WO2020171323A1 - 표시 장치 및 이의 제조 방법 - Google Patents

표시 장치 및 이의 제조 방법 Download PDF

Info

Publication number
WO2020171323A1
WO2020171323A1 PCT/KR2019/010816 KR2019010816W WO2020171323A1 WO 2020171323 A1 WO2020171323 A1 WO 2020171323A1 KR 2019010816 W KR2019010816 W KR 2019010816W WO 2020171323 A1 WO2020171323 A1 WO 2020171323A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
oscillator
disposed
power line
pixel
Prior art date
Application number
PCT/KR2019/010816
Other languages
English (en)
French (fr)
Inventor
이원호
조성찬
강종혁
임현덕
조현민
김원규
Original Assignee
삼성디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성디스플레이 주식회사 filed Critical 삼성디스플레이 주식회사
Priority to CN201980092785.0A priority Critical patent/CN113454785B/zh
Priority to EP19916492.2A priority patent/EP3926683A4/en
Priority to US17/432,610 priority patent/US12119436B2/en
Publication of WO2020171323A1 publication Critical patent/WO2020171323A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0814Several active elements per pixel in active matrix panels used for selection purposes, e.g. logical AND for partial update
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • G09G2300/0866Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes by means of changes in the pixel supply voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0267Details of drivers for scan electrodes, other than drivers for liquid crystal, plasma or OLED displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Definitions

  • Embodiments of the present invention relate to a display device and a method of manufacturing the display device.
  • a technology for manufacturing a microscopic light emitting device using a material having a highly reliable inorganic crystal structure and manufacturing a light emitting device using the light emitting device has been developed.
  • a technology for configuring a light source of a light emitting device using ultra-small light emitting devices having a size as small as nanoscale to microscale has been developed.
  • Such a light emitting device may be used in various electronic devices such as a display device or a lighting device.
  • the light-emitting elements are supplied on the substrate, when a predetermined voltage is applied to the electrodes, an electric field is formed between the electrodes and the light-emitting elements self-align between the electrodes.
  • the voltage supplied to the electrodes decreases, and accordingly, the light emitting devices may not be uniformly aligned over the entire substrate.
  • the technical problem to be achieved by the present invention is to provide a display device including light emitting elements uniformly aligned.
  • An object of the present invention is to provide a method of manufacturing a display device capable of uniformly aligning light-emitting elements.
  • a display device includes: a substrate; Pixels disposed on the substrate, each including a first electrode, a second electrode, and a plurality of light emitting devices connected between the first and second electrodes; And a first oscillator disposed on the substrate, connected to a first electrode of a first pixel among the pixels, and including at least one transistor and at least one capacitor.
  • the first electrode of the first pixel may be separated from the first electrode of the second pixel among the pixels, and the first oscillator may not be electrically connected to the second pixel.
  • the substrate includes a display area in which an image is displayed and a non-display area positioned at one side of the display area, the first pixels are disposed in the display area, and the first oscillator is It can be arranged in the display area.
  • the display device further includes a second oscillator and a third oscillator disposed in the non-display area, wherein the first oscillator, the second oscillator, and the third oscillator are at an edge of the display area. It can be arranged at equal intervals along the line.
  • the display device further includes a first power line, a second power line, a third power line, and a fourth power line disposed on the substrate and separated from each other, and each of the pixels It is connected between the first power line and the second power line, the first oscillator is connected to the third power line and the fourth power line, and each of the third power line and the fourth power line is in a floating state
  • a first power line a second power line, a third power line, and a fourth power line disposed on the substrate and separated from each other, and each of the pixels It is connected between the first power line and the second power line, the first oscillator is connected to the third power line and the fourth power line, and each of the third power line and the fourth power line is in a floating state
  • the first power line, the second power line, the third power line, the fourth power line, and the first oscillator are included in a pixel circuit layer, and the first electrode and the first oscillator
  • the second electrode may be disposed to be spaced apart from each other on the pixel circuit layer, and the light emitting devices may be disposed between the first electrode and the second electrode.
  • the display device further includes an electrode pattern disposed on the pixel circuit layer to overlap at least one capacitor of the first oscillator and connected to the at least one capacitor, and the electrode pattern and It may be formed to be separated from the first electrode of the first pixel.
  • the display device may further include a second oscillator disposed in the display area.
  • the first oscillator may be disposed between the pixels.
  • each of the light-emitting elements may be a light-emitting diode having a size of nanoscale to microscale.
  • the display device further includes a first power line and a second power line disposed on the substrate, and the first oscillator includes at least one stage, and the at least one stage Each includes: a first transistor including a first electrode connected to the first power line, a second electrode connected to a first node, and a gate electrode connected to an input terminal; A second transistor including a first electrode connected to the first node, a second electrode connected to the second power line, and a gate electrode connected to the input terminal; And a first resistor and a first capacitor connected in series between the first node and the second power line, and a second node to which the first resistor and the first capacitor are connected may be electrically connected to the input terminal as an output terminal.
  • the first oscillator includes first, second and third stages, the output terminal of the first stage is connected to the input terminal of the second stage, and the output terminal of the second stage is the It is connected to the input terminal of the third stage, and the output terminal of the third stage may be connected to the input terminal of the first stage.
  • a display device includes: a substrate; Pixels disposed on the substrate, each including a first electrode, a second electrode, and a plurality of light emitting devices connected between the first and second electrodes; And an oscillator disposed between the pixels on the substrate, electrically separated from the pixels, and including at least one transistor and at least one capacitor.
  • a method of manufacturing a display device includes a pixel circuit layer including an oscillator, and a first electrode electrically connected to the oscillator and formed on the pixel circuit layer. And preparing a substrate including a second electrode formed on the pixel circuit layer; Supplying light-emitting elements between the first electrode and the second electrode; And applying a DC voltage to the oscillator to align the light emitting elements between the first electrode and the second electrode.
  • the oscillator may convert the DC voltage into an AC voltage and supply it to the first electrode.
  • the step of aligning the light emitting devices may further include applying a DC voltage to the oscillator and applying a ground voltage to the second electrode.
  • the method of manufacturing the display device may further include dividing the first electrode for each pixel area and separating the first electrode from the output terminal of the oscillator.
  • a first contact electrode connecting one end of each of the light emitting elements to the first electrode and the other end of each of the light emitting elements are electrically connected to the second electrode. It may further include forming a second contact electrode.
  • the method of manufacturing the display device may further include removing the oscillator by cutting the substrate between the first electrode and the oscillator.
  • the step of aligning the light-emitting elements may further include applying an AC voltage to the first electrode from an external AC power source.
  • a display device and a method of manufacturing a display device convert a DC voltage applied to a display panel into an AC voltage through an oscillator and supply it to a power line, thereby supplying an AC voltage of a constant size for each pixel, Light-emitting elements may be uniformly aligned over the entire display panel.
  • FIGS. 1A and 1B are perspective and cross-sectional views illustrating a light emitting device according to an exemplary embodiment of the present invention.
  • FIGS. 2A and 2B are perspective and cross-sectional views illustrating a light emitting device according to another exemplary embodiment of the present invention.
  • 3A and 3B are perspective and cross-sectional views illustrating a light emitting device according to another embodiment of the present invention.
  • FIG. 4 is a plan view illustrating a display device according to an exemplary embodiment of the present invention.
  • 5A through 5C are circuit diagrams illustrating an example of a sub-pixel included in the display device of FIG. 4.
  • 6A to 6D are circuit diagrams illustrating an example of an oscillator included in the display device of FIG. 4.
  • FIG. 7 is a plan view illustrating an example of a display device in which the first area of FIG. 4 is enlarged.
  • FIG. 8 is a plan view illustrating an example of a sub-pixel in which the second area of FIG. 7 is enlarged.
  • 9A to 9D are cross-sectional views illustrating an example of a sub-pixel taken along line II' of FIG. 7 and line II-II' of FIG. 8.
  • FIG. 10 is a cross-sectional view illustrating another example of a sub-pixel taken along line II' of FIG. 7 and line II-II' of FIG. 8.
  • FIG. 11 is a plan view illustrating a display device according to another exemplary embodiment of the present invention.
  • FIG. 12 is a plan view illustrating an example of a display device in which the first area of FIG. 11 is enlarged.
  • FIG. 13 is a cross-sectional view illustrating an example of a sub-pixel taken along lines I-I' and II-II' of FIG. 12.
  • FIG. 14 is a plan view illustrating a display device according to another exemplary embodiment of the present invention.
  • FIG. 15 is a plan view illustrating an example of a display device in which the third area of FIG. 14 is enlarged.
  • 16 is a plan view illustrating a display device according to another exemplary embodiment of the present invention.
  • 17A to 17C are plan views illustrating an example of a ledger substrate according to an embodiment of the present invention.
  • FIGS. 17A to 17C are plan views illustrating an example of a display panel included in the led substrates of FIGS. 17A to 17C.
  • FIG. 19 is a flowchart illustrating a method of manufacturing a display device according to another exemplary embodiment of the present invention.
  • 20A to 20D are diagrams illustrating a method of manufacturing the display device of FIG. 19.
  • 21 is a diagram illustrating a method of manufacturing a display device according to another exemplary embodiment of the present invention.
  • FIGS. 1A and 1B are perspective and cross-sectional views illustrating a light emitting device according to an exemplary embodiment of the present invention.
  • a rod-shaped light emitting device LD having a circular column shape is illustrated, but the type and/or shape of the light emitting device LD according to the present invention is not limited thereto.
  • the light emitting device LD includes a first conductivity type semiconductor layer 11 and a second conductivity type semiconductor layer 13, and first and second conductivity type semiconductor layers 11, 13) may include an active layer 12 interposed therebetween.
  • the light emitting device LD may be formed of a laminate in which a first conductivity type semiconductor layer 11, an active layer 12, and a second conductivity type semiconductor layer 13 are sequentially stacked along one direction.
  • the light emitting device LD may be provided in a bar shape extending along one direction.
  • the light-emitting element LD may have one end and the other end along one direction.
  • one of the first and second conductivity type semiconductor layers 11 and 13 is disposed at one end of the light emitting device LD, and the first and second conduction are disposed at the other end of the light emitting device LD.
  • the other one of the type semiconductor layers 11 and 13 may be disposed.
  • the light emitting device LD may be a rod-shaped light emitting diode manufactured in a rod shape.
  • the rod shape encompasses a rod-like shape or a bar-like shape that is longer in the longitudinal direction than in the width direction (ie, the aspect ratio is greater than 1), such as a circular column or a polygonal column,
  • the shape of the cross section is not particularly limited.
  • the length L of the light emitting element LD may be larger than the diameter D (or the width of the cross section).
  • the light emitting device LD may have a size as small as a nanoscale to a microscale, for example, a diameter D and/or a length L in a nanoscale or microscale range.
  • the size of the light emitting device LD is not limited thereto.
  • the size of the light-emitting element LD may be variously changed according to design conditions of various devices using the light-emitting device LD as a light source, for example, a display device.
  • the first conductivity type semiconductor layer 11 may include at least one n-type semiconductor layer.
  • the first conductivity-type semiconductor layer 11 includes one of InAlGaN, GaN, AlGaN, InGaN, AlN, InN, and is doped with a first conductive dopant such as Si, Ge, Sn, etc. It may include a semiconductor layer.
  • the material constituting the first conductivity type semiconductor layer 11 is not limited thereto, and various other materials may constitute the first conductivity type semiconductor layer 11.
  • the active layer 12 is disposed on the first conductivity type semiconductor layer 11 and may be formed in a single or multiple quantum well structure.
  • a cladding layer (not shown) doped with a conductive dopant may be formed on and/or under the active layer 12.
  • the cladding layer may be formed of an AlGaN layer or an InAlGaN layer.
  • a material such as AlGaN or AlInGaN may be used to form the active layer 12, and various other materials may constitute the active layer 12.
  • the light-emitting element LD When a voltage equal to or higher than the threshold voltage is applied to both ends of the light emitting device LD, the electron-hole pairs are coupled in the active layer 12 to allow the light emitting device LD to emit light.
  • the light-emitting element LD can be used as a light source for various light-emitting devices including pixels of a display device.
  • the second conductivity type semiconductor layer 13 is disposed on the active layer 12, and may include a semiconductor layer of a type different from that of the first conductivity type semiconductor layer 11.
  • the second conductivity-type semiconductor layer 13 may include at least one p-type semiconductor layer.
  • the second conductivity-type semiconductor layer 13 includes at least one semiconductor material of InAlGaN, GaN, AlGaN, InGaN, AlN, InN, and includes a p-type semiconductor layer doped with a second conductive dopant such as Mg. Can include.
  • the material constituting the second conductivity type semiconductor layer 13 is not limited thereto, and various other materials may constitute the second conductivity type semiconductor layer 13.
  • the light emitting device LD may further include an insulating film INF provided on the surface.
  • the insulating film INF may be formed on the surface of the light emitting device LD so as to surround at least the outer circumferential surface of the active layer 12, and in addition, one region of the first and second conductivity type semiconductor layers 11 and 13 is further formed. I can surround it.
  • the insulating film INF may expose both ends of the light emitting device LD having different polarities.
  • the insulating film INF has one end of each of the first and second conductivity type semiconductor layers 11 and 13 positioned at both ends of the light emitting device LD in the longitudinal direction, for example, two planes of a cylinder (ie, The upper and lower surfaces) can be exposed without covering.
  • the insulating film INF may include at least one insulating material selected from silicon dioxide (SiO2), silicon nitride (Si3N4), aluminum oxide (Al2O3), and titanium dioxide (TiO2), but is not limited thereto. . That is, the constituent material of the insulating film INF is not particularly limited, and the insulating film INF may be made of various currently known insulating materials.
  • the light emitting device LD further includes additional components in addition to the first conductivity type semiconductor layer 11, the active layer 12, the second conductivity type semiconductor layer 13 and/or the insulating film INF. can do.
  • the light emitting device LD may include at least one phosphor layer, an active layer, or a semiconductor disposed on one end of the first conductive type semiconductor layer 11, the active layer 12 and/or the second conductive type semiconductor layer 13 A layer and/or an electrode layer may be additionally included.
  • FIGS. 2A and 2B are perspective and cross-sectional views illustrating a light emitting device according to another exemplary embodiment of the present invention.
  • 3A and 3B are perspective and cross-sectional views illustrating a light emitting device according to another embodiment of the present invention.
  • the light emitting device LD may further include at least one electrode layer 14 disposed on one end side of the second conductivity type semiconductor layer 13.
  • the light emitting device LD may further include at least one other electrode layer 15 disposed on one end side of the first conductivity type semiconductor layer 11.
  • each of the electrode layers 14 and 15 may be an ohmic contact electrode, but is not limited thereto.
  • each of the electrode layers 14 and 15 may include a metal or a conductive metal oxide, for example, chromium (Cr), titanium (Ti), aluminum (Al), gold (Au), nickel (Ni), These oxides or alloys, ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), ZnO (Zinc Oxide), ITZO (Indium Tin Zinc Oxide), such as transparent electrode materials, such as alone or may be formed by mixing.
  • the electrode layers 14 and 15 may be substantially transparent or translucent. Accordingly, light generated by the light emitting device LD may pass through the electrode layers 14 and 15 and be emitted to the outside of the light emitting device LD.
  • the insulating film INF may or may not at least partially cover the outer peripheral surfaces of the electrode layers 14 and 15. That is, the insulating film INF may be selectively formed on the surface of the electrode layers 14 and 15. In addition, the insulating film INF is formed to expose both ends of the light emitting device LD having different polarities, and for example, at least one region of the electrode layers 14 and 15 may be exposed.
  • the present invention is not limited thereto, and the insulating film INF may not be provided.
  • the insulating film INF is provided on the surface of the light-emitting element LD, for example, the surface of the active layer 12, so that the active layer 12 is applied to at least one electrode (for example, both ends of the light-emitting element LD). Short-circuiting with the at least one contact electrode) among the connected contact electrodes may be prevented. Accordingly, electrical stability of the light emitting device LD may be ensured.
  • the insulating film INF is formed on the surface of the light-emitting element LD, surface defects of the light-emitting element LD are minimized, and life and efficiency of the light-emitting element LD may be improved. Furthermore, since the insulating film INF is formed on the light-emitting element LD, even if the plurality of light-emitting elements LD are disposed in close contact with each other, an unwanted short circuit between the light-emitting elements LD can be prevented.
  • the light emitting device LD may be manufactured through a surface treatment process (eg, coating).
  • a surface treatment process eg, coating
  • the light-emitting elements LD it can be uniformly dispersed without aggregating unevenly in the solution.
  • the light-emitting region is a region in which light is emitted by the light-emitting elements LD, and may be distinguished from a non-emission region in which light is not emitted.
  • the insulating film INF itself may be formed of a hydrophobic film using a hydrophobic material, or a hydrophobic film made of a hydrophobic material may be additionally formed on the insulating film INF.
  • the hydrophobic material may be a material containing fluorine to exhibit hydrophobicity.
  • the hydrophobic material may be applied to the light emitting devices LD in the form of a self-assembled monolayer (SAM).
  • the hydrophobic material may include octadecyl trichlorosilane, fluoroalkyl trichlorosilane, perfluoroalkyl triethoxysilane, or the like.
  • the hydrophobic material may be a commercially available fluorine-containing material such as TeflonTM or CytopTM, or a material corresponding thereto.
  • the light emitting device including the light emitting element LD may be used in various types of devices requiring a light source, including a display device.
  • a display device For example, at least one micro-light-emitting device LD, for example, a plurality of micro-light-emitting devices LD each having a nano-scale or micro-scale size, is disposed in each pixel area of the display panel, and the micro-light-emitting device
  • the light source (or light source unit) of each pixel can be configured by using the fields LD.
  • the field of application of the light emitting element LD is not limited to the display device.
  • the light-emitting element LD may also be used in other types of devices that require a light source, such as a lighting device.
  • FIG. 4 is a plan view illustrating a display device according to an exemplary embodiment of the present invention.
  • a display device in particular, a display panel PNL provided in the display device is illustrated in FIG. 4.
  • the structure of the display panel PNL is schematically illustrated in FIG. 4 with the display area DA as the center.
  • at least one driving circuit unit for example, at least one of a scan driver and a data driver
  • a plurality of wires may be further disposed on the display panel PNL.
  • the display panel PNL includes a base layer SUB1 (or a substrate), power lines PL0, PL1, PL2, and PL3 disposed on the base layer SUB1, and a pixel PXL. , And oscillators CONV1 to CONV6 (oscillators) (or oscillator circuits, conversion circuits (converters)).
  • the display panel PNL and the base layer SUB1 may include a display area DA in which an image is displayed and a non-display area NDA excluding the display area DA.
  • the display area DA may be disposed in the center area of the display panel PNL, and the non-display area NDA may be disposed along the edge of the display panel PNL to surround the display area DA. have.
  • the positions of the display area DA and the non-display area NDA are not limited thereto, and their positions may be changed.
  • the base layer SUB1 may form a base member of the display panel PNL.
  • the base layer SUB1 may form a base member of the lower panel (eg, the lower panel of the display panel PNL).
  • the base layer SUB1 may be a rigid substrate or a flexible substrate, and its material or physical properties are not particularly limited.
  • the base layer SUB1 may be a rigid substrate made of glass or tempered glass, or a flexible substrate made of a thin film made of plastic or metal.
  • the base layer SUB1 may be a transparent substrate, but is not limited thereto.
  • the base layer SUB1 may be a translucent substrate, an opaque substrate, or a reflective substrate.
  • the base layer SUB1 may include a display area DA including a plurality of pixel areas in which the pixels PXL are formed, and a non-display area NDA disposed outside the display area DA. have.
  • oscillators CONV1 to CONV6 various wires connected to the pixels PXL of the display area DA, and/or an embedded circuit may be disposed.
  • the first power line PL1 extends across the display area DA in the second direction DR2 and may be repeatedly arranged along the first direction DR1.
  • the first power line PL1 is a common line connected to all the pixels PXL, and a first power VDD (or a first power voltage) may be applied to the first power line PL1.
  • the second power line PL2 extends across the display area DA in the second direction DR2 and may be repeatedly arranged along the first direction DR1.
  • the second power line PL2 is a common wiring, and a second power VSS (or a second power voltage) may be applied to the second power line PL2.
  • the first and second power sources VDD and VSS may have different voltage levels.
  • the first power source VDD may have a higher voltage level than the second power source VSS.
  • the third power line PL3 may be disposed in the non-display area NDA.
  • the third power line PL3 may surround the display area DA to form a closed loop, but is not limited thereto.
  • the third power line PL3 includes a direct current voltage VDC (or a direct current alignment voltage, or a direct current alignment voltage) during the manufacturing process of the display panel PNL (for example, a supply and alignment process of the light emitting element LD in the pixel PXL). DC power supply voltage) may be applied.
  • the reference power line PL0 (or the fourth power line) may be disposed in the non-display area NDA.
  • the reference voltage GND (or ground voltage) may be applied to the reference power line PL0 or may be grounded.
  • the reference power line PL0 is not limited thereto.
  • the reference power line PL0 is connected to the second power line PL2, and in the manufacturing process of the display panel PNL, the reference voltage is applied to the reference power line PL0 through the second power line PL2. (GND) may be applied.
  • the pixel PXL is at least one light emitting element LD electrically connected between the first power line PL1 and the second power line PL2 and driven by a corresponding scan signal and a data signal, for example, FIGS. It may include at least one rod-shaped light emitting diode according to any one of the embodiments of FIG. 3B.
  • the pixel PXL has a size as small as nanoscale to microscale and includes a plurality of bar-type light emitting diodes connected in parallel to each other between the first power line PL1 and the second power line PL2. I can.
  • the plurality of bar-shaped light emitting diodes may constitute a light source of the pixel PXL.
  • the pixel PXL may include a plurality of sub-pixels SPX1, SPX2, and SPX3.
  • the pixel PXL may include a first sub-pixel SPX1, a second sub-pixel SPX2, and a third sub-pixel SPX3.
  • the first to third sub-pixels SPX1, SPX2, and SPX3 may emit light with different colors.
  • the first sub-pixel SPX1 may be a red sub-pixel that emits red
  • the second sub-pixel SPX2 may be a green sub-pixel that emits green
  • the third sub-pixel SPX3 is blue It may be a blue sub-pixel that emits light.
  • the color, type, and/or number of sub-pixels constituting the pixel PXL are not particularly limited, and as an example, the color of light emitted by each sub-pixel may be variously changed.
  • FIG. 4 illustrates an example in which the pixels PXL are arranged in a stripe shape in the display area DA
  • the present invention is not limited thereto.
  • the pixels PXL may be arranged in various currently known pixel arrangement types.
  • the pixel PXL (or each of the sub-pixels) may be configured as an active pixel.
  • the type, structure, and/or driving method of the pixel PXL applicable to the display device of the present invention is not particularly limited.
  • the pixel PXL may be composed of pixels of a display device having various currently known passive or active structures.
  • Each of the oscillators CONV1 to CONV6 is connected between the reference power line PL0 and the third power line PL3, and is provided through the third power line PL3.
  • a DC voltage applied between the line PL3 and the reference power line PL0) can be converted into an AC voltage.
  • each of the oscillators CONV1 to CONV6 converts the direct current voltage VDC provided through the third power line PL3 into AC in the alignment process of the light emitting element LD during the manufacturing process of the display panel PNL. It can be converted into a voltage and supplied to the pixels PXL.
  • the third power line PL3 may be floating or no voltage may be applied to the third power line PL3. Similarly, the voltage may not be applied to the reference power line PL0.
  • the oscillators CONV1 to CONV6 may be disposed in the non-display area NDA of the base layer SUB1.
  • the oscillators CONV1 to CONV6 may be symmetrically disposed on the base layer SUB1 or may be disposed at equal intervals.
  • the first oscillator CONV1 is disposed adjacent to a point of the display panel PNL to which the DC voltage VDC is applied from the outside, and the first oscillator CONV1 is the area center of the display panel PNL. It may be disposed corresponding to the first oscillator CONV1 based on.
  • the third and fourth oscillators CONV3 and CONV4 may be disposed to be symmetrical (or vertically symmetrical) with the first and second oscillators CONV1 and CONV2, respectively.
  • the fifth oscillator CONV5 may be disposed between the first oscillator CONV1 and the fourth oscillator CONV4, and the sixth oscillator CONV6 may be disposed between the second oscillator CONV2 and the third oscillator CONV3.
  • the oscillators CONV1 to CONV6 may be disposed at equal intervals (eg, about 2.5 inches apart) in the non-display area NDA along the edge of the display area DA.
  • the oscillators CONV1 to CONV6 are disposed to be symmetrical to each other in the non-display area NDA, or are disposed at equal intervals along the edge of the display area DA, and thus the display panel PNL through the oscillators CONV1 to CONV6 ) Uniform AC voltage can be supplied to the whole.
  • the display panel PNL is shown to include six oscillators CONV1 to CONV6 disposed in the non-display area NDA, but this is because the oscillators CONV1 to CONV6 are located in various positions.
  • the display panel PNL is not limited thereto to illustrate that it may be disposed.
  • the display panel PNL may include 2 to 5 or 7 or more oscillators, and at least one of the oscillators may be disposed in the display area DA.
  • FIGS. 5A through 5C are circuit diagrams illustrating an example of a sub-pixel included in the display device of FIG. 4.
  • the sub-pixel SPX shown in FIGS. 5A to 5C may be any one of the first, second, and third sub-pixels SPX1, SPX2, and SPX3 provided in the display panel PNL of FIG. 4, and
  • the first, second, and third sub-pixels SPX1, SPX2, and SPX3 may have substantially the same or similar structure. Accordingly, in FIGS. 5A to 5C, the first, second, and third sub-pixels SPX1, SPX2, and SPX3 are collectively referred to as a sub-pixel SPX.
  • the sub-pixel SPX includes a light source unit LSU that emits light with a luminance corresponding to a data signal.
  • the sub-pixel SPX may selectively further include a pixel circuit PXC for driving the light source unit LSU.
  • the light source unit LSU may include a plurality of light-emitting elements LD electrically connected between the first power source VDD and the second power source VSS.
  • the light-emitting elements LD may be connected in parallel to each other, but the present invention is not limited thereto.
  • a plurality of light emitting devices LD may be connected in a series/parallel hybrid structure.
  • the first and second power sources VDD and VSS may have different potentials so that the light emitting devices LD can emit light.
  • the first power source VDD may be set as a high-potential power source
  • the second power source VSS may be set as a low-potential power source.
  • a potential difference between the first and second power sources VDD and VSS may be set to be greater than or equal to a threshold voltage of the light emitting elements LD during the light emission period of the sub-pixel SPX.
  • FIG. 5A an embodiment in which the light emitting elements LD are connected in parallel in the same direction (for example, forward direction) between the first power source VDD and the second power source VSS is illustrated. It is not limited. For example, some of the light emitting devices LD are connected in a first direction (for example, forward direction) between the first and second power sources VDD and VSS to form respective effective light sources, and other parts May be connected in the second direction (for example, in the reverse direction). As another example, at least one sub-pixel SPX may include only a single light-emitting element LD (eg, a single effective light source connected in the forward direction between the first and second power sources VDD and VSS). May be.
  • a single light-emitting element LD eg, a single effective light source connected in the forward direction between the first and second power sources VDD and VSS. May be.
  • one end of each of the light emitting elements LD is commonly connected to the corresponding pixel circuit PXC through a first electrode, and the pixel circuit PXC and the first power line PL1, see FIG. 4. ) May be connected to the first power source VDD.
  • the other end of each of the light-emitting elements LD may be commonly connected to the second power source VSS through a second electrode and a second power line PL2 (refer to FIG. 4 ).
  • the light source unit LSU may emit light with a luminance corresponding to the driving current supplied through the pixel circuit PXC. Accordingly, a predetermined image may be displayed in the display area DA.
  • the pixel circuit PXC may be connected to the scan line Si and the data line Dj of the sub-pixel SPX.
  • the pixel circuit PXC of the sub-pixel SPX is the i-th scanning line Si of the display area DA.
  • the j-th data line Dj may include first and second transistors T1 and T2 and a storage capacitor Cst.
  • the first transistor T1 or the driving transistor may be connected between the first power source VDD and the light source unit LSU.
  • the gate electrode of the first transistor T1 may be connected to the first node N1.
  • the first transistor T1 may control a driving current supplied to the light source unit LSU in response to the voltage of the first node N1.
  • the second transistor T2 or the switching transistor may be connected between the data line Dj and the first node N1.
  • the gate electrode of the second transistor T2 may be connected to the scan line Si.
  • the second transistor T2 is turned on in response to a scan signal of a gate-on voltage (eg, a low voltage) from the scan line Si to electrically connect the data line Dj and the first node N1. I can.
  • a gate-on voltage eg, a low voltage
  • a data signal of a corresponding frame is supplied to the data line Dj for each frame period, and the data signal may be transmitted to the first node N1 via the second transistor T2. Accordingly, a voltage corresponding to the data signal may be charged in the storage capacitor Cst.
  • One electrode of the storage capacitor Cst may be connected to the first power source VDD, and the other electrode may be connected to the first node N1.
  • the storage capacitor Cst may charge a voltage corresponding to the data signal supplied to the first node N1 during each frame period, and maintain the charged voltage until the data signal of the next frame is supplied.
  • transistors included in the pixel circuit PXC for example, the first and second transistors T1 and T2 are all P-type transistors, but the present invention is not limited thereto. Does not.
  • at least one of the first and second transistors T1 and T2 may be changed to an N-type transistor.
  • both of the first and second transistors T1 and T2 may be N-type transistors.
  • the gate-on voltage of the scan signal for writing the data signal supplied to the data line Dj to the sub-pixel SPX in each frame period may be a high level voltage.
  • the voltage of the data signal for turning on the first transistor T1 may be a voltage having a waveform opposite to that of the embodiment of FIG. 5A.
  • a data signal having a higher voltage level may be supplied as the grayscale value to be expressed increases.
