック弁 7 1は、 遅角供給油路
Figure imgf000020_0003
におい て作動油制御弁 1 1のスプール 6 0に対しオイルポンプ 8側に設けられ、 才 イルポンプ 8側から遅角室 2 0 1側への作動油の流れのみ許容する。
[0082] リサイクルチェック弁 8 1の構成は、 外径の違いを除き、 進角供給チェッ ク弁 7 2と同様であり、 単一の板材としての長方形の金属薄板を巻くことに より筒状に形成されている。 リサイクルチェック弁 8 1は、 移動規制部 5 1 3、 すなわち、 環状流路部
Figure imgf000020_0004
れている。 リサイクルチェック弁 8 1は、 環状流路部 「 丨 において径方向 に弾性変形可能に設けられている。 リサイクルチェック弁 8 1は、 弁座面 5 5に対しインナースリーブ 5 0の径方向外側に設けられている。 リサイクル チェック弁 8 1は、 環状流路部 「 丨 に設けられ、 リサイクル油路
Figure imgf000020_0005
6に 作動油が流れていない状態、 すなわち、 外力が作用していない状態では、 周 方向の一方の端部が他方の端部側の部位に重なった状態である。
[0083] 作動油がリサイクル油路[¾ 「 6においてリサイクル開口部〇 「 6側から環 状流路部 「 丨側へ流れるとき、 リサイクルチェック弁 8 1は、 内周壁が作 動油により押され径方向外側へ拡がるよう、 すなわち、 拡径するようにして 変形する。 これにより、 リサイクルチェック弁 8 1の内周壁が弁座面 5 5か ら離間することにより開弁し、 作動油は、 リサイクルチェック弁 8 1 を経由 して環状流路部 「 丨側へ流れることができる。
[0084] リサイクル油路
Figure imgf000020_0006
6を流れる作動油の流量が所定値以下になると、 リサ イクルチェック弁 8 1は、 径方向内側へ縮まるよう、 すなわち、 縮径するよ うにして変形する。 さらに、 作動油が環状流路部 「 丨側からリサイクル開 口部〇 「 6側へ流れる場合、 リサイクルチェック弁 8 1の外周壁が作動油に より径方向内側へ押され、 弁座面 5 5に当接し閉弁する。 これにより、 環状 流路部 「 丨側からリサイクル開口部〇 「 6側への作動油の流れが規制され る。 〇 2020/175184 19 卩(:171? 2020 /005797
[0085] このように、 リサイクルチェック弁 8 1は、 逆止弁として機能し、 リサイ クル開口部〇 「
Figure imgf000021_0001
「 丨側への作動油の流れを許容し、 環 状流路部
Figure imgf000021_0002
丨側からリサイクル開口部〇 「 6側への作動油の流れを規制可 能である。 すなわち、 リサイクルチェック弁 8 1は、 リサイクル油路
Figure imgf000021_0003
においてドレン油路側から遅角供給油路[¾ 3側および進角供給油路 八 3 側への作動油の流れのみ許容する。 移動規制部 5 1 3は、 リサイクルチェッ ク弁 8 1の軸方向の移動を規制可能である。
[0086] 図 1 に示すように、 スプール 6 0のカム軸 3とは反対側には、 リニアソレ ノイ ド 9が設けられる。 リニアソレノイ ド 9は、 スプール封止部 6 2に当接 するようにして設けられる。 リニアソレノイ ド 9は、 通電により、 スプール 封止部 6 2を介してスプール 6〇をスプリング 6 3の付勢力に抗してカム軸 3側へ押圧する。 これにより、 スプール 6 0は、 ストローク区間においてス リーブ 4 0 0に対する軸方向の位置が変化する。
[0087] 容積可変空間 3 Vは、 遅角ドレン油路
Figure imgf000021_0004
および進角ドレン油路 八 に連通している。 そのため、 容積可変空間 3 Vは、 遅角ドレン油路[¾[¾ お よび進角ドレン油路 八 のドレン開口部〇 2を経由して大気に開放され ている。 これにより、 容積可変空間 3 Vの圧力を大気圧と同等にすることが できる。 そのため、 スプール 6 0の軸方向の移動を円滑にすることができる
[0088] 次に、 スリーブ 4 0 0に対するスプール 6 0の位置による作動油の流れの 変化について説明する。
[0089] スプール 6 0が係止部 5 9に当接しているとき、 すなわち、 スプール 6 0 がストローク区間の一方の端部に位置するとき、 作動油は、 オイルポンプ 8 から遅角供給油路 8 8 3を経由して遅角室 2 0 1 に供給される。 また、 この とき、 作動油は、 進角室 2 0 2から進角ドレン油路
Figure imgf000021_0005
を経由してオイル パン 7に排出される。 さらに、 進角ドレン油路 八 を流れる作動油の一部 は、 リサイクル油路
Figure imgf000021_0006
6を経由して軸方向供給油路 3八側、 遅角供給油 路 8 8 3側へ戻される。 これにより、 進角室 2 0 2から排出される作動油を 〇 2020/175184 20 卩(:171? 2020 /005797
再利用できる。 なお、 このとき、 リサイクルチェック弁 8 1 により、 リサイ クル油路
Figure imgf000022_0001
6における軸方向供給油路[¾ 3八側からドレン油路側への逆流 が抑制されている。
[0090] スプール 6 0が係止部 5 9とスリーブ封止部 5 1 との間に位置していると き、 すなわち、 スプール 6 0がストローク区間の中間に位置するとき、 作動 油は、 オイルポンプ 8から遅角供給油路
Figure imgf000022_0002
3を経由して遅角室 2 0 1 に供 給される。 また、 このとき、 作動油は、 オイルポンプ 8から進角供給油路[¾ 八 3を経由して進角室 2 0 2に供給される。 なお、 このとき、 スプール 6 0 により遅角ドレン油路
Figure imgf000022_0003
および進角ドレン油路 八 は閉じられている ため、 ドレン油路に作動油は流れず、 作動油はリサイクル油路
Figure imgf000022_0004
6を経由 して軸方向供給油路 8 3八側へ戻されない。
[0091 ] スプール 6 0がスリーブ封止部 5 1 に当接しているとき、 すなわち、 スプ —ル 6 0がストローク区間の他方の端部に位置するとき、 作動油は、 オイル ポンプ 8から進角供給油路 八 3を経由して進角室 2 0 2に供給される。 ま た、 このとき、 作動油は、 遅角室 2 0 1から遅角ドレン油路
Figure imgf000022_0005
を経由し てオイルパン 7に排出される。 さらに、 遅角ドレン油路
Figure imgf000022_0006
を流れる作動 油の一部は、 リサイクル油路
Figure imgf000022_0007
6を経由して軸方向供給油路 3八側、 進 角供給油路 八 3側へ戻される。 これにより、 遅角室 2 0 1から排出される 作動油を再利用できる。 なお、 このとき、 リサイクルチェック弁 8 1 により 、 リサイクル油路[¾ 「 6における軸方向供給油路[¾ 3八側からドレン油路側 への逆流が抑制されている。
[0092] 本実施形態は、 ロックピン 3 3をさらに備えている (図 1、 2参照) 。 口 ックピン 3 3は、 有底円筒状に形成され、 ベーン 3 2に形成された収容穴部 3 2 1 に軸方向に往復移動可能に収容されている。 ロックピン 3 3の内側に は、 スプリング 3 4が設けられている。 スプリング 3 4は、 ロックピン 3 3 をケース 2 2の板部 2 2 2側へ付勢している。 ケース 2 2の板部 2 2 2のべ —ン 3 2側には、 嵌入凹部 2 5が形成されている。
[0093] ロックピン 3 3は、 ハウジング 2 0に対しべーンロータ 3 0が最遅角位置 〇 2020/175184 21 卩(:171? 2020 /005797 にあるとき、 嵌入凹部 2 5に嵌入可能である。 ロックピン 3 3が嵌入凹部 2 5に嵌入しているとき、 ハウジング 2 0に対するべーンロータ 3 0の相対回 転が規制される。 一方、 ロックピン 3 3が嵌入凹部 2 5に嵌入していないと き、 ハウジング 2 0に対するべーンロータ 3 0の相対回転が許容される。
[0094] ベーン 3 2のロックピン 3 3と進角室 2 0 2との間には、 進角室 2 0 2に 連通するピン制御油路 3 0 4が形成されている (図 2参照) 。 進角室 2 0 2 からピン制御油路 3 0 4に流入する作動油の圧力は、 ロックピン 3 3がスプ リング 3 4の付勢力に抗して嵌入凹部 2 5から抜け出す方向に働く。
[0095] 以上のように構成されたバルブタイミング調整装置 1 0では、 進角室 2 0
2に作動油が供給されると、 ピン制御油路 3 0 4に作動油が流入し、 ロック ピン 3 3が嵌入凹部 2 5から抜け出し、 ハウジング 2 0に対するべーンロー 夕 3 0の相対回転が許容された状態となる。
[0096] 次に、 バルブタイミング調整装置 1 0の作動について説明する。 バルブタ イミング調整装置 1 〇は、 リニアソレノイ ド 9の駆動により作動油制御弁 1 1のスプール 6 0を押圧し、 作動油制御弁 1 1 を、 オイルポンプ 8と遅角室 2 0 1 とを接続しつつ、 進角室 2 0 2とオイルパン 7とを接続する第 1作動 状態と、 オイルポンプ 8と進角室 2 0 2とを接続しつつ、 遅角室 2 0 1 と才 イルパン 7とを接続する第 2作動状態と、 オイルポンプ 8と遅角室 2 0 1お よび進角室 2 0 2とを接続しつつ、 遅角室 2 0 1および進角室 2 0 2とオイ ルパン 7との間を遮断し位相変換部? 0の位相を保持する位相保持状態と、 に作動させる。
