WO2020173070A1 - 一种超疏水防腐自组装三维纳米材料及其制备方法 - Google Patents

一种超疏水防腐自组装三维纳米材料及其制备方法 Download PDF

Info

Publication number
WO2020173070A1
WO2020173070A1 PCT/CN2019/104480 CN2019104480W WO2020173070A1 WO 2020173070 A1 WO2020173070 A1 WO 2020173070A1 CN 2019104480 W CN2019104480 W CN 2019104480W WO 2020173070 A1 WO2020173070 A1 WO 2020173070A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanohorn
prepared
dimensional
nano
self
Prior art date
Application number
PCT/CN2019/104480
Other languages
English (en)
French (fr)
Inventor
张燕萍
赵志国
杨信刚
吴万桃
Original Assignee
上海利物盛企业集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海利物盛企业集团有限公司 filed Critical 上海利物盛企业集团有限公司
Priority to JP2021532435A priority Critical patent/JP7201813B2/ja
Publication of WO2020173070A1 publication Critical patent/WO2020173070A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/10Anti-corrosive paints containing metal dust
    • C09D5/106Anti-corrosive paints containing metal dust containing Zn
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the invention relates to a preparation method of a super-hydrophobic anticorrosive self-assembled three-dimensional nano material, belonging to the technical field of nano composite material preparation and application.
  • Nano-zinc has excellent chemical activity and good anti-ultraviolet properties, which is conducive to the production of high-quality anti-corrosion coatings; however, single nano-zinc is prone to surface oxidation, which affects its reduction performance.
  • Carbon nanohorns are a new type of nanocarbon material. The shape of a single carbon nanohorn is a short-sized single-walled carbon nanotube with a closed tapered end at one end, and due to the van der Waals force between the tubes, more carbon nanohorns aggregate Together, they form a first-level spherical aggregate, and the "dahlia" shape is one of the aggregates. Due to its high specific surface area, hydrophobic structure, and unique photoelectric properties, carbon nanohorns have broad application prospects in the fields of gas adsorption, sensors, surface hydrophobic materials, and emerging drug carriers.
  • Dahlia (Dahlia pinnata Cav.), also known as dahlia flower, geranium peony, oriental chrysanthemum, dahlia, sweet potato flower, Asteraceae, dahlia, perennial herb, with huge rod-shaped roots.
  • the stem is erect, much branched. Native to Mexico, Mexicans regard it as a symbol of psychology and wealth, so they respect it as the national flower.
  • the present invention provides a method for preparing superhydrophobic anticorrosive self-assembled three-dimensional nanomaterials.
  • supercritical fluid method the advantages of ethanol fluid's low viscosity, high diffusivity and surface tension close to zero are used to reduce Nano-zinc infiltration adsorption and self-assembly are loaded into two "dahlia" type carbon nanohorns to form a three-dimensional composite structure material.
  • the prepared carbon nanohorn-nano-zinc composite material can not only block the surface oxidation of nano-zinc and oxygen molecules, leading to its reductive activity passivation, but also take advantage of the unique superhydrophobic properties of carbon nanohorns, which can be widely used in architectural coatings and industrial Anti-corrosion coating field.
  • the process is simple, the product is uniform and stable, and the prepared carbon nanohorn-nano zinc composite material can be used industrially as a high-efficiency anti-corrosion additive, which synergistically enhances the anti-corrosion from the structure, high surface energy and reducing activity, and improves the traditional zinc High powder filling can damage the film-forming properties, weather resistance, and aging properties of the coating, and greatly improve the compactness, barrier properties, mechanical properties and corrosion resistance of the coating layer.
  • the technical scheme of the present invention is: a preparation method of super-hydrophobic anticorrosive self-assembled three-dimensional nano material, which is characterized in that: The specific steps are as follows:
  • Step 1 Prepare dahlia-shaped carbon nanohorns by arc discharge method
  • Step 2 Perform instantaneous oxidation treatment on the carbon nanohorns prepared in Step 1 to obtain an open-pored carbon nanohorn material;
  • Step 3 Mix the nano-zinc ethanol slurry with the open-pored carbon nanohorn material prepared in step 2, to prepare a carbon nanohorn-nano-zinc mixed ethanol slurry;
  • Step 4 The carbon nanohorn-nanozinc mixed ethanol slurry prepared in step 3 is processed by the supercritical fluid method, so that the carbon nanohorn and nanozinc self-assemble into a carbon nanohorn-nanozinc composite three-dimensional pearl clam-like structure
  • the material, the carbon nanohorn-nano zinc composite three-dimensional pearl clam-like structure material is the super-hydrophobic anticorrosive self-assembled three-dimensional nano material.
