WO2020173423A1 - 电池管理系统 - Google Patents

电池管理系统 Download PDF

Info

Publication number
WO2020173423A1
WO2020173423A1 PCT/CN2020/076557 CN2020076557W WO2020173423A1 WO 2020173423 A1 WO2020173423 A1 WO 2020173423A1 CN 2020076557 W CN2020076557 W CN 2020076557W WO 2020173423 A1 WO2020173423 A1 WO 2020173423A1
Authority
WO
WIPO (PCT)
Prior art keywords
microcontroller
voltage
battery pack
battery
signal
Prior art date
Application number
PCT/CN2020/076557
Other languages
English (en)
French (fr)
Inventor
骆会秀
杜宝海
张伟
李前邓
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2020173423A1 publication Critical patent/WO2020173423A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0084Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to control modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the embodiments of the present application relate to the field of new energy vehicles, and particularly to a battery management system.
  • the inventor found that the status information of the battery pack of electric vehicles is monitored by the battery management system.
  • all the control logic and measurements in the battery management system exist in the form of programs.
  • a microcontroller to realize the battery management system to manage the battery and communicate with the vehicle controller and exchange information.
  • the microcontroller fails, the battery management system will lose battery voltage and temperature collection functions, insulation monitoring functions, relay control functions, and so on. It can be seen that the microcontroller is the central brain of the battery management system. Once a failure occurs, the entire vehicle may have a great risk, the vehicle function will be greatly affected, and even the life safety of the people in the vehicle will be threatened.
  • the purpose of the embodiments of the present application is to provide a battery management system, which can increase the safety of the operation of the battery management system and improve the robustness of the system.
  • an embodiment of the present application provides a battery management system, including: a battery monitoring module, a first microcontroller, a second microcontroller, and a sampling control module, the first microcontroller
  • the battery monitor is connected to the second microcontroller; the battery monitoring module is used to monitor the status of the battery pack, and transmit the status of the battery pack to the first microcontroller and the second microcontroller through status signals.
  • a microcontroller and used to control the state of the battery pack according to control instructions issued by the first microcontroller and the second microcontroller; the sampling control module is used to monitor the state of the battery pack high-voltage loop, The state of the high-voltage circuit of the battery pack is respectively transmitted to the first microcontroller and the second microcontroller through a state signal, and is used to follow the first microcontroller and the second microcontroller
  • the issued control command controls the state of the battery pack high-voltage circuit; when the first microcontroller and the second microcontroller are operating normally, the first microcontroller and the second microcontroller
  • the device separately acquires the status signal of the battery pack and the status signal of the battery pack high-voltage circuit, and the first microcontroller and the second microcontroller are based on the status signal of the battery pack and the battery pack.
  • the status signals of the group of high-voltage circuits are independently controlled by the battery pack and the battery management system through the battery monitoring module and the sampling control module, or the first microcontroller according to the status signal of the battery pack and
  • the state signal of the battery pack high-voltage loop independently controls the battery pack and the battery management system through the battery monitoring module and the sampling control module, and the second microcontroller is in a standby state.
  • the first microcontroller and the second microcontroller independently pass the battery monitoring module and the battery according to the status signal of the battery pack and the status signal of the battery pack high-voltage circuit.
  • the sampling control module completes the control of the battery pack and the battery management system, and if any one of the first microcontroller and the second microcontroller fails, the non-failed microcontroller Independently complete the management and control of the battery pack.
  • the first microcontroller independently completes the battery pack and the battery pack status signal through the battery monitoring module and the sampling control module according to the status signal of the battery pack and the status signal of the battery pack high voltage circuit
  • the second microcontroller will independently pass the battery monitoring module and the sampling if the first microcontroller is detected to fail
  • the control module completes the control of the battery pack and the battery management system.
  • the sampling control module includes a high-voltage measurement unit, a first high-voltage control unit, and a second high-voltage control unit;
  • the high-voltage measurement unit is used for sampling to obtain a state signal of the battery pack high-voltage circuit, and the battery
  • the state signals of the group of high-voltage circuits are transmitted to the first microcontroller and the second microcontroller;
  • the first high-voltage control unit is used to control the first microcontroller and/or the second microcontroller
  • the control command of the battery pack to control the first switch unit in the high-voltage circuit of the battery pack
  • the second high-voltage control unit is used to control the state of the second switch unit in the high-voltage circuit of the battery pack according to the control instructions of the first microcontroller and/or the second microcontroller.
  • the battery management system further includes a first transmission module; the battery monitoring module transmits the status signal of the battery pack to the first microcontroller and the first transmission module through the first transmission module. Two microcontrollers.
  • the battery management system further includes a second transmission module; the second transmission module is configured to transmit the state signal of the battery pack high-voltage circuit obtained by the high-voltage measurement unit to the first A microcontroller and the second microcontroller; and/or, transmitting a control instruction of the first microcontroller to the first high-voltage control unit and/or the second high-voltage control unit, and the The control instruction of the second microcontroller is transmitted to the first high voltage control unit and/or the second high voltage control unit.
  • the high-voltage measurement unit includes a first high-voltage measurement sub-unit and a second high-voltage measurement sub-unit; the first high-voltage measurement sub-unit is used for sampling to obtain the state signal of the battery pack high-voltage circuit, and The state signal of the battery pack high-voltage circuit is transmitted to the first microcontroller through the second transmission module; the second high-voltage measurement subunit is used for sampling to obtain the state signal of the battery pack high-voltage circuit, and The status signal of the high-voltage circuit of the battery pack is transmitted to the second microcontroller through the second transmission module.
  • the second transmission module includes a first isolation unit and a second isolation unit; the first isolation unit is used to sample the state of the battery pack high-voltage circuit obtained by the first high-voltage measurement subunit The signal is converted from a high-voltage side signal to a low-voltage side signal, and then transmitted to the first microcontroller; the second isolation unit is used to sample the second high-voltage measurement subunit to obtain the high-voltage circuit of the battery pack The status signal is converted from a high-voltage side signal to a low-voltage side signal, and then transmitted to the second microcontroller.
  • the second transmission module further includes a third isolation unit and a fourth isolation unit; the third isolation unit is used to convert a control command of the first microcontroller from a high-side signal to a low-voltage After the side signal, it is transmitted to the first high-voltage control unit and the second high-voltage control unit; the fourth isolation unit is used to convert the control command of the second microcontroller from the high-voltage side signal to the low-voltage side After the signal, it is transmitted to the first high voltage control unit and the second high voltage control unit.
  • the third isolation unit is used to convert a control command of the first microcontroller from a high-side signal to a low-voltage After the side signal, it is transmitted to the first high-voltage control unit and the second high voltage control unit.
  • the battery monitoring module is located in a high-voltage area, and the first microcontroller and the second microcontroller are located in a low-voltage area; the first transmission module is used to monitor all the batteries monitored by the battery monitoring module.
  • the status signal of the battery pack is converted from a high-voltage side signal to a low-voltage side signal, and then transmitted to the first microcontroller and the second microcontroller.
  • the high-voltage measurement unit is located in a high-voltage area, and the first microcontroller and the second microcontroller are located in a low-voltage area; and the second transmission module is used for sampling the high-voltage measurement unit.
  • the status signal of the high-voltage circuit of the battery pack is converted from a high-voltage side signal to a low-voltage side signal, and then transmitted to the first microcontroller and the second microcontroller.
  • an embodiment of the present application also provides a battery management system, including: a battery monitoring module, a first microcontroller and a second microcontroller, and a sampling control module, the first micro The controller is connected to the second microcontroller; the battery monitoring module is used to monitor the state of the battery pack, and transmit the state of the battery pack to the first microcontroller and/or the first microcontroller and/or all through state signals.
  • the second microcontroller is used to control the state of the battery pack according to the control instructions issued by the first microcontroller and the second microcontroller; the sampling control module is used to monitor the high-voltage circuit of the battery pack The state of the high-voltage circuit of the battery pack is respectively transmitted to the first microcontroller and the second microcontroller through a state signal, and is used to transmit the state of the battery pack high-voltage circuit to the first microcontroller and the second microcontroller according to the state of the first microcontroller and the second microcontroller.
  • the control command issued by the microcontroller controls the state of the high-voltage circuit of the battery pack; when the first microcontroller and the second microcontroller are operating normally, the first microcontroller and the second microcontroller
  • the two microcontrollers each acquire at least a part of the status signal of the battery pack and the status signal of the battery pack high-voltage circuit, and cooperate with each other according to the signals acquired respectively, through the battery monitoring module and the sampling control module Complete the control of the battery pack and battery management system.
  • the second microcontroller controls the battery pack and the battery pack management system to enter a safe state through the sampling control module.
  • the second microcontroller processes at least a part of the acquired state of the battery pack and the state of the battery pack high-voltage circuit, and transmits the processing result to the first microcontroller ; After the first micro-controller verifies the processing result of the second micro-controller, the control of the battery pack and the battery management system is completed through the battery monitoring module and the sampling control module.
  • the sampling control module includes a high-voltage measurement unit, a first high-voltage control unit, and a second high-voltage control unit;
  • the high-voltage measurement unit is used for sampling to obtain the state signal of the battery pack high-voltage circuit, and the battery
  • the state signals of the group of high-voltage circuits are transmitted to the first microcontroller and the second microcontroller;
  • the first high-voltage control unit is used to control the first microcontroller and/or the second microcontroller
  • the control command of the battery pack controls the state of the first switch unit in the high-voltage circuit of the battery pack;
  • the second high-voltage control unit is used to control the state of the first microcontroller and/or the second microcontroller according to the control command of the second microcontroller , Controlling the state of the second switch unit in the high-voltage circuit of the battery pack.
  • the battery management system further includes a first transmission module; the battery monitoring module transmits a part of the status signal of the battery pack to the first microcontroller through the first transmission module, And transmitting another part of the status signal of the battery pack to the second microcontroller.
  • the battery management system further includes a second transmission module; the second transmission module is configured to transmit the portion of the state signal of the battery pack high-voltage circuit obtained by sampling by the high-voltage measurement unit to the The first microcontroller, and another part of the state signal of the battery pack high-voltage loop obtained by sampling the high-voltage measurement unit, is transmitted to the second microcontroller; and/or, the first microcontroller is The control instructions of the device are transmitted to the first high-voltage control unit and/or the The second high voltage control unit transmits the control instructions of the second microcontroller to the first high voltage control unit and/or the second high voltage control unit; or, the second transmission module is used to transmit the All of the state signals of the battery pack high-voltage loop obtained by the high-voltage measurement unit are transmitted to the first microcontroller and the second microcontroller respectively; and/or, the first microcontroller The control instruction is transmitted to the first high voltage control unit and/or the second high voltage control unit, and the control instruction of the second microcontroller is transmitted
  • the high-voltage measurement unit includes a first high-voltage measurement sub-unit and a second high-voltage measurement sub-unit; the first high-voltage measurement sub-unit is used for sampling to obtain the state signal of the battery pack high-voltage circuit, and The state signal of the battery pack high-voltage circuit is transmitted to the first microcontroller through the second transmission module; the second high-voltage measurement subunit is used for sampling to obtain the state signal of the battery pack high-voltage circuit, and The status signal of the high-voltage circuit of the battery pack is transmitted to the second microcontroller through the second transmission module.
  • the second transmission module includes a first isolation unit and a second isolation unit; the first isolation unit is used to sample the state of the battery pack high-voltage circuit obtained by the first high-voltage measurement subunit The signal is transmitted to the first microcontroller; the second isolation unit is used to transmit the state signal of the battery pack high-voltage loop obtained by sampling by the second high-voltage measurement subunit to the second micro-controller Device.
  • the second transmission module further includes a third isolation unit and a fourth isolation unit; the third isolation unit is used to convert a control command of the first microcontroller from a high-side signal to a low-voltage After the side signal, it is transmitted to the first high voltage control unit and/or the second high voltage control unit; the fourth isolation unit is used to convert the control command of the second microcontroller from the high voltage side signal to After the low-voltage side signal, it is transmitted to the first high-voltage control unit and/or the second high-voltage control unit.
  • the third isolation unit is used to convert a control command of the first microcontroller from a high-side signal to a low-voltage After the side signal, it is transmitted to the first high voltage control unit and/or the second high-voltage control unit.
  • the battery monitoring module is located in a high-voltage area
  • the first microcontroller and the second microcontroller are located in a low-voltage area
  • the first transmission module is used to monitor the battery monitoring module After the status signal of the battery pack is converted from a high-side signal to a low-voltage side signal, a part of the status signal of the battery pack is transmitted to the first microcontroller, and another part of the status signal of the battery pack is transmitted To the second microcontroller.
  • the first transmission module includes an isolation unit and a communication unit; the isolation unit is used to convert the state signal of the battery pack monitored by the battery monitoring module from a high-voltage side signal to a low-voltage side signal , Transmitting the communication signal in the status signal of the battery pack to the first microcontroller through the communication unit; and for converting the control command transmitted through the communication unit from a low-voltage side signal to a high-voltage After the side signal, it is transmitted to the battery monitoring module; and the fault diagnosis signal in the status signal of the battery pack is converted from a high-voltage side signal to a low-voltage side signal, and then transmitted to the second microcontroller.
