WO2023122989A1 - 电动汽车控制系统、控制方法、及计算机可读存储介质 - Google Patents

电动汽车控制系统、控制方法、及计算机可读存储介质 Download PDF

Info

Publication number
WO2023122989A1
WO2023122989A1 PCT/CN2021/142185 CN2021142185W WO2023122989A1 WO 2023122989 A1 WO2023122989 A1 WO 2023122989A1 CN 2021142185 W CN2021142185 W CN 2021142185W WO 2023122989 A1 WO2023122989 A1 WO 2023122989A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
domain controller
power domain
electrical equipment
electric vehicle
Prior art date
Application number
PCT/CN2021/142185
Other languages
English (en)
French (fr)
Inventor
陈新伟
赵元淼
谢达
梁轶琦
侯贻真
但志敏
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP21918100.5A priority Critical patent/EP4238833A4/en
Priority to CN202180101370.2A priority patent/CN117881577A/zh
Priority to KR1020227019286A priority patent/KR20230106117A/ko
Priority to PCT/CN2021/142185 priority patent/WO2023122989A1/zh
Priority to JP2022534442A priority patent/JP2024506424A/ja
Priority to US17/880,690 priority patent/US20230208327A1/en
Publication of WO2023122989A1 publication Critical patent/WO2023122989A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • H02P6/21Open loop start
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/10Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for automatic control superimposed on human control to limit the acceleration of the vehicle, e.g. to prevent excessive motor current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0084Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to control modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/02Details of starting control
    • H02P1/029Restarting, e.g. after power failure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present application relates to the field of electric vehicles, in particular to an electric vehicle control system and control method, an electric vehicle power-on method, an electric vehicle power-off method, and an electric vehicle charging method.
  • Electric vehicles have the advantages of good environmental performance, low noise, and low cost of use. They have huge market prospects, and can promote energy conservation and emission reduction, which is conducive to social development and progress.
  • the control components of the high-voltage electrical system of electric vehicles are mainly composed of a vehicle controller (Vehicle Control Unit, VCU) and a battery management system (Battery Management System, BMS).
  • VCU Vehicle Control Unit
  • BMS Battery Management System
  • High-voltage control of electrical components such as water-cooled units, electric defrosting, electric air conditioners, electric heaters, oil pump controllers (oil pump DC/AC), air pump controllers (air pump DC/AC), DC/DC converters, etc.
  • BMS It mainly performs high-voltage control on the motor drive module (inverter) of the motor controller (Motor Control Unit, MCU).
  • Embodiments of the present application provide an electric vehicle control system and control method, an electric vehicle power-on method, an electric vehicle power-off method, an electric vehicle charging method, and computer-readable storage media and electronic devices, which can simplify the structure of the control system , simplify the control strategy, and shorten the power-on and power-off time.
  • an electric vehicle control system including:
  • DCU power domain controller
  • a current sampling unit which samples the current of the power battery and the motor drive module of the electric vehicle, and sends the sampling signal to the power domain controller
  • the power domain controller manages and controls the power battery, the motor drive module, and the electrical equipment according to the sampling signals sent by the electrical equipment and the current sampling unit.
  • the electric vehicle control system has a power domain controller (Domain Control Unit, DCU), and the sampling signals of the power battery, motor drive module, and electrical equipment are directly sent to the DCU, and the DCU manages and controls the power battery according to the sampling signal. , motor drive module, electrical equipment. That is, the DCU integrates the functions of the BMS, MCU, and VCU. It is not necessary to independently manage and control the VCU, BMS, and MCU as in the prior art, perform complex communication with each other, and execute complex control strategies. Therefore, this The electric vehicle control system of the embodiment has a simple structure, can simplify the connection relationship of lines, simplify the control strategy, and simplify the communication method.
  • DCU Power Domain Controller Unit
  • the electric vehicle control system further includes,
  • a switch module which turns on or off the power supply circuit of the electrical equipment and the motor drive module
  • a voltage sampling unit which performs voltage sampling on the switch module, and sends the sampling signal to the power domain controller
  • the power domain controller controls on and off of the switch module according to the sampling signal sent by the voltage sampling unit.
  • the sampling signal of the switching module is directly sent to the DCU, and the DCU controls the switching module according to the sampling signal, thereby controlling the operation of the electrical equipment and the motor driving module. That is, the DCU further integrates the functions of the PDU, so the structure of the electric vehicle control system in this embodiment is further simplified, and the line connection relationship, control strategy, and communication method are further simplified.
  • the power domain controller detects the state of the electrical equipment, and performs calculations on the detected data to determine a control strategy for the electrical equipment.
  • the DCU receives the sampling signal of the electric equipment, detects the state of the electric equipment, calculates the detected state data, and determines the control strategy of the electric equipment according to the calculated detection data. That is, the calculation and logic judgment are performed inside the DCU, and the calculation results can be shared. Therefore, the program of individual processing and data transmission of each controller in the prior art is omitted, and the comprehensive processing capability is greatly improved, and there is no need to formulate complicated communication protocols. and control strategies.
  • the power domain controller is connected to the electrical equipment and the current sampling unit through signal wires, and the power domain controller is connected to the switch module through hard wires.
  • the DCU is connected to the electrical equipment and the current sampling unit through CAN, and the DCU communicates with the electrical equipment and the current sampling unit through the CAN protocol (Controller Area Network controller local area network bus protocol), and the DCU receives the electrical equipment. , the sampling model of the current sampling unit, and sending control signals to the electrical equipment and the current sampling unit.
  • the DCU and the switch module are connected by hard wires, so the DCU and the switch module can quickly transmit signals to realize fast control of the switch module.
  • the electrical equipment includes an air pump controller, an oil pump controller, an air conditioner compressor, a water cooling unit, a voltage conversion module (DC/DC), and a motor drive module.
  • the DCU controls the air pump controller, the oil pump controller, the air conditioner compressor, the water cooling unit, the voltage conversion module (DC/DC), the motor drive module and other electrical equipment to realize the high-voltage side distribution of the vehicle. electric control.
  • the present application provides a control method for an electric vehicle, the electric vehicle has a power domain controller, and the control method includes:
  • the power domain controller receives the sampling signals of the power battery and the electrical equipment, and manages and controls the operation of the power battery and the electrical equipment according to the sampling signals.
  • the power domain controller directly receives the sampling signal of the power battery and the electrical equipment, and directly manages and controls the work of the power battery and the electrical equipment according to the sampling signal, that is, the DCU integrates the BMS
  • the functions of the MCU and VCU, the electric vehicle control method of this embodiment can simplify the control strategy and the communication method, and it is not necessary for the VCU, BMS, and MCU to independently manage and control each other as in the prior art, and to perform complicated communication with each other , to implement complex control strategies.
  • the power domain controller receives the sampling signal of the switch module, and controls the switch module to be turned on and off according to the sampled signal.
  • the sampling signal of the switching module is directly sent to the DCU, and the DCU controls the switching module according to the sampling signal, thereby controlling the operation of the electrical equipment and the motor driving module. That is, the DCU further integrates the functions of the PDU, so the electric vehicle control method of this embodiment further simplifies the control strategy and the communication method.
  • the power domain controller detects the state of the electrical equipment, and calculates the detected data to determine a control strategy for the electrical equipment.
  • the DCU receives the sampling signal of the electrical equipment, detects the status of the electrical equipment, calculates the detected status data, and determines the control strategy of the electrical equipment according to the calculated detection data. That is, the calculation and logic judgment are performed inside the DCU, and the calculation results can be shared. Therefore, the program of individual processing and data transmission of each controller in the prior art is omitted, and the comprehensive processing capability is greatly improved, and there is no need to formulate complicated communication protocols. and control strategies.
  • the power domain controller is connected to the electrical equipment and the current sampling unit through signal wires, and the power domain controller is connected to the switch module through hard wires.
  • the DCU is connected to the electrical equipment and the current sampling unit through signal lines, such as CAN, that is, the DCU is connected to the electrical equipment and the current sampling unit through the CAN protocol (Controller Area Network controller local area network bus protocol).
  • CAN Controller Area Network controller local area network bus protocol
  • the DCU receives sampling signals from electrical equipment and current sampling units, and sends control signals to electrical equipment and current sampling units.
  • the DCU and the switch module are connected by hard wires, so the DCU and the switch module can quickly transmit signals to realize fast control of the switch module.
  • the electrical device includes an air pump controller, an oil pump controller, an air conditioner compressor, a water cooling unit, a voltage conversion module, and a motor drive module.
  • the DCU controls the air pump controller, the oil pump controller, the air conditioner compressor, the water cooling unit, the voltage conversion module (DC/DC), the motor drive module and other electrical equipment to realize the high-voltage side distribution of the vehicle. electric control.
  • the present application provides a power-on method for an electric vehicle, the electric vehicle has a power domain controller, and the power domain controller receives the sampling signals of the power battery, the switch module, and the electrical equipment, and according to the The sampling signal manages and controls the work of the power battery, the switch module, and the electrical equipment, and the power-on method includes the following steps:
  • the power domain controller performs initialization after detecting the power-on request signal
  • the power domain controller detects whether the power-on condition is satisfied,
  • the power domain controller When the power-on condition is met, the power domain controller sends a closing command to the main circuit relay K0 connected to the negative pole of the power battery to connect the main circuit,
  • the power domain controller sends a closing command to the pre-charging circuit relay K4 of the motor drive module to connect the pre-charging circuit to pre-charge the motor drive module,
  • the power domain controller sends a closing command to the motor drive circuit relay K3 connected to the positive pole of the motor drive module to connect the motor drive circuit,
  • the power domain controller sends a disconnection command to the pre-charging circuit relay K4 to end the pre-charging and complete the power-on of the main circuit,
  • the power domain controller sends a closing command to the water-cooling unit relay K5, the electric defrosting relay K6, the air-conditioning heater relay K7, and the auxiliary drive relay K8 to connect each high-voltage electrical equipment to complete the power-on of the vehicle.
  • the power domain controller directly controls the relay, the control capability is centralized, and the response is fast, which simplifies the independent work of the VCU, BMS, and PDU in the prior art, and the complex communication between each other and the complex execution.
  • the DCU detects and calculates the power-on conditions, and makes logical judgments, and the calculation results are shared. There is no link in the prior art where each controller transmits data to each other and the VCU makes judgments. Therefore, the communication method of the power-on method in this embodiment
  • the method and control strategy are simple, and the power-on time can be shortened.
  • the step of detecting a power-on condition by the power domain controller includes:
  • the power domain controller quickly detects the above-mentioned power-on conditions to ensure power-on safety while shortening the power-on time.
  • the power domain controller after diagnosing each relay, the power domain controller reads the information of the electrical equipment stored inside the power domain controller,
  • the power domain controller calculates according to the read information of the electrical equipment, and performs high-voltage distribution to the electrical equipment according to the calculation result.
  • the DCU reads the information of the electrical equipment stored inside it, and performs calculations inside it, and determines the high-voltage distribution strategy of the electrical equipment according to the calculation results, and optimizes energy management and power distribution.
  • the information inside the DCU and the calculation results of the DCU can be shared, so it saves the link of individual processing and data transmission of each controller in the prior art, and does not require complicated communication protocols and control strategies, greatly shortening the power-on time and reducing failures .
  • the information of the electrical equipment read by the power domain controller includes the information of the electrical equipment to be turned on, and the rated power and weight of each electrical equipment.
  • the DCU reads which electrical equipment needs to be turned on, and reads the rated power and weight of each electrical equipment, and refers to the state of charge (SOC) of the battery according to the rated power of the electrical equipment Carry out calculations, and judge whether certain power devices need to be processed according to the calculation results, so as to optimize high-voltage distribution and optimize energy management.
  • SOC state of charge
  • the present application provides a method for powering off an electric vehicle.
  • the electric vehicle has a power domain controller, and the power domain controller receives sampling signals from a power battery, a switch module, and an electrical device, and according to the The sampling signal manages and controls the work of the power battery, the switch module, and the electrical equipment, and the power-off method includes the following steps:
  • the power domain controller issues a power-off command
  • the power domain controller detects whether the main circuit current connected to the negative pole of the power battery is less than a predetermined value
  • the power domain controller sends a disconnection command to the motor drive circuit relay K3 connected to the positive pole of the motor drive module to disconnect the motor drive circuit,
  • the power domain controller sends a disconnection command to the main circuit relay K0 connected to the negative pole of the power battery to disconnect the main circuit.
  • the power domain controller DCU sends a power off command and enters a power off process, which is an active power off mode.
  • the power domain controller directly controls the relay, so the control capability is centralized and the response is fast, which simplifies the process of VCU, BMS, and PDU working independently, performing complex communication with each other, and executing complex control strategies in the prior art. Therefore, the power-off method, communication method, and control strategy of this embodiment are simple, and can shorten the power-off time.
  • the present application provides a method for powering off an electric vehicle.
  • the electric vehicle has a power domain controller, and the power domain controller receives sampling signals from a power battery, a switch module, and an electrical device, and according to the The sampling signal manages and controls the work of the power battery, the switch module, and the electrical equipment, and the power-off method includes the following steps:
  • the power domain controller After the power domain controller receives the request to turn off the power, it turns off the electrical equipment, and disconnects the water-cooling unit relay K5, the electric defrosting relay K6, and the air-conditioning and heating relay K7,
  • the power domain controller collects the current of the main circuit connected to the negative pole of the power battery, and judges whether the current is less than a predetermined value
  • the power domain controller collects the current of the motor drive loop connected to the positive pole of the motor drive module, and reduces the current to the predetermined value,
  • the power domain controller sends a disconnection command to the relay K3 of the motor drive circuit to disconnect the motor drive circuit
  • the power domain controller sends a disconnection command to the main circuit relay K0 connected to the negative pole of the power battery to disconnect the main circuit.
  • the power domain controller DCU receives a power-off request command and enters a power-off process, which is a passive power-off mode.
  • the DCU collects the current acquisition signals of the power battery and the motor drive module to judge the status of the power battery and the motor drive module, and the power domain controller directly controls the relay, so the control capability is centralized and the response is fast, which simplifies the actual operation.
  • the VCU, BMS, and PDU work independently, perform complex communication with each other, and execute complex control strategies. Therefore, the power-off method of this embodiment has simple communication methods and control strategies, and can shorten the power-off time.
  • the present application provides a charging method for an electric vehicle.
  • the power domain controller receives the sampling signals of the power battery, the switch module, and the electrical equipment, and manages and controls the power battery and the switch according to the sampling signals.
  • Module, electrical equipment work, described charging method comprises the following steps:
  • the charging source sends a wake-up signal to the power domain controller
  • the power domain controller initializes after receiving the wake-up signal, and judges whether the charging connection signal is normal, whether the charging gun is set,
  • the power domain controller sends a closing command to the relay K2 connected to the negative pole of the charging source and the relay K1 connected to the positive pole of the charging source to start charging,
  • the power domain controller sends a closing command to the main circuit relay K0 connected to the negative pole of the power battery, and sends a closing command to the relay K5 of the water cooling unit to start the water cooling.
  • the power domain controller when the power domain controller detects that the charging state reaches the end condition, it sends an instruction to end charging, and the power domain controller sends a disconnection instruction to disconnect the relay K1 connected to the positive pole of the charging source, The relay K2 connected to the negative pole of the charging source, the relay K5 of the water-cooled unit, and the main circuit relay K0 connected to the negative pole of the power battery end the charging.
  • the power domain controller directly controls the relay, the control capability is centralized, and the response is fast, which simplifies the independent work of the VCU, BMS, and PDU in the prior art, and complex communication with each other to perform complex control. Therefore, the charging method, communication method and control strategy of this embodiment are simple and can reduce faults.
  • the present application provides a computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and when the computer-executable instructions are executed by a processor, the second aspect to the second aspect of claims are implemented. Any one of the six methods.
  • the present application provides an electronic device, including: a memory and a processor,
  • the memory stores computer instructions, and the processor executes the computer instructions to execute the method in any one of the second aspect to the sixth aspect.
  • FIG. 1 is a schematic structural diagram of an electric vehicle control system according to some embodiments of the present application.
  • Fig. 2 is a schematic diagram of high-voltage power distribution of an electric vehicle control system in some embodiments of the present application
  • Fig. 3 is a schematic diagram of the current distribution of the main electrical equipment in the electric vehicle control system of some embodiments of the present application;
  • Fig. 4 is a connection diagram of an electric vehicle control system in some embodiments of the present application.
  • Fig. 5 is a DCU architecture diagram of an electric vehicle control system according to some embodiments of the present application.
  • Fig. 6 is the structural representation of the automobile control system of prior art
  • Fig. 7 is a schematic diagram of high-voltage power distribution of an automobile control system in the prior art
  • Fig. 8 is a flow chart of a power-on method for an electric vehicle in some embodiments of the present application.
  • FIG. 9 is a flow chart of a method for powering off an electric vehicle according to some embodiments of the present application.
  • FIG. 10 is a flowchart of a method for powering off an electric vehicle according to other embodiments of the present application.
  • FIG. 11 (FIG. 11A continued with FIG. 11B) is a flowchart of a charging method for an electric vehicle according to some embodiments of the present application.
  • multiple refers to more than two (including two)
  • multiple groups refers to more than two groups (including two)
