WO2018188224A1 - 供电系统、电力驱动装置、纯电动汽车及其工作方法 - Google Patents
供电系统、电力驱动装置、纯电动汽车及其工作方法 Download PDFInfo
- Publication number
- WO2018188224A1 WO2018188224A1 PCT/CN2017/093369 CN2017093369W WO2018188224A1 WO 2018188224 A1 WO2018188224 A1 WO 2018188224A1 CN 2017093369 W CN2017093369 W CN 2017093369W WO 2018188224 A1 WO2018188224 A1 WO 2018188224A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery pack
- power
- battery
- motor
- rated
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to the field of electric drive devices, and more particularly to a power supply system for an electric drive device, an electric drive device, a pure electric vehicle, and a method of operating the same.
- a small-cost and large-capacity power battery is usually used.
- the power performance of the power battery is poor, and the life of the large-rate discharge to the power battery cell is long. Greater impact.
- a power battery of a high-power battery is usually used, but the power battery is not only high in cost but also small in capacity, and the driving range of a single charge is short.
- Embodiments of the present invention provide a power supply system for an electric drive device, an electric drive device, a pure electric vehicle using a power supply system, a method of circulating a power supply system, and an energy circulation method of a pure electric vehicle, which can extend a pure electric vehicle/electric power The service life and driving range of the drive.
- a power supply system for an electric drive device comprising: an assembled battery pack comprising a first battery pack and a second battery pack, the capacity of the first battery pack being greater than the capacity of the second battery pack; the battery management system controlling the first battery
- the group takes priority over the second battery pack, and the second battery pack takes precedence over the first battery
- the pool group is charged to cause the first battery pack to discharge or charge at a current rate less than or equal to the rated power within a range of discharged and charged power, and when the instantaneous power required by the load is greater than the rated discharge power of the first battery pack, The difference between the instantaneous power required to replenish the load of the second battery pack and the rated discharge power of the first battery pack is controlled.
- a method for recycling a power supply system for an electric drive system comprising an assembled battery pack comprising a first battery pack and a second battery pack, the first battery pack and the second battery pack each having a battery design rated power
- the rated power of the second battery pack is greater than the rated power of the first battery pack
- the method includes the following steps: discharging the first battery pack prior to discharging the second battery pack, when the instantaneous power demand of the load is greater than the first battery pack
- the difference between the instantaneous power demand of the second battery pack replenishing load and the rated power of the first battery pack at the rated power; and the charging step, regardless of the combined battery, unless the remaining battery capacity of the second battery pack reaches the maximum charging threshold
- the second battery pack is preferentially charged from the power source, and when the remaining battery capacity of the second battery pack is equal to the maximum charge threshold, the second battery pack is left open and the second battery pack is not charged.
- An electric drive device comprising: a load; a power control system electrically connected to the load; a power controller electrically connected to the load and the power control system; and a power supply system comprising: a combined battery pack including the first battery And a second battery pack, the capacity of the first battery pack is greater than the capacity of the second battery pack; the battery management system controls the first battery pack to discharge in preference to the second battery pack, and the second battery pack is prioritized over the first battery pack.
- the first battery pack To enable the first battery pack to discharge or charge at a rate of current less than or equal to the rated power within a range of discharged and charged power, and to control the second battery when the instantaneous power required by the load is greater than the rated discharge power of the first battery pack The difference between the instantaneous power required to supplement the load and the rated discharge power of the first battery pack.
- a pure electric vehicle includes: a motor; a power control system electrically connected to the motor; a power controller electrically connected to the motor and the power control system; and a power supply system comprising: a combined battery pack including the first battery And a second battery pack, the capacity of the first battery pack is greater than the capacity of the second battery pack; the battery management system controls the first battery pack to discharge in preference to the second battery pack, and the second battery pack is prioritized over the first battery pack.
- the first battery pack To enable the first battery pack to discharge or charge at a rate of current less than or equal to the rated power within a range of discharged and charged power, and to control the second battery when the instantaneous power required by the load is greater than the rated discharge power of the first battery pack Group supplement The difference between the instantaneous power required by the load and the rated discharge power of the first battery pack.
- An energy cycle method for a pure electric vehicle includes a power control system, a power controller, a combined battery pack, a battery management system, and a motor
- the assembled battery pack includes a first battery pack and a second battery pack, and the first battery pack
- the second battery pack has a battery design rated power
- the second battery pack has a rated power greater than the rated power of the first battery pack
- the method includes the following steps: the discharging step, causing the first battery pack to be discharged in preference to the second battery pack, When the instantaneous power demand of the motor is greater than the rated power of the first battery pack, the difference between the instantaneous power demand of the second battery pack replenishing load and the rated power of the first battery pack; and the charging step unless the second battery pack
- the remaining battery reaches the maximum charging threshold, otherwise the second battery pack is preferentially charged from the power source regardless of the form of power supply connected to the assembled battery pack, and the second battery pack is left open when the remaining battery capacity of the second battery pack
- the pure electric vehicle provided by the embodiment of the present invention has the characteristics of long battery life because the first battery pack of the assembled battery pack of the power supply system is always in the range of discharging and charging power.
- the current is discharged or charged at a current that is not greater than the rated power, so the cycle life of the first battery pack can be maximized.
- the second battery pack with high cycle life compensates for the instantaneous power difference of the load exceeding the normal discharge power of the first battery pack, and its inherent discharge energy also extends the driving range of the pure electric vehicle.
- FIG. 1 is a schematic partial block diagram of a pure electric vehicle according to an embodiment of the present invention.
- FIG. 2 is a schematic structural view of a power supply system of the pure electric vehicle shown in FIG. 1;
- Figure 3 is a comparison of cycle life of different battery packs under operating conditions
- FIG. 4 is a schematic diagram of a discharge flow of the power supply system shown in FIG. 2.
- 10-battery management system 11-acquisition module; 12-judgment module; 13-processing module; 20-combined battery pack; 21-first battery pack; 22-second battery pack; 30-switch; 31-first switch Module; 32-second switch module; 40-power control system; 50-power controller; 51-power monitor; 52-power converter; 60-DC motor.
- FIG. 1 and FIG. 2 are schematic structural diagrams of a pure electric vehicle using a combined battery pack according to an embodiment of the present invention.
- the pure electric vehicle using the assembled battery pack provided by the embodiment includes a power supply system (not shown), a power control system 40, a power controller 50, and a motor 60.
- the power supply system supplies electric power to an electric drive device such as a pure electric vehicle.
- the power control system 40 is electrically coupled to the BMS 10, the power controller 50, and the motor 60, respectively.
- the power control system 40 is configured to receive and integrate signals from gear positions, brakes, and accelerator pedals of the electric vehicle, and control the rotation speed and torque of the motor 60 through the connection with the power controller 50 and the motor 60, thereby The complex requirements of the electric drive device such as the pure electric vehicle under different driving road conditions are satisfied.
- the power supply system includes a battery management system (BMS) 10, a combined battery pack 20, and a switch 30.
- Battery management system 10 is coupled to combination battery pack 20 and switch 30.
- the power controller 50 is electrically connected to the assembled battery pack 30 through the switch 30, and the power controller 50 is also electrically coupled to motor 60.
- Power control system 40 is capable of controlling the operating state of motor 60 to cause motor 60 to switch states between the motor and the generator.
- the BMS 10 controls the switch 30 and manages the assembled battery pack 20 by controlling the open/close state of the switch 30.
- the BMS 10 is capable of communicating with the power control system 20.
- electric drive devices such as pure electric vehicles also include several other systems and components, such as vehicle controllers, thermal management systems, transmission systems, etc., but due to such systems, components and electric drives such as ordinary pure electric vehicles. There are no specific differences, so I won't go into details here.
- the assembled battery pack 20 includes a first battery pack 21 and a second battery pack 22, the capacity of the first battery pack 21 is greater than the capacity of the second battery pack 22, and the first battery pack 21 has the basic attributes of large capacity and low cost.
- a battery pack 21 can provide at least 80% of the maximum driving range of the pure electric vehicle. In other words, the driving range of the first battery unit 21 can reach at least 80% of the maximum driving range of the assembled battery pack 20. .