  • the first transmission module includes an isolation unit, a communication unit, and a control unit; the isolation unit is used to After the status signal of the battery pack monitored by the battery monitoring module is converted from a high-voltage side signal to a low-voltage side signal, the status signal of the battery pack is transmitted to the first microcontroller through the communication unit, and to the The control unit, or, transmits a part of the status signal of the battery pack to the first microcontroller through the communication unit, and the other part to the control unit; the control unit is based on the acquired status signal of the battery pack , Determining the diagnosis result of the state of the battery pack, and transmitting the diagnosis result to the second microcontroller.
  • the high-voltage measurement unit is located in a high-voltage area
  • the first microcontroller and the second microcontroller are located in a low-voltage area
  • the second transmission module is used to sample the high-voltage measurement unit After the status signal of the battery pack high-voltage circuit is converted from the high-voltage side signal to the low-voltage side signal, the part of the status signal of the battery pack high-voltage circuit is transmitted to the first microcontroller, and the battery pack high-voltage The other part of the state signal of the loop is transmitted to the second microcontroller; or, the second transmission module is used to transmit the state signal of the battery pack high-voltage loop obtained by sampling the high-voltage measurement unit from the high-voltage side After the signals are converted into low-voltage side signals, they are respectively transmitted to the first microcontroller and the second microcontroller.
  • the embodiment of the present application provides two microcontrollers in the battery management system, and the two microcontrollers work at the same time and each independently control the battery management system, or two microcontrollers One of them is working and the other is standby, thus avoiding that one microcontroller in the existing battery management system independently assumes the control function.
  • the microcontroller fails, it will cause great risks to the safe operation of the entire vehicle and improve battery management. The safety of the system and the entire vehicle.
  • the microcontroller in the battery management system does not need to interact with a large number of diagnostic signals with the vehicle controller, which improves the robustness of the system.
  • the two microcontrollers work at the same time and cooperate with each other to control the battery management system, thereby avoiding that one microcontroller in the existing battery management system independently assumes control Function, the failure of the microcontroller will cause a great risk to the safe operation of the entire vehicle, and improve the safety of the battery management system and even the entire vehicle.
  • the microcontroller in the battery management system does not need to interact with a large number of diagnostic signals with the vehicle controller, which improves the robustness of the system.
  • FIG. 1 is a schematic structural diagram of a battery management system according to the first or second embodiment of the present application.
  • FIG. 2 is one of the structural schematic diagrams of the battery management system according to the third or fourth embodiment of the present application.
  • FIG. 3 is a second structural diagram of a battery management system according to the third or fourth embodiment of the present application.
  • FIG. 4 is a third or third structural diagram of the battery management system provided by the third or fourth embodiment of the present application
  • FIG. 5 is a fourth structural diagram of the battery management system according to the fourth embodiment of the present application
  • FIG. 6 is a fifth structural diagram of a battery management system according to a fourth embodiment of the present application.
  • connection and “connection” mentioned in this application Unless otherwise specified, both direct and indirect connections (connections) are included.
  • the following embodiments of the present application provide a battery management system
  • the main idea is to set up two microcontrollers in the battery management system. By designing redundant microcontrollers, when one of the microcontrollers fails, it can be effectively identified by the other microcontroller and maintain the battery for a certain period of time.
  • the management system functions normally so that the vehicle can enter a safe state.
  • the following first embodiment mainly describes the case where two microcontrollers can independently control the battery management system
  • the second embodiment mainly describes the case where two microcontrollers control the battery management system through cooperation.
  • the third embodiment is mainly a further structural refinement of the first embodiment
  • the fourth embodiment is mainly a further structural refinement of the situation described in the second embodiment.
  • the battery pack is a high-voltage device power supply, which is generally composed of a single unit such as a lithium battery or a lead-acid battery.
  • a battery management system 10 is provided. As shown in FIG. 1, the system mainly includes: a battery monitoring module 101, a first microcontroller 102, a second microcontroller 103, and sampling In the control module 104, the first microcontroller 102 is connected to the second microcontroller 103.
  • the battery monitoring module 101 is used to monitor the state of the battery pack 11, and transmit the state of the battery pack 11 to the first microcontroller 102 and the second microcontroller 103 through the state signal, and is used to monitor the state of the battery pack 11 according to the The control commands issued by a microcontroller 102 and a second microcontroller 103 control the state of the battery pack 11.
  • the battery monitoring module is directly connected to the battery pack to collect battery parameters of the battery pack.
  • the battery parameters include cell voltage of the battery pack, battery pack temperature, etc., and these battery parameters can reflect the state of the battery pack.
  • the battery monitoring module has a battery pack balancing function, which uses power electronic technology to keep the battery pack voltage deviation within the expected range, so as to ensure that each single cell maintains the same state during normal use to avoid overcharging, Occurrence of over-discharge.
  • the battery monitoring module can output two signals, one is a communication signal, used to transmit the collected battery parameters of the battery pack, and receive control instructions from the first microcontroller and/or the second microcontroller; the other is internal
  • the fault diagnosis signal is transmitted to the first microcontroller and/or the second microcontroller for use in battery pack fault monitoring.
  • the sampling control module 104 is used to monitor the state of the high-voltage circuit of the battery pack, transmit the state of the high-voltage circuit of the battery pack to the first microcontroller 102 and the second microcontroller 103 through the state signal, and is used to monitor The control commands issued by the microcontroller 102 and the second microcontroller 103 control the state of the high-voltage circuit of the battery pack.
  • the sampling control module performs operations such as voltage sampling, insulation monitoring, and current sampling on the high-voltage circuit of the battery pack to monitor the high-voltage circuit of the battery pack.
  • the first microcontroller 102 and the second microcontroller 103 When the first microcontroller 102 and the second microcontroller 103 are operating normally, the first microcontroller 102 and the second microcontroller 103 obtain the status signal of the battery pack 11 and the status signal of the battery pack high voltage circuit, respectively. Status signal, and the first microcontroller 102 and the second microcontroller 103, according to the status signal of the battery pack 11 and the status signal of the battery pack high voltage circuit, independently complete the battery pack monitoring module 101 and the sampling control module 104 11 and the control of the battery management system 10, or, according to the status signal of the battery pack 10 and the status signal of the battery pack high-voltage circuit, the first microcontroller 102 independently completes the control of the battery pack 11 and the battery pack 11 through the battery monitoring module 101 and the sampling control module 104 For the control of the battery management system 10, the second microcontroller 103 is in a standby state.
  • the unfailed microcontroller independently completes the control of the battery Management control of group 11.
  • the first micro-controller 102 completes the monitoring of the battery pack 11 and the battery pack 11 and the battery pack 11 and the battery pack 11 and the battery pack independently through the battery monitoring module 101 and the sampling control module 104 according to the status signal of the battery pack 11 and the status signal of the battery pack high-voltage circuit.
  • the second microcontroller 103 is in the standby state, and the second microcontroller 103 detects the failure of the first microcontroller 102 and independently completes the battery monitoring module 101 and the sampling control module 104. Group 11 and battery management system 10 control.
  • the sampling control module 104 includes a high voltage measurement unit 1041, a first high voltage control unit 1042, and a second high voltage control unit 1043.
  • the high-voltage measuring unit 1041 is used to sample and obtain the state signal of the high-voltage circuit of the battery pack, and transmit the state signal of the high-voltage circuit of the battery pack to the first microcontroller 102 and the second microcontroller 103 [0053]
  • the first high-voltage control unit 1042 and the second high-voltage control unit 1043 may be controlled by any one of the first microcontroller 102 and the second microcontroller 103, or may be controlled by the first microcontroller 102 and The second microcontroller 103 controls in common.
  • the first high voltage control unit 1042 is used to control the state of the first switch unit 12 in the high voltage loop of the battery pack according to the control instructions of the first microcontroller 102 and/or the second microcontroller 103.
  • the second high voltage control unit 1043 is used to control the state of the second switch unit 13 in the high voltage loop of the battery pack according to the control instructions of the first microcontroller 102 and/or the second microcontroller 103.
  • the first switch unit 12 and the second switch unit 13 are realized by using controllable switch components, such as relays, fuses, and so on.
  • the first switch unit and the second switch unit are used to control the energy transmission of the battery pack, the first switch unit may be a positive switch of the battery pack, and the second switch unit may be a negative switch of the battery pack.
  • the first microcontroller and the second microcontroller monitor the high voltage information through the high voltage measurement unit, and after performing arithmetic processing on the monitored data, control the entire battery management system through a certain interactive logic.
  • the high-voltage measurement unit may specifically include a high-voltage voltage sampling sub-unit, an insulation detection sub-unit, a current sampling sub-unit, and so on.
  • the first microcontroller and the second microcontroller are in an equal relationship, that is, the two microcontrollers have the same capabilities and jointly assume the control of the entire battery management system.
  • the first microcontroller and the second microcontroller are in a standby relationship, that is, under normal circumstances, the first microcontroller is responsible for the control of the entire battery management system, and the second microcontroller is in a standby state, and when the first microcontroller appears In abnormal situations such as a fault, the second microcontroller is activated by a signal, and the second microcontroller controls the battery management system.
  • the two microcontrollers work simultaneously and independently control the battery management system, or one of the two microcontrollers works , Another backup, thereby avoiding that a microcontroller in the existing battery management system independently assumes the control function.
  • the microcontroller fails, it will cause great risks to the safe operation of the entire vehicle, which improves the battery management system and even the entire The safety of the car.
  • the microcontroller in the battery management system does not need to interact with a large number of diagnostic signals with the vehicle controller, which improves the robustness of the system.
  • the two microcontrollers can monitor each other and back up each other's data, thereby improving the reliability of the design.
  • the control device of the high voltage loop of the battery pack can be jointly controlled by two microcontrollers, so as to avoid the failure of the whole battery management system and the abnormal external high voltage output caused by the failure of one microcontroller.
  • the second embodiment of the present application provides a battery management system.
  • the structure of the battery management system is the same as that of the battery management system provided in the first embodiment. For details, refer to FIG. 1. For similarities, see The specific description of the first embodiment will not be repeated here.
  • the difference from the battery management system provided in the first embodiment is:
  • the battery monitoring module 101 transmits the status of the battery pack 11 to the first microcontroller 102 and/or the second microcontroller 103 through a status signal, and the first microcontroller 102 and the second microcontroller 103 operate normally In the case of the first micro-controller 102 and the second micro-controller 103 respectively acquiring the status signal of the battery pack 11 and the status signal of the battery pack high-voltage circuit At least a part of the battery pack 11 and the battery management system 10 are controlled by the battery monitoring module 101 and the sampling control module 104 to complete the control of the battery pack 11 and the battery management system 10.
  • the second microcontroller 103 controls the battery pack 11 and the battery pack management system 10 to enter a safe state through the sampling control module 104.
  • the second microcontroller 103 processes at least a part of the acquired state of the battery pack 11 and the state of the battery pack high voltage loop, and then transmits the processing result to the first microcontroller 102. After the first microcontroller 102 passes the verification of the processing result of the second microcontroller 103, the battery monitoring module 101 and the sampling control module 104 complete the control of the battery pack 11 and the battery management system 10.
  • the first microcontroller 102 and the second microcontroller 103 cooperate to complete the control of the battery management system, and the first microcontroller 102 and the second microcontroller 103 are complementary
  • the first microcontroller 102 and the second microcontroller 103 have different divisions of labor, they are independent of each other, have complementary responsibilities, and independently control part of the system functions.
  • the first microcontroller 102 and the second microcontroller 103 are in a cooperative relationship.
  • the first microcontroller 102 is responsible for the main functions of the entire battery management system 10, and a small part of the functions are taken by the second microcontroller.
  • the second microcontroller can perform data calculations synchronously, and send the calculation results to the first microcontroller for verification, thereby enhancing system reliability.
  • the first microcontroller receives the data information of the battery monitoring module and sends control instructions to the battery monitoring module; the second microcontroller receives the diagnostic information of the battery monitoring module and passes through the internal diagnostic control logic After processing, the entire battery management system is fault-processed through information interaction with the first microcontroller.
  • the microcontroller in the slave position assists the microcontroller in the dominant position to make judgments by monitoring or receiving the same information, and assists the microcontroller in the dominant position to perform partial functional control to prevent
  • the failure of the microcontroller directly leads to the failure of the back-end load. For example, when the battery loop is turned on unexpectedly, if the microcontroller in the dominant position directly controls the positive switch and the negative switch, once the microcontroller in the dominant position fails, It will cause the positive and negative switches to be turned on or off at the same time, resulting in system failure.