  • multiple pieces refers to two More than one piece (including two pieces).
  • Electric vehicles are powered by power batteries. Electric vehicles include electric drive and control systems, driving force transmission devices, driving devices, steering devices, braking devices and other mechanical systems. Electric drive and control systems are the core of electric vehicles and the difference between electric vehicles and traditional fuel vehicles. Including power battery, motor, motor speed control device, etc.
  • An electric vehicle is a complex system composed of multiple subsystems. In the prior art, each subsystem completes its own functions through its own Electronic Control Unit (ECU).
  • ECU Electronic Control Unit
  • the electrical system of an electric vehicle includes a high-voltage electrical system and a low-voltage electrical system.
  • the high-voltage electrical system is mainly responsible for the starting, driving, charging and discharging, air conditioning, etc. Electrical equipment and so on.
  • Electric vehicles are equipped with a vehicle control unit (Vehicle control unit, VCU) to manage various components of the electric vehicle and coordinate various subsystems.
  • VCU vehicle control unit
  • the VCU collects the signals of various components such as the accelerator pedal signal and the brake pedal signal, makes judgments, controls the actions of the controllers of each component, and drives the electric vehicle to run normally.
  • MCU Motor Controller Unit
  • BMS Battery Management System
  • transmission system and other on-board energy-consuming electrical equipment of electric vehicles.
  • the motor controller (Motor Control Unit, MCU) (also known as the motor control module) of the electric vehicle controls the motor drive module, and the motor drive module drives the motor.
  • the MCU converts the high-voltage direct current of the power battery into the high-voltage alternating current required to drive the electric vehicle, and drives the motor to output mechanical energy.
  • the MCU receives the vehicle driving control command from the VCU, controls the motor to output the specified torque and speed, and drives the vehicle to drive.
  • the battery management system (Battery Management System, BMS) of the electric vehicle power battery is a control system to protect the safety of the power battery.
  • Energy calculate the state of charge (State of Charge, SOC, that is, the remaining battery power) of the power battery pack and ensure that the SOC is maintained within a reasonable range, and dynamically monitor the working status of the power battery pack.
  • SOC state of Charge
  • Energy-consuming electrical equipment for electric vehicles mainly includes water-cooled units, electric defrosting equipment, electric air conditioners, electric heaters, oil pump controllers, air pump controllers, and DC/DC converters.
  • the water-cooled unit uses water convection heat exchange to take away the heat generated by the battery and reduce the battery temperature.
  • the electric defrosting equipment evenly arranges multiple heating resistance wires in the windshield. After the resistance switch is turned on, the resistance wires heat the glass quickly, so that the temperature of the glass rises, and the frost fog attached to the glass is heated and melted to achieve the defrosting effect.
  • the electric heater is mainly composed of an air heater and a fan. The air heater dissipates heat and the fan sends out to adjust the air temperature in the car.
  • the oil pump controller (oil pump DC/AC) is connected to the oil pump to control the motor of the power steering oil pump of the electric vehicle.
  • the oil pump DC/AC inverts the DC power above 300V of the electric vehicle battery pack into AC power to supply power for the oil pump. By controlling the power supply current, the speed and power of the oil pump are controlled.
  • the air pump controller (air pump DC/AC) is connected to the air pump to control the motor of the brake air pump of the electric vehicle.
  • the air pump controller converts the DC power of the electric vehicle into AC power for the air pump, and controls the speed and power of the air pump by controlling the power supply current.
  • DC/DC is a voltage conversion module, which converts the high-voltage direct current of the power battery into a 12V direct current, which is used by the low-voltage system.
  • PDU Power Distribution Unit, power distribution unit, distribution board
  • PDU electrically connects high-voltage components through busbars and wiring harnesses, and provides charge and discharge control, power-on control of high-voltage components, circuit overload and short-circuit protection, and high-voltage sampling for the high-voltage system of electric vehicles. , low-voltage control and other functions to protect and monitor the operation of the high-voltage system.
  • the high-voltage side control components that complete high-voltage power distribution in electric vehicles mainly include VCU (Vehicle Control Unit, vehicle controller) and BMS (Battery Management System, power battery management system).
  • VCU Vehicle Control Unit
  • BMS Battery Management System, power battery management system
  • the VCU mainly performs high-voltage control on electrical equipment such as water-cooled units, electric defrosting, electric air conditioners, electric heaters, oil pumps DC/AC, air pumps DC/AC, and DC/DC through the Power Distribution Unit (PDU), and the BMS It mainly performs high-voltage control on the motor drive module (inverter) of the motor controller (Motor Control Unit, MCU).
  • the control of the high-voltage side control components in the prior art is relatively decentralized, resulting in complex structures and complicated wiring relationships of the high-voltage side control components in the prior art.
  • the VCU and the BMS need to exchange information through CAN (Controller Area Network, controller area network), and it is necessary to formulate complex communication protocols and control strategies. After judging each other, the relay is closed and disconnected. As a result, the power-on and power-off time periods are long, which increases the power-on and power-off time of the whole vehicle, and is prone to failure. When a failure occurs, the power-on is unsuccessful and the vehicle cannot be started normally, which affects the user experience.
  • each function of an electric vehicle generally needs to be equipped with a controller.
  • the number of controllers increases dramatically, making the electronic system of the electric vehicle very complicated. This leads to an increase in the cost of the vehicle and a waste of hardware resources, which is not conducive to the development of electric vehicles.
  • DCU Domain Control Unit
  • the electronic components of electric vehicles are divided into power domain, intelligent cockpit domain, and automatic driving domain Wait for several domains, and use a controller chip with stronger processing capability to control each domain relatively intensively.
  • Embodiments of the present application provide an electric vehicle control system and control method, an electric vehicle power-on method, an electric vehicle power-off method, and an electric vehicle charging method, which can simplify the structure of the control system, simplify the control strategy, and shorten the time between power-on and power-off. electricity time.
  • Fig. 1 is a schematic structural diagram of an electric vehicle control system according to some embodiments of the present application.
  • An electric vehicle control system 100 includes: DCU 101 (power domain controller, Domain Control Unit), battery current sampling unit 111, motor drive module current sampling unit 116, electrical equipment 105, 107, DCU101
  • DCU 101 power domain controller, Domain Control Unit
  • the battery current sampling unit 111 and the motor drive module current sampling unit 116 respectively perform current sampling on the power battery 102 and the motor drive module 103 of the electric vehicle, and send the sampling signal to the DCU 101.
  • the electrical equipment 105, 107 is driven by the power battery 102, samples the current flowing through the electrical equipment 105, 107, and sends the sampling signal to the DCU 101, and the DCU 101 sends the signal according to the electrical equipment 105, 107 and the current sampling unit 111, 116. Sampling signals to manage and control the power battery 102, the motor drive module 103, and the electrical equipment 105, 107.
  • the motor driving module 103 also belongs to the electrical equipment, for the sake of convenience, the motor driving module 103 is described here differently from other electrical equipment 105 and 107 .
  • the electric vehicle control system 100 also includes a main switch 104 connected to the power battery 102 through a power line, a first switch 106 connected to the first electric device 105, and a switch 106 connected to the second electric device 107.
  • the second switch 108 , the Nth switch 110 connected to the motor driving module 103 , and the switch voltage sampling unit 115 .
  • the first switch 106, the second switch 108, and the Nth switch 110 turn on or off the power supply circuits of the electrical equipment 105, 107, and the motor drive module 103, and the switch voltage sampling unit 115 controls the first switch 106, the second switch 108, and the Nth switch.
  • the switch 110 performs voltage sampling and sends the sampling signal to the DCU 101, and the DCU 101 controls the opening and closing of the first switch 106, the second switch 108, and the Nth switch 110 according to the sampling signal sent by the switch voltage sampling unit 115.
  • the power battery 102 is connected to the main switch 104 through the power line, and the main switch 104 is respectively connected to the first switch 106 , the second switch 108 , and the Nth switch 110 through the power line.
  • the battery current sampling unit 111, the battery voltage sampling unit 112 and the battery temperature sampling unit 113 are connected to the DCU 101 through signal lines to collect the current, voltage and temperature information of the power battery 102, and send the collected signals to the DCU 101.
  • the DCU 101 receives the current, voltage and temperature sampling signals of the power battery 102, performs calculations and judgments, and controls the switches 104, 106, 108, 110, and the current distribution of each electrical equipment 105, 107 and the motor drive module 103 according to the judgment results wait.
  • the switch voltage sampling unit 115 is connected to the DCU 101 through a signal line, collects the voltage signals of the first switch 106, the second switch 108, and the Nth switch 110, and sends the collected signals to the DCU 101.
  • the DCU 101 receives the sampling signals of the first switch 106, the second switch 108, and the Nth switch 110, performs calculations and judgments, and controls the first switch 106, the second switch 108, and the Nth switch 110 according to the judgment results.
  • Motor drive module current sampling unit 116, motor drive module voltage sampling unit 114, motor drive module temperature sampling unit 117 are connected with DCU 101 and motor drive module 103 by signal lines, motor drive module current sampling unit 116, motor drive module voltage sampling unit 114.
  • the motor drive module temperature sampling unit 117 collects the current, voltage and temperature information of the motor drive module 103, and sends the collected signal to the DCU 101.
  • the DCU 101 receives the current, voltage and temperature sampling signals of the motor drive module 103, performs calculations and judgments, and controls the motor drive module 103 to output torque and rotational speed and other drive signals to the motor according to the judgment results.
  • the electric vehicle control system 100 includes a power domain controller DCU101, and the sampling signals of the power battery 102, the motor drive module 103, and the electrical equipment 105, 107 are directly sent to the DCU101, and the DCU101 manages the power battery 102, Control the motor drive module 103 and the electrical equipment 105, 107. That is, the DCU 101 integrates the functions of the VCU, BMS, and MCU in the prior art.
  • the sampling signals of the switches 106, 108, 110 are directly sent to the DCU 101, and the DCU 101 controls the switches 106, 108, 110 according to the sampling signals, thereby controlling the electrical equipment 105, 107, and the motor drive module 103. That is, the DCU 101 further integrates the functions of the PDU 605 in the prior art.
  • the electric vehicle control system 100 of this embodiment Since the DCU 101 of this embodiment integrates the functions of VCU, BMS, PDU, and MCU, it is not necessary to independently manage and control VCU, BMS, PDU, and MCU as in the prior art, and perform complicated communication with each other to execute Complex control strategy, therefore, the electric vehicle control system 100 of this embodiment has a simple structure, can simplify line connection relationships, simplify control strategies, and simplify communication methods.
  • Fig. 2 is a schematic diagram of high-voltage power distribution of an electric vehicle control system according to some embodiments of the present application.
  • the DCU 101 is arranged in the high-voltage power distribution box 201.
  • DC/DC 203 reserved charging port 204 for connecting the charger, motor drive module 103, water cooling unit 205, electric defrosting equipment 206, electric air conditioner 207, electric heater 208, oil pump DC/ AC 209, air pump DC/AC 210 and other high-voltage electrical equipment are connected to the power battery 102 through the power line, and a relay is connected to the line between the power battery 102 and each electrical equipment as a switch of the power supply circuit to open or close each electrical equipment.
  • the power supply circuit of the equipment, and the circuit protection element FUSE Each switch is connected to the DCU 101 through a hard wire, and the DCU 101 controls the opening and closing of each switch and the current supplied by the power battery 102 to each electrical device, thereby performing high-voltage distribution and driving each electrical device.
  • the positive pole of the power battery 102 is connected to the manual maintenance switch MSD 202, the negative pole is connected to the total negative relay K0, the positive pole and the negative pole of the charging port 204 are respectively connected to the charging positive relay K1 and the charging negative relay K2.
  • the positive pole of the motor driving module 103 is connected with a main positive relay K3 and a pre-charging relay K4, and the pre-charging relay K4 pre-charges the capacitor in the motor driving module 103 .
  • the positive pole of the water-cooling unit 205 is connected to the water-cooling unit relay K5
  • the positive pole of the electric defrosting device 206 is connected to the electric defrosting relay K6
  • the positive pole of the electric air conditioner 207 and the positive pole of the electric heater 208 are connected to the relay K7
  • the oil pump DC/AC 209 The positive pole and the positive pole of the air pump DC/AC 210 are connected with a relay K8.
  • Relays K1, K2, K3, K4, K5, K6, K7, K8 are hard-wired connected to DCU 101, and DCU 101 detects relays K1, K2, K3, K4, K5, K6, K7, The status of K8, as well as the status of charging port 204, motor drive module 103, water-cooled unit 205, electric defrosting equipment 206, electric air conditioner 207, electric heater 208, oil pump DC/AC 209, and air pump DC/AC 210 are inside DCU101 Carry out calculations and logical judgments, control relays K1, K2, K3, K4, K5, K6, K7, and K8 to connect or disconnect the charging port 204, the motor drive module 103, the water cooling unit 205, the electric defrosting equipment 206, and the electric air conditioner 207, electric heater 208, the power supply circuit of oil pump DC/AC 209, air pump DC/AC 210, and adjust the size of the current supplied to the above electrical equipment.
  • DCU 101 integrates the functions of the four controllers of VCU, BMS, MCU, and PDU in the prior art.
  • DCU 401 collects the information of multiple electrical equipment, power battery 102, and multiple switches to detect the multiple The state of electrical equipment, power battery 102, and switch is calculated and logically judged internally to determine the control strategy. Therefore, it is not necessary to work separately for VCU, BMS, PDU, and MCU as in the prior art, and then perform mutual Complex communication, therefore, the electric vehicle control system 100 of this embodiment is simple in structure, fast and efficient, and reduces the risk of failure.
  • Fig. 3 is a schematic diagram of the current distribution of the main electrical equipment in the electric vehicle control system according to some embodiments of the present application, showing the high-voltage current distribution of the main electrical equipment in Fig. 2 .
  • the motor drive module 103 is electrically connected to the power battery 102 via the main positive relay K3 , the pre-charging relay K4 , and the main negative relay K0 .
  • the water-cooling unit 205 is electrically connected to the power battery 102 via the water-cooling unit relay K5 and the total negative relay K0.
  • the electric defrosting device 206 is electrically connected to the power battery 102 via the electric defrosting relay K6 and the total negative relay K0.
  • the electric air conditioner 207 and the electric heater 208 are electrically connected to the power battery 102 through the relay K7 and the total negative relay K0.
  • the oil pump DC/AC 209 and the air pump DC/AC 210 are electrically connected to the power battery 102 through the relay K8 and the total negative relay K0.
  • the external charger 301 is inserted into the charging port 204, and is electrically connected to the power battery 102 via the charging positive relay K1 and the charging negative relay K2.
  • DCU 101 integrates the functions of the four controllers of VCU, BMS, MCU, and PDU in the prior art.
  • the state of the electrical equipment, the power battery 102, and the switch are calculated and logically judged internally to determine the control strategy. Therefore, the electric vehicle control system 100 of this embodiment is simple in structure, fast and efficient, reduces the risk of failure, and can ensure control of multiple Efficient and effective control of electrical equipment.
  • Fig. 4 is a connection relationship diagram of an electric vehicle control system according to some embodiments of the present application.
  • DCU 101 and battery current sampling unit 111, switch voltage sampling unit 115, DC/DC 203, motor drive module 103, water cooling unit 205, air conditioner 207, the oil pump DC/AC 209, and the air pump DC/AC 210 are connected through signal lines, such as communicating through the CAN protocol (Controller Area Network controller local area network bus protocol), and the DCU 101 and the switch module 401 are connected through hard wires.
  • the switch module 401 represents any switch in FIG. 1 or FIG. 2 or FIG. 3 .
  • the battery current sampling unit 111 is connected to the power battery 102
  • the motor drive module 103 is connected to the sampling units 116 , 114 , 117 .
  • the current sampling signal can be obtained using a current sensor.
  • a current sensor For example, the positive pole or negative pole of the power battery 102 can be connected in series with a current sensor, and the positive pole of the input of the motor drive module 103 and the three stages that output three-phase electricity can also be provided with current sensors.
  • the battery current sampling units 111 and 116 obtain the sampling signals of the power battery 102 and the motor drive module 103, the switching voltage sampling unit 115 obtains the voltage sampling signals of the switch module 401, the water cooling unit 205 of each electrical equipment, the air conditioner 207, and the oil pump DC/AC 209.
  • the current sampling signals obtained by the air pump DC/AC 210 are transmitted to the DCU 101 through the CAN line, and the DCU 101 performs calculations and judgments based on these sampling signals, and controls the switching module 401 and the current that the power battery 102 attacks on the electrical equipment. For example, when the total current provided by the power battery 102 decreases, the DCU 101 can turn off the current supply of some electrical equipment and distribute it reasonably.
  • DCU 101 has centralized control functions, and is connected to electrical equipment and sampling units through signal lines, such as CAN, and DCU receives sampling signals from electrical equipment and current sampling units, and sends control signals to electrical equipment and current sampling units.
  • signal lines such as CAN
  • the DCU 101 and the switch module 401 are connected by hard wires, the DCU 101 and the switch module 401 can quickly transmit signals, greatly shorten the response time, realize fast control of the switch module, avoid communication loss and delay, and reduce failure rates.
  • Fig. 5 is a structural diagram of a DCU of an electric vehicle control system according to some embodiments of the present application.
  • FIG. 5 lists the functions that can be realized by the electric vehicle control system 100 of this embodiment.
  • the DCU 101 has a control chip 500, which is the central control device of the DCU 101, and the control chip 500 has a processor 501, an arithmetic unit 502, a storage unit 503, and a communication unit 504.
  • the DCU 101 also includes a digital input sampling unit 510, an analog input sampling unit 511, a digital output control unit 507, and a PWM output control unit 508.
  • the analog input sampling unit 511 and the digital input sampling unit 510 input the sampling signal sent by the signal sampling unit into the control chip 500 in the form of an analog signal and a digital signal respectively, and are calculated and processed by the arithmetic unit 502 and the processor 501, and then digitally output The control unit 507, or the PWM output control unit 508 outputs.
  • the storage unit 503 is used to store information data.
  • Digital sampling signals generally come from relays, steering control, key operation, gear operation, acceleration/brake pedal, power mode switching, etc.
  • Analog sampling signals generally come from temperature sampling, pedal position sampling, air pressure sampling, etc.
  • the PWM output control unit 508 outputs control signals to compressors, water pumps, fans, and the like.
  • Fig. 5 various functions of the DCU 101 are listed around the DCU 101.
  • the temperature sensor transmits a temperature signal to the DCU 101, and the DCU 101 communicates with the temperature sensor to transmit information.
  • the main drive relay control in the power distribution function, the high-voltage electrical appliance relay control, etc., involve the power on and off of the electric vehicle.
  • the functions related to BMS include: power battery SOC/SOP/SOH calculation and charging control in power output and calculation control functions; emergency high voltage power failure in driving intention recognition function; insulation in integrated monitoring function Monitoring, high-voltage interlock, power battery cell voltage, power battery cell/module temperature, power battery pack cell balance, power battery pack output total current/voltage; vehicle low-voltage power supply control in energy management functions, charging control ; Power battery water cooling control, power battery water heat control, etc. in the comprehensive thermal management function.
