WO2020175119A1 - 磁気センサ及びその製造方法 - Google Patents

磁気センサ及びその製造方法 Download PDF

Info

Publication number
WO2020175119A1
WO2020175119A1 PCT/JP2020/005042 JP2020005042W WO2020175119A1 WO 2020175119 A1 WO2020175119 A1 WO 2020175119A1 JP 2020005042 W JP2020005042 W JP 2020005042W WO 2020175119 A1 WO2020175119 A1 WO 2020175119A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
substrate
collector
magnetism
magnetism collector
Prior art date
Application number
PCT/JP2020/005042
Other languages
English (en)
French (fr)
Inventor
誠 亀野
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to EP20763035.1A priority Critical patent/EP3933424A4/en
Priority to US17/433,196 priority patent/US11899079B2/en
Priority to CN202080016410.9A priority patent/CN113474670B/zh
Publication of WO2020175119A1 publication Critical patent/WO2020175119A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0052Manufacturing aspects; Manufacturing of single devices, i.e. of semiconductor magnetic sensor chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0011Arrangements or instruments for measuring magnetic variables comprising means, e.g. flux concentrators, flux guides, for guiding or concentrating the magnetic flux, e.g. to the magnetic sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0005Geometrical arrangement of magnetic sensor elements; Apparatus combining different magnetic sensor types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • G01R33/0041Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration using feed-back or modulation techniques