  • the microcontroller in the slave position monitors system faults in real time through some independent monitoring information, and in the event of some serious faults, directly controls the system to enter a safe state, which can effectively prevent the microcontroller in the dominant position. Because the controller needs to process a large amount of data logic, it may not be able to identify the occurrence of a fault based on the monitored data in the first time. For example, the microcontroller in the slave position directly obtains the fault diagnosis signal of the battery monitoring module, and when it is determined that a serious fault occurs, it directly disconnects the negative switch, thereby improving the response speed to the fault. Or, to prevent the battery management system from suddenly losing control due to the failure of the microcontroller in the dominant position and putting the vehicle in a dangerous situation. For example, the microcontroller in the slave position can control the voltage output of the high-voltage circuit, make the vehicle drive with limited power in the event of a fault, and drive the vehicle to a safety loop. Environment.
  • the two microcontrollers work at the same time and cooperate with each other to control the battery management system, thereby avoiding one of the existing battery management systems.
  • the microcontroller independently assumes the control function.
  • the failure of the microcontroller poses a great risk to the safe operation of the entire vehicle and improves the safety of the battery management system and even the entire vehicle.
  • the microcontroller in the battery management system does not need to interact with a large number of diagnostic signals with the vehicle controller, which improves the robustness of the system.
  • one of the two microcontrollers is the main microcontroller, and the other microcontroller is the co-microcontroller.
  • the co-microcontroller assists the main microcontroller to complete certain processing tasks, which can reduce The load of a single microcontroller.
  • FIG. 1 only the first microcontroller directly controls the first high voltage control unit, and the second microcontroller directly controls the second high voltage control unit.
  • the first microcontroller directly controls the second high-voltage control unit in addition to the first high-voltage control unit
  • the first microcontroller is connected to the first high-voltage control unit and the second high-voltage control unit at the same time.
  • the second microcontroller directly controls the first high voltage control unit in addition to controlling the second high voltage control unit, the second microcontroller is simultaneously connected to the first high voltage control unit and the second high voltage control unit.
  • the third embodiment of the present application provides a battery management system.
  • the battery management system is roughly the same as the battery management system provided in the first embodiment.
  • the battery management system is mainly based on actual needs. Set the transmission module in. The content that has been described in the first embodiment will not be repeated here. The following mainly describes the parts not mentioned in the first embodiment in detail.
  • the battery management system 10 further includes a first transmission module 201.
  • the battery monitoring module 101 transmits the status signal of the battery pack 11 to the first microcontroller 102 and the second microcontroller 103 through the first transmission module 201.
  • the first transmission module 201 is used to signal the status of the battery pack 11 monitored by the battery monitoring module 101, After the high-voltage side signal is converted to the low-voltage side signal, it is transmitted to the first microcontroller 102 and the second microcontroller 103.
  • the battery management system 10 further includes a second transmission module 202.
  • the second transmission module 202 is configured to transmit the state signal of the battery pack high-voltage loop obtained by sampling by the high-voltage measuring unit 1041 to the first microcontroller 102 and the second microcontroller 103. And/or, the second transmission module 202 is configured to transmit the control instruction of the first microcontroller 102 to the first high voltage control unit 1042 and/or the second high voltage control unit 1043, and transmit the control instruction of the second microcontroller 103 To the first high voltage control unit 1042 and/or the second high voltage control unit 1043
  • first transmission module 201 and the second transmission module 202 may be provided in the battery management system 10 at the same time, or only the first transmission module 201 may be provided, as shown in FIG. 3, or only the second transmission module may be provided.
  • Module 202 see Shown in Figure 4.
  • the high-voltage measurement unit 1041 includes a first high-voltage measurement sub-unit 401 and a second high-voltage measurement sub-unit 402.
  • the first high-voltage measurement subunit 401 is used to sample and obtain the state signal of the high-voltage circuit of the battery pack, and pass the state signal of the high-voltage circuit of the battery pack through the second transmission module 202.
  • the second transmission module 202 transmits to the first microcontroller 102.
  • the second high-voltage measurement subunit 402 is used to sample and obtain the state signal of the high-voltage circuit of the battery pack, and transmit the state signal of the high-voltage circuit of the battery pack to the second microcontroller 103 through the second transmission module 202.
  • the second transmission module 202 is used to sample the state of the battery pack high-voltage loop obtained by the high-voltage measurement unit 1041 The signal is converted from a high-voltage side signal to a low-voltage side signal, and then transmitted to the first microcontroller 102 and the second microcontroller 103.
  • the second transmission module 202 includes a first isolation unit 403 and a second isolation unit 404.
  • the first isolation unit 403 is configured to convert the state signal of the battery pack high-voltage circuit obtained by sampling by the first high-voltage measurement subunit 401 from the high-voltage side signal to the low-voltage side signal, and then transmit it to the first microcontroller 102.
  • the second isolation unit 404 is configured to convert the state signal of the battery pack high-voltage circuit obtained by sampling by the second high-voltage measurement subunit 402 from the high-voltage side signal to the low-voltage side signal, and then transmit it to the second microcontroller 103.
  • the first isolation unit and the second isolation unit have an isolation function and a communication function, where the isolation function can be implemented by any of a transformer, a capacitor, an isolation chip, and the like.
  • the first high-voltage measurement sub-unit is connected to the first microcontroller, and the second high-voltage measurement sub-unit is connected to the second microcontroller as an example.
  • the first high-voltage measurement sub-unit may Connected to the first microcontroller and the second microcontroller at the same time, the second high voltage measurement sub-unit can be connected to the first microcontroller and the second microcontroller at the same time, that is, the first microcontroller and the second microcontroller can The data of the same high-voltage measurement sub-unit can be obtained together, or the data of different high-voltage measurement sub-units can be obtained separately.
  • the first high-voltage measurement subunit and the second high-voltage measurement subunit have exactly the same monitoring function as an example.
  • the first high-voltage measurement subunit may also monitor the battery.
  • the branch where the positive switch of the group is located, and the second high-voltage measurement subunit monitors the branch where the negative switch of the battery group is located.
  • the second transmission module may also include a third The isolation unit 405 and the fourth isolation unit 406, where the third isolation unit 405 is used to convert the control command of the first microcontroller 102 from the high-side signal to the low-side signal, and then transmit it to the first high-voltage control unit 1042 and The second high voltage control unit 1043.
  • the fourth isolation unit 406 converts the control command of the second microcontroller 103 from the high-voltage side signal to the low-voltage side signal, and transmits it to The first high voltage control unit 1042 and the second high voltage control unit 1043
  • the third isolation unit 405 is used After converting the control command of the first microcontroller 102 from the low-voltage side signal to the high-voltage side signal, it is transmitted to the first high-voltage control unit 1042 and the second high-voltage control unit 1043.
  • the fourth isolation unit 406 converts the control command of the second microcontroller 103 from the low-voltage side signal to the high-voltage side signal, and then transmits it to the first high-voltage control unit 1042 and the second high-voltage control unit 1043
  • the fourth embodiment of the present application provides a battery management system.
  • the battery management system further refines the battery management system described in the second embodiment. In this embodiment, it is mainly used in the battery management system according to actual needs. Set up the transmission module. The content that has been described in the second embodiment will not be repeated here. The following mainly describes the components not mentioned in the second embodiment in detail.
  • the structure of the battery management system provided in the fourth embodiment is the same as the structure shown in FIG. 2, FIG. 3, and FIG. 4, except that: in conjunction with FIG. 2, the battery monitoring module 101 transmits through the first transmission The module 201 transmits a part of the status signal of the battery pack to the first microcontroller 102 and another part of the status signal of the battery pack 11 to the second microcontroller 103
  • the second transmission module 202 is used to transmit the portion of the status signal of the battery high voltage circuit obtained by the high voltage measurement unit 1041 to the first microcontroller 102, and the battery high voltage circuit obtained by sampling the high voltage measurement unit 1041 The other part of the status signal is transmitted to the second microcontroller 103.
  • the second transmission module 202 is configured to transmit all of the state signals of the battery pack high voltage loop obtained by sampling by the high voltage measurement unit 1041 to the first microcontroller 102 and the second microcontroller 103, respectively.
  • first transmission module 201 and the second transmission module 202 may be provided in the battery management system 10 at the same time, or only the first transmission module 201 may be provided, as shown in FIG. 3, or only the second transmission module may be provided.
  • Module 202 see FIG. 4.
  • the first transmission module 201 is used to monitor the status signal of the battery pack 11 by the battery monitoring module 101, After converting the high-voltage side signal to the low-voltage side signal, a part of the state signal of the battery pack 11 is transmitted to the first microcontroller 102, and the other part of the state signal of the battery pack 11 is transmitted to the second microcontroller 103.
  • the first microcontroller 102 and the second microcontroller 103 can directly obtain the data of the battery monitoring module 101 , No need to set A transmission module 201 only needs to provide a second transmission module between the first microcontroller 102, the second microcontroller 103 and the sampling control module 104 to achieve high and low voltage signal isolation.
  • the second transmission module 202 is configured to sample the status signal of the battery pack high-voltage circuit obtained by the high-voltage measurement unit 1041, and after converting the high-voltage side signal to the low-voltage side signal, transmit the part of the battery pack high-voltage circuit status signal to the first micro
  • the controller 102 transmits another part of the status signal of the battery pack high-voltage circuit to the second microcontroller 103.
  • the second transmission module 202 is configured to convert the state signal of the battery pack high-voltage circuit obtained by the high-voltage measurement unit 1041 from the high-voltage side signal to the low-voltage side signal, and then transmit the signal to the first microcontroller 102 and the second microcontroller respectively. ⁇ 103.
  • the second transmission module further includes a third isolation unit 405 And the fourth isolation unit 406, where the third isolation unit 405 is used to convert the control command of the first microcontroller 102 from the high-voltage side signal to the low-voltage side signal, and then transmit it to the first high-voltage control unit 1042 and/or the second Two high voltage control unit 1043.
  • the fourth isolation unit 406 converts the control command of the second microcontroller 103 from the high-voltage side signal to the low-voltage side signal, and then transmits it to the first high-voltage control unit 1042 and/or the second high-voltage control unit 1043
  • the third isolation unit 405 is used After converting the control command of the first microcontroller 102 from the low-voltage side signal to the high-voltage side signal, it is transmitted to the first high-voltage control unit 1042 and/or the second high-voltage control unit 1043.
  • the fourth isolation unit 406 controls the second micro-control After the control command of the device 103 is converted from the low-voltage side signal to the high-voltage side signal, it is transmitted to the first high-voltage control unit 1042 and/or the second high-voltage control unit 1043
  • the communication between the high-voltage area and the low-voltage area needs to pass through the isolation unit.
  • the figure shown in the figure is the case where the third isolation unit and the fourth isolation unit are included at the same time, or only the third isolation unit can be provided as required. Or the fourth isolation unit, the principle of setting is the same as above.
  • the first transmission module 201 includes an isolation unit 501 and a communication unit
  • the isolation unit 501 is used to signal the state of the battery pack 11 monitored by the battery monitoring module 101 from the high voltage After the side signal is converted into a low-voltage side signal, the communication signal in the battery pack status signal is transmitted to the first microcontroller 102 through the communication unit 502; and used to transfer the control command transmitted through the communication unit 502 from the low-voltage side signal After being converted into a high-voltage side signal, it is transmitted to the battery monitoring module 101; and the fault diagnosis signal in the status signal of the battery pack is converted from a high-voltage side signal to a low-side signal, and then transmitted to the second microcontroller 103.
  • a first transmission module 201 includes an isolation unit 601, the communication unit 602 and the control unit 603 o
  • the isolation unit 601 is used to convert the state signal of the battery pack 11 monitored by the battery monitoring module 101 from the high-voltage side signal to the low-voltage side signal, and then transmit the state signal of the battery pack to the first microcomputer through the communication unit 602.
  • the controller 102 transmits to the control unit 603, or transmits a part of the status signal of the battery pack to the first microcontroller 102 through the communication unit 602, and transmits the other part to the control unit 603.
  • the control unit 603 determines the diagnosis result of the state of the battery pack according to the acquired state signal of the battery pack, and transmits the diagnosis result to the second microcontroller 103.
  • the communication unit in FIG. 5 and FIG. 6 may be composed of multiple communication sub-units connected by a series of serial or parallel data communication methods such as CAN bus, daisy chain, etc.
  • the communication unit may also be set as required Sub-unit with data communication format conversion function.
  • the second microcontroller directly controls the second high voltage control unit. If the first microcontroller directly controls the second high voltage control unit in addition to the first high voltage control unit, the first microcontroller is also connected to the first high voltage control unit. In the same way, if the second microcontroller directly controls the first high voltage control unit in addition to the second high voltage control unit, the second microcontroller is connected to the first high voltage control unit and the second high voltage control unit at the same time. High voltage control unit.
  • the first microcontroller directly controls the first high voltage control unit, and the second microcontroller directly controls the second high voltage control unit as an example. If the first microcontroller controls the first high voltage The control unit also directly controls the second high-voltage control unit, and the first microcontroller is connected to the first high-voltage control unit and the second high-voltage control unit at the same time. Similarly, if the second microcontroller also controls the second high-voltage control unit, If the first high-voltage control unit is directly controlled, the second microcontroller is simultaneously connected to the first high-voltage control unit and the second high-voltage control unit.
  • the communication or connection between the various components of the battery management system 10 and the peripheral components may be implemented by plug-in connection, welding connection, wireless transmission and other methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例涉及新能源汽车领域,公开了一种电池管理系统,使得能够增加电池管理系统系统运行的安全性以及提高系统鲁棒性。该系统包括电池监控模块101、第一微控制器102、第二微控制器103和采样控制模块104,所述第一微控制器102与所述第二微控制器103连接;电池监控模块101用于监控电池组11的状态,并将电池组11的状态通过状态信号分别传输给第一微控制器102与第二微控制器103,以及用于根据第一微控制器102与第二微控制器103发出的控制指令控制电池组11的状态;采样控制模块104用于监测电池组11高压回路的状态,将电池组11高压回路的状态通过状态信号分别传输给第一微控制器102与第二微控制器103,以及用于按照第一微控制器102与第二微控制器103发出的控制指令控制电池组11高压回路的状态。