[0097] 第 1作動状態では、 遅角供給油路
Figure imgf000023_0001
を経由して遅角室 2 0 1 に作動油 が供給されつつ、 進角ドレン油路 八 を経由して進角室 2 0 2から作動油 がオイルパン 7に戻される。 また、 リサイクル油路
Figure imgf000023_0002
6を経由して進角ド レン油路 八 から作動油が遅角供給油路[¾ 3に戻される。
[0098] 第 2作動状態では、 進角供給油路 八 3を経由して進角室 2 0 2に作動油 が供給されつつ、 遅角ドレン油路 を経由して遅角室 2 0 1から作動油 がオイルパン 7に戻される。 また、 リサイクル油路
Figure imgf000023_0003
6を経由して遅角ド 〇 2020/175184 22 卩(:171? 2020 /005797
レン油路
Figure imgf000024_0001
から作動油が進角供給油路 八 3に戻される。
[0099] 位相保持状態では、 遅角供給油路 3および進角供給油路 3を経由 して遅角室 2 0 1および進角室 2 0 2に作動油が供給されつつ、 遅角室 2 0 1および進角室 2 0 2の作動油の排出が規制される。
[0100] バルブタイミング調整装置 1 0は、 カム軸 3の回転位相が目標値よりも進 角側である場合、 作動油制御弁 1 1 を第 1作動状態とする。 これにより、 ベ —ンロータ 3 0がハウジング 2 0に対して遅角方向へ相対回転し、 カム軸 3 の回転位相が遅角側へ変化する。
[0101] また、 バルブタイミング調整装置 1 0は、 カム軸 3の回転位相が目標値よ りも遅角側である場合、 作動油制御弁 1 1 を第 2作動状態とする。 これによ り、 ベーンロータ 3 0がハウジング 2 0に対して進角方向へ相対回転し、 力 ム軸 3の回転位相が進角側へ変化する。
[0102] また、 バルブタイミング調整装置 1 0は、 カム軸 3の回転位相が目標値と 一致する場合、 作動油制御弁 1 1 を位相保持状態とする。 これにより、 カム 軸 3の回転位相が保持される。
[0103] 本実施形態では、 作動油制御弁 1 1が第 1作動状態または第 2作動状態の とき、
Figure imgf000024_0002
3側または進角供給油路 八 3側へ作動油が戻される。 これにより、 進角室 2 0 2または遅角室 2 0 1から排出される作動油を再利用することができる
[0104] また、 作動油制御弁 1 1が第 1作動状態または第 2作動状態のとき、 リサ イクルチェック弁 8 1 により、 リサイクル油路[¾ における各供給油路側 からドレン油路側への逆流が抑制される。
[0105] 図 5は、 エンジン 1の回転数が低いとき ( 1 0 0 0回転) 、 および、 高い とき (6 0 0 0回転) におけるドレン絞り部八 0の直径である絞り径
Figure imgf000024_0003
Figure imgf000024_0004
との関係を示す図である 。 ここで、 位相変換部 <3の応答速度 (〇1 6 9〇八/ 3) は、 ハウジング 2 〇に対するべーンロータ 3 0の回転速度に対応している。 〇 2020/175184 23 卩(:171? 2020 /005797
[0106] 図 5では、 エンジン 1の回転数が低いとき ( 1 000回転) 、 および、 高 いとき (6000回転) のそれぞれについて、 カムトルク振幅と発生トルク
Figure imgf000025_0001
の場合の絞り径 (111111) と応答速度 (〇169〇 /3) との関係を示して いる。 ここで、 カムトルク振幅は、 カム軸 3に入力される正負に変動する卜 ルクの平均値に対応している。 発生トルクは、 油圧室としての遅角室 201 および進角室 202への印加油圧 1 001< 3あたりに対してハウジング 2 0とべーンロータ 30との間に発生するトルクである。
[0107] 図 5に示すように、 エンジン 1の回転数が低いとき ( 1 000回転) は、 絞り径が大きくなる程、 すなわち、 ドレン絞り部 0の流路断面積が大きく なる程、 位相変換部 〇の応答速度が低下することがわかる。 また、 エンジ ン 1の回転数が高いとき (6000回転) は、 絞り径が大きくなる程、 位相 変換部 <3の応答速度が向上することがわかる。 図 5に示すように、 絞り径 が概ね 1. 5〜 2.
Figure imgf000025_0002
の範囲においてエンジン 1の回転数が低いとき ( 1 000回転) の位相変換部 <3と高いとき (6000回転) の位相変換部 〇の応答速度とが逆転し、 絞り径が概ね 1. 5~2.
Figure imgf000025_0003
の範囲におい てエンジン 1の回転数が低いとき ( 1 000回転) の位相変換部 <3の応答 速度および高いとき (6000回転) の位相変換部 <3の応答速度が比較的 高いことがわかる。
[0108] 図 5に示す結果より、 絞り径が 1. 5~2.
Figure imgf000025_0004
の場合、 エンジン 1の 回転数にかかわらず位相変換部 <3の応答速度を向上できることがわかる。
[0109] 上述のように、 本実施形態では、 ドレン絞り部八 0の直径である絞り径は 、 1. 5〜 2.
Figure imgf000025_0005
に設定されている。 そのため、 エンジン 1の回転数に かかわらず位相変換部 <3の応答速度を向上できる。
[0110] 以上説明したように、 本実施形態は、 エンジン 1の吸気弁 4のバルブタイ ミングを調整するバルブタイミング調整装置 1 0であって、 位相変換部 〇 と作動油制御部〇 <3とを備えている。
[0111] 位相変換部 <3は、 遅角室 201および進角室 202を有し、 作動油供給 〇 2020/175184 24 卩(:171? 2020 /005797
源〇3から遅角室 2 0 1および進角室 2 0 2に供給される作動油によりエン ジン 1のクランク軸 2とカム軸 3との回転位相を変換し、 吸気弁 4のバルブ タイミングを調整可能である。
[01 12] 作動油制御部〇 <3としての作動油制御弁 1 1は、 作動油供給源 0 3と遅角 室 2 0 1 とを接続する遅角供給油
Figure imgf000026_0001
および、 作動油供給源 0 3と進 角室 2 0 2とを接続する進角供給油路 八 3を流れる作動油を制御すること で、 遅角室 2 0 1および進角室 2 0 2に供給される作動油の流れを制御可能 である。
[01 13] 作動油制御弁 1 1は、 ドレンポート 口、
Figure imgf000026_0002
仕切部 八 3 、 リサイクル油路
Figure imgf000026_0003
6およびドレン絞り部八〇を有する。 ドレンポート 口は、 遅角室 2 0 1 または進角室 2 0 2から排出される作動油を貯留する オイル排出部 0口に接続する。 仕切部 [¾ 3 、 仕切部 3 は、 遅角室 2 0 1 または進角室 2 0 2とオイル排出部〇〇とを接続する遅角ドレン油路
Figure imgf000026_0004
、 3または進角供給 油路[¾八 3との間を仕切る。 リサイクル油路
Figure imgf000026_0005
ドレン油路としての 遅角ドレン油路
Figure imgf000026_0006
および進角ドレン油路
Figure imgf000026_0007
たは仕切部 八 3 とドレンポート 0との間と、 遅角供給油路
Figure imgf000026_0008
は進角供給油路 8八 3とを接続する。 これにより、 進角室 2 0 2または遅角 室 2 0 1から排出されてドレン油路を流れる作動油の一部を、 リサイクル油 路[¾ 「 6を経由して遅角室 2 0 1 または進角室 2 0 2へ再び供給することで 、 作動油を再利用できる。
[01 14] ドレン絞り部 0は、 ドレン油路としての遅角ドレン油路
Figure imgf000026_0009
および進 角ドレン油路
Figure imgf000026_0010
とドレンポ —卜 口との間に形成され、 流路断面積がリサイクル油路
Figure imgf000026_0011
6の最小流路 断面積より小さく、 かつ、 一定である。 これにより、 ドレン絞り部八 0を経 由してオイル排出部〇口へ排出される作動油の量を少なく しつつ、 リサイク ル油路[¾ 「 6を経由して遅角室 2 0 1 または進角室 2 0 2へ再供給される作 動油の量を多くすることができる。 したがって、 バルブタイミング調整装置 〇 2020/175184 25 卩(:171? 2020 /005797
1 〇の応答性を高めることができる。
[01 15] また、 本実施形態では、 ドレン油路としての遅角ドレン油路
Figure imgf000027_0001
および 進角ドレン油路 八 およびリサイクル油路
Figure imgf000027_0003
6は、 共通の仕切部
Figure imgf000027_0002