  • the arc discharge method uses graphite rods as anodes, the deposition atmosphere is 50-70kPa argon or nitrogen, and the DC arc discharge current is 120-200A; the prepared dahlia carbon nanohorns have a diameter of 80-100nm .
  • step 2 the carbon nanohorns prepared in step 1 are subjected to instantaneous oxidation treatment, the oxidation atmosphere is 80-100kPa oxygen, the oxidation temperature is 800-900°C, and the oxidation time is 5-10min; the prepared open-pored carbon nano
  • the corner material has a particle size of 60 to 80 nm.
  • step 3 the carbon nanohorn-nanozinc mixed ethanol slurry is prepared, wherein the solid content of the carbon nanohorn is 1 to 3%; the solid content of nano zinc is 0.5 to 2%, and the particle size of the nano zinc is 50 nm.
  • step 4 the carbon nanohorn-nano-zinc mixed ethanol slurry prepared in step 3 is subjected to supercritical fluid treatment at a temperature of 270-350°C, a pressure of 8-35 MPa, and a treatment time of 1 to 5 hours;
  • the prepared carbon nanohorn-nano zinc composite three-dimensional pearl mussel-like structure material has a particle size of 80-100 nm.
  • the invention also provides a super-hydrophobic anti-corrosion self-assembled three-dimensional nano material prepared by the preparation method of the super-hydrophobic anti-corrosion self-assembled three-dimensional nano material.
  • the beneficial effects of the present invention are: firstly prepare the "dahlia” type carbon nanohorns by the arc discharge method; then remove the amorphous carbon by instantaneous oxidation treatment, and make the closed ports of the carbon nanohorns open. No catalyst is added during the above preparation process, so The carbon nanohorns have high purity, while the unique bionic flower structure and high surface energy make it superhydrophobic.
  • the supercritical fluid method by adjusting the temperature and pressure of the system, the diffusion coefficient, solubility and fluidity of the supercritical ethanol fluid are significantly increased, which effectively assists the transportation of nano-zinc particles to the middle of the carbon nanohorns, and reduces the temperature and pressure.
  • nano-zinc in the composite material has excellent reduction activity.
  • the high surface energy and biomimetic flower-shaped structure of the outer carbon nanohorns can prevent oxygen molecules from oxidizing the nano-zinc and achieve a super-hydrophobic effect.
  • the two components synergize the chemical properties and structural advantages of the nanomaterials themselves.
  • the carbon nanohorn-nanozinc composites are arranged in all directions, and the corrosion path is blocked, which greatly improves the penetration resistance of the coating and the corrosion resistance of the anticorrosive coating formulation system , Significantly reduce the amount of zinc powder, and greatly promote and expand the application of architectural coatings and industrial anti-corrosion coatings.
  • Figure 1 is a schematic diagram of the "Dahlia” type carbon nanohorn structure.
  • Figure 2 is a schematic diagram of the structure of open-pored carbon nanohorns after purification.
  • Figure 3 is a schematic diagram of the structure of the carbon nanohorn-nano zinc composite material.
  • 1 is carbon nanohorn
  • 2 is nano zinc
  • the arc discharge method uses graphite rods as anodes, the deposition atmosphere is 50kPa argon, and the DC arc discharge current is 120A; as shown in Figure 1, the prepared "Dahlia-type" carbon nano-angle diameter is 80nm.
  • the carbon nanohorns prepared above were subjected to instantaneous oxidation treatment, the oxidation atmosphere was 80kPa oxygen, the oxidation temperature was 800°C, and the oxidation time was 5min; as shown in Figure 2, the prepared open-pored carbon nanohorns had a diameter of 70nm.
  • a carbon nanohorn-nano zinc mixed ethanol slurry was prepared, in which the solid content of the carbon nanohorn was 1%; the solid content of the nano zinc was 0.5%, and the particle size of the nano zinc was 50 nm.
  • the above-mentioned mixed ethanol slurry was processed by the supercritical fluid method, the temperature was 300°C, the pressure was 8MPa, and the treatment time was 1h; the prepared carbon nanohorn-nano zinc composite material had a particle size of 80nm and a specific surface area of 530m 2 / g. After coating the composite material slurry on the glass substrate and drying, the contact angle between water and the coating is measured to be 136.5°.
  • the arc discharge method uses graphite rods as anodes, the deposition atmosphere is 70kPa argon, and the DC arc discharge current is 200A; the prepared "Dahlia-type" carbon nano-angle particle size is 100nm.
  • the carbon nanohorns prepared above are subjected to instantaneous oxidation treatment, the oxidation atmosphere is 100kPa oxygen, the oxidation temperature is 900°C, and the oxidation time is 5min; the prepared open-pored carbon nanohorns have a particle size of 80nm.
