WO2020174841A1 - 曲げ割れ評価方法、曲げ割れ評価システム、及びプレス成形部品の製造方法 - Google Patents

曲げ割れ評価方法、曲げ割れ評価システム、及びプレス成形部品の製造方法 Download PDF

Info

Publication number
WO2020174841A1
WO2020174841A1 PCT/JP2019/049934 JP2019049934W WO2020174841A1 WO 2020174841 A1 WO2020174841 A1 WO 2020174841A1 JP 2019049934 W JP2019049934 W JP 2019049934W WO 2020174841 A1 WO2020174841 A1 WO 2020174841A1
Authority
WO
WIPO (PCT)
Prior art keywords
bending
face
press
sheared
crack
Prior art date
Application number
PCT/JP2019/049934
Other languages
English (en)
French (fr)
Inventor
健斗 藤井
雄司 山▲崎▼
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2021010261A priority Critical patent/MX2021010261A/es
Priority to KR1020217026436A priority patent/KR102482506B1/ko
Priority to CN201980092534.2A priority patent/CN113453818B/zh
Priority to JP2020521391A priority patent/JP6773255B1/ja
Priority to EP19916684.4A priority patent/EP3932578A4/en
Priority to US17/433,375 priority patent/US12017265B2/en
Publication of WO2020174841A1 publication Critical patent/WO2020174841A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D24/00Special deep-drawing arrangements in, or in connection with, presses
    • B21D24/16Additional equipment in association with the tools, e.g. for shearing, for trimming
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/28Investigating ductility, e.g. suitability of sheet metal for deep-drawing or spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D47/00Making rigid structural elements or units, e.g. honeycomb structures
    • B21D47/01Making rigid structural elements or units, e.g. honeycomb structures beams or pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/88Making other particular articles other parts for vehicles, e.g. cowlings, mudguards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws
    • G01N2203/0066Propagation of crack
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/0202Control of the test
    • G01N2203/0212Theories, calculations
    • G01N2203/0218Calculations based on experimental data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0244Tests performed "in situ" or after "in situ" use
    • G01N2203/0246Special simulation of "in situ" conditions, scale models or dummies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/027Specimens with holes or notches