Definitions

  • the present invention relates to a magnetic sensor and a method for manufacturing the same, and more particularly, to a magnetic sensor including a sensor chip and a magnetism collector mounted on the surface of a substrate and a method for manufacturing the same
  • Magnetic sensors are widely used in ammeters and magnetic encoders.
  • a magnetic sensor may be provided with a magnet collector for collecting magnetic flux on the sensor chip for the purpose of increasing the detection sensitivity.
  • Patent Document 1 discloses a magnetic sensor including a sensor chip mounted on a substrate such that an element formation surface is perpendicular to the substrate, and a magnetism collector mounted on the substrate with an end facing the element formation surface. Sensor is disclosed.
  • the sensor chip is mounted on the substrate by laying it at 90 ° so that the element formation surface is perpendicular to the substrate, so that the magnetism collector with a long length is mounted. Even if the above method is used, there is an advantage that the magnetism collector can be stably held on the substrate.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2 017 7-0 9 0 1 9 2
  • the magnetism collector is required.
  • One method is to increase the flatness of each surface by grinding or polishing the surface of and to make the angle between the two surfaces closer to 90°.
  • the present invention minimizes the gap between the element forming surface of the sensor chip and the magnetism collector while suppressing an increase in manufacturing cost, and at the same time, keeps the gap between the products within a certain range.
  • An object of the present invention is to provide a magnetic sensor whose size can be controlled and a manufacturing method thereof.
  • a magnetic sensor has a substrate and an element forming surface on which a magnetic sensing element is formed, and is a sensor mounted on the surface of the substrate so that the element forming surface is perpendicular to the surface of the substrate.
  • a chip, and a magnetic collector mounted on the surface of the substrate such that the first surface faces the surface of the substrate and the second surface faces the element formation surface of the sensor chip.
  • the flatness of the surface of No. 2 is higher than the flatness of at least one of the other surfaces.
  • the gap between the element forming surface of the sensor chip and the magnetism collector is reduced as much as possible, and It is possible to control the size of the gap so that the variation in is within a certain range.
  • the flatness of at least one other surface of the magnetism collector is not improved, unnecessary manufacturing cost for processing the surface does not occur. This makes it possible to suppress an increase in manufacturing cost.
  • the magnetism collector has a third surface, and the sensor chip and the magnetism collector are fixed to each other via an adhesive applied to the third surface of the sensor chip and the magnetism collector, Even if the flatness of the first and second surfaces is higher than that of the third surface, ⁇ 2020/175 119 3 ⁇ (:171? 2020 /005042
  • the magnetism collector further has a fourth surface, and the substrate and the magnetism collector are fixed to each other via an adhesive applied to the surface of the base plate and the fourth surface of the magnetism collector.
  • the flatness of the first and second surfaces may be higher than the flatness of the fourth surface. This avoids unnecessary manufacturing costs for processing the fourth surface.
  • the fourth surface since the fourth surface has low flatness, it is possible to secure sufficient adhesive strength with the adhesive.
  • the magnetism collector may be made of a ferrite material.
  • the ferrite material has low flatness in the as-cut state, it is possible to selectively increase the flatness of the first and second surfaces by grinding or polishing.
  • a method for manufacturing a magnetic sensor according to the present invention comprises a first step of cutting a magnetism collector from a block made of a magnetic material, and a step of selectively grinding or polishing the first and second surfaces of the magnetism collector, The second step of selectively increasing the flatness of the first and second surfaces, and the sensor chip on the surface of the substrate so that the element forming surface on which the magnetic sensitive element is formed is perpendicular to the surface of the substrate. The third step of mounting and the fourth step of mounting the magnetism collector on the surface of the substrate so that the first surface faces the surface of the substrate and the second surface faces the element formation surface of the sensor chip. And is provided.
  • the first and second surfaces of the magnetism collector are selectively ground or polished, the flatness of the first and second surfaces is enhanced, while the grinding or polishing is performed. It is possible to minimize the increase in manufacturing cost due to the above.
  • the fourth step may be performed while urging the magnetism collector so that the second surface of the magnetism collector is pressed against the element forming surface of the sensor chip. According to this, it is possible to further reduce the gap between the element forming surface of the sensor chip and the magnetism collector. ⁇ 2020/175 119 4 boxes (:171? 2020 /005042
  • the magnetism collector has a third surface, and in the second step,
  • the first and second surfaces may be ground or polished without grinding or polishing the surface of No. 3, and in the fourth step, an adhesive may be applied to the third surface of the sensor chip and the magnetism collector. Absent. This avoids unnecessary manufacturing costs for processing the third surface. Moreover, since the third surface has low flatness, it is possible to secure sufficient adhesive strength with the adhesive.
  • the magnetism collector further has a fourth surface, and in the second step, grinding or polishing the first and second surfaces without grinding or polishing the fourth surface, In the fourth step, an adhesive may be applied to the surface of the substrate and the fourth surface of the magnetism collector. This avoids unnecessary manufacturing costs for processing the fourth surface. Moreover, since the fourth surface has low flatness, it is possible to sufficiently secure the adhesive strength by the adhesive.
  • FIG. 1 is a schematic perspective view showing an appearance of a magnetic sensor 10 according to a preferred embodiment of the present invention.
  • FIG. 2 is a schematic perspective view for explaining the structure of the element formation surface 203 of the sensor chip 20.
  • FIG. 3 is a circuit diagram for explaining the connection relationship between the magnetic sensitive elements 1 to [3 ⁇ 4 4.
  • FIG. 4 is a schematic perspective view for explaining the structure of the magnetism collector 30.
  • Figs. 5 (3) to ( ⁇ ) are schematic diagrams for explaining the application positions of the adhesives 71 to 73.
  • Fig. 6 is a flow chart for explaining the manufacturing process of the magnetic sensor 10. ⁇ 2020/175 119 5 ⁇ (:171? 2020 /005042
  • FIG. 7 is a schematic diagram for explaining a method of supplying and curing the adhesive 71 while energizing the magnetism collector 30.
  • FIG. 1 is a schematic perspective view showing an appearance of a magnetic sensor 10 according to a preferred embodiment of the present invention.
  • the magnetic sensor 10 includes a substrate 2 whose surface constitutes an X plane, a sensor chip 20 mounted on the surface of the substrate 2 and a magnetism collector. It has 3 0, 4 1 and 4 2.
  • Sensor chip 2 0 has an element formation surface 2 0 3 of the XV surface is opposed to one end and the element type Narumen 2 0 3 in the two directions of the current magnetized body 3 0.
  • the magnetism collectors 41 and 42 are provided on the back surface side of the sensor chip 20.
  • the magnetism collectors 30, 41, 42 are blocks made of a soft magnetic material having a high magnetic permeability such as a ferrite.
  • FIG. 2 is a schematic perspective view for explaining the structure of the element formation surface 2 0 3 of the sensor chip 2 0.
  • the sensor chip 2 0 has a substantially rectangular parallelepiped shape, the element constituting the XV flat forming surface 2 0 to 3 four magnetically sensitive element 1 4 is formed.
  • Magnetic sensitive element Is not particularly limited as long as it is an element whose characteristics change depending on the direction or strength of the magnetic field, and for example, a magnetoresistive element can be used.
  • the magnetic sensing element 1 is a magnetoresistive element and has the same magnetization fixed direction as each other will be described as an example.
  • the magnetic sensitive element ⁇ 2020/175 119 6 ⁇ (: 171-1? 2020 /005042
  • the positions of,, and in the X direction are the same.
  • the magnetic sensing element [3 ⁇ 4 1 The positions in the S-direction are the same, and the positions of the magnetic sensitive elements [3 ⁇ 4 2, [3 ⁇ 4 3 in the S-direction are the same.
  • the element forming surface 2 0 3 of the sensor chip 2 0, magnetic layer 2 1-2 3 are formed.
  • Magnetic layer 2 1 is positioned substantially at the center on the element formation surface 2 0 3 in a plan view, the magnetic layer 2 2 on both sides in the X direction, 2 3 are arranged.