  • the functions related to MCU include: motor temperature/rotor position, motor phase current/phase voltage in integrated monitoring function; speed/torque control in power output calculation and control function, inverter power calculation, motor Three-phase bridge arm control, motor feedback and precision adjustment, etc.
  • the functions related to VCU include: vehicle state acquisition function; power output calculation and pedal operation calculation in control function; energy management function; key operation, gear position operation, acceleration/brake in driving intention recognition function Pedal movement, power mode switching, power output calculation and mileage calculation in control functions, etc.
  • DCU101 integrates the functions of VCU, BMS, PDU, and MCU, so it can avoid the problems of independent management and control of multiple controllers, complex communication with each other, and implementation of complex control strategies. Therefore, this
  • the electric vehicle control system 100 of the embodiment has a simple structure, can simplify line connection relationships, control strategies, and communication methods, is fast and efficient, and reduces failure risks.
  • the DCU 101 obtains the sampling signal, and the calculation is performed by the internal computing unit 502, and the processor 501 performs logical judgment to determine the control strategy. Therefore, the electric vehicle control system 100 of the present embodiment has centralized control capabilities and fast response. Better vehicle energy management and power distribution.
  • FIG. 6 is a structural schematic diagram of a vehicle control system in the prior art.
  • the automobile control system 600 of prior art has BMS 603, VCU 604, PDU 605, MCU606.
  • BMS 603 is connected with VCU 604, and VCU 604 is connected with PDU 605 and MCU606.
  • BMS 603 is connected with battery current sampling unit 111, battery voltage sampling unit 112 and battery temperature sampling unit 113, and main switch 104, and battery current sampling unit 111, battery voltage sampling unit 112 and battery temperature sampling unit 113 collect the current of power battery 102 , voltage and temperature information, and send the sampling signal to the BMS 603.
  • the BMS 603 transmits the current, voltage and temperature information of the power battery 102 to the VCU 604, and the VCU 604 performs calculations and judgments. According to the judgment results, the PDU 605 is instructed to control the opening and closing of the first switch 106, the second switch 108, and the Nth switch 110.
  • the command BMS603 controls the current supplied by the power battery 102 to each electric device.
  • the PDU 605 is connected with the first switch 106, the second switch 108, and the third switch 110 through the switch voltage sampling unit 115, and the switch voltage sampling unit 115 collects the voltage signals of the first switch 106, the second switch 108, and the Nth switch 110, and Send the sampling signal to the PDU605, and the PDU605 transmits the sampling signal of the first switch 106, the second switch 108, and the Nth switch 110 to the VCU 604, and the VCU 604 performs calculation and judgment, and controls the first switch directly or through the PDU605 according to the judgment result 106 , the second switch 108 , and the Nth switch 110 .
  • MCU 606 is connected to motor drive module 103 through current sampling unit 116, voltage sampling unit 114 and temperature sampling unit 117, and current sampling unit 116, voltage sampling unit 114 and temperature sampling unit 117 collect the current, voltage and temperature information of motor drive module 103 , and send the sampling signal to the MCU606, and the MCU606 transmits the current, voltage and temperature information of the motor drive module 103 to the VCU 604.
  • the VCU 604 performs calculations and judgments, and instructs the motor drive module 103 to control the motor according to the judgment result, such as instructing the electrodes to output driving signals such as torque and rotational speed.
  • the VCU, BMS, PDU, and MCU independently manage and control each other, perform complex communication with each other, and execute complex control strategies, resulting in slow response and high failure rate.
  • FIG. 7 is a schematic diagram of high-voltage power distribution of an automobile control system in the prior art.
  • the automobile control system 600 shown in FIG. 7 has a BMS 603, a VCU 604, a PDU 605, and an electrode controller 608.
  • PDU 605 controls the electric defrosting relay K5, the air conditioner and heater relay K7, the auxiliary driving relay K7 of the oil pump DC/AC 209 and the air pump DC/AC 210, and the DC/DC relay K8, and controls the water cooling unit 205, the electric defrosting equipment 206, Electric components such as electric air conditioner 207, electric heater 208, oil pump DC/AC 209, air pump DC/AC 210 and DC/DC 203 perform high-voltage control.
  • the BMS 603 and the total negative relay K0 connected to the negative pole of the power battery 102, the charging positive relay K1 connected to the positive pole of the charging port 204, the main positive relay K2 connected to the positive pole of the motor controller 608, the pre-charge relay K3, water-cooled unit
  • the relay K4 and the like are arranged in the BMS power distribution box 702 .
  • the BMS 603 mainly performs high-voltage control on the motor drive module 606 (inverter) of the motor controller 608.
  • the VCU 604 and the BMS 603 are each equipped with a high-voltage box, and the electrical topology is complex and the wiring is numerous.
  • the VCU 604 and the BMS 603 interact with each other through CAN information, determine the logic of each other, and then execute the closing relay, resulting in long power-on and power-off times.
  • the information exchange and communication between VCU 604 and BMS 603 requires a communication protocol at the software execution level, so there are risks and situations of communication loss and delay, which will affect the information exchange between the two, cause failures, and cause power-on (power-on High voltage) failure, the vehicle cannot start normally, affecting the user experience.
  • a control method for electric vehicle control according to an embodiment of the present application.
  • the electric vehicle has a DCU 101.
  • the control method includes that the DCU 101 receives sampling signals from the power battery 102 and electrical equipment 105, 107, and manages and controls the power according to the sampling signals. Battery 102, electrical equipment 105, 107.
  • the DCU101 integrates the functions of the BMS, MCU, and VCU in the prior art, so it can simplify the control strategy, simplify the communication method, save the time of data receiving and sending, improve the comprehensive data processing capability, reduce the power-on and power-off time, and reduce the failure rate.
  • the DCU 101 receives the sampling signal of the switch module 401, and controls the switching module 401 on and off according to the sampling signal.
  • the DCU 101 further integrates the functions of the PDU, so the electric vehicle control method of this embodiment further simplifies the control strategy and the communication method.
  • the DCU 101 detects the states of the electrical equipment 105 , 107 , and 103 , and performs calculations on the detected data to determine control strategies for these electrical equipment.
  • DCU101 performs calculations and logical judgments inside, and the calculation results can be shared. Therefore, the program of individual processing and data transmission of each controller in the prior art is omitted, and the comprehensive processing capability is greatly improved, and there is no need to formulate complicated communication protocols. and control strategies.
  • the DCU01 is connected to the electrical equipment and the current sampling unit through signal wires, and is connected to the switch module 401 through hard wires.
  • the DCU 101 is connected to the switch module 401 through a hard wire, so that signals can be transmitted quickly to realize fast control of the switch module.
  • electrical devices include oil pump DC/AC 209, air pump DC/AC 210, electric air conditioner 207, electric heater 208, electric defrosting 206, water cooling unit 205, DC/DC 203, etc.
  • the DCU 101 controls the above-mentioned electrical equipment, and optimizes the distribution and control of the high-voltage power consumption of the vehicle.
  • the electric vehicle control system and control method according to the above embodiments of the present invention can optimize the power-on process, power-off process, and charging process of the electric vehicle. Specific instructions are given below.
  • Fig. 8 is a flow chart of a method for powering on an electric vehicle according to some embodiments of the present application.
  • the electric vehicle has the DCU 101 as described above, and the DCU 101 receives the sampling signals of the power battery 102, the switch module 401, and the electrical equipment 103, 105, 107, and Manage and control the power battery 102, the switch module 401, and the electrical equipment 103, 105, 107 according to the sampling signal.
  • the power-on method 800 of this embodiment includes the following steps:
  • the DCU 101 detects the high voltage request signal, and starts the power-on process.
  • the DCU 101 initializes and completes the self-check. If the initialization fails or the initialization times out, then proceed to s8103, otherwise proceed to s8104.
  • the DCU 101 detects whether each high-voltage electrical device is closed and prohibits the output, if not, repeats s8104, and if so, proceeds to s8105.
  • the DCU 101 judges whether there is a failure to prohibit power-on, if so, proceed to s8103, if not, proceed to s8106.
  • the DCU 101 diagnoses the contacts of the relay through voltage sampling to determine whether it is normal, if not, proceed to s8103, and if so, proceed to s8107.
  • the DCU 101 when the power-on condition is met, the DCU 101 sends a closing command to the main negative relay K0 to connect the main circuit.
  • the DCU 101 detects whether the main negative relay K0 is normally closed, if not, proceed to s8103, and if so, proceed to s8109.
  • the DCU 101 sends a closing command to the pre-charging relay K4 to connect the pre-charging circuit, and pre-charges the motor drive module 103.
  • the DCU 101 detects whether the pre-charging relay K4 is normally closed within a certain period of time (for example, 200ms), if not, proceed to s8103, and if so, proceed to s8111.
  • a certain period of time for example, 200ms
  • DCU 101 sends a closing command to the main positive relay K3 to connect the motor drive circuit.
  • the DCU 101 detects whether the main positive relay K3 is normally closed, if not, proceed to s8103, and if so, proceed to s8113.
  • DCU 101 sends a disconnection command to the pre-charging relay K4, closes the pre-charging circuit, and pre-charging ends.
  • the whole vehicle enters the high voltage state, and the main circuit is powered on successfully.
  • the whole vehicle enters a high-voltage state, mainly because the motor 109 enters a high-voltage state; the DCU 101 sends a command to close the water-cooling unit relay K5, the electric defrosting relay K6, the air-conditioning heater relay K7, and the auxiliary drive relay K8, that is, all relays are closed, and the water-cooling unit is turned on.
  • the unit circuit, electric defrosting circuit, air conditioning and heating circuit, and auxiliary drive circuit complete the high-voltage power-on of the whole vehicle.
  • the DCU 101 internally reads the information of the electrical equipment 105, 107, for example, the information includes the electrical equipment that needs to be turned on, the rated power of each electrical equipment, etc.; According to the rated power and weight value of different electrical equipment, refer to the state of charge (SOC) of the battery for calculation, and then judge whether it is necessary to perform power distribution control processing on certain electrical equipment according to the calculation results to complete high-voltage distribution.
  • SOC state of charge
  • the power-on conditions include:
  • BMS 603 is not in program update state
  • DCU101 integrates the functions of BMS, VCU, PDU, and MCU. DCU101 directly controls the relay, with centralized control capability and fast response, which simplifies the power-on process of the prior art.
  • VCU604, BMS603, and PDU605 They work independently, carry out complex communication with each other, and execute complex control strategies.
  • DCU101 detects and calculates the power-on conditions, and makes logical judgments, and the calculation results are shared. There is no link in the prior art where each controller transmits data to each other and VCU604 makes judgments. Therefore, the communication method of the power-on method in this embodiment The method is simple, the response is fast, the power-on time is short, and the failure rate is low.
  • Fig. 9 is a flowchart of a method for powering off an electric vehicle according to some embodiments of the present application.
  • the electric vehicle has the DCU 101 as described above, and the DCU 101 receives the sampling signals of the power battery 102, the switch module 401, and the electrical equipment 103, 105, 107, and Manage and control the power battery 102, the switch module 401, and the electrical equipment 103, 105, 107 according to the sampling signal.
  • FIG. 9 shows a flowchart of a passive power-off method in some embodiments of the present application.
  • the power off method 1000 of this embodiment includes the following steps:
  • the DCU 101 judges whether there is a failure to prohibit power-on of the whole vehicle, or the DCU 601 itself fails, and requests to power off, if not, repeat s10201, and if so, proceed to s9202.
  • the DCU 101 sends a power-off command to start the power-off process.
  • DCU 101 detects whether the main circuit current is less than a set threshold, for example, the set threshold is 15A, if not, repeat s9203, and if yes, perform s9204.
  • the setting threshold of the main circuit current is generally not greater than 15A.
  • the DCU 101 detects whether the main loop current is less than the set threshold, if the main loop current is less than the threshold, it can implement power off to avoid power off with load, otherwise it may affect the performance of the vehicle components.
  • the DCU 101 sends a command to disconnect the main positive relay K3 to close the motor drive circuit;
  • DCU 101 detects whether the main positive relay K3 is disconnected, if not, then perform "overtime judgment", if so, then perform s10206;
  • DCU 101 sends a command to disconnect the main negative relay K0 to close the main circuit
  • the key wake-up signal if it is invalid and the high-voltage power-off is completed, it will enter the driving power-off monitoring state and monitor continuously for 5 minutes. When extreme faults such as over-temperature and over-voltage occur, it will continue to monitor until the SOC is too low, such as level two , or a single undervoltage stage, or other states, for mode switching.
  • the DCU101 directly controls the relay, so the control capability is concentrated and the response is fast, which simplifies the independent work of the VCU604, BMS603, and PDU605 in the prior art, and the complex communication between each other and the implementation of complex control strategies Therefore, the power-off method, communication method, and control strategy of this embodiment are simple, can shorten the power-off time, and reduce the failure rate.
  • Fig. 10 is a flowchart of a method for powering off an electric vehicle according to other embodiments of the present application.
  • Fig. 10 shows a flowchart of a method for actively powering off in some embodiments of the present application.
  • the power off method 1100 of this embodiment includes the following steps:
  • the DCU 101 receives a power-off command, sends a power-off request, and starts a power-off process.
  • the DCU 101 turns off each electric device 105, 107.
  • DCU 101 disconnects water-cooling unit relay K5, electric defrosting relay K6, and air-conditioning heating relay K7, and closes the water-cooling unit circuit, electric defrosting circuit, and air-conditioning heating circuit.
  • the DCU 101 collects the main circuit current, detects whether the main circuit current is less than the threshold value, and collects the motor bus current at the same time, and reduces the current to the threshold value in the shortest time.
  • the threshold is set to 15A, and the main circuit current is greater than the threshold, s1104 is repeated, and if it is smaller than the threshold, s1105 is performed.
  • the threshold of the main circuit current is generally set to be no more than 15A.
  • the DCU 101 sends a command to disconnect the main positive relay K3 to close the motor drive circuit.
  • the DCU 101 detects whether the main positive relay K3 is disconnected, if not, then proceed to "timeout judgment", if so, proceed to s20207.
  • the DCU 101 sends a command to disconnect the main negative relay K0 to close the main circuit.
  • the DCU101 directly controls the relay, so the control capability is centralized and the response is fast, which simplifies the independent work of the VCU, BMS, and PDU in the prior art, complex communication with each other, and complex control strategies. Therefore, the power-off method, communication method, and control strategy of this embodiment are simple, can shorten the power-off time, and reduce the failure rate.
  • FIG. 11 (FIG. 11A continued with FIG. 11B) is a flowchart of a charging method for an electric vehicle according to some embodiments of the present application.
  • the charging device in the embodiment of the present application can be an ordinary charging pile, a super charging pile, a charging pile that supports a vehicle to grid (V2G) mode, or a charging and discharging device/equipment that can charge and discharge a power battery, etc.
  • the embodiment of the present application does not limit the specific type and specific application scenarios of the charging device.
  • a charging method 1200 for an electric vehicle has the DCU 101 as described above.
  • the DCU 101 receives the sampling signals of the power battery 102, the switch module 401, and the electrical equipment 103, 105, and 107, and manages and controls them according to the sampling signals. Power battery 102, switch module 401, electrical equipment 103, 105, 107.
  • the charging method 1200 includes the following steps:
  • the plug of the charging gun 301 of the charging pile is connected to the charging port 204, and after the internal processing of the charging pile, the charging pile outputs a wake-up signal to the DCU101, and proceeds to s1202 or s1301.
  • DCU 101 receives wake-up signal A++.
  • DCU101 carries out self-inspection, implements initialization, then judges whether there is a fault, if so, then carries out s 1205, if not, then carries out s 1204.
  • DCU 101 judges whether the charging connection signal CC2 is valid, if not, repeat s 1205, and if so, proceed to s 1206.
  • DCU 101 judges that the gun is inserted successfully, and driving is prohibited.
  • s 1207 determine whether the vehicle has a fault that prohibits charging, if so, go to s 1208, if not, go to s 1209.
  • DCU 101 sends a command to close the charging and negative relay K2 to connect the charging circuit.
  • the DCU 101 sends a command to close the positive charging relay K1 to connect the charging circuit.
  • the DCU101 detects whether it has received the closed state information of the positive charging relay K1, if not, proceed to S1207, and if so, proceed to S1214.
  • the accessory work instruction refers to the need to turn on the thermal management of the vehicle and its components during the charging process, for example, turn on the switch of the water cooling unit and start the water cooling.
  • DCU 101 sends the main negative relay K0 closing command, and connects the main circuit.
  • DCU101 detects whether the main negative relay K0 is normally closed, if not, proceed to s 1207, and if so, proceed to s 1218.
  • DCU 101 sends the auxiliary drive relay K8 closing command to connect the auxiliary drive circuit.
  • the DCU 101 sends the closing command of the relay K5 of the water-cooling unit and the closing command of the relay K8 of the auxiliary drive to connect the circuit of the water-cooling unit and the circuit of the auxiliary drive.
  • DCU101 detects whether the charging state reaches the end condition, if not, then repeat s 1220, if so, then perform s 1221.
  • the conditions for ending charging are:
  • the DCU 101 sends an instruction to end charging.
  • DCU 101 detects whether the state of charge reaches the end condition (SOC reaches 100, or reaches the set value), and if so, sends an end charge command.
  • CC1 means that during the charging process, the non-vehicle charging equipment will continuously monitor the connection status of the charging plug and the charging socket through the input voltage signal of the connection confirmation contact. After uninstalling, disconnect the switch.
  • CC2 means that during the charging process, if the off-board charging device does not receive the charging level 2113 request message sent periodically by the battery management system BMS603 within 100ms, the off-board charging device also responds to the function of turning off the DC power output.
  • the DCU 101 sends a command to disconnect the positive charging relay K1 to close the charging circuit.
  • DCU 101 sends a command to disconnect the charging and negative relay K2, and closes the charging circuit.
  • the DCU 101 sends a command to disconnect the auxiliary drive relay K8 to close the auxiliary drive circuit.
  • the DCU 101 sends a command to disconnect the main negative relay K0 to close the main circuit.
  • DCU101 judges whether all relays have been disconnected, if not, carry out s 1227, if so, carry out s 1228.
  • DCU101 reports a fault.
  • DCU101 judges whether all wake-ups are invalid, if not, then repeatedly carry out s 1228, if so, then carry out s 1229.
  • the system is powered off and sleeps.
  • the charging pile implements the national standard charging process
  • the DCU101 directly controls the relay, the control capability is concentrated, and the response is fast, which simplifies the situation in the prior art that the VCU604, BMS603, and PDU605 work independently, perform complex communication with each other, and execute complex control strategies. Therefore, the charging method of this embodiment, the communication method and the control strategy are simple, and can reduce faults.
  • a computer-readable storage medium stores computer-executable instructions.
  • the computer-executable instructions are executed by a processor, the method in any one of the above-mentioned embodiments is executed.
  • An electronic device includes a memory and a processor, the memory is used to store computer instructions, and the processor is used to run the computer instructions to execute the method in any one of the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Software Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电动汽车控制系统(100)和控制方法、电动汽车上电方法(800)、电动汽车下电方法(1000;1100)、电动汽车充电方法(1200),电动汽车控制系统(100)包括对电动汽车进行控制的动力域控制器(101),对电动汽车的动力电池(102)、电机进行电流采样、并将采样信号发送动力域控制器(101)的电流采样单元(111、116),由动力电池(102)驱动、其对流过用电设备(105、107)的电流进行采样、并将采样信号发送动力域控制器(101)的用电设备(105、107),动力域控制器(101)根据用电设备(105、107)、电流采样单元(111、116)发送的采样信号,管理动力电池(102)、控制电机驱动模块(103)、用电设备(105、107)。