Description

电池管理系统 交叉引用
[0001] 本申请引用于 2019年 02月 25日递交的名称为“电池管理系统”的第 2019101360596 号中国专利申请, 其通过引用被全部并入本申请。
技术领域
[0002] 本申请实施例涉及新能源汽车领域, 特别涉及一种电池管理系统。
背景技术
[0003] 目前, 新能源汽车已经被纳入节能减排的重大战略之中, 随着各种优惠政策对新能源 汽车的倾斜, 越来越多的企业加入到该新能源汽车领域。 但是, 新能源汽车领域还面临着很 多挑战, 如核心技术缺乏竞争力、 基础配套设备不够完善、 技术标准不统一、 生产准入门槛 低等。 电动汽车作为人们出行的重要交通工具, 安全问题是消费者和车企最为关心和重视的 问题。 其中, 电动汽车的动力安全问题是各车企亟待解决的问题, 尤其是为电动汽车提供动 力的电池的安全问题。
[0004] 发明人在研究现有技术的过程中发现,电动汽车电池包的状态信息由电池管理系统监 控, 目前行业普遍设计中, 电池管理系统中所有的控制逻辑和测量均以程序的形式存在一个 微控制器中, 以实现电池管理系统对电芯的管理以及与整车控制器的通讯及信息交换。但是, 一旦微控制器出现故障, 电池管理系统将失去电池电压及温度采集功能、 绝缘监测功能、 继 电器控制功能等等。 可见, 微控制器作为电池管理系统的中枢大脑, 一旦出现故障, 整车有 可能产生极大风险, 车辆功能会受到极大影响, 甚至威胁到车内人员生命安全。 虽然, 有方 案通过设计整车控制器电池管理系统互相诊断的策略, 以互相监督的方式来尽量解决单个微 控制器失控带来的影响。 但是, 该方式中大量诊断信号使得软件复杂度提升, 系统鲁棒性降 低。 并且, 电池管理系统中的微控制器独立承担的功能, 在微控制器失效后无法通过增加与 整车控制器的相互诊断方式覆盖。 发明内容
[0005] 本申请实施例的目的在于提供一种电池管理系统,使得能够增加电池管理系统运行的 安全性以及提高系统鲁棒性。
[0006] 为解决上述技术问题, 本申请的实施例提供了一种电池管理系统, 包括: 电池监控模 块、 第一微控制器、 第二微控制器和采样控制模块, 所述第一微控制器与所述第二微控制器 连接; 所述电池监控模块用于监控电池组的状态, 并将所述电池组的状态通过状态信号分别 传输给所述第一微控制器和所述第二微控制器, 以及用于根据所述第一微控制器和所述第二 微控制器发出的控制指令控制所述电池组的状态; 所述采样控制模块用于监测电池组高压回 路的状态, 将所述电池组高压回路的状态通过状态信号分别传输给所述第一微控制器和所述 第二微控制器, 以及用于按照所述第一微控制器以及所述第二微控制器发出的控制指令控制 所述电池组高压回路的状态; 在所述第一微控制器和所述第二微控制器正常运行的情况下, 所述第一微控制器和所述第二微控制器分别获取所述电池组的状态信号以及所述电池组高压 回路的状态信号, 并且, 所述第一微控制器和所述第二微控制器根据所述电池组的状态信号 以及所述电池组高压回路的状态信号, 各自独立通过所述电池监控模块以及所述采样控制模 块完成对电池组以及电池管理系统的控制, 或者, 所述第一微控制器根据所述电池组的状态 信号以及所述电池组高压回路的状态信号, 独立通过所述电池监控模块以及所述采样控制模 块完成对电池组以及电池管理系统的控制, 所述第二微控制器处于备用状态。
[0007] 另外,若所述第一微控制器和所述第二微控制器根据所述电池组的状态信号以及所述 电池组高压回路的状态信号, 各自独立通过所述电池监控模块以及所述采样控制模块完成对 电池组以及电池管理系统的控制, 则在所述第一微控制器和所述第二微控制器中的任意一个 微控制器失效的情况下, 未失效的微控制器独立完成对所述电池组的管理控制。
[0008] 另外,若所述第一微控制器根据所述电池组的状态信号以及所述电池组高压回路的状 态信号, 独立通过所述电池监控模块以及所述采样控制模块完成对电池组以及电池管理系统 的控制, 所述第二微控制器处于备用状态, 则所述第二微控制器监测到所述第一微控制器失 效的情况下, 独立通过所述电池监控模块以及所述采样控制模块完成对电池组以及电池管理 系统的控制。
[0009] 另外,所述采样控制模块包括高压测量单元、第一高压控制单元和第二高压控制单元; 所述高压测量单元用于采样获得所述电池组高压回路的状态信号, 将所述电池组高压回路的 状态信号传输给所述第一微控制器和所述第二微控制器; 所述第一高压控制单元用于根据所 述第一微控制器和 /或所述第二微控制器的控制指令, 控制所述电池组高压回路中第一开关单 元的状态; 所述第二高压控制单元用于根据所述第一微控制器和 /或所述第二微控制器的控制 指令, 控制所述电池组高压回路中第二开关单元的状态。
[0010] 另外, 所述电池管理系统还包括第一传输模块; 所述电池监控模块通过所述第一传输 模块将所述电池组的状态信号传输给所述第一微控制器和所述第二微控制器。
[0011] 另外, 所述电池管理系统还包括第二传输模块; 所述第二传输模块用于将所述高压测 量单元采样获得的所述电池组高压回路的状态信号, 传输给所述第一微控制器和所述第二微 控制器; 和 /或,将所述第一微控制器的控制指令传输给所述第一高压控制单元和 /或所述第二 高压控制单元, 将所述第二微控制器的控制指令传输给所述第一高压控制单元和 /或所述第二 高压控制单元。
[0012] 另外, 所述高压测量单元包括第一高压测量子单元和第二高压测量子单元; 所述第一 高压测量子单元用于采样获得所述电池组高压回路的状态信号, 并将所述电池组高压回路的 状态信号, 通过所述第二传输模块传输给所述第一微控制器; 所述第二高压测量子单元用于 采样获得所述电池组高压回路的状态信号, 并将所述电池组高压回路的状态信号, 通过所述 第二传输模块传输给所述第二微控制器。
[0013] 另外, 所述第二传输模块包括第一隔离单元和第二隔离单元; 所述第一隔离单元用于 将所述第一高压测量子单元采样获得的所述电池组高压回路的状态信号, 从高压侧信号转换 为低压侧信号后, 传输给所述第一微控制器; 所述第二隔离单元用于将所述第二高压测量子 单元采样获得的所述电池组高压回路的状态信号, 从高压侧信号转换为低压侧信号后, 传输 给所述第二微控制器。
[0014] 另外, 所述第二传输模块还包括第三隔离单元和第四隔离单元; 所述第三隔离单元用 于将所述第一微控制器的控制指令, 从高压侧信号转换为低压侧信号后, 传输给所述第一高 压控制单元和所述第二高压控制单元; 所述第四隔离单元用于将所述第二微控制器的控制指 令, 从高压侧信号转换为低压侧信号后, 传输给所述第一高压控制单元和所述第二高压控制 单元。
[0015] 另外, 所述电池监控模块位于高压区, 所述第一微控制器和所述第二微控制器位于低 压区; 所述第一传输模块用于对所述电池监控模块监控的所述电池组的状态信号, 从高压侧 信号转换为低压侧信号后, 传输给所述第一微控制器和所述第二微控制器。
[0016] 另外, 所述高压测量单元位于高压区, 所述第一微控制器和所述第二微控制器位于低 压区; 所述第二传输模块用于对所述高压测量单元采样获得的所述电池组高压回路的状态信 号, 从高压侧信号转换为低压侧信号后, 传输给所述第一微控制器和所述第二微控制器。 [0017] 为解决上述技术问题, 本申请的实施例还提供了一种电池管理系统, 包括: 电池监控 模块、 第一微控制器和第二微控制器和采样控制模块, 所述第一微控制器与所述第二微控制 器连接; 所述电池监控模块用于监控电池组的状态, 并将所述电池组的状态通过状态信号分 别传输给所述第一微控制器和 /或所述第二微控制器, 以及用于根据所述第一微控制器和所述 第二微控制器发出的控制指令控制所述电池组的状态; 所述采样控制模块用于监测电池组高 压回路的状态, 将所述电池组高压回路的状态通过状态信号分别传输给所述第一微控制器和 所述第二微控制器, 以及用于按照所述第一微控制器以及所述第二微控制器发出的控制指令 控制所述电池组高压回路的状态; 在所述第一微控制器和所述第二微控制器正常运行的情况 下, 所述第一微控制器和所述第二微控制器各自获取所述电池组的状态信号以及所述电池组 高压回路的状态信号中的至少一部分, 并根据各自所获取的信号相互协作, 通过所述电池监 控模块以及所述采样控制模块完成对电池组以及电池管理系统的控制。
[0018] 另外, 在所述第一微控制器失效的情况下, 所述第二微控制器通过所述采样控制模块 控制所述电池组以及所述电池组管理系统进入安全状态。
[0019] 另外,所述第二微控制器对获取的所述电池组的状态以及所述电池组高压回路的状态 中的至少一部分进行处理后, 将处理结果传输至所述第一微控制器; 所述第一微控制对所述 第二微控制器的处理结果校验通过后, 通过所述电池监控模块以及所述采样控制模块完成对 电池组以及电池管理系统的控制。
[0020] 另外,所述采样控制模块包括高压测量单元、第一高压控制单元和第二高压控制单元; 所述高压测量单元用于采样获得所述电池组高压回路的状态信号, 将所述电池组高压回路的 状态信号传输给所述第一微控制器和所述第二微控制器; 所述第一高压控制单元用于根据所 述第一微控制器和 /或所述第二微控制器的控制指令, 控制所述电池组高压回路中第一开关单 元的状态; 所述第二高压控制单元用于根据所述第一微控制器和 /或所述第二微控制器的控制 指令, 控制所述电池组高压回路中第二开关单元的状态。
[0021] 另外, 所述电池管理系统还包括第一传输模块; 所述电池监控模块通过所述第一传输 模块将所述电池组的状态信号中的一部分传输给所述第一微控制器, 以及将所述电池组的状 态信号的另一部分传输给所述第二微控制器。
[0022] 另外, 所述电池管理系统还包括第二传输模块; 所述第二传输模块用于将所述高压测 量单元采样获得的所述电池组高压回路的状态信号的部分, 传输给所述第一微控制器, 以及 将所述高压测量单元采样获得的所述电池组高压回路的状态信号的另一部分, 传输给所述第 二微控制器; 和 /或,将所述第一微控制器的控制指令传输给所述第一高压控制单元和 /或所述 第二高压控制单元, 将所述第二微控制器的控制指令传输给所述第一高压控制单元和 /或所述 第二高压控制单元; 或者, 所述第二传输模块用于将所述高压测量单元采样获得的所述电池 组高压回路的状态信号的全部, 分别传输给所述第一微控制器和所述第二微控制器; 和 /或, 将所述第一微控制器的控制指令传输给所述第一高压控制单元和 /或所述第二高压控制单元, 将所述第二微控制器的控制指令传输给所述第一高压控制单元和 /或所述第二高压控制单元。
[0023] 另外, 所述高压测量单元包括第一高压测量子单元和第二高压测量子单元; 所述第一 高压测量子单元用于采样获得所述电池组高压回路的状态信号, 并将所述电池组高压回路的 状态信号, 通过所述第二传输模块传输给所述第一微控制器; 所述第二高压测量子单元用于 采样获得所述电池组高压回路的状态信号, 并将所述电池组高压回路的状态信号, 通过所述 第二传输模块传输给所述第二微控制器。
[0024] 另外, 所述第二传输模块包括第一隔离单元和第二隔离单元; 所述第一隔离单元用于 将所述第一高压测量子单元采样获得的所述电池组高压回路的状态信号, 传输给所述第一微 控制器; 所述第二隔离单元用于将所述第二高压测量子单元采样获得的所述电池组高压回路 的状态信号, 传输给所述第二微控制器。
[0025] 另外, 所述第二传输模块还包括第三隔离单元和第四隔离单元; 所述第三隔离单元用 于将所述第一微控制器的控制指令, 从高压侧信号转换为低压侧信号后, 传输给所述第一高 压控制单元和 /或所述第二高压控制单元; 所述第四隔离单元用于将所述第二微控制器的控制 指令, 从高压侧信号转换为低压侧信号后, 传输给所述第一高压控制单元和 /或所述第二高压 控制单元。
[0026] 另外, 所述电池监控模块位于高压区, 所述第一微控制器和所述第二微控制器位于低 压区; 所述第一传输模块用于对所述电池监控模块监控的所述电池组的状态信号, 从高压侧 信号转换为低压侧信号后, 将所述电池组的状态信号的一部分传输给所述第一微控制器, 将 所述电池组的状态信号的另一部分传输给所述第二微控制器。
[0027] 另外, 所述第一传输模块包括隔离单元和通信单元; 所述隔离单元用于对所述电池监 控模块监控的所述电池组的状态信号, 从高压侧信号转换为低压侧信号后, 将所述电池组的 状态信号中的通讯信号, 通过所述通信单元传输给所述第一微控制器; 以及用于将通过所述 通信单元传输的控制指令, 从低压侧信号转换为高压侧信号后, 传输给所述电池监控模块; 以及用于将所述电池组的状态信号中的故障诊断信号, 从高压侧信号转换为低压侧信号后, 传输给所述第二微控制器。
[0028] 另外, 所述第一传输模块包括隔离单元、 通信单元和控制单元; 所述隔离单元用于对 所述电池监控模块监控的电池组的状态信号, 从高压侧信号转换为低压侧信号后, 将电池组 的状态信号通过所述通信单元传输给所述第一微控制器, 以及传输给所述控制单元, 或者, 将电池组的状态信号的一部分通过所述通信单元传输给所述第一微控制器, 另一部分传输给 所述控制单元; 所述控制单元根据获取到的电池组的状态信号, 确定对电池组的状态的诊断 结果, 并将诊断结果传输给所述第二微控制器。
[0029] 另外, 所述高压测量单元位于高压区, 所述第一微控制器和所述第二微控制器位于低 压区; 所述第二传输模块用于对所述高压测量单元采样获得的所述电池组高压回路的状态信 号, 从高压侧信号转换为低压侧信号后, 将所述电池组高压回路的状态信号的部分, 传输给 所述第一微控制器, 将所述电池组高压回路的状态信号的另一部分, 传输给所述第二微控制 器; 或者, 所述第二传输模块用于将所述高压测量单元采样获得的所述电池组高压回路的状 态信号, 从高压侧信号转换为低压侧信号后, 分别传输给所述第一微控制器和所述第二微控 制器。