3 ¢1、 仕切部 3 ¢1に接続している。 これにより、 仕切部 [¾ 3〇1、 仕切部 八 3 を、 リサイクル油路[¾ 「 6とドレン油路との分岐点にしないことで 、
Figure imgf000027_0004
の構成を簡素化できる。
[01 16] また、 本実施形態では、 作動油制御部 0 <3は、 筒状の部材である筒部材と してのスプール 6 0を有している。
Figure imgf000027_0005
および進角ドレン油路 八 は、 スプール 6 0の径方向外側 (特定空間 3 3) および径方向内側 (スプール 6 0の内側の空間) に形成される。 ドレン 絞り部八 0は、 スプール 6 0を径方向に延びてスプール 6〇の径方向外側の ドレン油路とスプール 6〇の径方向内側のドレン油路とを接続する。 このよ うに、 筒状のスプール 6 0の内側および外側に形成されたドレン油路の接続 穴 (ドレン開口部〇〇1 1) をドレン絞り部八〇とすることで、 ドレン絞り咅6 八 0を容易に形成できる。 また、 ドレン絞り部八 0がスプール 6 0を径方向 に延びるよう形成されているため、 スプール 6 0の軸方向に発生する流体力 によりスリーブ 4 0 0に対するスプール 6 0の軸方向の位置が変動するのを 抑制できる。
[01 17] また、 本実施形態では、 作動油制御部〇〇は、 筒状のスリーブ 4 0 0、 お よび、 スリーブ 4 0 0の内側で軸方向に往復移動することで遅角室 2 0 1お よび進角室 2 0 2に供給される作動油の流れを制御可能な筒状のスプール 6 0を有している。 ドレン絞り部八〇は、 スプール 6 0またはスリーブ 4 0 0 のうちスプール 6 0のみに形成されている。 これにより、 ドレン絞り咅 6八 0 の周囲の急激な圧力変化に起因して発生する流体力によって、 スリーブ 4 0 0に対するスプール 6 0の軸方向の位置が変動するのを抑制できる。
[01 18] また、 本実施形態では、 ドレン絞り部八〇は、 スプール 6 0に形成されて いる。 スプール 6 0の内側の空間は、 ドレンポート 口に接続している。 こ れにより、 回転体であるスプール 6 0の中心部をドレン油路の一部とするこ 〇 2020/175184 26 卩(:171? 2020 /005797
とで、 遠心力の作用により逆流して吸引された空気をドレン油路内に留めや すい構造にすることができる。 そのため、 遅角室 2 0 1 または進角室 2 0 2 に空気が流入するのを抑制できる。
[01 19] また、 本実施形態では、 ドレン絞り部 0の流路断面積は、 1 . 7 7〜 4 . に設定されている。 そのため、 エンジン 1の回転数にかかわらず 位相変換部 <3の応答速度を向上できる (図 5参照) 。
[0120] また、 本実施形態では、 ドレン絞り部 0は、 流路断面が真円形状となる よう形成されている。 そのため、 ドリル等の基本的な工具により ドレン絞り 部八 0を容易に形成できる。
[0121 ] (第 2実施形態)
第 2実施形態によるバルブタイミング調整装置の一部を図 6に示す。 第 2 実施形態は、 スプール 6 0の構成が第 1実施形態と異なる。
[0122] 第 2実施形態では、 スプール 6 0は、 隔壁 6 4、 ドレン開口部〇 3を有 している。 隔壁 6 4は、 スプール 6 0の内側の空間とドレン開口部〇 ¢1 2す なわちドレンポート 口とを隔てるよう形成されている。 ドレン開口部〇 3は、 スプール 6 0の内側の空間とドレン開口部〇 ¢1 2すなわちドレンポー 卜 口とを接続するよう隔壁 6 4に形成されている。 ドレン開口部〇 3は 、 スプール 6 0の軸方向に延びるよう形成されている。
[0123] 本実施形態では、 ドレン開口部〇 ¢1 1は、 スプール 6 0の周方向に等間隔 で 2つ形成されている (図 7参照) 。
[0124] 本実施形態では、 ドレン絞り部 0は、 ドレン開口部〇 3に対応してい る。
[0125] ドレン絞り部八 0は、 流路断面積がリサイクル油路
Figure imgf000028_0001
6の最小流路断面 積より小さく、 かつ、 スリーブ 4 0 0に対するスプール 6 0の相対位置にか かわらず一定である。 ここで、 ドレン絞り部八 0の流路断面積は、 ドレン絞 り部 0すなわちドレン開口部〇〇1 3の軸に垂直な断面の面積に対応する。 また、 リサイクル油路 6の最小流路断面積は、 リサイクル油路
Figure imgf000028_0002
6を 形成する 4つのリサイクル開口部〇 「 6のそれぞれの軸に垂直な断面の面積 〇 2020/175184 27 卩(:171? 2020 /005797
の合計に対応する (図 7参照) 。 なお、 ドレンポート 口すなわちドレン開 口部〇 2の流路断面積は、 ドレン絞り部 0すなわちドレン開口部〇 3 の流路断面積より大きい。
[0126] 第 2実施形態においても、 第 1実施形態と同様、 ドレン絞り部 0を経由 してオイル排出部〇口へ排出される作動油の量を少なく しつつ、 リサイクル 油路[¾ 「 6を経由して遅角室 2 0 1 または進角室 2 0 2へ再供給される作動 油の量を多くすることができる。 したがって、 バルブタイミング調整装置 1 0の応答性を高めることができる。
[0127] (第 3実施形態)
第 3実施形態によるバルブタイミング調整装置の一部を図 8に示す。 第 3 実施形態は、 スリーブ 4 0 0、 スプール 6 0等の構成が第 1実施形態と異な る。
[0128] 本実施形態では、 インナースリーブ 5 0は、 供給流路部 5 0 1、 軸方向流 路部 5 0 2、 周方向流路部 5 0 3、 径方向流路部 5 0 4、 呼吸穴部 5 0 5、 ドレン穴部 5 0 6等を有している。
[0129] 供給流路部 5 0 1は、 インナースリーブ 5 0のスリーブ封止部 5 1側の端 部の内壁と外壁とを連通するようインナースリーブ 5 0の周方向に複数形成 されている。 供給流路部 5 0 1は、 スリーブ封止部 5 1 に対しスプール 6 0 とは反対側に形成されている。
[0130] 軸方向流路部 5 0 2は、 インナースリーブ 5 0のスリーブ封止部 5 1側の 端部の外壁から径方向内側へ凹み軸方向に延びるよう形成されている。
[0131 ] 周方向流路部 5 0 3は、 インナースリーブ 5 0のスリーブ封止部 5 1側の 端部の外壁から径方向内側へ凹み周方向に延びるよう環状に形成されている 。 周方向流路部 5 0 3は、 供給流路部 5 0 1 と軸方向流路部 5 0 2とを接続 している。
[0132] 径方向流路部 5 0 4は、 インナースリーブ 5 0の外壁と内壁とを連通する よう形成されている。 径方向流路部 5 0 4は、 軸方向流路部 5 0 2の周方向 流路部 5 0 3とは反対側の端部に接続している。 〇 2020/175184 28 卩(:171? 2020 /005797
[0133] 呼吸穴部 5 0 5は、 インナースリーブ 5 0の外壁から径方向内側へ凹み係 止部 5 9側の端部まで軸方向に延びるよう形成されている。 呼吸穴部 5 0 5 は、 一端が容積可変空間 3 Vに接続している。 呼吸穴部 5 0 5は、 他端が係 止部 5 9の中央に形成されたドレン穴部 5 9 0に接続している。
[0134] ドレン穴部 5 0 6は、 インナースリーブ 5 0の内壁と外壁とを連通するよ うインナースリーブ 5 0に形成されている。 ドレン穴部 5 0 6は、 呼吸穴部 5 0 5に接続している。
[0135] スプール 6 0は、 スプール封止部 6 1、 スプール封止部 6 2、 供給凹部 6
0 1、 ドレン凹部 6 0 2、 第 1制御油路 6 1 1、 第 2制御油路 6 1 2、 リサ イクル開口部〇 「㊀等を有している。
[0136] スプール封止部 6 1は、 スプール 6 0のスリーブ封止部 5 1側の端部を塞 ぐよう形成されている。 スプール封止部 6 1 とスリーブ封止部 5 1 との間に は、 容積可変空間 3 Vが形成され、 スプリング 6 3が設けられている。
[0137] スプール封止部 6 2は、 スプール 6 0の係止部 5 9側の端部を塞ぐよう設 けられている。 スプール封止部 6 2は、 係止部 5 9のドレン穴部 5 9 0の内 側に位置している。 スプール封止部 6 2とドレン穴部 5 9 0との間に、 オイ ル排出部〇口に接続するドレンポート 口が形成されている。
[0138] 供給凹部 6 0 1は、 スプール 6 0のスプール封止部 6 1側の端部の外壁か ら径方向内側へ凹み周方向に延びるよう環状に形成されている。 供給凹部 6 〇 1は、 径方向流路部 5 0 4に接続可能である。
[0139] ドレン凹部 6 0 2は、 スプール 6 0の外壁から径方向内側へ凹み周方向に 延びるよう環状に形成されている。 ドレン凹部 6 0 2は、 供給凹部 6 0 1 に 対しスプール封止部 6 2側に形成されている。 ドレン凹部 6 0 2は、 ドレン 穴部 5 0 6を経由して呼吸穴部 5 0 5に接続している。
[0140] 第 1制御油路 6 1 1は、 スプール 6 0のスプール封止部 6 1側の端部の外 壁と内壁とを連通するよう形成されている。 第 1制御油路 6 1 1は、 スプー ル封止部 6 1 に対しスプール封止部 6 2側に形成され、 供給凹部 6 0 1 に接 続している。 [0141 ] 第 2制御油路 6 1 2は、 スプール 6 0のスプール封止部 6 2側の端部の外 壁と内壁とを連通するよう形成されている。