  • the magnetic layers 21 to 23 may be a film made of a composite magnetic material in which a magnetic filler is dispersed in a resin material, and may be made of a soft material such as nickel or permalloy. It may be a thin film or foil made of a magnetic material, or a thin film or bulk sheet made of a ferrite or the like.
  • the magnetic sensitive elements 8 1 and 8 3 are arranged in the gap formed by the magnetic layer 21 and the magnetic layer 22, and 4 is the magnetic layer 21 and the magnetic layer
  • the magnetism collector 30 is a magnetic sensing element in plan view, that is, when viewed from the outside.
  • Magnetic element [3 ⁇ 4 2 It has a rectangular parallelepiped shape with two longitudinal directions.
  • the magnetism collector 30 collects the magnetic flux in the axial direction and splits the magnetic flux on both sides in the X direction on the element formation surface 203.
  • the height of the magnetism collector 30 in the radial direction is not particularly limited, but by increasing the height in the radial direction, the selectivity of the magnetic flux in the radial direction can be enhanced.
  • the width of the magnetism collector 30 in the S-direction is substantially the same as the width of the sensor chip 20 in the S-direction, but the present invention is not limited to this.
  • One side surface and half of the back surface of the sensor chip 20 are covered with the magnetism collector 41.
  • the other half of the other side surface and back surface of the sensor chip 20 is covered with the magnetic flux collector 42.
  • the magnetism collectors 41, 42 are extended in the lateral direction so that their positions in the two directions exceed the element formation surface 203. ⁇ 2020/175 119 7 ⁇ (: 171-1? 2020/005042
  • an over-folded part is bent from this extended part to the element formation surface 203 side.
  • Reference numeral 4 is located between the magnetic collector 30 and the overhang portion 0 to 12 of the magnetic collector 42. For this reason, the magnetic flux collected by the magnetism collector 30 is distributed almost evenly to both sides in the X direction, and is then sucked into the magnetism collectors 41, 42 via the overhang portions ⁇ 1 to 11, ⁇ 1 to 12. Be done. At this time, part of the magnetic flux is To pass through the magnetic sensitive element [3 ⁇ 4 1, And magnetic sensitive element Will be given magnetic flux in opposite directions.
  • FIG. 3 is a circuit diagram for explaining a connection relationship between the magnetic sensitive elements 1 to [3 ⁇ 4 4.
  • the magnetic sensitive element 1 is connected between the terminal electrodes 53 and 56, the magnetic sensitive element 2 is connected between the terminal electrodes 54 and 55, and the magnetic sensitive element 3 is connected to the terminal electrodes 5 3, 5.
  • the magnetic sensitive element 4 is connected between the terminal electrodes 55 and 56.
  • the power supply potential VOO is applied to the terminal electrode 56
  • the ground potential is applied to the terminal electrode 54. 0 is given.
  • the magnetic sensitive element 1 All have the same magnetizing and fixing direction, and are located on one side of the magnetism collector 30. The amount of resistance change of 1 and 3 and the magnetic sensitive element located on the other side when viewed from the magnetic collector 30 There is a difference between the resistance changes of 2 and. This makes the magnetic sensitive element
  • the differential signals output from the terminal electrodes 53, 55 are input to the substrate 2 or a differential amplifier 61 provided outside the substrate 2.
  • the output signal of the differential amplifier 61 is fed back to the terminal electrode 52.
  • the compensating coil (3 is connected between the terminal electrode 5 1 and the terminal electrode 52, and as a result, the compensating coil ⁇ produces a magnetic field corresponding to the output signal of the differential amplifier 61.
  • the compensating coil ⁇ can be integrated in the sensor chip 20. With such a configuration, a change in the electrical resistance of the magnetic sensitive elements 1 to 4 depending on the magnetic flux density causes a change in the terminal electrodes 53, 55. ⁇ 2020/175 119 8 ⁇ (: 171? 2020 /005042
  • FIG. 4 is a schematic perspective view for explaining the structure of the magnetism collector 30.
  • the magnetism collector 30 is a substantially rectangular parallelepiped having six surfaces 31 to 36.
  • the surface 31 is a surface that constitutes the X 2 surface, and faces the surface of the substrate 2 when mounted.
  • the surface 32 is a surface forming the X 7 surface, and when mounted, faces the element formation surface 20 3 of the sensor chip 20.
  • Surface 33 is the X 2 surface located opposite surface 31.
  • Surface 34 is the father surface opposite the surface 32.
  • the surfaces 35 and 36 are soft surfaces located on opposite sides of each other.
  • the flatness of the surfaces 31 and 32 of the magnetism collector 30 is higher than the flatness of the other surfaces 33 to 36.
  • surface roughness The surface 3 1 is higher than the flatness of the other surfaces 33 to 36.
  • adhesives 71 to 73 can be used to fix the magnetism collector 30.
  • the adhesive 71 is applied over the surface 33 of the magnetism collector 30 and the upper surface (two fathers) of the sensor chip 20. ⁇ 2020/175 119 9 boxes (:171? 2020 /005042
  • the surface 33 of the magnetism collector 30 is preferably rougher than the surfaces 31 and 32. According to this, as compared with the case where the surface 33 of the magnetism collector 30 has the same flatness as the surfaces 31 and 32, the adhesive strength of the adhesive 71 can be increased. Further, the adhesive 71 is ⁇ enter between the surface 3 2 and the element formation surface 2 0 3 of the current magnetized member 3 0, there is a possibility that both the gap widens, in the present embodiment, focusing magnet body 3 0 Since the flatness of the surface 32 of the adhesive is enhanced, the infiltration of the adhesive 71 due to the surface tension hardly occurs.
  • the adhesive 72 is applied over the surface 34 of the magnetism collector 30 and the surface of the substrate 2, whereby the substrate 2 and the magnetism collector are gathered.
  • the relative positional relationship of 30 is fixed.
  • the surface 3 4 of the magnetism collector 30 is the surface 3 1,
  • the adhesive strength of the adhesive 72 can be increased.
  • the adhesive 73 is applied over the surfaces 35 and 36 of the magnetism collector 30 and the surface of the substrate 2, whereby the substrate 2
  • the relative positional relationship between the magnet and the magnetism collector 30 is fixed.
  • the surfaces 35 and 36 of the magnetism collector 30 are preferably rougher than the surfaces 31 and 32. According to this, as compared with the case where the surfaces 35 and 36 of the magnetism collector 30 have the same flatness as the surfaces 31 and 32, the adhesive strength of the adhesive 73 can be increased.
  • the adhesive 73 may be omitted.
  • Fig. 6 is a flowchart for explaining the manufacturing process of the magnetic sensor 10 according to the present embodiment.
  • the surfaces 31, 32 of the magnetism collector 30 are ground or polished to Increase the flatness of the surfaces 3 1, 3 2 (step 3 12). ⁇ 2020/175 119 10 boxes (:171? 2020 /005042
  • the flatness of each surface 31 to 36 is low, and the angle formed by the two surfaces is also low in accuracy.
  • the surfaces 3 1 and 3 2 of the magnetism collector 30 are ground or polished, the flatness of the surfaces 3 1 and 3 2 is improved, and the angle formed between the surfaces 3 1 and 3 2 is increased. It approaches 90 ° without limit. No grinding or polishing is performed on the other surfaces 33-36, which prevents an unnecessary increase in manufacturing costs. However, grinding or polishing may be performed on a part of the surfaces 33 to 36.
  • the magnetism collector 30 is fixed by supplying and curing the adhesives 71 to 73 (step 323). At this time, supply the adhesive while urging the magnetism collector 30 so that the surface 32 of the magnetism collector 30 is correctly pressed and fixed to the element forming surface 203 of the sensor chip 20. And curing is preferred. For example, as shown in FIG. 7, after the magnetism collector 30 is placed on the substrate 2, the magnetism collector 30 is urged in one direction from the surface 34 side by the urging jig 81, and It is preferred to supply the adhesive 7 1 from a pencer 70.
  • a fixing jig 82 it is preferable to support the back surface side of the sensor chip 20 by a fixing jig 82 so that the sensor chip 20 does not move or fall in the 12 directions.
  • the adhesive 71 is supplied and cured using such jigs 81 and 82, the surface 32 of the magnetism collector 30 is correctly pressed against the element forming surface 203 of the sensor chip 20. Is maintained between the surface 32 of the magnetism collector 30 and the element forming surface 203 of the sensor chip 20. ⁇ 2020/175 119 11 ⁇ (:171? 2020/005042
  • the flatness of the surfaces 31 and 32 of the magnetism collector 30 is selectively enhanced, so that the surface 32 of the magnetism collector 30 is almost formed. It can be brought into close contact with the element forming surface 203 of the sensor chip 20 without a gap. Moreover, the infiltration of the adhesive 71 between the surface 32 of the magnetism collector 30 and the element forming surface 20 3 of the sensor chip 20 is unlikely to occur. Furthermore, since at least a part of the other surfaces 33 to 36 is not ground or polished, it is possible to sufficiently secure the adhesive strength of the adhesives 71 to 73.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