  • the sub-pixel SPX shown in FIG. 5B has a configuration and a configuration of the sub-pixel SPX, except that the voltage levels of some circuit elements and control signals (for example, a scan signal and a data signal) are changed according to a transistor type change.
  • the operation is substantially similar to the sub-pixel SPX of FIG. 5A. Therefore, a detailed description of the sub-pixel SPX of FIG. 5B will be omitted.
  • the structure of the pixel circuit PXC is not limited to the exemplary embodiments shown in FIGS. 5A and 5B. That is, the pixel circuit PXC may be composed of pixel circuits of various structures and/or driving methods known at present. For example, the pixel circuit PXC may be configured as in the embodiment shown in FIG. 5C.
  • the pixel circuit PXC may be further connected to at least one other scan line (or control line) in addition to the corresponding scan line Si.
  • the pixel circuit PXC of the sub-pixel SPX arranged in the i-th row of the display area DA is the i-1th scanning line Si-1 and/or the i+1th scanning line Si+1 ) Can be further accessed.
  • the pixel circuit PXC may be further connected to other power sources in addition to the first and second power sources VDD and VSS.
  • the pixel circuit PXC may also be connected to the initialization power supply Vint.
  • the pixel circuit PXC may include first to seventh transistors T1 to T7 and a storage capacitor Cst.
  • the first transistor T1 may be connected between the first power source VDD and the light source unit LSU.
  • One electrode (eg, a source electrode) of the first transistor T1 is connected to the first power source VDD through the fifth transistor T5 and the first power line PL1, and the first transistor T1
  • the other electrode (eg, the drain electrode) of may be connected to one electrode (eg, the first electrode of the sub-pixel SPX) of the light source unit LSU via the sixth transistor T6.
  • the gate electrode of the first transistor T1 may be connected to the first node N1.
  • the first transistor T1 may control a driving current supplied to the light source unit LSU in response to the voltage of the first node N1.
  • the second transistor T2 may be connected between the data line Dj and one electrode of the first transistor T1.
  • the gate electrode of the second transistor T2 may be connected to the corresponding scan line Si.
  • the second transistor T2 is turned on when a scan signal having a gate-on voltage is supplied from the scan line Si to electrically connect the data line Dj to one electrode of the first transistor T1. Accordingly, when the second transistor T2 is turned on, a data signal supplied from the data line Dj may be transmitted to the first transistor T1.
  • the third transistor T3 may be connected between another electrode (eg, a drain electrode) of the first transistor T1 and the first node N1.
  • the gate electrode of the third transistor T3 may be connected to the corresponding scan line Si.
  • the third transistor T3 is turned on when a scan signal having a gate-on voltage is supplied from the scan line Si to connect the first transistor T1 in a diode shape.
  • the fourth transistor T4 may be connected between the first node N1 and the initialization power Vint.
  • the gate electrode of the fourth transistor T4 may be connected to the previous scan line, for example, the i-1th scan line Si-1.
  • the fourth transistor T4 is turned on when a scan signal of the gate-on voltage is supplied to the i-1th scan line Si-1 to transfer the voltage of the initialization power Vint to the first node N1. have.
  • the voltage of the initialization power Vint may be less than or equal to the lowest voltage of the data signal.
  • the fifth transistor T5 may be connected between the first power source VDD and the first transistor T1.
  • the gate electrode of the fifth transistor T5 may be connected to a corresponding emission control line, for example, the i-th emission control line Ei.
  • the fifth transistor T5 is turned off when a light emission control signal of a gate-off voltage (for example, a high voltage) is supplied to the light emission control line Ei, and may be turned on in other cases.
  • a gate-off voltage for example, a high voltage
  • the sixth transistor T6 may be connected between the first transistor T1 and the first electrode of the light source unit LSU.
  • the gate electrode of the sixth transistor T6 may be connected to a corresponding emission control line, for example, the i-th emission control line Ei.
  • the sixth transistor T6 may be turned off when a light emission control signal having a gate-off voltage is supplied to the light emission control line Ei, and may be turned on in other cases.
  • the seventh transistor T7 may be connected between the first electrode of the light source unit LSU and the initialization power supply Vint.
  • the gate electrode of the seventh transistor T7 may be connected to one of the next scan lines, for example, to the i+1th scan line Si+1.
  • the seventh transistor T7 is turned on when a scan signal of the gate-on voltage is supplied to the i+1th scan line Si+1, so that the voltage of the initialization power Vint is applied to the first electrode of the light source unit LSU. Can be supplied. In this case, during each initialization period in which the voltage of the initialization power Vint is transmitted to the light source unit LSU, the voltage of the first electrode of the light source unit LSU may be initialized.
  • the control signal for controlling the operation of the seventh transistor T7 may be variously changed.
  • the gate electrode of the seventh transistor T7 may be connected to the scan line of the corresponding horizontal line, that is, the i-th scan line Si.
  • the seventh transistor T7 is turned on when the scan signal of the gate-on voltage is supplied to the i-th scan line Si to supply the voltage of the initialization power Vint to one electrode of the light source unit LSU. I can.
  • the storage capacitor Cst may be connected between the first power VDD and the first node N1.
  • the storage capacitor Cst may store a data signal supplied to the first node N1 and a voltage corresponding to a threshold voltage of the first transistor T1 in each frame period.
  • transistors included in the pixel circuit PXC for example, the first to seventh transistors T1 to T7 are all illustrated as P-type transistors, but the present invention is not limited thereto. .
  • at least one of the first to seventh transistors T1 to T7 may be changed to an N-type transistor.
  • the structure of the sub-pixel SPX applicable to the present invention is not limited to the exemplary embodiments illustrated in FIGS. 5A to 5C, and the sub-pixel SPX may have various currently known structures.
  • the pixel circuit PXC included in the sub-pixel SPX may be configured with a pixel circuit of various structures and/or driving methods that are currently known.
  • the sub-pixel SPX may be configured inside a passive light emitting display device or the like. In this case, the pixel circuit PXC is omitted, and each of the first and second electrodes of the light source unit LSU may be directly connected to the scanning line Si, the data line Dj, the power line, and/or the control line. have.
  • FIGS. 6A to 6D are circuit diagrams illustrating an example of an oscillator included in the display device of FIG. 4.
  • the oscillator CONV illustrated in FIGS. 6A to 6D may be any one of the first to sixth oscillators CONV1 to CONV6 provided in the display panel PNL of FIG. 4.
  • the first to sixth oscillators CONV1 to CONV6 may have substantially the same or similar structure to each other. Accordingly, in FIGS. 6A to 6D, the first to sixth oscillators CONV1 to CONV6 are collectively referred to as an oscillator CONV.
  • the oscillator CONV is connected between the power line to which the input voltage VIN is applied and the reference line to which the reference voltage GND is applied, and in response to the input voltage VIN in the DC form,
  • the output voltage VOUT can be output.
  • the input voltage VIN is the same as the DC voltage VDC provided through the third power line PL3 of FIG. 4, and the reference voltage GND is provided through the reference power line PL0 of FIG.
  • the same as the reference voltage GND, and the output voltage VOUT may be provided to the second electrode ELT2 to be described later with reference to FIG. 7.
  • the oscillator CONV may include first to third stages STAGE1 to STAGE3.
  • the first to third stages STAGE1 to STAGE3 may be connected in series to each other.
  • the first stage STAGE1 may output an AC voltage corresponding to the input voltage VIN.
  • the first stage STAGE1 may include a first switching element M1, a second switching element M2, a first resistor R1, and a first capacitor C1.
  • the first switching element M1 may include a first electrode receiving the input voltage VIN, a second electrode connected to the eleventh node N11, and a gate electrode connected to the input terminal of the oscillator CONV. .
  • the input terminal of the oscillator CONV may be electrically connected to the output terminal.
  • the first switching element M1 may be implemented as a P-type transistor.
  • the second switching element M2 may include a first electrode connected to the eleventh node N11, a second electrode receiving the reference voltage GND, and a gate electrode connected to the input terminal of the oscillator CONV. .
  • the second switching element M2 may be implemented as an N-type transistor.
  • the first resistor R1 may be connected to the eleventh node N11 and the twelfth node N12 (or the output terminal of the first stage STAGE1).
  • the first capacitor C1 may be connected between the twelfth node N12 and the reference line (ie, the reference line to which the reference voltage GND is applied, for example, the reference power line PL0 shown in FIG. 4 ).
  • the first stage STAGE1 When the input voltage VIN is applied to the first stage STAGE1 (or oscillator CONV), charge is transferred to the first capacitor C1 through the first switching element M1 and the first resistor R1. Can be charged. As the first capacitor C1 is charged, the voltage level of the output terminal of the first stage STAGE1 (and the output voltage VOUT output through the output terminal of the oscillator CONV) may increase.
  • the first switching element M1 When the voltage level of the output terminal of the first stage STAGE1 rises above a specific voltage, the first switching element M1 may be turned off and the second switching element M2 may be turned on. In this case, the first capacitor C1 is discharged, and the voltage level of the output terminal of the first stage STAGE1 (and the output voltage VOUT output through the output terminal of the oscillator CONV) may be lowered.
  • the first stage STAGE1 (and the oscillator CONV) may generate or output an AC voltage.
  • the frequency of the AC-type voltage may be determined by the resistance value of the first resistor R1 and the capacitance of the first capacitor C1.
  • the input terminal of the second stage STAGE2 may be connected to the output terminal of the first stage STAGE1, and the output terminal of the second stage STAGE2 may be connected to the input terminal of the third stage STAGE3.
  • the second stage STAGE2 may include a third switching element M3, a fourth switching element M4, a second resistor R2, and a second capacitor C2.
  • the third switching element M3, the fourth switching element M4, the second resistor R2, and the second capacitor C2 of the second stage STAGE2 are the first switching element M1 of the first stage STAGE1.
  • the second switching element M2, the first resistor R1, and the first capacitor C1 are substantially the same, and thus the overlapping description will not be repeated.
  • the input terminal of the third stage STAGE3 may be connected to the output terminal of the second stage STAGE2, and the output terminal of the third stage STAGE3 may be connected to the input terminal of the first stage STAGE1.
  • the third stage STAGE3 may include a fifth switching element M5, a sixth switching element M6, a third resistor R3, and a third capacitor C3.
  • the fifth switching element M5, the sixth switching element M6, the third resistor R3, and the third capacitor C3 of the third stage STAGE3 are the third switching element M3 of the second stage STAGE2.
  • the fourth switching element M4, the second resistor R2, and the second capacitor C2 are substantially the same, so the overlapping description will not be repeated.
  • the oscillator CONV is shown to include the first to third stages STAGE1 to STAGE3, but the oscillator CONV is not limited thereto.
  • the oscillator CONV may include one, two, or four or more stages in consideration of the amplitude of the output voltage VOUT.
  • the oscillator CONV may further include an amplifying circuit at the output terminal.
  • the oscillator CONV may generate an output voltage VOUT (or a pulse wave, a square wave, or a square wave) in the form of a pulse.
  • the oscillator CONV may include a first amplifier AMP1, first to third resistors R1 to R3, and a capacitor C.
  • a DC voltage VDC and an inversion voltage VDCB may be applied to the first amplifier AMP1.
  • the DC voltage (VDC) is the same as the DC voltage (VDC) described with reference to FIG. 4, and the inversion voltage (VDCB) has the same size as the DC voltage (VDC), but is different from the polarity of the DC voltage (VDC). It can have polarity.
  • the first resistor R1 may be connected between the non-inverting terminal of the first amplifier AMP1 and the output terminal of the first amplifier AMP1.
  • the second resistor R2 may be connected between the non-inverting terminal of the first amplifier AMP1 and a reference line (ie, a reference line to which the reference voltage GND is applied).
  • the third resistor R3 may be connected between the inverting terminal of the first amplifier AMP1 and the output terminal of the first amplifier AMP1.
  • the capacitor C may be connected between the inverting terminal of the first amplifier AMP1 and the reference line.
  • the oscillator CONV may generate an output voltage VOUT in the form of a pulse by using the charging/discharging of the capacitor C and a hysteresis phenomenon.
  • the oscillator CONV may generate an output voltage VOUT in the form of a triangular wave.
  • the oscillator CONV may include a first amplifier AMP1, a second amplifier AMP2, first to third resistors R1 to R3, and a capacitor C.
  • a DC voltage VDC and an inversion voltage VDCB may be applied to each of the first amplifier AMP1 and the second amplifier AMP2.
  • the inverting terminal of the first amplifier AMP1 may be connected to a reference line (ie, a reference line to which the reference voltage GND is applied).
  • the non-inverting terminal of the second amplifier AMP2 may be connected to a reference line (ie, a reference line to which the reference voltage GND is applied).
  • the first resistor R1 may be connected between the output terminal of the first amplifier AMP1 and the non-inverting terminal of the first amplifier AMP1.
  • the second resistor R2 may be connected between the output terminal of the first amplifier AMP1 and the inverting terminal of the second amplifier AMP2.
  • the third resistor R3 may be connected between the non-inverting terminal of the first amplifier AMP1 and the output terminal of the second amplifier AMP2.
  • the capacitor C may be connected between the non-inverting terminal of the second amplifier AMP2 and the output terminal of the second amplifier AMP2.
  • the voltage level of the output voltage VOUT is linear as the second amplifier AMP2, the second resistor R2, and the capacitor C form an integrator and integrate the current flowing into the inverting terminal of the second amplifier AMP2. You can rise as an enemy. Thereafter, when the output voltage VOUT reaches the first reference voltage level (eg, 5V), the direction of the current flowing through the integrator is changed according to the connection relationship between the first and third resistors R1 and R3. Change, and the voltage level of the output voltage VOUT may linearly fall. Thereafter, when the output voltage VOUT reaches the second reference voltage level (eg -5V), the direction of the current flowing through the integrator is changed again, and the voltage level of the output voltage VOUT linearly rises again. can do. As this process is repeated, the oscillator CONV may generate an output voltage VOUT in the form of a triangular wave.
  • the first reference voltage level eg, 5V
  • the oscillator CONV may generate an output voltage VOUT in the form of a sawtooth wave.
  • the oscillator CONV may further include a feedback resistor RF, a diode D, and a feedback diode DF compared to the oscillator CONV of FIG. 6C.
  • the second resistor R2 and the diode D may be connected in series between the output terminal of the first amplifier AMP1 and the inverting terminal of the second amplifier AMP2.
  • the feedback resistor RF and the feedback diode DF may be connected in series between the output terminal of the first amplifier AMP1 and the inverting terminal of the second amplifier AMP2.
  • the feedback diode DF may be connected opposite to the diode D between the output terminal of the first amplifier AMP1 and the inverting terminal of the second amplifier AMP2.
  • the resistance value of the feedback resistor RF may be smaller than the resistance value of the second resistor R2.
  • the current movement path may be changed by the diode D and the feedback diode DF.
  • the resistance value of the feedback resistor RF is set to be smaller than the resistance value of the second resistor R2
  • the voltage level of the output voltage VOUT may change more rapidly when it falls than when it rises. That is, in the output voltage VOUT in the form of a triangle wave, the rising and falling sections of the output voltage VOUT are controlled by the second resistor R2 and the feedback resistor RF, so that the oscillator CONV outputs a sawtooth wave.
  • a voltage VOUT can be generated.
  • the oscillator CONV may be implemented in various forms, and various forms of output voltage VOUT, such as a sine wave, a pulse wave (or square wave), a triangle wave, and a sawtooth wave, etc. Can be created.
  • 7 is a plan view illustrating an example of a display device in which the first area A1 of FIG. 4 is enlarged. 7 illustrates a structure of a pixel PXL centering on a display element layer (and a part of the pixel circuit layer PCL) on which the light emitting elements LD of the pixel PXL are disposed.
  • the pixel circuit layer PCL is formed on the base layer SUB1 described with reference to FIG. 4, and includes a reference power line PL0, first to third power lines PL1 to PL3, and first to sixth oscillators. (CONV1 to CONV6), and the pixel circuit PXC described with reference to FIGS. 5A to 5C, and as shown in FIG. 7, the pixel circuit layer PCL includes a reference power line PL0 and a second power supply. A line PL2, a third power line PL3, and a first oscillator CONV1 may be included. A more specific configuration of the pixel circuit layer PCL will be described later with reference to FIG. 9A.
  • the pixel PXL may be formed in the pixel area PXA.
  • the pixel area PXA may include sub-pixel areas SPA1, SPA2, and SPA3 corresponding to the sub-pixels SPX1, SPX2, and SPX3 constituting the pixel PXL.
  • the pixel area PXA includes a first sub-pixel area SPA1 in which the first sub-pixel SPX1 is formed, a second sub-pixel area SPA2 in which the second sub-pixel SPX2 is formed, and a third sub-pixel.
  • a third sub-pixel area SPA3 in which the SPX3 is formed may be included.
  • At least one light-emitting device connected between them may be disposed.
  • the first sub-pixel SPX1 includes a first electrode ELT1 and a second electrode ELT2 disposed to be spaced apart from each other in the first sub-pixel area SPA1, and first and second electrodes ELT1 and ELT2. It may include at least one first light-emitting device LD1 connected between them.
  • the second sub-pixel SPX2 includes a first electrode ELT1 and a second electrode ELT2 disposed to be spaced apart from each other in the second sub-pixel area SPA2, and the first and second electrodes ELT1. And at least one second light emitting device LD2 connected between the ELT2.
  • the third sub-pixel SPX3 includes a first electrode ELT1 and a second electrode ELT2 disposed to be spaced apart from each other in the third sub-pixel area SPA3, and first and second electrodes ELT1 and ELT2. It may include at least one third light-emitting device LD3 connected between them.
  • the first, second, and third light emitting devices LD1, LD2, and LD3 may emit light of the same color or different colors.
  • each of the first light emitting elements LD1 is a red light emitting diode emitting red light
  • each second light emitting element LD2 is a green light emitting diode emitting green light
  • each third light emitting element LD3 May be a blue light emitting diode emitting blue light.
  • the first, second, and third light-emitting devices LD1, LD2, and LD3 may all be blue light-emitting diodes that emit blue light.
  • light emitted from the corresponding sub-pixel SPX is above at least some of the first, second, and third sub-pixels SPX1, SPX2, and SPX3.
  • a light conversion layer and/or a color filter for converting the color of may be disposed.
  • the first, second, and third sub-pixels SPX1, SPX2, and SPX3 may have substantially the same or similar structure.
  • any one of the first, second, and third sub-pixels SPX1, SPX2, and SPX3 is referred to as a sub-pixel SPX, and an area in which the sub-pixel SPX is formed is a sub-pixel region.
  • SPA at least one first, second, or third light-emitting element LD1, LD2, or LD3 disposed in the sub-pixel area SPA is collectively referred to as the light-emitting element LD, and the sub-pixel ( The structure of SPX) will be described in detail.
  • the first electrode ELT1 and the second electrode ELT2 are disposed to be spaced apart from each other in each sub-pixel area SPA, and at least one area may be disposed to face each other.
  • the first and second electrodes ELT1 and ELT2 are spaced apart by a predetermined interval along the first direction DR1 and are arranged side by side, and the second direction DR2 intersecting the first direction DR1
  • the present invention is not limited thereto.
  • the shape and/or an arrangement relationship between the first and second electrodes ELT1 and ELT2 may be variously changed.
  • the first electrode ELT1 may be electrically connected to the first connection electrode CNL1 (or the first connection line) extending in the first direction DR1.
  • the first connection electrode CNL1 may be connected to the pixel circuit PXC (or the first transistor T1) described with reference to FIGS. 5A to 5C through the first contact hole CH1.
  • the second electrode ELT2 may be electrically connected to the second connection electrode CNL2 (or the second connection line) extending in the first direction DR1.
  • the second connection electrode CNL2 extends to an adjacent sub-pixel (for example, the second and third sub-pixels SPX2 and SPX3, or the second and third sub-pixel regions SPA2 and SPA3). I can.
  • the second connection electrode CNL2 includes the first to third sub power lines PL2-1 included in the second power line PL2 (or the second power line PL2) through the second contact hole CH2. It can be electrically connected to PL2-2, PL2-3)).
  • the reference power line PL0, the third power line PL3, and the first oscillator CONV1 may be disposed in the non-display area NDA.
  • the first oscillator CONV1 may be electrically connected to the reference power line PL0 and the third power line PL3.
  • the first oscillator CONV1 is connected to the first electrode ELT1 of the first sub-pixel SPX1, and the remaining sub-pixels (eg, second and third sub-pixels SPX2 and SPX3) And may be disconnected or not electrically connected.
  • the display panel PNL may further include an electrode pattern P_ELT.
  • the electrode pattern P_ELT is disposed to overlap the first oscillator CONV1 in the non-display area NDA, and is formed through the third contact hole CH3 penetrating the passivation layer PSV of the pixel circuit layer PCL. It may be connected to 1 oscillator CONV1 (eg, the third capacitor C3).
  • the electrode pattern P_ELT may be disposed on the same line as the first connection electrode CNL1 (or the first electrode ELT1) (eg, on the reference line L_REF), and the connection pattern R_ELT is Through the first connection electrode CNL1 (or the first electrode ELT1) may be connected.
  • the electrode pattern P_ELT and the connection pattern R_ELT are formed through the same process as the first connection electrode CNL1 (or first electrode ELT1), and have the same cross-sectional structure as the first electrode ELT1 (or, Laminated structure).
  • the display device (or the display panel PNL) is the first oscillator CONV1 through the electrode pattern P_ELT and the connection pattern R_ELT.
  • the present invention is not limited thereto.
  • the electrode pattern P_ELT and the connection pattern R_ELT may be removed, and the first oscillator CONV1 may not be electrically connected to or separated from the first sub-pixel SPX1. This will be described later with reference to FIGS. 11 and 13.
  • FIG. 8 is a plan view illustrating an example of a sub-pixel in which the second area A2 of FIG. 7 is enlarged.
  • the sub-pixel area SPA includes at least a pair of first and second electrodes ELT1 and ELT2, and at least connected between the first and second electrodes ELT1 and ELT2. It may include a light emitting area EMA in which one light emitting element LD is disposed. According to an embodiment, the light-emitting area EMA may be defined by a bank BNK surrounding the light-emitting area EMA.
  • each of the first and second electrodes ELT1 and ELT2 may have a single layer or a multilayer structure.
  • the first electrode ELT1 may have a multilayer structure including a first reflective electrode and a first conductive capping layer
  • the second electrode may have a multilayer structure including a second reflective electrode and a second conductive capping layer.
  • the first electrode ELT1 may be connected to the first connection electrode CNL1.
  • the first electrode ELT1 may be integrally connected to the first connection electrode CNL1.
  • the first electrode ELT1 may be formed by branching from the first connection electrode CNL1 to at least one branch.
  • the first connection electrode CNL1 may be regarded as a region of the first electrode ELT1.
  • the present invention is not limited thereto.
  • the first electrode ELT1 and the first connection electrode CNL1 may be formed separately from each other, and may be electrically connected to each other through at least one contact hole or via hole, which is not shown. have.
  • the first connection electrode CNL1 may have a single layer or a multilayer structure.
  • the first connection electrode CNL1 may include a first sub connection electrode integrally connected to the first reflective electrode, and a second sub connection electrode integrally connected to the first conductive capping layer.
  • the first connection electrode CNL1 may have the same cross-sectional structure (or stacked structure) as the first electrode ELT1, but is not limited thereto.
  • the first electrode ELT1 and the first connection electrode CNL1 are the pixel circuit PXC of the sub-pixel SPX through the first contact hole CH1, for example, the pixel shown in any one of FIGS. 5A to 5C. It can be connected to the circuit PXC.
  • the first contact hole CH1 may be disposed outside the emission area EMA of the sub-pixel SPX.
  • the first contact hole CH1 may overlap the bank BNK and be disposed around the corresponding light emitting area EMA.
  • the present invention is not limited thereto.
  • at least one first contact hole CH1 may be disposed inside the light emitting area EMA.
  • the pixel circuit PXC may be located under the light emitting elements LD disposed in the sub-pixel area SPA.
  • each pixel circuit PXC is formed in a pixel circuit layer (or a circuit element layer including a circuit element such as a transistor) under the light emitting elements LD to form a first contact hole CH1 through the first contact hole CH1. It may be connected to the electrode ELT1.
  • the second electrode ELT2 may be connected to the second connection electrode CNL2.
  • the second electrode ELT2 may be integrally connected to the second connection electrode CNL2.
  • the second electrode ELT2 may be formed by branching from the second connection electrode CNL2 in at least one branch.
  • the second connection electrode CNL2 may be regarded as a region of the second electrode ELT2.
  • the present invention is not limited thereto.
  • the second electrode ELT2 and the second connection electrode CNL2 are formed separately from each other, and may be electrically connected to each other through at least one contact hole or via hole, which is not shown. have.
  • the second connection electrode CNL2 may have a single-layer or multi-layer structure.
  • the second electrode ELT2 and the second connection electrode CNL2 may be connected to the second power source VSS (refer to FIG. 4 ).
  • the second electrode ELT2 and the second connection electrode CNL2 may be connected to the second power supply VSS through the second contact hole CH2 and the second power line PL2 connected thereto (see FIG. 7 ). I can.
  • the second contact hole CH2 may be disposed outside the emission area EMA of the sub-pixel SPX.
  • the second contact hole CH2 may overlap the bank BNK and be disposed around the corresponding light emitting area EMA.
  • the present invention is not limited thereto.
  • at least one second contact hole CH2 may be disposed inside the light emitting area EMA.
  • a region of the second power line PL2 for supplying the second power VSS may be disposed in the pixel circuit layer under the light emitting elements LD.
  • the second power line PL2 may be disposed on the pixel circuit layer PCL under the light emitting devices LD and connected to the second electrode ELT2 through the second contact hole CH2.
  • the present invention is not limited thereto, and the position of the second power line PL2 may be variously changed.
  • the first partition wall PW1 overlaps a region of the first electrode ELT1 and is disposed under the first electrode ELT1, and the second partition wall PW2 overlaps a region of the second electrode ELT2. It may be disposed under the second electrode ELT2.
  • the first and second barrier ribs PW1 and PW2 are disposed to be spaced apart from each other in the light emitting area EMA, and one area of the first and second electrodes ELT1 and ELT2 may protrude upward.
  • the first electrode ELT1 is disposed on the first partition wall PW1 and protrudes in the height direction (or thickness direction) of the base layer SUB1 by the first partition wall PW1, and the second electrode The ELT2 may be disposed on the second partition wall PW2 to protrude in the height direction of the base layer SUB1 by the second partition wall PW2.
  • At least one light-emitting element LD may be arranged between the first and second electrodes ELT1 and ELT2 of the sub-pixel SPX.
  • a plurality of light emitting elements LD may be connected in parallel in the light emitting area EMA in which the first electrode ELT1 and the second electrode ELT2 are disposed to face each other.
  • the light-emitting elements LD are shown to be aligned in the first direction DR1 between the first and second electrodes ELT1 and ELT2, for example, in the horizontal direction, but the light-emitting elements LD
  • the arrangement direction of) is not limited thereto.
  • at least one of the light emitting devices LD may be arranged in a diagonal direction.
  • Each of the light-emitting elements LD may be electrically connected between the first and second electrodes ELT1 and ELT2 of the sub-pixel SPX.
  • a first end of each of the light emitting devices LD may be electrically connected to the first electrode ELT1
  • a second end of each of the light emitting devices LD may be electrically connected to the second electrode ELT2.
  • the first end of each of the light emitting elements LD is not directly disposed on the first electrode ELT1, but is formed through at least one contact electrode, for example, the first contact electrode CNE1. It may be electrically connected to the electrode ELT1.
  • the present invention is not limited thereto.
  • first ends of the light-emitting elements LD may be directly in contact with the first electrode ELT1 and electrically connected to the first electrode ELT1.
  • each of the light emitting elements LD is not directly disposed on the second electrode ELT2, but through at least one contact electrode, for example, the second contact electrode CNE2. ELT2) can be electrically connected.
  • the present invention is not limited thereto.
  • the second ends of each of the light-emitting elements LD may be in direct contact with the second electrode ELT2 and may be electrically connected to the second electrode ELT2.
  • each of the light-emitting elements LD may be a light-emitting diode having a small size, such as a nano-scale or micro-scale, using a material having an inorganic crystal structure.
  • each of the light-emitting elements LD may be an ultra-miniature rod-shaped light-emitting diode having a nano-scale to micro-scale size, as shown in any one of FIGS. 1A to 3B.
  • the type of the light-emitting elements LD applicable to the present invention is not limited thereto.
  • the light emitting device LD is formed by a growth method, and for example, may be a light emitting diode having a core-shell structure having a size of nanoscale to microscale.
  • the light emitting elements LD may be prepared in a form dispersed in a predetermined solution and supplied to the light emitting area EMA of each sub-pixel SPX through an inkjet printing method or a slit coating method.
  • the light-emitting elements LD may be mixed with a volatile solvent and supplied to the light-emitting region EMA.
  • a predetermined voltage is supplied to the first and second electrodes ELT1 and ELT2 of the sub-pixel SPX, an electric field is formed between the first and second electrodes ELT1 and ELT2.
  • the light emitting elements LD are self-aligned between the second electrodes ELT1 and ELT2.
  • the solvent is volatilized or removed in another way, thereby stably arranging the light-emitting elements LD between the first and second electrodes ELT1 and ELT2.
  • the first contact electrode CNE1 and the second contact electrode CNE2 are formed as first and second electrodes. It is possible to stably connect between them (ELT1, ELT2).
  • the first contact electrode CNE1 is formed on the first ends of the light-emitting elements LD and at least one region of the first electrode ELT1 corresponding thereto, and The first end may be physically and/or electrically connected to the first electrode ELT1.
  • the second contact electrode CNE2 is formed on the second end of the light-emitting elements LD and at least one region of the second electrode ELT2 corresponding thereto, so that the second end of the light-emitting elements LD
  • the EP2 may be physically and/or electrically connected to the second electrode ELT2.