[0030] 本申请实施例相对于现有技术而言, 通过在电池管理系统中设置两个微控制器, 两个 微控制器同时工作且各自独立控制电池管理系统, 或者, 两个微控制器中的一个工作, 另一 个备用, 从而避免了现有电池管理系统中的一个微控制器独立承担控制功能, 一旦该微控制 器故障会对整车安全运行造成极大风险的问题, 提高电池管理系统乃至整车的安全性。并且, 该电池管理系统中微控制器无需与整车控制器交互大量诊断信号, 提高了系统鲁棒性。
[0031] 或者, 通过在电池管理系统中设置两个微控制器, 两个微控制器同时工作且相互协作 控制电池管理系统, 从而避免了现有电池管理系统中的一个微控制器独立承担控制功能, 该 微控制器故障对整车安全运行造成的极大风险, 提高电池管理系统乃至整车的安全性。并且, 该电池管理系统中微控制器无需与整车控制器交互大量诊断信号, 提高了系统鲁棒性。
附图说明
[0032] 一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并 不构成对实施例的限定, 附图中具有相同参考数字标号的元件表示为类似的元件, 除非有特 别申明, 附图中的图不构成比例限制。
[0033] 图 1是根据本申请第一或第二实施例提供的电池管理系统的结构示意图;
[0034] 图 2是根据本申请第三或第四实施例提供的电池管理系统的结构示意图之一
[0035] 图 3是根据本申请第三或第四实施例提供的电池管理系统的结构示意图之二
[0036] 图 4是根据本申请第三或第四实施例提供的电池管理系统的结构示意图之三 [0037] 图 5是根据本申请第四实施例提供的电池管理系统的结构示意图之四;
[0038] 图 6是根据本申请第四实施例提供的电池管理系统的结构示意图之五。
具体实施例 [0039] 为使本申请实施例的目的、技术方案和优点更加清楚, 下面将结合附图对本申请的各 实施例进行详细的阐述。 然而, 本领域的普通技术人员可以理解, 在本申请各实施例中, 为 了使读者更好地理解本申请而提出了许多技术细节。 但是, 即使没有这些技术细节和基于以 下各实施例的种种变化和修改, 也可以实现本申请所要求保护的技术方案。
[0040] 本文中为部件所编序号本身, 例如“第 “第二”等, 仅用于区分所描述的对象, 不 具有任何顺序或技术含义。 而本申请所说“连接”、 “联接”, 如无特别说明, 均包括直接和间 接连接 (联接) 。
[0041] 本文中类似“A和 /或 B”描述方式, 所表达的是包括 A和 B中的任意一个, 以及同时 包括 A和 B这三种方案。
[0042] 为了解决现有的电池管理系统中仅有一个微控制器,若该微控制器故障会对整车产生 极大风险的问题, 本申请以下各实施例中提供了一种电池管理系统, 主要思想是在电池管理 系统中设置两个微控制器, 通过设计冗余的微控制器, 当其中一个微控制器失效时能够被另 外一个微控制器有效识别, 并在一定时间内维持电池管理系统功能正常, 以便车辆能够进入 安全状态。
[0043] 以下第一实施例主要是对两个微控制器均能够独立控制电池管理系统的情况进行说 明, 第二实施例主要是对两个微控制器通过协作控制电池管理系统的情况进行说明。 第三实 施例主要是对第一实施例的进一步结构细化, 第四实施例主要是对第二实施例描述的情况的 进一步结构细化。
[0044] 以下各实施例中, 电池组是高压器件供电电源, 一般是由锂电池或铅酸电池等单体组 成。
[0045] 本申请第一实施例中提供了一种电池管理系统 10, 如图 1所示, 该系统主要包括: 电池监控模块 101、 第一微控制器 102、 第二微控制器 103和采样控制模块 104, 第一微控制 器 102与第二微控制器 103连接。
[0046] 其中, 电池监控模块 101用于监控电池组 11的状态, 并将电池组 11的状态通过状态 信号分别传输给第一微控制器 102和第二微控制器 103, 以及用于根据第一微控制器 102和 第二微控制器 103发出的控制指令控制电池组 11的状态。 [0047] 在一个例子中, 电池监控模块直接与电池组相连, 采集电池组的电池参数, 该电池参 数包括电池组的电芯电压、 电池组温度等, 这些电池参数能够反映电池组的状态。 并且, 电 池监控模块具有电池组均衡功能, 电池均衡利用电力电子技术, 使电池组电压偏差保持在预 期的范围内, 从而保证每个单体电池在正常使用时保持相同状态, 以避免过充、 过放的发生。 电池监控模块可输出两路信号, 一路为通讯信号, 用于传送采集到的电池组的电池参数, 以 及接收第一微控制器和 /或第二微控制器的控制指令; 另一路为内部的故障诊断信号, 传送给 第一微控制器和 /或第二微控制器, 以用于电池组故障监控。
[0048] 采样控制模块 104用于监测电池组高压回路的状态,将电池组高压回路的状态通过状 态信号分别传输给第一微控制器 102和第二微控制器 103, 以及用于按照第一微控制器 102 以及第二微控制器 103发出的控制指令控制电池组高压回路的状态。 例如, 采样控制模块对 电池组高压回路进行电压采样、 绝缘监测、 电流采样等操作, 以对电池组高压回路进行监测。
[0049] 在第一微控制器 102和第二微控制器 103正常运行的情况下,第一微控制器 102和第 二微控制器 103分别获取电池组 11的状态信号以及电池组高压回路的状态信号, 并且, 第一 微控制器 102和第二微控制器 103根据电池组 11 的状态信号以及电池组高压回路的状态信 号,各自独立通过电池监控模块 101以及采样控制模块 104完成对电池组 11以及电池管理系 统 10的控制, 或者, 第一微控制器 102根据电池组 10的状态信号以及电池组高压回路的状 态信号,独立通过电池监控模块 101以及采样控制模块 104完成对电池组 11以及电池管理系 统 10的控制, 第二微控制器 103处于备用状态。
[0050] 一个具体实施中, 若第一微控制器 102和第二微控制器 103根据电池组 11的状态信 号以及电池组高压回路的状态信号, 各自独立通过电池监控模块 101 以及采样控制模块 104 完成对电池组 11 以及电池管理系统 10的控制, 则在第一微控制器 102和第二微控制器 103 中的任意一个微控制器失效的情况下, 未失效的微控制器独立完成对电池组 11的管理控制。
[0051] 另一个具体实施中, 若第一微控制器 102根据电池组 11的状态信号以及电池组高压 回路的状态信号,独立通过电池监控模块 101以及采样控制模块 104完成对电池组 11以及电 池管理系统 10的控制, 第二微控制器 103处于备用状态, 则第二微控制器 103监测到第一微 控制器 102失效的情况下, 独立通过电池监控模块 101以及采样控制模块 104完成对电池组 11以及电池管理系统 10的控制。
[0052] 在一个例子中, 采样控制模块 104包括高压测量单元 1041、 第一高压控制单元 1042 和第二高压控制单元 1043。 高压测量单元 1041用于采样获得电池组高压回路的状态信号, 将电池组高压回路的状态信号传输给第一微控制器 102和第二微控制器 103 [0053] 其中,第一高压控制单元 1042和第二高压控制单元 1043可以由第一微控制器 102和 第二微控制器 103中的任意一个控制, 也可以是由第一微控制器 102和第二微控制器 103共 同控制。 在一个例子中, 第一高压控制单元 1042用于根据第一微控制器 102和 /或第二微控 制器 103 的控制指令, 控制电池组高压回路中第一开关单元 12 的状态。 第二高压控制单元 1043用于根据第一微控制器 102和 /或第二微控制器 103的控制指令,控制电池组高压回路中 第二开关单元 13的状态。在一个例子中, 第一开关单元 12和第二开关单元 13采用可控的开 关元器件实现, 例如继电器、 保险丝 (fuse) 等。 其中, 第一开关单元和第二开关单元用于 控制电池组的能量传输, 第一开关单元可以是电池组的正极开关, 第二开关单元可以是电池 组的负极开关。 第一微控制器和第二微控制器通过高压测量单元监控高压信息, 并对监控到 的数据进行运算处理后, 通过一定的交互逻辑实现对整个电池管理系统的控制。 高压测量单 元内具体可包括高压电压采样子单元、 绝缘检测子单元、 电流采样子单元等等。
[0054] 本申请第一实施例中, 第一微控制器和第二微控制器为平等关系, 即两个微控制器具 有相同的能力, 共同承担整个电池管理系统的控制。 或者, 第一微控制器和第二微控制器为 备用关系, 即正常情况下第一微控制器负责整个电池管理系统的控制, 第二微控制器处于备 用状态, 当第一微控制器出现故障等异常情况时, 通过信号激活第二微控制器, 由第二微控 制器控制电池管理系统。
[0055] 本申请第一实施例中, 通过在电池管理系统中设置两个微控制器, 两个微控制器同时 工作且各自独立控制电池管理系统, 或者, 两个微控制器中的一个工作, 另一个备用, 从而 避免了现有电池管理系统中的一个微控制器独立承担控制功能, 一旦该微控制器故障会对整 车安全运行造成极大风险的问题, 提高了电池管理系统乃至整车的安全性。 并且, 该电池管 理系统中微控制器无需与整车控制器交互大量诊断信号, 提高了系统鲁棒性。
[0056] 并且, 通过微控制器的冗余设计, 两个微控制器可以相互监控及相互数据备份, 提高 设计的可靠性。 电池组高压回路的控制器件可以由两个微控制器共同控制, 从而避免因一路 微控制器失效而导致整个电池管理系统故障和外部高压输出异常的情况。
[0057] 本申请第二实施例提供了一种电池管理系统,该电池管理系统的结构与第一实施例中 提供的电池管理系统的结构相同, 具体参见图 1所示, 相同之处可参见第一实施例的具体描 述, 此处不再重述。 与第一实施例提供的电池管理系统的不同之处在于:
[0058] 电池监控模块 101将电池组 11的状态通过状态信号传输给第一微控制器 102和 /或第 二微控制器 103 , 在第一微控制器 102和第二微控制器 103正常运行的情况下, 第一微控制 器 102和第二微控制器 103各自获取电池组 11的状态信号以及电池组高压回路的状态信号中 的至少一部分, 并根据各自所获取的信号相互协作, 通过电池监控模块 101 以及采样控制模 块 104完成对电池组 11以及电池管理系统 10的控制。
[0059] 一个具体实施中, 在第一微控制器 102失效的情况下, 第二微控制器 103通过采样控 制模块 104控制电池组 11以及电池组管理系统 10进入安全状态。
[0060] 另一个具体实施中, 第二微控制器 103对获取的电池组 11的状态以及电池组高压回 路的状态中的至少一部分进行处理后, 将处理结果传输至第一微控制器 102。 第一微控制器 102对第二微控制器 103的处理结果校验通过后, 通过电池监控模块 101 以及采样控制模块 104完成对电池组 11以及电池管理系统 10的控制。
[0061] 本申请第二实施例中,第一微控制器 102和第二微控制器 103为相互协作完成对电池 管理系统的控制, 第一微控制器 102和第二微控制器 103为互补关系, 第一微控制器 102和 第二微控制器 103分工不同, 两者相互独立, 职责互补, 分别独立控制系统部分功能。 或者, [0062] 第一微控制器 102和第二微控制器 103为协同关系, 例如, 第一微控制器 102负责整 个电池管理系统 10的主要功能, 少部分功能由第二微控制器负责, 并且对于第一微控制器负 责的部分重要功能, 可以由第二微控制器同步进行数据计算, 并将计算结果发送给第一微控 制器进行校验, 增强系统可靠性。 以对电池监控模块的控制为例, 第一微控制器接收电池监 控模块的数据信息, 并且发送控制指令给电池监控模块; 第二微控制器接收电池监控模块的 诊断信息, 经过内部诊断控制逻辑处理后, 通过与第一微控制器之间的信息交互, 对整个电 池管理系统进行故障处理。
[0063] 处于协从位置的微控制器通过监控或者接收相同信息的方式来辅助处于主导位置的 微控制器进行判断, 并且协助处于主导位置的微控制器进行部分功能控制, 防止处于主导位 置的微控制器失效后直接导致后端负载故障, 例如在电池组回路非预期的开启的情况下, 若 处于主导位置的微控制器直接控制正极开关和负极开关 旦处于主导位置的微控制器故障, 将会导致正极和负极开关同时开启或关闭, 从而导致系统故障。 若处于协从位置的微控制器 通过一些独立的监控信息, 对系统故障进行实时监控, 并在某些严重故障发生的情况下, 直 接控制系统进入安全状态, 则可以有效防止处于主导位置的微控制器由于需要处理大量数据 逻辑, 可能无法第一时间根据监控到的数据识别故障的情况发生。 例如, 处于协从位置的微 控制器直接获取电池监控模块的故障诊断信号, 在确定出现严重故障的情况下, 直接断开负 极开关, 从而能够提高对故障的响应速度。 或者, 防止由于处于主导位置的微控制器失效, 导致电池管理系统突然失控而使得车辆处于危险境地。 例如, 处于协从位置的微控制器可控 制高压回路的电压输出, 在确定出现故障的情况下使车辆限功率行驶, 将车辆行驶至安全环 境。
[0064] 本申请第二实施例中, 通过在电池管理系统中设置两个微控制器, 两个微控制器同时 工作且相互协作控制电池管理系统, 从而避免了现有电池管理系统中的一个微控制器独立承 担控制功能, 该微控制器故障对整车安全运行造成的极大风险, 提高了电池管理系统乃至整 车的安全性。 并且, 该电池管理系统中微控制器无需与整车控制器交互大量诊断信号, 提高 了系统鲁棒性。
[0065] 并且,两个微控制器中的一个微控制器为主微控制器,另一个微控制器为协微控制器, 协微控制器协助主微控制器完成一定的处理任务, 能够降低单一微控制器的负荷。