【課題】磁気センサの製造コストの増大を抑えつつ、センサチップの素子形成面と集磁体の隙間をできるだけ小さくするとともに、製品間におけるばらつきが一定の範囲内に収まるよう、隙間の大きさをコントロールする。 【解決手段】素子形成面20aが基板2に対して垂直となるよう搭載されたセンサチップ20と、表面31が基板2と向かい合い、表面32が素子形成面20aと向かい合うよう搭載された集磁体30とを備える。集磁体30は、表面31,32の平坦性が、他の表面の平坦性よりも高い。

Description

\¥02020/175119 1 卩(:17 2020/005042
明 細 書
発明の名称 : 磁気センサ及びその製造方法
技術分野
[0001 ] 本発明は磁気センサ及びその製造方法に関し、 特に、 基板の表面に搭載さ れたセンサチップ及び集磁体からなる磁気センサ及びその製造方法に関する 背景技術
[0002] 磁気センサは、 電流計や磁気エンコーダなどに広く用いられている。 磁気 センサには、 検出感度を高めることを目的として、 センサチップに磁束を集 めるための集磁体が設けられることがある。 例えば、 特許文献 1 には、 素子 形成面が基板に対して垂直となるよう基板に搭載されたセンサチップと、 端 部が素子形成面と向かい合うよう基板に搭載された集磁体とを備える磁気セ ンサが開示されている。
[0003] 特許文献 1 に記載された磁気センサは、 素子形成面が基板に対して垂直と なるよう、 センサチップを 9 0 ° 寝かせて基板に搭載していることから、 長 さの長い集磁体を用いた場合であっても、 集磁体を基板上に安定的に保持で きるという利点を有している。
先行技術文献
特許文献
[0004] 特許文献 1 :特開 2 0 1 7 - 0 9 0 1 9 2号公報
発明の概要
発明が解決しようとする課題
[0005] しかしながら、 集磁体の加工精度が低いと、 センサチップの素子形成面と 集磁体が完全に密着せず、 両者間に僅かな隙間が生じることがある。 この隙 間は、 磁界の検出感度に大きな影響を与えることから、 できるだけ小さいこ とが望ましく、 且つ、 製品間におけるばらつきが一定の範囲内に収まるよう 、 隙間の大きさをコントロールすることが望ましい。 〇 2020/175119 2 卩(:171? 2020 /005042
[0006] ここで、 センサチップの素子形成面と集磁体の隙間をできるだけ小さくす るとともに、 製品間におけるばらつきが一定の範囲内に収まるよう、 隙間の 大きさをコントロールするためには、 集磁体の表面を研削又は研磨すること によって、 各面の平坦性を高めるとともに、 2つの面が成す角度をより 9 0 ° に近づける方法が挙げられる。
[0007] しかしながら、 集磁体の全表面を研削又は研磨すると、 磁気センサの製造 コストが必要以上に増大するという問題があった。
[0008] したがって、 本発明は、 製造コストの増大を抑えつつ、 センサチップの素 子形成面と集磁体の隙間をできるだけ小さくするとともに、 製品間における ばらつきが一定の範囲内に収まるよう、 隙間の大きさをコントロール可能な 磁気センサ及びその製造方法を提供することを目的とする。
課題を解決するための手段
[0009] 本発明による磁気センサは、 基板と、 感磁素子が形成された素子形成面を 有し、 素子形成面が基板の表面に対して垂直となるよう、 基板の表面に搭載 されたセンサチップと、 第 1の表面が基板の表面と向かい合い、 第 2の表面 がセンサチップの素子形成面と向かい合うよう、 基板の表面に搭載された集 磁体とを備え、 集磁体は、 第 1及び第 2の表面の平坦性が、 他の少なくとも 一つの表面の平坦性よりも高いことを特徴とする。
[0010] 本発明によれば、 集磁体の第 1及び第 2の表面の平坦性が高められている ことから、 センサチップの素子形成面と集磁体の隙間をできるだけ小さくす るとともに、 製品間におけるばらつきが一定の範囲内に収まるよう、 隙間の 大きさをコントロールすることが可能となる。 しかも、 集磁体の他の少なく とも一つの表面は、 平坦性が改善されていないことから、 当該表面を加工す るための不必要な製造コストが生じない。 これにより、 製造コストの増大を 抑えることが可能となる。
[001 1 ] 本発明において、 集磁体は第 3の表面を有し、 センサチップと集磁体は、 センサチップと集磁体の第 3の表面に塗布された接着剤を介して相互に固定 され、 第 1及び第 2の表面の平坦性は、 第 3の表面の平坦性よりも高くても 〇 2020/175119 3 卩(:171? 2020 /005042
構わない。 これによれば、 第 3の表面を加工するための不必要な製造コスト が生じない。 しかも、 第 3の表面は平坦性が低いことから、 接着剤による接 着強度を十分に確保することが可能となる。
[0012] 本発明において、 集磁体は第 4の表面をさらに有し、 基板と集磁体は、 基 板の表面と集磁体の第 4の表面に塗布された接着剤を介して相互に固定され 、 第 1及び第 2の表面の平坦性は、 第 4の表面の平坦性よりも高くても構わ ない。 これによれば、 第 4の表面を加工するための不必要な製造コストが生 じない。 しかも、 第 4の表面は平坦性が低いことから、 接着剤による接着強 度を十分に確保することが可能となる。
[0013] 本発明において、 集磁体はフェライ ト材料からなるものであっても構わな い。 フェライ ト材料は、 切断加工したままの状態では平坦性が低いものの、 研削又は研磨によって第 1及び第 2の表面の平坦性を選択的に高めることが 可能となる。
[0014] 本発明による磁気センサの製造方法は、 磁性材料からなるブロックから集 磁体を切り出す第 1の工程と、 集磁体の第 1及び第 2の表面を選択的に研削 又は研磨することによって、 第 1及び第 2の表面の平坦性を選択的に高める 第 2の工程と、 感磁素子が形成された素子形成面が基板の表面に対して垂直 となるよう、 センサチップを基板の表面に搭載する第 3の工程と、 第 1の表 面が基板の表面と向かい合い、 第 2の表面がセンサチップの素子形成面と向 かい合うよう、 基板の表面に集磁体を搭載する第 4の工程とを備えることを 特徴とする。
[0015] 本発明によれば、 集磁体の第 1及び第 2の表面を選択的に研削又は研磨し ていることから、 第 1及び第 2の表面の平坦性が高められる一方、 研削又は 研磨に伴う製造コストの増大を最小限に抑えることが可能となる。
[0016] 本発明において、 第 4の工程は、 集磁体の第 2の表面がセンサチップの素 子形成面に押し当てられるよう、 集磁体を付勢しながら行っても構わない。 これによれば、 センサチップの素子形成面と集磁体の隙間をより小さくする ことが可能となる。 〇 2020/175119 4 卩(:171? 2020 /005042
[0017] 本発明において、 集磁体は第 3の表面を有し、 第 2の工程においては、 第
3の表面を研削又は研磨することなく第 1及び第 2の表面を研削又は研磨し 、 第 4の工程においては、 センサチップと集磁体の第 3の表面に接着剤を塗 布しても構わない。 これによれば、 第 3の表面を加工するための不必要な製 造コストが生じない。 しかも、 第 3の表面は平坦性が低いことから、 接着剤 による接着強度を十分に確保することが可能となる。
[0018] 本発明において、 集磁体は第 4の表面をさらに有し、 第 2の工程において は、 第 4の表面を研削又は研磨することなく第 1及び第 2の表面を研削又は 研磨し、 第 4の工程においては、 基板の表面と集磁体の第 4の表面に接着剤 を塗布しても構わない。 これによれば、 第 4の表面を加工するための不必要 な製造コストが生じない。 しかも、 第 4の表面は平坦性が低いことから、 接 着剤による接着強度を十分に確保することが可能となる。
発明の効果
[0019] このように、 本発明によれば、 製造コストの増大を抑えつつ、 センサチッ プの素子形成面と集磁体の隙間をできるだけ小さくするとともに、 製品間に おけるばらつきが _定の範囲内に収まるよう、 隙間の大きさをコントロール することが可能となる。
図面の簡単な説明
[0020] [図 1]図 1は、 本発明の好ましい実施形態による磁気センサ 1 0の外観を示す 模式的な斜視図である。
[図 2]図 2は、 センサチップ 2 0の素子形成面 2 0 3の構造を説明するための 模式的な斜視図である。
[図 3]図 3は、 感磁素子 1〜[¾ 4の接続関係を説明するための回路図である
[図 4]図 4は、 集磁体 3 0の構造を説明するための略斜視図である。
[図 5]図 5 ( 3 ) 〜 (〇) は、 接着剤 7 1〜 7 3の塗布位置を説明するための 模式図である。
[図 6]図 6は、 磁気センサ 1 0の製造工程を説明するためのフローチヤートで 〇 2020/175119 5 卩(:171? 2020 /005042