- the large capacity of the first battery unit 21 can amplify the characteristic of low cost per unit capacity.
- the low cost of the first battery pack 21 can ensure that after the introduction of the second battery pack 22 with a small capacity and high cost, the cost of the assembled battery pack 20 is at least 20% lower than that of the battery pack of a pure electric vehicle designed by a similar battery pack.
- a similar design refers to a single battery pack design that takes into account both capacity and power requirements.
- the second battery pack 22 combines the basic attributes of high power and high cycle life.
- the so-called high cycle life means that the number of cycles of the second battery pack in the useful life is not less than twice the number of cycles of the first battery pack 21 in the useful life.
- the so-called useful life means that the capacity of each battery pack is not less than 80% of its initial capacity.
- the first battery pack 21 and the second battery pack 22 respectively have a rated power of a given number of cycles in a useful life, and the rated power of the second battery pack 22 is greater than the rated power 21 of the first battery pack.
- the switch 30 is an electronic and electrical switch capable of controlling sequential current and parallel current of the first battery pack 21 and the second battery pack 22, including the first switch module 31 and the second switch module 32, wherein the first switch module 31 Connected to the first battery pack 21, the second switch module 32 is connected to the second battery pack 22.
- the first switch module 31 includes a discharge control switch S1-1 of the assembled battery pack 20 and an external power supply charge control switch S1-2 of the combined battery pack 20, and the second switch module 32 includes a discharge control switch S2- of the assembled battery pack 20. 1.
- the BMS 10 is capable of controlling the switch 30 to cause the first battery pack 21 to discharge 22 in preference to the second battery pack 22, and the second battery pack 22 is prioritized over the first battery pack 21, thereby causing the first battery pack 21 of the assembled battery pack 20 to discharge. And the charging power interval is always discharged or charged at a current that is not greater than the rated power.
- the BMS 10 can control the first battery pack 21 to discharge or charge at a current equal to or less than the rated power within the range of discharging and charging. And when the instantaneous power required by the motor 60 is greater than the discharge power of the first battery pack 21, the difference between the instantaneous power required by the motor 60 and the rated discharge power of the first battery pack 21 is supplemented by the second battery pack 22.
- the BMS 10 includes an acquisition module 11, a determination module 12, and a processing module 13, and the acquisition module 11 is configured to acquire the remaining power of the first battery pack 21 and the second battery pack 22 in real time.
- the determining module 12 is configured to determine whether the received command information is charging information or discharging information, and transmit the determination result to the processing module 13.
- the processing module 13 is configured to determine, after receiving the discharge information, whether the remaining power of the first battery pack 21 is greater than a minimum discharge threshold, and if so, control the discharge control switch S1-1 to be closed, so that the first battery pack 21 is less than or equal to The current of the rated power is discharged; if not, the first battery pack 21 is controlled to be in an open state, and the discharge switch S2-1 is closed to discharge the second battery pack 22.
- the processing module 13 determines whether the instantaneous power demand of the load is greater than the rated power of the first battery pack 21, and if so, controls the discharge control switch S1-1 and S2-1 is closed so that the second battery pack 22 is connected in parallel with the first battery pack 21 to the motor 60, and the second battery pack 22 supplements the difference between the instantaneous power demand of the motor 60 and the rated power of the first battery pack 21. .
- the first battery pack 21 unless the remaining charge of the first battery pack 21 is lower than the minimum discharge threshold, the first battery in the discharge order Group 21 takes precedence over said second battery pack 22. Unless the remaining charge of the second battery pack 22 is below the minimum discharge threshold, upon receiving the discharge command of the BMS, the first battery pack 21 preferentially discharges at a discharge rate that is not greater than the specific discharge power. Unless the immediate power demand of the motor 60 exceeds the maximum discharge power of the first battery pack 21, the second battery pack 22 does not provide power to the DC motor 60, so the amount of power retained by the second battery pack 22 can cope with various high power demand road conditions. .
- the high discharge power of the second battery pack 22 can compensate for the instantaneous power demand of the motor 60 that exceeds the normal discharge power of the first battery pack 21.
- charging unless the remaining battery capacity of the second battery pack 22 reaches the maximum charging threshold, regardless of the assembled battery pack Which form of power is connected to the second battery pack 22 preferentially charges the first battery pack 21 from the power source.
- the first battery pack 21 is charged at a charging magnification not higher than the maximum charging power after the second battery pack 22 reaches the maximum charging threshold. In this way, it can be ensured that the second battery pack 22 obtains a large amount of power from the external power source in a short time.
- the first battery pack 21 of the assembled battery pack 20 is preferentially discharged or charged at a discharge or charging magnification of not more than the rated power throughout the useful life, and the limited cycle life can be ensured to the utmost.
- the high cycle life of the second battery pack 22, through the loss of high power discharge or charging, can be better matched with the cycle life of the first battery pack 21, and finally the overall cycle life of the assembled battery pack 20 is guaranteed.
- FIG. 3 is a schematic diagram of the comparison of the cycle life of the assembled battery pack 20 under the operating conditions with respect to the pure electric vehicle designed by using the single battery pack 21 or the single battery pack 22.
- a pure electric vehicle designed with a single first battery pack 21 in the case where the discharge or charging under all power conditions is only for a single first battery pack 21, the single first battery pack 21 is only useful in life. There are 2,800 cycles of life.
- a pure electric vehicle designed with a single second battery pack 22, in the case of discharge or charging under all power conditions only for a single second battery pack 22, the single second battery pack 22 is in useful life. There are 8000 cycle life in the process.
- the power conditions of the first battery pack 21 are limited by the assembled battery pack 20, so that the first battery pack 20 can be discharged or charged at a small rate, and the first battery pack 21 small rate cycle performance can reach 12000 times.
- the second battery pack 22 of the assembled battery pack 20 is only discharged or charged under high power conditions, since the second battery pack 22 compensates for the first battery pack 21 and the motor 60 on the basis of preferential discharge of the first battery pack 21.
- the difference between the power requirements, therefore, the power conditions of the second battery pack 22 of the assembled battery pack 20 are also optimized compared to a single second battery pack 22, and can also achieve 12,000 cycle life. As a result of the combined action of the two, the cycle life of the assembled battery pack 20 reaches 12,000 times, which greatly prolongs the service life of the battery.
- the motor 60 can be a DC motor or an AC motor.
- the motor 60 is a DC motor.
- the DC motor realizes intelligent switching between the motor and the generator during the running of the electric drive device such as a pure electric vehicle according to the requirements of the power control system 40.
- the power controller 50 includes a power monitor 51 and a power converter 52.
- Power monitor 51 The battery pack 20 is connected to the assembled battery pack 20 via a switch 30, and the power monitor 51 is also coupled to a motor 60 for monitoring the difference between the instantaneous power of the motor 60 and the output power of the assembled battery pack 20 and The difference is passed to the power control system 40.
- the power converter 52 is directly coupled to the power control system 40 to convert the current and voltage output by the motor 60 or the combined battery pack 20 into a current and voltage that can meet the requirements of the assembled battery pack 20 or the motor 60, so that the combined battery pack or motor can be obtained. Meet the required charging or discharging power.
- the power supply system and its working mode are mainly described by taking a pure electric vehicle as an example, but it can be understood that the power supply system provided by the embodiment of the present invention can be applied to a car, a bicycle, a motorcycle, an airplane or any other electric power. Drive unit.
- Embodiments of the present invention also provide a method of cycling a power supply system, including:
- the second battery pack is charged in preference to the first battery pack. When the remaining battery capacity of the second battery pack is equal to the maximum charge threshold, the second battery pack is left in an open state and the second battery pack is not charged.
- step S10 includes:
- step S11 determining whether the amount of electricity of the first battery pack is greater than a minimum discharge threshold, and if yes, proceeding to step S12 to cause the first battery pack to discharge current at a rate less than or equal to the rated power; if not, proceeding to step S13 to determine the second battery Whether the amount of electricity of the group is greater than the minimum discharge threshold, and if so, proceeding to step S14 to cause the first battery pack to be in an open state and to discharge the second battery pack.