[0066] 需要说明的是, 适用于以上第一实施例和第二实施例, 图 1中仅以第一微控制器直接 控制第一高压控制单元, 第二微控制器直接控制第二高压控制单元为例, 若第一微控制器除 了控制第一高压控制单元, 还直接控制第二高压控制单元, 则第一微控制器同时连接第一高 压控制单元和第二高压控制单元, 同理, 若第二微控制器除了控制第二高压控制单元, 还直 接控制第一高压控制单元,则第二微控制器同时连接第一高压控制单元和第二高压控制单元。
[0067] 本申请第三实施例中提供了一种电池管理系统,该电池管理系统与第一实施例所提供 的电池管理系统大致相同, 第三实施例中主要是根据实际需要在电池管理系统中设置传输模 块。 对于第一实施例中已经描述的内容此处不再重复, 以下主要对第一实施例中未提及的部 分进行详细描述。
[0068] 在一个例子中, 如图 2所示, 电池管理系统 10中还包括第一传输模块 201。 电池监 控模块 101通过第一传输模块 201将电池组 11的状态信号传输给第一微控制器 102和第二微 控制器 103。
[0069] 假设电池监控模块 101位于高压区,第一微控制器 102和第二微控制器 103位于低压 区; 第一传输模块 201用于对电池监控模块 101监控的电池组 11的状态信号, 从高压侧信号 转换为低压侧信号后, 传输给第一微控制器 102和第二微控制器 103。
[0070] 在一个例子中, 电池管理系统 10还包括第二传输模块 202。 第二传输模块 202用于 将高压测量单元 1041采样获得的电池组高压回路的状态信号,传输给第一微控制器 102和第 二微控制器 103。 和 /或, 第二传输模块 202用于将第一微控制器 102的控制指令传输给第一 高压控制单元 1042和 /或第二高压控制单元 1043, 将第二微控制器 103的控制指令传输给第 一高压控制单元 1042和 /或第二高压控制单元 1043
[0071] 需要说明的是, 电池管理系统 10中可以同时设置第一传输模块 201和第二传输模块 202, 也可以仅设置第一传输模块 201, 参见图 3所示, 或者仅设置第二传输模块 202, 参见 图 4所示。
[0072] 在一个例子中, 高压测量单元 1041包括第一高压测量子单元 401和第二高压测量子 单元 402。 其中, 如图 4所示, 在设置第二传输模块 202的情况下, 第一高压测量子单元 401 用于采样获得电池组高压回路的状态信号, 并将电池组高压回路的状态信号, 通过第二传输 模块 202传输给第一微控制器 102。 第二高压测量子单元 402用于采样获得电池组高压回路 的状态信号, 并将电池组高压回路的状态信号, 通过第二传输模块 202传输给第二微控制器 103。
[0073] 假设高压测量单元 1041位于高压区, 第一微控制器 102和第二微控制器 103位于低 压区; 第二传输模块 202用于对高压测量单元 1041采样获得的电池组高压回路的状态信号, 从高压侧信号转换为低压侧信号后, 传输给第一微控制器 102和第二微控制器 103。
[0074] 在一个例子中, 第二传输模块 202包括第一隔离单元 403和第二隔离单元 404。 如图 4所示, 第一隔离单元 403用于将第一高压测量子单元 401采样获得的电池组高压回路的状 态信号, 从高压侧信号转换为低压侧信号后, 传输给第一微控制器 102。 第二隔离单元 404 用于将第二高压测量子单元 402采样获得的电池组高压回路的状态信号, 从高压侧信号转换 为低压侧信号后, 传输给第二微控制器 103。
[0075] 其中, 第一隔离单元和第二隔离单元具备隔离功能和通信功能, 其中, 隔离功能可以 使用变压器、 电容、 隔离芯片等中的任意一种方式实现。
[0076] 需要说明的是, 图 4中仅以第一高压测量子单元与第一微控制器连接, 第二高压测量 子单元与第二微控制器连接为例, 第一高压测量子单元可以同时与第一微控制器和第二微控 制器连接, 第二高压测量子单元可以同时与第一微控制器和第二微控制器连接, 即第一微控 制器和第二微控制器可以共同获取相同的高压测量子单元的数据, 也可以各自获取不同的高 压测量子单元的数据。
[0077] 并且, 需要说明的是, 图 4中是以第一高压测量子单元和第二高压测量子单元具有完 全相同的监测功能为例, 当然, 也可以是第一高压测量子单元监测电池组正极开关所在支路, 第二高压测量子单元监测电池组负极开关所在支路。
[0078] 假设第一高压控制单元 1042、 第二高压控制单元 1043均位于低压区, 第一微控制器 102和第二微控制器 103均位于高压区, 则第二传输模块还可以包括第三隔离单元 405和第 四隔离单元 406, 其中, 第三隔离单元 405用于将第一微控制器 102的控制指令, 从高压侧 信号转换为低压侧信号后, 传输给第一高压控制单元 1042和第二高压控制单元 1043。 第四 隔离单元 406将第二微控制器 103的控制指令, 从高压侧信号转换为低压侧信号后, 传输给 第一高压控制单元 1042和第二高压控制单元 1043
[0079] 同理, 假设第一高压控制单元 1042、 第二高压控制单元 1043均位于高压区, 第一微 控制器 102和第二微控制器 103均位于低压区,则第三隔离单元 405用于将第一微控制器 102 的控制指令, 从低压侧信号转换为高压侧信号后, 传输给第一高压控制单元 1042和第二高压 控制单元 1043。 第四隔离单元 406将第二微控制器 103的控制指令, 从低压侧信号转换为高 压侧信号后, 传输给第一高压控制单元 1042和第二高压控制单元 1043
[0080] 本申请第三实施例中, 通过对高压测量的冗余设计, 能够实时做到双采样, 提高故障 判断的准确性。
[0081] 本申请第四实施例提供了一种电池管理系统,该电池管理系统对第二实施例描述的电 池管理系统的进一步细化,该实施例中主要是根据实际需要在电池管理系统中设置传输模块。 对于第二实施例中已经描述的内容此处不再重复, 以下主要对第二实施例中未提及的组成部 分进行详细描述。
[0082] 第四实施例中所提供的电池管理系统的结构与图 2、 图 3和图 4所示的结构相同, 不 同之处在于: 结合图 2所示, 电池监控模块 101通过第一传输模块 201将电池组的状态信号 中的一部分传输给第一微控制器 102, 以及将电池组 11的状态信号的另一部分传输给第二微 控制器 103
[0083] 第二传输模块 202用于将高压测量单元 1041采样获得的电池组高压回路的状态信号 的部分, 传输给第一微控制器 102, 以及将高压测量单元 1041采样获得的电池组高压回路的 状态信号的另一部分, 传输给第二微控制器 103。 或者, 第二传输模块 202用于将高压测量 单元 1041采样获得的电池组高压回路的状态信号的全部,分别传输给第一微控制器 102和第 二微控制器 103
[0084] 需要说明的是, 电池管理系统 10中可以同时设置第一传输模块 201和第二传输模块 202, 也可以仅设置第一传输模块 201, 参见图 3所示, 或者仅设置第二传输模块 202, 参见 图 4所示。
[0085] 假设电池监控模块 101位于高压区,第一微控制器 102和第二微控制器 103位于低压 区; 第一传输模块 201用于对电池监控模块 101监控的电池组 11的状态信号, 从高压侧信号 转换为低压侧信号后, 将电池组 11的状态信号的一部分传输给第一微控制器 102, 将电池组 11的状态信号的另一部分传输给第二微控制器 103。
[0086] 假设电池监控模块 101、 第一微控制器 102和第二微控制器 103均位于高压区, 则第 一微控制器 102和第二微控制器 103可以直接获取电池监控模块 101的数据, 不需要设置第 一传输模块 201 仅在第一微控制器 102、第二微控制器 103与采样控制模块 104之间设置第 二传输模块, 以实现高、 低压信号隔离即可。
[0087] 假设高压测量单元 1041位于高压区, 第一微控制器 102和第二微控制器 103位于低 压区。 第二传输模块 202用于对高压测量单元 1041采样获得的电池组高压回路的状态信号, 从高压侧信号转换为低压侧信号后, 将电池组高压回路的状态信号的部分, 传输给第一微控 制器 102, 将电池组高压回路的状态信号的另一部分, 传输给第二微控制器 103。 或者, 第二 传输模块 202用于将高压测量单元 1041采样获得的电池组高压回路的状态信号,从高压侧信 号转换为低压侧信号后, 分别传输给第一微控制器 102和第二微控制器 103。
[0088] 假设高压测量单元 1041位于低压区, 第一微控制器 102和第二微控制器 103也位于 低压区, 则高压测量单元与第一微控制器和第二微控制器之间不需要设置第二传输模块, 直 接进行数据交互即可。 同理, 假设高压测量单元 1041位于高压区, 第一微控制器 102和第二 微控制器 103也位于高压区, 则高压测量单元与第一微控制器和第二微控制器之间也不需要 设置第二传输模块, 直接进行数据交互即可。
[0089] 假设第一微控制器 102和第二微控制器 103位于高压区, 第一高压控制单元 1042和 第二高压控制单元 1043位于低压区,则第二传输模块还包括第三隔离单元 405和第四隔离单 元 406, 其中, 第三隔离单元 405用于将第一微控制器 102的控制指令, 从高压侧信号转换 为低压侧信号后, 传输给第一高压控制单元 1042和 /或第二高压控制单元 1043。 第四隔离单 元 406将第二微控制器 103的控制指令, 从高压侧信号转换为低压侧信号后, 传输给第一高 压控制单元 1042和 /或第二高压控制单元 1043
[0090] 同理, 假设第一高压控制单元 1042、 第二高压控制单元 1043均位于高压区, 第一微 控制器 102和第二微控制器 103均位于低压区,则第三隔离单元 405用于将第一微控制器 102 的控制指令, 从低压侧信号转换为高压侧信号后, 传输给第一高压控制单元 1042和 /或第二 高压控制单元 1043 第四隔离单元 406将第二微控制器 103的控制指令, 从低压侧信号转换 为高压侧信号后, 传输给第一高压控制单元 1042和 /或第二高压控制单元 1043
[0091] 以此类推, 高压区和低压区之间的通信需要通过隔离单元, 图中所示是同时包含第三 隔离单元和第四隔离单元的情况, 也可以根据需要仅设置第三隔离单元或第四隔离单元, 设 置的原则同上。
[0092] 一个具体实施例中, 如图 5所示, 第一传输模块 201包括隔离单元 501和通信单元
502。
[0093] 其中, 隔离单元 501用于对电池监控模块 101监控的电池组 11的状态信号, 从高压 侧信号转换为低压侧信号后, 将电池组的状态信号中的通讯信号, 通过通信单元 502传输给 第一微控制器 102; 以及用于将通过通信单元 502传输的控制指令, 从低压侧信号转换为高 压侧信号后, 传输给电池监控模块 101 ; 以及用于将电池组的状态信号中的故障诊断信号, 从高压侧信号转换为低压侧信号后, 传输给第二微控制器 103。
[0094] 另一个具体实施例中, 如图 6所示, 第一传输模块 201包括隔离单元 601、 通信单元 602和控制单元 603 o
[0095] 其中, 隔离单元 601用于对电池监控模块 101监控的电池组 11的状态信号, 从高压 侧信号转换为低压侧信号后, 将电池组的状态信号通过通信单元 602 传输给第一微控制器 102, 以及传输给控制单元 603, 或者, 将电池组的状态信号的一部分通过通信单元 602传输 给第一微控制器 102, 另一部分传输给控制单元 603。
[0096] 控制单元 603根据获取到的电池组的状态信号, 确定对电池组的状态的诊断结果, 并 将诊断结果传输给第二微控制器 103。
[0097] 其中, 图 5和图 6中的通信单元, 可以是通过 CAN总线、 菊花链等一系列串行或者 并行的数据通信方式连接的多个通信子单元组成, 通信单元也可以根据需要设置具备数据通 信格式转换功能的子单元。
[0098] 需要说明的是, 适用于以上第三和第四实施例, 与图 1的情况类似, 图 2、 图 3和图 4 中仅以第一微控制器直接控制第一高压控制单元, 第二微控制器直接控制第二高压控制单 元为例, 若第一微控制器除了控制第一高压控制单元, 还直接控制第二高压控制单元, 则第 一微控制器同时连接第一高压控制单元和第二高压控制单元, 同理, 若第二微控制器除了控 制第二高压控制单元, 还直接控制第一高压控制单元, 则第二微控制器同时连接第一高压控 制单元和第二高压控制单元。
[0099] 同理, 图 5中仅以第一微控制器直接控制第一高压控制单元, 第二微控制器直接控制 第二高压控制单元为例, 若第一微控制器除了控制第一高压控制单元, 还直接控制第二高压 控制单元, 则第一微控制器同时连接第一高压控制单元和第二高压控制单元, 同理, 若第二 微控制器除了控制第二高压控制单元, 还直接控制第一高压控制单元, 则第二微控制器同时 连接第一高压控制单元和第二高压控制单元。
[00100]图 6中仅以第一微控制器直接控制第一高压控制单元和第二高压控制单元,第二微控 制器也直接控制第一高压控制单元和第二高压控制单元为例, 若第一微控制器仅直接控制第 一高压控制单元, 第二微控制器仅直接控制第二高压控制单元, 则第一微控制器仅连接第一 高压控制单元, 第二微控制器仅连接第二高压控制单元即可。 [00101]需要说明的是,对于第一微控制器和第二微控制器共同控制第一高压控制单元和第二 高压控制单元的情况, 需要在第一微控制器和第二微控制器的信号同时有效的情况下, 第一 开关单元或第二开关单元才能够闭合。
[00102]并且, 需要说明的是, 以上各实施例中, 电池管理系统 10中各组成部分与外围组件 的通信或连接方式, 具体可以采用插件连接、 焊接连接、 无线传输等多种方式实现。
[00103]本领域的普通技术人员可以理解, 上述各实施例是实现本申请的具体实施例, 而在实 际应用中, 可以在形式上和细节上对其作各种改变, 而不偏离本申请的精神和范围。