ある。
[図 7]図 7は、 集磁体 3 0を付勢しながら接着剤 7 1の供給及び硬化を行う方 法を説明するための模式図である。
発明を実施するための形態
[0021] 以下、 添付図面を参照しながら、 本発明の好ましい実施形態について詳細 に説明する。
[0022] 図 1は、 本発明の好ましい実施形態による磁気センサ 1 0の外観を示す模 式的な斜視図である。
[0023] 図 1 に示すように、 本実施形態による磁気センサ 1 0は、 表面が X å面を 構成する基板 2と、 基板 2の表面上に載置されたセンサチップ 2 0及び集磁 体 3 0 , 4 1 , 4 2を備えている。 センサチップ 2 0は、 X V面を構成する 素子形成面 2 0 3を有しており、 集磁体 3 0の 2方向における一端と素子形 成面 2 0 3が向かい合っている。 集磁体 4 1 , 4 2は、 センサチップ 2 0の 裏面側に設けられている。 集磁体 3 0 , 4 1 , 4 2は、 フェライ トなど透磁 率の高い軟磁性材料からなるブロックである。
[0024] 図 1 に示すように、 本実施形態においては、 センサチップ 2 0の素子形成 面 2 0 3が基板 2の表面に対して垂直となるよう、 センサチップ 2 0が搭載 されている。 つまり、 基板 2に対して 9 0 ° 寝かせた状態でセンサチップ 2 0が搭載されている。 このため、 集磁体 3 0の å方向における長さが長い場 合であっても、 集磁体 3 0を基板 2に安定して固定することが可能である。 [0025] 図 2は、 センサチップ 2 0の素子形成面 2 0 3の構造を説明するための模 式的な斜視図である。
[0026] 図 2に示すように、 センサチップ 2 0は略直方体形状を有し、 X V平面を 構成する素子形成面 2 0 3には 4つの感磁素子 1
Figure imgf000007_0001
4が形成されている 。 感磁素子
Figure imgf000007_0002
は、 磁界の向き又は強度に応じて特性が変化する素子 であれば特に限定されず、 例えば、 磁気抵抗素子を用いることができる。 以 下の説明においては、 感磁素子 1 が磁気抵抗素子であり、 互いに同 一の磁化固定方向を有している場合を例に説明する。 ここで、 感磁素子 〇 2020/175119 6 卩(:171? 2020 /005042
,
Figure imgf000008_0001
、 , の X方向に おける位置は同じである。 また、 感磁素子[¾ 1 ,
Figure imgf000008_0002
のソ方向における位置 は同じであり、 感磁素子[¾ 2 , [¾ 3のソ方向における位置は同じである。
[0027] センサチップ 2 0の素子形成面 2 0 3には、 磁性体層 2 1〜 2 3が形成さ れている。 磁性体層 2 1は、 平面視で素子形成面 2 0 3上の略中央に位置し 、 その X方向における両側に磁性体層 2 2 , 2 3が配置される。 特に限定さ れるものではないが、 磁性体層 2 1〜 2 3としては、 樹脂材料に磁性フィラ 一が分散された複合磁性材料からなる膜であっても構わないし、 ニッケル又 はパーマロイなどの軟磁性材料からなる薄膜もしくは箔であっても構わない し、 フェライ トなどからなる薄膜又はバルクシートであっても構わない。 そ して、 感磁素子 8 1 , 8 3は、 磁性体層 2 1 と磁性体層 2 2によって形成さ れるギヤップに配置され、 感磁素子 2 ,
Figure imgf000008_0003
4は、 磁性体層 2 1 と磁性体層
2 3によって形成されるギヤップに配置される。
[0028] 集磁体 3 0は、 平面視で、 つまり å方向から見て、 感磁素子
Figure imgf000008_0004
感磁素子[¾ 2 ,
Figure imgf000008_0005
との間に配置されており、 2方向を長手方向とする直方 体形状を有している。 集磁体 3 0は å方向の磁束を集め、 これを素子形成面 2 0 3上で X方向における両側にスプリッ トさせる役割を果たす。 集磁体 3 0の å方向における高さについては特に限定されないが、 å方向における高 さをより高くすることによって、 å方向の磁束の選択性を高めることができ る。 本実施形態においては、 集磁体 3 0のソ方向における幅がセンサチップ 2 0のソ方向における幅と略一致しているが、 本発明がこれに限定されるも のではない。
[0029] センサチップ 2 0の一方の側面及び裏面の半分は、 集磁体 4 1 によって覆 われている。 同様に、 センサチップ 2 0の他方の側面及び裏面の残り半分は 、 集磁体 4 2によって覆われている。 本発明において集磁体 4 1 , 4 2を設 けることは必須ではないが、 集磁体 4 1 , 4 2を設けることによって 2方向 の磁束に対する選択性をより高めることが可能となる。 集磁体 4 1 , 4 2は 、 2方向における位置が素子形成面 2 0 3を超えるよう å方向に延長され、 〇 2020/175119 7 卩(:171? 2020 /005042
さらにこの延長された部分から素子形成面 203側に折り曲げられたオーバ
Figure imgf000009_0001
[0030] かかる構成により、 2方向から見て、 感磁素子 1 ,
Figure imgf000009_0002
は集磁体 30と 集磁体 4 1のオーバーハング部分〇1~11 との間に位置し、 感磁素子[¾ 2,
Figure imgf000009_0003
4は集磁体 30と集磁体 42のオーバーハング部分〇1~12との間に位置する 。 このため、 集磁体 30によって集められた磁束は、 X方向における両側に ほぼ均等に分配された後、 オーバーハング部分〇1~11 , 〇1~12を介して集磁 体 4 1 , 42に吸い込まれる。 この時、 磁束の一部が感磁素子 1
Figure imgf000009_0004
を 通過するため、 感磁素子[¾ 1 ,
Figure imgf000009_0005
と感磁素子
Figure imgf000009_0006
には、 互いに逆方 向の磁束が与えられることになる。
[0031] 図 3は、 感磁素子 1〜[¾ 4の接続関係を説明するための回路図である。
[0032] 図 3に示すように、 感磁素子 1は端子電極 53, 56間に接続され、 感 磁素子 2は端子電極 54, 55間に接続され、 感磁素子 3は端子電極 5 3, 54間に接続され、 感磁素子 4は端子電極 55, 56間に接続される 。 ここで、 端子電極 56には電源電位 V〇〇が与えられ、 端子電極 54には 接地電位
Figure imgf000009_0007
0が与えられる。 そして、 感磁素子 1
Figure imgf000009_0008
は全て同一の磁 化固定方向を有しており、 集磁体 30からみて一方側に位置する感磁素子
Figure imgf000009_0009
1 , 3の抵抗変化量と、 集磁体 30からみて他方側に位置する感磁素子
Figure imgf000009_0010
2, の抵抗変化量との間には差が生じる。 これにより、 感磁素子
Figure imgf000009_0011
4は差動プリッジ回路を構成し、 磁束密度に応じた感磁素子 1〜
Figure imgf000009_0012
4の 電気抵抗の変化が端子電極 53, 55に現れることになる。
[0033] 端子電極 53, 55から出力される差動信号は、 基板 2又はその外部に設 けられた差動アンプ 6 1 に入力される。 差動アンプ 6 1の出力信号は、 端子 電極 52にフイードバックされる。 図 3に示すように、 端子電極 5 1 と端子 電極 52との間には補償コイル(3が接続されており、 これにより、 補償コイ ル〇は差動アンプ 6 1の出力信号に応じた磁界を発生させる。 補償コイル〇 は、 センサチップ 20に集積することが可能である。 かかる構成により、 磁 束密度に応じた感磁素子 1〜 4の電気抵抗の変化が端子電極 53, 55 〇 2020/175119 8 卩(:171? 2020 /005042
に現れると、 磁束密度に応じた電流が補償コイル<3に流れ、 逆方向の磁束を 発生させる。 これにより、 外部磁束が打ち消される。 そして、 差動アンプ 6 1から出力される電流を検出回路 6 2によって電流電圧変換すれば、 外部磁 束の強さを検出することが可能となる。
[0034] 図 4は、 集磁体 3 0の構造を説明するための略斜視図である。
[0035] 図 4に示すように、 集磁体 3 0は 6つの表面 3 1〜 3 6を有する略直方体 である。 このうち、 表面 3 1は X 2面を構成する面であり、 実装されると、 基板 2の表面と向かい合う。 表面 3 2は X 7面を構成する面であり、 実装さ れると、 センサチップ 2 0の素子形成面 2 0 3と向かい合う。 表面 3 3は、 表面 3 1の反対側に位置する X 2面である。 表面 3 4は、 表面 3 2の反対側 に位置する父ソ面である。 表面 3 5 , 3 6は、 互いに反対側に位置するソ å 面である。