  • the carbon nanohorn-nano zinc mixed ethanol slurry is prepared, wherein the solid content of the carbon nanohorn is 3%; the solid content of the nano zinc is 2%, and the particle size of the nano zinc is 50 nm.
  • the above-mentioned mixed ethanol slurry was processed by the supercritical fluid method, the temperature was 350°C, the pressure was 35MPa, and the treatment time was 5h; the prepared carbon nanohorn-nanozinc composite material had a particle size of 100nm and a specific surface area of 350m 2 / g. After coating the composite material slurry on the glass substrate and drying, the contact angle between the water and the coating is measured to be 128.2°.
  • the arc discharge method uses graphite rods as anodes, the deposition atmosphere is 70kPa nitrogen, and the DC arc discharge current is 200A; the prepared "Dahlia type" carbon nano-horn diameter is 100nm.
  • the carbon nanohorns prepared above are subjected to instantaneous oxidation treatment, the oxidation atmosphere is 100kPa oxygen, the oxidation temperature is 850°C, and the oxidation time is 5min; the prepared open-pored carbon nanohorns have a particle size of 80nm.
  • the carbon nanohorn-nano zinc mixed ethanol slurry was prepared, in which the solid content of the carbon nanohorn was 3%; the solid content of nano zinc was 1%, and the particle size of nano zinc was 50 nm.
  • the above-mentioned mixed ethanol slurry was processed by the supercritical fluid method, the temperature was 270°C, the pressure was 12MPa, and the treatment time was 2.5h; the prepared carbon nanohorn-nano zinc composite material had a particle size of 100nm and a specific surface area of 200m 2 /g, after coating the composite material slurry on the glass substrate and drying, the contact angle between water and the coating is measured to be 135.2°.
  • the arc discharge method uses a graphite rod as the anode, the deposition atmosphere is 50kPa nitrogen, and the DC arc discharge current is 120A; the prepared "Dahlia type" carbon nano-angle particle size is 80nm.
  • the carbon nanohorns prepared above are subjected to instantaneous oxidation treatment, the oxidation atmosphere is 100kPa oxygen, the oxidation temperature is 850°C, and the oxidation time is 10min; the prepared open-pored carbon nanohorns have a particle size of 60nm.
  • the carbon nanohorn-nano zinc mixed ethanol slurry is prepared, wherein the solid content of the carbon nanohorn is 2%; the solid content of the nano zinc is 1%, and the particle size of the nano zinc is 50 nm.
  • the above-mentioned mixed ethanol slurry was processed by the supercritical fluid method, the temperature was 300°C, the pressure was 12MPa, and the treatment time was 1.5h; the prepared carbon nanohorn-nano zinc composite material had a particle size of 85nm and a specific surface area of 800m 2 /g, after coating the composite material slurry on the glass substrate and drying, the contact angle between the water and the coating is 140.5°.
  • the arc discharge method uses a graphite rod as the anode, the deposition atmosphere is 65kPa nitrogen, and the DC arc discharge current is 180A; the prepared "Dahlia type" carbon nano-angle particle size is 90nm.
  • the carbon nanohorns prepared above are subjected to instantaneous oxidation treatment, the oxidation atmosphere is 100kPa oxygen, the oxidation temperature is 900°C, and the oxidation time is 5min; the prepared open-pored carbon nanohorns have a particle size of 80nm.
  • the carbon nanohorn-nano zinc mixed ethanol slurry was prepared, in which the solid content of the carbon nanohorn was 2%; the solid content of the nano zinc was 0.5%, and the particle size of the nano zinc was 50 nm.
  • the above-mentioned mixed ethanol slurry was processed by the supercritical fluid method, the temperature was 350°C, the pressure was 35MPa, and the treatment time was 1h; the prepared carbon nanohorn-nanozinc composite material had a particle size of 90nm and a specific surface area of 630m 2 / g. After coating the composite material slurry on the glass substrate and drying, the contact angle between the water and the coating is 150.9°.
  • the above embodiments have simple processes, uniform products and high stability.
  • the prepared carbon nanohorn-nano zinc composite materials can be used industrially as high-efficiency anti-corrosion additives, which synergistically enhance the anti-corrosion properties in terms of structure, high surface energy and reducing activity. Staggered in all directions, the corrosion path is blocked, improving the film formation, weather resistance, aging and other damages of the traditional zinc powder high filling to the coating, and greatly improving the density, barrier, mechanical properties and corrosion resistance of the coating layer .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