[0142] リサイクル開口部〇 r eは、 スプール 6 0の外壁と内壁とを連通するよう スプール 6 0の周方向に等間隔で 4つ形成されている。 リサイクル開口部〇 r eは、 ドレン凹部 6 0 2に接続している。
[0143] スプール 6 0は、 係止部 5 9に当接する位置 (図 8参照) からスリーブ封 止部 5 1 に当接する位置 (図示せず) までの範囲で軸方向に移動可能である
[0144] スプール 6 0が係止部 5 9に当接しているとき (図 8参照) 、 供給凹部 6
0 1 と遅角開口部〇 Rとは連通し、 進角開口部〇 Aとドレン凹部 6 0 2とは 連通している。
[0145] スプール 6 0がスリーブ封止部 5 1 に当接しているとき (図示せず) 、 供 給凹部 6 0 1 と進角開口部〇 Aとは第 1制御油路 6 1 1、 第 2制御油路 6 1 2を経由して連通し、 遅角開口部 O Rとドレン凹部 6 0 2とは連通している
[0146] スプール 6 0が係止部 5 9とスリーブ封止部 5 1 との中間位置に位置して いるとき (図示せず) 、 遅角開口部〇 Rおよび進角開口部〇 Aは、 スプール 6 0の外壁により閉塞されている。
[0147] 遅角供給油路 R R sは、 供給流路部 5 0 1、 周方向流路部 5 0 3、 軸方向 流路部 5 0 2、 径方向流路部 5 0 4、 供給凹部 6 0 1、 遅角開口部 O R、 遅 角油路 3 0 1 を経由して作動油供給源 O Sと遅角室 2 0 1 とを接続するよう 形成される (図 8参照) 。
[0148] 進角供給油路 R A sは、 供給流路部 5 0 1、 周方向流路部 5 0 3、 軸方向 流路部 5 0 2、 径方向流路部 5 0 4、 供給凹部 6 0 1、 第 1制御油路 6 1 1 、 スプール 6 0の内側の空間、 第 2制御油路 6 1 2、 進角開口部 O A、 進角 油路 3 0 2を経由して作動油供給源 O Sと進角室 2 0 2とを接続するよう形 成される (図示せず) 。
[0149] ドレン油路としての遅角ドレン油路 R R dは、 遅角開口部〇 R、 ドレン凹 〇 2020/175184 30 卩(:171? 2020 /005797 部 6 0 2、 ドレン穴部 5 0 6、 呼吸穴部 5 0 5、 ドレンポート 口を経由し て遅角室 2 0 1 とオイル排出部〇口とを接続するよう形成される (図示せず
[0150] ドレン油路としての進角ドレン油路[¾八 は、 進角開口部〇八、 ドレン凹 部 6 0 2、 ドレン穴部 5 0 6、 呼吸穴部 5 0 5、 ドレンポート 口を経由し て遅角室 2 0 1 とオイル排出部〇口とを接続するよう形成される (図 8参照
[0151] 仕切部 [¾ 3 は、 スプール 6 0のドレン凹部 6 0 2のスプール封止部 6
1側の端部に形成されている。
Figure imgf000032_0001
遅角ドレン油路[¾ と 遅角供給油路 8 8 3との間を仕切る。
[0152] 仕切部 八 3 は、 スプール 6 0のドレン凹部 6 0 2のスプール封止部 6
2側の端部に形成されている。 仕切部
Figure imgf000032_0002
は、 進角ドレン油路
Figure imgf000032_0003
と 進角供給油路 3との間を仕切る。
[0153] リサイクル油路
Figure imgf000032_0004
は、 リサイクル開口部〇 「 6、 スプール 6 0の内側 の空間、 第 1制御油路 6 1 1 を経由して、 ドレン凹部 6 0 2における進角ド レン油路
Figure imgf000032_0005
と、 供給凹部 6 0 1 における遅角供給油路
Figure imgf000032_0006
3とを接続す る (図 8参照) 。
[0154] また、 リサイクル油路
Figure imgf000032_0007
は、 リサイクル開口部〇 「 6、 スプール 6 0 の内側の空間、 第 2制御油路 6 1 2を経由して、 ドレン凹部 6 0 2における 遅角ドレン油路
Figure imgf000032_0008
進角供給油路 八 3とを接続する (図示せず) 。
[0155] 本実施形態では、 ドレン絞り部 0は、 ドレン穴部 5 0 6に対応している 。 すなわち、 ドレン絞り部八〇は、 インナースリーブ 5 0に形成されている 。 ドレン絞り部八 0は、 インナースリーブ 5 0の内側の空間と呼吸穴部 5 0 5、 すなわち、 インナースリーブ 5 0の径方向外側とを連通するよう形成さ れている。 ドレン絞り部八 0は、 インナースリーブ 5 0の径方向に延びるよ うインナースリーブ 5 0の周方向に 1つ形成されている。 ここで、 インナー スリーブ 5 0は、 「筒部材」 に対応している。
[0156] このように、 ドレン絞り部八 0は、 ドレン油路としての遅角ドレン油路[¾ 〇 2020/175184 31 卩(:171? 2020 /005797
Figure imgf000033_0001
とドレンポート 口との間に形成されている。
[0157] ドレン絞り部八 0は、 流路断面積がリサイクル油路
Figure imgf000033_0002
6の最小流路断面 積より小さく、 かつ、 スリーブ 4 0 0に対するスプール 6 0の相対位置にか かわらず一定である。 ここで、 ドレン絞り部八 0の流路断面積は、 ドレン絞 り部八 0すなわちドレン穴部 5 0 6の軸に垂直な断面の面積に対応する。 ま た、 リサイクル油路
Figure imgf000033_0003
6の最小流路断面積は、 リサイクル油路
Figure imgf000033_0004
6を形 成する 4つのリサイクル開口部〇 「 6のそれぞれの軸に垂直な断面の面積の 合計に対応する。 なお、 ドレンポート 口の流路断面積は、 ドレン絞り部八 口すなわちドレン穴部 5 0 6の流路断面積より大きい。
[0158] 本実施形態では、 ドレン絞り部八 0すなわちドレン穴部 5 0 6は、 流路断 面が真円形状となるよう形成されている。
[0159] 本実施形態では、 ドレン絞り部八 0すなわちドレン穴部 5 0 6の直径であ る絞り径は、 1 . 5 ~ 2 . 5
Figure imgf000033_0005
に設定されている。 すなわち、 ドレン絞り 部八 0の流路断面積は、 ·! . 7 7〜 4 .
Figure imgf000033_0006
に設定されている。
[0160] 供給流路部 5 0 1 に対しインナースリーブ 5 0の径方向内側には、 フィル 夕 5 8が設けられている。 フィルタ 5 8は、 作動油に含まれる異物を捕集可 能である。
[0161 ] 供給流路部 5 0 1 に対しインナースリーブ 5 0の径方向外側には、 供給チ ェック弁 7 3が設けられている。 供給チェック弁 7 3は、 第 1実施形態の遅 角供給チェック弁 7 1 と同様、 単一の板材としての長方形の金属薄板を巻く ことにより筒状に形成され、 供給流路部 5 0 1側から周方向流路部 5 0 3側 への作動油の流れを許容しつつ、 周方向流路部 5 0 3側から供給流路部 5 0 1側への作動油の流れを規制する。
[0162] リサイクル開口部〇 「 6に対しスプール 6 0の径方向内側には、 リサイク ルチェック弁 8 1が設けられている。 リサイクルチェック弁 8 1は、 第 1実 施形態の遅角供給チヱック弁 7 1 と同様、 単一の板材としての長方形の金属 薄板を巻くことにより筒状に形成され、 リサイクル開口部〇 側からスプ 〇 2020/175184 32 卩(:171? 2020 /005797
—ル 6 0の内側の空間側への作動油の流れを許容しつつ、 スプール 6 0の内 側の空間側からリサイクル開口部〇 「㊀側への作動油の流れを規制する。
[0163] 以上説明したように、 本実施形態では、 作動油制御弁 1 1は、 ドレンポー 卜 口、
Figure imgf000034_0002
仕切部 八 3 、 リサイクル油路
Figure imgf000034_0001
およびド レン絞り部八 0を有する。 ドレンポート 〇は、 遅角室 2 0 1 または進角室 2 0 2から排出される作動油を貯留するオイル排出部〇〇に接続する。 仕切
Figure imgf000034_0003
仕切部 八 3 は、 遅角室 2 0 1 または進角室 2 0 2とオイル 排出部〇口とを接続する遅角ドレン油路
Figure imgf000034_0004
および進角ドレン油路 八 と、 遅角供給油路
Figure imgf000034_0005
または進角供給油路 3との間を仕切る。 リサイ クル油路 「 6は、 ドレン油路としての遅角ドレン油路
Figure imgf000034_0006
および進角ド レン油路
Figure imgf000034_0007
とドレンポート 口との間と、 遅角供給油路
Figure imgf000034_0008
または進角供給油路 3とを接続する 。 これにより、 進角室 2 0 2または遅角室 2 0 1から排出されてドレン油路 を流れる作動油の一部を、 リサイクル油路[¾ 6を経由して遅角室 2 0 1 ま たは進角室 2 0 2へ再び供給することで、 作動油を再利用できる。