  • the light-emitting elements LD disposed in the sub-pixel area SPA may be gathered to form a light source of the sub-pixel SPX. For example, when a driving current flows through at least one sub-pixel SPX during each frame period, light-emitting elements connected in the forward direction between the first and second electrodes ELT1 and ELT2 of the sub-pixel SPX While (LD) emits light, it can emit light with a luminance corresponding to the driving current.
  • the light emitting area EMA may be surrounded by the bank BNK.
  • the bank BNK may be disposed between the sub-pixels and other sub-pixels so as to surround the emission area EMA of the sub-pixel SPX.
  • 9A to 9D are cross-sectional views illustrating an example of a sub-pixel taken along line II' of FIG. 7 and line II-II' of FIG. 8.
  • 9A to 9D illustrate one sub-pixel area SPA (eg, first sub-pixel area SPA1) configured in the display panel PNL.
  • the first, second, and third sub-pixels SPX1, SPX2, and SPX3 described above may have substantially the same or similar cross-sectional structure. Therefore, for convenience of explanation, in FIGS. 9A to 9D, the structure of each sub-pixel SPX will be comprehensively described through a cross section of the first sub-pixel area SPA1 corresponding to line II-II′ of FIG. 8. do.
  • a pixel circuit layer PCL and a display device layer LDL may be sequentially disposed in each sub-pixel area SPA on the base layer SUB1.
  • the pixel circuit layer PCL and the display device layer LDL may be entirely formed in the display area DA of the display panel PNL.
  • the pixel circuit layer PCL may be formed on one surface of the base layer SUB1
  • the display device layer LDL may be formed on one surface of the base layer SUB1 on which the pixel circuit layer PCL is formed. have.
  • the pixel circuit layer PCL may include circuit elements constituting the pixel circuit PXC of the sub-pixel SPX and the first oscillator CONV1.
  • the display device layer LDL may include light emitting devices LD of the sub-pixel SPX.
  • the pixel circuit layer PCL may include a plurality of circuit elements disposed in the non-display area NDA.
  • the pixel circuit layer PCL may include a plurality of circuit elements formed in the non-display area NDA and constituting the first oscillator CONV1.
  • the pixel circuit layer PCL may include a switching element and a capacitor disposed in the non-display area NDA, for example, the fifth switching element M5 and the third capacitor C3 described with reference to FIG. 6A. have.
  • the pixel circuit layer PCL is connected to the first oscillator CONV1 to transmit the DC voltage VDC to the third power line PL3 (see FIG. 7) and the reference voltage GND.
  • a reference power line P0 (refer to FIG. 7) for transmitting) may be included.
  • the pixel circuit layer PCL may include a plurality of circuit elements disposed in the display area DA.
  • the pixel circuit layer PCL may include a plurality of circuit elements formed in the sub-pixel area SPA and constituting the pixel circuit PXC of the sub-pixel SPX.
  • the pixel circuit layer PCL may include a plurality of transistors disposed in the sub-pixel area SPA, for example, the first and second transistors T1 and T2 described with reference to FIGS. 5A and 5B. I can.
  • the pixel circuit layer PCL includes a storage capacitor Cst disposed in the sub-pixel area SPA and various signal lines connected to the pixel circuit PXC (for example, FIG.
  • a plurality of transistors for example, the first and second transistors T1 and T2 provided in the pixel circuit PXC may have substantially the same or similar cross-sectional structure.
  • the present invention is not limited thereto, and in other embodiments, at least some of the plurality of transistors may have different types and/or structures.
  • the pixel circuit layer PCL may include a plurality of insulating layers.
  • the pixel circuit layer PCL may include a buffer layer BFL, a gate insulating layer GI, an interlayer insulating layer ILD, and a passivation layer PSV sequentially stacked on one surface of the base layer SUB1. .
  • the buffer layer BFL may prevent diffusion of impurities into the circuit device.
  • the buffer layer BFL may be composed of a single layer, but may be composed of at least two or more multiple layers. When the buffer layer BFL is provided as multiple layers, each layer may be formed of the same material or may be formed of different materials. Meanwhile, depending on the embodiment, the buffer layer BFL may be omitted.
  • each of the fifth switching element M5 and the first and second transistors T1 and T2 includes a semiconductor layer SCL, a gate electrode GE, a first transistor electrode ET1, and a second transistor. It may include a transistor electrode ET2.
  • the fifth switching element M5 and the first and second transistors T1 and T2 are formed separately from the semiconductor layer SCL.
  • the transistor electrode ET2 the present invention is not limited thereto.
  • the first and/or second transistor electrodes ET1 and ET2 provided in at least one transistor disposed in each sub-pixel area SPA are each semiconductor layer ( SCL) may be integrated and configured.
  • the semiconductor layer SCL may be disposed on the buffer layer BFL.
  • the semiconductor layer SCL may be disposed between the base layer SUB1 on which the buffer layer BFL is formed and the gate insulating layer GI.
  • the semiconductor layer SCL includes a first region in contact with the first transistor electrode ET1, a second region in contact with the second transistor electrode ET2, and a channel region positioned between the first and second regions.
  • one of the first and second regions may be a source region and the other may be a drain region.
  • the semiconductor layer SCL may be a semiconductor pattern made of polysilicon, amorphous silicon, oxide semiconductor, or the like.
  • the channel region of the semiconductor layer SCL may be an intrinsic semiconductor as a semiconductor pattern that is not doped with impurities, and the first and second regions of the semiconductor layer SCL may each be a semiconductor pattern doped with a predetermined impurity. .
  • the gate electrode GE may be disposed on the semiconductor layer SCL with the gate insulating layer GI interposed therebetween.
  • the gate electrode GE may be disposed between the gate insulating layer GI and the interlayer insulating layer ILD to overlap at least one region of the semiconductor layer SCL.
  • the first and second transistor electrodes ET1 and ET2 may be disposed on the semiconductor layer SCL and the gate electrode GE with at least one interlayer insulating layer ILD interposed therebetween.
  • the first and second transistor electrodes ET1 and ET2 may be disposed between the interlayer insulating layer ILD and the passivation layer PSV.
  • the first and second transistor electrodes ET1 and ET2 may be electrically connected to the semiconductor layer SCL.
  • each of the first and second transistor electrodes ET1 and ET2 has a first region and a second region of the semiconductor layer SCL through a contact hole penetrating the gate insulating layer GI and the interlayer insulating layer ILD. Can be connected to the realm.
  • the first and second transistor electrodes ET1 and ET1 of at least one transistor is electrically connected to the first electrode ELT1 of the light source unit LSU disposed on the passivation layer PSV through the first contact hole CH1 penetrating the passivation layer PSV. I can.
  • At least one signal line and/or power line connected to the sub-pixel SPX may be disposed on the same layer as one electrode of circuit elements constituting the pixel circuit PXC.
  • the second power line PL2 for supplying the second power VSS is disposed on the same layer as the gate electrode GE of each of the first and second transistors T1 and T2,
  • the bridge pattern BRP disposed on the same layer as the second transistor electrodes ET1 and ET2, and through at least one second contact hole CH2 penetrating the passivation layer PSV, the passivation layer PSV ) May be electrically connected to the second electrode ELT2 of the light source unit LSU.
  • the structure and/or position of the second power line PL2, etc. may be variously changed.
  • a transistor provided in the non-display area NDA (for example, a fifth switching element ( One of the first and second transistor electrodes ET1 and ET2 of M5)) constitutes one electrode of the third capacitor C3, and a third contact hole CH3 passing through the passivation film PSV Through through, it may be electrically connected to the electrode pattern P_ELT disposed on the passivation layer PSV.
  • the display device layer LDL includes first and second partition walls PW1 and PW2 sequentially disposed and/or formed on the pixel circuit layer PCL, first and second electrodes ELT1 and ELT2, and a first The insulating layer INS1, the light emitting devices LD, the second insulating layer INS2, the first and second contact electrodes CNE1 and CNE2, and the third insulating layer INS3 may be included.
  • the display device layer LDL may further include an electrode pattern P_ELT formed on the pixel circuit layer PCL in the non-display area NDA.
  • the first and second barrier ribs PW1 and PW2 may be disposed on the pixel circuit layer PCL.
  • the first and second barrier ribs PW1 and PW2 may be disposed to be spaced apart from each other in the light emitting area EMA.
  • the first and second barrier ribs PW1 and PW2 may protrude in the height direction on the pixel circuit layer PCL.
  • the first and second partition walls PW1 and PW2 may have substantially the same height, but are not limited thereto.
  • the first partition wall PW1 may be disposed between the pixel circuit layer PCL and the first electrode ELT1.
  • the first partition wall PW1 may be disposed to be adjacent to the first end portions EP1 of the light emitting devices LD.
  • one side of the first partition wall PW1 may be positioned at a distance adjacent to the first end portions EP1 of the light emitting devices LD and may be disposed to face the first end portions EP1.
  • the second partition wall PW2 may be disposed between the pixel circuit layer PCL and the second electrode ELT2.
  • the second partition wall PW2 may be disposed adjacent to the second end portions EP2 of the light emitting devices LD.
  • one side of the second partition wall PW2 may be positioned at a distance adjacent to the second end portions EP2 of the light emitting devices LD and disposed to face the second end portions EP2.
  • the first and second partition walls PW1 and PW2 may have various shapes.
  • the first and second barrier ribs PW1 and PW2 may have a trapezoidal cross-sectional shape whose width becomes narrower toward the top.
  • each of the first and second partition walls PW1 and PW2 may have an inclined surface at least on one side.
  • the first and second barrier ribs PW1 and PW2 may have a semicircle or semi-elliptic cross section whose width becomes narrower toward the top.
  • each of the first and second partition walls PW1 and PW2 may have a curved surface at least on one side.
  • the shapes of the first and second partition walls PW1 and PW2 are not particularly limited, and these may be variously changed.
  • at least one of the first and second partition walls PW1 and PW2 may be omitted or the position thereof may be changed.
  • the first and second barrier ribs PW1 and PW2 may include an insulating material including an inorganic material and/or an organic material.
  • the first and second barrier ribs PW1 and PW2 may include at least one layer of an inorganic layer including SiNx or SiOx and various inorganic insulating materials that are currently known.
  • the first and second barrier ribs PW1 and PW2 include at least one layer of an organic layer and/or a photoresist layer including various organic insulating materials known at present, or complexly include organic/inorganic materials. It may be composed of a single layer or multiple layers of insulators. That is, the constituent materials of the first and second partition walls PW1 and PW2 may be variously changed.
  • the first and second barrier ribs PW1 and PW2 may function as a reflective member.
  • the first and second barrier ribs PW1 and PW2 together with the first and second electrodes ELT1 and ELT2 provided on the upper side thereof, and the light emitted from each of the light emitting elements LD are directed in a desired direction. It may function as a reflective member to induce and improve the light efficiency of the pixel PXL.
  • First and second electrodes ELT1 and ELT2 may be disposed above the first and second partition walls PW1 and PW2, respectively.
  • the first and second electrodes ELT1 and ELT2 may be disposed to be spaced apart from each other in the light emitting area EMA.
  • the first and second electrodes ELT1 and ELT2 respectively disposed on the first and second barrier ribs PW1 and PW2 are each of the first and second barrier ribs PW1 and PW2. It may have a shape corresponding to the shape of
  • the first and second electrodes ELT1 and ELT2 have inclined or curved surfaces corresponding to the first and second barrier ribs PW1 and PW2, respectively, and the height direction of the pixel circuit layer PCL (Or, it may protrude in the thickness direction).
  • Each of the first and second electrodes ELT1 and ELT2 may include at least one conductive material.
  • each of the first and second electrodes ELT1 and ELT2 is a metal such as Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, Ti, alloys thereof, ITO, IZO , ZnO, a conductive oxide such as ITZO, and a conductive polymer such as PEDOT may include, but is not limited thereto.
  • each of the first and second electrodes ELT1 and ELT2 may be configured as a single layer or multiple layers.
  • each of the first and second electrodes ELT1 and ELT2 may include at least one reflective electrode layer.
  • each of the first and second electrodes ELT1 and ELT2 includes at least one transparent electrode layer disposed above and/or below the reflective electrode layer, and at least covering an upper portion of the reflective electrode layer and/or the transparent electrode layer. At least one of the conductive capping layers of one layer may be selectively further included.
  • the reflective electrode layer of each of the first and second electrodes ELT1 and ELT2 may be made of a conductive material having a uniform reflectance.
  • the reflective electrode layer may include at least one of metals such as Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, and alloys thereof, but is not limited thereto. That is, the reflective electrode layer may be formed of various reflective conductive materials.
  • the first and second electrodes ELT1 and ELT2 have an inclined or curved surface corresponding to the shape of the first and second partition walls PW1 and PW2, the first and second electrodes of the light emitting devices LD
  • the first and second electrodes ELT1 and ELT2 When disposed to face the ends EP1 and EP2, the light emitted from the first and second ends EP1 and EP2 of each of the light emitting elements LD is the first and second electrodes ELT1 and ELT2. It may be reflected by and further proceed in the front direction of the display panel PNL (for example, the upper direction of the base layer SUB1). Accordingly, the efficiency of light emitted from the light emitting devices LD may be improved.
  • each of the first and second electrodes ELT1 and ELT2 may be formed of various transparent electrode materials.
  • the transparent electrode layer may include ITO, IZO, or ITZO, but is not limited thereto.
  • each of the first and second electrodes ELT1 and ELT2 may be configured as a triple layer having a stacked structure of ITO/Ag/ITO. In this way, when the first and second electrodes ELT1 and ELT2 are formed of at least two or more multiple layers, a voltage drop due to a signal delay (RC delay) can be minimized. Accordingly, it is possible to effectively transmit a desired voltage to the light emitting devices LD.
  • RC delay signal delay
  • each of the first and second electrodes ELT1 and ELT2 includes a conductive capping layer covering the reflective electrode layer and/or the transparent electrode layer
  • the first and second electrodes ELT1 and ELT2 are formed due to defects occurring in the manufacturing process of the pixel PXL. And damage to the reflective electrode layer of the second electrodes ELT1 and ELT2 may be prevented.
  • the conductive capping layer may be selectively included in the first and second electrodes ELT1 and ELT2, and may be omitted depending on embodiments.
  • the conductive capping layer is regarded as a component of each of the first and second electrodes ELT1 and ELT2, or a separate component disposed on the first and second electrodes ELT1 and ELT2. It could be.
  • a first insulating layer INS1 may be disposed on one region of the first and second electrodes ELT1 and ELT2.
  • the first insulating layer INS1 is formed to cover one region of the first and second electrodes ELT1 and ELT2, and the other region of the first and second electrodes ELT1 and ELT2 It may include an opening that exposes.
  • the first insulating layer INS1 may be formed to primarily cover the first and second electrodes ELT1 and ELT2 entirely. After the light emitting elements LD are supplied and aligned on the first insulating layer INS1, the first insulating layer INS1 is formed with predetermined first and second contact portions CNT1 and CNT2 as shown in FIG. 7. ) May be partially opened to expose the first and second electrodes ELT1 and ELT2.
  • the first insulating layer INS1 may be patterned in the form of an individual pattern that is locally disposed under the light emitting devices LD after the light emitting devices LD are supplied and aligned.
  • the first insulating layer INS1 is interposed between the first and second electrodes ELT1 and ELT2 and the light emitting elements LD, and each of the first and second electrodes ELT1 and ELT2 At least one area can be exposed.
  • the first insulating layer INS1 is formed to cover the first and second electrodes ELT1 and ELT2 after the first and second electrodes ELT1 and ELT2 are formed, so that the first and second electrodes are formed in a subsequent process. It is possible to prevent damage or precipitation of metals (ELT1, ELT2).
  • the first insulating layer INS1 may stably support each of the light emitting devices LD.
  • the first insulating layer INS1 may be omitted.
  • Light-emitting elements LD may be supplied and aligned in the light-emitting area EMA in which the first insulating layer INS1 is formed.
  • the light-emitting elements LD are supplied to the light-emitting area EMA through an inkjet method, and the light-emitting elements LD have a predetermined alignment voltage applied to the first and second electrodes ELT1 and ELT2. (Or, the alignment signal) may be aligned between the first and second electrodes ELT1 and ELT2.
  • a reference voltage eg, a ground voltage
  • VDC direct voltage
  • the first oscillator CONV1 converts the DC voltage VDC provided through the third power line PL3 into an AC voltage (i.e., an alignment voltage) to be applied to the first electrode ELT1 (see FIG. 8 ).
  • An electric field is formed between the first and second electrodes ELT1 and ELT2, and the light emitting elements LD are self-aligned between the first and second electrodes ELT1 and ELT2 of the light emitting area EMA. I can.
  • a bank BNK may be disposed on the first insulating layer INS1.
  • the bank BNK is formed between other sub-pixels so as to surround the emission area EMA of the sub-pixel SPX to form a pixel defining layer that partitions the emission area EMA of the sub-pixel SPX. I can.
  • the bank BNK may be formed to have a second height higher than the first height of the first and second partition walls PW1 and PW2.
  • the bank BNK in the step of supplying the light-emitting elements LD to each light-emitting area EMA, the bank BNK is the light-emitting area of the sub-pixel SPX adjacent to the solution in which the light-emitting elements LD are mixed ( EMA), or may function as a dam structure that controls a certain amount of solution to be supplied to each light emitting area EMA.
  • the bank BNK may be formed to block light emitted from each light-emitting area EMA from flowing into the adjacent light-emitting area EMA to cause optical interference. To this end, the bank BNK may be formed to block light emitted from the light emitting elements LD of each sub-pixel SPX from passing through the bank BNK.
  • the second insulating layer INS2 is disposed on the light-emitting elements LD, particularly, the light-emitting elements LD arranged between the first and second electrodes ELT1 and ELT2, and the light-emitting elements
  • the first and second ends EP1 and EP2 of LD may be exposed.
  • the second insulating layer INS2 does not cover the first and second ends EP1 and EP2 of the light-emitting elements LD, and is partially disposed on only one area of the light-emitting elements LD.
  • the second insulating layer INS2 may be formed in an independent pattern on each light emitting area EMA, but is not limited thereto.
  • the space is a second insulating layer. It may be filled by layer INS2. Accordingly, the light-emitting elements LD may be supported more stably.
  • the first and second contact electrodes CNE1 and CNE2 are on the first and second electrodes ELT1 and ELT2 and the first and second ends EP1 and EP2 of the light-emitting elements LD. Can be placed.
  • the first and second contact electrodes CNE1 and CNE2 may be disposed on the same layer as shown in FIG. 7. In this case, the first and second contact electrodes CNE1 and CNE2 may be formed using the same conductive material in the same process, but are not limited thereto.
  • the first and second contact electrodes CNE1 and CNE2 electrically connect the first and second ends EP1 and EP2 of the light-emitting elements LD to the first and second electrodes ELT1 and ELT2, respectively. Can be connected by
  • the first contact electrode CNE1 may be disposed on the first electrode ELT1 to contact the first electrode ELT1.
  • the first contact electrode CNE1 is formed on the first electrode ELT1 on a region of the first electrode ELT1 that is not covered by the first insulating layer INS1 (for example, the first contact portion CNT1). ) Can be arranged to contact.
  • the first contact electrode CNE1 has first ends to contact at least one light emitting device adjacent to the first electrode ELT1, for example, the first ends EP1 of the plurality of light emitting devices LD. EP1).
  • the first contact electrode CNE1 may be disposed to cover the first end portions EP1 of the light-emitting elements LD and at least one region of the first electrode ELT1 corresponding thereto. Accordingly, the first ends EP1 of the light-emitting elements LD may be electrically connected to the first electrode ELT1.
  • the second contact electrode CNE2 may be disposed on the second electrode ELT2 so as to contact the second electrode ELT2.
  • the second contact electrode CNE2 is formed on the second electrode ELT2 on a region of the second electrode ELT2 that is not covered by the first insulating layer INS1 (for example, the second contact portion CNT2). ) Can be arranged to contact.
  • the second contact electrode CNE2 has second ends to contact at least one light emitting device adjacent to the second electrode ELT2, for example, the second ends EP2 of the plurality of light emitting devices LD. EP2).
  • the second contact electrode CNE2 may be disposed to cover the second end portions EP2 of the light-emitting elements LD and at least one region of the second electrode ELT2 corresponding thereto. Accordingly, the second ends EP2 of the light-emitting elements LD may be electrically connected to the second electrode ELT2.
  • the third insulating layer INS3 includes first and second partition walls PW1 and PW2, first and second electrodes ELT1 and ELT2, light-emitting elements LD, and first and second contact electrodes.
  • the third insulating layer INS3 may include a thin film encapsulation layer including at least one inorganic layer and/or an organic layer, but is not limited thereto.
  • at least one overcoat layer (not shown) may be further disposed on the third insulating layer INS3.
  • each of the first to third insulating layers INS1, INS2, and INS3 may be composed of a single layer or multiple layers, and may include at least one inorganic insulating material and/or an organic insulating material.
  • each of the first to third insulating layers INS1, INS2, and INS3 may include various types of currently known organic/inorganic insulating materials, including SiNx, and the first to third insulating layers (INS1, INS2, INS3)
  • Each constituent material is not particularly limited.
  • the first to third insulating layers INS1, INS2, and INS3 include different insulating materials, or at least some of the first to third insulating layers INS1, INS2, and INS3 are the same insulating material. It may include.
  • first and second contact electrodes CNE1 and CNE2 may be disposed on different layers.
  • the first contact electrode CNE1 may be disposed in the sub-pixel area SPA in which the second insulating layer INS2 is disposed.
  • the first contact electrode CNE1 may be disposed on the first electrode ELT1 so as to contact a region of the first electrode ELT1 disposed in the sub-pixel area SPA.
  • the first contact electrode CNE1 may be disposed on the first end EP1 so as to contact the first end EP1 of the at least one light emitting element LD disposed in the sub-pixel area SPA. have.
  • the first end EP1 of the at least one light emitting element LD disposed in the sub-pixel area SPA by the first contact electrode CNE1 is a first electrode disposed in the sub-pixel area SPA ( ELT1) can be electrically connected.
  • a fourth insulating layer INS4 may be disposed in the sub-pixel area SPA in which the first contact electrode CNE1 is disposed. According to an exemplary embodiment, the fourth insulating layer INS4 may cover the second insulating layer INS2 and the first contact electrode CNE1 disposed in the sub-pixel area SPA.
  • the fourth insulating layer INS4 may be composed of a single layer or multiple layers, and at least one inorganic insulating material And/or an organic insulating material.
  • the fourth insulating layer INS4 may include various types of currently known organic/inorganic insulating materials, including SiNx.
  • the fourth insulating layer INS4 includes an insulating material different from the first to third insulating layers INS1, INS2, and INS3, or one of the first to third insulating layers INS1, INS2, and INS3. It may include at least some of the same insulating material.
  • a second contact electrode CNE2 may be disposed in each sub-pixel area SPA in which the fourth insulating layer INS4 is disposed.
  • the second contact electrode CNE2 may be disposed on the second electrode ELT2 to contact a region of the second electrode ELT2 disposed in the sub-pixel area SPA.
  • the second contact electrode CNE2 may be disposed on the second end EP2 to contact the second end EP2 of the at least one light emitting element LD disposed in the sub-pixel area SPA.
  • the second end EP2 of the at least one light emitting element LD disposed in each sub-pixel area SPA by the second contact electrode CNE2 is a second end portion EP2 disposed in the sub-pixel area SPA. It may be electrically connected to the electrode ELT2.
  • first and second partition walls PW1 and PW2 may have various shapes.
  • the first and second barrier ribs PW1 and PW2 may have a trapezoidal cross-sectional shape whose width becomes narrower toward the top.
  • the first and second barrier ribs PW1 and PW2 may have a semicircle or semi-elliptical cross section whose width becomes narrower toward the top.
  • the display panel PNL (or display device) applies an AC voltage for alignment of the light emitting elements LD through the first oscillator CONV1 to the display panel PNL. It can be supplied uniformly throughout.
  • 10 is a cross-sectional view illustrating another example of a sub-pixel taken along line II' of FIG. 7 and line II-II' of FIG. 8. 10 is a cross-sectional view of the sub-pixel SPX corresponding to FIG. 9A.
  • the sub-pixel SPX of FIG. 10 may be substantially the same as the sub-pixel SPX of FIG. 9A except for the location and connection relationship of the connection pattern R_ELT. Therefore, overlapping descriptions will not be repeated.
  • connection pattern R_ELT is disposed on the same layer as the first and second transistor electrodes ET1 and ET2 of the first transistor T1, and the first and second transistor electrodes ET1 of the first transistor T1 , ET2) extends to the non-display area NDA, and may be connected to one electrode of the third capacitor C3 of the first oscillator CONV1.
  • the connection pattern R_ELT may be integrally formed with one of the first and second transistor electrodes ET1 and ET2 of the first transistor T1 and one electrode of the third capacitor C3. That is, the first oscillator CONV1 may be connected to the first electrode ELT1 through the first transistor T1 (or the pixel circuit layer PCL) instead of being directly connected to the first electrode ELT1. .
  • 11 is a plan view illustrating a display device according to another exemplary embodiment of the present invention.
  • 11 is a plan view of the display panel PNL corresponding to FIG. 4.
  • 12 is a plan view illustrating an example of a display device in which the first area of FIG. 11 is enlarged.
  • 12 is a plan view of a pixel corresponding to FIG. 7.
  • 13 is a cross-sectional view illustrating an example of a sub-pixel taken along lines I-I' and II-II' of FIG. 12.
  • 13 is a cross-sectional view of a sub-pixel corresponding to FIG. 9A.
  • the display device of FIG. 4 is different from the display device of FIG. 11 in that the oscillator CONV1 is separated from the first sub-pixel SPX1. Do. Except for the connection relationship (or separation relationship) between the oscillator CONV1 and the first sub-pixel SPX1, the display device of FIG. 4 (and the sub-pixel SPX of FIG. 9A) is the display device of FIG. 11 (and FIG. Sub-pixel of 13)), so the overlapping description will not be repeated.
  • the electrode pattern P_ELT is disposed on the same line as the first connection electrode CNL1 (or, the first electrode ELT1), but the first connection electrode CNL1 (or , The second electrode ELT1) may be electrically disconnected.
  • the electrode pattern P_ELT and the first connection electrode CNL1 are integrally formed, and thereafter, in the patterning process of the first electrode ELT1, the electrode pattern P_ELT ) And the connection pattern (R_ELT, see FIGS. 7 and 9A) between the first connection electrode CNL1 and the second connection electrode CNL2 (or the second electrode ELT2) as the electrode pattern P_ELT Can be separated from
  • the first oscillator CONV1 is the first connection electrode CNL1 (or the first electrode ( ELT1)).
  • the electrode pattern P_ELT may be omitted.
  • the electrode pattern P_ELT may be removed.
  • FIG. 14 is a plan view illustrating a display device according to another exemplary embodiment of the present invention.
  • FIG. 14 illustrates a display device, particularly, a display panel PNL provided in the display device. Has been.
  • the display panel PNL illustrated in FIG. 14 further includes a fourth power line PL4, a fifth power line PL5, and a seventh oscillator CONV7. It is different from the display panel PNL shown in FIG. That is, except for the fourth power line PL4, the fifth power line PL5, and the seventh oscillator CONV7, the display panel PNL illustrated in FIG. 14 is the same as the display panel PNL illustrated in FIG. 4. Since they are substantially the same or similar, overlapping descriptions will not be repeated.
  • the fourth power line PL4 is disposed in the display area DA, extends to the non-display area NDA, and may be electrically connected to the third power line PL3.
  • the fourth power line PL4 may extend along the second direction DR2 between the fourth sub-pixel SPX4 and the fifth sub-pixel SPX5.
  • the fourth power line PL4 may be integrally formed with the third power line PL3.
  • the fifth power line PL5 is disposed in the display area DA, extends to the non-display area NDA, and is electrically connected to the reference power line PL0.
  • the fifth power line PL5 may extend along the second direction DR2 from one side of the fifth sub-pixel SPX5.
  • the fifth power line PL5 may be integrally formed with the reference power line PL0.
  • the fifth power line PL5 is not limited thereto.
  • the fifth power line PL5 is electrically connected to the second power line PL2 and may be integrally formed with the second power line PL2.
  • the seventh oscillator CONV7 may be disposed in the display area DA of the base layer SUB1.
  • the seventh oscillator CONV7 may be disposed in the area center of the display panel PNL (or the area center of the display area DA).
  • the seventh oscillator CONV7 may be disposed at equal intervals with the fifth and sixth oscillators CONV5 and CONV6.
  • the seventh oscillator CONV7 is connected between the fourth power line PL4 and the fifth power line PL5, and is a direct current voltage VDC (or a fourth power line) provided through the fourth power line PL4.
  • the direct current voltage applied between PL4 and the fifth power line PL5) can be converted into an AC voltage.
  • the seventh oscillator CONV7 may be implemented with the oscillator CONV described with reference to FIGS. 6A to 6B.
  • the seventh oscillator CONV7, together with the first to sixth oscillators CONV1 to CONV6, is a third power line in the alignment process of the light emitting element LD during the manufacturing process of the display panel PNL.
  • the DC voltage VDC provided through the PL3 and the fourth power line PL4 may be converted into an AC voltage and may be supplied to the pixels PXL. Meanwhile, when the display device (or display panel PNL) is turned on to display an image, the fourth power line PL4 may be floating or no voltage may be applied to the fourth power line PL4.
  • the display panel PNL is shown to include the seventh oscillator CONV7 in the display area DA, but this is exemplary, and the display panel PNL is not limited thereto.
  • the display panel PNL may include a plurality of oscillators disposed in the display area DA, and the plurality of oscillators may be disposed at equal intervals with each other in the display area DA. Accordingly, a uniform AC voltage may be supplied to the entire display panel PNL through the plurality of oscillators.