Definitions

  • Bending crack evaluation method Bending crack evaluation method, bending crack evaluation system, and method for manufacturing press-formed parts
  • the present invention provides a technique for evaluating bending cracks at a sheared end face when press-forming a sheared metal plate to produce a target press-formed part, and a press-formed part using the same. Manufacturing method.
  • High-strength steel sheets tend to be used for structural parts for automobiles in order to achieve both weight reduction of the vehicle body and protection of passengers in the event of a collision.
  • Cracking is one of the forming defects during press forming when such a high-strength steel plate is used as a metal plate.
  • the shearing end face the occurrence of cracks on the end face after shearing (hereinafter also referred to as the shearing end face) is an important issue.
  • the cracks on the sheared end face are roughly classified into cracks due to stretch flange deformation and cracks due to bending deformation (bending cracks).
  • Patent Document 1 describes a prediction method that considers the strain gradient in the in-plane direction of the plate and a prediction method that considers the stress gradient in the plate surface.
  • Patent Document 2 describes a technique that uses the relationship between strain gradient, strain concentration, and fracture strain in stretch flange deformation.
  • Patent Document 3 describes a crack prediction method using the relationship between the forming limit strain and the strain gradient in the in-plane direction and the plate thickness direction.
  • a crack evaluation method for bending cracks on sheared end faces has not been developed.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2010-0-0699533
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2 0 1 1 — 1 4 0 0 4 6
  • Patent Document 3 Japanese Patent Laid-Open No. 20 1 4 _ 1 1 5 2 6 9
  • the present invention has been made by paying attention to the above points, and based on the shape information of actual parts and the like, it is possible to obtain a target end of a press-formed part with a cut end face when press-formed. It is an object of the present invention to provide a technique for evaluating bending cracks on a sheared end face of a press-formed part, such as predicting the occurrence of bending cracks, and a method for manufacturing a press-formed part using the technique.
  • the inventor of the present application shows the relationship between the external bending strain at or near the shear end face where bending cracks occur at the shear end face and the stress gradient near the shear end face obtained from the forming conditions. It was obtained experimentally and evaluated. Then, the developer can evaluate the forming allowance for bending cracks on the sheared end face by comparing the relationship between the bending external strain at or near the sheared end face during press forming and the stress gradient determined by the forming conditions. I have found
  • an aspect of the present invention relates to a technique that enables a method for evaluating bendability required for a metal plate and a method for evaluating concern about cracking occurring in a metal plate using the method, based on shape information.
  • an aspect of the present invention is to perform the above-mentioned shearing process in producing a target press-formed component by subjecting a sheared metal plate to press forming including bending deformation.
  • This is a method for evaluating bending cracks at the sheared end face, which is the end face that has been formed. ⁇ 02020/174841 3 ⁇ (: 171?2019/049934
  • the gist is to find a crack index value for evaluating cracks.
  • another aspect of the present invention is that, when a target press-formed component is manufactured by performing press forming including bending deformation on a sheared metal plate, the sheared end face is sheared.
  • a bending crack evaluation system for evaluating bending cracks at the end face which is based on the shape of the press-formed part, and the external bending strain at or near the sheared end face, and the press die used in the press molding described above. Enter the bending radius of the press die of the part that forms the sheared end face, and from the input external bending strain and bend radius, enter the crack index value for evaluating the bending cracks at the sheared end face of the above press-formed part.
  • the gist is to provide a cracking index value calculation unit to be obtained.
  • Another aspect of the present invention is a method for producing a press-formed component, which comprises subjecting a sheared metal plate to press forming including bending deformation to produce a press-formed component.
  • the metal plate to be press-formed by the bending crack evaluation method according to the aspect is evaluated, and the metal plate estimated to be free from bending cracks at the sheared end face when the press-forming is performed is selected.
  • the gist of the invention is to manufacture the above press-molded parts using the metal plate.
  • Fig. 1 is a diagram showing an example of steps of a method for manufacturing a press-formed component according to an embodiment based on the present invention.
  • FIG. 2 is a diagram illustrating an evaluation method according to an embodiment based on the present invention.
  • FIG. 3 is a diagram illustrating a bending crack evaluation system according to an embodiment based on the present invention.
  • FIG. 4 A diagram showing the shape of a test piece used in Examples.
  • FIG. 5 is a view showing the shape of a test piece used in the examples.
  • Fig. 6 is a diagram showing the relationship between the crack length and the bending radius obtained in the V-bending test.
  • FIG. 7 is a diagram showing a relationship between a crack length and a stroke amount obtained by a notch tensile test.
  • FIG. 8 A diagram showing the relationship between the bending limit strain and the combined stress gradient.
  • Fig. 9 is a diagram showing an example of an evaluation position of shear bending crack in a target actual part (press-formed part) in the example.
  • Fig. 10 is a diagram showing the evaluation result of the molding limit in consideration of the safety factor in the actual part.
  • a bending crack at a shear end face is produced when a target press-formed part (hereinafter also referred to as an actual part) is manufactured by subjecting a sheared metal plate to press forming including bending deformation.
  • a target press-formed part hereinafter also referred to as an actual part
  • the bending crack forming margin is evaluated.
  • the method for manufacturing a press-formed part according to the present embodiment is a known press machine in which a shear-processed metal plate is press-formed including bending deformation to produce an intended press-formed part. It has a press manufacturing process 5 1.
  • the present embodiment includes a bending crack evaluation step 50 for evaluating bending cracks of a metal plate as a pre-step of actually press-forming a press-formed part in the press manufacturing step 51.
  • the bending crack evaluation step 50 of the present embodiment includes, for example, as shown in FIG. ⁇ 02020/174841 5 ((171?2019/049934
  • step 1 the external bending strain at or near the evaluation position is acquired from the shape information.
  • step 2 the bending radius of the evaluation position or its vicinity is acquired from the shape information.
  • step 3 the crack index value at the evaluation position is calculated from the acquired outside bending strain and bending radius.
  • step 4 for each target metal plate, the bending deformation limit is obtained as reference information for evaluation.
  • step 5 the crack index at the sheared end face to be evaluated is evaluated by comparing the crack index value obtained in step 3 with the bending deformation limit previously obtained in step 4.
  • the above-described bending crack evaluation step 50 is executed by the bending crack evaluation system 53, for example.
  • the bending crack evaluation system 53 is, for example, as shown in Fig. 3, a bending external strain acquisition unit 53, a bending radius acquisition unit 53, a crack index value calculation unit 53 ( 3, bending deformation limit acquisition unit 53). 30 and a bending crack evaluation section 53.
  • the outside-bending-strain acquisition unit 53 executes a process of acquiring outside-bending strain at or near the evaluation position from the acquired shape information.
  • the bending radius acquisition unit 5 3 performs processing to acquire the bending radius at or near the evaluation position from the acquired shape information.
  • Crack index value calculation unit 5 3 ( 3 is the crack index value at the evaluation position calculated from the external bending strain acquired by the external bending strain acquisition unit 5 3 8 and the bending radius acquired by the bending radius acquisition unit 5 3
  • the bending deformation limit acquisition unit 5300 executes the processing to obtain the bending deformation limit as reference information for evaluation for each target metal plate.
  • the process for evaluating bending cracks at the shear end face to be evaluated Out of the bending strain acquisition part 5 3, the bending radius acquisition part 5 3, the crack index value calculation part 5 30, the bending deformation limit acquisition part 5 30 and the bending crack evaluation part 5 3
  • At least the crack index value calculation unit 5300 is provided as a program executed by a computer.
  • One of the features of the present embodiment is that the external bending strain and the bending radius described above are obtained from the shape information of the actual part or the press die.
  • this embodiment ⁇ 02020/174841 6 ⁇ (: 171?2019/049934
  • the first embodiment and the second embodiment can be exemplified.
  • the first embodiment performs press forming including bending deformation based on the shape information of the target shape of the press-formed part and the shape information of the press die for forming the target press-formed part. It is an example of an evaluation method and an evaluation system for evaluating bending cracks at a sheared end face.
  • step 1 external bending strain acquisition unit 5338
  • step 2 bending radius acquisition section 53
  • the bending radius of the press die of the portion forming the sheared end face to be evaluated is acquired from the shape information of the press die to be used.
  • Step 3 the crack index value calculation unit 5300, cracks for evaluating the bending cracks at the shear end face of the target press-formed part from the acquired bending external strain and bending radius are obtained. The process of obtaining the index value is executed.
  • step 4 bending deformation limit acquisition unit 5300
  • the bending deformation limit is calculated as reference information for evaluation for each target metal plate.
  • step 5 bending crack evaluation part 53 3
  • the processing for evaluating bending cracks is executed according to the obtained crack index value.
  • step 5 bending crack evaluation section 53
  • the forming allowance for bending cracks is evaluated by the obtained crack index value.
  • step 1 outside bending strain acquisition part 5 3 8) and step 2 (bending radius acquisition part 5 3 8)
  • the process of measurement from the shape information of the actual part and the shape information of the press die is the same as the actual part. It may be obtained by measuring the actual product, or may be acquired from the shape data of the actual part or the press die.
  • step 2 (bending radius acquisition section 53)
  • the bending radius used when obtaining the crack index value is acquired from the shape information of the actual part.
  • Process 2 (bending radius acquisition part 53 3) is the process of measurement from the shape information of the actual part. ⁇ 02020/174841 7 ⁇ (: 171?2019/049934
  • the reason may be obtained by measuring the actual part of the actual part, or may be obtained from the shape data of the actual part.
  • the other configurations are similar to those of the first embodiment, and thus the description thereof is omitted.