一种超疏水防腐自组装三维纳米材料的制备方法;先采用电弧放电法制备大丽花型碳纳米角后,再对其进行瞬时氧化处理,得到开孔碳纳米角材料,然后将纳米锌乙醇浆料与碳纳米角材料充分混合后,采用超临界流体法,将碳纳米角与纳米锌自组装复合成三维立体珍珠蚌状结构材料。

Description

一种超疏水防腐自组装三维纳米材料及其制备方法 技术领域
本发明涉及一种超疏水防腐自组装三维纳米材料的制备方法,属于纳米复合材料制备及应用技术领域。
背景技术
纳米锌具有极佳的化学活性及良好的抗紫外线性能,有利于生产高品质防腐涂料;然而单独的纳米锌易发生表面氧化,影响其还原性能。碳纳米角是一种新型的纳米碳材料,单根碳纳米角的形态为一端具有闭口锥形端点的短尺寸单壁碳纳米管,并且由于管间的范德华力作用,多跟碳纳米角聚集在一起,形成一级球形集合,“大丽花”状为其中一种聚集体。由于具有高比表面积、疏水结构、光电性质独特等特点,碳纳米角在气体吸附、传感器、表面疏水材料、新兴药物载体等领域均有广阔的应用前景。
大丽花(Dahlia pinnata Cav.),别名大理花、天竺牡丹、东洋菊、大丽菊、地瓜花,菊科、大丽花属植物,多年生草本,有巨大棒状块根。茎直立,多分枝。原产于墨西哥,墨西哥人把它视为大方、富丽的象征,因此将它尊为国花。
发明内容
针对现有技术存在的问题,本发明提供一种超疏水防腐自组装三维纳米材料的制备方法,通过超临界流体法,利用乙醇流体低黏度、高扩散性和表面张力接近于零的优势,将纳米锌渗透吸附并自组装加载至两朵“大丽花”型碳纳米角中,制成三维复合结构材料。所制备的碳纳米角‐纳米锌复合材料不仅可阻隔纳米锌与氧气分子发生表面氧化,导致其还原活性钝化,还可利用碳纳米角独特的超疏水特性,可广泛应用于建筑涂料、工业防腐涂料领域。
该工艺过程简单,产物均匀及稳定性高,可工业化利用所制备的碳纳米角‐纳米锌复合材料作为高效防腐添加剂,从结构、高表面能与还原活性上协同增强防腐性,改善传统的锌粉高填充对于涂料的成膜性、耐候性、老化性等损伤,大幅提升涂膜层的致密性、阻隔性、机械性能以及防腐性能。
本发明的技术方案是:一种超疏水防腐自组装三维纳米材料的制备方法,其特征在于: 具体步骤如下:
步骤一、采用电弧放电法制备大丽花型碳纳米角;
步骤二、将步骤一制备得到的碳纳米角进行瞬时氧化处理,得到开孔碳纳米角材料;
步骤三、将纳米锌乙醇浆料与步骤二制备得到的开孔碳纳米角材料充分混合,配制得到碳纳米角-纳米锌混合乙醇浆料;
步骤四、将步骤三制备得到的碳纳米角-纳米锌混合乙醇浆料采用超临界流体法处理,使得碳纳米角与纳米锌自组装复合成碳纳米角-纳米锌复合三维立体珍珠蚌状结构材料,所述碳纳米角-纳米锌复合三维立体珍珠蚌状结构材料即为所述的超疏水防腐自组装三维纳米材料。
进一步的,步骤一中电弧放电法采用石墨棒作为阳极,沉积气氛为50~70kPa氩气或氮气,直流电弧放电电流为120~200A;所制得的大丽花型碳纳米角粒径为80~100nm。
进一步的,步骤二中将步骤一制备的碳纳米角进行瞬时氧化处理,氧化气氛为80~100kPa氧气,氧化温度为800~900℃,氧化时间为5~10min;所制得的开孔碳纳米角材料粒径为60~80nm。
进一步的,步骤三配制碳纳米角-纳米锌混合乙醇浆料中,其中碳纳米角固含量为1~3%;纳米锌固含量为0.5~2%,纳米锌粒径为50nm。
进一步的,步骤四中将步骤三所配制的碳纳米角-纳米锌混合乙醇浆料进行超临界流体法处理,温度为270~350℃,压强为8~35MPa,处理时间为1~5h;所制备得到的碳纳米角-纳米锌复合三维立体珍珠蚌状结构材料粒径为80~100nm。
本发明还提供一种由所述的超疏水防腐自组装三维纳米材料的制备方法制备得到的超疏水防腐自组装三维纳米材料。
进一步的,是由碳纳米角与纳米锌自组装复合成的碳纳米角-纳米锌复合三维立体珍珠蚌状结构。
本发明的有益效果是:首先通过电弧放电法制备“大丽花”型碳纳米角;再通过瞬时氧化处理去除不定型碳,并使得碳纳米角闭端口开孔,上述制备过程中不添加催化剂,因此碳纳米角具有较高的纯度,同时独特仿生花型结构和高表面能使其具有超疏水性。超临界流体法实施过程中,通过调节体系的温度和压强使得超临界乙醇流体的扩散系数、溶解能力和流动性显著增大,有效辅助纳米锌颗粒输送至碳纳米角中间,在降温与泄压过程中自组装进行复合,形成纳米角负载纳米锌三维结构材料,生产中所使用的乙醇溶剂还可以重复循环使用,过程中无其他有毒有害物质产生,节能环保。该复合材料中纳米锌具有优异的还原活性,包 覆在外层碳纳米角的高表面能与仿生花型结构,可以阻止氧气分子将纳米锌氧化,达到超疏水效应。两种组分协同纳米材料本身的化学性能与结构优势,碳纳米角‐纳米锌复合材料全方位交错排列,腐蚀路径被阻隔,大大提高涂层的抗渗透性和防腐涂料配方体系的耐蚀性能,显著降低锌粉用量,大幅推进和拓展建筑涂料、工业防腐涂料的应用。
附图说明
图1为“大丽花”型碳纳米角结构示意图。