[0036] そして、 本実施形態においては、 集磁体 3 0の表面 3 1 , 3 2の平坦性が 、 他の表面 3 3〜 3 6の平坦性よりも高められている。 例えば、 表面 3 3〜 3 6については表面粗さ
Figure imgf000010_0001
程度であるのに対し、 表面 3 1 ,
3 2については表面粗さ
Figure imgf000010_0002
3が 3 0门 程度に平坦化されている。 これは、 後述するように、 集磁体 3 0の表面 3 1 , 3 2に対して選択的に研削又は研 磨を行った結果である。 集磁体 3 0の表面 3 1 , 3 2に対して研削又は研磨 を行うことにより、 表面 3 1 , 3 2の平坦性が高められるだけでなく、 表面 3 1 と表面 3 2の成す角度がより 9 0 ° に近づけられている。 これにより、 集磁体 3 0を基板 2に搭載すると、 表面 3 1が基板 2の表面にほぼ隙間なく 密着し、 且つ、 表面 3 2がセンサチップ 2 0の素子形成面 2 0 3にほぼ隙間 なく密着することから、 素子形成面 2 0 3と集磁体 3 0の隙間に起因する検 出感度の低下を抑えることができるとともに、 製品間における検出感度のば らつきを小さくすることができる。
[0037] 図 5に示すように、 集磁体 3 0の固定には接着剤 7 1〜 7 3を用いること ができる。 図 5 ( a ) に示す例では、 集磁体 3 0の表面 3 3とセンサチップ 2 0の上面 (父 2面) 2 0匕に亙って接着剤 7 1が塗布されており、 これに 〇 2020/175119 9 卩(:171? 2020 /005042
よって、 センサチップ 2 0と集磁体 3 0の相対的な位置関係が固定されてい る。 集磁体 3 0の表面 3 3は、 表面 3 1 , 3 2よりも粗面であることが好ま しい。 これによれば、 集磁体 3 0の表面 3 3が表面 3 1 , 3 2と同等の平坦 性を有している場合と比べ、 接着剤 7 1 による接着強度を高めることができ る。 また、 接着剤 7 1が集磁体 3 0の表面 3 2と素子形成面 2 0 3の間に滲 入すると、 両者の隙間が広がる可能性があるが、 本実施形態においては、 集 磁体 3 0の表面 3 2の平坦性が高められていることから、 表面張力に起因す る接着剤 7 1の滲入は起こりにくい。
[0038] また、 図 5 (b) に示す例では、 集磁体 3 0の表面 3 4と基板 2の表面に 亙って接着剤 7 2が塗布されており、 これによって、 基板 2と集磁体 3 0の 相対的な位置関係が固定されている。 集磁体 3 0の表面 3 4は、 表面 3 1 ,
3 2よりも粗面であることが好ましい。 これによれば、 集磁体 3 0の表面 3 4が表面 3 1 , 3 2と同等の平坦性を有している場合と比べ、 接着剤 7 2に よる接着強度を高めることができる。
[0039] また、 図 5 (〇) に示す例では、 集磁体 3 0の表面 3 5 , 3 6と基板 2の 表面に亙って接着剤 7 3が塗布されており、 これによって、 基板 2と集磁体 3 0の相対的な位置関係が固定されている。 集磁体 3 0の表面 3 5 , 3 6は 、 表面 3 1 , 3 2よりも粗面であることが好ましい。 これによれば、 集磁体 3 0の表面 3 5 , 3 6が表面 3 1 , 3 2と同等の平坦性を有している場合と 比べ、 接着剤 7 3による接着強度を高めることができる。
[0040] 但し、 本発明において、 接着剤 7 1〜 7 3を全て使用することは必須でな く、 一部の接着剤、 例えば接着剤 7 3については省略しても構わない。
[0041 ] 次に、 本実施形態による磁気センサ 1 0の製造方法について説明する。
[0042] 図 6は、 本実施形態による磁気センサ 1 0の製造工程を説明するためのフ 口ーチヤートでめる。
[0043] まず、 フェライ トなどの磁性材料からなるブロックから集磁体 3 0を切り 出した後 (ステップ 3 1 1) 、 集磁体 3 0の表面 3 1 , 3 2を研削又は研磨 することによって、 表面 3 1 , 3 2の平坦性を高める (ステップ 3 1 2) 。 〇 2020/175119 10 卩(:171? 2020 /005042
集磁体 3 0を切り出した直後においては、 各表面 3 1〜 3 6の平坦性は低く 、 且つ、 2つの面が成す角度も精度が低い状態である。 しかしながら、 集磁 体 3 0の表面 3 1 , 3 2に対して研削又は研磨を行えば、 表面 3 1 , 3 2の 平坦性が高められ、 且つ、 表面 3 1 と表面 3 2の成す角度が限りなく 9 0 ° に近づく。 他の表面 3 3〜 3 6に対しては研削又は研磨は行われず、 これに より、 不必要な製造コストの増加が防止される。 但し、 表面 3 3〜 3 6の一 部に対して研削又は研磨は行っても構わない。
[0044] 一方、 集磁体 3 0の加工と並行して、 素子形成面 2 0 3が基板 2に対して 垂直となるよう、 センサチップ 2 0を搭載する (ステップ 3 2 1) 。 その後 、 加工された集磁体 3 0を基板 2の表面に搭載する (ステップ 3 2 2) 。 集 磁体 3 0の搭載は、 表面 3 1が基板 2の表面と向かい合い、 表面 3 2がセン サチップ 2 0の素子形成面 2〇 3と向かい合うように行う。 上述の通り、 集 磁体 3 0の表面 3 1 , 3 2は平坦性が高く、 且つ、 表面 3 1 と表面 3 2の成 す角度が限りなく 9 0 ° に近づけられていることから、 集磁体 3 0の表面 3 2をほぼ隙間なくセンサチップ 2 0の素子形成面 2 0 3に密着させることが できる。
[0045] 次に、 接着剤 7 1〜 7 3を供給及び硬化させることによって、 集磁体 3 0 を固定する (ステップ 3 2 3) 。 この時、 集磁体 3 0の表面 3 2がセンサチ ップ 2 0の素子形成面 2 0 3に正しく押し当てられた状態で固定されるよう 、 集磁体 3 0を付勢しながら接着剤の供給及び硬化を行うことが好ましい。 例えば、 図 7に示すように、 基板 2に集磁体 3 0を載置した後、 付勢治具 8 1 によって表面 3 4側から集磁体 3 0を一 å方向に付勢した状態で、 ディス ペンサ 7 0から接着剤 7 1 を供給することが好ましい。 この時、 センサチッ プ 2 0が一 2方向に移動又は倒れないよう、 センサチップ 2 0の裏面側を固 定治具 8 2によって支持することが好ましい。 このような治具 8 1 , 8 2を 用いて接着剤 7 1 を供給し、 硬化させれば、 集磁体 3 0の表面 3 2がセンサ チップ 2 0の素子形成面 2〇 3に正しく押し当てられた状態が保たれるとと もに、 集磁体 3 0の表面 3 2とセンサチップ 2 0の素子形成面 2 0 3の間へ 〇 2020/175119 11 卩(:171? 2020 /005042
の接着剤 7 1の滲入を防止することができる。
[0046] 接着剤 72, 73の供給及び硬化についても同様であり、 治具 81 , 82 を用いて固定した状態で行えば良い。
[0047] 以上説明したように、 本実施形態による磁気センサ 1 0は、 集磁体 30の 表面 3 1 , 32の平坦性が選択的に高められていることから、 集磁体 30の 表面 32をほぼ隙間なくセンサチップ 20の素子形成面 203に密着させる ことができる。 しかも、 集磁体 30の表面 32とセンサチップ 20の素子形 成面 203の間における接着剤 7 1の滲入も生じにくい。 さらに、 他の表面 33〜 36の少なくとも一部に対しては研削又は研磨は行われていないこと から、 接着剤 7 1〜 73による接着強度を十分に確保することができる。
[0048] 以上、 本発明の好ましい実施形態について説明したが、 本発明は、 上記の 実施形態に限定されることなく、 本発明の主旨を逸脱しない範囲で種々の変 更が可能であり、 それらも本発明の範囲内に包含されるものであることはい うまでもない。
符号の説明
[0049] 2 基板
1 0 磁気センサ
20 センサチップ
203 素子形成面
20 b センサチップの上面
2 1〜 23 磁性体層
30, 4 1 , 42 集磁体
3 1〜 36 集磁体の表面
5 1〜 56 端子電極
6 1 差動アンプ
62 検出回路
70 デイスペンサ
7 1〜 73 接着剤 〇 2020/175119 12 卩(:171? 2020 /005042
81 付勢治具
82 固定治具
0 補償コイル
1~12 才ーバーハング部分
Figure imgf000014_0001
感磁素子