  • the shape of the actual part is measured by processing such as measuring the shape of the actual part. From the information, simply execute the process to obtain the outside bending strain and bending radius.
  • the second embodiment has the advantage that the evaluation information can be easily obtained, although the accuracy is lower than that of the first embodiment.
  • the bending radius is acquired at the shear end face to be evaluated or in the vicinity of the shear end face.
  • near the shear end face means, for example, from the shear end face in the direction away from the shear end face, along the surface direction of the plate. , Preferably within the range of 30!
  • the shape information of the press die may be obtained from an external database as described above, or the surface shape of the die may be actually obtained. You may obtain it by measuring.
  • the bending radius can be obtained by measuring the external profile of the actual part. If detailed shape data of the actual part is available, the bending radius may be obtained from the shape data.
  • the acquisition position of the strain outside bending is at the shear end face to be evaluated or in the vicinity of the shear end face.
  • “Outside of bending” refers to the side of the surface that becomes convex with bending.
  • step 1 outer bending strain acquisition part 53
  • the outer bending strain at or near the shear end face is, for example, the plate thickness reduction at or near the shear end face.
  • the sheet thickness reduction rate is the reduction rate from the original sheet thickness (the sheet thickness before pressing) by press forming.
  • the method of calculating the external bending strain is, for example, by measuring the plate thickness reduction rate and the bending radius in the vicinity of the sheared end face or the sheared end face of the actual part, and determining the external bending strain by the pure bending theory and the plate thickness reduction. From the ratio, it is calculated by the equation (1). According to this method, it is easy and preferable to obtain the external bending.
  • the first term on the right side represents strain due to tension during press forming
  • the second term on the right side represents strain due to bending deformation during press forming
  • the acquisition position of the plate thickness reduction rate is within the range of 5 mm along the plate surface direction from the shearing edge face for evaluating bending cracks, as described above.
  • the plate surface direction is preferably a direction orthogonal to or substantially orthogonal to the edge of the cut end face. If the thickness reduction rate is measured at a position more than 5 mm away from the sheared end face, it may be affected by other press conditions of the press-formed part, and the measurement accuracy of the evaluation part may be reduced. More preferably, the acquisition position of the plate thickness reduction rate is within 3 mm in the plate surface direction from the sheared end face.
  • the calculation of the strain outside bending is not limited to this.
  • a method may be used in which after the lattice is transferred to the fractured end face of a metal plate before processing, a forming test is performed and the strain outside the bending is directly measured from the strain. In this way, shape information and experimental ⁇ 02020/174841 9 ⁇ (: 171?2019/049934
  • the crack index value is data for evaluating the bending crack at the sheared end face of the target press-formed part. This cracking index value is obtained from the outside bending and bending radius obtained in the above-mentioned step 3 (the cracking index value calculation unit 5300).
  • the index value in the present embodiment is a value with the outer bending strain and the stress gradient in the shear end face to be evaluated or in the vicinity of the shear end face as parameters. That is, the index value in the present embodiment is expressed by a data set of (external bending strain, stress gradient).
  • the stress gradient in this embodiment is a stress gradient in the plate thickness direction.
  • the stress gradient of the crack concern portion is obtained from the stress-strain relationship of the metal plate used and the shear end face or the strain distribution in the vicinity of the shear end face.
  • the stress gradient in the crack concern area is simply calculated from the stress gradient in the plate thickness direction near the sheared edge or sheared edge.
  • the range in which the stress gradient is acquired is preferably equal to the crack length that serves as a crack judgment criterion, but any range may be used as long as the stress gradient at or near the shear end face can be calculated.
  • the stress gradient is preferably an average gradient in the range where the above stress is acquired.
  • the stress of the metal plate is defined as a function of strain by equation (2).
  • the stress-strain relationship of a metal plate is obtained from a uniaxial tensile test, Chi 1 or V.
  • the stress in the large strain range is externally calculated by the formula of ⁇ , but formula (2) may be defined by any known method.
  • step 4 bending deformation limit acquisition part 5300
  • step 3 crack index value calculating part 5300
  • the bending deformation limit of the sheared end face is determined in step 4 (bending deformation limit acquisition part 5300) by, for example, preparing a test piece with a sheared end face, and forming two or more types with different stress gradients during deformation. Determined from data obtained by conducting tests ⁇
  • test methods Two types of test methods are desirable, for example, a V-bending test with a large stress gradient near the shearing face during deformation and a notch tensile test with a small stress gradient near the shearing face during deformation.
  • a V-bending test with a large stress gradient near the shearing face during deformation and a notch tensile test with a small stress gradient near the shearing face during deformation.
  • test method Any test method may be used as long as the test can be reproduced by the analysis by Minami IV!.
  • the crack judgment criteria are determined by, for example, defining the crack length for judging cracking, defining the ratio of the crack length to the plate thickness, or cracking by crack penetration in the plate thickness direction. There are various methods such as the method of determining, and any of the determination criteria may be used.
  • the forming condition (bending deformation limit) at the crack limit of the sheared end face is determined by acquiring the relationship between the crack length when cracking occurs and the forming condition.
  • the bending deformation limit line expressed by the relational expression (7) is the relation between bending strain and stress gradient.
  • the forming margin for bending cracking is evaluated by comparing the strain £ 963 ⁇ 4 as a cracking index value and the bending deformation limit strain £, ⁇ in the stress gradient of the sheared end face where cracking risk is to be determined.
  • 3 is a safety factor in consideration of the characteristics of the metal plate used, variations in press molding conditions, and the like. If you do not consider the safety factor, set 3 to 1.
  • 3 is set to 0.5. For high strength steel plates with a minimum of 9501 ⁇ /13, this is the stage at which a strain of 50% of the bending crack limit strain of the shear end face is applied. This is because the crack length of hair cracks (fine cracks) that occur tend to start to grow. The lower the tensile strength of the metal plate, the closer 3 should be to 1.
  • -£ 6 ⁇ 6 " may be defined as the forming allowance port, and the forming allowance port may be used to evaluate the forming allowance state in step 5 (bending crack evaluation part 53 days).
  • the present embodiment it is possible to evaluate the forming allowance at the sheared end face of the selected metal plate when the target press-formed part is formed by press forming. it can. This makes it possible to accurately evaluate whether or not the selection of the metal plate is appropriate when press-molding into predetermined parts such as automobile panel parts, structural parts and frame parts.
  • press-molding when press-molding including bending deformation is performed on a sheared metal plate to manufacture a press-molded part, press-molding is performed in advance in the bending crack evaluation step 50. Evaluate the metal plate and select a metal plate that is estimated to have a margin for bending cracks at the sheared end face when the above press forming is performed, that is, it is estimated that bending cracks will not occur. Then, in the press manufacturing process 51, press-molded parts are manufactured using the selected metal plate.
  • Table 1 shows the material properties of each test material. here, ⁇ 02020/174841 13 ⁇ (: 171?2019/049934
  • a punched hole was made in each of the test materials and cut into a predetermined test piece shape (see FIGS. 4 and 5).
  • the punching clearance is preferably 5% or more and 20% or less of the plate thickness. If it is less than 5%, a secondary shear plane will occur. On the other hand, if it is more than 20%, remarkable burrs are generated, and these become the starting points of cracking, which makes the formability of the end face unstable and deteriorates. Thus, if the punching clearance deviates from 5% or more and 20% or less of the plate thickness, it is not preferable as the clearance during mass production of parts. It is more preferable that the clearance is 10% or more and 15% or less in a narrower range because the moldability becomes stable.
  • Fig. 4 shows the shape of the test piece for the V-bending test.
  • Figure 5 shows the shape of the test piece for the notch tensile test.
  • notch tensile test was performed on the test piece of Fig. 5 by changing the amount of pulling stroke, and the relationship between the crack length of the sheared end face and the forming condition (stroke amount) as shown in Fig. 7 was obtained.
  • a test result with a crack length of 200 or more was determined to be a crack.
  • the criteria for bending cracks can be determined arbitrarily, and there is no restriction due to crack length.
  • the crack length may be 100% of the plate thickness or 50% of the plate thickness.
  • the criterion for bending cracking is preferably 50% or less of the plate thickness, and more preferably 30% or less.
  • the molding conditions for the crack judgment in each test were determined.
  • Table 2 shows the bending radius of the sheared end face under each forming condition, the reduction rate of the plate thickness, the external bending strain calculated using Equation (1), and the stress gradient calculated by Equations (1) to (6). The calculation result of is shown.
  • the bending radius which is a molding condition, was determined by observing the sheared end face of the sample after molding with a microscope.
  • the reason is as follows. That is, in the V-bending test, which is close to pure bending deformation, ridge warpage occurs at the shear end surface, and the shear end surface is bent at a bending radius different from that of the press die.
  • the notch tensile test a geometrically very small bending is applied to the sheared end face due to the occurrence of the constriction. This is because the form of bending formed by the test is different.
  • the bending radius in the notch tension is also taken into consideration in the calculation.
  • the out-of-bending strain of the bending component generated by the minute bending deformation generated in the notch tension can be ignored.
  • the evaluation position 20 8 in the press-formed component 20 having the shape shown in FIG. 9 is shown.
  • Specimen materials 8 to 0 were used as the material of the press-formed metal plate. In addition, bending cracks were evaluated at one of the most difficult points to form (see Fig. 9).
  • the present invention is not limited to the contents described above, and, for example, in the above-mentioned examples, a steel sheet having a tensile strength of 980 IV! 3 grade or higher (1 180 IV!
  • the present invention is preferably applied to the press forming of such a high strength steel plate, but the tensile strength is less than 980 1 ⁇ /1 3 class. It can also be applied to steel plates and metal plates other than steel plates.