图2为纯化处理后开孔碳纳米角结构示意图。
图3为碳纳米角‐纳米锌复合材料结构示意图。
其中:1为碳纳米角,2为纳米锌。
具体实施方式
以下结合实施例对本发明进行详细说明,但本实施例不能用于限制本发明,凡是采用本发明的相似方法及其相似变化,均应列入本发明的保护范围。
实施例1
电弧放电法采用石墨棒作为阳极,沉积气氛为50kPa氩气,直流电弧放电电流为120A;如图1所示,所制得的“大丽花型”碳纳米角粒径为80nm。将上述制备的碳纳米角进行瞬时氧化处理,氧化气氛为80kPa氧气,氧化温度为800℃,氧化时间为5min;如图2所示,所制得的开孔碳纳米角粒径为70nm。配制碳纳米角‐纳米锌混合乙醇浆料,其中碳纳米角固含量为1%;纳米锌固含量为0.5%,纳米锌粒径为50nm。将上述混合乙醇浆料进行超临界流体法处理,温度为300℃,压强为8MPa,处理时间为1h;所制备得到的碳纳米角‐纳米锌复合材料粒径为80nm,比表面积为530m 2/g,将复合材料制浆涂敷在玻璃衬底上干燥后,测得水与涂层之间的接触角为136.5°。
实施例2
电弧放电法采用石墨棒作为阳极,沉积气氛为70kPa氩气,直流电弧放电电流为200A;所制得的“大丽花型”碳纳米角粒径为100nm。将上述制备的碳纳米角进行瞬时氧化处理,氧化气氛为100kPa氧气,氧化温度为900℃,氧化时间为5min;所制得的开孔碳纳米角粒径为80nm。配制碳纳米角‐纳米锌混合乙醇浆料,其中碳纳米角固含量为3%;纳米锌固含量为2%,纳米锌粒径为50nm。将上述混合乙醇浆料进行超临界流体法处理,温度为350℃, 压强为35MPa,处理时间为5h;所制备得到的碳纳米角‐纳米锌复合材料粒径为100nm,比表面积为350m 2/g,将复合材料制浆涂敷在玻璃衬底上干燥后,测得水与涂层之间的接触角为128.2°。
实施例3
电弧放电法采用石墨棒作为阳极,沉积气氛为70kPa氮气,直流电弧放电电流为200A;所制得的“大丽花型”碳纳米角粒径为100nm。将上述制备的碳纳米角进行瞬时氧化处理,氧化气氛为100kPa氧气,氧化温度为850℃,氧化时间为5min;所制得的开孔碳纳米角粒径为80nm。配制碳纳米角‐纳米锌混合乙醇浆料,其中碳纳米角固含量为3%;纳米锌固含量为1%,纳米锌粒径为50nm。将上述混合乙醇浆料进行超临界流体法处理,温度为270℃,压强为12MPa,处理时间为2.5h;所制备得到的碳纳米角‐纳米锌复合材料粒径为100nm,比表面积为200m 2/g,将复合材料制浆涂敷在玻璃衬底上干燥后,测得水与涂层之间的接触角为135.2°。
实施例4
电弧放电法采用石墨棒作为阳极,沉积气氛为50kPa氮气,直流电弧放电电流为120A;所制得的“大丽花型”碳纳米角粒径为80nm。将上述制备的碳纳米角进行瞬时氧化处理,氧化气氛为100kPa氧气,氧化温度为850℃,氧化时间为10min;所制得的开孔碳纳米角粒径为60nm。配制碳纳米角‐纳米锌混合乙醇浆料,其中碳纳米角固含量为2%;纳米锌固含量为1%,纳米锌粒径为50nm。将上述混合乙醇浆料进行超临界流体法处理,温度为300℃,压强为12MPa,处理时间为1.5h;所制备得到的碳纳米角‐纳米锌复合材料粒径为85nm,比表面积为800m 2/g,将复合材料制浆涂敷在玻璃衬底上干燥后,测得水与涂层之间的接触角为140.5°。
实施例5
电弧放电法采用石墨棒作为阳极,沉积气氛为65kPa氮气,直流电弧放电电流为180A;所制得的“大丽花型”碳纳米角粒径为90nm。将上述制备的碳纳米角进行瞬时氧化处理,氧化气氛为100kPa氧气,氧化温度为900℃,氧化时间为5min;所制得的开孔碳纳米角粒径为80nm。配制碳纳米角‐纳米锌混合乙醇浆料,其中碳纳米角固含量为2%;纳米锌固含量为0.5%,纳米锌粒径为50nm。将上述混合乙醇浆料进行超临界流体法处理,温度为350℃,压强为35MPa,处理时间为1h;所制备得到的碳纳米角‐纳米锌复合材料粒径为90nm,比表面积为630m 2/g,将复合材料制浆涂敷在玻璃衬底上干燥后,测得水与涂层之间的接触角 为150.9°。
上述实施例工艺简单,产物均匀及稳定性高,可工业化利用所制备的碳纳米角‐纳米锌复合材料作为高效防腐添加剂,从结构、高表面能与还原活性上协同增强防腐性,在涂层中全方位交错排列,腐蚀路径被阻隔,改善传统的锌粉高填充对于涂料的成膜性、耐候性、老化性等损伤,大幅提升涂膜层的致密性、阻隔性、机械性能以及防腐性能。
经研究表明,通过调节气氛、温度、压强、处理时间等参数,可有效控制最终产物的粒径及结构,能够实现如实施例中所制备的碳纳米角‐纳米锌复合材料作为工业防腐涂料有效防腐成分,各组分间协同发挥防护作用,能更好地改善和提高防腐涂料在海洋工程、交通运输、大型工业设备及公共设施等领域的进一步应用。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