Claims

\¥0 2020/175119 13 2020 /005042 請求の範囲
[請求項 1 ] 基板と、
感磁素子が形成された素子形成面を有し、 前記素子形成面が前記基 板の表面に対して垂直となるよう、 前記基板の前記表面に搭載された センサチツプと、
第 1の表面が前記基板の前記表面と向かい合い、 第 2の表面が前記 センサチップの前記素子形成面と向かい合うよう、 前記基板の前記表 面に搭載された集磁体と、 を備え、
前記集磁体は、 前記第 1及び第 2の表面の平坦性が、 他の少なくと も一つの表面の平坦性よりも高いことを特徴とする磁気センサ。
[請求項 2] 前記集磁体は、 第 3の表面を有し、
前記センサチップと前記集磁体は、 前記センサチップと前記集磁体 の前記第 3の表面に塗布された接着剤を介して相互に固定され、 前記第 1及び第 2の表面の平坦性は、 前記第 3の表面の平坦性より も高いことを特徴とする請求項 1 に記載の磁気センサ。
[請求項 3] 前記集磁体は、 第 4の表面をさらに有し、
前記基板と前記集磁体は、 前記基板の前記表面と前記集磁体の前記 第 4の表面に塗布された接着剤を介して相互に固定され、
前記第 1及び第 2の表面の平坦性は、 前記第 4の表面の平坦性より も高いことを特徴とする請求項 2に記載の磁気センサ。
[請求項 4] 前記集磁体がフェライ ト材料からなることを特徴とする請求項 1乃 至 3のいずれか一項に記載の磁気センサ。
[請求項 5] 磁性材料からなるブロックから集磁体を切り出す第 1の工程と、 前記集磁体の第 1及び第 2の表面を選択的に研削又は研磨すること によって、 前記第 1及び第 2の表面の平坦性を選択的に高める第 2の 工程と、
感磁素子が形成された素子形成面が基板の表面に対して垂直となる よう、 センサチップを前記基板の前記表面に搭載する第 3の工程と、 〇 2020/175119 14 卩(:171? 2020 /005042
前記第 1の表面が前記基板の前記表面と向かい合い、 前記第 2の表 面が前記センサチップの前記素子形成面と向かい合うよう、 前記基板 の前記表面に前記集磁体を搭載する第 4の工程と、 を備えることを特 徴とする磁気センサの製造方法。
[請求項 6] 前記第 4の工程は、 前記集磁体の前記第 2の表面が前記センサチッ プの前記素子形成面に押し当てられるよう、 前記集磁体を付勢しなが ら行うことを特徴とする請求項 5に記載の磁気センサの製造方法。
[請求項 7] 前記集磁体は、 第 3の表面を有し、
前記第 2の工程においては、 前記第 3の表面を研削又は研磨するこ となく前記第 1及び第 2の表面を研削又は研磨し、 前記第 4の工程においては、 前記センサチップと前記集磁体の前記 第 3の表面に接着剤を塗布することを特徴とする請求項 6に記載の磁 気センサの製造方法。
[請求項 8] 前記集磁体は、 第 4の表面をさらに有し、
前記第 2の工程においては、 前記第 4の表面を研削又は研磨するこ となく前記第 1及び第 2の表面を研削又は研磨し、 前記第 4の工程においては、 前記基板の前記表面と前記集磁体の前 記第 4の表面に接着剤を塗布することを特徴とする請求項 7に記載の 磁気センサの製造方法。
PCT/JP2020/005042 2019-02-25 2020-02-10 磁気センサ及びその製造方法 WO2020175119A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20763035.1A EP3933424A4 (en) 2019-02-25 2020-02-10 MAGNETIC SENSOR AND METHOD OF MANUFACTURING IT
US17/433,196 US11899079B2 (en) 2019-02-25 2020-02-10 Magnetic sensor and its manufacturing method
CN202080016410.9A CN113474670B (zh) 2019-02-25 2020-02-10 磁传感器及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-031226 2019-02-25
JP2019031226A JP7455511B2 (ja) 2019-02-25 2019-02-25 磁気センサ及びその製造方法