- step S15 is further required to determine whether the instantaneous power demand of the motor is greater than the rated power of the first battery pack, and if so, proceed to the step S17.
- step S17 Determine whether the remaining battery capacity of the second battery pack is greater than a minimum discharge threshold; if not, proceed to step S16 to cause the first battery pack to discharge the instantaneous power of the motor less than or equal to the rated power.
- step S19 is performed to make the second battery pack make up the difference between the instantaneous power demand of the motor and the rated power of the first battery pack; in step S17, if the judgment result is Otherwise, step S18 is performed to cause the first battery pack to discharge instantaneous power at a motor exceeding the rated power value.
- the power control system first sends a start command to the BMS, and the BMS determines according to the state of charge of the assembled battery pack, and performs the step S11 to S19 as described above to be the discharge algorithm control when the pure electric vehicle starts. Process.
- the power monitor feeds back the instantaneous power difference to the power control system, and the power control system will increase the power output.
- the instructions are sent to the BMS, which is controlled by the BMS according to the specific state of the assembled battery pack.
- the specific control algorithm can refer to the algorithm when the pure electric vehicle is started, and will not be described one by one.
- Step S20 includes: S21, unless the remaining battery capacity of the second battery pack reaches the maximum charging threshold, the second battery pack is preferentially charged from the power source regardless of the form of power supply connected to the assembled battery pack; S22, the first battery pack is in the second After the battery pack reaches the maximum charging threshold, it is charged at a charging rate that is not higher than the maximum charging power of the first battery pack.
- the assembled battery pack used in the pure electric vehicle of the present invention can be charged in the following state.
- the motor provided by the embodiment of the present invention is a DC motor capable of switching between a motor mode and a generator mode.
- the DC motor is switched to the DC generator, and the combined battery pack is charged by the power converter.
- the power control system controls the BMS to cut off the power supply line of the combined battery pack to the DC motor by cutting off the switch S1-1 or S2-1.
- the armature winding in the DC motor induces an electromotive force, and the DC motor is switched from the DC motor to the DC generator.
- the power control system controls the BMS to close the relevant switch to connect the first battery pack or the second battery pack in the assembled battery pack, and the power controller converts the power of the DC generator into a power value suitable for the battery pack and then follows the battery pack.
- the charging intelligent control algorithm performs charging.
- the charging intelligent control algorithm requires the second battery pack to be prioritized over the first battery pack for charging.
- the BMS controls the charging switch S2-2 of the second battery pack to be closed, and the second battery pack is connected to the DC generator through a power converter Passing, the power monitor feeds back an instantaneous power value of the DC motor to the power control system, the power control system sends a power adjustment command to the power converter, and the power converter will output the DC
- the instantaneous power value of the motor is adjusted to be suitable for the charging power of the second battery pack, and the DC motor can directly perform the second battery pack Charging.
- the BMS controls the second battery pack to be in an open state, ie, not performing a charging operation.
- the charging intelligent control algorithm requires the second battery pack to be charged in preference to the first battery pack.
- the motor works in the form of a generator under the control of the power control system, and the second battery pack can quickly realize energy recovery and slow down the mileage anxiety.
- Embodiments of the present invention also provide an electric drive apparatus including: a load such as a motor 60; a power control system 40 electrically coupled to a load; a power controller 50 electrically coupled to the load and power control system 40;
- the system includes: a combined battery pack 20 including a first battery pack 21 and a second battery pack 22, the capacity of the first battery pack 21 being greater than the capacity of the second battery pack 22; and the second at the same charge and discharge rate
- the number of cycles of the battery pack 22 in the useful life is not less than twice the number of cycles of the first battery pack 21 in the useful life;
- the switch 30 includes the first switch module 31 and the second switch module 32, the first switch The module 31 is connected to the first battery pack 21, the second switch module 32 is connected to the second battery pack 22, the battery management system 10 is connected to the combined battery pack 20 and the switch 30, and the switch 30 can be controlled to give priority to the first battery pack 21.
- the second battery pack 22 Discharging in the second battery pack 22, the second battery pack 22 is charged in preference to the first battery pack 21, so that the first battery pack 21 discharges current at a rate equal to or less than the rated power within the range of discharged and charged power. Electrical, and when the instantaneous power required by the load is greater than the rated discharge power of the first battery pack 21, the difference between the instantaneous power required to supplement the load of the second battery pack 22 and the rated discharge power of the first battery pack 21 can be controlled. value.
- Embodiments of the present invention also provide a pure electric vehicle including: a motor 60; a power control system 40 electrically coupled to the motor 60; a power controller 50 electrically coupled to the motor 60 and the power control system 40; and a power supply system
- the power supply system includes: a combined battery pack 20 including a first battery pack 21 and a second battery pack 22, the capacity of the first battery pack 21 being greater than the capacity of the second battery pack 22; and the second battery pack 22 at the same charge and discharge rate
- the number of cycles in the useful life is not less than twice the number of cycles of the first battery pack 21 in the useful life;
- the switch 30 includes the first switch module 31 and the second switch module 32, and the first switch module 31 is connected In the first battery pack 21, the second switch module 32 is connected to the second battery pack 22;
- the battery management system 10 is connected to the assembled battery pack 20 and the switch 30, and the switch 30 can be controlled to make the first battery pack 21 take precedence over the second
- the battery pack 22 is discharged, and the second battery pack 22 is
- Embodiments of the present invention also provide an energy cycle method for a pure electric vehicle including a power control system 40, a power controller 50, an assembled battery pack 20, a battery management system 10, and a motor 60, the assembled battery pack 20 including For the battery pack 21 and the second battery pack 22, the driving range of the first battery pack 21 can reach at least 80% of the maximum driving range of the assembled battery pack 20, and the first battery pack 21 and the second battery pack 22 each have a battery.
- the rated power of the second battery pack 22 is greater than the rated power of the first battery pack 21, the method comprising the steps of: discharging the first battery pack 21 in preference to the second battery pack 22, when the motor 60 When the instantaneous power demand is greater than the rated power of the first battery pack 22, the difference between the instantaneous power demand of the second battery pack 22 and the rated power of the first battery pack 21 is made; the charging step, unless the second battery pack 22 The remaining battery power reaches the maximum charging threshold, otherwise the second battery pack 22 preferentially charges from the power source regardless of the form of power supply to which the assembled battery pack 20 is connected, when the remaining battery pack 22 has remaining power. Is equal to the maximum charge threshold, the second battery pack 22 in an open state of the second battery 22 is not charged.
- the first of the assembled battery pack 20 is controlled by the battery management system 10
- the battery pack 21 is always discharged or charged at a current rate of not more than the rated power in the interval of discharge and charge, so that the cycle life of the first battery pack 21 can be maximized.
- the second battery pack 22 having a high cycle life compensates for the instantaneous power difference of the load exceeding the normal discharge power of the first battery pack 21, and its inherent discharge energy also extends the driving range of the pure electric vehicle or the electric drive device. .