  1. 一种超疏水防腐自组装三维纳米材料的制备方法,其特征在于:具体步骤如下:
    步骤一、采用电弧放电法制备大丽花型碳纳米角;
    步骤二、将步骤一制备得到的碳纳米角进行瞬时氧化处理,得到开孔碳纳米角材料;
    步骤三、将纳米锌乙醇浆料与步骤二制备得到的开孔碳纳米角材料充分混合,配制得到碳纳米角-纳米锌混合乙醇浆料;
    步骤四、将步骤三制备得到的碳纳米角-纳米锌混合乙醇浆料采用超临界流体法处理,使得碳纳米角与纳米锌自组装复合成碳纳米角-纳米锌复合三维立体珍珠蚌状结构材料,所述碳纳米角-纳米锌复合三维立体珍珠蚌状结构材料即为所述的超疏水防腐自组装三维纳米材料。
  2. 根据权利要求1所述的一种超疏水防腐自组装三维纳米材料的制备方法,其特征在于:步骤一中电弧放电法采用石墨棒作为阳极,沉积气氛为50~70kPa氩气或氮气,直流电弧放电电流为120~200A;所制得的大丽花型碳纳米角粒径为80~100nm。
  3. 根据权利要求1所述的一种超疏水防腐自组装三维纳米材料的制备方法,其特征在于:步骤二中将步骤一制备的碳纳米角进行瞬时氧化处理,氧化气氛为80~100kPa氧气,氧化温度为800~900℃,氧化时间为5~10min;所制得的开孔碳纳米角材料粒径为60~80nm。
  4. 根据权利要求1所述的一种超疏水防腐自组装三维纳米材料的制备方法,其特征在于:步骤三配制碳纳米角-纳米锌混合乙醇浆料中,其中碳纳米角固含量为1~3%;纳米锌固含量为0.5~2%,纳米锌粒径为50nm。
  5. 根据权利要求1所述的一种超疏水防腐自组装三维纳米材料的制备方法,其特征在于:步骤四中将步骤三所配制的碳纳米角-纳米锌混合乙醇浆料进行超临界流体法处理,温度为270~350℃,压强为8~35MPa,处理时间为1~5h;所制备得到的碳纳米角-纳米锌复合三维立体珍珠蚌状结构材料粒径为80~100nm。
  6. 一种由权利要求1-5任一所述的超疏水防腐自组装三维纳米材料的制备方法制备得到的超疏水防腐自组装三维纳米材料。
  7. 根据权利要求6所述的超疏水防腐自组装三维纳米材料,其特征在于:是由碳纳米角与纳米锌自组装复合成的碳纳米角-纳米锌复合三维立体珍珠蚌状结构。
PCT/CN2019/104480 2019-02-27 2019-09-05 一种超疏水防腐自组装三维纳米材料及其制备方法 WO2020173070A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021532435A JP7201813B2 (ja) 2019-02-27 2019-09-05 超疎水性防腐自己組織化三次元ナノ材料およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910144761.7 2019-02-27
CN201910144761.7A CN109971231B (zh) 2019-02-27 2019-02-27 一种超疏水防腐自组装三维纳米材料的制备方法