Description

电动汽车控制系统、控制方法、及计算机可读存储介质 技术领域
本申请涉及电动汽车领域,具体涉及电动汽车控制系统和控制方法、电动汽车上电方法、电动汽车下电方法、电动汽车充电方法。
背景技术
电动汽车具有环保性能好、噪音低、使用成本低等优点,具有巨大市场前景,且能够促进节能减排,有利于社会的发展和进步。
现有技术中,电动汽车高压电气系统的控制部件主要由整车控制器(Vehicle Control Unit,VCU)和电池管理系统(Battery Management System,BMS)组成,VCU通过高压配单元(Power Distribution Unit,PDU)对水冷机组、电除霜、电动空调、电暖风、油泵控制器(油泵DC/AC)、气泵控制器(气泵DC/AC)、DC/DC转换器等用电部件进行高压控制,BMS主要对电机控制器(Motor Control Unit,MCU)的电机驱动模块(逆变器)进行高压控制。
如上所述,现有技术中,电动汽车高压电气系统的控制部件比较分散,VCU与BMS之间通过CAN进行信息交互,需要制定复杂的通信协议和控制策略,相互之间进行判断逻辑之后再执行闭合、断开继电器,线路连接关系复杂、接线多,通信周期长,增加整车上下电时间,容易出现故障,发生故障时导致上电不成功,车辆不能正常启动,影响用户体验。
发明内容
本申请的实施例提供一种电动汽车控制系统和控制方法、电动汽车上电方法、电动汽车下电方法、电动汽车充电方法,以及计算机可读存储介质和电子设备,其能够简化控制系统的结构,简化控制策略,缩短上电、下电时间。
第一方面,本申请提供一种电动汽车控制系统,包括:
动力域控制器(DCU),其对电动汽车进行控制,
电流采样单元,其对电动汽车的动力电池、电机驱动模块进行电流采样,并将采样信号发送所述动力域控制器,
用电设备,其由所述动力电池驱动,其对流过该用电设备的电流进行采样,并将采样信号发送所述动力域控制器,
所述动力域控制器根据所述用电设备、所述电流采样单元发送的采样信号,管理和控制所述动力电池、所述电机驱动模块、所述用电设备。
本申请以上实施例中,电动汽车控制系统具有动力域控制器(Domain Control Unit,DCU),动力电池、电机驱动模块、用电设备的采样信号直接发送DCU,DCU根据采样信号管理和控制动力电池、电机驱动模块、用电设备。即,DCU集成了BMS、MCU、VCU的功能,不必像现有技术中那样,VCU、BMS、MCU各自独立进行管理和控制,相互之间进行复杂的通信,执行复杂的控制策略,因此,本实施例的电动汽车控制系统结构简单,能够简化线路连接关系,简化控制策略,简化通信方式。
在一些实施例中,电动汽车控制系统,还包括,
开关模块,其打开或关闭所述用电设备、所述电机驱动模块的供电电路,
电压采样单元,其对所述开关模块进行电压采样,并将采样信号发送所述动力域控制器,
所述动力域控制器根据所述电压采样单元发送的采样信号,控制所述开关模块的开和关。
本申请以上实施例中,开关模块的采样信号直接发送DCU,DCU根据该采样信号,控制开关模块,从而控制用电设备、电机驱动模块工作。即,DCU进一步集成了PDU的功能,因此本实施例的电动汽车控制系统结构进一步简化,线路连接关系,控制策略,通信方式进一步简化。
在一些实施例中,所述动力域控制器检测所述用电设备的状态,并对检测数据进行计算,以确定所述用电设备的控制策略。
本申请以上实施例中,DCU接收用电设备的采样信号,检测用电设备的状态,并对检测到的状态数据进行计算,根据计算得到的检测数据, 确定用电设备的控制策略。即,DCU内部进行计算和逻辑判断,计算结果可以共享,因此省去了现有技术中各个控制器个别处理、再进行数据传输的程序,综合处理能力大幅提高,而且不需要制定复杂的通信协议和控制策略。
在一些实施例中,所述动力域控制器与所述用电设备、所述电流采样单元通过信号线连接,所述动力域控制器与所述开关模块通过硬线连接。
本申请以上实施例中,DCU与用电设备、电流采样单元通过CAN连接,DCU与用电设备、电流采样单元通过CAN协议(Controller Area Network控制器局域网总线协议)进行通信,DCU接收用电设备、电流采样单元的采样型号、向用电设备、电流采样单元发送控制信号。DCU与开关模块通过硬线连接,因此DCU与开关模块能够快速传输信号,实现快速控制开关模块。
在一些实施例中,所述用电设备包括气泵控制器、油泵控制器、空调压缩机、水冷机组,电压转换模块(DC/DC),电机驱动模块。
本申请以上的实施例中,DCU控制气泵控制器、油泵控制器、空调压缩机、水冷机组,电压转换模块(DC/DC),电机驱动模块等多个用电设备,实现整车高压侧配电控制。
第二方面,本申请提供一种电动汽车的控制方法,所述电动汽车具有动力域控制器,所述控制方法包括,
所述动力域控制器接收动力电池、用电设备的采样信号,并根据所述采样信号管理和控制所述动力电池、用电设备工作。
本申请以上的实施例中,动力域控制器直接接收动力电池、用电设备的采样信号,且根据该采样信号直接管理和控制所述动力电池、用电设备工作,即,DCU集成了BMS、MCU、VCU的功能,本实施例的电动汽车控制方法能够简化控制策略,简化通信方式,不必像现有技术中那样,VCU、BMS、MCU各自独立进行管理和控制,相互之间进行复杂的通信,执行复杂的控制策略。
在一些实施例中,所述动力域控制器接收开关模块的采样信号,并根据该采样信号控制所述开关模块的开和关。
本申请以上实施例中,开关模块的采样信号直接发送DCU,DCU根据该采样信号,控制开关模块,从而控制用电设备、电机驱动模块工作。即,DCU进一步集成了PDU的功能,因此本实施例的电动汽车控制方法进一步简化控制策略,通信方式。
在一些实施例中,所述动力域控制器检测所述用电设备的状态,并对检测数据进行计算,确定所述用电设备的控制策略。
本申请以上实施例中,DCU接收用电设备的采样信号,检测用电设备的状态,并对检测到的状态数据进行计算,根据计算得到的检测数据,确定用电设备的控制策略。即,DCU内部进行计算和逻辑判断,计算结果可以共享,因此省去了现有技术中各个控制器个别处理、再进行数据传输的程序,综合处理能力大幅提高,而且不需要制定复杂的通信协议和控制策略。
在一些实施例中,所述动力域控制器与所述用电设备、所述电流采样单元通过信号线连接,所述动力域控制器与所述开关模块通过硬线连接。
本申请以上实施例中,DCU与用电设备、电流采样单元通过信号线,比如,CAN连接,即,DCU与用电设备、电流采样单元通过CAN协议(Controller Area Network控制器局域网总线协议)进行通信,DCU接收用电设备、电流采样单元的采样信号、向用电设备、电流采样单元发送控制信号。DCU与开关模块通过硬线连接,因此DCU与开关模块能够快速传输信号,实现快速控制开关模块。
在一些实施例中,所述用电器件包括气泵控制器、油泵控制器、空调压缩机、水冷机组,电压转换模块、电机驱动模块。
本申请以上的实施例中,DCU控制气泵控制器、油泵控制器、空调压缩机、水冷机组,电压转换模块(DC/DC),电机驱动模块等多个用电设备,实现整车高压侧配电控制。
第三方面,本申请提供一种电动汽车的上电方法,所述电动汽车具有动力域控制器,所述动力域控制器接收动力电池、开关模块、用电设备的采样信号,并根据所述采样信号管理和控制所述动力电池、开关模块、用电设备工作,所述上电方法包括如下步骤:
所述动力域控制器检测到上电请求信号后进行初始化,
初始化完成后,所述动力域控制器检测上电条件是否满足,
满足上电条件时,所述动力域控制器向与动力电池负极连接的主回路继电器K0发送闭合指令,连通主回路,
所述动力域控制器向电机驱动模块的预充回路继电器K4发送闭合指令,连通预充回路,对所述电机驱动模块进行预充电,
所述动力域控制器向与所述电机驱动模块的正极连接的电机驱动回路继电器K3发送闭合指令,连通电机驱动回路,
所述动力域控制器向所述预充回路继电器K4发送断开指令,结束预充电,完成主回路上电,
所述动力域控制器向水冷机组继电器K5、电除霜继电器K6、空调暖风继电器K7、辅驱继电器K8发送闭合指令,连通各个高压用电设备,完成整车上电。
本申请以上实施例的上电方法中,动力域控制器直接控制继电器,控制能力集中,响应快,简化了现有技术中VCU、BMS、PDU各自独立工作,相互之间进行复杂通信,执行复杂控制策略的状况。本实施例中,DCU检测和计算上电条件,并进行逻辑判断,计算结果共享,没有现有技术中各个控制器相互传输数据、VCU进行判断的环节,因此本实施例的上电方法的通信方式和控制策略简单,能够缩短上电时间。
在一些实施例中,所述动力域控制器检测上电条件的步骤包括:
检测所述高压用电设备是否关闭并禁止输出,
检测整车端是否有禁止上电故障,
诊断各个继电器的触点。
本申请以上实施例的技术方案中,动力域控制器快速检测上述上电条件,在缩短上电时间的同时,保证上电安全。
在一些实施例中,诊断各个继电器后,所述动力域控制器读取存储于所述动力域控制器内部的用电设备的信息,
所述动力域控制器根据读取的用电设备的信息进行计算,根据计算结果对用电设备进行高压分配。
本申请以上实施例的技术方案中,DCU读取存储于其内部的用电设 备的信息,并在其内部进行计算,根据计算结果确定用电设备的高压分配策略,优化能量管理和功率分配。DCU内部的信息以及DCU的计算结果可以共享,因此省去了现有技术中各个控制器个别处理、再进行数据传输的环节,无需复杂的通信协议和控制策略,大大缩短上电时间,减少故障。
在一些实施例中,所述动力域控制器读取的用电设备的信息包括要开启的用电设备的信息,以及各个用电设备的额定功率,权重。
本申请以上实施例的技术方案中,DCU读取哪些用电设备需要开启,并读取各用电设备的额定功率,权重,并参照电池的荷电状态(SOC)根据用电设备的额定功率进行计算,根据计算结果判断是否需要对某些功率设备进行功率处理,从而优化高压分配,优化能量管理。
第四方面,本申请提供一种电动汽车的下电方法,所述电动汽车具有动力域控制器,所述动力域控制器接收动力电池、开关模块、用电设备的采样信号,并根据所述采样信号管理和控制所述动力电池、开关模块、用电设备工作,所述下电方法包括如下步骤:
所述动力域控制器发出下电指令,
所述动力域控制器检测与动力电池负极连接的主回路电流是否小于预定值,
所述动力域控制器向与电机驱动模块的正极连接的电机驱动回路继电器K3发送断开指令,断开电机驱动回路,
所述动力域控制器向与动力电池负极连接的主回路继电器K0发送断开指令,断开主回路。
本申请以上实施例的下电方法中,动力域控制器DCU发出下电指令而进入下电流程,即为主动下电模式。在该下电方法中,动力域控制器直接控制继电器,因此控制能力集中,响应快,简化了现有技术中VCU、BMS、PDU各自独立工作,相互之间进行复杂通信,执行复杂控制策略的环节,因此本实施例的下电方法,通信方式和控制策略简单,能够缩短下电时间。
第五方面,本申请提供一种电动汽车的下电方法,所述电动汽车具有动力域控制器,所述动力域控制器接收动力电池、开关模块、用电设备 的采样信号,并根据所述采样信号管理和控制所述动力电池、开关模块、用电设备工作,所述下电方法包括如下步骤:
所述动力域控制器接收到请求下电指令后,关闭用电设备,并断开水冷机组继电器K5、电除霜继电器K6、空调暖风继电器K7,
所述动力域控制器采集与动力电池负极连接的主回路的电流,判断该电流是否小于预定值;
所述动力域控制器采集与电机驱动模块的正极连接的电机驱动回路的电流,并将该电流降至所述预定值,
所述动力域控制器向所述电机驱动回路的继电器K3发送断开指令,断开电机驱动回路,
所述动力域控制器向与动力电池负极连接的主回路继电器K0发送断开指令,断开主回路。
本申请以上实施例的下电方法中,动力域控制器DCU接收到下电请求指令而进入下电流程,即为被动下电模式。在该下电方法中,DCU采集动力电池、电机驱动模块的电流采集信号,判断动力电池、电机驱动模块的状态,而且动力域控制器直接控制继电器,因此控制能力集中,响应快,简化了现有技术中VCU、BMS、PDU各自独立工作,相互之间进行复杂通信,执行复杂控制策略的环节,因此本实施例的下电方法,通信方式和控制策略简单,能够缩短下电时间。
第六方面,本申请提供一种电动汽车的充电方法,所述动力域控制器接收动力电池、开关模块、用电设备的采样信号,并根据所述采样信号管理和控制所述动力电池、开关模块、用电设备工作,所述充电方法包括如下步骤:
充电源对所述动力域控制器发送唤醒信号,
所述动力域控制器接收到所述唤醒信号后进行初始化,并判断充电连接信号是否正常,充电枪是否置位,
所述动力域控制器向与所述充电源负极连接的继电器K2、与所述充电源正极连接的继电器K1发送闭合命令,开始充电,
所述动力域控制器向与动力电池负极连接的主回路继电器K0发送闭合指令,并向水冷机组的继电器K5发送闭合指令,启动水冷。
在一些实施例中,所述动力域控制器检测到充电状态达到结束条件时,发送结束充电指令,所述动力域控制器发送断开指令,断开与所述充电源正极连接的继电器K1,与所述充电源负极连接的继电器K2,水冷机组的继电器K5,与动力电池负极连接的主回路继电器K0,结束充电。
本申请以上实施例的充电方法中,动力域控制器直接控制继电器,控制能力集中,响应快,简化了现有技术中VCU、BMS、PDU各自独立工作,相互之间进行复杂通信,执行复杂控制策略的状况,因此本实施例的充电方法,通信方式和控制策略简单,能够减少故障。
第七方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令在由处理器执行时,执行权利要求第二方面至第六方面中任一项的方法。
第八方面,本申请提供一种电子设备,包括:存储器和处理器,
存储器存储计算机指令,处理器运行所述计算机指令,执行第二方面至第六方面中任一项的方法。
附图说明
以下结合附图说明本申请实施例的技术方案。以下附图仅用于示出优选实施方式,而不是对本申请的限制。另外,在全部附图中,用相同的附图标号表示相同的部件。
图1是本申请一些实施例的电动汽车控制系统的结构示意图;
图2是本申请一些实施例的电动汽车控制系统的高压配电示意图;
图3是本申请一些实施例的电动汽车控制系统中主要用电设备的电流分配的示意图;
图4是本申请一些实施例的电动汽车控制系统的连接关系图;
图5是本申请一些实施例的电动汽车控制系统的DCU架构图;
图6是现有技术的汽车控制系统的结构示意图;
图7是现有技术的汽车控制系统的高压配电示意图;
图8是本申请一些实施例电动汽车的上电方法的流程图;
图9是本申请一些实施例的电动汽车的下电方法的流程图;
图10是本申请另一些实施例的电动汽车的下电方法的流程图;
图11(图11A续图11B)是本申请一些实施例的电动汽车的充电方法的流程图。
具体实施方式
下面结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于清楚地说明本申请的技术方案,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与本技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,而不是限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。
在说明书中描述的各个实施例相互之间并不排斥,本领域技术人员根据本申请的技术思想以及技术常识,可以将各个实施例进行结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,除非另有明确的规定和限定,“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
电动汽车由动力电池提供动力来源。电动汽车包括电力驱动及控制系统、驱动力传动装置、行驶装置、转向装置、制动装置等机械系统等,电力驱动及控制系统是电动汽车的核心,是电动汽车与传统燃油汽车的区别所在,包括动力电池,电动机、电动机调速控制装置等。电动汽车是一个由多个子系统构成的复杂系统,现有技术中,各子系统通过自身的控制单元(Electronic Control Unit,ECU)完成各自的功能。
电动汽车的电气系统包括高压电气系统、低压电气系统,高压电气系统主要负责电动汽车的启动、行驶、充放电、空调等,包括动力电池系统、电机驱动系统、高压配电系统、充电系统、高压用电设备等等。
电动汽车设有整车控制器(Vehicle control unit,VCU)管理电动汽车的各个部件,协调各个子系统。VCU采集加速踏板信号、制动踏板信号等各个部件的信号,做出判断,控制各部件控制器的动作,驱动电动汽车正常行驶。VCU通过对电动汽车的电机控制器(Motor Controller Unit,MCU)、电池管理系统(Battery Management System,BMS)、传动系统及其他车载耗能用电设备的协调和管理,获得最佳的能量利用率,延长使用寿命。
电动汽车的电机控制器(Motor Control Unit,MCU)(也称为电机控制模块)控制电机驱动模块,电机驱动模块驱动电机。MCU将动力电池的高压直流电转换为驱动电动汽车所需的高压交流电、驱动电机输出机械能。MCU接收VCU的车辆行驶控制指令,控制电机输出指定的扭矩和转速,驱动车辆行驶。