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
一种用于电力驱动装置的供电系统、电力驱动装置、纯电动汽车及其工作方法,供电系统包括相互电连接的组合电池组(20)、开关(30)及电池管理系统(10),电池管理系统(10)能够控制开关(30)以使第一电池组(21)优先于第二电池组(22)放电,第二电池组(22)优先于第一电池组(21)充电。电池管理系统(10)能够控制第一电池组(21)在放电和充电的电量区间内以小于等于额定功率的倍率电流放电或充电,当负载(60)所需的即时功率大于第一电池组(21)的额定放电功率时,它们之间的差值由第二电池组(22)补充。
Description
本发明涉及电力驱动装置技术领域,尤其涉及一种用于电力驱动装置的供电系统、电力驱动装置、纯电动汽车及其工作方法。
随着人们日益关注环境和能源问题,使用非常规燃料的新能源汽车因其对环境相对友好、能源来源多样化而受到人们的追捧。纯电动汽车以其零污染、低噪音,能源利用效率高的优势在整个新能源汽车行业中脱颖而出。虽然目前纯电动汽车在环保和节能上有不可比拟的优势,但是动力电池的技术瓶颈始终制约着整车的发展。动力电池在当前技术水平的局限下,只能在如成本、容量、功率、循环寿命、热特性等各种特性指标中做均衡和取舍。
一般来说,为了降低纯电动车的成本及满足一定的续航里程,通常会选用小成本大容量的动力电池,然而这种动力电池的功率性能较差,大倍率放电对动力电池电芯的寿命影响较大。为了解决上述问题并且实现一定的加速动力,通常采用高功率的电芯的动力电池,但是这种动力电池不仅成本高,容量也较小,单次充电的续驶里程很短。
发明内容
本发明的实施例提供一种用于电力驱动装置的供电系统、电力驱动装置、采用供电系统的纯电动汽车、循环供电系统的方法及纯电动汽车的能量循环方法,能够延长纯电动汽车/电力驱动装置的使用寿命和续驶里程。
一种用于电力驱动装置的供电系统,包括:组合电池组,包括第一电池组及第二电池组,第一电池组的容量大于第二电池组的容量;电池管理系统,控制第一电池组优先于第二电池组放电,第二电池组优先于第一电
池组充电,以使第一电池组在放电和充电的电量区间内以小于等于额定功率的倍率电流放电或充电,并且当负载所需的即时功率大于第一电池组的额定放电功率时,能够控制第二电池组补充负载所需的即时功率与第一电池组的额定放电功率之间的差值。
一种循环用于电力驱动装置的供电系统的方法,供电系统包括组合电池组,组合电池组包括第一电池组和第二电池组,第一电池组及第二电池组均具有电池设计额定功率,第二电池组的额定功率大于第一电池组的额定功率,该方法包括以下步骤:放电步骤,使第一电池组优先于第二电池组放电,当负载的即时功率需求大于第一电池组的额定功率时,第二电池组补充负载的即时功率需求与第一电池组的额定功率之间的差值;以及充电步骤,除非第二电池组的剩余电量达到最大充电阈值,否则无论组合电池组连接何种形式的电源,第二电池组优先从电源处充电,当第二电池组的剩余电量等于最大充电阈值时,使第二电池组处于开路状态对第二电池组不进行充电。
一种电力驱动装置,包括:负载;动力控制系统,与负载电连接;功率控制器,与负载及动力控制系统电连接;以及,供电系统,该供电系统包括:组合电池组,包括第一电池组及第二电池组,第一电池组的容量大于第二电池组的容量;电池管理系统,控制第一电池组优先于第二电池组放电,第二电池组优先于第一电池组充电,以使第一电池组在放电和充电的电量区间内以小于等于额定功率的倍率电流放电或充电,并且当负载所需的即时功率大于第一电池组的额定放电功率时,能够控制第二电池组补充负载所需的即时功率与第一电池组的额定放电功率之间的差值。
一种纯电动汽车,包括:电机;动力控制系统,与电机电连接;功率控制器,与电机及动力控制系统电连接;以及,供电系统,该供电系统包括:组合电池组,包括第一电池组及第二电池组,第一电池组的容量大于第二电池组的容量;电池管理系统,控制第一电池组优先于第二电池组放电,第二电池组优先于第一电池组充电,以使第一电池组在放电和充电的电量区间内以小于等于额定功率的倍率电流放电或充电,并且当负载所需的即时功率大于第一电池组的额定放电功率时,能够控制第二电池组补充
负载所需的即时功率与第一电池组的额定放电功率之间的差值。
一种纯电动汽车的能量循环方法,纯电动汽车包括动力控制系统、功率控制器、组合电池组、电池管理系统和电机,组合电池组包括第一电池组和第二电池组,第一电池组及第二电池组均具有电池设计额定功率,第二电池组的额定功率大于第一电池组的额定功率,该方法包括以下步骤:放电步骤,使第一电池组优先于第二电池组放电,当电机的即时功率需求大于第一电池组的额定功率时,第二电池组补充负载的即时功率需求与第一电池组的额定功率之间的差值;以及充电步骤,除非第二电池组的剩余电量达到最大充电阈值,否则无论组合电池组连接何种形式的电源,第二电池组优先从电源处充电,当第二电池组的剩余电量等于最大充电阈值时,使第二电池组处于开路状态对第二电池组不进行充电。
与现有技术相比较,本发明的实施例提供的纯电动汽车之所以具有电池使用寿命长的特性,是因为供电系统的组合电池组的第一电池组在放电和充电的电量区间内始终处于以不大于额定功率的倍率电流放电或充电,因此第一电池组的循环寿命能够最大限度得以延长。具有高循环寿命的第二电池组在弥补超过第一电池组正常放电功率的负载的即时功率差值的同时,其固有的放电能量也延长了纯电动汽车的续驶里程。
从下面结合附图对本发明的具体实施方式的描述中可以更好地理解本发明,其中:
通过阅读以下参照附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显,其中,相同或相似的附图标记表示相同或相似的特征。
图1是本发明实施例提供的纯电动汽车的局部结构模块示意图;
图2是图1所示纯电动汽车的供电系统的结构示意图;
图3是在工况下不同电池组的循环寿命对比图;以及
图4是图2所示供电系统的放电流程示意图。
其中:
10-电池管理系统;11-采集模块;12-判断模块;13-处理模块;20-组合电池组;21-第一电池组;22-第二电池组;30-开关;31-第一开关模块;32-第二开关模块;40-动力控制系统;50-功率控制器;51-功率监视器;52-功率转化器;60-直流电机。
下面将详细描述本发明的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本发明的全面理解。但是,对于本领域技术人员来说显而易见的是,本发明可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本发明的示例来提供对本发明的更好的理解。在附图和下面的描述中,至少部分的公知结构和技术没有被示出,以便避免对本发明造成不必要的模糊;并且,为了清晰,可能夸大了区域或者结构的尺寸。在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,下文中所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
请参阅图1及图2,为本发明实施例的采用组合电池组的纯电动汽车的结构示意图。本实施例提供的采用组合电池组的纯电动汽车,包括供电系统(未标示)、动力控制系统40、功率控制器50和电机60。供电系统向纯电动汽车等电力驱动装置提供电能。动力控制系统40分别与BMS10、功率控制器50及电机60电连接。动力控制系统40用于接收并整合来自电动汽车的档位、刹车和加速踏板等的信号,通过其与功率控制器50和电机60的连接来实现对电机60转速和转矩等的控制,从而满足所述纯电动汽车等电力驱动装置在不同行驶路况下的复杂要求。
供电系统包括电池管理系统(battery management system,BMS)10、组合电池组20及开关30。电池管理系统10连接于组合电池组20和开关30。功率控制器50通过开关30与组合电池组30电连接,并且功率控制器
50还与电机60电连接。动力控制系统40能够控制电机60的工作状态,以使电机60在电动机和发电机之间切换状态。BMS10控制开关30,并通过控制开关30的开/合状态对组合电池组20进行管理。BMS10能够与动力控制系统20进行通信。
可以理解的是,纯电动汽车等电力驱动装置还包括其他若干系统和组件,如整车控制器、热管理系统、传动系统等,但由于此类系统、组件与普通纯电动汽车等电力驱动装置没有特定的差异性,因此在此不再赘述。
组合电池组20包括第一电池组21及第二电池组22,第一电池组21的容量大于第二电池组22的容量,第一电池组21兼具大容量和低成本的基本属性,第一电池组21提供的续驶里程至少能够达到纯电动汽车最大续驶里程的80%,换句话说第一电池组21的续驶里程至少能够达到组合电池组20的最大续驶里程的80%。第一电池组21的大容量能够将单位容量低成本的特性加以放大。第一电池组21的低成本能够保证引入小容量高成本的第二电池组22后,组合电池组20的成本要至少低于相似电池组设计的纯电动汽车的电池组成本的20%,所谓的相似设计是指综合考虑容量和功率要求的单电池组设计。