Publications (1)

Publication Number Publication Date
WO2020173070A1 true WO2020173070A1 (zh) 2020-09-03

Family

ID=67077466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104480 WO2020173070A1 (zh) 2019-02-27 2019-09-05 一种超疏水防腐自组装三维纳米材料及其制备方法

Country Status (3)

Country Link
JP (1) JP7201813B2 (zh)
CN (1) CN109971231B (zh)
WO (1) WO2020173070A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109971231B (zh) * 2019-02-27 2020-04-17 上海利物盛企业集团有限公司 一种超疏水防腐自组装三维纳米材料的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064004A (ja) * 1998-07-25 2001-03-13 Japan Science & Technology Corp 単層カーボンナノホーン構造体とその製造方法
WO2003106018A1 (ja) * 2002-06-18 2003-12-24 科学技術振興事業団 セルフロッキングカーボン吸着体
CN1791551A (zh) * 2003-05-20 2006-06-21 日本电气株式会社 碳纳米角制造装置和碳纳米角制造方法
JP2009078979A (ja) * 2007-09-25 2009-04-16 Nec Corp 薬物内包カーボンナノホーン集合体とその製造方法
CN101759179A (zh) * 2010-01-22 2010-06-30 北京大学 一种碳纳米角的制备方法
JP2012030979A (ja) * 2010-07-28 2012-02-16 Nagoya Univ カーボンナノホーン集合体、およびその製造方法
CN105008466A (zh) * 2013-03-08 2015-10-28 比克化学有限公司 提供具有耐腐蚀性的金属基材的方法
WO2017159351A1 (ja) * 2016-03-16 2017-09-21 日本電気株式会社 繊維状カーボンナノホーン集合体を含んだ平面構造体
CN107428539A (zh) * 2015-03-16 2017-12-01 日本电气株式会社 纤维状碳纳米角聚集体及其制备方法
CN109971231A (zh) * 2019-02-27 2019-07-05 上海利物盛企业集团有限公司 一种超疏水防腐自组装三维纳米材料的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020215A (ja) * 2001-07-03 2003-01-24 Japan Science & Technology Corp カーボンナノホーン集合体の製造方法
JP3941780B2 (ja) 2004-01-06 2007-07-04 日本電気株式会社 カーボンナノホーンの製造装置およびカーボンナノホーンの製造方法
WO2011027636A1 (ja) 2009-09-04 2011-03-10 日本電気株式会社 カーボンナノホーン複合体及びその作製方法
JP6065390B2 (ja) 2012-03-09 2017-01-25 日本電気株式会社 リチウムイオン二次電池の電極材料用のシリコン又はシリコン酸化物とカーボンナノホーン集合体との複合体及びリチウムイオン二次電池並びにリチウムイオン二次電池の電極材料用のシリコン又はシリコン酸化物とカーボンナノホーン集合体との複合体の製造方法。
CN105397103A (zh) 2015-11-01 2016-03-16 华南理工大学 一种纳米银/石墨烯复合材料及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001064004A (ja) * 1998-07-25 2001-03-13 Japan Science & Technology Corp 単層カーボンナノホーン構造体とその製造方法
WO2003106018A1 (ja) * 2002-06-18 2003-12-24 科学技術振興事業団 セルフロッキングカーボン吸着体
CN1791551A (zh) * 2003-05-20 2006-06-21 日本电气株式会社 碳纳米角制造装置和碳纳米角制造方法
JP2009078979A (ja) * 2007-09-25 2009-04-16 Nec Corp 薬物内包カーボンナノホーン集合体とその製造方法
CN101759179A (zh) * 2010-01-22 2010-06-30 北京大学 一种碳纳米角的制备方法
JP2012030979A (ja) * 2010-07-28 2012-02-16 Nagoya Univ カーボンナノホーン集合体、およびその製造方法
CN105008466A (zh) * 2013-03-08 2015-10-28 比克化学有限公司 提供具有耐腐蚀性的金属基材的方法
CN107428539A (zh) * 2015-03-16 2017-12-01 日本电气株式会社 纤维状碳纳米角聚集体及其制备方法
WO2017159351A1 (ja) * 2016-03-16 2017-09-21 日本電気株式会社 繊維状カーボンナノホーン集合体を含んだ平面構造体
CN109971231A (zh) * 2019-02-27 2019-07-05 上海利物盛企业集团有限公司 一种超疏水防腐自组装三维纳米材料的制备方法