[0164] ドレン絞り部八 0は、 ドレン油路としての遅角ドレン油路
Figure imgf000034_0009
および進 角ドレン油路
Figure imgf000034_0010
とドレンポ —卜 口との間に形成され、 流路断面積がリサイクル油路
Figure imgf000034_0011
6の最小流路 断面積より小さく、 かつ、 一定である。 これにより、 ドレン絞り部八 0を経 由してオイル排出部〇口へ排出される作動油の量を少なく しつつ、 リサイク ル油路[¾ 「 6を経由して遅角室 2 0 1 または進角室 2 0 2へ再供給される作 動油の量を多くすることができる。 したがって、 バルブタイミング調整装置 1 0の応答性を高めることができる。
[0165] また、 本実施形態では、 作動油制御部 0 <3は、 筒状の部材である筒部材と してのインナースリーブ 5 0を有している。 ドレン油路としての遅角ドレン および進角ドレン油路 八 は、 インナースリーブ 5 0の径方向 外側 (呼吸穴部 5 0 5) および径方向内側 (ドレン凹部 6 0 2) に形成され る。 ドレン絞り部八 0は、 インナースリーブ 5 0を径方向に延びてインナー 〇 2020/175184 33 卩(:171? 2020 /005797
スリーブ 5〇の径方向外側のドレン油路とインナースリーブ 5〇の径方向内 側のドレン油路とを接続する。 このように、 筒状のインナースリーブ 5 0の 内側および外側に形成されたドレン油路の接続穴 (ドレン穴部 5 0 6) をド レン絞り部 0とすることで、 ドレン絞り部 0を容易に形成できる。
[0166] また、 本実施形態では、 ドレン絞り部八〇は、 スプール 6 0またはスリー ブ 4 0 0のうちスリーブ 4 0〇のインナースリーブ 5 0のみに形成されてい る。 これにより、 ドレン絞り部八 0の周囲の急激な圧力変化に起因して発生 する流体力によって、 スリーブ 4 0 0に対するスプール 6 0の軸方向の位置 が変動するのを抑制できる。
[0167] また、 本実施形態では、 ドレン絞り部八 0は、 スリーブ 4 0 0のインナー スリーブ 5 0に形成されている。 そのため、 ドレンオイルをインナースリー ブ 5〇の径方向内側から径方向外側に排出する構成において、 ドレン絞り咅6 八 0を容易に設けることができる。
[0168] (第 4実施形態)
第 4実施形態によるバルブタイミング調整装置の一部を図 9に示す。 第 4 実施形態は、 スリーブ 4 0 0、 スプール 6 0等の構成が第 1実施形態と異な る。
[0169] 本実施形態では、 スリーブ 4 0 0のアウタースリーブ 4 0とインナースリ —ブ 5 0とは、 一体に形成されている。
[0170] スリーブ 4 0 0は、 スリーブ供給穴部 4 0 1 を有している。 スリーブ供給 穴部 4 0 1は、 遅角開口部〇 と進角開口部〇八との間においてスリーブ 4 0 0の外壁と内壁を連通するよう形成されている。 本実施形態では、 スリー ブ供給穴部 4 0 1 に対し係止部 4 9側に遅角開口部〇[¾が形成され、 スリー ブ供給穴部 4 0 1 に対しねじ部 4 1側に進角開口部〇 が形成されている。
[0171 ] スリーブ 4 0 0の係止部 5 9とは反対側の端部には、 ドレンポート 口が 形成されている。 ドレンポート 口は、 オイル排出部〇口に接続している。
[0172] スプール 6 0は、 略円筒状に形成されている。 スプール封止部 6 2は、 略 円柱状に形成され、 スプール 6 0の係止部 5 9側の端部を塞いでいる。 〇 2020/175184 34 卩(:171? 2020 /005797
[0173] スプール 6 0の径方向外側には、 遅角リサイクル油路部材 9 1、 進角リサ イクル油路部材 9 2が設けられている。
[0174] 遅角リサイクル油路部材 9 1は、 筒状に形成され、 内壁がスプール 6 0の スプール封止部 6 2側の端部の外壁に嵌合している。 進角リサイクル油路部 材 9 2は、 筒状に形成され、 内壁がスプール 6 0のねじ部 4 1側の端部の外 壁に嵌合している。
[0175] 遅角リサイクル油路部材 9 1は、 遅角リサイクル油路 9 1 0を有している 。 遅角リサイクル油路 9 1 0は、 遅角リサイクル油路部材 9 1の進角リサイ クル油路部材 9 2側の端面と遅角リサイクル油路部材 9 1の外壁および内壁 とを接続するよう形成されている。 遅角リサイクル油路 9 1 0は、 遅角リサ イクル油路部材 9 1の周方向に複数形成されている。
[0176] 進角リサイクル油路部材 9 2は、 進角リサイクル油路 9 2 0を有している 。 進角リサイクル油路 9 2 0は、 進角リサイクル油路部材 9 2の遅角リサイ クル油路部材 9 1側の端面と進角リサイクル油路部材 9 2の外壁および内壁 とを接続するよう形成されている。 進角リサイクル油路 9 2 0は、 進角リサ イクル油路部材 9 2の周方向に複数形成されている。
[0177] スプール 6 0は、 スプールドレン穴部 6 5 1、 スプールドレン穴部 6 5 2 を有している。 スプールドレン穴部 6 5 1は、 スプール 6 0の内壁と遅角リ サイクル油路 9 1 0とを接続するようスプール 6 0の周方向に 1つ形成され ている。 スプールドレン穴部 6 5 2は、 スプール 6 0の内壁と進角リサイク ル油路 9 2 0とを接続するようスプール 6 0の周方向に 1つ形成されている 。 スプール 6 0の内側の空間は、 ドレンポート 口に連通している。
[0178] スプール 6 0がスリーブ 4 0 0に対し軸方向に相対移動するとき、 遅角リ サイクル油路部材 9 1および進角リサイクル油路部材 9 2の外壁は、 スリー ブ 4 0 0の内壁と摺動する。
[0179] スプリング 6 3は、 進角リサイクル油路部材 9 2とスリーブ 4 0 0の内壁 の段差面との間に設けられ、 スプール 6 0を係止部 5 9側へ付勢している。
[0180] スプール 6 0は、 係止部 5 9に当接する位置 (図 9参照) から、 進角リサ 〇 2020/175184 35 卩(:171? 2020 /005797
イクル油路部材 9 2がスリーブ 4 0 0の内壁のスリーブ段差面 4 1 0に当接 する位置 (図示せず) までの範囲で軸方向に移動可能である。
[0181] スプール 6 0が係止部 5 9に当接しているとき (図 9参照) 、 遅角リサイ クル油路部材 9 1 と進角リサイクル油路部材 9 2との間のスプール 6 0の外 壁とスリーブ 4 0 0の内壁との間の筒状の空間 3 1 を経由して、 スリーブ供 給穴部 4 0 1 と遅角開口部〇 とが連通している。 また、 このとき、 進角開 口部〇八は、 進角リサイクル油路 9 2 0に連通している。
[0182] 進角リサイクル油路部材 9 2がスリーブ段差面 4 1 0に当接しているとき (図示せず) 、 空間 3 1 を経由して、 スリーブ供給穴部 4 0 1 と進角開口部 〇八とが連通している。 また、 このとき、 遅角開口部〇[¾は、 遅角リサイク ル油路 9 1 0に連通している。
[0183] スプール 6 0が係止部 5 9から所定距離離間し、 進角リサイクル油路部材
9 2がスリーブ段差面 4 1 0から所定距離離間しているとき (図示せず) 、 遅角開口部〇[¾は遅角リサイクル油路部材 9 1の外壁により閉塞され、 進角 開口部〇八は進角リサイクル油路部材 9 2の外壁により閉塞されている。
[0184] 遅角供給油路[¾ 3は、 スリーブ供給穴部 4 0 1、 空間 3 1、 遅角開口部 〇[¾を経由して作動油供給源 0 3と遅角室 2 0 1 とを接続するよう形成され る (図 9参照) 。
[0185] 進角供給油路[¾八 3は、 スリーブ供給穴部 4 0 1、 空間 3 1、 進角開口部 〇八を経由して作動油供給源 0 3と進角室 2 0 2とを接続するよう形成され る (図示せず) 。
[0186] ドレン油路としての遅角ドレン油路
Figure imgf000037_0001
は、 遅角開口部〇[¾、 遅角リサ イクル油路 9 1 0、 スプールドレン穴部 6 5 1、 スプール 6 0の内側の空間 、 ドレンポート 口を経由して遅角室 2 0 1 とオイル排出部〇口とを接続す るよう形成される (図示せず) 。
[0187] ドレン油路としての進角ドレン油路 八 は、 進角開口部〇八、 進角リサ イクル油路 9 2 0、 スプールドレン穴部 6 5 2、 スプール 6 0の内側の空間 、 ドレンポート 口を経由して遅角室 2 0 1 とオイル排出部〇口とを接続す 〇 2020/175184 36 卩(:171? 2020 /005797
るよう形成される (図 9参照) 。
[0188] 仕切部 [¾ 3 は、 遅角リサイクル油路部材 9 1の外壁における遅角リサ イクル油路 9 1 0の開口部に形成されている。
Figure imgf000038_0001
遅角ドレ ン油路
Figure imgf000038_0002
と遅角供給油路
Figure imgf000038_0003
との間を仕切る。
[0189] 仕切部 八 3 は、 進角リサイクル油路部材 9 2の外壁における進角リサ イクル油路 9 2 0の開口部に形成されている。 仕切部 八 3 は、 進角ドレ ン油路 八 と進角供給油路 八 3との間を仕切る。