  • the display device includes oscillators (eg, first to sixth oscillators CONV1 to CONV6) and a display area disposed in the non-display area NDA of the display panel PNL. It may include at least one oscillator (eg, the seventh oscillator CONV7) disposed in (DA). Accordingly, a more uniform AC voltage is provided to the entire display panel PNL through the oscillators, the light emitting elements are more evenly arranged throughout the display panel PNL, and uniformity of the light emitting characteristics of the pixels is improved. I can.
  • oscillators eg, first to sixth oscillators CONV1 to CONV6
  • DA the seventh oscillator
  • FIG. 15 is a plan view illustrating an example of a display device in which the third area A3 of FIG. 14 is enlarged. In FIG. 15, the structure of the pixel PXL corresponding to FIG. 7 is shown.
  • the display device of FIG. 15 is substantially similar to the display device of FIG. 7 except for the fourth power line PL4, the fifth power line PL5, and the seventh oscillator CONV7. Since they are the same or similar, overlapping descriptions will not be repeated.
  • the fourth power line PL4 is included in the pixel circuit layer PCL and may extend along the second direction DR2 in the display area DA.
  • the fourth power line PL4 is disposed between the second sub power line PL2-2 and the third sub power line PL2-3, or the first sub-pixel SPX1 (or the first sub-pixel area ( SPA1)) and the second sub-pixel SPX2 (or the second sub-pixel area SPA2), or may be disposed across the second sub-pixel SPX2.
  • the fourth power line PL4 is disposed on the same layer as the second power line PL2 (for example, the same layer as the second power line PL2 described with reference to FIG. 10 ), and the second power line PL2 ) Can be placed away from.
  • the fifth power line PL5 may be included in the pixel circuit layer PCL and may extend along the second direction DR2 in the display area DA.
  • the fourth power line PL4 is disposed between the second sub-pixel SPX2 (or the second sub-pixel area SPA2) and the third sub-pixel SPX3 (or the third sub-pixel area SPA3). Or, it may be disposed across the third sub-pixel SPX3.
  • the fifth power line PL5 is disposed on the same layer as the second power line PL2 (for example, the same layer as the second power line PL2 described with reference to FIG. 10 ), and the second power line PL2 ) Can be placed away from.
  • the seventh oscillator CONV7 is based on the second sub-pixel SPX2 (or the second sub-pixel area SPA2) and the adjacent sub-pixel (eg, the second sub-pixel SPX2). It may be disposed between adjacent sub-pixels or adjacent sub-pixel regions in the second direction DR2. According to another embodiment, when the sub-pixel area SPA is partitioned by the second connection electrode CNL2 and the second power line PL2, the seventh oscillator CONV7 is disposed in the second pixel area SPA2. Can be.
  • the seventh oscillator CONV7 is shown to be connected between the fourth power line PL4 and the fifth power line PL5, but the seventh oscillator CONV7 is not limited thereto.
  • the seventh oscillator CONV7 may be disposed over two or more sub-pixels among the first to third sub-pixels SPX1 to SPX3.
  • the seventh oscillator CONV7 may be disposed to overlap the first connection electrode CNL1 and/or the second connection electrode CNL2. That is, the arrangement of the seventh oscillator CONV7 may be changed according to the exemplary embodiment.
  • 16 is a plan view illustrating a display device according to another exemplary embodiment of the present invention. 16 illustrates a display device, in particular, a display panel PNL provided in the display device as an example of a device that can use the light emitting elements LD described in FIGS. 1A to 3B as a light source.
  • a display panel PNL provided in the display device as an example of a device that can use the light emitting elements LD described in FIGS. 1A to 3B as a light source.
  • the display panel PNL illustrated in FIG. 16 is at least one oscillator disposed on the display area DA of the base layer SUB1, for example, as illustrated in FIG. 16, the seventh oscillator CONV7 ) Can only be included.
  • 17A to 17C are plan views illustrating an example of a ledger substrate according to an embodiment of the present invention.
  • the led substrate 100 may include a plurality of cell regions 110A for forming a plurality of display panels.
  • the ledger substrate 100 is for simultaneously manufacturing a plurality of display panels on one large substrate SUB, and electrodes formed on the substrate SUB together with the substrate SUB serving as a base member for this, Wires and/or circuit elements may be covered.
  • the ledger substrate 100 may include a third power line PL3, a reference power line PL0, and an oscillator CONV arranged along the edges of the cell areas 110A, outside the cell areas 110A. I can.
  • the third power line PL3 and the reference power line PL0 extend in the first direction DR1 and the second direction DR2 and may have a mesh structure.
  • the oscillator CONV is disposed between the cell regions 110A and may be connected to the third power line PL3 and the reference power line PL0.
  • the oscillator CONV may be arranged in a matrix form with a predetermined interval based on each of the cell regions 110A.
  • the ledger substrate 100 may provide an AC voltage having a more constant voltage level without voltage drop across the ledger substrate 100 through an oscillator CONV that is evenly distributed or arranged.
  • the oscillator CONV is shown to be disposed corresponding to each of the cell regions 110A, but the present invention is not limited thereto.
  • the oscillator CONV may be disposed with a spacing corresponding to two cell regions 110A (or two or more cell regions 110A).
  • the oscillator CONV may be disposed at regular intervals along the edge of the ledger substrate 100, or may be disposed at four corners of the ledger substrate 100.
  • the arrangement position and arrangement structure of the oscillator CONV are not particularly limited.
  • FIGS. 17A to 17C are plan views illustrating an example of a display panel included in the led substrates of FIGS. 17A to 17C.
  • the display panel PNL of FIG. 18 does not include the oscillators CONV1 to CONV6, the reference power line PL0, and the third power line PL3. It is different from the display panel PNL shown in FIG.
  • the oscillator CONV is disposed outside each of the cell regions 110A in the ledger substrate 100, and cell regions from the ledger substrate 100 through a cutting process, etc. Since 110A is separated, the display panel PNL may not include the oscillator CONV, the reference power line PL0, and the third power line PL3. In addition, as described with reference to FIG. 7, when the oscillator CONV is directly connected to the first electrode ETL1 in the ledger substrate 100 of FIGS. 17A to 17C (hereinafter, the first electrode ELT1 is an oscillator). (When separated from CONV)), the display panel PNL may not include a connection configuration between the oscillator CONV and the first electrode ELT1 (eg, electrode pattern P_ELT, see FIG. 7 ). .
  • FIG. 19 is a flowchart illustrating a method of manufacturing a display device according to another exemplary embodiment of the present invention.
  • 20A to 20D are diagrams illustrating a method of manufacturing the display device of FIG. 19.
  • a ledger substrate 100 (or a substrate SUB) may be prepared (S1910).
  • FIGS. 20A to 20E illustrate an exemplary embodiment in which a plurality of display panels are simultaneously formed on a single ledger substrate 100 and then individually separated through a cutting process.
  • the display panels may be one of the display panels described with reference to FIGS. 4, 14, and 18.
  • the ledger substrate 100 may include a cell area 110A for forming a plurality of light emitting display panels.
  • the ledger substrate 100 may include a substrate SUB and first and second electrodes ELT1 and ELT2 formed on the substrate SUB.
  • the ledger substrate 100 may include first and second connection electrodes CNL1 and CNL2 and first and second alignment lines AL1 and AL2 formed on the substrate SUB.
  • the cell area 110A of the substrate SUB may include a display area DA including a plurality of pixel areas PXA, and a non-display area NDA disposed outside the display area DA. have.
  • the cell area 110A may be defined by the scribing line SCL.
  • the substrate SUB may include a pixel circuit layer including a plurality of circuit elements, and the pixel circuit layer may include a reference power line PL0, a third power line PL3, and an oscillator CONV.
  • the third power line PL3 is disposed outside the cell area 110A, and may extend along the second direction DR2, for example, but is not limited thereto.
  • the third power line PL3 may be connected to the second alignment pad AP2 disposed in an area (eg, an edge area) of the ledger substrate 100.
  • the reference power line PL0 is disposed outside the cell area 110A and may be connected to the second alignment pad AP2 disposed in an area (eg, an edge area) of the led substrate 100.
  • the oscillator CONV is disposed between the third power line PL3 (or the reference power line PL0) and the first alignment line AL1, and the reference power line PL0, the third power line PL3, and the third power line PL3 1 It may be connected to the alignment wiring AL1. As shown in FIG. 20A, the oscillator CONV may be disposed outside the cell area 110A, but is not limited thereto. For example, the oscillator CONV may be disposed in the non-display area NDA and/or the display area DA in the cell area 110A. In this case, as described with reference to FIGS. 4, 14 and 16 The display panel PNL may be manufactured.
  • the first and second electrodes ELT1 and ELT2 may be disposed in the display area DA of the cell area 110A.
  • the first electrode ELT1 is electrically connected to the first alignment line AL1 through the first connection electrode CNL1, and the second electrode ELT2 is connected to the second connection electrode CNL2. It may be electrically connected to the second alignment wiring AL2.
  • the first electrodes ELT1 formed in the cell region 110A are commonly connected to the first alignment line AL1.
  • the second electrodes ELT2 may be commonly connected to the second alignment line AL2.
  • the first and second alignment lines AL1 and AL2 may be disposed in the non-display area NDA of the cell area 110A.
  • the first and second alignment lines AL1 and AL2 may be disposed to face different ends of the substrate SUB with the display area DA interposed therebetween. have.
  • the first alignment line AL1 is disposed in the non-display area NDA to the left of the display area DA
  • the second alignment line AL2 is the display area DA.
  • It may be disposed in the non-display area NDA on the right.
  • the first alignment wiring AL1 may be connected to the first alignment pad AP1 disposed in one area (eg, an edge area) of the ledger substrate 100.
  • each of the first and second alignment lines AL1 and AL2 may have a multilayer structure.
  • each of the first and second alignment wirings AL1 and AL2 is a main wiring (not shown) and a pixel circuit disposed on the same layer as at least one of the first and second electrodes ELT1 and ELT2. It may have a multi-layered structure including sub-wires (not shown) disposed on the layer.
  • the light-emitting elements LD are supplied between the first and second electrodes (S1920), and a DC voltage VDC is applied to the oscillator CONV to align the light-emitting elements LD. Can be made (S1930).
  • the method of FIG. 19 may supply light emitting devices LD to the pixel area PXA of the ledger substrate 100. Also, the method of FIG. 19 may apply a predetermined voltage to the first and second alignment pads AP1 and AP2. The method of FIG. 19 may apply a predetermined voltage to the first and second alignment pads AP1 and AP2 through an external signal applying device.
  • the method of FIG. 19 may apply a DC voltage VDC to the first alignment pad AP1 and apply a ground voltage GND to the second alignment pad AP2.
  • the oscillator CONV may convert the DC voltage VDC provided through the third power line PL3 into an AC voltage and provide it to the first alignment line AL1 and the first electrode ELT1.
  • An electric field may be formed in the pixel area PXA by the AC voltage applied between the first electrode ELT1 and the second electrode ELT1. Accordingly, the light-emitting elements LD may self-align between the first and second electrodes ELT1 and ELT2 of the pixel area PXA.
  • the method of FIG. 19 may sequentially or simultaneously perform supply and alignment of the light emitting devices LD.
  • a predetermined voltage is supplied to the first and second electrodes ELT1 and ELT2 of the pixel region PXA.
  • the light-emitting elements LD may be aligned.
  • the method of FIG. 19 is applied to the first and second electrodes ELT1 and ELT2 of the pixel area PXA after supplying the light emitting elements LD to the pixel area PXA.
  • the light emitting devices LD may be aligned by supplying a voltage of. That is, in the present invention, the order and/or the method of supplying and arranging the light emitting devices LD are not particularly limited.
  • the method of FIG. 19 may separate the first and/or second electrodes ELT1 and ELT2 between the pixel regions PXA (S1940). ). Accordingly, the pixel PXL can be independently driven.
  • the method of FIG. 19 cuts the connection between the first electrodes ELT1 connected to each other between the pixel regions PXA, thereby replacing the first electrodes ELT1 with the pixel PXL. You can separate them.
  • the method of FIG. 19 may separate or remove the first alignment line AL1 from the pixels PXL of the display area DA.
  • the method of FIG. 19 is used to connect the second electrodes ELT2 to each other between the pixel regions PXA. You can keep it connected without removing it.
  • the method of FIG. 19 may separate or remove the second alignment line AL2 from the pixels PXL of the display area DA, but is not limited thereto.
  • the second alignment line AL2 may be kept connected to the pixels PXL in the display area DA.
  • the method of FIG. 19 may electrically connect the light emitting elements LD to the first and second electrodes ELT1 and ELT2 (S1950).
  • first and second contact electrodes CNE1 and CNE2 are formed on both ends of the light emitting devices LD, respectively, so that both ends of the light emitting devices LD are first and It may be physically and/or electrically connected to the second electrodes ELT1 and ELT2.
  • each pixel area PXA as shown in FIG. 20D each pixel area PXA as shown in FIG. 20D
  • the separation process of the first and/or second electrodes ELT1 and ELT2 shown in FIG. 20C and the formation process of the first and second contact electrodes CNE1 and CNE2 shown in FIG. 20D are opposite. It can also be done in order.
  • first and second contact electrodes CNE1 and CNE2 are first formed as shown in FIG. 20D, between the pixel regions PXA as shown in FIG. 20C.
  • the first electrodes ELT1 may be separated from each other.
  • the method of FIG. 19 may form a protective layer (eg, a third insulating layer INS3, an overcoat layer described with reference to FIG. 10) for protecting the plurality of light emitting devices LD.
  • a protective layer eg, a third insulating layer INS3, an overcoat layer described with reference to FIG. 10.
  • the method of FIG. 19 may remove the oscillator CONV by cutting the original substrate 100 (S1960).
  • the method of FIG. 19 may perform a cutting process along the scribing line SCL.
  • a display panel and a display device including the display panel
  • the display panel PNL shown in FIG. 18 may be manufactured.
  • the present invention is not limited thereto, and the display panel PNL shown in FIGS. 4, 8 and 14 may be manufactured according to the arrangement position of the oscillator CONV.
  • 21 is a diagram illustrating a method of manufacturing a display device according to another exemplary embodiment of the present invention.
  • the method of FIG. 19 may apply an AC voltage VAC to the first alignment line AL1 in the step of aligning the light emitting elements LD.
  • the AC voltage VAC applied from the outside to the first alignment line AL1 may have substantially the same amplitude and waveform as the AC voltage provided from the oscillator CONV to the first alignment line AL1.
  • the ledger substrate 100 further includes a third alignment pad AP3 disposed in one area (eg, an edge area), and the first alignment line AL1 includes a third alignment pad ( AP3) can be connected.
  • a third alignment pad AP3 disposed in one area (eg, an edge area)
  • the first alignment line AL1 includes a third alignment pad ( AP3) can be connected.
  • the method of FIG. 19 applies a DC voltage VDC to the first alignment pad AP1, applies a ground voltage GND to the second alignment pad AP2, and applies the ground voltage GND to the third alignment pad AP3.
  • AC voltage (VAC) can be applied.
  • the AC voltage finally applied to the second pixel ELT2 may appear uniformly over the whole of the ledger substrate 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

표시 장치는 기판을 포함한다. 화소들은 기판 상에 배치되며, 각각 제1 전극, 제2 전극 및 상기 제1 및 제2 전극들 사이에 연결된 복수의 발광 소자들을 포함한다. 제1 발진기는 기판 상에 배치되며, 화소들 중 제1 화소의 제1 전극에 연결되고, 적어도 하나의 트랜지스터 및 적어도 하나의 커패시터를 포함한다.

Description

표시 장치 및 이의 제조 방법
본 발명의 실시예는 표시 장치 및 표시 장치의 제조 방법에 관한 것이다.
최근, 신뢰성이 높은 무기 결정 구조의 재료를 이용하여 초소형의 발광 소자를 제조하고, 상기 발광 소자를 이용하여 발광 장치를 제조하는 기술이 개발되고 있다. 예를 들어, 나노 스케일 내지 마이크로 스케일 정도로 작은 크기를 가지는 초소형의 발광 소자들을 이용하여 발광 장치의 광원을 구성하는 기술이 개발되고 있다. 이러한 발광 장치는 표시 장치나 조명 장치와 같은 각종 전자 장치에 이용될 수 있다.
발광 소자들이 기판 상에 공급된 후, 전극들에 소정의 전압이 공급되면, 전극들 사이에 전계가 형성되면서 발광 소자들이 전극들 사이에서 자가 정렬한다.
다만, 전극들에 공급되는 전압은 강하되고, 이에 따라 발광 소자들은 기판 전체에 걸쳐 균일하게 정렬되지 않을 수 있다.
본 발명이 이루고자 하는 기술적 과제는, 균일하게 정렬된 발광 소자들을 포함하는 표시 장치를 제공하는 것이다.
본 발명이 이루고자 하는 기술적 과제는, 발광 소자들을 균일하게 정렬할 수 있는 표시 장치의 제조 방법을 제공하는 것이다.
본 발명의 일 목적을 달성하기 위하여, 본 발명의 실시예들에 따른 표시 장치는, 기판; 상기 기판 상에 배치되며, 각각 제1 전극, 제2 전극 및 상기 제1 및 제2 전극들 사이에 연결된 복수의 발광 소자들을 포함하는 화소들; 및 상기 기판 상에 배치되며, 상기 화소들 중 제1 화소의 제1 전극에 연결되고, 적어도 하나의 트랜지스터 및 적어도 하나의 커패시터를 포함하는 제1 발진기를 포함한다.
일 실시예에 의하면, 상기 제1 화소의 제1 전극은 상기 화소들 중 제2 화소의 제1 전극과 분리되고, 상기 제1 발진기는 상기 제2 화소와 전기적으로 연결되지 않을 수 있다.
일 실시예에 의하면, 상기 기판은 영상이 표시되는 표시 영역 및 상기 표시 영역의 일측에 위치하는 비표시 영역을 포함하고, 상기 제1 화소들은 상기 표시 영역에 배치되며, 상기 제1 발진기는 상기 비표시 영역에 배치될 수 있다.
일 실시예에 의하면, 상기 표시 장치는, 상기 비표시 영역에 배치되는 제2 발진기 및 제3 발진기를 더 포함하고, 상기 제1 발진기, 상기 제2 발진기 및 상기 제3 발진기는 상기 표시 영역의 가장자리를 따라 등간격으로 배치될 수 있다.
일 실시예에 의하면, 상기 표시 장치는, 상기 기판 상에 배치되고 상호 분리된 제1 전원선, 제2 전원선, 제3 전원선 및 제4 전원선을 더 포함하고, 상기 화소들 각각은 상기 제1 전원선 및 상기 제2 전원선 사이에 연결되며, 상기 제1 발진기는 상기 제3 전원선 및 상기 제4 전원선에 연결되며, 상기 제3 전원선 및 상기 제4 전원선 각각은 플로팅 상태일 수 있다.
일 실시예에 의하면, 상기 제1 전원선, 상기 제2 전원선, 상기 제3 전원선, 상기 제4 전원선, 및 상기 제1 발진기는 화소 회로층에 포함되고, 상기 제1 전극 및 상기 제2 전극은 상기 화소 회로층 상에 상호 이격되어 배치되며, 상기 발광 소자들은 상기 제1 전극 및 상기 제2 전극 사이에 배치될 수 있다.
일 실시예에 의하면, 상기 표시 장치는, 상기 화소 회로층 상에 상기 제1 발진기의 적어도 하나의 커패시터와 중첩하여 배치되고 상기 적어도 하나의 커패시터와 연결되는 전극 패턴을 더 포함하고, 상기 전극 패턴과 상기 제1 화소의 제1 전극으로부터 분리되어 형성될 수 있다.
일 실시예에 의하면, 상기 표시 장치는, 상기 표시 영역에 배치되는 제2 발진기를 더 포함할 수 있다.
일 실시예에 의하면, 상기 제1 발진기는 상기 화소들 사이에 배치될 수 있다.
일 실시예에 의하면, 상기 발광 소자들 각각은, 나노 스케일 내지 마이크로 스케일의 크기를 가진 발광 다이오드일 수 있다.
일 실시예에 의하면, 상기 표시 장치는, 상기 기판 상에 배치된 제1 전원선 및 제2 전원선을 더 포함하고, 상기 제1 발진기는, 적어도 하나의 스테이지를 포함하고, 상기 적어도 하나의 스테이지 각각은, 상기 제1 전원선에 연결되는 제1 전극, 제1 노드에 연결되는 제2 전극, 및 입력단과 연결되는 게이트 전극을 포함하는 제1 트랜지스터; 상기 제1 노드에 연결되는 제1 전극, 상기 제2 전원선에 연결되는 제2 전극, 및 상기 입력단에 연결되는 게이트 전극을 포함하는 제2 트랜지스터; 및 상기 제1 노드 및 상기 제2 전원선 사이에 직렬 연결되는 제1 저항 및 제1 커패시터를 포함하고, 상기 제1 저항 및 제1 커패시터가 연결된 제2 노드는 출력단으로서 상기 입력단과 전기적으로 연결될 수 있다.
일 실시예에 의하면, 상기 제1 발진기는, 제1, 제2 및 제3 스테이지들을 포함하고, 상기 제1 스테이지의 출력단은 상기 제2 스테이지의 입력단에 연결되며, 상기 제2 스테이지의 출력단은 상기 제3 스테이지의 입력단에 연결되고, 상기 제3 스테이지의 출력단은 상기 제1 스테이지의 입력단에 연결될 수 있다.
본 발명의 일 목적을 달성하기 위하여, 본 발명의 실시예들에 따른 표시 장치는, 기판; 상기 기판 상에 배치되며, 각각 제1 전극, 제2 전극 및 상기 제1 및 제2 전극들 사이에 연결된 복수의 발광 소자들을 포함하는 화소들; 및 상기 기판 상에서 상호 화소들 사이에 배치되되, 상기 화소들과 전기적으로 분리되고, 적어도 하나의 트랜지스터 및 적어도 하나의 커패시터를 포함하는 발진기를 포함할 수 있다.
본 발명의 일 목적을 달성하기 위하여, 본 발명의 실시예들에 따른 표시 장치의 제조 방법은, 발진기를 포함하는 화소 회로층, 상기 발진기와 전기적으로 연결되되 상기 화소 회로층 상에 형성된 제1 전극, 및 상기 화소 회로층 상에 형성된 제2 전극을 포함하는 기판을 준비하는 단계; 상기 제1 전극 및 상기 제2 전극 사이에 발광 소자들을 공급하는 단계; 및 상기 발진기에 직류전압을 인가하여 상기 제1 전극 및 상기 제2 전극 사이에서 발광 소자들을 정렬시키는 단계를 포함할 수 있다.
일 실시예에 의하면, 발진기는 상기 직류전압을 교류전압으로 변환하여, 상기 제1 전극에 공급할 수 있다.
일 실시예에 의하면, 상기 발광 소자들을 정렬시키는 단계는, 상기 발진기에 직류전압을 인가함과 동시에, 상기 제2 전극에 접지 전압을 인가하는 단계를 더 포함할 수 있다.
일 실시예에 의하면, 상기 표시 장치의 제조 방법은, 상기 제1 전극을 화소 영역별로 분할하고, 상기 제1 전극을 상기 발진기의 출력단로부터 분리시키는 단계를 더 포함할 수 있다.
일 실시예에 의하면, 상기 표시 장치의 제조 방법은, 상기 발광 소자들 각각의 일단을 상기 제1 전극에 연결하는 제1 콘택 전극 및 상기 발광 소자들 각각의 타단을 상기 제2 전극에 전기적으로 연결하는 제2 콘택 전극을 형성하는 단계를 더 포함할 수 있다.
일 실시예에 의하면, 상기 표시 장치의 제조 방법은, 상기 제1 전극과 상기 발진기 사이에서 상기 기판을 절단하여 상기 발진기를 제거하는 단계를 더 포함할 수 있다.
일 실시예에 의하면, 상기 발광 소자들을 정렬시키는 단계는, 외부 교류 전원으로부터 상기 제1 전극에 교류 전압을 인가하는 단계를 더 포함할 수 있다.
본 발명의 실시예에 따른 표시 장치 및 표시 장치의 제조 방법은, 표시 패널에 인가되는 직류 전압을 발진기를 통해 교류 전압으로 변환하여 전원선에 공급함으로써, 화소별로 일정한 크기의 교류 전압이 공급되고, 표시 패널 전체에 걸쳐 발광 소자들은 균일하게 정렬될 수 있다.
도 1a 및 도 1b는 본 발명의 일 실시예에 따른 발광 소자를 나타내는 사시도 및 단면도이다.
도 2a 및 도 2b는 본 발명의 다른 실시예에 따른 발광 소자를 나타내는 사시도 및 단면도이다.
도 3a 및 도 3b는 본 발명의 또 다른 실시예에 의한 발광 소자를 나타내는 사시도 및 단면도이다.
도 4는 본 발명의 일 실시예에 따른 표시 장치를 나타내는 평면도이다.
도 5a 내지 도 5c는 도 4의 표시 장치에 포함된 서브 화소의 일 예를 나타내는 회로도들이다.
도 6a 내지 도 6d는 도 4의 표시 장치에 포함된 발진기의 일 예를 나타내는 회로도들이다.
도 7은 도 4의 제1 영역을 확대한 표시 장치의 일 예를 나타내는 평면도이다.
도 8은 도 7의 제2 영역을 확대한 서브 화소의 일 예를 나타내는 평면도이다.
도 9a 내지 도 9d는 도 7의 I-I'선 및 도 8의 II-II'선을 따라 자른 서브 화소의 일 예를 나타내는 단면도들이다.
도 10은 도 7의 I-I'선 및 도 8의 II-II'선을 따라 자른 서브 화소의 다른 예를 나타내는 단면도이다.
도 11은 본 발명의 다른 실시예에 따른 표시 장치를 나타내는 평면도이다.
도 12는 도 11의 제1 영역을 확대한 표시 장치의 일 예를 나타내는 평면도이다.
도 13은 도 12의 I-I'선 및 II-II'선을 따라 자른 서브 화소의 일 예를 나타내는 단면도이다.
도 14는 본 발명의 다른 실시예에 따른 표시 장치를 나타내는 평면도이다.
도 15는 도 14의 제3 영역을 확대한 표시 장치의 일 예를 나타내는 평면도이다.
도 16은 본 발명의 또 다른 실시예에 따른 표시 장치를 나타내는 평면도이다.
도 17a 내지 도 17c는 본 발명의 일 실시예에 따른 원장 기판의 일 예를 나타내는 평면도들이다.
도 18은 도 17a 내지 도 17c의 원장 기판들에 포함된 표시 패널의 일 예를 나타내는 평면도이다.
도 19는 본 발명의 다른 실시예에 따른 표시 장치의 제조 방법을 나타내는 순서도이다.
도 20a 내지 도 20d는 도 19의 표시 장치의 제조 방법을 설명하는 도면들이다.
도 21은 본 발명의 다른 실시예에 따른 표시 장치의 제조 방법을 설명하는 도면이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예를 도면에 예시하고 본문에 상세하게 설명하고자 한다. 다만, 본 발명은 이하에서 개시되는 실시예에 한정되지는 않으며, 다양한 형태로 변경되어 실시될 수 있을 것이다.
한편, 도면에서 본 발명의 특징과 직접적으로 관계되지 않은 일부 구성 요소는 본 발명을 명확하게 나타내기 위하여 생략되었을 수 있다. 또한, 도면 상의 일부 구성 요소는 그 크기나 비율 등이 다소 과장되어 도시되었을 수 있다. 도면 전반에서 동일 또는 유사한 구성 요소들에 대해서는 비록 다른 도면 상에 표시되더라도 가능한 한 동일한 참조 번호 및 부호를 부여하고, 중복되는 설명은 생략하기로 한다.
도 1a 및 도 1b는 본 발명의 일 실시예에 따른 발광 소자를 나타내는 사시도 및 단면도이다. 도 1a 및 도 1b에서 원 기둥 형상의 막대형 발광 소자(LD)가 도시되었으나, 본 발명에 의한 발광 소자(LD)의 종류 및/또는 형상이 이에 한정되는 것은 아니다.
도 1a 및 도 1b를 참조하면, 발광 소자(LD)는, 제1 도전형 반도체층(11) 및 제2 도전형 반도체층(13)과, 제1 및 제2 도전형 반도체층들(11, 13)의 사이에 개재된 활성층(12)을 포함할 수 있다. 일 예로, 발광 소자(LD)는 일 방향을 따라 제1 도전형 반도체층(11), 활성층(12) 및 제2 도전형 반도체층(13)이 순차적으로 적층된 적층체로 구성될 수 있다.
실시예에 따라, 발광 소자(LD)는 일 방향을 따라 연장된 막대 형상으로 제공될 수 있다. 발광 소자(LD)는 일 방향을 따라 일측 단부와 타측 단부를 가질 수 있다.
실시예에 따라, 발광 소자(LD)의 일측 단부에는 제1 및 제2 도전형 반도체층들(11, 13) 중 하나가 배치되고, 발광 소자(LD)의 타측 단부에는 제1 및 제2 도전형 반도체층들(11, 13) 중 나머지 하나가 배치될 수 있다.
실시예에 따라, 발광 소자(LD)는 막대 형상으로 제조된 막대형 발광 다이오드일 수 있다. 여기서, 막대 형상은 원 기둥 또는 다각 기둥 등과 같이 폭 방향보다 길이 방향으로 긴(즉, 종횡비가 1보다 큰) 로드 형상(rod-like shape), 또는 바 형상(bar-like shape)을 포괄하며, 그 단면의 형상이 특별히 한정되지는 않는다. 예를 들어, 발광 소자(LD)의 길이(L)는 그 직경(D)(또는, 횡단면의 폭)보다 클 수 있다.
실시예에 따라, 발광 소자(LD)는 나노 스케일 내지 마이크로 스케일 정도로 작은 크기, 일 예로 나노 스케일 또는 마이크로 스케일 범위의 직경(D) 및/또는 길이(L)를 가질 수 있다. 다만, 발광 소자(LD)의 크기가 이에 한정되는 것은 아니다. 예를 들어, 발광 소자(LD)를 이용한 발광 장치를 광원으로 이용하는 각종 장치, 일 예로 표시 장치 등의 설계 조건에 따라 발광 소자(LD)의 크기는 다양하게 변경될 수 있다.