第二电池组22兼具高功率和高循环寿命的基本属性。所谓高循环寿命是指第二电池组在有用生命内的循环周期数不少于第一电池组21在有用生命内的循环周期数的两倍,所谓有用生命是指各电池组的容量不小于其初始容量的80%。第一电池组21及第二电池组22分别具有有用寿命中的给定周期数量的额定功率,第二电池组22的额定功率大于第一电池组的额定功率21。
开关30是一种电子电气开关,能够实现对第一电池组21和第二电池组22的顺序电流和并联电流控制,包括第一开关模块31和第二开关模块32,其中第一开关模块31连接于第一电池组21,第二开关模块32连接于第二电池组22。其中,第一开关模块31包括组合电池组20的放电控制开关S1-1和组合电池组20的外接电源充电控制开关S1-2,第二开关模块32包括组合电池组20的放电控制开关S2-1、第二电池组22的充电控制开关S2-2和组合电池组20的外接电源充电控制开关S2-3。
BMS10能够控制开关30以使第一电池组21优先于第二电池组22放电22,第二电池组22优先于第一电池组21充电,进而使得组合电池组20的第一电池组21在放电和充电的电量区间内始终处于以不大于额定功率的倍率电流放电或充电,换句话说BMS10能够控制第一电池组21在放电和充电的电量区间内以小于等于额定功率的倍率电流放电或充电,并且当电机60所需的即时功率大于第一电池组21的放电功率时,电机60所需的即时功率与第一电池组21的额定放电功率之间的差值由第二电池组22补充。BMS10包括采集模块11、判断模块12和处理模块13,采集模块11用于即时获取第一电池组21和第二电池组22的剩余电量。判断模块12用于判断接收的指令信息为充电信息还是放电信息,并将判断结果传送至处理模块13。处理模块13用于在接收到放电信息后,判断第一电池组21的剩余电量是否大于最低放电阈值,如果是,则控制放电控制开关S1-1闭合,以使第一电池组21以小于等于额定功率的倍率电流放电;如果否,则控制第一电池组21处于开路状态,同时放电开关S2-1闭合、以使第二电池组22放电。在第一电池组21以小于等于额定功率的倍率电流放电时,处理模块13进一步判断负载的即时功率需求是否大于第一电池组21的额定功率,如果是,则控制放电控制开关S1-1及S2-1闭合,以使第二电池组22与第一电池组21并联连接于电机60,第二电池组22补充电机60的即时功率需求与第一电池组21的额定功率之间的差值。
下面说明关于本发明的实施例提供的供电系统的组合电池组20的充放电特性,首先关于放电:除非第一电池组21的剩余电量低于最低放电阈值,否则在放电顺序上,第一电池组21优先于所述第二电池组22。除非第二电池组22的剩余电量低于最低放电阈值,否则在收到BMS的放电指令时,第一电池组21优先以不大于特定放电功率的放电倍率放电。除非电机60的即时功率需求超过第一电池组21的最大放电功率,否则第二电池组22不向直流电机60提供电量,因此第二电池组22保留的电量得以应付各种高功率需求的路况。第二电池组22的高放电功率能够弥补超过第一电池组21正常放电功率的电机60的即时功率需求。其次关于充电:除非第二电池组22的剩余电量达到最大充电阈值,否则无论组合电池组
20连接何种形式的电源,第二电池组22优先第一电池组21从电源处充电。第一电池组21在第二电池组22达到最大充电阈值后以不高于最大充电功率的充电倍率充电。如此,即能保证第二电池组22在短时间内从外接电源处获取较大电量。
由上述充放电方案可知,组合电池组20的第一电池组21在整个有用生命中优先以不大于额定功率的放电或充电倍率进行放电或充电,其有限的循环寿命能够最大限度得以保证。而第二电池组22的高循环寿命经过高功率放电或充电的损耗,能够较好地与第一电池组21的循环寿命进行搭配,最终使组合电池组20的整体循环寿命得到保证。
请参阅图3,图3是将在工况下采用组合电池组20相对于采用单一电池组21或单一电池组22设计的纯电动汽车的循环寿命加以量化的比对示意图。采用单一的第一电池组21设计的纯电动汽车中,在所有功率条件下的放电或充电只针对单一的第一电池组21的情况下,该单一的第一电池组21在有用生命中仅有2800次的循环寿命。类似地,采用单一的第二电池组22设计的纯电动汽车,在所有功率条件下的放电或充电只针对单一的第二电池组22的情况下,该单一的第二电池组22在有用生命中有8000次的循环寿命。采用组合电池组20设计的纯电动汽车中,由组合电池组20对第一电池组21的功率条件加以限制,使得第一电池组20能够以较小的倍率放电或充电,而第一电池组21小倍率循环性能可达到12000次。同时,组合电池组20的第二电池组22只在大功率条件下放电或充电,由于第二电池组22是在第一电池组21优先放电的基础上弥补第一电池组21与电机60即时功率需求之间的差值,因此相比于单一的第二电池组22,组合电池组20的第二电池组22的功率条件也有优化,也可以达到12000次循环寿命。两者综合作用的结果使得组合电池组20的循环寿命达到12000次,大大延长了电池的使用寿命。
电机60可以为直流电机或交流电机,本实施例中电机60为直流电机。直流电机根据动力控制系统40的要求在纯电动汽车等电力驱动装置的行驶过程中实现电动机和发电机之间的智能切换。
功率控制器50包括功率监视器51和功率转化器52。功率监视器51
通过开关30与组合电池组20相连,并且功率监视器51还与电机60相连,该功率监视器51用于监视电机60的即时功率与组合电池组20的输出功率之间的差值并将该差值传递给动力控制系统40。功率转化器52直接与动力控制系统40相连,将电机60或组合电池组20输出的电流和电压转换成能够满足组合电池组20或电机60要求的电流和电压,因此组合电池组或电机能够获得满足要求的充电或放电功率。
本实施例中主要以纯电动汽车为例介绍了供电系统及其工作模式,但可以理解的是,本发明的实施例所提供的供电系统可应用于汽车、自行车、摩托车、飞机或任何其它电力驱动装置。
本发明的实施例还提供循环供电系统的方法,包括:
S10,使第一电池组优先于第二电池组进行放电,当电机的即时功率需求大于第一电池组的额定功率时,第二电池组补充电机的即时功率需求与第一电池组的额定功率之间的差值;
S20,使第二电池组优先于第一电池组进行充电,当第二电池组的剩余电量等于最大充电阈值时,使第二电池组处于开路状态对第二电池组不进行充电。
请参阅图4,步骤S10包括:
S11,判断第一电池组的电量是否大于最低放电阈值,如果是,则进行步骤S12,使第一电池组以小于等于额定功率的倍率电流放电;如果否,则进行步骤S13,判断第二电池组的电量是否大于最低放电阈值,如果是,则进行步骤S14,使第一电池组处于开路状态并使第二电池组放电。在进行步骤S12,使第一电池组以小于等于额定功率的倍率电流放电时,还需要进一步进行步骤S15,判断电动机的即时功率需求是否大于第一电池组的额定功率,如果是,则进行步骤S17,判断第二电池组的剩余电量是否大于最低放电阈值;如果否,则进行步骤S16,使第一电池组以小于等于额定功率的电动机即时功率放电。在步骤S17中,如果判断结果为是,则进行步骤S19,使第二电池组弥补电动机的即时功率需求与第一电池组的额定功率之间的差值;在步骤S17中,如果判断结果为否,则进行步骤S18,使第一电池组以超出额定功率值的电动机即时功率放电。
在这里需要说明的是,动力控制系统首先将启动指令发送给BMS,BMS根据所述组合电池组的电量状态进行判断,进行如上所述的步骤S11至S19是纯电动汽车启动时的放电算法控制流程。
在纯电动汽车启动后处于正常行驶状态时,如果组合电池组的即时输出功率无法达到电动机的即时功率需求,功率监视器把即时功率差值反馈给动力控制系统,动力控制系统会将增加功率输出的指令发给BMS,由BMS根据组合电池组的具体状态加以控制,具体的控制算法可以参照纯电动汽车启动时的算法,不再一一赘述。
步骤S20包括:S21,除非第二电池组的剩余电量达到最大充电阈值,否则无论组合电池组连接何种形式的电源,第二电池组优先从电源处充电;S22,第一电池组在第二电池组达到最大充电阈值后以不高于第一电池组的最大充电功率的充电倍率充电。
本发明纯电动车采用的组合电池组可以在下述状态下进行充电。本发明的实施例提供的电机为直流电机,能够在电动机模式和发电机模式之间切换。处于正常行驶状态的纯电动汽车刹车时,直流电动机会切换为直流发电机,通过功率转化器对组合电池组进行充电。用户踩下刹车瞬间,动力控制系统控制BMS通过切断开关S1-1或S2-1来切断组合电池组对直流电机的供电线路。此时,直流电机中的电枢绕组感应出电动势,直流电机从直流电动机切换到直流发电机的工作状态。动力控制系统一方面控制BMS闭合相关开关以连接组合电池组中的第一电池组或第二电池组,功率控制器将直流发电机的功率转化为适合电池组需要的功率值后对电池组按照充电智能控制算法进行充电。充电智能控制算法要求第二电池组优先于第一电池组进行充电。