电动汽车动力电池的电池管理系统(Battery Management System,BMS)是保护动力电池使用安全的控制系统,其实施充放电管理、高压控制、保护电池、采集电池数据、评估电池状态、均衡单体电池间能量、计算动力电池组的荷电状态(State of Charge,SOC,即电池剩余电量)且保证SOC维持在合理的范围内,动态监测动力电池组的工作状态等。
电动汽车的耗能用电设备主要包括水冷机组、电除霜设备、电动空调、电暖风、油泵控制器、气泵控制器和DC/DC转换器等。水冷机组通过水对流换热,将电池产生的热量带走,降低电池温度。电除霜设备通过在挡风玻璃中均匀布置多条加热电阻丝,打开电阻开关后,电阻丝迅速加 热玻璃,使得玻璃温度升高,使附着在玻璃上的霜雾受热融化,达到除霜效果。电暖风主要由空气加热器和风机组成,空气加热器散热,风机送出,调节车内空气温度。
油泵控制器(油泵DC/AC)连接在油泵上,用于控制电动汽车的转向助力油泵的电机。油泵DC/AC将电动汽车电池包的300V以上的直流电逆变成交流电,为油泵供电,通过控制供电电流大小,控制油泵的转速、功率。
气泵控制器(气泵DC/AC)连接在气泵上,用于控制电动汽车的制动气泵的电机。气泵控制器将电动汽车的直流电转换成交流电为气泵供电,通过控制供电电流大小,控制气泵的转速、功率。
DC/DC是电压转换模块,其将动力电池的高压直流电流转换为12V直流电流,共低压系统用电。
PDU(Power Distribution Unit,配电单元,配电板)通过母排及线束将高压元器件电连接,为电动汽车的高压系统提供充放电控制、高压部件上电控制、电路过载短路保护、高压采样、低压控制等功能,保护和监控高压系统的运行。
现有技术中,电动汽车中完成高压配电的高压侧控制部件主要包括VCU(Vehicle Control Unit,整车控制器)和BMS(Battery Management System,动力电池管理系统)。VCU通过配电单元(Power Distribution Unit,PDU)主要对水冷机组、电除霜、电动空调、电暖风、油泵DC/AC、气泵DC/AC和DC/DC等用电设备进行高压控制,BMS主要对电机控制器(Motor Control Unit,MCU)的电机驱动模块(逆变器)进行高压控制。
现有技术的高压侧控制部件的控制比较分散,导致现有技术的高压侧控制部件结构复杂、接线关系复杂。并且,VCU与BMS之间需要通过CAN(Controller Area Network,控制器局域网络)进行信息交互,需要制定复杂的通信协议和控制策略,相互之间进行判断逻辑之后,再执行闭合、断开继电器,导致上电、下电时间周期长,增加整车上下电时间,容易出现故障,发生故障时导致上电不成功,车辆不能正常启动,影响用户体验。
此外,现有技术中,电动汽车中每个功能一般都需要配置控制器,随着电动汽车功能的不断增加,控制器的数量剧增,使得电动汽车的电子系统非常复杂。这导致整车成本增加,硬件资源浪费,不利于电动汽车的发展。为解决现有技术的分布式电子电气架构的问题,最近提出了域控制器(Domain Control Unit,DCU)的概念,比如,将电动汽车的电子部件划分为动力域,智能座舱域、自动驾驶域等几个域,用处理能力更强的控制器芯片相对集中地控制每个域。
本申请的实施例提供一种电动汽车控制系统和控制方法、电动汽车上电方法、电动汽车下电方法、电动汽车充电方法,其能够简化控制系统的结构,简化控制策略,缩短上电、下电时间。
图1是本申请一些实施例的电动汽车控制系统的结构示意图。
本申请实施例的一种电动汽车控制系统100,包括:DCU 101(动力域控制器,Domain Control Unit)、电池电流采样单元111、电机驱动模块电流采样单元116,用电设备105、107,DCU101对电动汽车整车进行控制,电池电流采样单元111、电机驱动模块电流采样单元116分别对电动汽车的动力电池102、电机驱动模块103进行电流采样,并将采样信号发送DCU 101。用电设备105,107由动力电池102驱动,对流过用电设备105,107的电流进行采样,并将采样信号发送DCU 101,DCU101根据用电设备105,107、电流采样单元111,116发送的采样信号,管理和控制动力电池102、电机驱动模块103、用电设备105、107。
需要注意,电机驱动模块103也属于用电设备,为方便起见,这里将电机驱动模块103与其他用电设备105、107区别描述。
作为本申请的实施例,电动汽车控制系统100还包括通过动力线与动力电池102连接的总开关104,与第一用电设备105连接的第一开关106、与第二用电设备107连接的第二开关108、与电机驱动模块103连接的第N开关110,和开关电压采样单元115。第一开关106、第二开关108、第N开关110打开或关闭用电设备105,107、电机驱动模块103的供电电路,开关电压采样单元115对第一开关106、第二开关108、第N开关110进行电压采样,并将采样信号发送DCU101,DCU 101根据开关电压采样单元115发送的采样信号,控制第一开关106、第二开关108、 第N开关110的开和关。
如图1所示,动力电池102通过动力线连接总开关104,总开关104通过动力线分别连接第一开关106、第二开关108、第N开关110。
电池电流采样单元111、电池电压采样单元112和电池温度采样单元113与DCU 101通过信号线连接,采集动力电池102的电流、电压和温度信息,并将采集信号发送至DCU 101。DCU 101接收动力电池102的电流、电压和温度采样信号,并进行运算和判断,根据判断结果控制开关104,106,108,110,以及各个用电设备105,107和电机驱动模块103的电流分配等。
开关电压采样单元115与DCU 101通过信号线连接,采集第一开关106、第二开关108、第N开关110的电压信号,并将采集信号发送至DCU 101。DCU 101接收第一开关106、第二开关108、第N开关110的采样信号,进行运算和判断,根据判断结果控制第一开关106、第二开关108、第N开关110。
电机驱动模块电流采样单元116、电机驱动模块电压采样单元114、电机驱动模块温度采样单元117与DCU 101和电机驱动模块103通过信号线连接,电机驱动模块电流采样单元116、电机驱动模块电压采样单元114、电机驱动模块温度采样单元117采集电机驱动模块103的电流、电压和温度信息,并将采集信号发送至DCU 101。DCU 101接收电机驱动模块103的电流、电压和温度采样信号,并进行运算和判断,根据判断结果控制电机驱动模块103对电机输出扭矩和转速等驱动信号。
本申请以上实施例中,电动汽车控制系统100包括动力域控制器DCU101,动力电池102、电机驱动模块103、用电设备105,107的采样信号直接发送DCU101,DCU101根据采样信号管理动力电池102、控制电机驱动模块103、用电设备105,107。即,DCU101集成了现有技术中VCU、BMS、MCU的功能。
本申请进一步的实施例中,开关106,108,110的采样信号直接发送DCU101,DCU101根据该采样信号,控制开关106,108,110,从而控制用电设备105,107、电机驱动模块103。即,DCU101进一步集成了现有技术中的PDU605的功能。
由于本实施例的DCU101集成了VCU、BMS、PDU、MCU的功能,所以不必像现有技术中那样,VCU、BMS、PDU、MCU各自独立进行管理和控制,相互之间进行复杂的通信,执行复杂的控制策略,因此,本实施例的电动汽车控制系统100结构简单,能够简化线路连接关系,简化控制策略,简化通信方式。
图2是本申请一些实施例的电动汽车控制系统的高压配电示意图。
如图2所示,电动汽车控制系统100中,DCU 101设置在高压配电盒201内。
图2中,DC/DC 203,预留的、用于连接充电机的充电端口204,电机驱动模块103,水冷机组205,电除霜设备206,电动空调207,电暖风208,油泵DC/AC 209、气泵DC/AC 210等高压用电设备通过动力线与动力电池102连接,动力电池102与各个用电设备之间的线路上连接有继电器作为供电电路的开关,打开或闭合各个用电设备的供电电路,以及电路保护元件FUSE。各个开关通过硬线与DCU 101连接,DCU 101控制各个开关的开合以及动力电池102向各用电设备供给的电流,从而进行高压分配,驱动各用电设备。
需注意,为了描述方便,图2省略了采样单元的图示。
具体而言,图2中,动力电池102的正极连接有手动维护开关MSD 202,负极连接有总负继电器K0,充电端口204的正极和负极分别连接有充电正继电器K1,充电负继电器K2。电机驱动模块103的正极连接有主正继电器K3,预充继电器K4,预充继电器K4对电机驱动模块103中的电容进行预充电。水冷机组205的正极连接有水冷机组继电器K5,电除霜设备206的正极连接有电除霜继电器K6,电动空调207的正极和电暖风208的正极连接有继电器K7,油泵DC/AC 209的正极和气泵DC/AC 210的正极连接有继电器K8。
继电器K1、K2、K3、K4、K5、K6、K7、K8与DCU 101硬线连接,DCU 101通过电流、电压、温度采样信号,检测继电器K1、K2、K3、K4、K5、K6、K7、K8的状态,以及充电端口204,电机驱动模块103,水冷机组205,电除霜设备206,电动空调207,电暖风208,油泵DC/AC 209、气泵DC/AC 210的状态,在DCU101内部进行计算和逻辑 判断,控制继电器K1、K2、K3、K4、K5、K6、K7、K8的接通或断开充电端口204,电机驱动模块103,水冷机组205,电除霜设备206,电动空调207,电暖风208,油泵DC/AC 209、气泵DC/AC 210的供电电路,以及调整向以上用电设备供给电流的大小。
本实施例中,DCU 101集成了现有技术的VCU、BMS、MCU、PDU四个控制器的功能,DCU 401采集多个用电设备、动力电池102、多个开关的信息,检测该多个用电设备、动力电池102、开关的状态,并在内部进行计算和逻辑判断,确定控制策略,所以不必像现有技术中那样,VCU、BMS、PDU、MCU分别单独工作,再相互之间进行复杂的通信,因此,本实施例的电动汽车控制系统100结构简单,快速高效,故障风险减低。
图3是本申请一些实施例的电动汽车控制系统中主要用电设备的电流分配的示意图,显示图2中主要用电设备的高压电流分配。
如图3所示,电机驱动模块103经主正继电器K3、预充继电器K4,以及总负继电器K0与动力电池102电连接。水冷机组205经水冷机组继电器K5,总负继电器K0与动力电池102电连接。电除霜设备206经电除霜继电器K6,总负继电器K0与动力电池102电连接。电动空调207和电暖风208经继电器K7,总负继电器K0与动力电池102电连接。油泵DC/AC 209和气泵DC/AC 210经继电器K8,总负继电器K0与动力电池102电连接。外部的充电机301插入充电端口204,经充电正继电器K1,充电负继电器K2与动力电池102电连接。
本实施例中,DCU 101集成了现有技术中的VCU、BMS、MCU、PDU四个控制器的功能,DCU101采集多个用电设备、动力电池102、多个开关的信息,检测该多个用电设备、动力电池102、开关的状态,并在内部进行计算和逻辑判断,确定控制策略,所以,本实施例的电动汽车控制系统100结构简单,快速高效,故障风险减低,能够保证对多个用电设备进行高效、有效控制。
图4是本申请一些实施例的电动汽车控制系统的连接关系图。
如图4所示,本申请实施例的一种电动汽车控制系统100中,DCU 101与电池电流采样单元111,开关电压采样单元115,DC/DC 203,电机 驱动模块103,水冷机组205,空调207,油泵DC/AC 209、气泵DC/AC 210通过信号线连接,比如通过CAN协议(Controller Area Network控制器局域网总线协议)进行通信,DCU 101与开关模块401通过硬线连接。开关模块401代表图1或图2或图3中任一个开关。
如图4所示,电池电流采样单元111与动力电池102连接,电机驱动模块103与采样单元116,114,117连接。
可以使用电流传感器获得电流采样信号。例如,动力电池102的正极或负极可以串联电流传感器,电机驱动模块103的输入正极,以及输出三相电的三级也可以设置电流传感器。电池电流采样单元111、116获得动力电池102,电机驱动模块103的采样信号,开关电压采样单元115获得的开关模块401的电压采样信号,各用电设备水冷机组205,空调207,油泵DC/AC 209、气泵DC/AC 210等获得的电流采样信号通过CAN线传送给DCU 101,DCU 101根据这些采样信号进行运算和判断,控制开关模块401,以及动力电池102向用电设备攻击的电流。比如,在动力电池102提供的总电流减小时,DCU 101可以关闭一部分用电设备的电流供给,合理分配。
本实施例中,DCU101控制功能集中,与用电设备、采样单元通过信号线,比如CAN连接,DCU接收用电设备、电流采样单元的采样信号、向用电设备、电流采样单元发送控制信号。
由于DCU 101与开关模块401通过硬线连接,因此DCU101与开关模块401能够快速传输信号,大大缩短响应时间,实现快速控制开关模块,且能够避免通讯丢失、延时,能够减少故障率。
图5是本申请一些实施例的电动汽车控制系统的DCU架构图。
图5列举了本实施例的电动汽车控制系统100能够实现的功能。
如图5所示,DCU 101具有控制芯片500,其为DCU 101的中央控制器件,控制芯片500具有处理器501、运算单元502、存储单元503、通信单元504。
DCU 101还包括数字输入采样单元510、模拟输入采样单元511,数字输出控制单元507、PWM输出控制单元508。模拟输入采样单元511和数字输入采样单元510将信号采样单元发送的采样信号,分别以模拟信 号、数字信号的形式输入控制芯片500,经运算单元502、处理器501进行运算、处理,经数字输出控制单元507、或PWM输出控制单元508输出。存储单元503用于存储信息数据。
数字采样信号一般来自继电器、转向控制、钥匙操作、档位操作,加速/制动踏板,动力模式切换等,模拟采样信号一般来自于温度采样,踏板位置采样,气压采样等。PWM输出控制单元508将控制信号输出给压缩机、水泵、风扇等。
图5中,在DCU101周边,列举了DCU 101的各项功能。以集成监测功能为例,比如,进行温度监测时,温度传感器把温度信号传给DCU 101,DCU 101与该温度传感器交互传递信息。
功率分配功能中的主驱继电器控制,高压用电器继电器控制等,涉及电动汽车的上下电。
DCU 101的功能中,涉及BMS的功能有:动力输出及计算控制功能中的动力电池SOC/SOP/SOH计算,充电控制;驾驶意图识别功能中的紧急高压断电;.集成监测功能中的绝缘监测,高压互锁,动力电池电芯电压,动力电池电芯/模组温度,动力电池包电芯均衡,动力电池包输出总电流/电压;能量管理功能中的整车低压电源控制,充电控制;综合热管理功能中的动力电池水冷控制,动力电池水热控制等。
DCU 101的功能中,涉及MCU的功能有:集成监测功能中的电机温度/转子位置,电机相电流/相电压;动力输出计算及控制功能中的转速/转矩控制,逆变功率计算,电机三相桥臂控制,电机反馈和精度调节等。
DCU 101的功能中,涉及VCU的功能有:整车状态采集功能;动力输出计算及控制功能中的踏板操作计算;能量管理功能;驾驶意图识别功能中的钥匙操作,档位操作,加速/制动踏板,动力模式切换,动力输出计算及控制功能中的续航里程计算等。
本实施例中DCU101集成了VCU、BMS、PDU、MCU的功能,所以可以避免多个控制器各自独立进行管理和控制,相互之间进行复杂的通信,执行复杂的控制策略的问题,因此,本实施例的电动汽车控制系统100结构简单,能够简化线路连接关系,简化控制策略,简化通信方式,快速高效,故障风险减低。
本实施例中,DCU 101获得采样信号,并由内部的运算单元502进行计算,处理器501进行逻辑判断,确定控制策略,所以,本实施例的电动汽车控制系统100控制能力集中,响应快,能更好地进行整车能量管理和功率分配。
作为比较,图6是现有技术的汽车控制系统的结构示意图。
如图6所示,现有技术的汽车控制系统600具有BMS 603、VCU 604、PDU 605、MCU606。BMS 603与VCU 604连接,VCU 604与PDU 605、MCU606连接。
BMS 603与电池电流采样单元111、电池电压采样单元112和电池温度采样单元113,以及总开关104连接,电池电流采样单元111、电池电压采样单元112和电池温度采样单元113采集动力电池102的电流、电压和温度信息,并将采样信号发送至BMS 603。BMS 603将动力电池102的电流、电压和温度信息传送至VCU 604,VCU 604进行运算和判断,根据判断结果,指令PDU605控制第一开关106、第二开关108、第N开关110的开闭,指令BMS603控制动力电池102向各用电设备供给的电流。