Landscapes

  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

実部品等の形状情報から目的とするプレス成形部品にプレス成形を施した際における、プレス成形部品でのせん断端面の曲げ割れに対する成形余裕を評価する技術を提供する。せん断加工された金属板に曲げ変形を含むプレス成形を施して目的のプレス成形部品を製造する際における、上記せん断加工された端面であるせん断端面での曲げ割れに対する成形余裕を評価する方法である。プレス成形部品の部品形状に基づき取得したせん断端面又はせん断端面近傍の曲げ外ひずみと、プレス成形で使用するプレス金型におけるせん断端面を成形する部分のプレス金型の曲げ半径とから、プレス成形部品のせん断端面での曲げ割れを評価するための割れ指標値を求め、その求めた割れ指標値によって曲げ割れに対する成形余裕を評価する。

Description

\¥02020/174841 1 卩(:17 2019/049934
明 細 書
発明の名称 :
曲げ割れ評価方法、 曲げ割れ評価システム、 及びプレス成形部品の製造方 法
技術分野
[0001 ] 本発明は、 せん断加工された金属板にプレス成形を施して、 目的のプレス 成形部品を製造する際における、 せん断端面での曲げ割れを評価する技術、 及びそれを利用したプレス成形部品の製造方法に関する。
背景技術
[0002] 現在、 自動車には軽量化による燃費向上と衝突安全性の向上が求められて いる。 そして、 車体の軽量化と衝突時の搭乗者保護を両立する目的で、 自動 車用構造部品には高強度鋼板が使用される傾向にある。 このような高強度鋼 板を金属板として用いた場合におけるプレス成形時の成形不良の一つとして 、 割れがある。 特に、 高強度鋼板をプレス成形用の金属板として用いた場合 、 せん断加工後の端面 (以下、 せん断端面とも記載する。 ) での割れの発生 が重要な課題となっている。
せん断端面の割れは、 大きく分けると、 伸びフランジ変形による割れと曲 げ変形による割れ (曲げ割れ) とに分類される。
[0003] 伸びフランジ割れの評価としては、 例えば特許文献 1〜 3に記載の方法が ある。 特許文献 1 には、 板の面内方向のひずみ勾配を考慮した予測手法や、 板面内の応力勾配を考慮した予測手法が記載されている。 特許文献 2には、 伸びフランジ変形におけるひずみ勾配とひずみ集中と破断ひずみの関係を用 いる技術が記載されている。 特許文献 3には、 成形限界ひずみと板面内方向 及び板厚方向のひずみ勾配の関係を用いた割れ予測手法が記載されている。 一方で、 せん断端面の曲げ割れに関する割れの評価手法は開発されてない 。 特に、 プレス成形後のプレス成形部品の部品形状が決まっている場合に、 せん断端面の曲げ割れを、 プレス成形前に評価する技術の開発について要望 \¥02020/174841 卩(:17 2019/049934
がある。
先行技術文献
特許文献
[0004] 特許文献 1 :特開 2 0 1 0 - 0 6 9 5 3 3号公報
特許文献 2 :特開 2 0 1 1 — 1 4 0 0 4 6号公報
特許文献 3 :特開 2 0 1 4 _ 1 1 5 2 6 9号公報
発明の概要
発明が解決しようとする課題
[0005] 本発明は、 上記のような点に着目してなされたもので、 実部品等の形状情 報から、 目的とするプレス成形部品にプレス成形を施した際における、 せん 断端面での曲げ割れ発生を予想するなど、 プレス成形部品でのせん断端面の 曲げ割れを評価する技術、 及びその技術を利用したプレス成形部品の製造方 法を提供することを目的とする。
課題を解決するための手段
[0006] 本出願の発明者は、 各種の成形試験により、 せん断端面の曲げ割れが発生 するせん断端面又はせん断端面近傍の曲げ外ひずみと、 成形条件から求まる せん断端面近傍の応力勾配との関係を実験的に求めて評価した。 そして、 発 明者は、 プレス成形時のせん断端面又はせん断端面近傍の曲げ外ひずみと成 形条件より決定される応力勾配の関係を比較することで、 せん断端面の曲げ 割れに対する成形余裕を評価できることを発見した。
すなわち、 本発明の態様は、 形状情報から、 金属板に必要となる曲げ性の 評価方法と、 それを用いた金属板に発生する割れ発生懸念の評価方法を可能 とする技術に関する。
[0007] そして、 課題を解決するために、 本発明の一態様は、 せん断加工された金 属板に曲げ変形を含むプレス成形を施して目的のプレス成形部品を製造する 際における、 上記せん断加工された端面であるせん断端面での曲げ割れを評 価する方法であって、 上記プレス成形部品の部品形状に基づき取得したせん \¥02020/174841 3 卩(:171?2019/049934
断端面又はせん断端面近傍の曲げ外ひずみと、 上記プレス成形で使用するプ レス金型におけるせん断端面を成形する部分のプレス金型の曲げ半径とから 、 上記プレス成形部品のせん断端面での曲げ割れを評価するための割れ指標 値を求めることを要旨とする。
[0008] また、 本発明の他の態様は、 せん断加工された金属板に曲げ変形を含むプ レス成形を施して目的のプレス成形部品を製造する際における、 上記せん断 加工された端面であるせん断端面での曲げ割れを評価する曲げ割れ評価シス テムであって、 上記プレス成形部品の部品形状に基づき取得したせん断端面 又はせん断端面近傍の曲げ外ひずみと、 上記プレス成形で使用するプレス金 型におけるせん断端面を成形する部分のプレス金型の曲げ半径とを入力し、 上記入力した曲げ外ひずみと曲げ半径から、 上記プレス成形部品のせん断端 面での曲げ割れを評価するための割れ指標値を求める割れ指標値演算部を、 備えることを要旨とする。
[0009] また、 本発明の他の態様は、 せん断加工された金属板に曲げ変形を含むプ レス成形を施してプレス成形部品を製造するプレス成形部品の製造方法であ って、 本発明の態様に係る曲げ割れ評価方法でプレス成形を施す金属板を評 価して、 上記プレス成形を施したときにせん断端面での曲げ割れが発生しな いと推定される金属板を選定し、 上記選定した金属板を用いて上記プレス成 形部品を製造することを要旨とする。
発明の効果
[0010] 本発明の態様によれば、 例えば、 候補とする金属板毎に、 プレス成形する ために必要となる金属板のせん断端面での曲げ割れを評価することができる 。 これによって、 本発明の態様によれば、 例えば、 自動車のパネル部品、 構 造 ·骨格部品等の各種部品をプレス成形する際に用いる金属板の選定が適切 であるか精度良く評価できるようになる。 その結果、 本発明の態様によれば 、 プレス成形を安定して行うことができるとともに、 プレス成形部品の不良 率の低減にも大きく寄与することができる。
図面の簡単な説明 \¥02020/174841 4 卩(:171?2019/049934
[001 1] [図 1]本発明に基づく実施形態に係るプレス成形部品の製造方法の工程例を示 す図である。
[図 2]本発明に基づく実施形態に係る評価方法を説明する図である。
[図 3]本発明に基づく実施形態に係る曲げ割れ評価システムを説明する図であ る。
[図 4]実施例で用いた試験片形状を示す図である。
[図 5]実施例で用いた試験片形状を示す図である。
[図 6] V曲げ試験で取得した亀裂長さと曲げ半径の関係を示す図である。
[図 7]切欠き引張り試験により取得した亀裂長さとストローク量の関係を示す 図である。
[図 8]曲げ限界ひずみと、 組み合わせ応力勾配の関係を示す図である。
[図 9]実施例における目的とする実部品 (プレス成形部品) におけるせん断曲 げ割れの評価位置の例を示す図である。
[図 10]実部品における、 安全率も加味した成形限界の評価結果を示す図であ る。
発明を実施するための形態
[0012] 次に、 本実施形態について図面を参照しつつ説明する。
本実施形態は、 せん断加工された金属板に曲げ変形を含むプレス成形を施 して目的のプレス成形部品 (以下、 実部品とも記載する) を製造する際にお ける、 せん断端面での曲げ割れを評価する方法に関する。 曲げ割れの評価は 、 例えば、 曲げ割れの成形余裕について評価する。
すなわち、 本実施形態におけるプレス成形部品の製造方法は、 図 1 に示す ように、 公知のプレス装置によって、 せん断加工された金属板に曲げ変形を 含むプレス成形を施して目的のプレス成形部品を製造するプレス製造工程 5 1 を有する。 本実施形態は、 そのプレス製造工程 5 1で実際にプレス成形部 品をプレス成形する前工程として、 金属板の曲げ割れを評価する曲げ割れ評 価工程 5 0を備える。
[0013] 本実施形態の曲げ割れ評価工程 5 0は、 例えば、 図 2に示すように、 工程 \¥02020/174841 5 卩(:171?2019/049934
1〜工程 5を備える。 工程 1は、 形状情報から、 評価位置若しくはその近傍 の曲げ外ひずみを取得する。 工程 2は、 形状情報から、 評価位置若しくはそ の近傍の曲げ半径を取得する。 工程 3は、 取得した曲げ外ひずみと曲げ半径 とから評価位置での割れ指標値を求める。 工程 4は、 対象とする金属板毎に 、 評価の基準情報として曲げ変形限界を求める。 工程 5は、 工程 3で求めた 割れ指標値を、 工程 4で予め求めた曲げ変形限界と比較することで、 評価す るせん断端面での曲げ割れを評価する。
[0014] 上記の曲げ割れ評価工程 5 0は、 例えば曲げ割れ評価システム 5 3で実行 される。 曲げ割れ評価システム 5 3は、 例えば、 図 3に示すように、 曲げ外 ひずみ取得部 5 3 、 曲げ半径取得部 5 3巳、 割れ指標値演算部 5 3 (3、 曲 げ変形限界取得部 5 3 0、 及び曲げ割れ評価部 5 3巳を備える。
[0015] 曲げ外ひずみ取得部 5 3 は、 取得した形状情報から、 評価位置若しくは その近傍の曲げ外ひずみを取得する処理を実行する。 曲げ半径取得部 5 3巳 は、 取得した形状情報から、 評価位置若しくはその近傍の曲げ半径を取得す る処理を実行する。 割れ指標値演算部 5 3 (3は、 曲げ外ひずみ取得部 5 3八 が取得した曲げ外ひずみと、 曲げ半径取得部 5 3巳が取得した曲げ半径とか ら評価位置での割れ指標値を求める処理を実行する。 曲げ変形限界取得部 5 3 0は、 対象とする金属板毎に、 評価の基準情報として曲げ変形限界を求め る処理を実行する。 曲げ割れ評価部 5 3日は、 割れ指標値演算部 5 3 (3で求 めた割れ指標値を、 曲げ変形限界取得部 5 3口で予め求めた曲げ変形限界と 比較することで、 評価するせん断端面での曲げ割れを評価する処理を実行す る。 曲げ外ひずみ取得部 5 3 、 曲げ半径取得部 5 3巳、 割れ指標値演算部 5 3〇、 曲げ変形限界取得部 5 3 0、 及び曲げ割れ評価部 5 3巳のうち、 少 なくとも割れ指標値演算部 5 3〇は、 コンピュータで実行されるプログラム として提供されている。