如果所述第二电池组的剩余电量不大于最大充电阈值,那么所述BMS控制所述第二电池组的充电开关S2-2闭合,所述第二电池组通过功率转化器与直流发电机接通,所述功率监视器把所述直流电动机的即时功率值反馈给所述动力控制系统,所述动力控制系统对所述功率转化器发送功率调节指令,所述功率转化器会将所述直流电动机的即时功率值调整为适合所述第二电池组的充电功率,所述直流电动机可直接对所述第二电池组进行
充电。如果所述第二电池组的剩余电量等于最大充电阈值,那么所述BMS控制所述第二电池组处于开路状态,即不进行充电操作。充电智能控制算法要求所述第二电池组优先于所述第一电池组进行充电。
纯电动汽车刹车时电机在动力控制系统的控制下以发电机的形式工作,第二电池组能够快速实现能量回收,减缓里程焦虑。
本发明的实施例还提供一种电力驱动装置,包括:例如电机60等的负载;动力控制系统40,与负载电连接;功率控制器50,与负载及动力控制系统40电连接;以及,供电系统,该供电系统包括:组合电池组20,包括第一电池组21及第二电池组22,第一电池组21的容量大于第二电池组22的容量;在相同的充放电倍率下第二电池组22在有用生命内的循环周期数不少于第一电池组21在有用生命内的循环周期数的两倍;开关30,包括第一开关模块31和第二开关模块32,第一开关模块31连接于第一电池组21,第二开关模块32连接于第二电池组22;电池管理系统10,连接于组合电池组20和开关30,能够控制开关30以使第一电池组21优先于第二电池组22放电,第二电池组22优先于第一电池组21充电,以使第一电池组21在放电和充电的电量区间内以小于等于额定功率的倍率电流放电或充电,并且当负载所需的即时功率大于第一电池组21的额定放电功率时,能够控制第二电池组22补充负载所需的即时功率与第一电池组21的额定放电功率之间的差值。
本发明的实施例还提供一种纯电动汽车,包括:电机60;动力控制系统40,与电机60电连接;功率控制器50,与电机60及动力控制系统40电连接;以及供电系统,该供电系统包括:组合电池组20,包括第一电池组21及第二电池组22,第一电池组21的容量大于第二电池组22的容量;在相同的充放电倍率下第二电池组22在有用生命内的循环周期数不少于第一电池组21在有用生命内的循环周期数的两倍;开关30,包括第一开关模块31和第二开关模块32,第一开关模块31连接于第一电池组21,第二开关模块32连接于第二电池组22;电池管理系统10,连接于组合电池组20和开关30,能够控制开关30以使第一电池组21优先于第二电池组22放电,第二电池组22优先于第一电池组21充电,以使第一电池组
21在放电和充电的电量区间内以小于等于额定功率的倍率电流放电或充电,并且当负载所需的即时功率大于第一电池组21的额定放电功率时,能够控制第二电池组22补充负载所需的即时功率与第一电池组21的额定放电功率之间的差值。
本发明的实施例还提供一种纯电动汽车的能量循环方法,纯电动汽车包括动力控制系统40、功率控制器50、组合电池组20、电池管理系统10和电机60,组合电池组20包括第一电池组21和第二电池组22,第一电池组21的续驶里程至少能够达到组合电池组20的最大续驶里程的80%,第一电池组21及第二电池组22均具有电池设计额定功率,第二电池组22的额定功率大于第一电池组21的额定功率,该方法包括以下步骤:放电步骤,使第一电池组21优先于第二电池组22放电,当电机60的即时功率需求大于第一电池组22的额定功率时,使第二电池组22补充负载的即时功率需求与第一电池组21的额定功率之间的差值;充电步骤,除非第二电池组22的剩余电量达到最大充电阈值,否则无论组合电池组20连接何种形式的电源,第二电池组22优先从电源处充电,当第二电池组22的剩余电量等于最大充电阈值时,使第二电池组22处于开路状态对第二电池组22不进行充电。
本发明的实施例提供的供电系统、电力驱动装置、采用供电系统的纯电动汽车、循环供电系统的方法及纯电动汽车的能量循环方法中,通过电池管理系统10控制组合电池组20的第一电池组21在放电和充电的电量区间内始终处于以不大于额定功率的倍率电流放电或充电,因此第一电池组21的循环寿命能够最大限度得以延长。具有高循环寿命的第二电池组22在弥补超过第一电池组21正常放电功率的负载的即时功率差值的同时,其固有的放电能量也延长了纯电动汽车或电力驱动装置的续驶里程。
本发明可以以其他的具体形式实现,而不脱离其精神和本质特征。因此,当前的实施例在所有方面都被看作是示例性的而非限定性的,本发明的范围由所附权利要求而非上述描述定义,并且,落入权利要求的含义和等同物的范围内的全部改变从而都被包括在本发明的范围之中。并且,在不同实施例中出现的不同技术特征可以进行组合,以取得有益效果。本领
域技术人员在研究附图、说明书及权利要求书的基础上,应能理解并实现所揭示的实施例的其他变化的实施例。
Claims (20)
- 一种用于电力驱动装置的供电系统,其特征在于,包括:组合电池组,包括第一电池组及第二电池组,所述第一电池组的容量大于所述第二电池组的容量;以及电池管理系统,控制所述第一电池组优先于所述第二电池组放电,所述第二电池组优先于所述第一电池组充电,以使所述第一电池组在放电和充电的电量区间内以小于等于额定功率的倍率电流放电或充电,并且当负载所需的即时功率大于所述第一电池组的额定放电功率时,能够控制所述第二电池组补充所述负载所需的即时功率与所述第一电池组的额定放电功率之间的差值。
- 根据权利要求1所述用于电力驱动装置的供电系统,其特征在于,所述第一电池组的续驶里程至少能够达到所述组合电池组的最大续驶里程的80%。
- 根据权利要求1所述用于电力驱动装置的供电系统,其特征在于,所述组合电池组的循环寿命为12000次。
- 根据权利要求1所述用于电力驱动装置的供电系统,其特征在于,进一步包括开关,连接于所述组合电池组和所述电池管理系统,所述电池管理系统通过开关控制所述组合电池组,所述开关为电子电气开关,实现对所述第一电池组和所述第二电池组的顺序电流和并联电流控制,所述开关包括所述组合电池组的放电控制开关S1-1、S2-1,所述组合电池组的外接电源充电控制开关S1-2、S2-3和所述第二电池组的充电控制开关S2-2。
- 根据权利要求4所述用于电力驱动装置的供电系统,其特征在于,所述电池管理系统包括:采集模块,用于即时获取所述第一电池组和所述第二电池组的剩余电量;判断模块,用于判断接收的指令信息为充电信息还是放电信息,并将判断结果传送至处理模块;处理模块,用于当接收放电信息时,判断所述第一电池组的剩余电量 是否大于最低放电阈值,如果是,则控制所述放电控制开关S1-1闭合,以使所述第一电池组以小于等于额定功率的倍率电流放电;如果否,则控制所述第一电池组处于开路状态,同时所述放电开关S2-1闭合、以使所述第二电池组放电。
- 根据权利要求5所述用于电力驱动装置的供电系统,其特征在于,所述处理模块还用于在所述第一电池组以不大于额定功率的倍率电流放电时,进一步判断负载的即时功率需求是否大于所述第一电池组的额定功率,如果是,则控制所述放电控制开关S1-1及S2-1闭合,以使所述第二电池组与所述第一电池组并联连接于所述负载,所述第二电池组补充所述负载的即时功率需求与所述第一电池组的额定功率之间的差值。
- 根据权利要求1所述用于电力驱动装置的供电系统,其特征在于,所述第一电池组及所述第二电池组分别具有有用寿命中的给定周期数量的额定功率,所述第二电池组的额定功率大于所述第一电池组的额定功率。
- 根据权利要求1所述用于电力驱动装置的供电系统,其特征在于,在相同的充放电倍率下所述第二电池组在有用生命内的循环周期数不少于所述第一电池组在有用生命内的循环周期数的两倍,所述有用生命是指所述组合电池组的容量不小于初始容量的80%。
- 一种循环用于电力驱动装置的供电系统的方法,所述供电系统包括组合电池组及用于控制所述组合电池组的电池管理系统,所述组合电池组包括第一电池组和第二电池组,所述第一电池组及所述第二电池组均具有电池设计额定功率,所述第二电池组的额定功率大于所述第一电池组的额定功率,其特征在于,该方法包括以下步骤:放电步骤,使所述第一电池组优先于所述第二电池组放电,当负载的即时功率需求大于所述第一电池组的额定功率时,所述第二电池组补充所述负载的即时功率需求与所述第一电池组的额定功率之间的差值;以及充电步骤,除非所述第二电池组的剩余电量达到最大充电阈值,否则无论所述组合电池组连接何种形式的电源,所述第二电池组优先从电源处充电,当所述第二电池组的剩余电量等于最大充电阈值时,使所述第二电池组处于开路状态对所述第二电池组不进行充电。
- 根据权利要求9所述的方法,其特征在于,所述放电步骤包括:判断所述第一电池组的剩余电量是否大于最低放电阈值,如果是,则使所述第一电池组以小于等于额定功率的倍率电流放电;如果否,则使所述第一电池组处于开路状态并使所述第二电池组放电;以及进一步判断所述负载的即时功率需求是否大于所述第一电池组的额定功率,如果是,则使所述第二电池组与所述第一电池组并联连接于所述负载,以使第二电池组补充所述负载的即时功率需求与所述第一电池组的额定功率之间的差值;如果否,则所述第一电池组以小于等于额定功率的负载即时功率放电。
- 一种电力驱动装置,其特征在于,包括:负载;动力控制系统,与所述负载电连接;功率控制器,与所述负载及所述动力控制系统电连接;以及,如权利要求1至8任意一项所述的供电系统,与所述动力控制系统和所述功率控制器电连接,并且通过所述功率控制器与所述负载电连接。