[0190] リサイクル油路
Figure imgf000038_0004
6は、 進角リサイクル油路 9 2 0を経由して、 進角リ サイクル油路 9 2 0における進角ドレン油路 八 と、 空間 3 1 における遅 角供給油路
Figure imgf000038_0005
とを接続する (図 9参照) 。
[0191] また、 リサイクル油路
Figure imgf000038_0006
6は、 遅角リサイクル油路 9 1 0を経由して、 遅角リサイクル油路 9 1 0における遅角ドレン油路
Figure imgf000038_0007
空間 3 1 にお ける進角供給油路 8八 3とを接続する (図示せず) 。
[0192] 本実施形態では、 ドレン絞り部八 0は、 スプールドレン穴部 6 5 1、 スプ —ルドレン穴部 6 5 2のそれぞれに対応している。 すなわち、 ドレン絞り咅6 八〇は、 スプール 6 0に形成されている。 ドレン絞り部八 0は、 スプール 6 0の内側の空間とスプール 6 0の外側とを連通するよう形成されている。 ド レン絞り部八 0は、 スプール 6〇の径方向に延びるようスプール 6 0に形成 されている。 ここで、 スプール 6 0は、 「筒部材」 に対応している。
[0193] このように、 ドレン絞り部八 0は、 ドレン油路としての遅角ドレン油路[¾
Figure imgf000038_0008
とドレンポート 口との間に形成されている。
[0194] ドレン絞り部八 0は、 流路断面積がリサイクル油路
Figure imgf000038_0009
6の最小流路断面 積より小さく、 かつ、 スリーブ 4 0 0に対するスプール 6 0の相対位置にか かわらず一定である。 ここで、 ドレン絞り部八 0の流路断面積は、 ドレン絞 り部八 0すなわちスプールドレン穴部 6 5 1 またはスプールドレン穴部 6 5 2の軸に垂直な断面の面積に対応する。 また、 リサイクル油路
Figure imgf000038_0010
6の最小 流路断面積は、 リサイクル油路[¾ を形成する進角リサイクル油路 9 2 0 〇 2020/175184 37 卩(:171? 2020 /005797
または遅角リサイクル油路 9 1 0の軸に垂直な断面の面積に対応する。 なお 、 ドレンポート 口の流路断面積は、 ドレン絞り部八 0すなわちスプールド レン穴部 6 5 1 またはスプールドレン穴部 6 5 2の流路断面積より大きい。
[0195] 本実施形態では、 ドレン絞り部八 0すなわちスプールドレン穴部 6 5 1 ま たはスプールドレン穴部 6 5 2は、 流路断面が真円形状となるよう形成され ている。
[0196] 本実施形態では、 ドレン絞り部八 0すなわちスプールドレン穴部 6 5 1 ま たはスプールドレン穴部 6 5 2の直径である絞り径は、 1 . 5〜 2 .
Figure imgf000039_0001
に設定されている。 すなわち、 ドレン絞り部八 0の流路断面積は、 1 . 7 7 〜 4 .
Figure imgf000039_0002
に設定されている。
[0197] スリーブ供給穴部 4 0 1 に対しスリーブ 4 0 0の径方向内側には、 供給チ ェック弁 7 3が設けられている。 供給チェック弁 7 3は、 第 1実施形態の遅 角供給チェック弁 7 1 と同様、 単一の板材としての長方形の金属薄板を巻く ことにより筒状に形成され、 スリーブ供給穴部 4 0 1側から空間 3 1側への 作動油の流れを許容しつつ、 空間 3 1側からスリーブ供給穴部 4 0 1側への 作動油の流れを規制する。
[0198] 空間 3 1 には、 遅角リサイクルチェック弁 8 1 1、 進角リサイクルチェッ ク弁 8 1 2、 スプリング 6 5が設けられている。
[0199] 遅角リサイクルチェック弁 8 1 1は、 環状に形成され、 遅角リサイクル油 路部材 9 1の進角リサイクル油路部材 9 2側の端面に当接可能、 かつ、 遅角 リサイクル油路 9 1 0を閉塞可能なようスプール 6 0の径方向外側に設けら れている。 遅角リサイクルチェック弁 8 1 1は、 スプール 6 0に対し軸方向 に相対移動可能である。
[0200] 進角リサイクルチェック弁 8 1 2は、 環状に形成され、 進角リサイクル油 路部材 9 2の遅角リサイクル油路部材 9 1側の端面に当接可能、 かつ、 進角 リサイクル油路 9 2 0を閉塞可能なようスプール 6 0の径方向外側に設けら れている。 進角リサイクルチェック弁 8 1 2は、 スプール 6 0に対し軸方向 に相対移動可能である。 〇 2020/175184 38 卩(:171? 2020 /005797
[0201 ] スプリング 6 5は、 遅角リサイクルチェック弁 8 1 1 と進角リサイクルチ ェック弁 8 1 2との間に設けられ、 遅角リサイクルチェック弁 8 1 1および 進角リサイクルチェック弁 8 1 2を、 それぞれ、 遅角リサイクル油路部材 9 1側、 進角リサイクル油路部材 9 2側へ付勢している。
[0202] 遅角リサイクルチェック弁 8 1 1は、 遅角リサイクル油路 9 1 0側から空 間 3 1側への作動油の流れを許容しつつ、 空間 3 1側から遅角リサイクル油 路 9 1 0側への作動油の流れを規制する。
[0203] 進角リサイクルチェック弁 8 1 2は、 進角リサイクル油路 9 2 0側から空 間 3 1側への作動油の流れを許容しつつ、 空間 3 1側から進角リサイクル油 路 9 2 0側への作動油の流れを規制する。
[0204] 以上説明したように、 本実施形態では、 作動油制御部〇<3は、 筒状の部材 である筒部材としてのスプール 6 0を有している。 ドレン油路としての遅角 ドレン油路
Figure imgf000040_0001
および進角ドレン油路 八 は、 スプール 6 0の径方向外 側および径方向内側 (スプール 6 0の内側の空間) に形成される。 ドレン絞 り部八 0は、 スプール 6〇を径方向に延びてスプール 6〇の径方向外側のド レン油路とスプール 6〇の径方向内側のドレン油路とを接続する。 このよう に、 筒状のスプール 6 0の内側および外側に形成されたドレン油路の接続穴 (スプールドレン穴部 6 5 1、 スプールドレン穴部 6 5 2) をドレン絞り部 八 0とすることで、 ドレン絞り部八 0を容易に形成できる。 また、 ドレン絞 り部八 0がスプール 6 0を径方向に延びるよう形成されているため、 スプー ル 6 0の軸方向に発生する流体力によりスリーブ 4 0 0に対するスプール 6 〇の軸方向の位置が変動するのを抑制できる。
[0205] (第 5実施形態)
第 5実施形態によるバルブタイミング調整装置の一部を図 1 0に示す。 第 5実施形態は、 スリーブ 4 0 0、 スプール 6 0等の構成が第 1実施形態と異 なる。
[0206] 本実施形態では、 スリーブ 4 0 0のアウタースリーブ 4 0とインナースリ —ブ 5 0とは、 一体に形成されている。 〇 2020/175184 39 卩(:171? 2020 /005797
[0207] スリーブ 4 0 0は、 スリーブ供給穴部 4 0 1、 スリーブドレン穴部 4 0 2 、 遅角開口部〇8、 進角開口部〇 を有している。
[0208] スリーブ供給穴部 4 0 1は、 スリーブ 4 0 0の外壁と内壁を連通するよう 形成されている。 スリーブ供給穴部 4 0 1は、 軸穴部 1 0 0とスリーブ 4 0 0の外壁との間の筒状の空間、 供給穴部 1 0 1 を経由して作動油供給源〇 3 に接続している。
[0209] スリーブドレン穴部 4 0 2は、 スリーブ供給穴部 4 0 1の係止部 4 9很〇に おいてスリーブ 4 0 0の外壁と内壁を連通するよう形成されている。 ベーン 口ータ 3 0には、 口ータドレン穴部 3 1 0が形成されている。 口ータドレン 穴部 3 1 0は、 スリーブドレン穴部 4 0 2とべーンロータ 3 0のカム軸 3と は反対側の端面とを連通するよう形成されている。 ベーンロータ 3 0のカム 軸 3とは反対側の端面における口ータドレン穴部 3 1 0の開口部には、 ドレ ンポート 口が形成されている。 ドレンポート 〇は、 開口部 2 4を経由し てオイル排出部〇口に接続している。
[0210] 遅角開口部〇 は、 スリーブ供給穴部 4 0 1 とスリーブドレン穴部 4 0 2 との間においてスリーブ 4 0 0の外壁と内壁を連通するよう形成されている 。 遅角開口部
Figure imgf000041_0001
遅角室 2 0 1 に連通している。
[021 1 ] 進角開口部〇八は、 スリーブドレン穴部 4 0 2と係止部 4 9との間におい てスリーブ 4 0 0の外壁と内壁を連通するよう形成されている。 進角開口部 〇八は、 進角室 2 0 2に連通している。
[0212] スプール 6 0は、 スプール供給穴部 6 6 1、 ドレン凹部 6 6 0、 遅角穴部
6 6 2、 進角穴部 6 6 3、 リサイクル開口部〇 「 6等を有している。
[0213] スプール供給穴部 6 6 1は、 スプール 6 0のスプール封止部 6 1側の端部 の外壁と内壁とを連通するようスプール 6 0の周方向に複数形成されている
[0214] ドレン凹部 6 6 0は、 スプール供給穴部 6 6 1 に対しスプール封止部 6 2 側において外壁から径方向内側へ凹み周方向に延びるよう環状に形成されて いる。 〇 2020/175184 40 卩(:171? 2020 /005797