[0016] 本実施形態では、 上記の曲げ外ひずみと曲げ半径を、 実部品やプレス金型 の形状情報から求めるところに特徴の一つがある。
その具体的な曲げ割れの評価方法や評価システムの処理として、 本実施形 \¥02020/174841 6 卩(:171?2019/049934
態では、 第 1実施形態と第 2実施形態を例示することができる。
[0017] <第 1実施形態>
第 1実施形態は、 目的とするプレス成形部品の部品形状の形状情報と、 目 的とするプレス成形部品に成形するためのプレス金型の形状情報とに基づき 、 曲げ変形を含むプレス成形を行う際のせん断端面での曲げ割れを評価する 評価方法及び評価システムの例である。
第 1実施形態では、 まず、 工程 1 (曲げ外ひずみ取得部 5 3八) で、 実部 品の形状から、 当該実部品における評価するせん断端面又はせん断端面近傍 の曲げ外ひずみを取得する処理を実行する。 また、 工程 2 (曲げ半径取得部 5 3巳) で、 使用するプレス金型の形状情報から、 評価するせん断端面を成 形する部分のプレス金型の曲げ半径を取得する処理を実行する。
[0018] 次に、 工程 3 (割れ指標値演算部 5 3 0 で、 取得した曲げ外ひずみと曲 げ半径から、 目的とするプレス成形部品のせん断端面での曲げ割れを評価す るための割れ指標値を求める処理を実行する。
また、 工程 4 (曲げ変形限界取得部 5 3 0) で、 対象とする金属板毎に、 評価の基準情報として曲げ変形限界を求める処理を実行する。
そして、 工程 5 (曲げ割れ評価部 5 3巳) で、 求めた割れ指標値によって 、 曲げ割れを評価する処理を実行する。 本実施形態では、 工程 5 (曲げ割れ 評価部 5 3巳) で、 求めた割れ指標値によって曲げ割れに対する成形余裕を 評価する。
ここで、 工程 1 (曲げ外ひずみ取得部 5 3八) 及び工程 2 (曲げ半径取得 部 5 3巳) において、 実部品の形状情報やプレス金型の形状情報からの測定 の処理は、 実部品の現物を測定して求めても良いし、 その実部品やプレス金 型の形状データから取得しても良い。
[0019] <第 2実施形態>
第 2実施形態では、 工程 2 (曲げ半径取得部 5 3巳) で、 割れ指標値を求 める際に使用する曲げ半径を、 実部品の形状情報から取得する処理を実行す る。 工程 2 (曲げ半径取得部 5 3巳) は、 実部品の形状情報からの測定の処 \¥02020/174841 7 卩(:171?2019/049934
理は、 実部品の現物を測定して求めても良いし、 その実部品の形状データか ら取得しても良い。 その他の構成は、 第 1実施形態と同様であるので説明を 省略する。
すなわち、 第 2実施形態では、 工程 1 (曲げ外ひずみ取得部 5 3八) 及び 工程 2 (曲げ半径取得部 5 3巳) において、 実部品の形状を測定するなどの 処理によって、 実部品の形状情報から、 簡易的に、 曲げ外ひずみと曲げ半径 とを取得する処理を実行する。
ここで、 プレス金型から曲げ半径を求める場合に比べて、 実部品から曲げ 半径を求める場合、 スプリングバック分の誤差が発生する。 このため、 第 2 実施形態は、 第 1実施形態に比べて精度が落ちるものの、 評価の情報取得が 容易となる利点がある。
[0020] <曲げ半径について>
曲げ半径の取得位置は、 評価するせん断端面又はそのせん断端面近傍であ る。
ここで、 本明細書において、 「せん断端面近傍」 とは、 例えば、 せん断端 面から、 当該せん断端面から離れる方向へ、 板の面方向に沿って
Figure imgf000009_0001
、 好ましくは 3〇!〇!以内の範囲を指す。
曲げ半径は、 プレス金型から求める場合には、 上述のように当該プレス金 型の形状情報を外部のデータべースなどから取得して求めても良いし、 実際 に金型の表面形状を測定して求めても良い。
曲げ半径を実部品から求める場合には、 曲げ半径は、 実部品の外形プロフ ィールを測定することで求めれば良い。 実部品の詳細な形状データがある場 合には、 その形状データから曲げ半径を求めても良い。
[0021 ] <曲げ外ひずみについて>
曲げ外ひずみの取得位置は、 評価するせん断端面又はそのせん断端面近傍 である。 「曲げ外」 とは、 曲げに伴い凸となる面側を指す。
工程 1 (曲げ外ひずみ取得部 5 3 ) において、 せん断端面又はせん断端 面近傍の曲げ外ひずみは、 例えば、 せん断端面又はせん断端面近傍の板厚減 \¥02020/174841 8 卩(:171?2019/049934
少率と、 せん断端面又はせん断端面近傍の曲げ半径とから算出する。
板厚減少率は、 プレス成形による当初の板厚 (プレス前の板厚) からの減 少率である。
[0022] 曲げ外ひずみの算出方法は、 例えば、 実部品におけるせん断端面又はせん 断端面近傍の板厚減少率と曲げ半径とを測定し、 曲げ外ひずみを、 純曲げ理 論と板厚減少率から、 (1 ) 式により求める。 この方法によれば曲げ外ひず みの取得が簡易的で好ましい。
^ b e n d— o u t _ 2 X ^ t h i c k n e s s
+ (t/2) / (R+ t ) (1 )
ここで、
£ b e n d-o u t :せん断端面又はせん断端面近傍の曲げ外ひずみ S t h . c k n e s s :せん断端面又はせん断端面近傍の板厚ひずみで、 板厚減 少率 [%] から求まる値
R :せん断端面又はせん断端面近傍における、 成形後の部品の曲げ半径 t :成形前の金属板の板厚
である。
[0023] (1 ) 式は、 右辺第 1項が、 プレス成形時の張力によるひずみを表し、 右 辺第 2項が、 プレス成形時の曲げ変形によるひずみを表す。
ここで、 板厚減少率の取得位置は、 上述の通り、 曲げ割れを評価するせん 断端面から、 板面方向に沿って 5 m m以内の範囲とする。 板面方向は、 せん 断端面の縁に直交する方向若しくは略直交する方向が好ましい。 せん断端面 から 5 m mよりも離れた位置での板厚減少率を測定すると、 プレス成形部品 における他のプレス条件の影響を受けるため、 評価部の測定精度が低下する 懸念がある。 より好ましくは、 板厚減少率の取得位置は、 せん断端面から板 面方向に 3 mm以内の範囲である。
[0024] 曲げ外ひずみの算出はこれに限定されない。 例えば、 加工前の金属板のせ ん断端面に格子を転写した後に成形試験を実施し、 格子のゆがみから、 曲げ 外ひずみを直接測定する方法でもよい。 このように、 形状情報や実験による \¥02020/174841 9 卩(:171?2019/049934
測定値を用いて曲げ外のひずみを求めることができれば、 どのような方法で 求めても構わない。
[0025] <割れ指標値 >
割れ指標値は、 目的とするプレス成形部品における、 せん断端面での曲げ 割れを評価するためのデータである。 この割れ指標値は、 工程 3 (割れ指標 値演算部 5 3〇 が、 上記のようにして取得した曲げ外ひずみと曲げ半径か ら求める。
本実施形態における指標値は、 評価するせん断端面若しくはそのせん断端 面近傍での、 曲げ外ひずみと応力勾配とをパラメータとした値からなる。 す なわち、 本実施形態における指標値は、 (曲げ外ひずみ、 応力勾配) のデー 夕の組で表現される。 本実施形態での応力勾配は、 板厚方向の応力勾配であ る。
[0026] ここで、 亀裂懸念部 (評価位置) の応力勾配は、 使用する金属板の応力一 ひずみ関係と、 せん断端面又はせん断端面近傍のひずみ分布とから求められ る。 亀裂懸念部 (評価位置) の応力勾配は、 簡易的には、 せん断端面又はせ ん断端面近傍の板厚方向の応力勾配から算出する。
応力勾配を取得する範囲は、 割れ判定基準となる亀裂長さに等しい長さが 好ましいが、 せん断端面の若しくはその近傍の応力勾配の算出ができればど のような取得範囲でも構わない。 応力勾配は、 上記応力を取得する範囲での 平均勾配とするのが望ましい。
[0027] 応力勾配の算出方法の一例を、 以下に示す。
ここで、 金属板の応力をひずみの関数として (2) 式で定義する。
〇 = 〇 ( £) ( 2)
金属板の応力一ひずみ関係は、 単軸引張試験から求め、
Figure imgf000011_0001
丨 チ 1や V。 〇㊀の式で大ひずみ域の応力まで外揷するのが一般的であるが、 どのような 公知の方法で、 (2) 式を定義しても構わない。
曲げ外ひずみにおける応力は、 (2) 式に ( 1 ) 式を代入した (3) 式で 永まる。 \¥02020/174841 10 卩(:17 2019/049934
Figure imgf000012_0001
[0028] また、 曲げ外からの割れ判定の亀裂長さ Xだけ内側のひずみは、 (1) 式 と同様にして (4) 式で求まる。
Figure imgf000012_0004
である。
[0029] そして、 曲げ外から割れ判定の亀裂長さだけ内側の応力は、 (2) 式と ( 4) 式から、 (5) 式で表現される。
Figure imgf000012_0002
以上から、 せん断端面又はせん断端面近傍の応力勾配△ £7は、 (6) 式で 求まる。
Figure imgf000012_0003
[0030] <割れ指標値による曲げ割れに対する成形余裕の評価について>
曲げ割れに対する成形余裕の評価は、 工程 4 (曲げ変形限界取得部 5 3 0 ) で予め求めた、 せん断端面の曲げ変形限界と、 工程 3 (割れ指標値演算部 5 3〇 で求めた、 割れ指標値との関係によって評価できる。
[0031 ] (せん断端面の曲げ変形限界の決定方法)
せん断端面の曲げ変形限界は、 工程 4 (曲げ変形限界取得部 5 3 0) にお いて、 例えば、 せん断端面を有する試験片を用意し、 変形中に発生する応力 勾配が異なる 2種類以上の成形試験を実施して得られたデータから決定する 〇
試験方法としては、 例えば、 変形中のせん断端面近傍の応力勾配が大きい V曲げ試験と、 変形中のせん断端面近傍の応力勾配が小さい切欠き引張り試 験と、 の 2種類の試験が望ましい。 もっとも、 同一の条件で作製したせん断 端面を有する試験片に対し、 応力勾配が異なる変形を与えることができ、 \¥02020/174841 11 卩(:171?2019/049934