PDU 605经开关电压采样单元115与第一开关106、第二开关108、第三开关110连接,开关电压采样单元115采集第一开关106、第二开关108、第N开关110的电压信号,并将采样信号发送至PDU605,PDU605将第一开关106、第二开关108、第N开关110的采样信号传送至VCU 604,VCU 604进行运算和判断,根据判断结果直接控制或经PDU605控制第一开关106、第二开关108、第N开关110。
MCU 606经电流采样单元116、电压采样单元114和温度采样单元117连接电机驱动模块103连接,电流采样单元116、电压采样单元114和温度采样单元117采集电机驱动模块103的电流、电压和温度信息,并将采样信号发送至MCU606,MCU606将电机驱动模块103的电流、电压和温度信息传送至VCU 604。VCU 604进行运算和判断,根据判断结果指令电机驱动模块103控制电机,比如指令电极输出扭矩和转速等驱动信号。
如上,现有技术中,VCU、BMS、PDU、MCU各自独立进行管理和 控制,相互之间进行复杂的通信,执行复杂的控制策略,响应慢,故障率高。
作为比较,图7是现有技术的汽车控制系统的高压配电示意图。
图7中所示的汽车控制系统600具有BMS 603、VCU 604、PDU 605、电极控制器608。PDU 605,以及电除霜继电器K5,空调和暖风继电器K7,油泵DC/AC 209和气泵DC/AC 210的辅驱继电器K7,DC/DC继电器K8等设置在高压配电盒701内,PDU 605通过控制电除霜继电器K5,空调和暖风继电器K7,油泵DC/AC 209和气泵DC/AC 210的辅驱继电器K7,DC/DC继电器K8,对水冷机组205、电除霜设备206、电动空调207、电暖风208、油泵DC/AC 209、气泵DC/AC 210和DC/DC 203等用电部件进行高压控制。
BMS 603,以及与动力电池102负极连接的总负继电器K0,与充电端口204的正极连接的充电正继电器K1,与电机控制器608的正极连接的主正继电器K2,预充继电器K3,水冷机组继电器K4等设置在BMS配电盒702内。BMS 603主要对电机控制器608的电机驱动模块606(逆变器)进行高压控制。
现有技术中,VCU 604和BMS 603各自配置高压盒,电器拓扑复杂,接线繁多。VCU 604与BMS 603之间通过CAN信息交互,互相判断逻辑,再执行闭合继电器,导致上电、下电时间长。VCU 604与BMS 603之间信息交互通信,在软件执行层面,需要通信协议,则存在通讯丢失、延时的风险和情况,从而影响二者之间的信息交互,引发故障,导致上电(上高压)失败、车辆无法正常启动,影响用户体验。
本申请实施例的一种电动汽车控制的控制方法,电动汽车具有DCU 101,该控制方法包括,DCU 101接收动力电池102、用电设备105,107的采样信号,并根据采样信号管理和控制动力电池102、用电设备105,107。
即,DCU101集成了现有技术中的BMS、MCU、VCU的功能,因此能够简化控制策略,简化通信方式,省去数据接收发送时间,提升综合数据处理能力,缩减上、下电时间,减小故障发生率。
在一些可能的实施例中,DCU101接收开关模块401的采样信号,并 根据该采样信号控制所述开关模块401的开和关。
DCU101进一步集成了PDU的功能,因此本实施例的电动汽车控制方法进一步简化控制策略,通信方式。
在一些可能的实施例中,DCU101检测用电设备105,107,103的状态,并对检测数据进行计算,确定这些用电设备的控制策略。
即,DCU101内部进行计算和逻辑判断,计算结果可以共享,因此省去了现有技术中各个控制器个别处理、再进行数据传输的程序,综合处理能力大幅提高,而且不需要制定复杂的通信协议和控制策略。
在一些可能的实施例中,DCU01与用电设备、电流采样单元通过信号线连接,与开关模块401通过硬线连接。
DCU101与开关模块401通过硬线连接,因此能够快速传输信号,实现快速控制开关模块。
在一些可能的实施例中,用电器件包括油泵DC/AC 209、气泵DC/AC 210、电动空调207、电暖风208,电除霜206,水冷机组205,DC/DC 203等。
即,DCU 101控制上述用电设备,优化整车高压用电分配及控制。
以上本发明实施例的电动汽车控制系统和控制方法,能够优化电动汽车的上电流程,下电流程,充电流程。以下具体说明。
图8是本申请一些实施例电动汽车的上电方法的流程图。
本申请实施例的一种电动汽车的上电方法800中,电动汽车具有如上所述的DCU 101,DCU 101接收动力电池102、开关模块401、用电设备103,105,107的采样信号,并根据采样信号管理和控制动力电池102、开关模块401、用电设备103,105,107。
如图8所示,本实施例的上电方法800包括如下步骤:
s8101,DCU 101检测到上高压请求信号,开始启动上电流程。
s8102,DCU 101进行初始化,完成自检,若初始化失败或初始化超时,则进行s8103,否则进行s8104。
s8103,上报故障,禁止上电。
s8104,DCU 101检测各高压用电设备是否关闭并禁止输出,若否,则重复进行s8104,若是,则进行s8105。
s8105,DCU 101判断是否有禁止上电故障,若是,则进行s8103,若否,则进行s8106。
s8106,DCU 101通过电压采样,进行继电器的触点诊断,判断是否正常,若否,则进行s8103,若是,则进行s8107。
s8107,满足上电条件,DCU 101向主负继电器K0发送闭合指令,连通主回路。
s8108,DCU 101检测主负继电器K0是否正常闭合,若否,则进行s8103,若是,则进行s8109。
s8109,DCU 101向预充继电器K4发送闭合命令,连通预充电回路,对电机驱动模块103进行预充电。
s8110,DCU 101检测预充继电器K4是否在一定时间内(例如200ms)正常闭合,若否,则进行s8103,若是,则进行s8111。
s8111,DCU 101向主正继电器K3发送闭合命令,连通电机驱动回路。
s8112,DCU 101检测主正继电器K3是否正常闭合,若否,则进行s8103,若是,则进行s8113。
s8113,DCU 101向预充继电器K4发送断开命令,关闭预充电回路,预充结束。
s8114,整车进入高压状态,主回路上电成功。
整车进入高压状态,主要为电机109进入高压状态;DCU 101发送指令,闭合水冷机组继电器K5、电除霜继电器K6、空调暖风继电器K7、辅驱继电器K8,即,所有继电器闭合,开启水冷机组回路、电除霜回路、空调暖风回路、辅驱回路,完成整车高压上电。
s8115,允许行车,进入ready状态。
其中,s8106中,完成继电器的触点诊断后,DCU 101内部读取用电设备105,107的信息,比如,该信息包括需要开启的用电设备、每个用电设备的额定功率等;再根据不同用电设备的额定功率和权重值,参考电池的荷电状态(SOC)进行计算,然后根据计算结果判断是否需要对某些用电设备进行将功率分配控制处理,完成高压分配。
s8107中,上电条件包括:
a.BMS 603不在程序更新状态;
b.无高压互锁故障;
c.无ACAN通讯丢失;
d.无BMS 603供电电源故障;
e.系统电芯电压概要数据全部收齐;
f.CSC温度概要数据全部收齐;
g.Pack(电池包)电流有效;
h.无系统电芯电压采样线掉线故障;
i.无系统电芯电压超范围故障;
j.无模组温度传感器轻微故障;
k.无模组温度传感器严重故障;
l.无SCAN通讯丢失故障;
m.无内部通讯故障;
n.无电流传感器故障;
o.无绝缘报警故障;
p.无内侧高压回路断路故障;
q.主正继电器、主预充继电器处于断开状态。
根据以上实施例的上电方法,DCU101集成了BMS、VCU、PDU、MCU的功能,DCU101直接控制继电器,控制能力集中,响应快,简化了现有技术的上电过程中,VCU604、BMS603、PDU605各自独立工作,相互之间进行复杂通信,执行复杂控制策略的状况。本实施例中,DCU101检测和计算上电条件,并进行逻辑判断,计算结果共享,没有现有技术中各个控制器相互传输数据、VCU604进行判断的环节,因此本实施例的上电方法的通信方式简单,响应快,上电时间短,故障率低。
图9是本申请一些实施例的电动汽车的下电方法的流程图。
本申请的一些实施例的电动汽车的下电方法1000中,电动汽车具有如上所述的DCU 101,DCU 101接收动力电池102、开关模块401、用电设备103,105,107的采样信号,并根据采样信号管理和控制动力电池102、开 关模块401、用电设备103,105,107。
下电方式分为被动下电和主动下电两种,由于故障等紧急情况DCU101发出下电指令实施下电,为被动下电,DCU101接受指令主动发出下电请求,实施下电,为主动下电。图9显示的是本申请一些实施例的被动下电方法的流程图。
如图9所示,本实施例的下电方法1000包括如下步骤:
S9201,DCU101判断整车是否出现禁止上电故障、或DCU 601自身出现故障,请求下电,若否,则重复进行s10201,若是,则进行s9202。
S9202,DCU 101发送下电指令,开始启动下电流程。
S9203,DCU 101检测主回路电流是否小于设定阈值,例如设定阈值为15A,若否,则重复进行s9203,若是,则进行s9204。
主回路电流的设定阈值一般不大于15A。DCU 101检测主回路电流是否小于设定阈值时,如果主回路电流小于该阈值,则可以实施下电,避免带负载下电,否则可能影响整车器件性能。
S9204,DCU 101发送主正继电器K3断开命令,关闭电机驱动回路;
S9205,DCU 101检测是否主正继电器K3为断开状态,若否,则进行“超时判断”,若是,则进行s10206;
S9206,DCU 101发送主负继电器K0断开命令,关闭主回路;
S9207,高压下电成功;
S9208,检测所有的唤醒源是否无效,若是否,则重复进行s9208,若是,则结合24HDC/DC唤醒需求,进行s9209;
按照24h监控要求,钥匙唤醒信号无效、且高压下电完成后,进入行车下电监控状态,连续监控5min,有过温过压等极限故障发生时,持续监控,直至SOC过低,例如二级,或单体欠压一级,或其他状态,进行模式切换。
S9209,下电休眠。
根据本申请以上实施例的下电方法,DCU101直接控制继电器,因此控制能力集中,响应快,简化了现有技术中VCU604、BMS603、PDU605各自独立工作,相互之间进行复杂通信,执行复杂控制策略的环节,因此 本实施例的下电方法,通信方式和控制策略简单,能够缩短下电时间,降低故障率。
图10是本申请另一些实施例的电动汽车的下电方法的流程图。
图10显示的是本申请一些实施例的主动下电方法的流程图。
如图10所示,本实施例的下电方法1100包括如下步骤:
S1101,DCU101接受下电指令,发出下点请求,启动下电流程。
S1102,DCU 101关闭各个用电设备105,107。
S1103,DCU 101断开水冷机组继电器K5、电除霜继电器K6、空调暖风继电器K7,关闭水冷机组回路、电除霜回路、空调暖风回路。
S1104,DCU 101采集主回路电流,检测主回路电流是否小于阈值,同时采集电机母线电流,并在最短时间内将该电流降至阈值。
例如,设定阈值为15A,主回路电流大于阈值,则重复进行s1104,若小于阈值,则进行s1105。主回路电流的阈值一般设为不大于15A。
S1105,DCU 101发送主正继电器K3断开命令,关闭电机驱动回路。
S1106,DCU 101检测是否主正继电器K3为断开状态,若否,则进行“超时判断”,若是,则进行s20207。
S1107,DCU 101发送主负继电器K0断开命令,关闭主回路。
S1108,高压下电成功。
S1109,检测所有的唤醒源是否无效,若是否,则重复进行s1109,若是,则结合24HDC/DC唤醒需求,进行s1110。
S1110,下电休眠。
根据本申请以上实施例的下电方法,DCU101直接控制继电器,因此控制能力集中,响应快,简化了现有技术中VCU、BMS、PDU各自独立工作,相互之间进行复杂通信,执行复杂控制策略的环节,因此本实施例的下电方法,通信方式和控制策略简单,能够缩短下电时间,降低故障率。
图11(图11A续图11B)是本申请一些实施例的电动汽车的充电方法的流程图。
本申请实施例中的充电装置可以为普通充电桩、超级充电桩、支持 汽车对电网(vehicle to grid,V2G)模式的充电桩,或者可以对动力电池进行充放电的充放电装置/设备等,本申请实施例对充电装置的具体类型和具体应用场景不做限定。
本申请实施例的一种电动汽车的充电方法1200,电动汽车具有如上所述的DCU 101,DCU 101接收动力电池102、开关模块401、用电设备103,105,107的采样信号,并根据采样信号管理和控制动力电池102、开关模块401、用电设备103,105,107。
如图11所示,充电方法1200包括如下步骤:
s1201,充电桩的充电枪301的插头连接插入充电口204,经充电桩内部处理后,充电桩对DCU101输出唤醒信号,进行s 1202或s 1301。
s 1202,DCU 101接收唤醒信号A++。
s 1203,DCU101进行自检,实施初始化,之后判断是否有故障,若是,则进行s 1205,若否,则进行s 1204。
s 1204,进入相应的故障处理模式。
s 1205,DCU 101判断充电连接信号CC2是否有效,若否,则重复进行s 1205,若是,则进行s 1206。
s 1206,DCU 101判断插枪成功,禁止行车。
s 1207,判断整车是否有禁止充电的故障,若是,则进行s 1208,若否,则进行s 1209。
s 1207,上报故障,停止充电。
s 1209,进入国标充电流程。
s 1210,DCU 101发送充负继电器K2闭合命令,连通充电回路。
s 1211,判断充负继电器K2是否正常闭合,若否,则进行s S1207,若是,则进行s 1212。
s 1212,DCU 101发送充正继电器K1闭合命令,连通充电回路。
s 1213,DCU101检测是否收到充正继电器K1闭合状态信息,若否,则进行S1207,若是,则进行S1214。
s 1214,充电桩开始充电。
s 1215,DCU 101自检充电状态并发送附件工作指令。附件工作指令指充电过程中需要开启整车热管理及其组件,比如,打开水冷机组开关, 启动水冷。
s 1216,DCU 101发送主负继电器K0闭合指令,连通主回路。
s 1217,DCU101检测是否收到主负继电器K0正常闭合信息,若否,则进行s 1207,若是,则进行s 1218。
s 1218,DCU 101发送辅驱继电器K8闭合命令,连通辅驱回路。
s 1219,判断辅驱继电器K8是否正常闭合,若否,则进行s 1207,若是,则进行s 1220。DCU 101发送水冷机组继电器K5闭合指令,并发送辅驱继电器K8闭合命令,连通水冷机组回路、辅驱回路。
s 1220,DCU101检测充电状态是否达到结束条件,若否,则重复进行s 1220,若是,则进行s 1221。
结束充电的条件为:
(1)满充或达到SOC设定条件,charge finish;
(2)有禁止充电的故障,charge stop;
(3)人为拔枪,正常停止充电,charge finish。
s 1221,DCU 101发送结束充电指令。
比如,DCU 101检测充电状态是否达到结束条件(SOC达到100,或达到设定值),若是,则发送结束充电指令。
CC1指充电过程中,非车载充电设备通过连接确认触头的输入电压信号,进行不间复断监测充电插头和充电插座连接状态,一旦出现异常,非车载充电设备立即关闭直流电源输出,在完成卸载后,断开开关。
CC2指充电过程中,如果100ms内非车载充电设备没有收到电池管理系统BMS603制周期发送的充电2113级别需求报文,非车载充电设备也响应关闭直流电源输出的功能。
s 1222,DCU 101发送断开充正继电器K1命令,关闭充电回路。
s 1223,DCU 101发送断开充负继电器K2命令,关闭充电回路。
s 1224,DCU 101发送断开辅驱继电器K8命令,关闭辅驱回路。
s 1225,DCU 101发送断开主负继电器K0命令,关闭主回路。
s 1226,DCU101判断是否所有继电器都已断开,若否,进行s 1227,若是,进行s 1228。
s 1227,DCU101上报故障。
s 1228,DCU101判断所有的唤醒是否无效,若否,则重复进行s 1228,若是,则进行s 1229。
s 1229,系统下电休眠。
s 1301,充电桩执行国标充电流程;
s 1302,满足结束充电条件;
s 1303,退出充电,进入国标充电结束流程。
本申请以上实施例的充电方法,DCU101直接控制继电器,控制能力集中,响应快,简化了现有技术中VCU604、BMS603、PDU605各自独立工作,相互之间进行复杂通信,执行复杂控制策略的状况,因此本实施例的充电方法,通信方式和控制策略简单,能够减少故障。
本申请实施例的一种计算机可读存储介质,存储有计算机可执行指令,该计算机可执行指令在由处理器执行时,执行上述实施例中任一项的方法。
本申请实施例的一种电子设备,包括存储器和处理器,存储器用于存储计算机指令,处理器用于运行计算机指令,执行上述实施例中任一项的方法。
以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (20)