[0215] 遅角穴部 6 6 2は、 スプール供給穴部 6 6 1 とドレン凹部 6 6 0との間に おいてスプール 6 0の内壁と外壁とを連通するようスプ _ル 6 0の周方向に 複数形成されている。
[0216] 進角穴部 6 6 3は、 ドレン凹部 6 6 0と係止部 4 9との間においてスプー ル 6 0の内壁と外壁とを連通するようスプール 6 0の周方向に複数形成され ている。
[0217] リサイクル開口部〇 「 6は、 スプール 6 0の内壁とドレン凹部 6 6 0とを 連通するようスプール 6 0の周方向に複数形成されている。
[0218] スプリング 6 3は、 スプール封止部 6 1 とスリーブ 4 0 0の内壁との間に 設けられ、 スプール 6 0を係止部 5 9側へ付勢している。
[0219] スプール 6 0は、 係止部 5 9に当接する位置 (図示せず) からスリーブ 4
0 0の内壁のスリーブ段差面 4 1 0に当接する位置 (図 1 0参照) までの範 囲で軸方向に移動可能である。
[0220] スプール 6 0が係止部 5 9に当接しているとき (図示せず) 、 供給穴部 1
0 1、 スリーブ供給穴部 4 0 1、 スプール供給穴部 6 6 1、 スプール 6 0の 内側の空間、 遅角穴部 6 6 2、 遅角開口部〇[¾を経由して、 作動油供給源〇 3と遅角室 2 0 1 とが連通している。
[0221 ] スプール 6 0がスリーブ段差面 4 1 0に当接しているとき (図 1 0参照)
、 供給穴部 1 0 1、 スリーブ供給穴部 4 0 1、 スプール供給穴部 6 6 1、 ス プール 6 0の内側の空間、 進角穴部 6 6 3、 進角開口部〇八を経由して、 作 動油供給源 0 3と進角室 2 0 2とが連通している。
[0222] スプール 6 0が係止部 5 9とスリーブ段差面 4 1 0との中間位置に位置し ているとき (図示せず) 、 遅角開口部〇 および進角開口部〇八は、 スプー ル 6 0の外壁により閉塞されている。
[0223] 遅角供給油路
Figure imgf000042_0001
供給穴部 1 0 1、 スリーブ供給穴部 4 0 1、 スプ —ル供給穴部 6 6 1、 スプール 6 0の内側の空間、 遅角穴部 6 6 2、 遅角開 口部〇[¾を経由して、 作動油供給源 0 3と遅角室 2 0 1 とを接続するよう形 成される (図示せず) 。 〇 2020/175184 41 卩(:171? 2020 /005797
[0224] 進角供給油路 3は、 供給穴部 1 0 1、 スリーブ供給穴部 4 0 1、 スプ —ル供給穴部 6 6 1、 スプール 6 0の内側の空間、 進角穴部 6 6 3、 進角開 口部 0 を経由して、 作動油供給源 0 3と進角室 2 0 2とを接続するよう形 成される (図 1 0参照) 。
[0225] ドレン油路としての遅角ドレン油路
Figure imgf000043_0001
は、 遅角開口部〇[¾、 ドレン凹 部 6 6 0、 スリーブドレン穴部 4 0 2、 口ータドレン穴部 3 1 0、 ドレンポ —卜 口を経由して遅角室 2 0 1 とオイル排出部〇口とを接続するよう形成 される (図 1 0参照) 。
[0226] ドレン油路としての進角ドレン油路[¾八 は、 進角開口部〇八、 ドレン凹 部 6 6 0、 スリーブドレン穴部 4 0 2、 口ータドレン穴部 3 1 0、 ドレンポ —卜 口を経由して進角室 2 0 2とオイル排出部〇口とを接続するよう形成 される (図示せず) 。
[0227] 仕切部 [¾ 3 は、 スプール 6 0のドレン凹部 6 6 0のスプール封止部 6
1側の端部に形成されている。
Figure imgf000043_0002
遅角ドレン油路[¾ と 遅角供給油路 8 8 3との間を仕切る。
[0228] 仕切部 八 3 は、 スプール 6 0のドレン凹部 6 6 0のスプール封止部 6
2側の端部に形成されている。 仕切部
Figure imgf000043_0003
は、 進角ドレン油路
Figure imgf000043_0004
と 進角供給油路 3との間を仕切る。
[0229] リサイクル油路
Figure imgf000043_0005
は、 リサイクル開口部〇 「 6を経由して、 ドレン凹 部 6 6 0における進角ドレン油路 八 と、 スプール 6 0の内側の空間にお ける遅角供給油路 8 8 3とを接続する (図示せず) 。
[0230] また、 リサイクル油路
Figure imgf000043_0006
リサイクル開口部〇 「 6を経由して、 ド レン凹部 6 6 0における遅角ドレン油路[¾ と、 スプール 6 0の内側の空 間における進角供給油路 3とを接続する (図 1 0参照) 。
[0231] 本実施形態では、 ドレン絞り部 0は、 スリーブドレン穴部 4 0 2に対応 している。 すなわち、 ドレン絞り部八 0は、 スリーブ 4 0 0に形成されてい る。 ドレン絞り部 0は、 スリーブ 4 0 0の内側と外側とを連通するよう形 成されている。 ドレン絞り部八 0は、 スリーブ 4 0 0の径方向に延びるよう 〇 2020/175184 42 卩(:171? 2020 /005797
スリーブ 4 0 0の周方向に 1つ形成されている。 ここで、 スリーブ 4 0 0は 、 「筒部材」 に対応している。
[0232] このように、 ドレン絞り部八〇は、 ドレン油路としての遅角ドレン油路[¾
Figure imgf000044_0001
とドレンポート 口との間に形成されている。
[0233] ドレン絞り部八 0は、 流路断面積がリサイクル油路
Figure imgf000044_0002
6の最小流路断面 積より小さく、 かつ、 スリーブ 4 0 0に対するスプール 6 0の相対位置にか かわらず一定である。 ここで、 ドレン絞り部八 0の流路断面積は、 ドレン絞 り部八 0すなわちスリーブドレン穴部 4 0 2の軸に垂直な断面の面積に対応 する。 また、 リサイクル油路
Figure imgf000044_0003
6の最小流路断面積は、 リサイクル油路[¾
「㊀を形成する複数のリサイクル開口部〇 「 6のそれぞれの軸に垂直な断面 の面積の合計に対応する。 なお、 ドレンポート 口の流路断面積は、 ドレン 絞り部八 0すなわちスリーブドレン穴部 4 0 2の流路断面積より大きい。
[0234] 本実施形態では、 ドレン絞り部八 0すなわちスリーブドレン穴部 4 0 2は 、 流路断面が真円形状となるよう形成されている。
[0235] 本実施形態では、 ドレン絞り部八 0すなわちスリーブドレン穴部 4 0 2の 直径である絞り径は、 1 . 5〜 2 . 5
Figure imgf000044_0004
に設定されている。 すなわち、 ド レン絞り部八 0の流路断面積は、 1 . 7 7〜 4 . 9 1 2に設定されている
[0236] 以上説明したように、 本実施形態では、 作動油制御部〇 <3は、 筒状の部材 である筒部材としてのスリーブ 4 0 0を有している。 ドレン油路としての遅 角ドレン油路
Figure imgf000044_0005
および進角ドレン油路 八 は、 スリーブ 4 0 0の径方 向外側 (ロータドレン穴部 3 1 0) および径方向内側 (ドレン凹部 6 6 0) に形成される。 ドレン絞り部八 0は、 スリーブ 4 0 0を径方向に延びてスリ —ブ 4 0〇の径方向外側のドレン油路とスリーブ 4 0〇の径方向内側のドレ ン油路とを接続する。 このように、 筒状のスリーブ 4 0 0の内側および外側 に形成されたドレン油路の接続穴 (スリーブドレン穴部 4 0 2) をドレン絞 り部 0とすることで、 ドレン絞り部 0を容易に形成できる。 〇 2020/175184 43 卩(:171? 2020 /005797
[0237] (他の実施形態)
他の実施形態では、 ドレン絞り部の流路断面積は、 1 . 7 7 2未満、 ま たは、 4 . 9 1 01 01 2より大きく設定されていてもよい。
[0238] また、 他の実施形態では、 ドレン絞り部は、 流路断面が真円形状に限らず 、 楕円形状、 矩形状、 多角形状等、 どのような形状となるよう形成されてい てもよい。
[0239] また、 他の実施形態では、 チェーン 6に代えて、 例えばべルト等の伝達部 材によりハウジング 2 0とクランク軸 2とが連結されていてもよい。
[0240] また、 他の実施形態では、 ベーンロータ 3 0がクランク軸 2の端部に固定 され、 ハウジング 2 0がカム軸 3に連動して回転してもよい。
[0241 ] また、 他の実施形態では、 バルブタイミング調整装置 1 0は、 エンジン 1 の排気弁 5のバルブタイミングを調整することとしてもよい。
[0242] このように、 本開示は、 上記実施形態に限定されるものではなく、 その要 旨を逸脱しない範囲で種々の形態で実施可能である。
[0243] 本開示は、 実施形態に基づき記述された。 しかしながら、 本開示は当該実 施形態および構造に限定されるものではない。 本開示は、 様々な変形例およ び均等の範囲内の変形をも包含する。 また、 様々な組み合わせおよび形態、 さらには、 それらに一要素のみ、 それ以上、 あるいはそれ以下、 を含む他の 組み合わせおよび形態も、 本開示の範疇および思想範囲に入るものである。