巳 IV!解析で試験を再現できれば、 どのような試験方法でも構わない。
[0032] 試験開始前に、 各成形試験における割れ判定基準を決定しておく。
割れ判定基準の決定方法は、 例えば割れ判定とする亀裂長さを規定してお く方法や、 板厚に対する亀裂長さの割合で規定しておく方法や、 板厚方向へ の亀裂貫通で割れと判定する方法など様々なものがあるが、 いずれの判定基 準を用いても構わない。
各種成形試験を実施後、 割れ発生時の亀裂長さと成形条件の関係を取得す ることで、 せん断端面の割れ限界における成形条件 (曲げ変形限界) を決定 する。
[0033] このようにして、 各成形試験の曲げ変形限界ひずみと亀裂懸念部近傍の応 力勾配の関係を実験的に求める。 このとき、 2種類以上の試験結果から、 ( 7) 式で表される、 線形近似の関係式を求め、 この関係式 ( (7) 式) をせ ん断端面の曲げ変形限界線とする。
£ I | =八 - 八<7 +巳 6 ³ 0 (7)
ここで、 八、 巳は材料定数である。
なお、 (7) 式の関係式で表される曲げ変形限界線は、 曲げひずみと応力 勾配との関係の式となっている。
[0034] (プレス成形時のせん断端面での曲げ割れ評価 (危険判定) について) 目的のプレス成形部品において、 割れ危険を評価したい部分のせん断端面 の曲げ割れ発生懸念部位の曲げ外ひずみ £
Figure imgf000013_0001
とその応力勾配とを、 割れ指 標値として取得する。
そして、 割れ危険を判定したいせん断端面部分の応力勾配における、 割れ 指標値としてのひずみ £ 9 6¾と曲げ変形限界ひずみ £ , ^とを比較すること で、 曲げ割れに対する成形余裕を評価する。
工程 5 (曲げ割れ評価部 5 3巳) における、 評価の一例としては、 割れ危 険の判定がある。 例えば、 工程 5 (曲げ割れ評価部 5 3巳) で、 (8) 式の 条件を満たすときに割れ危険と判定する処理を実行する。
2 X £ | | ,„ (8) \¥02020/174841 12 卩(:171?2019/049934
[0035] ここで、 3は、 使用する金属板の特性やプレス成形条件のばらつきなどを 考慮した安全率である。 安全率を考慮しなければ、 3を 1 とする。 安全率を 考慮する場合は、 例えば 3を〇. 5とする。 これは 9 5 0 1\/1 3以上の高強 度鋼板においては、 せん断端面の曲げ割れ限界ひずみの 5 0 %のひずみが付 与された段階で、 せん断端面の曲げ変形時に曲げ外側の表面から発生する毛 割れ (微小なクラック) の亀裂長さが成長し始める傾向にあるからである。 金属板の引張強度が低いほど、 3を 1 に近づければよい。
また、 例えば 「
Figure imgf000014_0001
- £ 6 ^ 6 」 を成形余裕度口と定義して、 工程 5 (曲げ割れ評価部 5 3日) において、 成形余裕度口で成形余裕状態を 評価するようにしても良い。
[0036] 以上のように、 本実施形態によれば、 例えば、 選定した金属板のおける、 プレス成形にて目的のプレス成形部品とした際における、 せん断端面での成 形余裕を評価することができる。 これによって、 例えば、 自動車のパネル部 品、 構造 ·骨格部品等の予め決定した部品にプレス成形する際に、 金属板の 選定が適切であるか精度良く評価できるようになる。
例えば、 プレス製造工程 5 1で、 せん断加工された金属板に曲げ変形を含 むプレス成形を施してプレス成形部品を製造する際に、 予め曲げ割れ評価エ 程 5 0にて、 プレス成形を施す金属板を評価して、 上記プレス成形を施した ときにせん断端面での曲げ割れに余裕があると推定される、 すなわち曲げ割 れが発生しないと推定される金属板を選定する。 そして、 プレス製造工程 5 1 にて、 選定した金属板を用いてプレス成形部品を製造する。
これによって、 プレス成形を安定して行うことができるとともに、 プレス 成形部品の不良率の低減にも大きく寄与することができる。
実施例
[0037] 次に、 本発明に基づく実施例について説明する。
ここでは、 3種類の供試材 、 巳及び(3を、 せん断加工された金属板の選 択対象とした実施例について説明する。
表 1 に各供試材の材料特性を示す。 ここで、
Figure imgf000014_0002
\¥02020/174841 13 卩(:171?2019/049934
I 干 1:の式は、 「<7 = [< (3〇+ £) "」 である。
[0038] [表 1 ]
Figure imgf000015_0001
[0039] 各供試材に対し打ち抜き穴を作製し、 所定の試験片形状に切断して作製し た (図 4、 図 5参照) 。
打ち抜きクリアランスは板厚の 5 %以上 2 0 %以下が好ましい。 5 %未満 となると 2次せん断面が発生する。 一方、 2 0 %より大きいと顕著なバリが 発生するため、 それらが亀裂発生の起点となり、 端面の成形性を不安定かつ 低下させる。 このように、 打ち抜きクリアランスが板厚の 5 %以上 2 0 %以 下から外れると、 部品量産時のクリアランスとしても好ましくない。 クリア ランスは、 より狭い範囲の 1 0 %以上 1 5 %以下とする方が、 成形性が安定 するためより好ましい。
[0040] 図 4に、 V曲げ試験用の試験片形状を示す。 図 5に、 切欠き引張り試験用 の試験片形状を示す。
そして、 図 4の試験片に対して曲げ半径を変えて V曲げ試験を行い、 図 6 のような、 せん断端面の亀裂長さと成形条件 (金型曲げ半径) の関係を取得 した。
また、 図 5の試験片に対して引っ張りのストローク量を変えて切欠き引張 り試験を行い、 図 7のような、 せん断端面の亀裂長さと成形条件 (ストロー ク量) の関係を取得した。
[0041 ] 本実施例では、 亀裂長さ 2 0 0 以上の試験結果を割れと判定した。
もっとも、 前述の通り、 曲げ割れの判定基準は任意に決めることができ、 亀裂長さによる制約はない。 亀裂長さは板厚の 1 〇〇%としても良いし、 板 厚の 5 0 %としてもよい。 なお、 対象とするプレス部品の不良率を下げるに \¥02020/174841 14 卩(:171?2019/049934
は亀裂長さがより短いときに割れと判定する方が良い。 その場合、 曲げ割れ の判定基準は、 板厚の 5 0 %以下が好ましく、 3 0 %以下がより好ましい。 ここでは、 上記のように、 亀裂長さ 2 0 0 以上を割れと判定するよう に規定することで、 各試験における割れ判定時の成形条件を決定した。
[0042] 表 2に、 各成形条件におけるせん断端面の曲げ半径、 板厚減少率、 (1) 式を用いて計算した曲げ外ひずみ、 及び (1) 式〜 (6) 式により計算した 応力勾配の算出結果を示す。
[0043] [表 2]
Figure imgf000016_0001
[0044] ここで、 成形条件である曲げ半径は、 成形後のサンプルのせん断端面をマ イクロスコープで観察することにより求めた。 その理由は次の通りである。 すなわち、 純曲げ変形に近い V曲げ試験では、 せん断端面で稜線反りが発生 し、 プレス金型の曲げ半径と異なる曲げ半径でせん断端面が曲げられる。 一 方、 切欠き引張り試験では、 くびれの発生により、 せん断端面に幾何学的に 非常に微小な曲げ成形が加わる。 このように試験によって形成される曲げの 形態が異なるからである。
なお、 本実施例では、 切欠き引張りにおける曲げ半径も計算に考慮してい る。 しかし、 実用上はおいては、 切欠き引張りにおいて発生する微小な曲げ 変形で発生する曲げ成分の曲げ外ひずみは無視しても構わない。
[0045] これらの結果から、 図 8に示すような、 曲げ変形限界の曲げ外ひずみ一応 力勾配の関係を、 供試材毎に取得した。 すなわち、 各供試材について、 個別 に曲げ変形限界の曲げ外ひずみ一応力勾配の関係を得た。
この結果から、 目的とするプレス成形部品の割れ指標値である、 曲げ外ひ \¥02020/174841 15 卩(:171?2019/049934
ずみと応力勾配を実験的に取得すれば、 せん断端面の成形余裕度を評価する ことができる。 例えば、 各供試材からなる金属板を使用した場合における、 せん断端面での曲げ割れの危険性をそれぞれ判定することができる。
[0046] 一例として、 図 9に示す形状のプレス成形部品 2 0における評価位置 2 0 八を示す。
プレス成形される金属板の材料として供試材八〜〇を用いた。 また、 曲げ 割れの評価は成形が最も困難な一か所にした (図 9参照) 。
評価した際の測定結果を表 3及び図 1 0に示す。
[0047] [表 3]
Figure imgf000017_0001
[0048] なお、 図 1 0では、 本評価では成形余裕検討のための (8) 式の安全率 3 を〇. 5とした。
本評価から、 供試材<3は現段階では成形できているが、 余裕度も加味する とプレス条件の変化などでせん断端面が曲げ割れする懸念があることが分か った。
このように使用する金属板の条件毎に、 曲げ割れに対する成形余裕を評価 できることが分かる。
[0049] ここで、 本発明は、 上記に説明した内容に限られるものではなく、 例えば 、 上記実施例では、 引張強さが 9 8 0 IV! 3級以上の鋼板 ( 1 1 8 0 IV! 3 級の鋼板) に適用した例を示しており、 本発明は、 このような高強度鋼板の プレス成形に適用することが好ましいが、 引張強さが 9 8 0 1\/1 3級未満の 鋼板や、 鋼板以外の金属板に適用することもできる。
[0050] また、 本願が優先権を主張する、 日本国特許出願 2 0 1 9 - 0 3 3 0 7 6 (2 0 1 9年 2月 2 6日出願) の全内容は、 参照により本開示の一部をな \¥02020/174841 16 卩(:171?2019/049934
す。 ここでは、 限られた数の実施形態を参照しながら説明したが、 権利範囲 はそれらに限定されるものではなく、 上記の開示に基づく各実施形態の改変 は当業者にとって自明なことである。
符号の説明
[0051] 20 プレス成形部品
20 評価位置
50 曲げ割れ評価工程
5 1 プレス製造工程
53 曲げ割れ評価システム
53 曲げ外ひずみ取得部
536 曲げ半径取得部
530 割れ指標値演算部
530 曲げ変形限界取得部
53巳 曲げ割れ評価部