Publications (1)

Publication Number Publication Date
WO2020175119A1 true WO2020175119A1 (ja) 2020-09-03

Family

ID=72239447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005042 WO2020175119A1 (ja) 2019-02-25 2020-02-10 磁気センサ及びその製造方法

Country Status (5)

Country Link
US (1) US11899079B2 (ja)
EP (1) EP3933424A4 (ja)
JP (1) JP7455511B2 (ja)
CN (1) CN113474670B (ja)
WO (1) WO2020175119A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4060360A1 (en) * 2021-03-18 2022-09-21 TDK Corporation Magnetic sensor
WO2023162157A1 (ja) * 2022-02-25 2023-08-31 Tdk株式会社 センサチップ及びこれを備えた磁気センサ、並びに、磁気センサの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145064A1 (ja) * 2022-01-31 2023-08-03 Tdk株式会社 磁気センサ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016063996A (ja) * 2014-09-25 2016-04-28 センサテック株式会社 磁気検出器及びその製造方法
JP2017090192A (ja) 2015-11-09 2017-05-25 Tdk株式会社 磁気センサ
JP2017166926A (ja) * 2016-03-15 2017-09-21 エスアイアイ・セミコンダクタ株式会社 磁気センサおよびその製造方法
JP2018194393A (ja) * 2017-05-16 2018-12-06 Tdk株式会社 磁気センサ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11261130A (ja) * 1998-03-10 1999-09-24 Hitachi Cable Ltd 磁気センサ
JP4402865B2 (ja) * 2002-07-22 2010-01-20 旭化成エレクトロニクス株式会社 磁電変換素子及びその作製方法
BRPI0608019A2 (pt) * 2005-03-17 2009-11-03 Yamaha Corp sensor magnético e método para manufaturar um sensor magnético
DE102006022336B8 (de) * 2006-02-28 2015-12-31 Infineon Technologies Ag Magnetfeldsensor und Sensoranordnung mit demselben
JP5165963B2 (ja) * 2007-08-14 2013-03-21 新科實業有限公司 磁気センサ及びその製造方法
JP5529648B2 (ja) * 2009-08-04 2014-06-25 キヤノンアネルバ株式会社 磁気センサ積層体、その成膜方法、成膜制御プログラムおよび記録媒体
JP2011220772A (ja) * 2010-04-07 2011-11-04 Fujikura Ltd 磁場検出装置
US9233370B2 (en) * 2010-08-05 2016-01-12 Abbott Point Of Care Inc. Magnetic immunosensor and method of use
CN102435961B (zh) * 2010-09-28 2014-10-08 株式会社村田制作所 长型磁传感器
JP2015219061A (ja) * 2014-05-15 2015-12-07 Tdk株式会社 磁界検出センサ及びそれを用いた磁界検出装置
JP6460372B2 (ja) * 2014-06-04 2019-01-30 Tdk株式会社 磁気センサ及びその製造方法、並びにそれを用いた計測機器
JP2018189388A (ja) * 2017-04-28 2018-11-29 Tdk株式会社 磁界センサ
JP6652108B2 (ja) * 2017-05-23 2020-02-19 Tdk株式会社 磁気センサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016063996A (ja) * 2014-09-25 2016-04-28 センサテック株式会社 磁気検出器及びその製造方法
JP2017090192A (ja) 2015-11-09 2017-05-25 Tdk株式会社 磁気センサ
JP2017166926A (ja) * 2016-03-15 2017-09-21 エスアイアイ・セミコンダクタ株式会社 磁気センサおよびその製造方法
JP2018194393A (ja) * 2017-05-16 2018-12-06 Tdk株式会社 磁気センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3933424A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4060360A1 (en) * 2021-03-18 2022-09-21 TDK Corporation Magnetic sensor
WO2023162157A1 (ja) * 2022-02-25 2023-08-31 Tdk株式会社 センサチップ及びこれを備えた磁気センサ、並びに、磁気センサの製造方法

Also Published As

Publication number Publication date
EP3933424A4 (en) 2022-11-23
US20220137157A1 (en) 2022-05-05
JP7455511B2 (ja) 2024-03-26
CN113474670A (zh) 2021-10-01
JP2020134419A (ja) 2020-08-31
EP3933424A1 (en) 2022-01-05
CN113474670B (zh) 2023-11-21
US11899079B2 (en) 2024-02-13

Similar Documents

Publication Publication Date Title
WO2020175119A1 (ja) 磁気センサ及びその製造方法
CN103842838B (zh) 磁传感器装置
CN103003711B (zh) 磁传感器装置
JP6610178B2 (ja) 磁気センサ
US9279866B2 (en) Magnetic sensor
CN110709720B (zh) 磁传感器
JP2018004618A (ja) 磁気センサ
JP6316429B2 (ja) 磁気センサ装置
JP7095350B2 (ja) 磁気センサ
JP7115242B2 (ja) 磁気センサ
WO2022030501A1 (ja) 磁気センサ及びその製造方法
WO2022030502A1 (ja) 磁気センサ及びその製造方法
CN115113113A (zh) 磁传感器
JP2004288666A (ja) 磁電変換素子
JP7119351B2 (ja) 磁気センサ
JP2000206217A (ja) 高周波キャリア型磁気センサ
JP2020003280A (ja) 磁気センサ
JP2019163934A (ja) 磁気センサ
JP2017036984A (ja) 磁気センサ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20763035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020763035

Country of ref document: EP

Effective date: 20210927