제1 도전형 반도체층(11)은 적어도 하나의 n형 반도체층을 포함할 수 있다. 예를 들어, 제1 도전형 반도체층(11)은 InAlGaN, GaN, AlGaN, InGaN, AlN, InN 중 하나의 반도체 재료를 포함하며, Si, Ge, Sn 등과 같은 제1 도전성 도펀트가 도핑된 n형 반도체층을 포함할 수 있다. 다만, 제1 도전형 반도체층(11)을 구성하는 물질이 이에 한정되는 것은 아니며, 이 외에도 다양한 물질이 제1 도전형 반도체층(11)을 구성할 수 있다.
활성층(12)은 제1 도전형 반도체층(11) 상에 배치되며, 단일 또는 다중 양자 우물 구조로 형성될 수 있다. 일 실시예에서, 활성층(12)의 상부 및/또는 하부에는 도전성 도펀트가 도핑된 클래드층(미도시)이 형성될 수도 있다. 일 예로, 클래드층은 AlGaN층 또는 InAlGaN층으로 형성될 수 있다. 실시예에 따라, AlGaN, AlInGaN 등의 물질이 활성층(12)을 형성하는 데에 이용될 수 있으며, 이 외에도 다양한 물질이 활성층(12)을 구성할 수 있다.
발광 소자(LD)의 양단에 문턱 전압 이상의 전압이 인가 되면, 활성층(12)에서 전자-정공 쌍이 결합하면서 발광 소자(LD)가 발광할 수 있다. 이러한 원리를 이용하여 발광 소자(LD)의 발광을 제어함으로써, 발광 소자(LD)는 표시 장치의 화소를 비롯한 다양한 발광 장치의 광원으로 이용될 수 있다.
제2 도전형 반도체층(13)은 활성층(12) 상에 배치되며, 제1 도전형 반도체층(11)의 타입과 상이한 타입의 반도체층을 포함할 수 있다. 일 예로, 제2 도전형 반도체층(13)은 적어도 하나의 p형 반도체층을 포함할 수 있다. 예를 들어, 제2 도전형 반도체층(13)은 InAlGaN, GaN, AlGaN, InGaN, AlN, InN 중 적어도 하나의 반도체 재료를 포함하며, Mg 등과 같은 제2 도전성 도펀트가 도핑된 p형 반도체층을 포함할 수 있다. 다만, 제2 도전형 반도체층(13)을 구성하는 물질이 이에 한정되는 것은 아니며, 이 외에도 다양한 물질이 제2 도전형 반도체층(13)을 구성할 수 있다.
실시예에 따라, 발광 소자(LD)는 표면에 제공된 절연성 피막(INF)을 더 포함할 수 있다. 절연성 피막(INF)은 적어도 활성층(12)의 외주면을 둘러싸도록 발광 소자(LD)의 표면에 형성될 수 있으며, 이외에도 제1 및 제2 도전형 반도체층들(11, 13)의 일 영역을 더 둘러쌀 수 있다. 다만, 절연성 피막(INF)은 서로 다른 극성을 가지는 발광 소자(LD)의 양 단부를 노출할 수 있다. 예를 들어, 절연성 피막(INF)은 길이 방향 상에서 발광 소자(LD)의 양단에 위치한 제1 및 제2 도전형 반도체층들(11, 13) 각각의 일단, 일 예로 원기둥의 두 평면(즉, 상부면 및 하부면)은 커버하지 않고 노출할 수 있다.
실시예에 따라, 절연성 피막(INF)은 이산화규소(SiO2), 질화규소(Si3N4), 산화알루미늄(Al2O3) 및 이산화타이타늄(TiO2) 중 적어도 하나의 절연 물질을 포함할 수 있으나, 이에 한정되지는 않는다. 즉, 절연성 피막(INF)의 구성 물질이 특별히 한정되지는 않으며, 상기 절연성 피막(INF)은 현재 공지된 다양한 절연 물질로 구성될 수 있다.
일 실시예에서, 발광 소자(LD)는 제1 도전형 반도체층(11), 활성층(12), 제2 도전형 반도체층(13) 및/또는 절연성 피막(INF) 외에도 추가적인 구성 요소를 더 포함할 수 있다. 예를 들면, 발광 소자(LD)는 제1 도전형 반도체층(11), 활성층(12) 및/또는 제2 도전형 반도체층(13)의 일단 측에 배치된 하나 이상의 형광체층, 활성층, 반도체층 및/또는 전극층을 추가적으로 포함할 수 있다.
도 2a 및 도 2b는 본 발명의 다른 실시예에 따른 발광 소자를 나타내는 사시도 및 단면도이다. 도 3a 및 도 3b는 본 발명의 또 다른 실시예에 의한 발광 소자를 나타내는 사시도 및 단면도이다.
도 2a 및 도 2b를 참조하면, 발광 소자(LD)는 제2 도전형 반도체층(13)의 일단 측에 배치되는 적어도 하나의 전극층(14)을 더 포함할 수 있다.
도 3a 및 도 3b를 참조하면, 발광 소자(LD)는 제1 도전형 반도체층(11)의 일단 측에 배치되는 적어도 하나의 다른 전극층(15)을 더 포함할 수도 있다.
전극층들(14, 15) 각각은 오믹(Ohmic) 컨택 전극일 수 있으나, 이에 한정되지는 않는다. 또한, 전극층들(14, 15) 각각은 금속 또는 도전성 금속 산화물을 포함할 수 있으며, 일 예로, 크롬(Cr), 타이타늄(Ti), 알루미늄(Al), 금(Au), 니켈(Ni), 이들의 산화물 또는 합금, ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide), ZnO(Zinc Oxide), ITZO(Indium Tin Zinc Oxide)와 같은 투명 전극 물질 등을 단독 또는 혼합하여 형성될 수 있다. 전극층들(14, 15)은 실질적으로 투명 또는 반투명할 수 있다. 이에 따라, 발광 소자(LD)에서 생성되는 빛이 전극층들(14, 15)을 투과하여 발광 소자(LD)의 외부로 방출될 수 있다.
실시예에 따라, 절연성 피막(INF)은 상기 전극층들(14, 15)의 외주면을 적어도 부분적으로 감싸거나, 또는 감싸지 않을 수 있다. 즉, 절연성 피막(INF)은 전극층들(14, 15)의 표면에 선택적으로 형성될 수 있다. 또한, 절연성 피막(INF)은 서로 다른 극성을 가지는 발광 소자(LD)의 양단을 노출하도록 형성되며, 일 예로 전극층들(14, 15)의 적어도 일 영역을 노출할 수 있다. 다만, 이에 한정되는 것은 아니며, 절연성 피막(INF)이 제공되지 않을 수도 있다.
발광 소자(LD)의 표면, 예를 들어, 활성층(12)의 표면에 절연성 피막(INF)이 제공됨으로써, 활성층(12)이 적어도 하나의 전극(예를 들어, 발광 소자(LD)의 양단에 연결되는 컨택 전극들 중 적어도 하나의 컨택 전극) 등과 단락되는 것이 방지될 수 있다. 이에 따라, 발광 소자(LD)의 전기적 안정성이 확보될 수 있다.
또한, 발광 소자(LD)의 표면에 절연성 피막(INF)이 형성됨으로써, 발광 소자(LD)의 표면 결함이 최소화되고, 발광 소자(LD)의 수명 및 효율이 향상될 수 있다. 나아가, 발광 소자(LD)에 절연성 피막(INF)이 형성됨으로써, 다수의 발광 소자들(LD)이 서로 밀접하여 배치되더라도, 발광 소자들(LD)의 사이에서 원하지 않는 단락이 방지될 수 있다.
일 실시예에서, 발광 소자(LD)는 표면 처리 과정(예를 들어, 코팅)을 거쳐 제조될 수 있다. 예를 들어, 다수의 발광 소자들(LD)이 유동성의 용액(또는, 용매)에 혼합되어 각각의 발광 영역(일 예로, 각 화소의 발광 영역)에 공급될 때, 발광 소자들(LD)이 용액 내에서 불균일하게 응집하지 않고 균일하게 분산될 수 있다. 여기서, 발광 영역은 발광 소자들(LD)에 의해 광이 발산되는 영역으로, 광이 발산되지 않는 비발광 영역과 구별될 수 있다.
실시예들에 따라, 소수성 재료를 이용하여 절연성 피막(INF) 자체를 소수성 막으로 형성하거나, 절연성 피막(INF) 상에 소수성 재료로 이루어진 소수성 피막을 추가적으로 형성할 수 있다. 실시예에 따라, 소수성 재료는 소수성을 나타내도록 불소를 함유하는 재료일 수 있다. 또한, 실시예에 따라, 소수성 재료는 자기조립 단분자막(self-assembled monolayer; SAM)의 형태로 발광 소자들(LD)에 적용될 수 있다. 이 경우, 소수성 재료는 옥타데실 트라이클로로실란(octadecyl trichlorosilane), 플루오로알킬 트라이클로로실란(fluoroalkyl trichlorosilane), 퍼플루오로알킬 트라이에톡시실란(perfluoroalkyl triethoxysilane) 등을 포함할 수 있다. 또한, 소수성 재료는 테플론(TeflonTM)이나 사이토프(CytopTM)와 같은 상용화된 불소 함유 재료이거나, 이에 상응하는 재료일 수 있다.
발광 소자(LD)를 포함한 발광 장치는, 표시 장치를 비롯하여 광원을 필요로 하는 다양한 종류의 장치에서 이용될 수 있다. 예를 들어, 표시 패널의 각 화소 영역에 적어도 하나의 초소형 발광 소자(LD), 일 예로 각각 나노 스케일 내지 마이크로 스케일의 크기를 가진 복수의 초소형 발광 소자들(LD)을 배치하고, 상기 초소형 발광 소자들(LD)을 이용하여 각 화소의 광원(또는, 광원 유닛)을 구성할 수 있다. 다만, 본 발명에서 발광 소자(LD)의 적용 분야가 표시 장치에 한정되지는 않는다. 예를 들어, 발광 소자(LD)는 조명 장치 등과 같이 광원을 필요로 하는 다른 종류의 장치에도 이용될 수 있다.
도 4는 본 발명의 일 실시예에 따른 표시 장치를 나타내는 평면도이다. 실시예에 따라, 도 4에는 도 1a 내지 도 3b에서 설명한 발광 소자들(LD)을 광원으로서 이용할 수 있는 장치의 일 예로서, 표시 장치, 특히, 표시 장치에 구비되는 표시 패널(PNL)이 도시되어 있다. 실시예에 따라, 도 4에는 표시 영역(DA)을 중심으로 표시 패널(PNL)의 구조가 간략하게 도시되어 있다. 다만, 실시예에 따라서는 도시되지 않은 적어도 하나의 구동 회로부(일 예로, 주사 구동부 및 데이터 구동부 중 적어도 하나) 및/또는 복수의 배선들이 표시 패널(PNL)에 더 배치될 수도 있다.
도 4를 참조하면, 표시 패널(PNL)은, 베이스 층(SUB1)(또는, 기판)과, 베이스 층(SUB1) 상에 배치된 전원선들(PL0, PL1, PL2, PL3), 화소(PXL), 및 발진기들(CONV1 내지 CONV6)(oscillators)(또는, 발진 회로들, 변환 회로들(converters))을 포함할 수 있다.
표시 패널(PNL) 및 베이스 층(SUB1)은, 영상이 표시되는 표시 영역(DA)과, 표시 영역(DA)을 제외한 비표시 영역(NDA)을 포함할 수 있다.
실시예에 따라, 표시 영역(DA)은 표시 패널(PNL)의 중앙 영역에 배치되고, 비표시 영역(NDA)은 표시 영역(DA)을 둘러싸도록 표시 패널(PNL)의 가장자리를 따라 배치될 수 있다. 다만, 표시 영역(DA) 및 비표시 영역(NDA)의 위치가 이에 한정되지는 않으며, 이들의 위치는 변경될 수도 있다.
베이스 층(SUB1)은 표시 패널(PNL)의 베이스 부재를 구성할 수 있다. 예를 들어, 베이스 층(SUB1)은 하부 패널(예를 들어, 표시 패널(PNL)의 하판)의 베이스 부재를 구성할 수 있다.
실시예에 따라, 베이스 층(SUB1)은 경성 기판 또는 가요성 기판일 수 있으며, 그 재료나 물성이 특별히 한정되지는 않는다. 일 예로, 베이스 층(SUB1)은 유리 또는 강화 유리로 구성된 경성 기판, 또는 플라스틱 또는 금속 재질의 박막 필름으로 구성된 가요성 기판일 수 있다. 또한, 베이스 층(SUB1)은 투명 기판일 수 있으나 이에 한정되지는 않는다. 일 예로, 베이스 층(SUB1)은 반투명 기판, 불투명 기판, 또는 반사성 기판일 수도 있다.
베이스 층(SUB1) 상의 일 영역은 표시 영역(DA)으로 규정되어 화소들(PXL)이 배치되고, 나머지 영역은 비표시 영역(NDA)으로 규정된다. 일 예로, 베이스 층(SUB1)은, 화소(PXL)가 형성되는 복수의 화소 영역들을 포함한 표시 영역(DA)과, 표시 영역(DA)의 외곽에 배치되는 비표시 영역(NDA)을 포함할 수 있다. 비표시 영역(NDA)에는 발진기들(CONV1 내지 CONV6), 표시 영역(DA)의 화소들(PXL)에 연결되는 각종 배선들 및/또는 내장 회로부가 배치될 수 있다.
제1 전원선(PL1)은 제2 방향(DR2)으로 표시 영역(DA)을 가로질러 연장하며, 제1 방향(DR1)을 따라 반복적으로 배열될 수 있다. 제1 전원선(PL1)은 모든 화소들(PXL)과 연결되는 공통 배선이고, 제1 전원선(PL1)에는 제1 전원(VDD)(또는, 제1 전원전압)이 인가될 수 있다.
유사하게, 제2 전원선(PL2)은 제2 방향(DR2)으로 표시 영역(DA)을 가로질러 연장하며, 제1 방향(DR1)을 따라 반복적으로 배열될 수 있다. 제2 전원선(PL2)은 공통 배선이며, 제2 전원선(PL2)에는 제2 전원(VSS)(또는, 제2 전원전압)이 인가될 수 있다. 여기서, 제1 및 제2 전원들(VDD, VSS)은 서로 다른 전압 레벨을 가질 수 있다. 예를 들어, 제1 전원(VDD)은 제2 전원(VSS)보다 높은 전압 레벨을 가질 수 있다.
제3 전원선(PL3)은 비표시 영역(NDA)에 배치될 수 있다. 제3 전원선(PL3)은 표시 영역(DA)을 에워싸며 폐루프를 형성할 수 있으나, 이에 한정되는 것은 아니다. 제3 전원선(PL3)에는 표시 패널(PNL)의 제조 과정(예를 들어, 화소(PXL) 내 발광 소자(LD)의 공급 및 정렬 과정)에서 직류 전압(VDC)(또는, 직류 정렬 전압, 직류 전원전압)이 인가될 수 있다.
기준 전원선(PL0)(또는, 제4 전원선)은 비표시 영역(NDA)에 배치될 수 있다. 기준 전원선(PL0)에는 기준 전압(GND)(또는, 그라운드 전압)이 인가되거나, 접지될 수 있다. 다만, 기준 전원선(PL0)이 이에 한정되는 것은 아니다. 예를 들어, 기준 전원선(PL0)은 제2 전원선(PL2)과 연결되고, 표시 패널(PNL)의 제조 과정에서, 제2 전원선(PL2)을 통해 기준 전원선(PL0)에 기준 전압(GND)이 인가될 수도 있다.
화소(PXL)는 제1 전원선(PL1) 및 제2 전원선(PL2) 사이에 전기적으로 연결되고 해당 주사 신호 및 데이터 신호에 의해 구동되는 적어도 하나의 발광 소자(LD), 일 예로 도 1a 내지 도 3b의 실시예들 중 어느 하나의 실시예에 의한 적어도 하나의 막대형 발광 다이오드를 포함할 수 있다. 예를 들어, 화소(PXL)는, 나노 스케일 내지 마이크로 스케일 정도로 작은 크기를 가지며 제1 전원선(PL1) 및 제2 전원선(PL2) 사이에 서로 병렬로 연결된 복수의 막대형 발광 다이오드들을 포함할 수 있다. 복수의 막대형 발광 다이오드들은 화소(PXL)의 광원을 구성할 수 있다.
또한, 화소(PXL)는 복수의 서브 화소들(SPX1, SPX2, SPX3)을 포함할 수 있다. 일 예로, 화소(PXL)는 제1 서브 화소(SPX1), 제2 서브 화소(SPX2) 및 제3 서브 화소(SPX3)를 포함할 수 있다.
실시예에 따라, 제1 내지 제3 서브 화소들(SPX1, SPX2, SPX3)은 서로 다른 색상들로 발광할 수 있다. 일 예로, 제1 서브 화소(SPX1)는 적색으로 발광하는 적색 서브 화소일 수 있고, 제2 서브 화소(SPX2)는 녹색으로 발광하는 녹색 서브 화소일 수 있으며, 제3 서브 화소(SPX3)는 청색으로 발광하는 청색 서브 화소일 수 있다. 다만, 화소(PXL)를 구성하는 서브 화소들의 색상, 종류 및/또는 개수 등이 특별히 한정되지는 않으며, 일 예로 각각의 서브 화소들이 발하는 광의 색상은 다양하게 변경될 수 있다. 또한, 도 4에서는 표시 영역(DA)에서 화소(PXL)가 스트라이프 형태로 배열되는 실시예를 도시하였으나, 본 발명이 이에 한정되지는 않는다. 예를 들어, 화소(PXL)는 현재 공지된 다양한 화소 배열 형태를 가지고 배치될 수 있다.
일 실시예에서, 화소(PXL)(또는, 서브 화소들 각각)는 능동형 화소로 구성될 수 있다. 다만, 본 발명의 표시 장치에 적용될 수 있는 화소(PXL)의 종류, 구조 및/또는 구동 방식이 특별히 한정되지는 않는다. 예를 들어, 화소(PXL)는 현재 공지된 다양한 수동형 또는 능동형 구조를 가진 표시 장치의 화소로 구성될 수 있다.
발진기들(CONV1 내지 CONV6) 각각은 기준 전원선(PL0) 및 제3 전원선(PL3) 사이에 연결되고, 제3 전원선(PL3)을 통해 제공되는 직류 전압(VDC)(또는, 제3 전원선(PL3) 및 기준 전원선(PL0) 사이에 걸리는 직류 전압)을 교류 전압으로 변환할 수 있다. 예를 들어, 발진기들(CONV1 내지 CONV6) 각각은 표시 패널(PNL)의 제조 공정 중 발광 소자(LD)의 정렬 공정에서, 제3 전원선(PL3)을 통해 제공되는 직류 전압(VDC)을 교류 전압으로 변환하여 화소들(PXL)에 공급할 수 있다. 한편, 표시 장치(또는, 표시 패널(PNL))가 턴온되어 영상을 표시하는 경우, 제3 전원선(PL3)은 플로팅되거나, 제3 전원선(PL3)에는 어떤 전압도 인가되지 않을 수 있다. 유사하게, 기준 전원선(PL0)에도 전압이 인가되지 않을 수도 있다.
발진기들(CONV1 내지 CONV6)은 베이스 층(SUB1)의 비표시 영역(NDA)에 배치될 수 있다.
실시예들에서, 발진기들(CONV1 내지 CONV6)은 베이스 층(SUB1) 상에서 상호 대칭하여 배치되거나, 등간격으로 배치될 수 있다. 예를 들어, 제1 발진기(CONV1)는 외부로부터 직류 전압(VDC)이 인가되는 표시 패널(PNL)의 일 지점에 인접하여 배치되고, 제1 발진기(CONV1)는 표시 패널(PNL)의 면적 중심을 기준으로 제1 발진기(CONV1)에 대응하여 배치될 수 있다. 제3 및 제4 발진기들(CONV3, CONV4)은 제1 및 제2 발진기들(CONV1, CONV2)과 좌우 대칭(또는, 상하 대칭)이 되도록 각각 배치될 수 있다. 제5 발진기(CONV5)는 제1 발진기(CONV1) 및 제4 발진기(CONV4) 사이에 배치되고, 제6 발진기(CONV6)는 제2 발진기(CONV2) 및 제3 발진기(CONV3) 사이에 배치될 수 있다. 다른 예를 들어, 발진기들(CONV1 내지 CONV6)은 표시 영역(DA)의 가장자리를 따라 비표시 영역(NDA)에서 상호 등간격(예를 들어, 약 2.5inch 간격)으로 배치될 수도 있다.
발진기들(CONV1 내지 CONV6)은 비표시 영역(NDA)에서 상호 대칭을 이루도록 배치되거나, 표시 영역(DA)의 가장자리를 따라 등간격으로 배치됨으로써, 발진기들(CONV1 내지 CONV6)을 통해 표시 패널(PNL) 전체에 균일한 교류 전압이 공급될 수 있다.
한편, 도 4에서 표시 패널(PNL)은 비표시 영역(NDA)에 배치된 6개의 발진기들(CONV1 내지 CONV6)을 포함하는 것으로 도시되어 있으나, 이는 발진기들(CONV1 내지 CONV6)이 다양한 위치들에 배치될 수 있음을 예시적으로 설명하기 위한 것으로, 표시 패널(PNL)이 이에 한정되는 것은 아니다. 예를 들어, 표시 패널(PNL)은 2개 내지 5개, 7개 이상의 발진기들을 포함할 수 있고, 발진기들 중 적어도 하나는 표시 영역(DA)에 배치될 수도 있다.
도 5a 내지 도 5c는 도 4의 표시 장치에 포함된 서브 화소의 일 예를 나타내는 회로도들이다. 도 5a 내지 도 5c에 도시된 서브 화소(SPX)는 도 4의 표시 패널(PNL)에 구비된 제1, 제2 및 제3 서브 화소들(SPX1, SPX2, SPX3) 중 어느 하나일 수 있으며, 제1, 제2 및 제3 서브 화소들(SPX1, SPX2, SPX3)은 실질적으로 동일 또는 유사한 구조를 가질 수 있다. 따라서, 도 5a 내지 도 5c에서는 제1, 제2 및 제3 서브 화소들(SPX1, SPX2, SPX3)을 포괄하여 서브 화소(SPX)로 지칭하기로 한다.
먼저 도 5a를 참조하면, 서브 화소(SPX)는 데이터 신호에 대응하는 휘도로 발광하는 광원 유닛(LSU)을 포함한다. 또한, 서브 화소(SPX)는, 광원 유닛(LSU)을 구동하기 위한 화소 회로(PXC)를 선택적으로 더 포함할 수 있다.
실시예에 따라, 광원 유닛(LSU)은 제1 전원(VDD)과 제2 전원(VSS)의 사이에 전기적으로 연결된 복수의 발광 소자들(LD)을 포함할 수 있다. 일 실시예에서, 발광 소자들(LD)은 서로 병렬로 연결될 수 있으나, 이에 한정되지는 않는다. 예를 들어, 제1 전원(VDD)과 제2 전원(VSS)의 사이에, 복수의 발광 소자들(LD)이 직/병렬 혼합 구조로 연결될 수도 있다.
제1 및 제2 전원들(VDD, VSS)은 발광 소자들(LD)이 발광할 수 있도록 서로 다른 전위를 가질 수 있다. 예를 들어, 제1 전원(VDD)은 고전위 전원으로 설정되고, 제2 전원(VSS)은 저전위 전원으로 설정될 수 있다. 여기서, 제1 및 제2 전원들(VDD, VSS)의 전위 차는 적어도 서브 화소(SPX)의 발광 기간 동안 발광 소자들(LD)의 문턱 전압 이상으로 설정될 수 있다.
한편, 도 5a에서는 발광 소자들(LD)이 제1 전원(VDD)과 제2 전원(VSS)의 사이에 서로 동일한 방향(일 예로, 순방향)으로 병렬 연결된 실시예를 도시하였으나, 본 발명이 이에 한정되지는 않는다. 예를 들어, 발광 소자들(LD) 중 일부는 제1 및 제2 전원들(VDD, VSS)의 사이에 제1 방향(일 예로, 순방향)으로 연결되어 각각의 유효 광원을 구성하고, 다른 일부는 제2 방향(일 예로, 역방향)으로 연결될 수도 있다. 다른 예로, 적어도 하나의 서브 화소(SPX)가 단일의 발광 소자(LD)(예를 들어, 제1 및 제2 전원들(VDD, VSS)의 사이에 순방향으로 연결된 단일의 유효 광원)만을 포함할 수도 있다.
실시예에 따라, 발광 소자들(LD) 각각의 일 단부는, 제1 전극을 통해 해당 화소 회로(PXC)에 공통으로 접속되며, 화소 회로(PXC) 및 제1 전원선(PL1, 도 4 참조)을 통해 제1 전원(VDD)에 접속될 수 있다. 발광 소자들(LD) 각각의 다른 단부는, 제2 전극 및 제2 전원선(PL2, 도 4 참조)을 통해 제2 전원(VSS)에 공통으로 접속될 수 있다.
광원 유닛(LSU)은 해당 화소 회로(PXC)를 통해 공급되는 구동 전류에 대응하는 휘도로 발광할 수 있다. 이에 따라, 표시 영역(DA)에서 소정의 영상이 표시될 수 있다.
화소 회로(PXC)는 해당 서브 화소(SPX)의 주사선(Si) 및 데이터선(Dj)에 접속될 수 있다. 예를 들어, 서브 화소(SPX)가 표시 영역(DA)의 i번째 행 및 j번째 열에 배치된 경우, 서브 화소(SPX)의 화소 회로(PXC)는 표시 영역(DA)의 i번째 주사선(Si) 및 j번째 데이터선(Dj)에 접속될 수 있다. 화소 회로(PXC)는 제1 및 제2 트랜지스터들(T1, T2)과 스토리지 커패시터(Cst)를 포함할 수 있다.
제1 트랜지스터(T1, 또는, 구동 트랜지스터)는 제1 전원(VDD)과 광원 유닛(LSU) 사이에 접속될 수 있다. 제1 트랜지스터(T1)의 게이트 전극은 제1 노드(N1)에 접속될 수 있다. 제1 트랜지스터(T1)는 제1 노드(N1)의 전압에 대응하여 광원 유닛(LSU)으로 공급되는 구동 전류를 제어할 수 있다.
제2 트랜지스터(T2, 또는, 스위칭 트랜지스터)는 데이터선(Dj)과 제1 노드(N1)의 사이에 접속될 수 있다. 제2 트랜지스터(T2)의 게이트 전극은 주사선(Si)에 접속될 수 있다.
제2 트랜지스터(T2)는, 주사선(Si)으로부터 게이트-온 전압(예컨대, 로우 전압)의 주사 신호에 응답하여 턴-온되어, 데이터선(Dj)과 제1 노드(N1)를 전기적으로 연결할 수 있다.
프레임 기간마다 데이터선(Dj)으로 해당 프레임의 데이터 신호가 공급되고, 데이터 신호는 제2 트랜지스터(T2)를 경유하여 제1 노드(N1)로 전달될 수 있다. 이에 따라, 스토리지 커패시터(Cst)에는 데이터 신호에 대응하는 전압이 충전될 수 있다.
스토리지 커패시터(Cst)의 일 전극은 제1 전원(VDD)에 접속되고, 다른 전극은 제1 노드(N1)에 접속될 수 있다. 스토리지 커패시터(Cst)는 각각의 프레임 기간 동안 제1 노드(N1)로 공급되는 데이터 신호에 대응하는 전압을 충전하고, 다음 프레임의 데이터 신호가 공급될 때까지 충전된 전압을 유지할 수 있다.
한편, 도 5a에서는 화소 회로(PXC)에 포함되는 트랜지스터들, 일 예로, 제1 및 제2 트랜지스터들(T1, T2)이 모두 P타입의 트랜지스터들인 것으로 도시되어 있으나, 본 발명이 이에 한정되지는 않는다. 예를 들어, 제1 및 제2 트랜지스터들(T1, T2) 중 적어도 하나는 N타입의 트랜지스터로 변경될 수도 있다.
예를 들어, 도 5b에 도시된 바와 같이, 제1 및 제2 트랜지스터들(T1, T2)은 모두 N타입의 트랜지스터들일 수 있다. 이 경우, 각각의 프레임 기간 마다 데이터선(Dj)으로 공급되는 데이터 신호를 서브 화소(SPX)에 기입하기 위한 주사 신호의 게이트-온 전압은 하이 레벨 전압일 수 있다. 유사하게, 제1 트랜지스터(T1)를 턴-온시키기 위한 데이터 신호의 전압은 도 5a의 실시예와 상반된 파형의 전압일 수 있다. 일 예로, 도 5b의 실시예에서는 표현하고자 하는 계조 값이 클수록 보다 높은 전압 레벨을 가진 데이터 신호가 공급될 수 있다.
도 5b에 도시된 서브 화소(SPX)는, 트랜지스터 타입 변경에 따라 일부 회로 소자의 접속 위치 및 제어 신호들(일 예로, 주사 신호 및 데이터 신호)의 전압 레벨이 변경되는 것을 제외하고, 그 구성 및 동작이 도 5a의 서브 화소(SPX)와 실질적으로 유사하다. 따라서, 도 5b의 서브 화소(SPX)에 대한 상세한 설명은 생략하기로 한다.
한편, 화소 회로(PXC)의 구조가 도 5a 및 도 5b에 도시된 실시예에 한정되지는 않는다. 즉, 화소 회로(PXC)는 현재 공지된 다양한 구조 및/또는 구동 방식의 화소 회로로 구성될 수 있다. 예를 들어, 화소 회로(PXC)는 도 5c에 도시된 실시예와 같이 구성될 수도 있다.