Claims

\¥02020/174841 17 卩(:17 2019/049934 請求の範囲
[請求項 1 ] せん断加工された金属板に曲げ変形を含むプレス成形を施して目的 のプレス成形部品を製造する際における、 上記せん断加工された端面 であるせん断端面での曲げ割れを評価する方法であって、
上記プレス成形部品の部品形状に基づき取得したせん断端面又はせ ん断端面近傍の曲げ外ひずみと、 上記プレス成形で使用するプレス金 型におけるせん断端面を成形する部分のプレス金型の曲げ半径とから 、 上記プレス成形部品のせん断端面での曲げ割れを評価するための割 れ指標値を求めることを特徴とする曲げ割れ評価方法。
[請求項 2] せん断加工された金属板に曲げ変形を含むプレス成形を施して目的 のプレス成形部品を製造する際における、 上記せん断加工された端面 であるせん断加工面での曲げ割れを評価する方法であって、
上記プレス成形部品の部品形状に基づき、 せん断端面又はせん断端 面近傍の曲げ外ひずみと曲げ半径とを取得し、 その取得した曲げ外ひ ずみと曲げ半径から、 上記プレス成形部品のせん断端面での曲げ割れ を評価するための割れ指標値を求めることを特徴とする曲げ割れ評価 方法。
[請求項 3] 上記プレス成形部品の部品形状に基づき取得したせん断端面又はせ ん断端面近傍の板厚減少率と、 上記曲げ半径とから、 上記曲げ外ひず みを算出することを特徴とした請求項 1又は請求項 2に記載した曲げ 割れ評価方法。
[請求項 4] 上記板厚減少率を求める部位を、 せん断端面から板面に沿って 5 以内の範囲とすることを特徴とする請求項 3に記載した曲げ割れ評 価方法。
[請求項 5] 上記割れ指標値は、 上記金属板の応力一ひずみ関係を用い、 上記曲 げ外ひずみと上記曲げ半径とから求められるせん断端面又はせん断端 面近傍での板厚方向の応力勾配と、 上記曲げ外ひずみとで表現される ことを特徴とする請求項 1〜請求項 3のいずれか 1項に記載した曲げ \¥02020/174841 18 卩(:171?2019/049934
割れ評価方法。
[請求項 6] 上記割れ指標値によって曲げ割れに対する成形余裕を評価すること を特徴とする請求項 1〜請求項 5のいずれか 1項に記載した曲げ割れ 評価方法。
[請求項 7] せん断加工された金属板に曲げ変形を含むプレス成形を施して目的 のプレス成形部品を製造する際における、 上記せん断加工された端面 であるせん断端面での曲げ割れを評価する方法であって、
上記プレス成形部品の形状情報に基づき取得した、 評価するせん断 端面又はそのせん断端面近傍における、 板厚方向の応力勾配と曲げ外 ひずみとから、 上記プレス成形部品のせん断端面での曲げ割れを評価 することを特徴とする曲げ割れ評価方法。
[請求項 8] せん断加工された金属板に曲げ変形を含むプレス成形を施して目的 のプレス成形部品を製造する際における、 上記せん断加工された端面 であるせん断端面での曲げ割れを評価する曲げ割れ評価システムであ って、
上記プレス成形部品の部品形状に基づき取得したせん断端面又はせ ん断端面近傍の曲げ外ひずみと、 上記プレス成形で使用するプレス金 型におけるせん断端面を成形する部分のプレス金型の曲げ半径とを入 力し、 上記入力した曲げ外ひずみと曲げ半径から、 上記プレス成形部 品のせん断端面での曲げ割れを評価するための割れ指標値を求める割 れ指標値演算部を、 備えることを特徴とする曲げ割れ評価システム。
[請求項 9] せん断加工された金属板に曲げ変形を含むプレス成形を施して目的 のプレス成形部品を製造する際における、 上記せん断加工された端面 であるせん断加工面での曲げ割れを評価する曲げ割れ評価システムで あって、
上記プレス成形部品の部品形状に基づき取得したせん断端面又はせ ん断端面近傍の曲げ外ひずみと曲げ半径とを入力し、 その入力した曲 げ外ひずみと曲げ半径から、 上記プレス成形部品のせん断端面での曲 \¥02020/174841 19 卩(:171?2019/049934
げ割れを評価するための割れ指標値を求める割れ指標値演算部を、 備 えることを特徴とする曲げ割れ評価システム。
[請求項 10] せん断加工された金属板に曲げ変形を含むプレス成形を施してプレ ス成形部品を製造するプレス成形部品の製造方法であって、
請求項 1〜 7のいずれか 1項に記載した曲げ割れ評価方法でプレス 成形を施す金属板を評価して、 上記プレス成形を施したときにせん断 端面での曲げ割れが発生しないと推定される金属板を選定し、 上記選定した金属板を用いて上記プレス成形部品を製造することを 特徴とするプレス成形部品の製造方法。
PCT/JP2019/049934 2019-02-26 2019-12-19 曲げ割れ評価方法、曲げ割れ評価システム、及びプレス成形部品の製造方法 WO2020174841A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2021010261A MX2021010261A (es) 2019-02-26 2019-12-19 Metodo de evaluacion de grieta por flexion, sistema de evaluacion de grieta por flexion y metodo de fabricacion de un componente formado por presion.
KR1020217026436A KR102482506B1 (ko) 2019-02-26 2019-12-19 굽힘 균열 평가 방법, 굽힘 균열 평가 시스템, 및 프레스 성형 부품의 제조 방법
CN201980092534.2A CN113453818B (zh) 2019-02-26 2019-12-19 弯曲裂纹评估方法、其系统以及冲压成形部件的制造方法
JP2020521391A JP6773255B1 (ja) 2019-02-26 2019-12-19 曲げ割れ評価方法、曲げ割れ評価システム、及びプレス成形部品の製造方法
EP19916684.4A EP3932578A4 (en) 2019-02-26 2019-12-19 FLEXIBLE CRACK ASSESSING METHOD, FLEXIBLE CRACK ASSESSING SYSTEM AND METHOD FOR MAKING PRESS CASTINGS
US17/433,375 US12017265B2 (en) 2019-02-26 2019-12-19 Method for evaluating bending crack, system for evaluating bending crack, and method for manufacturing press-formed component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-033076 2019-02-26
JP2019033076 2019-02-26

Publications (1)

Publication Number Publication Date
WO2020174841A1 true WO2020174841A1 (ja) 2020-09-03

Family

ID=72239219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049934 WO2020174841A1 (ja) 2019-02-26 2019-12-19 曲げ割れ評価方法、曲げ割れ評価システム、及びプレス成形部品の製造方法

Country Status (7)