Claims

\¥0 2020/175184 44 卩(:17 2020 /005797
請求の範囲
[請求項 1] 内燃機関 (1) のバルブ (4、 5) のバルブタイミングを調整する バルブタイミング調整装置 ( 1 0) であって、
遅角室 (2 0 1) および進角室 (2 0 2) を有し、 作動油供給源 ( 0 3) から前記遅角室および前記進角室に供給される作動油により前 記内燃機関の駆動軸 (2) と従動軸 (3) との回転位相を変換し、 前 記バルブのバルブタイミングを調整可能な位相変換部 ( 〇) と、 前記作動油供給源と前記遅角室とを接続する遅角供給油路
Figure imgf000046_0001
3 ) 、 および、 前記作動油供給源と前記進角室とを接続する進角供給油 路 ([¾ 3) を流れる作動油を制御することで、 前記遅角室および前 記進角室に供給される作動油の流れを制御可能な作動油制御部 (〇〇 ) と、 を備え、
前記作動油制御部は、
前記遅角室または前記進角室から排出される作動油を貯留するオイ ル排出部 (〇口) に接続するドレンポート ( 口) 、 前記遅角室または前記進角室と前記オイル排出部とを接続するドレ ン油路 ([¾[¾ 、 [¾ 〇〇 と、 前記遅角供給油路または前記進角供給 油路との間を仕切る仕切部 ( [¾ 3 、 八 3 ) 、 前記ドレン油路のうち前記仕切部と前記ドレンポートとの間と、 前 記遅角供給油路または前記進角供給油路とを接続するリサイクル油路 ([¾ 「㊀) 、 および、
前記ドレン油路のうち前記仕切部と前記ドレンポートとの間に形成 され、 流路断面積が前記リサイクル油路の最小流路断面積より小さく 、 かつ、 一定のドレン絞り部 (八〇) を有するバルブタイミング調整 装置。
[請求項 2] 前記ドレン油路および前記リサイクル油路は、 共通の前記仕切部に 接続している請求項 1 に記載のバルブタイミング調整装置。
[請求項 3] 前記作動油制御部は、 筒状の部材である筒部材 (5 0、 6 0、 4 0 〇 2020/175184 45 卩(:171? 2020 /005797
0) を有し、
前記ドレン油路は、 前記筒部材の径方向外側および径方向内側に形 成され、
前記ドレン絞り部は、 前記筒部材を径方向に延びて前記筒部材の径 方向外側の前記ドレン油路と前記筒部材の径方向内側の前記ドレン油 路とを接続する請求項 1 または 2に記載のバルブタイミング調整装置
[請求項 4] 前記作動油制御部は、 筒状のスリーブ (4 0 0) 、 および、 前記ス リーブの内側で軸方向に往復移動することで前記遅角室および前記進 角室に供給される作動油の流れを制御可能な筒状のスプール (6 0) を有し、
前記ドレン絞り部は、 前記スプールまたは前記スリーブのいずれか —方のみに形成されている請求項 1〜 3のいずれか一項に記載のバル ブタイミング調整装置。
[請求項 5] 前記ドレン絞り部は、 前記スプールに形成されており、
前記スプールの内側の空間は、 前記ドレンポートに接続している請 求項 4に記載のバルブタイミング調整装置。
[請求項 6] 前記ドレン絞り部は、 前記スリーブに形成されている請求項 4に記 載のバルブタイミング調整装置。
[請求項 7] 前記ドレン絞り部の流路断面積は、 1 . 7 7〜 4 . 9 1 〇!2に設 定されている請求項 1〜 6のいずれか一項に記載のバルブタイミング 調整装置。
[請求項 8] 前記ドレン絞り部は、 流路断面が真円形状となるよう形成されてい る請求項 1〜 7のいずれか一項に記載のバルブタイミング調整装置。
PCT/JP2020/005797 2019-02-28 2020-02-14 バルブタイミング調整装置 WO2020175184A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112020001008.2T DE112020001008T5 (de) 2019-02-28 2020-02-14 Ventil-Timing-Einstellvorrichtung
CN202080012976.4A CN113396273B (zh) 2019-02-28 2020-02-14 气门正时调整装置
US17/411,502 US11428126B2 (en) 2019-02-28 2021-08-25 Valve timing adjustment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019035190A JP7225910B2 (ja) 2019-02-28 2019-02-28 バルブタイミング調整装置
JP2019-035190 2019-02-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/411,502 Continuation US11428126B2 (en) 2019-02-28 2021-08-25 Valve timing adjustment device

Publications (1)

Publication Number Publication Date
WO2020175184A1 true WO2020175184A1 (ja) 2020-09-03

Family

ID=72238360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005797 WO2020175184A1 (ja) 2019-02-28 2020-02-14 バルブタイミング調整装置

Country Status (5)

Country Link
US (1) US11428126B2 (ja)
JP (1) JP7225910B2 (ja)
CN (1) CN113396273B (ja)
DE (1) DE112020001008T5 (ja)
WO (1) WO2020175184A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11560813B2 (en) * 2021-03-18 2023-01-24 Schaeffler Technologies AG & Co. KG Recirculating hydraulic fluid control valve
US11560814B1 (en) * 2022-01-21 2023-01-24 Schaeffler Technologies AG & Co. KG Recirculating hydraulic fluid control valve
US20220290587A1 (en) * 2022-05-31 2022-09-15 Borgwarner, Inc. Axial and radial source feeds at a rotor to camshaft interface

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618469U (ja) * 1979-07-23 1981-02-18
JP2015145672A (ja) * 2014-01-31 2015-08-13 ハイライト・ジャーマニー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング カムシャフトの揺動型アクチュエータ用の油圧バルブ
JP2018178972A (ja) * 2017-04-21 2018-11-15 株式会社デンソー バルブタイミング調整装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4457284B2 (ja) * 2001-02-21 2010-04-28 アイシン精機株式会社 弁開閉時期制御装置
JP3864802B2 (ja) * 2002-02-21 2007-01-10 アイシン精機株式会社 弁開閉時期制御装置
JP4752953B2 (ja) * 2009-06-10 2011-08-17 株式会社デンソー バルブタイミング調整装置
JP2012122453A (ja) 2010-12-10 2012-06-28 Denso Corp バルブタイミング調整装置
DE102014103400B3 (de) * 2014-03-13 2015-06-03 Hilite Germany Gmbh Hydraulikventil für einen Schwenkmotorversteller einer Nockenwelle
JP6790925B2 (ja) * 2017-03-07 2020-11-25 株式会社デンソー 作動油制御弁、および、これを用いたバルブタイミング調整装置
DE112018000447T5 (de) 2017-01-19 2019-10-10 Denso Corporation Ventiltimingeinstellvorrichtung
JP6780573B2 (ja) * 2017-04-21 2020-11-04 株式会社デンソー バルブタイミング調整装置
JP2019035190A (ja) 2017-08-10 2019-03-07 日立造船株式会社 起伏ゲート

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618469U (ja) * 1979-07-23 1981-02-18
JP2015145672A (ja) * 2014-01-31 2015-08-13 ハイライト・ジャーマニー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング カムシャフトの揺動型アクチュエータ用の油圧バルブ
JP2018178972A (ja) * 2017-04-21 2018-11-15 株式会社デンソー バルブタイミング調整装置

Also Published As

Publication number Publication date
CN113396273A (zh) 2021-09-14
US11428126B2 (en) 2022-08-30
US20210381403A1 (en) 2021-12-09
JP2020139451A (ja) 2020-09-03
DE112020001008T5 (de) 2021-11-11
JP7225910B2 (ja) 2023-02-21
CN113396273B (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
WO2018135586A1 (ja) バルブタイミング調整装置
WO2018164022A1 (ja) 作動油制御弁およびバルブタイミング調整装置
CN110192011B (zh) 气门正时调整装置以及单向阀
WO2020175184A1 (ja) バルブタイミング調整装置
WO2018194076A1 (ja) バルブタイミング調整装置
JP6733594B2 (ja) バルブタイミング調整装置
WO2018135584A1 (ja) バルブタイミング調整装置およびチェック弁
CN110192009B (zh) 气门正时调整装置
JP7196712B2 (ja) 作動油制御弁およびバルブタイミング調整装置
JP7040769B2 (ja) 流体制御弁、および、これを用いたバルブタイミング調整装置
JP7124775B2 (ja) 作動油制御弁およびバルブタイミング調整装置
JP7136455B2 (ja) 流体制御弁、および、これを用いたバルブタイミング調整装置
JP2021085398A (ja) バルブタイミング調整装置
WO2021106892A1 (ja) バルブタイミング調整装置
WO2019181880A1 (ja) 弁装置
JP7251878B2 (ja) 流体制御弁、および、これを用いたバルブタイミング調整装置
JP6879242B2 (ja) 弁装置
JP6947115B2 (ja) チェック弁
JP2021017808A (ja) バルブタイミング調整装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762171

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20762171

Country of ref document: EP

Kind code of ref document: A1