도 5c를 참조하면, 화소 회로(PXC)는 해당 주사선(Si) 외에도 적어도 하나의 다른 주사선(또는, 제어선)에 더 접속될 수 있다. 예를 들어, 표시 영역(DA)의 i번째 행에 배치된 서브 화소(SPX)의 화소 회로(PXC)는 i-1번째 주사선(Si-1) 및/또는 i+1번째 주사선(Si+1)에 더 접속될 수 있다. 또한, 실시예에 따라 화소 회로(PXC)는 제1 및 제2 전원들(VDD, VSS) 외에 다른 전원에 더 연결될 수 있다. 예를 들어, 화소 회로(PXC)는 초기화 전원(Vint)에도 연결될 수 있다. 실시예에 따라, 화소 회로(PXC)는 제1 내지 제7 트랜지스터들(T1 내지 T7)과 스토리지 커패시터(Cst)를 포함할 수 있다.
제1 트랜지스터(T1)는 제1 전원(VDD)과 광원 유닛(LSU) 사이에 접속될 수 있다. 제1 트랜지스터(T1)의 일 전극(예를 들어, 소스 전극)은 제5 트랜지스터(T5) 및 제1 전원선(PL1)을 통해 제1 전원(VDD)에 접속되고, 제1 트랜지스터(T1)의 다른 전극(예를 들어, 드레인 전극)은 제6 트랜지스터(T6)를 경유하여 광원 유닛(LSU)의 일 전극(예를 들어, 해당 서브 화소(SPX)의 제1 전극)에 접속될 수 있다. 제1 트랜지스터(T1)의 게이트 전극은 제1 노드(N1)에 접속될 수 있다. 제1 트랜지스터(T1)는 제1 노드(N1)의 전압에 대응하여 광원 유닛(LSU)으로 공급되는 구동 전류를 제어할 수 있다.
제2 트랜지스터(T2)는 데이터선(Dj)과 제1 트랜지스터(T1)의 일 전극 사이에 접속될 수 있다. 제2 트랜지스터(T2)의 게이트 전극은 해당 주사선(Si)에 접속될 수 있다. 제2 트랜지스터(T2)는 주사선(Si)으로부터 게이트-온 전압의 주사 신호가 공급될 때 턴-온되어 데이터선(Dj)을 제1 트랜지스터(T1)의 일 전극에 전기적으로 연결할 수 있다. 따라서, 제2 트랜지스터(T2)가 턴-온되면, 데이터선(Dj)으로부터 공급되는 데이터 신호가 제1 트랜지스터(T1)로 전달될 수 있다.
제3 트랜지스터(T3)는 제1 트랜지스터(T1)의 다른 전극(예를 들어, 드레인 전극)과 제1 노드(N1) 사이에 접속될 수 있다. 제3 트랜지스터(T3)의 게이트 전극은 해당 주사선(Si)에 접속될 수 있다. 제3 트랜지스터(T3)는 주사선(Si)으로부터 게이트-온 전압의 주사 신호가 공급될 때 턴-온되어 제1 트랜지스터(T1)를 다이오드 형태로 연결할 수 있다.
제4 트랜지스터(T4)는 제1 노드(N1)와 초기화 전원(Vint) 사이에 접속될 수 있다. 제4 트랜지스터(T4)의 게이트 전극은 이전 주사선, 일 예로 i-1번째 주사선(Si-1)에 접속될 수 있다. 제4 트랜지스터(T4)는 i-1번째 주사선(Si-1)으로 게이트-온 전압의 주사 신호가 공급될 때 턴-온되어 초기화 전원(Vint)의 전압을 제1 노드(N1)로 전달할 수 있다. 여기서, 초기화 전원(Vint)의 전압은 데이터 신호의 최저 전압 이하일 수 있다.
제5 트랜지스터(T5)는 제1 전원(VDD)과 제1 트랜지스터(T1) 사이에 접속될 수 있다. 제5 트랜지스터(T5)의 게이트 전극은 해당 발광 제어선, 일 예로 i번째 발광 제어선(Ei)에 접속될 수 있다. 제5 트랜지스터(T5)는 발광 제어선(Ei)으로 게이트-오프 전압(일 예로, 하이 전압)의 발광 제어신호가 공급될 때 턴-오프되고, 그 외의 경우에 턴-온될 수 있다.
제6 트랜지스터(T6)는 제1 트랜지스터(T1)와 광원 유닛(LSU)의 제1 전극 사이에 접속될 수 있다. 제6 트랜지스터(T6)의 게이트 전극은 해당 발광 제어선, 일 예로 i번째 발광 제어선(Ei)에 접속될 수 있다. 제6 트랜지스터(T6)는 발광 제어선(Ei)으로 게이트-오프 전압의 발광 제어신호가 공급될 때 턴-오프되고, 그 외의 경우에 턴-온될 수 있다.
제7 트랜지스터(T7)는 광원 유닛(LSU)의 제1 전극과 초기화 전원(Vint)의 사이에 접속될 수 있다. 제7 트랜지스터(T7)의 게이트 전극은 다음 단의 주사선들 중 어느 하나, 일 예로 i+1번째 주사선(Si+1)에 접속될 수 있다. 제7 트랜지스터(T7)는 i+1번째 주사선(Si+1)으로 게이트-온 전압의 주사 신호가 공급될 때 턴-온되어 초기화 전원(Vint)의 전압을 광원 유닛(LSU)의 제1 전극으로 공급할 수 있다. 이 경우, 광원 유닛(LSU)으로 초기화 전원(Vint)의 전압이 전달되는 각각의 초기화 기간 동안, 광원 유닛(LSU)의 제1 전극의 전압이 초기화될 수 있다.
제7 트랜지스터(T7)의 동작을 제어하기 위한 제어 신호는 다양하게 변경될 수 있다. 예를 들어, 제7 트랜지스터(T7)의 게이트 전극이 해당 수평 라인의 주사선, 즉, i번째 주사선(Si)에 연결될 수도 있다. 이 경우, 제7 트랜지스터(T7)는 i번째 주사선(Si)으로 게이트-온 전압의 주사 신호가 공급될 때 턴-온되어 초기화 전원(Vint)의 전압을 광원 유닛(LSU)의 일 전극으로 공급할 수 있다.
스토리지 커패시터(Cst)는 제1 전원(VDD)과 제1 노드(N1)의 사이에 접속될 수 있다. 스토리지 커패시터(Cst)는 각 프레임 기간에 제1 노드(N1)로 공급되는 데이터 신호 및 제1 트랜지스터(T1)의 문턱전압에 대응하는 전압을 저장할 수 있다.
한편, 도 5c에서는 화소 회로(PXC)에 포함되는 트랜지스터들, 예를 들어 제1 내지 제7 트랜지스터들(T1 내지 T7)을 모두 P타입의 트랜지스터들로 도시하였으나, 본 발명이 이에 한정되지는 않는다. 일 예로, 제1 내지 제7 트랜지스터들(T1 내지 T7) 중 적어도 하나는 N타입의 트랜지스터로 변경될 수도 있다.
또한, 본 발명에 적용될 수 있는 서브 화소(SPX)의 구조가 도 5a 내지 도 5c에 도시된 실시예들에 한정되지는 않으며, 서브 화소(SPX)는 현재 공지된 다양한 구조를 가질 수 있다. 예를 들어, 서브 화소(SPX)에 포함된 화소 회로(PXC)는 현재 공지된 다양한 구조 및/또는 구동 방식의 화소 회로로 구성될 수 있다. 또한, 서브 화소(SPX)는 수동형 발광 표시 장치 등의 내부에 구성될 수도 있다. 이 경우, 화소 회로(PXC)는 생략되고, 광원 유닛(LSU)의 제1 및 제2 전극들 각각은 주사선(Si), 데이터선(Dj), 전원선 및/또는 제어선 등에 직접 접속될 수도 있다.
도 6a 내지 도 6d는 도 4의 표시 장치에 포함된 발진기의 일 예를 나타내는 회로도들이다. 도 6a 내지 도 6d에 도시된 발진기(CONV)는 도 4의 표시 패널(PNL)에 구비된 제1 내지 제6 발진기들(CONV1 내지 CONV6) 중 어느 하나일 수 있다. 또한, 제1 내지 제6 발진기들(CONV1 내지 CONV6)은 실질적으로 서로 동일 또는 유사한 구조를 가질 수 있다. 따라서, 도 6a 내지 도 6d에서는 제1 내지 제6 발진기들(CONV1 내지 CONV6)을 포괄하여 발진기(CONV)로 지칭하기로 한다.
먼저 도 6a를 참조하면, 발진기(CONV)는 입력 전압(VIN)이 인가되는 전원선과 기준 전압(GND)이 인가되는 기준선 사이에 연결되고, 직류 형태의 입력 전압(VIN)에 응답하여 교류 형태의 출력 전압(VOUT)을 출력할 수 있다. 여기서, 입력 전압(VIN)은 도 4의 제3 전원선(PL3)을 통해 제공되는 직류 전압(VDC)과 동일하고, 기준 전압(GND)은 도 5의 기준 전원선(PL0)을 통해 제공되는 기준 전압(GND)과 동일하며, 출력 전압(VOUT)은 도 7을 참조하여 후술할 제2 전극(ELT2)에 제공될 수 있다.
발진기(CONV)는 제1 내지 제3 스테이지들(STAGE1 내지 STAGE3)을 포함할 수 있다. 제1 내지 제3 스테이지들(STAGE1 내지 STAGE3)은 상호 직렬 연결될 수 있다.
제1 스테이지(STAGE1)는 입력 전압(VIN)에 대응하는 교류 전압을 출력할 수 있다. 제1 스테이지(STAGE1)는 제1 스위칭 소자(M1), 제2 스위칭 소자(M2), 제1 저항(R1) 및 제1 커패시터(C1)를 포함할 수 있다.
제1 스위칭 소자(M1)는 입력 전압(VIN)을 수신하는 제1 전극, 제11 노드(N11)에 연결되는 제2 전극, 및 발진기(CONV)의 입력단에 연결되는 게이트 전극을 포함할 수 있다. 여기서, 발진기(CONV)의 입력단은 출력단과 전기적으로 연결될 수 있다. 제1 스위칭 소자(M1)는 P타입 트랜지스터로 구현될 수 있다.
제2 스위칭 소자(M2)는 제11 노드(N11)에 연결되는 제1 전극, 기준 전압(GND)을 수신하는 제2 전극, 및 발진기(CONV)의 입력단에 연결되는 게이트 전극을 포함할 수 있다. 제2 스위칭 소자(M2)는 N타입 트랜지스터로 구현될 수 있다.
제1 저항(R1)은 제11 노드(N11) 및 제12 노드(N12)(또는, 제1 스테이지(STAGE1)의 출력단)에 연결될 수 있다. 제1 커패시터(C1)는 제12 노드(N12) 및 기준선(즉, 기준 전압(GND)이 인가된 기준선, 예를 들어, 도 4에 도시된 기준 전원선(PL0)) 사이에 연결될 수 있다.
제1 스테이지(STAGE1)(또는, 발진기(CONV))에 입력 전압(VIN)이 인가된 경우, 제1 스위칭 소자(M1) 및 제1 저항(R1)을 통해 제1 커패시터(C1)에 전하가 충전될 수 있다. 제1 커패시터(C1)의 충전에 따라 제1 스테이지(STAGE1)의 출력단의 전압 레벨(및 발진기(CONV)의 출력단을 통해 출력된 출력 전압(VOUT))이 높아질 수 있다.
제1 스테이지(STAGE1)의 출력단의 전압 레벨이 특정 전압 이상으로 상승하는 경우, 제1 스위칭 소자(M1)는 턴-오프되고, 제2 스위칭 소자(M2)는 턴-온될 수 있다. 이 경우, 제1 커패시터(C1)는 방전되고, 제1 스테이지(STAGE1)의 출력단의 전압 레벨(및 발진기(CONV)의 출력단을 통해 출력된 출력 전압(VOUT))이 낮아질 수 있다.
제1 스위칭 소자(M1) 및 제2 스위칭 소자(M2)를 교번하여 턴-온시킴으로써, 제1 스테이지(STAGE1)(및 발진기(CONV))는 교류 형태의 전압을 생성하거나 출력할 수 있다. 한편, 교류 형태의 전압의 주파수는 제1 저항(R1)의 저항 값과 제1 커패시터(C1)의 정전 용량에 의해 결정될 수 있다.
제2 스테이지(STAGE2)의 입력단은 제1 스테이지(STAGE1)의 출력단에 연결되고, 제2 스테이지(STAGE2)의 출력단은 제3 스테이지(STAGE3)의 입력단에 연결될 수 있다. 제2 스테이지(STAGE2)는 제3 스위칭 소자(M3), 제4 스위칭 소자(M4), 제2 저항(R2) 및 제2 커패시터(C2)를 포함할 수 있다. 제2 스테이지(STAGE2)의 제3 스위칭 소자(M3), 제4 스위칭 소자(M4), 제2 저항(R2) 및 제2 커패시터(C2)는 제1 스테이지(STAGE1)의 제1 스위칭 소자(M1), 제2 스위칭 소자(M2), 제1 저항(R1) 및 제1 커패시터(C1)와 실질적으로 동일하므로, 중복되는 설명은 반복하지 않기로 한다.
유사하게, 제3 스테이지(STAGE3)의 입력단은 제2 스테이지(STAGE2)의 출력단에 연결되고, 제3 스테이지(STAGE3)의 출력단은 제1 스테이지(STAGE1)의 입력단에 연결될 수 있다. 제3 스테이지(STAGE3)는 제5 스위칭 소자(M5), 제6 스위칭 소자(M6), 제3 저항(R3) 및 제3 커패시터(C3)를 포함할 수 있다. 제3 스테이지(STAGE3)의 제5 스위칭 소자(M5), 제6 스위칭 소자(M6), 제3 저항(R3) 및 제3 커패시터(C3)는 제2 스테이지(STAGE2)의 제3 스위칭 소자(M3), 제4 스위칭 소자(M4), 제2 저항(R2) 및 제2 커패시터(C2)와 실질적으로 동일하므로, 중복되는 설명은 반복하지 않기로 한다.
한편, 도 6a에서 발진기(CONV)는 제1 내지 제3 스테이지들(STAGE1 내지 STAGE3)을 포함하는 것으로 도시되어 있으나, 발진기(CONV)가 이에 한정되는 것은 아니다. 예를 들어, 발진기(CONV)는 출력 전압(VOUT)의 진폭을 고려하여, 1개, 2개, 또는 4개 이상의 스테이지들을 포함할 수도 있다. 발진기(CONV)의 출력 전압을 증폭하기 위해, 발진기(CONV)는 출력단에 증폭 회로(amplifying circuit)을 더 포함할 수도 있다.
실시예들에서, 발진기(CONV)는 펄스 형태의 출력 전압(VOUT)(또는, 펄스파, 구형파, 방형파)을 생성할 수 있다.
도 6b를 참조하면, 발진기(CONV)는 제1 증폭기(AMP1), 제1 내지 제3 저항들(R1 내지 R3) 및 커패시터(C)를 포함하여 구성될 수도 있다.
제1 증폭기(AMP1)에는 직류 전압(VDC) 및 반전 전압(VDCB)이 인가될 수 있다. 직류 전압(VDC)은 도 4를 참조하여 설명한 직류 전압(VDC)과 동일하며, 반전 전압(VDCB)은 직류 전압(VDC)의 크기와 동일한 크기를 가지되, 직류 전압(VDC)의 극성과 다른 극성을 가질 수 있다.
제1 저항(R1)은 제1 증폭기(AMP1)의 비반전 단자 및 제1 증폭기(AMP1)의 출력단 사이에 연결될 수 있다. 제2 저항(R2)은 제1 증폭기(AMP1)의 비반전 단자 및 기준선(즉, 기준 전압(GND)이 인가되는 기준선) 사이에 연결될 수 있다. 제3 저항(R3)은 제1 증폭기(AMP1)의 반전 단자 및 제1 증폭기(AMP1)의 출력단 사이에 연결될 수 있다. 커패시터(C)는 제1 증폭기(AMP1)의 반전 단자 및 기준선 사이에 연결될 수 있다.
발진기(CONV)는 커패시터(C)의 충방전과, 히스테리시스(hysteresis) 현상을 이용하여, 펄스 형태의 출력 전압(VOUT)을 생성할 수 있다.
실시예들에서, 발진기(CONV)는 삼각파 형태의 출력 전압(VOUT)을 생성할 수 있다.
도 6c를 참조하면, 발진기(CONV)는 제1 증폭기(AMP1), 제2 증폭기(AMP2), 제1 내지 제3 저항들(R1 내지 R3) 및 커패시터(C)를 포함하여 구성될 수도 있다.
제1 증폭기(AMP1) 및 제2 증폭기(AMP2) 각각에는 직류 전압(VDC) 및 반전 전압(VDCB)이 인가될 수 있다. 제1 증폭기(AMP1)의 반전 단자는 기준선(즉, 기준 전압(GND)이 인가된 기준선)에 연결될 수 있다. 제2 증폭기(AMP2)의 비반전 단자는 기준선(즉, 기준 전압(GND)이 인가된 기준선)에 연결될 수 있다.
제1 저항(R1)은 제1 증폭기(AMP1)의 출력단 및 제1 증폭기(AMP1)의 비반전 단자 사이에 연결될 수 있다. 제2 저항(R2)은 제1 증폭기(AMP1)의 출력단과 제2 증폭기(AMP2)의 반전 단자 사이에 연결될 수 있다. 제3 저항(R3)은 제1 증폭기(AMP1)의 비반전 단자와 제2 증폭기(AMP2)의 출력단 사이에 연결될 수 있다. 커패시터(C)는 제2 증폭기(AMP2)의 비반전 단자와 제2 증폭기(AMP2)의 출력단 사이에 연결될 수 있다.
제2 증폭기(AMP2), 제2 저항(R2) 및 커패시터(C)는 적분기를 구성하여 제2 증폭기(AMP2)의 반전 단자로 유입되는 전류를 적분함에 따라 출력 전압(VOUT)의 전압 레벨은 선형적으로 상승할 수 있다. 이후, 출력 전압(VOUT)이 제1 기준 전압 레벨(예를 들어, 5V)에 도달하는 경우, 제1 및 제3 저항들(R1, R3)의 연결 관계에 따라 적분기를 통해 흐르는 전류의 방향이 바뀌며, 출력 전압(VOUT)의 전압 레벨은 선형적으로 하강할 수 있다. 이후, 출력 전압(VOUT)이 제2 기준 전압 레벨(예를 들어, -5V)에 도달하는 경우, 적분기를 통해 흐르는 전류 방향이 다시 바뀌며, 출력 전압(VOUT)의 전압 레벨은 선형적으로 다시 상승할 수 있다. 이와 같은 과정이 반복되면서, 발진기(CONV)는 삼각파 형태의 출력 전압(VOUT)을 생성할 수 있다.
실시예들에서, 발진기(CONV)는 톱니파(sawtooth wave) 형태의 출력 전압(VOUT)을 생성할 수 있다.
도 6d를 참조하면, 발진기(CONV)는 도 6c의 발진기(CONV)와 비교하여, 피드백 저항(RF), 다이오드(D), 피드백 다이오드(DF)를 더 포함하여 구성될 수도 있다.
제2 저항(R2) 및 다이오드(D)는 제1 증폭기(AMP1)의 출력단과 제2 증폭기(AMP2)의 반전 단자 사이에 직렬 연결될 수 있다. 피드백 저항(RF) 및 피드백 다이오드(DF)는 제1 증폭기(AMP1)의 출력단과 제2 증폭기(AMP2)의 반전 단자 사이에 직렬 연결될 수 있다. 피드백 다이오드(DF)는 제1 증폭기(AMP1)의 출력단과 제2 증폭기(AMP2)의 반전 단자 사이에서 다이오드(D)와 반대로 연결될 수 있다. 피드백 저항(RF)의 저항값은 제2 저항(R2)의 저항값보다 작을 수 있다.
도 6c를 참조하여 설명한 바와 같이, 제2 증폭기(AMP2)로 구성되는 적분기의 전류 방향이 변화할 때, 다이오드(D) 및 피드백 다이오드(DF)에 의해 전류 이동 경로가 달라질 수 있다. 피드백 저항(RF)의 저항값이 제2 저항(R2)의 저항값보다 작게 설정됨에 따라, 출력 전압(VOUT)의 전압 레벨은 상승시보다 하강시에 보다 빠르게 변화할 수 있다. 즉, 삼각파 형태의 출력 전압(VOUT)에서, 출력 전압(VOUT)의 상승 구간 및 하강 구간이 제2 저항(R2) 및 피드백 저항(RF)에 의해 조절됨으로써, 발진기(CONV)는 톱니파 형태의 출력 전압(VOUT)을 생성할 수 있다.
도 6a 내지 도 6d를 참조하여 설명한 바와 같이, 발진기(CONV)는 다양한 형태로 구현될 수 있으며, 사인파, 펄스파(또는, 구형파), 삼각파, 톱니바퀴파 등과 같이 다양한 형태의 출력 전압(VOUT)을 생성할 수 있다.
도 7은 도 4의 제1 영역(A1)을 확대한 표시 장치의 일 예를 나타내는 평면도이다. 도 7에는 화소(PXL)의 발광 소자들(LD)이 배치되는 표시 소자층(및 화소 회로층(PCL)의 일부)을 중심으로 화소(PXL)의 구조가 도시되어 있다.
화소 회로층(PCL)은 도 4를 참조하여 설명한 베이스 층(SUB1) 상에 형성되되, 기준 전원선(PL0), 제1 내지 제3 전원선들(PL1 내지 PL3), 제1 내지 제6 발진기들(CONV1 내지 CONV6), 및 도 5a 내지 도 5c를 참조하여 설명한 화소 회로(PXC)를 포함하며, 도 7에 도시된 바와 같이, 화소 회로층(PCL)은 기준 전원선(PL0), 제2 전원선(PL2), 제3 전원선(PL3) 및 제1 발진기(CONV1)를 포함할 수 있다. 화소 회로층(PCL)의 보다 구체적인 구성에 대해서는 도 9a를 참조하여 후술하기로 한다.
도 7을 참조하면, 화소(PXL)는 화소 영역(PXA)에 형성될 수 있다. 화소 영역(PXA)은, 화소(PXL)를 구성하는 서브 화소들(SPX1, SPX2, SPX3)에 대응하는 서브 화소 영역들(SPA1, SPA2, SPA3)을 포함할 수 있다.
화소 영역(PXA)은, 제1 서브 화소(SPX1)가 형성되는 제1 서브 화소 영역(SPA1), 제2 서브 화소(SPX2)가 형성되는 제2 서브 화소 영역(SPA2), 및 제3 서브 화소(SPX3)가 형성되는 제3 서브 화소 영역(SPA3)을 포함할 수 있다. 제1 내지 제3 서브 화소 영역들(SPA1, SPA2, SPA3) 각각에는, 적어도 한 쌍의 제1 전극(ELT1) 및 제2 전극(ELT2)과, 제1 및 제2 전극들(ELT1, ELT2)의 사이에 연결된 적어도 하나의 발광 소자가 배치될 수 있다.
제1 서브 화소(SPX1)는, 제1 서브 화소 영역(SPA1)에 서로 이격되어 배치된 제1 전극(ELT1) 및 제2 전극(ELT2)과, 제1 및 제2 전극들(ELT1, ELT2)의 사이에 연결된 적어도 하나의 제1 발광 소자(LD1)를 포함할 수 있다. 유사하게, 제2 서브 화소(SPX2)는, 제2 서브 화소 영역(SPA2)에 서로 이격되어 배치된 제1 전극(ELT1) 및 제2 전극(ELT2)과, 제1 및 제2 전극들(ELT1, ELT2)의 사이에 연결된 적어도 하나의 제2 발광 소자(LD2)를 포함할 수 있다. 제3 서브 화소(SPX3)는, 제3 서브 화소 영역(SPA3)에 서로 이격되어 배치된 제1 전극(ELT1) 및 제2 전극(ELT2)과, 제1 및 제2 전극들(ELT1, ELT2)의 사이에 연결된 적어도 하나의 제3 발광 소자(LD3)를 포함할 수 있다.
실시예에 따라, 제1, 제2 및 제3 발광 소자들(LD1, LD2, LD3)은 서로 동일한 색상 또는 상이한 색상들의 빛을 방출할 수 있다. 일 예로, 각각의 제1 발광 소자(LD1)는 적색으로 발광하는 적색 발광 다이오드이고, 각각의 제2 발광 소자(LD2)는 녹색으로 발광하는 녹색 발광 다이오드이며, 각각의 제3 발광 소자(LD3)는 청색으로 발광하는 청색 발광 다이오드 일 수 있다.
다른 예로, 제1, 제2 및 제3 발광 소자들(LD1, LD2, LD3)은 모두 청색의 빛을 방출하는 청색 발광 다이오드들일 수도 있다. 이 경우, 풀-컬러의 화소(PXL)를 구성하기 위하여, 제1, 제2 및 제3 서브 화소들(SPX1, SPX2, SPX3) 중 적어도 일부의 상부에는 해당 서브 화소(SPX)에서 방출되는 빛의 색상을 변환하기 위한 광 변환층 및/또는 컬러 필터가 배치될 수도 있다.
제1, 제2 및 제3 서브 화소들(SPX1, SPX2, SPX3)은, 실질적으로 동일하거나 유사한 구조를 가질 수 있다. 이하에서는, 설명의 편의상, 제1, 제2 및 제3 서브 화소들(SPX1, SPX2, SPX3) 중 임의의 하나를 서브 화소(SPX)로, 서브 화소(SPX)가 형성되는 영역을 서브 화소 영역(SPA)으로, 서브 화소 영역(SPA)에 배치되는 적어도 하나의 제1, 제2 또는 제3 발광 소자(LD1, LD2, 또는 LD3)를 발광 소자(LD)로 포괄적으로 지칭하여, 서브 화소(SPX)의 구조를 상세히 설명하기로 한다.
실시예에 따라, 제1 전극(ELT1) 및 제2 전극(ELT2)은 각각의 서브 화소 영역(SPA)에 서로 이격되어 배치되며, 적어도 일 영역이 서로 마주하도록 배치될 수 있다. 예를 들어, 제1 및 제2 전극들(ELT1, ELT2)은 제1 방향(DR1)을 따라 소정 간격만큼 이격되어 나란히 배치되며, 제1 방향(DR1)과 교차하는 제2 방향(DR2)을 따라 각각 연장할 수 있다. 다만, 본 발명이 이에 한정되지는 않는다. 예를 들어, 제1 및 제2 전극들(ELT1, ELT2)의 형상 및/또는 상호 배치 관계 등은 다양하게 변경될 수 있다.
제1 전극(ELT1)은 제1 방향(DR1)으로 연장하는 제1 연결 전극(CNL1)(또는, 제1 연결선)에 전기적으로 연결될 수 있다. 제1 연결 전극(CNL1)은 제1 컨택홀(CH1)을 통해 도 5a 내지 도 5c를 참조하여 설명한 화소 회로(PXC)(또는, 제1 트랜지스터(T1))에 접속될 수 있다.
제2 전극(ELT2)은 제1 방향(DR1)으로 연장하는 제2 연결 전극(CNL2)(또는, 제2 연결선)에 전기적으로 연결될 수 있다. 제2 연결 전극(CNL2)은 인접한 서브 화소(예를 들어, 제2 및 제3 서브 화소들(SPX2, SPX3), 또는, 제2 및 제3 서브 화소 영역들(SPA2, SPA3))까지 연장할 수 있다. 제2 연결 전극(CNL2)은 제2 컨택홀(CH2)을 통해 제2 전원선(PL2)(또는, 제2 전원선(PL2)에 포함된 제1 내지 제3 서브 전원선들(PL2-1, PL2-2, PL2-3))에 전기적으로 연결될 수 있다.
도 4를 참조하여 설명한 바와 같이, 기준 전원선(PL0), 제3 전원선(PL3), 및 제1 발진기(CONV1)는 비표시 영역(NDA)에 배치될 수 있다. 제1 발진기(CONV1)는 기준 전원선(PL0) 및 제3 전원선(PL3)에 전기적으로 연결될 수 있다. 또한, 제1 발진기(CONV1)는 제1 서브 화소(SPX1)의 제1 전극(ELT1)과 연결되고, 나머지 서브 화소들(예를 들어, 제2 및 제3 서브 화소들(SPX2, SPX3))와는 전기적으로 연결되지 않거나 분리될 수 있다.
실시예에 따라, 표시 패널(PNL)은 전극 패턴(P_ELT)을 더 포함할 수 있다.
전극 패턴(P_ELT)은 비표시 영역(NDA)에서 제1 발진기(CONV1)와 중첩하여 배치되며, 화소 회로층(PCL)의 패시베이션막(PSV)을 관통하는 제3 컨택홀(CH3)을 통해 제1 발진기(CONV1)(예를 들어, 제3 커패시터(C3))와 연결될 수 있다. 전극 패턴(P_ELT)은 제1 연결 전극(CNL1)(또는, 제1 전극(ELT1))과 동일선 상에(예를 들어, 기준선(L_REF) 상에) 배치될 수 있으며, 연결 패턴(R_ELT)을 통해 제1 연결 전극(CNL1)(또는, 제1 전극(ELT1))과 연결될 수 있다.
전극 패턴(P_ELT), 연결 패턴(R_ELT)은 제1 연결 전극(CNL1)(또는, 제1 전극(ELT1))과 동일한 공정을 통해 형성되며, 제1 전극(ELT1)과 동일한 단면 구조(또는, 적층 구조)를 가질 수 있다.
한편, 도 7에서, 표시 장치(또는, 표시 패널(PNL))은 전극 패턴(P_ELT) 및 연결 패턴(R_ELT)을 통해, 제1 발진기(CONV1)가 제1 서브 화소(SPX1)의 제1 전극(ELT1)에 연결되는 것으로 설명하였으나, 본 발명이 이에 한정되는 것은 아니다. 예를 들어, 전극 패턴(P_ELT) 및 연결 패턴(R_ELT)은 제거되고, 제1 발진기(CONV1)는 제1 서브 화소(SPX1)와 전기적으로 연결되지 않거나 분리될 수도 있다. 이에 대해서는 도 11 및 도 13을 참조하여 후술하기로 한다.