Country Link
US (1) US12017265B2 (ja)
EP (1) EP3932578A4 (ja)
JP (1) JP6773255B1 (ja)
KR (1) KR102482506B1 (ja)
CN (1) CN113453818B (ja)
MX (1) MX2021010261A (ja)
WO (1) WO2020174841A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023119724A1 (ja) 2021-12-24 2023-06-29 Jfeスチール株式会社 プレス成形品の割れ判定方法及びプレス成形品の割れ対策決定方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013128957A (ja) * 2011-12-21 2013-07-04 Jfe Steel Corp プレス成形用金属板
JP2019033076A (ja) 2013-03-15 2019-02-28 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 簡易ランプ設計
WO2019064922A1 (ja) * 2017-09-26 2019-04-04 Jfeスチール株式会社 変形限界の評価方法、割れ予測方法及びプレス金型の設計方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3978706A (en) * 1974-12-24 1976-09-07 Nippon Kokan Kabushiki Kaisha Precision bending work method for metallic materials
CA2568685A1 (en) * 2004-06-02 2005-12-22 Stefan Fellenberg Method and device for cutting high-tensile sheet metal, and press
JP4371985B2 (ja) * 2004-11-30 2009-11-25 株式会社豊田中央研究所 応力解析方法、プログラムおよび記録媒体
JP4850856B2 (ja) * 2008-01-21 2012-01-11 新日本製鐵株式会社 伸びフランジ割れの評価方法
JP4935713B2 (ja) 2008-02-27 2012-05-23 Jfeスチール株式会社 プレス品のせん断縁における成形可否判別方法
JP5146395B2 (ja) 2008-08-20 2013-02-20 新日鐵住金株式会社 歪勾配を考慮した伸びフランジ割れの推定方法およびプレス成形シミュレーションの伸びフランジ割れ判定システム
JP5294082B2 (ja) 2009-08-24 2013-09-18 新日鐵住金株式会社 曲げ限界ひずみ測定法、曲げ割れ判定方法、及び曲げ割れ判定プログラム
JP5435352B2 (ja) * 2010-01-08 2014-03-05 新日鐵住金株式会社 板状材料の破断ひずみ特定方法
JP5630311B2 (ja) * 2011-02-16 2014-11-26 Jfeスチール株式会社 プレス成形における割れ予測方法およびプレス部品の製造方法
JP5856002B2 (ja) * 2011-05-12 2016-02-09 Jfeスチール株式会社 衝突エネルギー吸収能に優れた自動車用衝突エネルギー吸収部材およびその製造方法
JP5375941B2 (ja) * 2011-12-21 2013-12-25 Jfeスチール株式会社 プレス成形用金型設計方法、プレス成形用金型
US20150082855A1 (en) * 2012-04-16 2015-03-26 Jfe Steel Corporation Method of preparing forming limit diagram in press forming, method for predicting crack and method of producing press parts
JP5472518B1 (ja) 2012-11-19 2014-04-16 Jfeスチール株式会社 伸びフランジの限界ひずみ特定方法およびプレス成形可否判定方法
CN104075949B (zh) * 2013-03-29 2016-10-05 宝山钢铁股份有限公司 一种测试高强钢板剪切开裂特性的方法
CN105283874B (zh) * 2013-06-26 2019-03-08 新日铁住金株式会社 金属板的弯曲断裂判定方法
CN105392575B (zh) * 2013-07-19 2019-01-22 杰富意钢铁株式会社 冲压成型方法及冲压成型部件的制造方法
US10220428B2 (en) * 2013-12-20 2019-03-05 Jfc Steel Corporation Press forming method, and method for manufacturing press-formed part
EP3231527B1 (en) * 2014-12-10 2021-03-24 Nippon Steel Corporation Blank, die assembly and method for producing a blank
CN104568605A (zh) * 2014-12-31 2015-04-29 国际竹藤中心 基于三点弯曲模式测试藤材断裂韧性的方法
JP6098664B2 (ja) * 2015-05-08 2017-03-22 Jfeスチール株式会社 せん断縁の成形可否評価方法
WO2016203904A1 (ja) * 2015-06-16 2016-12-22 Jfeスチール株式会社 伸びフランジ成形部品の製造方法
BR112018006046A2 (ja) * 2015-09-28 2018-10-09 Nippon Steel & Sumitomo Metal Corporation A cutting method by a press metallic mold
WO2017094876A1 (ja) * 2015-12-04 2017-06-08 新日鐵住金株式会社 窒化プレート部品およびその製造方法
JP6547920B2 (ja) * 2017-07-20 2019-07-24 Jfeスチール株式会社 金属板のせん断加工面での変形限界の評価方法、割れ予測方法およびプレス金型の設計方法
CN107976371A (zh) 2018-01-24 2018-05-01 中国石油工程建设有限公司 基于应变控制的弯直疲劳试验装置及试验方法
JP6870670B2 (ja) * 2018-09-13 2021-05-12 Jfeスチール株式会社 変形限界の評価方法、割れの予測方法及びプレス金型の設計方法
JP7031640B2 (ja) * 2019-06-20 2022-03-08 Jfeスチール株式会社 金属板の成形可否評価方法
JP7243803B1 (ja) * 2021-12-24 2023-03-22 Jfeスチール株式会社 プレス成形品の割れ判定方法及びプレス成形品の割れ対策決定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013128957A (ja) * 2011-12-21 2013-07-04 Jfe Steel Corp プレス成形用金属板
JP2019033076A (ja) 2013-03-15 2019-02-28 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 簡易ランプ設計
WO2019064922A1 (ja) * 2017-09-26 2019-04-04 Jfeスチール株式会社 変形限界の評価方法、割れ予測方法及びプレス金型の設計方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3932578A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023119724A1 (ja) 2021-12-24 2023-06-29 Jfeスチール株式会社 プレス成形品の割れ判定方法及びプレス成形品の割れ対策決定方法
KR20240104146A (ko) 2021-12-24 2024-07-04 제이에프이 스틸 가부시키가이샤 프레스 성형품의 파단 판정 방법 및 프레스 성형품의 파단 대책 결정 방법

Also Published As

Publication number Publication date
JP6773255B1 (ja) 2020-10-21
US12017265B2 (en) 2024-06-25
MX2021010261A (es) 2021-09-23
CN113453818A (zh) 2021-09-28
CN113453818B (zh) 2023-11-28
EP3932578A4 (en) 2022-04-20
KR102482506B1 (ko) 2022-12-28
JPWO2020174841A1 (ja) 2021-03-11
EP3932578A1 (en) 2022-01-05
KR20210116600A (ko) 2021-09-27
US20220168791A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
CN111163875B (zh) 变形极限的评价方法、破裂预测方法及冲压模具的设计方法
KR101167764B1 (ko) 파단 예측 방법, 연산 처리 장치 및 기록 매체
US20090177417A1 (en) Fracture prediction method, device, a program arrangement and computer-accessible medium therefor
JP6669290B1 (ja) 応力−ひずみ関係推定方法
CN110740821B (zh) 金属板在剪切加工面的变形极限的评价方法、裂纹预测方法以及冲压金属模的设计方法
JP2009061477A (ja) 薄板プレス成形シミュレーションにおける伸びフランジ割れの推定方法
CN110997172A (zh) 金属板的剪切加工面上的变形极限的评价方法、裂纹预测方法以及压制模具的设计方法
KR101951587B1 (ko) 파단 예측 방법, 프로그램, 기록 매체 및 연산 처리 장치
Basak et al. Analyses of shearing mechanism during shear-cutting of 980 MPa dual-phase steel sheets using ductile fracture modeling and simulation
JP5098901B2 (ja) 材料特性パラメータの算定方法
WO2020174841A1 (ja) 曲げ割れ評価方法、曲げ割れ評価システム、及びプレス成形部品の製造方法
WO2023229004A1 (ja) せん断端面の遅れ破壊特性評価方法、プログラム、及び自動車部品の製造方法
WO2021205693A1 (ja) 金属板のくびれ限界ひずみ特定方法
JP2024006542A (ja) 金属板の成形限界取得方法及び装置
JP7563657B1 (ja) プレス成形用の金属板の遅れ破壊特性評価方法、プレス成形品の製造方法、及びプログラム
JP7288212B2 (ja) ブランク材の製造方法、プレス成形品の製造方法、形状判定方法、形状判定プログラム、ブランク材の製造装置、及びブランク材
JP7541657B1 (ja) 遅れ破壊の評価方法、遅れ破壊の予測方法、プレス成形品の製造方法、及びプログラム
Xiao et al. Application and comparison of different anisotropic yield criteria in the formability analysis of aluminum sheet
JP2023119935A (ja) 破断予測方法、装置、及びプログラム
JP2023119936A (ja) 破断予測方法、装置、及びプログラム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020521391

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916684

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217026436

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019916684

Country of ref document: EP

Effective date: 20210927