- 一种纯电动汽车,其特征在于,包括:电机;动力控制系统,与所述电机电连接;功率控制器,与所述电机及所述动力控制系统电连接;以及,如权利要求1至8任意一项所述的供电系统,与所述动力控制系统和所述功率控制器电连接,并且通过所述功率控制器与所述电机电连接。
- 根据权利要求12所述纯电动汽车,其特征在于,所述功率控制器包括功率监视器,所述功率监视器与所述组合电池组及所述电机条件性电连接,监视所述电机的即时功率需求与所述组合电池组的额定功率之间的差值,并将该差值信息传递给所述动力控制系统。
- 根据权利要求13所述纯电动汽车,其特征在于,所述功率控制器进一步包括功率转化器,所述功率转化器与所述动力控制系统电连接,将所述电机或所述组合电池组输出的电流和电压转换成能够满足所述组合电池组或电机要求的电流和电压。
- 根据权利要求14所述纯电动汽车,其特征在于,所述电机为直流电机或交流电机。
- 一种纯电动汽车的能量循环方法,所述纯电动汽车包括动力控制系统、功率控制器、组合电池组、电池管理系统和电机,所述组合电池组包括第一电池组和第二电池组,所述第一电池组及所述第二电池组均具有电池设计额定功率,所述第二电池组的额定功率大于所述第一电池组的额定功率,其特征在于,该方法包括以下步骤:放电步骤,使所述第一电池组优先于所述第二电池组放电,当所述电机的即时功率需求大于所述第一电池组的额定功率时,所述第二电池组补充所述负载的即时功率需求与所述第一电池组的额定功率之间的差值;以及充电步骤,除非所述第二电池组的剩余电量达到最大充电阈值,否则无论所述组合电池组连接何种形式的电源,所述第二电池组优先从电源处充电,当所述第二电池组的剩余电量等于最大充电阈值时,使所述第二电池组处于开路状态对所述第二电池组不进行充电。
- 根据权利要求16所述的方法,其特征在于,所述放电步骤包括:判断所述第一电池组的剩余电量是否大于最低放电阈值,如果是,则使所述第一电池组以小于等于额定功率的倍率电流放电;如果否,则使所述第一电池组处于开路状态并使所述第二电池组放电;以及进一步判断所述负载的即时功率需求是否大于所述第一电池组的额定功率,如果是,则使所述第二电池组与所述第一电池组并联连接于所述负载,以使第二电池组补充所述负载的即时功率需求与所述第一电池组的额定功率之间的差值;如果否,则所述第一电池组以小于等于额定功率的负载即时功率放电。
- 根据权利要求16所述的方法,其特征在于,所述充电步骤包括:除非所述第二电池组的剩余电量达到最大充电阈值,否则无论所述组合电池组连接何种形式的电源,所述第二电池组优先从电源处充电;以及所述第一电池组在所述第二电池组达到最大充电阈值后以不高于所述第一电池组的最大充电功率的充电倍率充电。
- 根据权利要求16所述的方法,其特征在于,所述电机能够在电动机模式和发电机模式之间切换,所述充电步骤还包括:所述纯电动汽车刹车由正常行驶状态进入刹车状态时,所述电机会由所述电动机模式切换为所述发电机模式,通过所述功率控制器对所述组合电池组进行充电。
- 根据权利要求19所述的方法,其特征在于,用户踩下刹车瞬间,所述动力控制系统控制所述电池管理系统切断所述组合电池组对所述电机供电,使所述电机从所述电动机模式切换到所述发电机模式;与此同时所述动力控制系统控制所述电池管理系统打开所述组合电池组的充电线路,所述功率控制器将所述电机的功率转化为适合所述组合电池组需要的功率值后对所述组合电池组进行充电,其中所述第二电池组优先于所述第一电池组进行充电。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710238948.4A CN107128187B (zh) | 2017-04-12 | 2017-04-12 | 供电系统、电力驱动装置、纯电动汽车及其工作方法 |
CN201710238948.4 | 2017-04-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018188224A1 true WO2018188224A1 (zh) | 2018-10-18 |
Family
ID=59715991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/093369 WO2018188224A1 (zh) | 2017-04-12 | 2017-07-18 | 供电系统、电力驱动装置、纯电动汽车及其工作方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107128187B (zh) |
WO (1) | WO2018188224A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112265448A (zh) * | 2020-11-06 | 2021-01-26 | 浙江雅迪机车有限公司 | 一种电动车双电池供电系统及其控制方法 |
CN112660103A (zh) * | 2020-12-31 | 2021-04-16 | 重庆金康赛力斯新能源汽车设计院有限公司 | 一种车辆控制模式的确定方法、装置和整车控制系统 |
CN114056113A (zh) * | 2020-08-09 | 2022-02-18 | 广汽埃安新能源汽车有限公司 | 一种电动汽车节能模式控制方法及系统 |
CN115447382A (zh) * | 2022-09-14 | 2022-12-09 | 湖南行必达网联科技有限公司 | 电动车辆的供电方法、装置及电动车辆 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108539826A (zh) * | 2018-05-14 | 2018-09-14 | 东莞市迈纳斯航空技术有限公司 | 一种增强手持多媒体设备锂电池使用寿命的系统及方法 |
US11155153B2 (en) * | 2018-06-01 | 2021-10-26 | GM Global Technology Operations LLC | Energy sharing system and method for a vehicle |
CN109004729A (zh) * | 2018-07-26 | 2018-12-14 | 合肥联宝信息技术有限公司 | 一种电子设备及其控制方法 |
CN109130950A (zh) * | 2018-09-06 | 2019-01-04 | 道达电动车制造成都有限公司 | 一种电动车辆的混合电池组控制系统及控制方法 |
WO2020057307A1 (zh) * | 2018-09-18 | 2020-03-26 | 爱驰汽车有限公司 | 电动车以及电动车的供电方法 |
CN110943501B (zh) * | 2018-09-25 | 2024-03-15 | 东莞新能德科技有限公司 | 一种充电方法、充电控制装置及电子设备 |
CN109649183B (zh) * | 2018-11-23 | 2020-08-18 | 江苏敏安电动汽车有限公司 | 一种纯电动汽车能量管理与能量回收方法 |
CN112297944B (zh) * | 2019-07-29 | 2022-07-15 | 比亚迪股份有限公司 | 车辆、车辆的动力电池系统及其控制方法 |
CN110329110B (zh) * | 2019-08-06 | 2020-12-04 | 江西博能上饶客车有限公司 | 一种用于电动客车的电池安全控制系统和控制方法 |
TWI739214B (zh) * | 2019-11-20 | 2021-09-11 | 光陽工業股份有限公司 | 電動車輛的電池並聯控制方法 |
CN111231768B (zh) * | 2020-03-16 | 2023-01-13 | 雅迪科技集团有限公司 | 一种电池管理系统、管理方法以及电动车 |
CN111478401A (zh) * | 2020-05-09 | 2020-07-31 | 郑州正方科技有限公司 | 电池组放电功率控制系统及方法 |
CN111845381A (zh) * | 2020-07-15 | 2020-10-30 | 贺亦明 | 电动汽车动力驱动系统的电池组组合使用系统和增程模式充放电分离方法 |
CN111993953B (zh) * | 2020-08-27 | 2021-10-29 | 安徽江淮汽车集团股份有限公司 | 电池控制方法、动力汽车及可读存储介质 |
CN114789660A (zh) * | 2022-04-26 | 2022-07-26 | 中国第一汽车股份有限公司 | 一种电动车辆的控制方法、装置及电动车辆 |
CN117148941A (zh) * | 2022-05-24 | 2023-12-01 | 华为技术有限公司 | 计算机系统的供电方法及相关装置和设备 |