도 8은 도 7의 제2 영역(A2)을 확대한 서브 화소의 일 예를 나타내는 평면도이다.
도 8을 참조하면, 서브 화소 영역(SPA)은, 적어도 한 쌍의 제1 전극(ELT1) 및 제2 전극(ELT2)과, 제1 및 제2 전극들(ELT1, ELT2)의 사이에 연결된 적어도 하나의 발광 소자(LD)가 배치되는 발광 영역(EMA)을 포함할 수 있다. 실시예에 따라, 발광 영역(EMA)은, 발광 영역(EMA)을 둘러싸는 뱅크(BNK)에 의해 정의될 수 있다.
실시예에 따라, 제1 및 제2 전극들(ELT1, ELT2) 각각은, 단일층 또는 다중층 구조를 가질 수 있다. 일 예로, 제1 전극(ELT1)은 제1 반사 전극 및 제1 도전성 캡핑층을 포함한 다중층 구조를 가질 수 있고, 제2 전극은 제2 반사 전극 및 제2 도전성 캡핑층을 포함한 다중층 구조를 가질 수 있다.
실시예에 따라, 제1 전극(ELT1)은 제1 연결 전극(CNL1)에 연결될 수 있다. 제1 전극(ELT1)은 제1 연결 전극(CNL1)과 일체로 연결될 수 있다. 일 예로, 제1 전극(ELT1)은 제1 연결 전극(CNL1)으로부터 적어도 한 갈래로 분기되어 형성될 수 있다. 제1 전극(ELT1)과 제1 연결 전극(CNL1)이 일체로 형성되는 경우, 제1 연결 전극(CNL1)을 제1 전극(ELT1)의 일 영역으로 간주할 수도 있다. 다만, 본 발명이 이에 한정되지는 않는다. 예를 들어, 본 발명의 다른 실시예에서는 제1 전극(ELT1) 및 제1 연결 전극(CNL1)이 서로 개별적으로 형성되어, 도시되지 않은 적어도 하나의 컨택홀 또는 비아홀 등을 통해 서로 전기적으로 연결될 수도 있다.
실시예에 따라, 제1 연결 전극(CNL1)은 단일층 또는 다중층 구조를 가질 수 있다. 일 예로, 제1 연결 전극(CNL1)은, 제1 반사 전극과 일체로 연결된 제1 서브 연결 전극과, 제1 도전성 캡핑층과 일체로 연결된 제2 서브 연결 전극을 포함할 수 있다. 실시예에 따라, 제1 연결 전극(CNL1)은 제1 전극(ELT1)과 동일한 단면 구조(또는, 적층 구조)를 가질 수 있으나, 이에 한정되지는 않는다.
제1 전극(ELT1) 및 제1 연결 전극(CNL1)은 제1 컨택홀(CH1)을 통해 서브 화소(SPX)의 화소 회로(PXC), 일 예로 도 5a 내지 도 5c 중 어느 하나에 도시된 화소 회로(PXC)에 접속될 수 있다.
실시예에 따라, 제1 컨택홀(CH1)은 서브 화소(SPX)의 발광 영역(EMA)의 외부에 배치될 수 있다. 일 예로, 제1 컨택홀(CH1)은, 뱅크(BNK)와 중첩하여 해당 발광 영역(EMA)의 주변에 배치될 수도 있다. 이 경우, 뱅크(BNK)에 의해 제1 컨택홀(CH1)이 커버되면서, 발광 영역(EMA)에서 패턴 비침이 발생하는 것을 방지할 수 있다. 다만, 본 발명이 이에 한정되지는 않는다. 예를 들어, 본 발명의 다른 실시예에서는 적어도 하나의 제1 컨택홀(CH1)이 발광 영역(EMA)의 내부에 배치될 수도 있다.
실시예에 따라, 화소 회로(PXC)는 해당 서브 화소 영역(SPA)에 배치된 발광 소자들(LD)의 하부에 위치될 수 있다. 예컨대, 각각의 화소 회로(PXC)는 발광 소자들(LD) 하부의 화소 회로층(또는, 트랜지스터 등의 회로 소자를 포함하는 회로 소자층)에 형성되어 제1 컨택홀(CH1)을 통해 제1 전극(ELT1)에 연결될 수 있다.
실시예에 따라, 제2 전극(ELT2)은 제2 연결 전극(CNL2)에 연결될 수 있다. 예를 들면, 제2 전극(ELT2)은 제2 연결 전극(CNL2)과 일체로 연결될 수 있다. 일 예로, 제2 전극(ELT2)은 제2 연결 전극(CNL2)으로부터 적어도 한 갈래로 분기되어 형성될 수 있다. 제2 전극(ELT2)과 제2 연결 전극(CNL2)이 일체로 형성되는 경우, 제2 연결 전극(CNL2)을 제2 전극(ELT2)의 일 영역으로 간주할 수도 있다. 다만, 본 발명이 이에 한정되지는 않는다. 예를 들어, 본 발명의 다른 실시예에서는 제2 전극(ELT2) 및 제2 연결 전극(CNL2)이 서로 개별적으로 형성되어, 도시되지 않은 적어도 하나의 컨택홀 또는 비아홀 등을 통해 서로 전기적으로 연결될 수도 있다.
실시예에 따라, 제1 연결 전극(CNL1)과 유사하게, 제2 연결 전극(CNL2)은 단일층 또는 다중층 구조를 가질 수 있다.
실시예에 따라, 제2 전극(ELT2) 및 제2 연결 전극(CNL2)은 제2 전원(VSS, 도 4 참조)에 접속될 수 있다. 일 예로, 제2 전극(ELT2) 및 제2 연결 전극(CNL2)은 제2 컨택홀(CH2) 및 이에 연결된 제2 전원선(PL2, 도 7 참조)을 통해 제2 전원(VSS)에 접속될 수 있다.
실시예에 따라, 제2 컨택홀(CH2)은 서브 화소(SPX)의 발광 영역(EMA)의 외부에 배치될 수 있다. 일 예로, 제2 컨택홀(CH2)은, 뱅크(BNK)와 중첩하여 해당 발광 영역(EMA)의 주변에 배치될 수 있다. 이 경우, 뱅크(BNK)에 의해 제2 컨택홀(CH2)이 커버되면서, 발광 영역(EMA)에서 패턴 비침이 발생하는 것을 방지할 수 있다. 다만, 본 발명이 이에 한정되지는 않는다. 예를 들어, 본 발명의 다른 실시예에서는 적어도 하나의 제2 컨택홀(CH2)이 발광 영역(EMA)의 내부에 배치될 수도 있다.
실시예에 따라, 제2 전원(VSS)을 공급하기 위한 제2 전원선(PL2)의 일 영역은 발광 소자들(LD) 하부의 화소 회로층에 배치될 수 있다. 예를 들어, 제2 전원선(PL2)은 발광 소자들(LD) 하부의 화소 회로층(PCL)에 배치되어, 제2 컨택홀(CH2)을 통해 제2 전극(ELT2)에 연결될 수 있다. 다만, 본 발명이 이에 한정되지는 않으며, 제2 전원선(PL2)의 위치는 다양하게 변경될 수 있다.
제1 격벽(PW1)은 제1 전극(ELT1)의 일 영역과 중첩하여 제1 전극(ELT1)의 하부에 배치되고, 제2 격벽(PW2)은 제2 전극(ELT2)의 일 영역과 중첩하여 제2 전극(ELT2)의 하부에 배치될 수 있다. 제1 및 제2 격벽들(PW1, PW2)은 발광 영역(EMA)에서 서로 이격되어 배치되며, 제1 및 제2 전극들(ELT1, ELT2)의 일 영역을 상부 방향으로 돌출시킬 수 있다. 예를 들어, 제1 전극(ELT1)은 제1 격벽(PW1) 상에 배치되어 제1 격벽(PW1)에 의해 베이스 층(SUB1)의 높이 방향(또는, 두께 방향)으로 돌출되고, 제2 전극(ELT2)은 제2 격벽(PW2) 상에 배치되어 제2 격벽(PW2)에 의해 베이스 층(SUB1)의 높이 방향으로 돌출될 수 있다.
실시예에 따라, 서브 화소(SPX)의 제1 및 제2 전극들(ELT1, ELT2)의 사이에는 적어도 하나의 발광 소자(LD), 일 예로 복수의 발광 소자들(LD)이 배열될 수 있다. 제1 전극(ELT1)과 제2 전극(ELT2)이 서로 대향하도록 배치된 발광 영역(EMA)에는, 복수의 발광 소자들(LD)이 병렬로 연결될 수 있다.
한편, 도 8에서 발광 소자들(LD)이 제1 및 제2 전극들(ELT1, ELT2)의 사이에서 제1 방향(DR1), 일 예로 가로 방향으로 정렬된 것으로 도시하였으나, 발광 소자들(LD)의 배열 방향이 이에 한정되지는 않는다. 예를 들어, 발광 소자들(LD) 중 적어도 하나는 사선 방향으로 배열될 수도 있다.
발광 소자들(LD) 각각은 서브 화소(SPX)의 제1 및 제2 전극들(ELT1, ELT2)의 사이에 전기적으로 연결될 수 있다. 예컨대, 발광 소자들(LD) 각각의 제1 단부는 제1 전극(ELT1)에 전기적으로 연결되고, 발광 소자들(LD) 각각의 제2 단부는 제2 전극(ELT2)에 전기적으로 연결될 수 있다.
일 실시예에서, 발광 소자들(LD) 각각의 제1 단부는 제1 전극(ELT1) 상에 직접적으로 배치되지 않고, 적어도 하나의 컨택 전극, 일 예로 제1 컨택 전극(CNE1)을 통해 제1 전극(ELT1)에 전기적으로 연결될 수 있다. 다만, 본 발명이 이에 한정되지는 않는다. 예를 들어, 본 발명의 다른 실시예에서는, 발광 소자들(LD)의 제1 단부가 제1 전극(ELT1)과 직접적으로 접촉되어, 제1 전극(ELT1)에 전기적으로 연결될 수도 있다.
유사하게, 발광 소자들(LD) 각각의 제2 단부는 제2 전극(ELT2) 상에 직접적으로 배치되지 않고, 적어도 하나의 컨택 전극, 일 예로 제2 컨택 전극(CNE2)을 통해 제2 전극(ELT2)에 전기적으로 연결될 수 있다. 다만, 본 발명이 이에 한정되지는 않는다. 예를 들어, 본 발명의 다른 실시예에서는, 발광 소자들(LD) 각각의 제2 단부가 제2 전극(ELT2)과 직접적으로 접촉되어, 제2 전극(ELT2)에 전기적으로 연결될 수도 있다.
실시예에 따라, 발광 소자들(LD) 각각은 무기 결정 구조의 재료를 이용한 초소형의, 일 예로 나노 스케일 내지 마이크로 스케일 정도로 작은 크기의, 발광 다이오드일 수 있다. 예를 들어, 발광 소자들(LD) 각각은, 도 1a 내지 도 3b 중 어느 하나에 도시된, 나노 스케일 내지 마이크로 스케일의 크기를 가진 초소형의 막대형 발광 다이오드일 수 있다. 다만, 본 발명에 적용될 수 있는 발광 소자들(LD)의 종류가 이에 한정되지는 않는다. 예를 들어, 발광 소자(LD)는 성장 방식으로 형성되며, 일 예로 나노 스케일 내지 마이크로 스케일의 크기를 가진 코어-쉘 구조의 발광 다이오드일 수도 있다.
실시예에 따라, 발광 소자들(LD)은 소정의 용액 내에 분산된 형태로 준비되어, 잉크젯 프린팅 방식이나 슬릿 코팅 방식 등을 통해 각 서브 화소(SPX)의 발광 영역(EMA)에 공급될 수 있다. 일 예로, 발광 소자들(LD)은 휘발성 용매에 섞여 발광 영역(EMA)에 공급될 수 있다. 이때, 서브 화소(SPX)의 제1 및 제2 전극들(ELT1, ELT2)에 소정의 전압이 공급되면, 제1 및 제2 전극들(ELT1, ELT2)의 사이에 전계가 형성되면서, 제1 및 제2 전극들(ELT1, ELT2)의 사이에 발광 소자들(LD)이 자가 정렬하게 된다. 발광 소자들(LD)이 정렬된 이후에 용매를 휘발시키거나 이외의 다른 방식으로 제거함으로써, 제1 및 제2 전극들(ELT1, ELT2)의 사이에 발광 소자들(LD)을 안정적으로 배열할 수 있다. 또한, 발광 소자들(LD)의 제1 단부 및 제2 단부 상에 제1 컨택 전극(CNE1) 및 제2 컨택 전극(CNE2)을 형성함으로써, 발광 소자들(LD)을 제1 및 제2 전극들(ELT1, ELT2)의 사이에 안정적으로 연결할 수 있다.
실시예에 따라, 제1 컨택 전극(CNE1)은, 발광 소자들(LD)의 제1 단부 및 이에 대응하는 제1 전극(ELT1)의 적어도 일 영역 상에 형성되어, 발광 소자들(LD)의 제1 단부를 제1 전극(ELT1)에 물리적 및/또는 전기적으로 연결할 수 있다. 유사하게, 제2 컨택 전극(CNE2)은 발광 소자들(LD)의 제2 단부 및 이에 대응하는 제2 전극(ELT2)의 적어도 일 영역 상에 형성되어, 발광 소자들(LD)의 제2 단부(EP2)를 제2 전극(ELT2)에 물리적 및/또는 전기적으로 연결할 수 있다.
서브 화소 영역(SPA)에 배치된 발광 소자들(LD)이 모여 해당 서브 화소(SPX)의 광원을 구성할 수 있다. 일 예로, 각각의 프레임 기간 동안 적어도 하나의 서브 화소(SPX)에 구동 전류가 흐르게 되면, 서브 화소(SPX)의 제1 및 제2 전극들(ELT1, ELT2)의 사이에 순방향으로 연결된 발광 소자들(LD)이 발광하면서 구동 전류에 대응하는 휘도의 빛을 방출할 수 있다.
실시예에 따라, 발광 영역(EMA)은 뱅크(BNK)에 의해 둘러싸일 수 있다. 일 예로, 뱅크(BNK)는 서브 화소(SPX)의 발광 영역(EMA)을 둘러싸도록 다른 서브 화소와의 사이에 배치될 수 있다.
도 9a 내지 도 9d는 도 7의 I-I'선 및 도 8의 II-II'선을 따라 자른 서브 화소의 일 예를 나타내는 단면도들이다. 도 9a 내지 도 9d에는 표시 패널(PNL)에 구성된 어느 하나의 서브 화소 영역(SPA)(예를 들어, 제1 서브 화소 영역(SPA1))이 도시되어 있다. 실시예에 따라, 앞서 설명한 제1, 제2 및 제3 서브 화소들(SPX1, SPX2, SPX3)은 실질적으로 동일 또는 유사한 단면 구조를 가질 수 있다. 따라서, 설명의 편의상, 도 9a 내지 도 9d에서는 도 8의 II-II'선에 대응되는 제1 서브 화소 영역(SPA1)의 단면을 통해, 각 서브 화소(SPX)의 구조를 포괄적으로 설명하기로 한다.
먼저 도 9a를 참조하면, 베이스 층(SUB1) 상의 각 서브 화소 영역(SPA)에는 화소 회로층(PCL) 및 표시 소자층(LDL)이 순차적으로 배치될 수 있다. 실시예에 따라, 화소 회로층(PCL) 및 표시 소자층(LDL)은 표시 패널(PNL)의 표시 영역(DA)에 전면적으로 형성될 수 있다. 예를 들어, 화소 회로층(PCL)은 베이스 층(SUB1)의 일면 상에 형성되고, 표시 소자층(LDL)은 화소 회로층(PCL)이 형성된 베이스 층(SUB1)의 일면 상에 형성될 수 있다.
실시예에 따라, 화소 회로층(PCL)은 서브 화소(SPX)의 화소 회로(PXC)를 구성하는 회로 소자들 및 제1 발진기(CONV1)를 포함할 수 있다. 표시 소자층(LDL)은 서브 화소(SPX)의 발광 소자들(LD)을 포함할 수 있다.
실시예에 따라, 화소 회로층(PCL)은 비표시 영역(NDA)에 배치되는 복수의 회로 소자들을 포함할 수 있다. 예를 들어, 화소 회로층(PCL)은 비표시 영역(NDA)에 형성되어 제1 발진기(CONV1)를 구성하는 복수의 회로 소자들을 포함할 수 있다. 일 예로, 화소 회로층(PCL)은 비표시 영역(NDA)에 배치된 스위칭 소자 및 커패시터, 일 예로 도 6a를 참조하여 설명한 제5 스위칭 소자(M5) 및 제3 커패시터(C3)를 포함할 수 있다. 또한, 도 9a에 도시되지 않았으나, 화소 회로층(PCL)은, 제1 발진기(CONV1)와 연결되어 직류 전압(VDC)을 전달하는 제3 전원선(PL3, 도 7 참조) 및 기준 전압(GND)을 전달하는 기준 전원선(P0, 도 7 참조)을 포함할 수 있다.
실시예에 따라, 화소 회로층(PCL)은 표시 영역(DA)에 배치되는 복수의 회로 소자들을 포함할 수 있다. 예를 들어, 화소 회로층(PCL)은 서브 화소 영역(SPA)에 형성되어 서브 화소(SPX)의 화소 회로(PXC)를 구성하는 복수의 회로 소자들을 포함할 수 있다. 일 예로, 화소 회로층(PCL)은 서브 화소 영역(SPA)에 배치된 복수의 트랜지스터들, 일 예로 도 5a 및 도 5b를 참조하여 설명한 제1 및 제2 트랜지스터들(T1, T2)을 포함할 수 있다. 또한, 도 10에 도시되지 않았으나 화소 회로층(PCL)은, 서브 화소 영역(SPA)에 배치된 스토리지 커패시터(Cst)와, 화소 회로(PXC)에 연결되는 각종 신호선들(일 예로, 도 5a 및 도 5b를 참조하여 설명한 주사선(Si) 및 데이터선(Dj))과, 화소 회로(PXC) 및/또는 발광 소자들(LD)에 연결되는 각종 전원선들(일 예로, 제1 전원(VDD) 및 제2 전원(VSS)을 각각 전달하는 제1 전원선(PL1, 미도시) 및 제2 전원선(PL2))을 포함할 수 있다.
실시예에 따라, 화소 회로(PXC)에 구비된 복수의 트랜지스터들, 일 예로, 제1 및 제2 트랜지스터들(T1, T2)은 실질적으로 동일 또는 유사한 단면 구조를 가질 수 있다. 다만, 본 발명이 이에 한정되지는 않으며, 다른 실시예에서는 상기 복수의 트랜지스터들 중 적어도 일부가 서로 다른 타입 및/또는 구조를 가질 수도 있다.
화소 회로층(PCL)은 복수의 절연막들을 포함할 수 있다. 일 예로, 화소 회로층(PCL)은 베이스 층(SUB1)의 일면 상에 순차적으로 적층된 버퍼층(BFL), 게이트 절연막(GI), 층간 절연막(ILD) 및 패시베이션막(PSV)을 포함할 수 있다.
실시예에 따라, 버퍼층(BFL)은 회로 소자에 불순물이 확산되는 것을 방지할 수 있다. 버퍼층(BFL)은 단일층으로 구성될 수 있으나, 적어도 2중층 이상의 다중층으로 구성될 수도 있다. 버퍼층(BFL)이 다중층으로 제공될 경우, 각 층은 동일한 재료로 형성되거나 또는 서로 다른 재료로 형성될 수 있다. 한편, 실시예에 따라서는 버퍼층(BFL)이 생략될 수도 있다.
실시예에 따라, 제5 스위칭 소자(M5), 제1 및 제2 트랜지스터들(T1, T2) 각각은, 반도체층(SCL), 게이트 전극(GE), 제1 트랜지스터 전극(ET1) 및 제2 트랜지스터 전극(ET2)을 포함할 수 있다. 한편, 실시예에 따라 도 9a에서는 제5 스위칭 소자(M5), 제1 및 제2 트랜지스터들(T1, T2)이, 반도체층(SCL)과 별개로 형성된 제1 트랜지스터 전극(ET1) 및 제2 트랜지스터 전극(ET2)을 구비하는 것으로 도시되어 있으나, 본 발명이 이에 한정되지는 않는다. 예를 들어, 본 발명의 다른 실시예에서는 각각의 서브 화소 영역(SPA)에 배치되는 적어도 하나의 트랜지스터에 구비되는 제1 및/또는 제2 트랜지스터 전극들(ET1, ET2)이 각각의 반도체층(SCL)과 통합되어 구성될 수도 있다.
반도체층(SCL)은 버퍼층(BFL) 상에 배치될 수 있다. 일 예로, 반도체층(SCL)은 버퍼층(BFL)이 형성된 베이스 층(SUB1)과 게이트 절연막(GI)의 사이에 배치될 수 있다. 반도체층(SCL)은 제1 트랜지스터 전극(ET1)에 접촉되는 제1 영역과, 제2 트랜지스터 전극(ET2)에 접촉되는 제2 영역과, 제1 및 제2 영역들의 사이에 위치된 채널 영역을 포함할 수 있다. 실시예에 따라, 상기 제1 및 제2 영역들 중 하나는 소스 영역이고, 다른 하나는 드레인 영역일 수 있다.
실시예에 따라, 반도체층(SCL)은 폴리 실리콘, 아몰퍼스 실리콘, 산화물 반도체 등으로 이루어진 반도체 패턴일 수 있다. 또한, 반도체층(SCL)의 채널 영역은 불순물이 도핑되지 않은 반도체 패턴으로서 진성 반도체일 수 있고, 반도체층(SCL)의 제1 및 제2 영역들은 각각 소정의 불순물이 도핑된 반도체 패턴일 수 있다.
게이트 전극(GE)은 게이트 절연막(GI)을 사이에 개재하고 반도체층(SCL) 상에 배치될 수 있다. 일 예로, 게이트 전극(GE)은 게이트 절연막(GI) 및 층간 절연막(ILD)의 사이에, 반도체층(SCL)의 적어도 일 영역과 중첩하여 배치될 수 있다.
제1 및 제2 트랜지스터 전극들(ET1, ET2)은, 적어도 하나의 층간 절연막(ILD)을 사이에 개재하고, 반도체층(SCL) 및 게이트 전극(GE) 상에 배치될 수 있다. 예를 들어, 제1 및 제2 트랜지스터 전극들(ET1, ET2)은 층간 절연막(ILD)과 패시베이션막(PSV)의 사이에 배치될 수 있다. 제1 및 제2 트랜지스터 전극들(ET1, ET2)은 반도체층(SCL)에 전기적으로 연결될 수 있다. 예를 들어, 제1 및 제2 트랜지스터 전극들(ET1, ET2) 각각은 게이트 절연막(GI) 및 층간 절연막(ILD)을 관통하는 컨택홀을 통해 각각 반도체층(SCL)의 제1 영역 및 제2 영역에 연결될 수 있다.
한편, 실시예에 따라, 화소 회로(PXC)에 구비된 적어도 하나의 트랜지스터(일 예로, 도 5a 및 도 5b에 도시된 제1 트랜지스터(T1))의 제1 및 제2 트랜지스터 전극들(ET1, ET2) 중 어느 하나는 패시베이션막(PSV)을 관통하는 제1 컨택홀(CH1)을 통해, 패시베이션막(PSV)의 상부에 배치된 광원 유닛(LSU)의 제1 전극(ELT1)에 전기적으로 연결될 수 있다.
실시예에 따라, 서브 화소(SPX)에 연결되는 적어도 하나의 신호선 및/또는 전원선은 화소 회로(PXC)를 구성하는 회로 소자들의 일 전극과 동일한 층 상에 배치될 수 있다. 일 예로, 제2 전원(VSS)을 공급하기 위한 제2 전원선(PL2)은 제1 및 제2 트랜지스터들(T1, T2) 각각의 게이트 전극(GE)과 동일한 층 상에 배치되어, 제1 및 제2 트랜지스터 전극들(ET1, ET2)과 동일한 층 상에 배치된 브리지 패턴(BRP), 및 패시베이션막(PSV)을 관통하는 적어도 하나의 제2 컨택홀(CH2)을 통해, 패시베이션막(PSV)의 상부에 배치된 광원 유닛(LSU)의 제2 전극(ELT2)에 전기적으로 연결될 수 있다. 다만, 제2 전원선(PL2) 등의 구조 및/또는 위치는 다양하게 변경될 수 있다.실시예에 따라, 비표시 영역(NDA)에 배치되는 구비된 트랜지스터(일 예로, 제5 스위칭 소자(M5))의 제1 및 제2 트랜지스터 전극들(ET1, ET2) 중 하나는 제3 커패시터(C3)의 일 전극을 구성하고, 또한, 패시베이션막(PSV)을 관통하는 제3 컨택홀(CH3)을 통해, 패시베이션막(PSV)의 상부에 배치된 전극 패턴(P_ELT)에 전기적으로 연결될 수 있다.
표시 소자층(LDL)은 화소 회로층(PCL) 상에 순차적으로 배치 및/또는 형성된 제1 및 제2 격벽들(PW1, PW2), 제1 및 제2 전극들(ELT1, ELT2), 제1 절연층(INS1), 발광 소자들(LD), 제2 절연층(INS2), 제1 및 제2 컨택 전극들(CNE1, CNE2), 및 제3 절연층(INS3)을 포함할 수 있다. 또한, 실시예에 따라, 표시 소자층(LDL)은 비표시 영역(NDA)에서 화소 회로층(PCL) 상에 형성된 전극 패턴(P_ELT)를 더 포함할 수 있다.
제1 및 제2 격벽들(PW1, PW2)은 화소 회로층(PCL) 상에 배치될 수 있다. 제1 및 제2 격벽들(PW1, PW2)은 발광 영역(EMA)에 서로 이격되어 배치될 수 있다. 제1 및 제2 격벽들(PW1, PW2)은 화소 회로층(PCL) 상에서 높이 방향으로 돌출될 수 있다. 실시예에 따라, 제1 및 제2 격벽들(PW1, PW2)은 실질적으로 서로 동일한 높이를 가질 수 있으나, 이에 한정되지는 않는다.
실시예에 따라, 제1 격벽(PW1)은, 화소 회로층(PCL)과 제1 전극(ELT1)의 사이에 배치될 수 있다. 제1 격벽(PW1)은, 발광 소자들(LD)의 제1 단부들(EP1)에 인접하도록 배치될 수 있다. 일 예로, 제1 격벽(PW1)의 일 측면은, 발광 소자들(LD)의 제1 단부들(EP1)과 인접한 거리에 위치되어, 제1 단부들(EP1)과 마주하도록 배치될 수 있다.
실시예에 따라, 제2 격벽(PW2)은, 화소 회로층(PCL)과 제2 전극(ELT2)의 사이에 배치될 수 있다. 제2 격벽(PW2)은, 발광 소자들(LD)의 제2 단부들(EP2)에 인접하도록 배치될 수 있다. 일 예로, 제2 격벽(PW2)의 일 측면은, 발광 소자들(LD)의 제2 단부들(EP2)과 인접한 거리에 위치되어, 제2 단부들(EP2)과 마주하도록 배치될 수 있다.
실시예에 따라, 제1 및 제2 격벽들(PW1, PW2)은 다양한 형상을 가질 수 있다. 일 예로, 제1 및 제2 격벽들(PW1, PW2)은 도 10에 도시된 바와 같이 상부로 갈수록 폭이 좁아지는 사다리꼴의 단면 형상을 가질 수 있다. 이 경우, 제1 및 제2 격벽들(PW1, PW2) 각각은 적어도 일 측면에서 경사면을 가질 수 있다. 다른 예로, 도 11에 도시된 바와 같이, 제1 및 제2 격벽들(PW1, PW2)은 상부로 갈수록 폭이 좁아지는 반원 또는 반타원의 단면을 가질 수도 있다. 이 경우, 제1 및 제2 격벽들(PW1, PW2) 각각은 적어도 일 측면에서 곡면을 가질 수 있다. 즉, 본 발명에서 제1 및 제2 격벽들(PW1, PW2)의 형상이 특별히 한정되지는 않으며, 이는 다양하게 변경될 수 있다. 또한, 실시예에 따라서는 제1 및 제2 격벽들(PW1, PW2) 중 적어도 하나가 생략되거나, 그 위치가 변경될 수도 있다.
다시 도 9a를 참조하면, 제1 및 제2 격벽들(PW1, PW2)은 무기 재료 및/또는 유기 재료를 포함하는 절연 물질을 포함할 수 있다. 일 예로, 제1 및 제2 격벽들(PW1, PW2)은 SiNx 또는 SiOx 등을 비롯하여 현재 공지된 다양한 무기 절연 물질을 포함하는 적어도 한 층의 무기막을 포함할 수 있다. 또는, 제1 및 제2 격벽들(PW1, PW2)은 현재 공지된 다양한 유기 절연 물질을 포함하는 적어도 한 층의 유기막 및/또는 포토레지스트막 등을 포함하거나, 유/무기 물질을 복합적으로 포함하는 단일층 또는 다중층의 절연체로 구성될 수도 있다. 즉, 제1 및 제2 격벽들(PW1, PW2)의 구성 물질은 다양하게 변경될 수 있다.
일 실시예에서, 제1 및 제2 격벽들(PW1, PW2)은 반사 부재로 기능할 수 있다. 일 예로, 제1 및 제2 격벽들(PW1, PW2)은 그 상부에 제공된 제1 및 제2 전극들(ELT1, ELT2)과 함께 각각의 발광 소자들(LD)에서 출사되는 광을 원하는 방향으로 유도하여 화소(PXL)의 광 효율을 향상시키는 반사 부재로 기능할 수 있다.