Claims

权 利 要 求 书
1. 一种电池管理系统, 包括: 电池监控模块、 第一微控制器、 第二微控制器和采样控制 模块, 所述第一微控制器与所述第二微控制器连接;
所述电池监控模块用于监控电池组的状态, 并将所述电池组的状态通过状态信号分别传 输给所述第一微控制器和所述第二微控制器, 以及用于根据所述第一微控制器和所述第二微 控制器发出的控制指令控制所述电池组的状态;
所述采样控制模块用于监测电池组高压回路的状态, 将所述电池组高压回路的的状态通 过状态信号分别传输给所述第一微控制器和所述第二微控制器, 以及用于按照所述第一微控 制器以及所述第二微控制器发出的控制指令控制所述电池组高压回路的状态;
在所述第一微控制器和所述第二微控制器正常运行的情况下, 所述第一微控制器和所述 第二微控制器分别获取所述电池组的状态信号以及所述电池组高压回路的状态信号, 并且, 所述第一微控制器和所述第二微控制器根据所述电池组的状态信号以及所述电池组高压回路 的状态信号, 各自独立通过所述电池监控模块以及所述采样控制模块完成对电池组以及电池 管理系统的控制, 或者, 所述第一微控制器根据所述电池组的状态信号以及所述电池组高压 回路的状态信号, 独立通过所述电池监控模块以及所述采样控制模块完成对电池组以及电池 管理系统的控制, 所述第二微控制器处于备用状态。
2.如权利要求 1 所述的电池管理系统, 其中, 若所述第一微控制器和所述第二微控制器 根据所述电池组的状态信号以及所述电池组高压回路的状态信号, 各自独立通过所述电池监 控模块以及所述采样控制模块完成对电池组以及电池管理系统的控制, 则
在所述第一微控制器和所述第二微控制器中的任意一个微控制器失效的情况下, 未失效 的微控制器独立完成对所述电池组的管理控制。
3.如权利要求 1 所述的电池管理系统, 其中, 若所述第一微控制器根据所述电池组的状 态信号以及所述电池组高压回路的状态信号, 独立通过所述电池监控模块以及所述采样控制 模块完成对电池组以及电池管理系统的控制, 所述第二微控制器处于备用状态, 则
所述第二微控制器监测到所述第一微控制器失效的情况下, 独立通过所述电池监控模块 以及所述采样控制模块完成对电池组以及电池管理系统的控制。
4.如权利要求 1至 3任一项所述的电池管理系统, 其中, 所述采样控制模块包括高压测 量单元、 第一高压控制单元和第二高压控制单元;
所述高压测量单元用于采样获得所述电池组高压回路的状态信号, 将所述电池组高压回 路的状态信号传输给所述第一微控制器和所述第二微控制器; 所述第一高压控制单元用于根据所述第一微控制器和 /或所述第二微控制器的控制指令, 控制所述电池组高压回路中第一开关单元的状态;
所述第二高压控制单元用于根据所述第一微控制器和 /或所述第二微控制器的控制指令, 控制所述电池组高压回路中第二开关单元的状态。
5.如权利要求 4所述的电池管理系统, 其中, 所述电池管理系统还包括第一传输模块; 所述电池监控模块通过所述第一传输模块将所述电池组的状态信号传输给所述第一微控 制器和所述第二微控制器。
6. 如权利要求 4所述的电池管理系统, 其中, 所述电池管理系统还包括第二传输模块; 所述第二传输模块用于将所述高压测量单元采样获得的所述电池组高压回路的状态信 号, 传输给所述第一微控制器和所述第二微控制器; 和 /或, 将所述第一微控制器的控制指令 传输给所述第一高压控制单元和所述第二高压控制单元, 将所述第二微控制器的控制指令传 输给所述第一高压控制单元和所述第二高压控制单元。
7.如权利要求 6所述的电池管理系统, 其中, 所述高压测量单元包括第一高压测量子单 元和第二高压测量子单元;
所述第一高压测量子单元用于采样获得所述电池组高压回路的状态信号, 并将所述电池 组高压回路的状态信号, 通过所述第二传输模块传输给所述第一微控制器;
所述第二高压测量子单元用于采样获得所述电池组高压回路的状态信号, 并将所述电池 组高压回路的状态信号, 通过所述第二传输模块传输给所述第二微控制器。
8.如权利要求 7所述的电池管理系统, 其中, 所述第二传输模块包括第一隔离单元和第 二隔离单元;
所述第一隔离单元用于将所述第一高压测量子单元采样获得的所述电池组高压回路的状 态信号, 从高压侧信号转换为低压侧信号后, 传输给所述第一微控制器;
所述第二隔离单元用于将所述第二高压测量子单元采样获得的所述电池组高压回路的状 态信号, 从高压侧信号转换为低压侧信号后, 传输给所述第二微控制器。
9.如权利要求 7所述的电池管理系统, 其中, 所述第二传输模块还包括第三隔离单元和 第四隔离单元;
所述第三隔离单元用于将所述第一微控制器的控制指令, 从高压侧信号转换为低压侧信 号后, 传输给所述第一高压控制单元和所述第二高压控制单元;
所述第四隔离单元用于将所述第二微控制器的控制指令, 从高压侧信号转换为低压侧信 号后, 传输给所述第一高压控制单元和所述第二高压控制单元。
10.如权利要求 5所述的电池管理系统, 其中, 所述电池监控模块位于高压区, 所述第一 微控制器和所述第二微控制器位于低压区;
所述第一传输模块用于对所述电池监控模块监控的所述电池组的状态信号, 从高压侧信 号转换为低压侧信号后, 传输给所述第一微控制器和所述第二微控制器。
11.如权利要求 6所述的电池管理系统, 其中, 所述高压测量单元位于高压区, 所述第一 微控制器和所述第二微控制器位于低压区;
所述第二传输模块用于对所述高压测量单元采样获得的所述电池组高压回路的状态信 号, 从高压侧信号转换为低压侧信号后, 传输给所述第一微控制器和所述第二微控制器。
12.—种电池管理系统, 包括: 电池监控模块、 第一微控制器和第二微控制器和采样控制 模块, 所述第一微控制器与所述第二微控制器连接;
所述电池监控模块用于监控电池组的状态, 并将所述电池组的状态通过状态信号传输给 所述第一微控制器和 /或所述第二微控制器, 以及用于根据所述第一微控制器和所述第二微控 制器发出的控制指令控制所述电池组的状态;
所述采样控制模块用于监测电池组高压回路的状态, 将所述电池组高压回路的状态通过 状态信号分别传输给所述第一微控制器和所述第二微控制器, 以及用于按照所述第一微控制 器以及所述第二微控制器发出的控制指令控制所述电池组高压回路的状态;
在所述第一微控制器和所述第二微控制器正常运行的情况下, 所述第一微控制器和所述 第二微控制器各自获取所述电池组的状态信号以及所述电池组高压回路的状态信号中的至少 一部分, 并根据各自所获取的信号相互协作, 通过所述电池监控模块以及所述采样控制模块 完成对电池组以及电池管理系统的控制。
13.如权利要求 12所述的电池管理系统, 其中, 在所述第一微控制器失效的情况下, 所 述第二微控制器通过所述采样控制模块控制所述电池组以及所述电池组管理系统进入安全状
14.如权利要求 12所述的电池管理系统, 其中, 所述第二微控制器对获取的所述电池组 的状态以及所述电池组高压回路的状态中的至少一部分进行处理后, 将处理结果传输至所述 第一微控制器;
所述第一微控制对所述第二微控制器的处理结果校验通过后, 通过所述电池监控模块以 及所述采样控制模块完成对电池组以及电池管理系统的控制。
15.如权利要求 12至 14任一项所述的电池管理系统, 其中, 所述采样控制模块包括高压 测量单元、 第一高压控制单元和第二高压控制单元; 所述高压测量单元用于采样获得所述电池组高压回路的状态信号, 将所述电池组高压回 路的状态信号传输给所述第一微控制器和所述第二微控制器;
所述第一高压控制单元用于根据所述第一微控制器和 /或所述第二微控制器的控制指令, 控制所述电池组高压回路中第一开关单元的状态;
所述第二高压控制单元用于根据所述第一微控制器和 /或所述第二微控制器的控制指令, 控制所述电池组高压回路中第二开关单元的状态。
16.如权利要求 15所述的电池管理系统, 其中, 所述电池管理系统还包括第一传输模块; 所述电池监控模块通过所述第一传输模块将所述电池组的状态信号中的一部分传输给所 述第一微控制器, 以及将所述电池组的状态信号的另一部分传输给所述第二微控制器。
17.如权利要求 16所述的电池管理系统, 其中, 所述电池管理系统还包括第二传输模块; 所述第二传输模块用于将所述高压测量单元采样获得的所述电池组高压回路的状态信号 的部分, 传输给所述第一微控制器, 以及将所述高压测量单元采样获得的所述电池组高压回 路的状态信号的另一部分, 传输给所述第二微控制器; 和 /或, 将所述第一微控制器的控制指 令传输给所述第一高压控制单元和 /或所述第二高压控制单元, 将所述第二微控制器的控制指 令传输给所述第一高压控制单元和 /或所述第二高压控制单元;
或者,
所述第二传输模块用于将所述高压测量单元采样获得的所述电池组高压回路的状态信号 的全部, 分别传输给所述第一微控制器和所述第二微控制器; 和 /或, 将所述第一微控制器的 控制指令传输给所述第一高压控制单元和 /或所述第二高压控制单元, 将所述第二微控制器的 控制指令传输给所述第一高压控制单元和 /或所述第二高压控制单元。
18. 如权利要求 17所述的电池管理系统, 其中, 所述高压测量单元包括第一高压测量子 单元和第二高压测量子单元;
所述第一高压测量子单元用于采样获得所述电池组高压回路的状态信号, 并将所述电池 组高压回路的状态信号, 通过所述第二传输模块传输给所述第一微控制器;
所述第二高压测量子单元用于采样获得所述电池组高压回路的状态信号, 并将所述电池 组高压回路的状态信号, 通过所述第二传输模块传输给所述第二微控制器。
19. 如权利要求 18所述的电池管理系统, 其中, 所述第二传输模块包括第一隔离单元和 第二隔离单元;
所述第一隔离单元用于将所述第一高压测量子单元采样获得的所述电池组高压回路的状 态信号, 传输给所述第一微控制器; 所述第二隔离单元用于将所述第二高压测量子单元采样获得的所述电池组高压回路的状 态信号, 传输给所述第二微控制器。
20.如权利要求 19所述的电池管理系统, 其中, 所述第二传输模块还包括第三隔离单元 和第四隔离单元;
所述第三隔离单元用于将所述第一微控制器的控制指令, 从高压侧信号转换为低压侧信 号后, 传输给所述第一高压控制单元和 /或所述第二高压控制单元;
所述第四隔离单元用于将所述第二微控制器的控制指令, 从高压侧信号转换为低压侧信 号后, 传输给所述第一高压控制单元和 /或所述第二高压控制单元。
21.如权利要求 16所述的电池管理系统, 其中, 所述电池监控模块位于高压区, 所述第 一微控制器和所述第二微控制器位于低压区;
所述第一传输模块用于对所述电池监控模块监控的所述电池组的状态信号, 从高压侧信 号转换为低压侧信号后, 将所述电池组的状态信号的一部分传输给所述第一微控制器, 将所 述电池组的状态信号的另一部分传输给所述第二微控制器。
22.如权利要求 21 所述的电池管理系统, 其中, 所述第一传输模块包括隔离单元和通信 单元;
所述隔离单元用于对所述电池监控模块监控的所述电池组的状态信号, 从高压侧信号转 换为低压侧信号后, 将所述电池组的状态信号中的通讯信号, 通过所述通信单元传输给所述 第一微控制器;
以及用于将通过所述通信单元传输的控制指令, 从低压侧信号转换为高压侧信号后, 传 输给所述电池监控模块;
以及用于将所述电池组的状态信号中的故障诊断信号, 从高压侧信号转换为低压侧信号 后, 传输给所述第二微控制器。
23.如权利要求 21 所述的电池管理系统, 其中, 所述第一传输模块包括隔离单元、 通信 单元和控制单元;
所述隔离单元用于对所述电池监控模块监控的电池组的状态信号, 从高压侧信号转换为 低压侧信号后, 将电池组的状态信号通过所述通信单元传输给所述第一微控制器, 以及传输 给所述控制单元, 或者, 将电池组的状态信号的一部分通过所述通信单元传输给所述第一微 控制器, 另一部分传输给所述控制单元;
所述控制单元根据获取到的电池组的状态信号, 确定对电池组的状态的诊断结果, 并将 诊断结果传输给所述第二微控制器。
24.如权利要求 17所述的电池管理系统, 其中, 所述高压测量单元位于高压区, 所述第 一微控制器和所述第二微控制器位于低压区;
所述第二传输模块用于对所述高压测量单元采样获得的所述电池组高压回路的状态信 号, 从高压侧信号转换为低压侧信号后, 将所述电池组高压回路的状态信号的部分, 传输给 所述第一微控制器, 将所述电池组高压回路的状态信号的另一部分, 传输给所述第二微控制 器;
或者,
所述第二传输模块用于将所述高压测量单元采样获得的所述电池组高压回路的状态信 号, 从高压侧信号转换为低压侧信号后, 分别传输给所述第一微控制器和所述第二微控制器。
PCT/CN2020/076557 2019-02-25 2020-02-25 电池管理系统 WO2020173423A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910136059.6A CN109888864B (zh) 2019-02-25 2019-02-25 电池管理系统
CN201910136059.6 2019-02-25