CN116811666B (zh) * | 2023-08-17 | 2024-05-14 | 广州巨湾技研有限公司 | 动力电池系统放电控制方法、系统、电子设备和存储介质 |
CN118074667B (zh) * | 2024-04-19 | 2024-10-18 | 锐石创芯(深圳)科技股份有限公司 | 声表面波滤波器和射频前端模组 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1195617A (zh) * | 1997-03-25 | 1998-10-14 | 富士电机株式会社 | 电气车辆的电源系统 |
US7339353B1 (en) * | 2004-03-10 | 2008-03-04 | Quallion Llc | Power system for managing power from multiple power sources |
CN102785563A (zh) * | 2012-08-23 | 2012-11-21 | 浙江吉利汽车研究院有限公司杭州分公司 | 混合动力电动汽车动力系统 |
CN205686199U (zh) * | 2016-06-23 | 2016-11-16 | 三门峡速达交通节能科技股份有限公司 | 功率型与储能型锂电组成的复合电源及电动汽车复合电源 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7866425B2 (en) * | 2004-06-28 | 2011-01-11 | General Electric Company | Hybrid electric propulsion system and method |
US20100332060A1 (en) * | 2007-05-21 | 2010-12-30 | Ct & T Co., Ltd. | Power conversion controlling method of fuel cell-battery hybrid-electric vehicle and control device |
DE102008038826A1 (de) * | 2007-08-13 | 2009-04-16 | GM Global Technology Operations, Inc., Detroit | Batteriesteuerungsverfahren für Hybridfahrzeuge |
CN101254744B (zh) * | 2007-12-28 | 2011-09-21 | 奇瑞汽车股份有限公司 | 一种混合动力多能源控制系统及其控制方法 |
CN105226777A (zh) * | 2015-09-22 | 2016-01-06 | 国网上海市电力公司 | 一种储能系统的功率控制方法 |
-
2017
- 2017-04-12 CN CN201710238948.4A patent/CN107128187B/zh active Active
- 2017-07-18 WO PCT/CN2017/093369 patent/WO2018188224A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1195617A (zh) * | 1997-03-25 | 1998-10-14 | 富士电机株式会社 | 电气车辆的电源系统 |
US7339353B1 (en) * | 2004-03-10 | 2008-03-04 | Quallion Llc | Power system for managing power from multiple power sources |
CN102785563A (zh) * | 2012-08-23 | 2012-11-21 | 浙江吉利汽车研究院有限公司杭州分公司 | 混合动力电动汽车动力系统 |
CN205686199U (zh) * | 2016-06-23 | 2016-11-16 | 三门峡速达交通节能科技股份有限公司 | 功率型与储能型锂电组成的复合电源及电动汽车复合电源 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114056113A (zh) * | 2020-08-09 | 2022-02-18 | 广汽埃安新能源汽车有限公司 | 一种电动汽车节能模式控制方法及系统 |
CN112265448A (zh) * | 2020-11-06 | 2021-01-26 | 浙江雅迪机车有限公司 | 一种电动车双电池供电系统及其控制方法 |
CN112660103A (zh) * | 2020-12-31 | 2021-04-16 | 重庆金康赛力斯新能源汽车设计院有限公司 | 一种车辆控制模式的确定方法、装置和整车控制系统 |
CN112660103B (zh) * | 2020-12-31 | 2023-04-07 | 重庆金康赛力斯新能源汽车设计院有限公司 | 一种车辆控制模式的确定方法、装置和整车控制系统 |
CN115447382A (zh) * | 2022-09-14 | 2022-12-09 | 湖南行必达网联科技有限公司 | 电动车辆的供电方法、装置及电动车辆 |
Also Published As
Publication number | Publication date |
---|---|
CN107128187A (zh) | 2017-09-05 |
CN107128187B (zh) | 2020-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018188224A1 (zh) | 供电系统、电力驱动装置、纯电动汽车及其工作方法 | |
CN104163111B (zh) | 基于双向dc/dc的电动车复合能源增程系统 | |
US8417400B2 (en) | Control system for hybrid vehicles with reconfigurable multi-function power converter | |
EP2562030B1 (en) | Apparatus and method for charging an electric vehicle | |
CN101161499B (zh) | 一种混合动力电机工作模式控制方法 | |
CN104608649B (zh) | 集成式电动汽车电能变换系统 | |
WO2016134565A1 (zh) | 一种纯电动车并行充电供电系统 | |
KR20110137675A (ko) | 전기구동 차량의 급속충전 및 충전용량 조절이 가능한 충전 스테이션 | |
CN105365595A (zh) | 电动汽车动力电池与超级电容动力系统及控制方法 | |
CN104139708A (zh) | 一种电动汽车用动力控制供电系统 | |
CN109334472A (zh) | 一种电动汽车增程供电系统及控制方法、增程电动汽车 | |
CN204526866U (zh) | 一种汽车用三电压电源系统 | |
WO2022160830A1 (zh) | 一种起重机多模式插电作业的控制系统及控制方法 | |
WO2018023896A1 (zh) | 基于四象限变流器实现交流内燃机车柴油机变频启动电路 | |
CN109969000B (zh) | 一种纯电动车用增程式系统 | |
CN109228893A (zh) | 一种锂电池和超级电容混合储能的能源分配系统及其方法 | |
CN106004483A (zh) | 用太阳能辅助供电的电动车控制方法及其系统 | |
US9643513B2 (en) | Propelling system and energy management system and methods | |
CN205097969U (zh) | 一种电电混合电动汽车动力电池与超级电容动力系统 | |
CN104786863B (zh) | 一种汽车用三电压电源系统及其控制方法 | |
CN110920418B (zh) | 在纯电动车上实现自主发电增程的子系统及方法 | |
CN105059129A (zh) | 复合电源、使用该复合电源的供能系统及电动汽车 | |
CN108177540A (zh) | 一种易于更换的复合电源系统及控制方法 | |
KR20150008378A (ko) | 절연 접촉기 천이 극성 제어 | |
CN209454733U (zh) | 一种动车组双向供电电路和动车组 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17905315 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17905315 Country of ref document: EP Kind code of ref document: A1 |