Also Published As

Publication number Publication date
JP7201813B2 (ja) 2023-01-10
CN109971231A (zh) 2019-07-05
JP2022512339A (ja) 2022-02-03
CN109971231B (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
Xu et al. Preparation of porous TiO2/ZnO composite film and its photocathodic protection properties for 304 stainless steel
Fu et al. An approach for fabricating Ni@ graphene reinforced nickel matrix composites with enhanced mechanical properties
Yan et al. Dual-functional graphene oxide-based nanomaterial for enhancing the passive and active corrosion protection of epoxy coating
Zhang et al. Graphene film doped with silver nanoparticles: self-assembly formation, structural characterizations, antibacterial ability, and biocompatibility
Zhang et al. Inhibitor loaded functional HNTs modified coatings towards corrosion protection in reinforced concrete environment
CN106276870B (zh) 石墨烯-碳纳米管纯碳复合薄膜的制备方法
Ma et al. Non-covalent stabilization and functionalization of boron nitride nanosheets (BNNSs) by organic polymers: formation of complex BNNSs-containing structures
US20170253824A1 (en) Method for preparing two-dimensional hybrid composite
CN108237063B (zh) 一种金属防腐石墨烯复合涂层的制备方法
WO2020173070A1 (zh) 一种超疏水防腐自组装三维纳米材料及其制备方法
Li et al. Preparation and performance of perovskite solar cells with two dimensional MXene as active layer additive
Jung et al. A scalable fabrication of highly transparent and conductive thin films using fluorosurfactant-assisted single-walled carbon nanotube dispersions
CN108914187A (zh) 一种钛合金表面高硬度耐磨抗氧化复合梯度陶瓷涂层及其制备方法
CN108383154A (zh) 一种具有大比表面积的空心介孔Ti4O7@C纳米球的制备方法
Wang et al. Strong adhesion and high optoelectronic performance hybrid graphene/carbon nanotubes transparent conductive films for green-light OLED devices
CN106675213B (zh) 一种水性纳米片状铝浆料及其制备方法
Geng et al. Ect of carbon nanotube types in fabricating flexible transparent conducting films
Khoshsang et al. Biosynthesis of ZnO and CuO nanoparticles using sunflower petal extract
KR102145968B1 (ko) 전도성 세라믹 조성물을 이용한 도장방법
Kang et al. Preparation and photoelectrochemical properties of porous silicon/carbon dots composites
CN101798443B (zh) 纳米二氧化铈/环氧树脂复合材料的制备方法
Kumar et al. Spray‐Deposited, Virus‐Templated SnO2 Mesoporous Electron Transport Layer for High‐Efficiency, Sequential‐Deposited Perovskite Solar Cells
El-Mahdy et al. Synthesis of encapsulated titanium oxide sodium 2-Acrylamido-2-methylpropan sulfonate nanocomposite for preventing the corrosion of steel
CN106349814A (zh) 一种抗菌防静电水性uv光固化陶瓷喷墨油墨及其制备方法
EP1785508B1 (de) Verfahren zur Herstellung einer photokatalytisch aktiven Schicht

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021532435

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917060

Country of ref document: EP

Kind code of ref document: A1