  1. 一种电动汽车控制系统,其特征在于,包括:
    动力域控制器,其对电动汽车进行控制,
    电流采样单元,其对电动汽车的动力电池、电机驱动模块进行电流采样,并将采样信号发送所述动力域控制器,
    用电设备,其由所述动力电池驱动,其对流过该用电设备的电流进行采样,并将采样信号发送所述动力域控制器,
    所述动力域控制器根据所述用电设备、所述电流采样单元发送的采样信号,管理所述动力电池、控制所述电机驱动模块、所述用电设备。
  2. 根据权利要求1所述的电动汽车控制系统,其特征在于,还包括,
    开关模块,其打开或关闭所述用电设备、所述电机驱动模块的供电电路,
    电压采样单元,其对所述开关模块进行电压采样,并将采样信号发送所述动力域控制器,
    其中,
    所述动力域控制器根据所述电压采样单元发送的采样信号,控制所述开关模块的开和关。
  3. 根据权利要求1所述的电动汽车控制系统,其中,
    所述动力域控制器检测所述用电设备的状态,并对检测数据进行计算,以确定所述用电设备的控制策略。
  4. 根据权利要求1所述的电动汽车控制系统,其中,
    所述动力域控制器与所述用电设备、所述电流采样单元通过信号线连接,
    所述动力域控制器与所述开关模块通过硬线连接。
  5. 根据权利要求1所述的电动汽车控制系统,其中,
    所述用电设备包括气泵控制器、油泵控制器、空调压缩机、水冷机组,电压转换模块,电机驱动模块。
  6. 一种电动汽车的控制方法,所述电动汽车具有动力域控制器,所述控制方法包括,
    所述动力域控制器接收动力电池、用电设备的采样信号,并根据所述采样信号管理和控制所述动力电池、用电设备工作。
  7. 根据权利要求6所述的电动汽车控制方法,还包括,
    所述动力域控制器接收开关模块的采样信号,并根据该采样信号控制所述开关模块的开和关。
  8. 根据权利要求6所述的电动汽车控制方法,其中,
    所述动力域控制器检测所述用电设备的状态,并对检测数据进行计算,确定所述用电设备的控制策略。
  9. 根据权利要求6所述的电动汽车的控制方法,其中,
    所述动力域控制器与所述用电设备通过信号线连接,
    所述动力域控制器与所述开关模块通过硬线连接。
  10. 根据权利要求6所述的电动汽车的控制方法,其中,
    所述用电器件包括气泵控制器、油泵控制器、空调压缩机、水冷机组,电压转换模块、电机驱动模块。
  11. 一种电动汽车的上电方法,所述电动汽车具有动力域控制器,所述动力域控制器接收动力电池、开关模块、用电设备的采样信号,并根据所述采样信号管理和控制所述动力电池、开关模块、用电设备工作,
    所述上电方法包括如下步骤:
    所述动力域控制器检测到上电请求信号后进行初始化,
    初始化完成后,所述动力域控制器检测上电条件是否满足,
    满足上电条件时,所述动力域控制器向与动力电池负极连接的主回路继电器发送闭合指令,连通主回路,
    所述动力域控制器向电机驱动模块的预充回路继电器发送闭合指令,连通预充回路,对所述电机驱动模块进行预充电,
    所述动力域控制器向与所述电机驱动模块的正极连接的电机驱动回路继电器发送闭合指令,连通电机驱动回路,
    所述动力域控制器向所述预充回路继电器发送断开指令,结束预充电,完成主回路上电,
    所述动力域控制器向水冷机组继电器、电除霜继电器、空调暖风继电器、辅驱继电器发送闭合指令,连通各个高压用电设备,完成整车上电。
  12. 根据权利要求11所述的上电方法,
    所述动力域控制器检测上电条件的步骤包括:
    检测所述高压用电设备是否关闭并禁止输出,
    检测整车端是否有禁止上电故障,
    诊断各个继电器的触点。
  13. 根据权利要求12所述的上电方法,
    诊断各个继电器后,所述动力域控制器读取存储于所述动力域控制器内部的用电设备的信息,
    所述动力域控制器根据读取的用电设备的信息进行计算,根据计算结果对用电设备进行高压分配。
  14. 根据权利要求13所述的上电方法,
    所述动力域控制器读取的用电设备的信息包括要开启的用电设备的信息,以及各个用电设备的额定功率,权重。
  15. 一种电动汽车的下电方法,所述电动汽车具有动力域控制器,所述动 力域控制器接收动力电池、开关模块、用电设备的采样信号,并根据所述采样信号管理和控制所述动力电池、开关模块、用电设备工作,
    所述下电方法包括如下步骤:
    所述动力域控制器发出下电指令,
    所述动力域控制器检测与动力电池负极连接的主回路电流是否小于预定值,
    所述动力域控制器向与电机驱动模块的正极连接的电机驱动回路继电器K3发送断开指令,断开电机驱动回路,
    所述动力域控制器向与动力电池负极连接的主回路继电器K0发送断开指令,断开主回路。
  16. 一种电动汽车的下电方法,所述电动汽车具有动力域控制器,所述动力域控制器接收动力电池、开关模块、用电设备的采样信号,并根据所述采样信号管理和控制所述动力电池、开关模块、用电设备工作,
    所述下电方法包括如下步骤:
    所述动力域控制器接收到请求下电指令后,关闭用电设备,并断开水冷机组继电器、电除霜继电器、空调暖风继电器,
    所述动力域控制器采集与动力电池负极连接的主回路的电流,判断该电流是否小于预定值;
    所述动力域控制器采集与电机驱动模块的正极连接的电机驱动回路的电流,并将该电流降至所述预定值,
    所述动力域控制器向所述电机驱动回路的继电器发送断开指令,断开电机驱动回路,
    所述动力域控制器向与动力电池负极连接的主回路继电器发送断开指令,断开主回路。
  17. 一种电动汽车的充电方法,所述电动汽车具有动力域控制器,所述动力域控制器接收动力电池、开关模块、用电设备的采样信号,并根据所述采样信号管理和控制所述动力电池、开关模块、用电设备工作,
    所述充电方法包括如下步骤:
    充电源对所述动力域控制器发送唤醒信号,
    所述动力域控制器接收到所述唤醒信号后进行初始化,并判断充电连接信号是否正常,充电枪是否置位,
    所述动力域控制器向与所述充电源负极连接的继电器、与所述充电源正极连接的继电器发送闭合命令,开始充电,
    所述动力域控制器向与动力电池负极连接的主回路继电器发送闭合指令,并向水冷机组的继电器发送闭合指令,启动水冷。
  18. 根据权利要求17所述的电动汽车的充电方法,其中,
    所述动力域控制器检测到充电状态达到结束条件时,发送结束充电指令,
    所述动力域控制器发送断开指令,断开与所述充电源正极连接的继电器,与所述充电源负极连接的继电器,水冷机组的继电器,与动力电池负极连接的主回路继电器,结束充电。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令在由处理器执行时,执行权利要求6至18中任一项的方法。
  20. 一种电子设备,其特征在于,包括:
    存储器,其存储计算机指令,以及
    处理器,其运行所述计算机指令,执行权利要求6至18中任一项的方法。
PCT/CN2021/142185 2021-12-28 2021-12-28 电动汽车控制系统、控制方法、及计算机可读存储介质 WO2023122989A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP21918100.5A EP4238833A4 (en) 2021-12-28 2021-12-28 ELECTRIC VEHICLE CONTROL SYSTEM AND METHOD AND COMPUTER-READABLE STORAGE MEDIUM
CN202180101370.2A CN117881577A (zh) 2021-12-28 2021-12-28 电动汽车控制系统、控制方法、及计算机可读存储介质
KR1020227019286A KR20230106117A (ko) 2021-12-28 2021-12-28 전기 자동차 제어 시스템, 제어 방법 및 컴퓨터 판독가능한 저장 매체
PCT/CN2021/142185 WO2023122989A1 (zh) 2021-12-28 2021-12-28 电动汽车控制系统、控制方法、及计算机可读存储介质
JP2022534442A JP2024506424A (ja) 2021-12-28 2021-12-28 電気自動車の制御システム、制御方法、及びコンピュータ読み取り可能な記憶媒体
US17/880,690 US20230208327A1 (en) 2021-12-28 2022-08-04 Electric vehicle control system, control method, and computer-readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/142185 WO2023122989A1 (zh) 2021-12-28 2021-12-28 电动汽车控制系统、控制方法、及计算机可读存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/880,690 Continuation US20230208327A1 (en) 2021-12-28 2022-08-04 Electric vehicle control system, control method, and computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2023122989A1 true WO2023122989A1 (zh) 2023-07-06