Publications (1)

Publication Number Publication Date
WO2020173423A1 true WO2020173423A1 (zh) 2020-09-03

Family

ID=66929077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076557 WO2020173423A1 (zh) 2019-02-25 2020-02-25 电池管理系统

Country Status (4)

Country Link
US (1) US11095132B2 (zh)
EP (1) EP3708415A3 (zh)
CN (1) CN109888864B (zh)
WO (1) WO2020173423A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110896233B (zh) * 2018-09-12 2021-07-30 宁德时代新能源科技股份有限公司 电池管理系统
CN109888864B (zh) 2019-02-25 2021-03-23 宁德时代新能源科技股份有限公司 电池管理系统
CN113131546A (zh) * 2019-12-31 2021-07-16 华为数字技术(苏州)有限公司 储能系统及其控制方法
KR20210092488A (ko) * 2020-01-16 2021-07-26 에스케이이노베이션 주식회사 배터리 관리 시스템
CN113937371A (zh) * 2020-06-29 2022-01-14 比亚迪半导体股份有限公司 一种电池管理装置及系统
CN112092629B (zh) * 2020-09-18 2022-05-13 广州小鹏汽车科技有限公司 高压配电盒、电池系统和高压配电盒的控制方法
EP4275945A4 (en) * 2021-10-29 2024-07-10 Contemporary Amperex Technology Co Ltd POWER MANAGEMENT SYSTEM, MICROCONTROLLER UNIT, BATTERY MANAGEMENT SYSTEM AND BATTERY
CN113968137B (zh) * 2021-11-25 2024-07-09 中国国家铁路集团有限公司 一种电力机车的网压信号冗余控制方法
CN117650296B (zh) * 2024-01-30 2024-04-09 江苏天合储能有限公司 电池管理系统、管理方法及储能装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013105701A (ja) * 2011-11-16 2013-05-30 Idemitsu Kosan Co Ltd リチウムイオン電池の充電方法、リチウムイオン電池の充放電制御システム及びリチウムイオン電池の充放電制御回路
CN103779943A (zh) * 2014-02-20 2014-05-07 奇瑞汽车股份有限公司 一种电动汽车的电池管理系统
CN104852420A (zh) * 2014-02-14 2015-08-19 索尼公司 充电控制设备、电池、电子装置、车辆、充电控制方法
CN105730274A (zh) * 2016-02-03 2016-07-06 安徽江淮汽车股份有限公司 一种电池管理系统及其控制方法
CN107933337A (zh) * 2017-10-27 2018-04-20 深圳市沃特玛电池有限公司 电动汽车及其电池管理系统
CN109888864A (zh) * 2019-02-25 2019-06-14 宁德时代新能源科技股份有限公司 电池管理系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101442211B (zh) * 2008-07-08 2012-08-22 奇瑞汽车股份有限公司 一种分布式电池管理系统中的监测装置及监测方法
KR101057542B1 (ko) * 2010-01-26 2011-08-17 에스비리모티브 주식회사 배터리 관리 시스템 및 그 구동 방법
DE102011079126B4 (de) 2011-07-14 2023-02-02 Robert Bosch Gmbh Batteriemanagementsystem, Batterie, Kraftfahrzeug mit Batteriemanagementsystem sowie Verfahren zur Überwachung einer Batterie
DE102011079291A1 (de) * 2011-07-18 2013-01-24 Sb Limotive Company Ltd. Batteriemanagementsystem und Verfahren zur Bestimmung der Ladezustände von Batteriezellen, Batterie und Kraftfahrzeug mit Batteriemanagementsystem
CN104104118B (zh) * 2013-04-03 2016-12-28 力博特公司 一种智能电池连接系统及相关控制方法
US10063084B2 (en) * 2015-12-28 2018-08-28 Silicon Laboratories Inc. Apparatus for digital battery charger and associated methods
JP6503138B2 (ja) * 2016-02-05 2019-04-17 グァンドン オッポ モバイル テレコミュニケーションズ コーポレーション リミテッドGuangdong Oppo Mobile Telecommunications Corp., Ltd. アダプタ及び充電制御方法
CN107732985B (zh) * 2016-08-10 2019-11-29 宁德时代新能源科技股份有限公司 分布式电池管理系统
CN206541901U (zh) * 2017-02-16 2017-10-03 惠州晟芯源科技有限公司 一种安全可靠的双核电池管理系统
CN107871909A (zh) * 2017-10-16 2018-04-03 深圳市沃特玛电池有限公司 电动汽车及其电池管理系统
US20190222038A1 (en) * 2018-01-12 2019-07-18 Zhangsheng CHEN Portable Emergency Energy-Storage System with Intelligent Protection
CA2995969C (en) * 2018-02-22 2019-08-20 Mitchell B. Miller A system and method for charging electrostatic devices utilizing displacement current, referred to as deflection converter
US20210028632A1 (en) * 2019-07-25 2021-01-28 Samsung Sdi Co., Ltd. Battery system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013105701A (ja) * 2011-11-16 2013-05-30 Idemitsu Kosan Co Ltd リチウムイオン電池の充電方法、リチウムイオン電池の充放電制御システム及びリチウムイオン電池の充放電制御回路
CN104852420A (zh) * 2014-02-14 2015-08-19 索尼公司 充电控制设备、电池、电子装置、车辆、充电控制方法
CN103779943A (zh) * 2014-02-20 2014-05-07 奇瑞汽车股份有限公司 一种电动汽车的电池管理系统
CN105730274A (zh) * 2016-02-03 2016-07-06 安徽江淮汽车股份有限公司 一种电池管理系统及其控制方法
CN107933337A (zh) * 2017-10-27 2018-04-20 深圳市沃特玛电池有限公司 电动汽车及其电池管理系统
CN109888864A (zh) * 2019-02-25 2019-06-14 宁德时代新能源科技股份有限公司 电池管理系统

Also Published As

Publication number Publication date
EP3708415A3 (en) 2020-12-30
EP3708415A2 (en) 2020-09-16
CN109888864B (zh) 2021-03-23
US11095132B2 (en) 2021-08-17
CN109888864A (zh) 2019-06-14
US20200274369A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
WO2020173423A1 (zh) 电池管理系统
CN202480896U (zh) 一种汽车动力电池系统的安全冗余装置
CN106379188A (zh) 一种电动汽车动力电池能量管理系统及安全防护方法
CN107662500A (zh) 纯电动汽车上电控制方法及纯电动汽车
CN106114236B (zh) 一种电动车用弓式充电系统及其控制方法
CN207725389U (zh) 一种具有冗余驻车功能的电子驻车控制系统
CN206106977U (zh) 一种电动汽车动力电池能量管理系统
CN103187762A (zh) 用于电动汽车的大功率充电系统及其控制方法
JP7247543B2 (ja) 車両
CN104423374B (zh) 用于汽车的控制器及具有其的汽车、监测方法
CN105242608B (zh) 整车控制器及其控制方法
CN101572332A (zh) 一种高压电池的控制系统及其控制方法
CN110994562A (zh) 一种储能电池管理系统中的高压保护功能模块及控制方法
CN106864270A (zh) 具有故障诊断功能的继电器控制系统
CN105790379A (zh) 电动汽车逐电芯监测多回路分级控制电池管理系统
CN109747480B (zh) 一种多安全模式的电池管理系统及其设计方法
CN203490495U (zh) 汽车的控制系统及具有其的汽车
WO2019153686A1 (zh) 电动汽车充电控制装置和方法
CN106476626A (zh) 地铁车辆辅助供电扩展系统
CN109435877B (zh) 一种电动客车用防控负机械式总电源开关失效的控制系统
CN105334469A (zh) 一种基于语音控制的电池管理系统及其实现方法
WO2023122989A1 (zh) 电动汽车控制系统、控制方法、及计算机可读存储介质
CN103560558B (zh) 一种电梯停电应急电源
CN112798970B (zh) 一种变电站蓄电池远程核容系统
CN105337366A (zh) 一种基于语音控制的电池包保护系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20762453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20762453

Country of ref document: EP

Kind code of ref document: A1