Family

ID=86896254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142185 WO2023122989A1 (zh) 2021-12-28 2021-12-28 电动汽车控制系统、控制方法、及计算机可读存储介质

Country Status (6)

Country Link
US (1) US20230208327A1 (zh)
EP (1) EP4238833A4 (zh)
JP (1) JP2024506424A (zh)
KR (1) KR20230106117A (zh)
CN (1) CN117881577A (zh)
WO (1) WO2023122989A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117360310B (zh) * 2023-12-07 2024-02-09 成都壹为新能源汽车有限公司 一种使用增程式动力电池的车辆充电控制方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018207584A (ja) * 2017-05-31 2018-12-27 カルソニックカンセイ株式会社 電動車両の電源システム
CN110303905A (zh) * 2019-06-24 2019-10-08 中国第一汽车股份有限公司 一种纯电动商用车用高压拓扑结构及上下电控制方法
CN110525232A (zh) * 2019-09-04 2019-12-03 天津易鼎丰动力科技有限公司 一种电动汽车用动力系统域控制器及其控制方法
CN110667436A (zh) * 2019-10-08 2020-01-10 天津易鼎丰动力科技有限公司 一种电动汽车用动力域控制系统及其控制方法
CN112193182A (zh) * 2020-09-23 2021-01-08 珠海格力电器股份有限公司 集成动力域控制系统及汽车
CN112339574A (zh) * 2020-11-17 2021-02-09 奇瑞商用车(安徽)有限公司 一种纯电动汽车动力系统动力域控制器及其控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11807112B2 (en) * 2016-12-14 2023-11-07 Bendix Commercial Vehicle Systems Llc Front end motor-generator system and hybrid electric vehicle operating method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018207584A (ja) * 2017-05-31 2018-12-27 カルソニックカンセイ株式会社 電動車両の電源システム
CN110303905A (zh) * 2019-06-24 2019-10-08 中国第一汽车股份有限公司 一种纯电动商用车用高压拓扑结构及上下电控制方法
CN110525232A (zh) * 2019-09-04 2019-12-03 天津易鼎丰动力科技有限公司 一种电动汽车用动力系统域控制器及其控制方法
CN110667436A (zh) * 2019-10-08 2020-01-10 天津易鼎丰动力科技有限公司 一种电动汽车用动力域控制系统及其控制方法
CN112193182A (zh) * 2020-09-23 2021-01-08 珠海格力电器股份有限公司 集成动力域控制系统及汽车
CN112339574A (zh) * 2020-11-17 2021-02-09 奇瑞商用车(安徽)有限公司 一种纯电动汽车动力系统动力域控制器及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4238833A4 *

Also Published As

Publication number Publication date
JP2024506424A (ja) 2024-02-14
EP4238833A1 (en) 2023-09-06
EP4238833A4 (en) 2023-09-06
CN117881577A (zh) 2024-04-12
KR20230106117A (ko) 2023-07-12
US20230208327A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
CN110525232B (zh) 一种电动汽车用动力系统域控制器及其控制方法
CN107599857B (zh) 一种基于锂电池的纯电动汽车充电系统和充电方法
CN106004446B (zh) 电动汽车低压蓄电池的充电控制方法、系统及整车控制器
WO2018188224A1 (zh) 供电系统、电力驱动装置、纯电动汽车及其工作方法
CN112543717B (zh) 低压蓄电池充电系统及方法
CN111071067B (zh) 一种纯电动汽车整车控制系统
CN107611522B (zh) 一种用于电动汽车电池管理系统的电池加热控制方法
WO2020113548A1 (zh) 电动汽车能源管理方法、储能管理控制器和能源管理单元
JP2010207029A (ja) 制御装置及び制御方法
CN111231762A (zh) 一种用于新能源汽车的动力集成控制系统及控制方法
WO2023122989A1 (zh) 电动汽车控制系统、控制方法、及计算机可读存储介质
CN105711375A (zh) 一种专用电动汽车及其节能温度调节系统和方法
CN111546938A (zh) 一种车用混合蓄电池管理系统及方法
CN209534765U (zh) 一种车载辅助电源的充电控制系统及汽车
CN110877532A (zh) 一种智能矿用电机车
CN110920418B (zh) 在纯电动车上实现自主发电增程的子系统及方法
CN111845596A (zh) 新能源车辆动力系统集成控制方法和装置、中央控制板
CN115489460B (zh) 一种多合一控制器的上下电控制方法
CN220775674U (zh) 一种集成整车控制功能的电机控制器
CN117601712B (zh) 电动汽车的供电系统、电动汽车及动力电池控制方法
CN212473352U (zh) 新能源车辆动力系统集成控制装置
CN111162982A (zh) 一种动力系统can网络拓扑结构及新能源汽车
CN216401360U (zh) 一种基于电驱桥的拓扑控制装置
CN212219964U (zh) 一种用于新能源汽车的动力集成控制系统
CN218986401U (zh) 一种集成系统及整车动力系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022534442

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021918100

Country of ref document: EP

Effective date: 20220717

WWE Wipo information: entry into national phase

Ref document number: 202180101370.2

Country of ref document: CN