제1 및 제2 격벽들(PW1, PW2)의 상부에는 제1 및 제2 전극들(ELT1, ELT2)이 각각 배치될 수 있다. 제1 및 제2 전극들(ELT1, ELT2)은 발광 영역(EMA)에서 서로 이격되어 배치될 수 있다.
실시예에 따라, 제1 및 제2 격벽들(PW1, PW2)의 상부에 각각 배치되는 제1 및 제2 전극들(ELT1, ELT2) 등은 제1 및 제2 격벽들(PW1, PW2) 각각의 형상에 상응하는 형상을 가질 수 있다. 예를 들어, 제1 및 제2 전극들(ELT1, ELT2)은, 제1 및 제2 격벽들(PW1, PW2)에 대응하는 경사면 또는 곡면을 각각 가지면서, 화소 회로층(PCL)의 높이 방향(또는, 두께 방향)으로 돌출될 수 있다.
제1 및 제2 전극들(ELT1, ELT2) 각각은 적어도 하나의 도전성 물질을 포함할 수 있다. 일 예로, 제1 및 제2 전극들(ELT1, ELT2) 각각은, Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, Ti, 이들의 합금과 같은 금속, ITO, IZO, ZnO, ITZO와 같은 도전성 산화물, PEDOT와 같은 도전성 고분자 중 적어도 하나의 물질을 포함할 수 있으나, 이에 한정되지는 않는다.
또한, 제1 및 제2 전극들(ELT1, ELT2) 각각은 단일층 또는 다중층으로 구성될 수 있다. 일 예로, 제1 및 제2 전극들(ELT1, ELT2) 각각은 적어도 한 층의 반사 전극층을 포함할 수 있다. 또한, 제1 및 제2 전극들(ELT1, ELT2) 각각은, 반사 전극층의 상부 및/또는 하부에 배치되는 적어도 한 층의 투명 전극층과, 상기 반사 전극층 및/또는 투명 전극층의 상부를 커버하는 적어도 한 층의 도전성 캡핑층 중 적어도 하나를 선택적으로 더 포함할 수 있다.
실시예에 따라, 제1 및 제2 전극들(ELT1, ELT2) 각각의 반사 전극층은, 균일한 반사율을 갖는 도전 물질로 구성될 수 있다. 일 예로, 반사 전극층은 Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, 이들의 합금과 같은 금속 중 적어도 하나를 포함할 수 있으나, 이에 한정되지는 않는다. 즉, 반사 전극층은 다양한 반사성 도전 물질로 구성될 수 있다. 제1 및 제2 전극들(ELT1, ELT2) 각각이 반사 전극층을 포함할 경우, 발광 소자들(LD) 각각의 양단, 즉 제1 및 제2 단부들(EP1, EP2)에서 방출되는 광을 화상이 표시되는 방향(일 예로, 정면 방향)으로 더욱 진행되게 할 수 있다. 특히, 제1 및 제2 전극들(ELT1, ELT2)이 제1 및 제2 격벽들(PW1, PW2)의 형상에 대응되는 경사면 또는 곡면을 가지면서 발광 소자들(LD)의 제1 및 제2 단부들(EP1, EP2)에 마주하도록 배치되면, 발광 소자들(LD) 각각의 제1 및 제2 단부들(EP1, EP2)에서 출사된 광은 제1 및 제2 전극들(ELT1, ELT2)에 의해 반사되어 더욱 표시 패널(PNL)의 정면 방향(일 예로, 베이스 층(SUB1)의 상부 방향)으로 진행될 수 있다. 이에 따라, 발광 소자들(LD)에서 출사되는 광의 효율이 향상될 수 있다.
또한, 제1 및 제2 전극들(ELT1, ELT2) 각각의 투명 전극층은, 다양한 투명 전극 물질로 구성될 수 있다. 일 예로, 투명 전극층은 ITO, IZO 또는 ITZO를 포함할 수 있으나, 이에 한정되지는 않는다. 일 실시예에서, 제1 및 제2 전극들(ELT1, ELT2) 각각은, ITO/Ag/ITO의 적층 구조를 가지는 3중층으로 구성될 수 있다. 이와 같이, 제1 및 제2 전극들(ELT1, ELT2)이 적어도 2중층 이상의 다중층으로 구성되면, 신호 지연(RC delay)에 의한 전압 강하를 최소화할 수 있다. 이에 따라, 발광 소자들(LD)로 원하는 전압을 효과적으로 전달할 수 있게 된다.
추가적으로, 제1 및 제2 전극들(ELT1, ELT2) 각각이, 반사 전극층 및/또는 투명 전극층을 커버하는 도전성 캡핑층을 포함하게 되면, 화소(PXL)의 제조 공정 등에서 발생하는 불량으로 인해 제1 및 제2 전극들(ELT1, ELT2)의 반사 전극층 등이 손상되는 것을 방지할 수 있다. 다만, 도전성 캡핑층은 제1 및 제2 전극들(ELT1, ELT2)에 선택적으로 포함될 수 있는 것으로서, 실시예에 따라서는 생략될 수 있다. 또한, 도전성 캡핑층은 제1 및 제2 전극들(ELT1, ELT2) 각각의 구성 요소로 간주되거나, 또는 상기 제1 및 제2 전극들(ELT1, ELT2) 상에 배치된 별개의 구성 요소로 간주될 수도 있다.
제1 및 제2 전극들(ELT1, ELT2)의 일 영역 상에는 제1 절연층(INS1)이 배치될 수 있다. 예를 들어, 제1 절연층(INS1)은, 제1 및 제2 전극들(ELT1, ELT2)의 일 영역을 커버하도록 형성되며, 제1 및 제2 전극들(ELT1, ELT2)의 다른 일 영역을 노출하는 개구부를 포함할 수 있다.
일 실시예에서, 제1 절연층(INS1)은, 일차적으로 제1 및 제2 전극들(ELT1, ELT2)을 전면적으로 커버하도록 형성될 수 있다. 제1 절연층(INS1) 상에 발광 소자들(LD)이 공급 및 정렬된 이후, 제1 절연층(INS1)은 도 7에 도시된 바와 같이 소정의 제1 및 제2 컨택부들(CNT1, CNT2)에서 제1 및 제2 전극들(ELT1, ELT2)을 노출하도록 부분적으로 개구될 수 있다. 또는, 제1 절연층(INS1)은, 발광 소자들(LD)이 공급 및 정렬이 완료된 이후, 발광 소자들(LD)의 하부에 국부적으로 배치되는 개별 패턴의 형태로 패터닝될 수도 있다.
즉, 제1 절연층(INS1)은, 제1 및 제2 전극들(ELT1, ELT2)과 발광 소자들(LD)의 사이에 개재되되, 제1 및 제2 전극들(ELT1, ELT2) 각각의 적어도 일 영역을 노출할 수 있다. 제1 절연층(INS1)은 제1 및 제2 전극들(ELT1, ELT2)이 형성된 이후 제1 및 제2 전극들(ELT1, ELT2)을 커버하도록 형성되어, 후속 공정에서 제1 및 제2 전극들(ELT1, ELT2)이 손상되거나 금속이 석출되는 것을 방지할 수 있다. 또한, 제1 절연층(INS1)은, 각각의 발광 소자들(LD)을 안정적으로 지지할 수 있다. 실시예에 따라서는 제1 절연층(INS1)이 생략될 수도 있다.
제1 절연층(INS1)이 형성된 발광 영역(EMA)에는 발광 소자들(LD)이 공급 및 정렬될 수 있다. 일 예로, 잉크젯 방식 등을 통해 발광 영역(EMA)에 발광 소자들(LD)이 공급되고, 발광 소자들(LD)은 제1 및 제2 전극들(ELT1, ELT2)에 인가되는 소정의 정렬 전압(또는, 정렬 신호)에 의해 제1 및 제2 전극들(ELT1, ELT2)의 사이에 정렬될 수 있다. 후술하여 설명하겠지만, 발광 소자들(LD)의 정렬을 위해, 제2 전극(ELT2)에는 기준 전압(예를 들어, 그라운드 전압)이 인가되고, 제3 전원선(PL3)에는 직류 전압(VDC)이 인가될 수 있다. 이 경우, 제1 발진기(CONV1)는 제3 전원선(PL3)을 통해 제공되는 직류 전압(VDC)을 교류 전압(즉, 정렬 전압)으로 변환하여 제1 전극(ELT1)(도 8 참조)에 제공할 수 있다. 제1 및 제2 전극들(ELT1, ELT2) 사이에 전계가 형성되고, 발광 소자들(LD)이 발광 영역(EMA)의 제1 및 제2 전극들(ELT1, ELT2)의 사이에 자가 정렬할 수 있다.
제1 절연층(INS1) 상에는 뱅크(BNK)가 배치될 수 있다. 일 예로, 뱅크(BNK)는 서브 화소(SPX)의 발광 영역(EMA)을 둘러싸도록 다른 서브 화소들 사이에 형성되어, 서브 화소(SPX)의 발광 영역(EMA)을 구획하는 화소 정의막을 구성할 수 있다.
실시예에 따라, 뱅크(BNK)는, 제1 및 제2 격벽들(PW1, PW2)의 제1 높이보다 높은 제2 높이를 가지도록 형성될 수 있다. 이 경우, 뱅크(BNK)는, 각각의 발광 영역(EMA)에 발광 소자들(LD)을 공급하는 단계에서, 발광 소자들(LD)이 혼합된 용액이 인접한 서브 화소(SPX)의 발광 영역(EMA)으로 유입되는 것을 방지하거나, 각각의 발광 영역(EMA)에 일정량의 용액이 공급되도록 제어하는 댐 구조물로 기능할 수 있다.
뱅크(BNK)는, 각각의 발광 영역(EMA)에서 방출되는 빛이 인접한 발광 영역(EMA)으로 유입되어 광 간섭을 발생시키는 것을 차단하도록 형성될 수 있다. 이를 위해, 뱅크(BNK)는, 각 서브 화소(SPX)의 발광 소자들(LD)에서 방출된 빛이 뱅크(BNK)를 투과하는 것을 차단하도록 형성될 수 있다.
제2 절연층(INS2)은, 발광 소자들(LD), 특히, 제1 및 제2 전극들(ELT1, ELT2)의 사이에 정렬된 발광 소자들(LD)의 상부에 배치되며, 발광 소자들(LD)의 제1 및 제2 단부들(EP1, EP2)을 노출할 수 있다. 예를 들어, 제2 절연층(INS2)은 발광 소자들(LD)의 제1 및 제2 단부들(EP1, EP2)은 커버하지 않고, 발광 소자들(LD)의 일 영역 상부에만 부분적으로 배치될 수 있다. 제2 절연층(INS2)은 각각의 발광 영역(EMA) 상에 독립된 패턴으로 형성될 수 있으나, 이에 한정되지는 않는다. 또한, 도 7에 도시된 바와 같이, 제2 절연층(INS2)의 형성 이전에 제1 절연층(INS1)과 발광 소자들(LD)의 사이에 이격 공간이 존재하였을 경우, 공간은 제2 절연층(INS2)에 의해 채워질 수 있다. 이에 따라, 발광 소자들(LD)은 보다 안정적으로 지지될 수 있다.
제1 및 제2 컨택 전극들(CNE1, CNE2)은, 제1 및 제2 전극들(ELT1, ELT2)과, 발광 소자들(LD)의 제1 및 제2 단부들(EP1, EP2) 상에 배치될 수 있다. 일 실시예에서, 제1 및 제2 컨택 전극들(CNE1, CNE2)은, 도 7에 도시된 바와 같이 서로 동일한 층에 배치될 수 있다. 이 경우, 제1 및 제2 컨택 전극들(CNE1, CNE2)은 동일 공정에서, 동일한 도전 물질을 이용하여 형성될 수 있으나, 이에 한정되지는 않는다.
제1 및 제2 컨택 전극들(CNE1, CNE2)은, 발광 소자들(LD)의 제1 및 제2 단부들(EP1, EP2)을 제1 및 제2 전극들(ELT1, ELT2)에 각각 전기적으로 연결할 수 있다.
예를 들어, 제1 컨택 전극(CNE1)은, 제1 전극(ELT1)과 접촉되도록 제1 전극(ELT1) 상에 배치될 수 있다. 일 예로, 제1 컨택 전극(CNE1)은 제1 절연층(INS1)에 의해 커버되지 않은 제1 전극(ELT1)의 일 영역(일 예로, 제1 컨택부(CNT1)) 상에서 제1 전극(ELT1)과 접촉되도록 배치될 수 있다. 또한, 제1 컨택 전극(CNE1)은 제1 전극(ELT1)에 인접한 적어도 하나의 발광 소자, 일 예로 복수의 발광 소자들(LD)의 제1 단부들(EP1)과 접촉되도록 제1 단부들(EP1) 상에 배치될 수 있다. 즉, 제1 컨택 전극(CNE1)은 발광 소자들(LD)의 제1 단부들(EP1)과 이에 대응하는 제1 전극(ELT1)의 적어도 일 영역을 커버하도록 배치될 수 있다. 이에 의해, 발광 소자들(LD)의 제1 단부들(EP1)이 제1 전극(ELT1)에 전기적으로 연결될 수 있다.
유사하게, 제2 컨택 전극(CNE2)은, 제2 전극(ELT2)과 접촉되도록 제2 전극(ELT2) 상에 배치될 수 있다. 일 예로, 제2 컨택 전극(CNE2)은 제1 절연층(INS1)에 의해 커버되지 않은 제2 전극(ELT2)의 일 영역(일 예로, 제2 컨택부(CNT2)) 상에서 제2 전극(ELT2)과 접촉되도록 배치될 수 있다. 또한, 제2 컨택 전극(CNE2)은 제2 전극(ELT2)에 인접한 적어도 하나의 발광 소자, 일 예로 복수의 발광 소자들(LD)의 제2 단부들(EP2)과 접촉되도록 제2 단부들(EP2) 상에 배치될 수 있다. 즉, 제2 컨택 전극(CNE2)은 발광 소자들(LD)의 제2 단부들(EP2)과 이에 대응하는 제2 전극(ELT2)의 적어도 일 영역을 커버하도록 배치될 수 있다. 이에 의해, 발광 소자들(LD)의 제2 단부들(EP2)이 제2 전극(ELT2)에 전기적으로 연결될 수 있다.
제3 절연층(INS3)은, 제1 및 제2 격벽들(PW1, PW2), 제1 및 제2 전극들(ELT1, ELT2), 발광 소자들(LD), 제1 및 제2 컨택 전극들(CNE1, CNE2), 및 뱅크(BNK)를 커버하도록, 제1 및 제2 격벽들(PW1, PW2), 제1 및 제2 전극들(ELT1, ELT2), 발광 소자들(LD), 제1 및 제2 컨택 전극들(CNE1, CNE2), 및 뱅크(BNK)가 형성된 베이스 층(SUB1)의 일면 상에 형성 및/또는 배치될 수 있다. 제3 절연층(INS3)은, 적어도 한 층의 무기막 및/또는 유기막을 포함하는 박막 봉지층을 포함할 수 있으나, 이에 한정되지는 않는다. 또한, 실시예에 따라, 제3 절연층(INS3)의 상부에는 도시되지 않은 적어도 한 층의 오버코트층이 더 배치될 수도 있다.
실시예에 따라, 제1 내지 제3 절연층들(INS1, INS2, INS3) 각각은, 단일층 또는 다중층으로 구성될 수 있으며, 적어도 하나의 무기 절연 재료 및/또는 유기 절연 재료를 포함할 수 있다. 예를 들어, 제1 내지 제3 절연층들(INS1, INS2, INS3) 각각은, SiNx를 비롯하여 현재 공지된 다양한 종류의 유/무기 절연 물질을 포함할 수 있으며, 제1 내지 제3 절연층들(INS1, INS2, INS3) 각각의 구성 물질이 특별히 한정되지는 않는다. 또한, 제1 내지 제3 절연층들(INS1, INS2, INS3)은 서로 다른 절연 물질을 포함하거나, 또는 제1 내지 제3 절연층들(INS1, INS2, INS3) 중 적어도 일부는 서로 동일한 절연 물질을 포함할 수 있다.
실시예들에서, 제1 및 제2 컨택 전극들(CNE1, CNE2)는 상호 다른 층들에 배치될 수 있다.
도 12를 참조하면, 제1 컨택 전극(CNE1)은 제2 절연층(INS2)이 배치된 서브 화소 영역(SPA)에 배치될 수 있다. 실시예에 따라, 제1 컨택 전극(CNE1)은 해당 서브 화소 영역(SPA)에 배치된 제1 전극(ELT1)의 일 영역과 접촉되도록 제1 전극(ELT1) 상에 배치될 수 있다. 또한, 제1 컨택 전극(CNE1)은 해당 서브 화소 영역(SPA)에 배치된 적어도 하나의 발광 소자(LD)의 제1 단부(EP1)와 접촉되도록 상기 제1 단부(EP1) 상에 배치될 수 있다. 제1 컨택 전극(CNE1)에 의해, 서브 화소 영역(SPA)에 배치된 적어도 하나의 발광 소자(LD)의 제1 단부(EP1)가, 해당 서브 화소 영역(SPA)에 배치된 제1 전극(ELT1)에 전기적으로 연결될 수 있다.
제1 컨택 전극(CNE1)이 배치된 서브 화소 영역(SPA)에는 제4 절연층(INS4)이 배치될 수 있다. 실시예에 따라, 제4 절연층(INS4)은 해당 서브 화소 영역(SPA)에 배치된 제2 절연층(INS2) 및 제1 컨택 전극(CNE1)을 커버할 수 있다.
실시예에 따라, 제1 내지 제3 절연층들(INS1, INS2, INS3)과 유사하게, 제4 절연층(INS4)은, 단일층 또는 다중층으로 구성될 수 있으며, 적어도 하나의 무기 절연 재료 및/또는 유기 절연 재료를 포함할 수 있다. 예를 들어, 제4 절연층(INS4)은, SiNx를 비롯하여 현재 공지된 다양한 종류의 유/무기 절연 물질을 포함할 수 있다. 또한, 제4 절연층(INS4)은 제1 내지 제3 절연층들(INS1, INS2, INS3)과 다른 절연 물질을 포함하거나, 또는 제1 내지 제3 절연층들(INS1, INS2, INS3) 중 적어도 일부와 동일한 절연 물질을 포함할 수도 있다.
제4 절연층(INS4)이 배치된 각각의 서브 화소 영역(SPA)에는 제2 컨택 전극(CNE2)이 배치될 수 있다. 실시예에 따라, 제2 컨택 전극(CNE2)은 해당 서브 화소 영역(SPA)에 배치된 제2 전극(ELT2)의 일 영역과 접촉되도록 제2 전극(ELT2) 상에 배치될 수 있다. 또한, 제2 컨택 전극(CNE2)은 해당 서브 화소 영역(SPA)에 배치된 적어도 하나의 발광 소자(LD)의 제2 단부(EP2)와 접촉되도록 제2 단부(EP2) 상에 배치될 수 있다. 제2 컨택 전극(CNE2)에 의해, 각각의 서브 화소 영역(SPA)에 배치된 적어도 하나의 발광 소자(LD)의 제2 단부(EP2)가, 해당 서브 화소 영역(SPA)에 배치된 제2 전극(ELT2)에 전기적으로 연결될 수 있다.
실시예에 따라, 제1 및 제2 격벽들(PW1, PW2)은 다양한 형상을 가질 수 있다. 일 예로, 제1 및 제2 격벽들(PW1, PW2)은 도 12에 도시된 바와 같이 상부로 갈수록 폭이 좁아지는 사다리꼴의 단면 형상을 가질 수 있다. 다른 예로, 도 13에 도시된 바와 같이, 제1 및 제2 격벽들(PW1, PW2)은 상부로 갈수록 폭이 좁아지는 반원 또는 반타원의 단면을 가질 수도 있다.
도 10 내지 도 13을 참조하여 설명한 바와 같이, 표시 패널(PNL)(또는, 표시 장치)은 제1 발진기(CONV1)를 통해 발광 소자들(LD)의 정렬을 위한 교류 전압을 표시 패널(PNL) 전체에 균일하게 공급할 수 있다.
도 10은 도 7의 I-I'선 및 도 8의 II-II'선을 따라 자른 서브 화소의 다른 예를 나타내는 단면도이다. 도 10에는 도 9a에 대응하는 서브 화소(SPX)의 단면이 도시되어 있다.
도 9a 및 도 10을 참조하면, 연결 패턴(R_ELT)의 위치 및 연결 관계를 제외하고, 도 10의 서브 화소(SPX)는 도 9a의 서브 화소(SPX)와 실질적으로 동일할 수 있다. 따라서, 중복되는 설명은 반복하지 않기로 한다.
연결 패턴(R_ELT)는 제1 트랜지스터(T1)의 제1 및 제2 트랜지스터 전극들(ET1, ET2)과 동일한 층에 배치되고, 제1 트랜지스터(T1)의 제1 및 제2 트랜지스터 전극들(ET1, ET2) 중 하나로부터 비표시 영역(NDA)으로 연장하며, 제1 발진기(CONV1)의 제3 커패시터(C3)의 일 전극과 연결될 수 있다. 연결 패턴(R_ELT)은 제1 트랜지스터(T1)의 제1 및 제2 트랜지스터 전극들(ET1, ET2) 중 하나 및 제3 커패시터(C3)의 일 전극과 일체로 형성될 수 있다. 즉, 제1 발진기(CONV1)는 제1 전극(ELT1)에 직접적으로 연결되는 대신, 제1 트랜지스터(T1)(또는, 화소 회로층(PCL))을 통해 제1 전극(ELT1)에 연결될 수도 있다.
도 11은 본 발명의 다른 실시예에 따른 표시 장치를 나타내는 평면도이다. 도 11에는 도 4에 대응하는 표시 패널(PNL)의 평면도가 도시되어 있다. 도 12는 도 11의 제1 영역을 확대한 표시 장치의 일 예를 나타내는 평면도이다. 도 12에는 도 7에 대응하는 화소의 평면도가 도시되어 있다. 도 13은 도 12의 I-I'선 및 II-II'선을 따라 자른 서브 화소의 일 예를 나타내는 단면도이다. 도 13에는 도 9a에 대응하는 서브 화소의 단면도가 도시되어 있다.
도 4, 도 7, 도 9a, 도 11 내지 도 13을 참조하면, 발진기(CONV1)는 제1 서브 화소(SPX1)와 분리되어 있다는 점에서, 도 4의 표시 장치는 도 11의 표시 장치와 상이하다. 발진기(CONV1) 및 제1 서브 화소(SPX1)와의 연결 관계(또는, 분리 관계)를 제외하고, 도 4의 표시 장치(및 도 9a의 서브 화소(SPX))는 도 11의 표시 장치(및 도 13의 서브 화소))와 실질적으로 동일하므로, 중복되는 설명은 반복하지 않기로 한다.
도 12 및 도 13에 도시된 바와 같이, 전극 패턴(P_ELT)은 제1 연결 전극(CNL1)(또는, 제1 전극(ELT1))과 동일선 상에 배치되나, 제1 연결 전극(CNL1)(또는, 제2 전극(ELT1))과 전기적으로 단선일 수 있다.
예를 들어, 전극 패턴(P_ELT) 및 제1 연결 전극(CNL1)(또는, 제1 전극(ELT1))은 일체로 형성되고, 이후, 제1 전극(ELT1)의 패터닝 과정에서, 전극 패턴(P_ELT) 및 제1 연결 전극(CNL1) 사이의 연결 패턴(R_ELT, 도 7, 도 9a 참조)이 제거됨으로써, 전극 패턴(P_ELT)은 제2 연결 전극(CNL2)(또는, 제2 전극(ELT2))으로부터 분리될 수 있다.
즉, 제1 발진기(CONV1)는 표시 장치의 제조 과정 중 발광 소자들(LD)의 정렬을 위해 사용된 후, 제1 발진기(CONV1)는 제1 연결 전극(CNL1)(또는, 제1 전극(ELT1))으로부터 분리될 수 있다.
한편, 실시예에 따라서는 전극 패턴(P_ELT)이 생략될 수도 있다. 예를 들어, 제1 발진기(CONV1)를 제1 연결 전극(CNL1)(또는, 제1 전극(ELT1))으로부터 분리하는 과정에서, 전극 패턴(P_ELT)은 제거될 수도 있다.
도 14는 본 발명의 다른 실시예에 따른 표시 장치를 나타내는 평면도이다. 실시예에 따라, 도 14에는 도 1a 내지 도 3b에서 설명한 발광 소자들(LD)을 광원으로서 이용할 수 있는 장치의 일 예로서, 표시 장치, 특히, 표시 장치에 구비되는 표시 패널(PNL)이 도시되어 있다.
도 4 및 도 14를 참조하면, 도 14에 도시된 표시 패널(PNL)은 제4 전원선(PL4), 제5 전원선(PL5) 및 제7 발진기(CONV7)를 더 포함한다는 점에서, 도 4에 도시된 표시 패널(PNL)과 상이하다. 즉, 제4 전원선(PL4), 제5 전원선(PL5) 및 제7 발진기(CONV7)를 제외하고, 도 14에 도시된 표시 패널(PNL)은 도 4에 도시된 표시 패널(PNL)과 실질적으로 동일하거나 유사하므로, 중복되는 설명은 반복하지 않기로 한다.
제4 전원선(PL4)은 표시 영역(DA)에 배치되되, 비표시 영역(NDA)까지 연장되어 제3 전원선(PL3)과 전기적으로 연결될 수 있다. 예를 들어, 제4 전원선(PL4)은 제4 서브 화소(SPX4) 및 제5 서브 화소(SPX5)의 사이에서 제2 방향(DR2)을 따라 연장할 수 있다. 제4 전원선(PL4)은 제3 전원선(PL3)과 일체로 형성될 수 있다.
유사하게, 제5 전원선(PL5)은 표시 영역(DA)에 배치되되, 비표시 영역(NDA)까지 연장되어 기준 전원선(PL0)과 전기적으로 연결될 수 있다. 예를 들어, 제5 전원선(PL5)은 제5 서브 화소(SPX5)의 일 측에서 제2 방향(DR2)을 따라 연장할 수 있다. 제5 전원선(PL5)은 기준 전원선(PL0)과 일체로 형성될 수 있다. 다만, 제5 전원선(PL5)이 이에 한정되는 것은 아니다. 예를 들어, 도 14b에 도시된 바와 같이, 제5 전원선(PL5)은 제2 전원선(PL2)과 전기적으로 연결되고, 또한, 제2 전원선(PL2)과 일체로 형성될 수도 있다.
제7 발진기(CONV7)는 베이스 층(SUB1)의 표시 영역(DA)에 배치될 수 있다. 예를 들어, 제7 발진기(CONV7)는 표시 패널(PNL)의 면적 중심(또는, 표시 영역(DA)의 면적 중심)에 배치될 수 있다. 다른 예로, 제7 발진기(CONV7)는 제5 및 제6 발진기들(CONV5, CONV6)과 등간격을 가지고 배치될 수도 있다.
제7 발진기(CONV7)는 제4 전원선(PL4) 및 제5 전원선(PL5) 사이에 연결되고, 제4 전원선(PL4)을 통해 제공되는 직류 전압(VDC)(또는, 제4 전원선(PL4) 및 제5 전원선(PL5) 사이에 걸리는 직류 전압)을 교류 전압으로 변환할 수 있다. 제7 발진기(CONV7)는 도 6a 내지 도 6b를 참조하여 설명한 발진기(CONV)로 구현될 수 잇다. 예를 들어, 제7 발진기(CONV7)는, 제1 내지 제6 발진기들(CONV1 내지 CONV6)과 함께, 표시 패널(PNL)의 제조 공정 중 발광 소자(LD)의 정렬 공정에서, 제3 전원선(PL3) 및 제4 전원선(PL4)을 통해 제공되는 직류 전압(VDC)을 교류 전압으로 변환하여 화소들(PXL)에 공급할 수 있다. 한편, 표시 장치(또는, 표시 패널(PNL))가 턴온되어 영상을 표시하는 경우, 제4 전원선(PL4)은 플로팅되거나, 제4 전원선(PL4)에는 어떤 전압도 인가되지 않을 수 있다.
한편, 도 14에서 표시 패널(PNL)은 표시 영역(DA)에 제7 발진기(CONV7)를 포함하는 것으로 도시되어 있으나, 이는 예시적인 것으로, 표시 패널(PNL)이 이에 한정되는 것은 아니다. 예를 들어, 표시 패널(PNL)은 표시 영역(DA)에 배치된 복수의 발진기들을 포함할 수 있고, 복수의 발진기들은 표시 영역(DA) 내에서 상호 등간격으로 배치될 수 있다. 따라서, 복수의 발진기들을 통해 표시 패널(PNL) 전체에 균일한 교류 전압이 공급될 수 있다.
도 14를 참조하여 설명한 바와 같이, 표시 장치는 표시 패널(PNL)의 비표시 영역(NDA)에 배치된 발진기들(예를 들어, 제1 내지 제6 발진기들(CONV1 내지 CONV6)) 및 표시 영역(DA) 내에 배치된 적어도 하나의 발진기(예를 들어, 제7 발진기(CONV7))를 포함할 수 있다. 따라서, 발진기들을 통해 표시 패널(PNL) 전체에 보다 균일한 교류 전압이 제공되고, 발광 소자들이 표시 패널(PNL) 전체에 보다 균일하게 배열되며, 화소들의 발광 특성의 균일성(uniformity)이 향상될 수 있다.
도 15는 도 14의 제3 영역(A3)을 확대한 표시 장치의 일 예를 나타내는 평면도이다. 도 15에는, 도 7에 대응하는 화소(PXL)의 구조가 도시되어 있다.
도 7 및 도 15를 참조하면, 제4 전원선(PL4), 제5 전원선(PL5), 및 제7 발진기(CONV7)를 제외하고, 도 15의 표시 장치는 도 7의 표시 장치와 실질적으로 동일하거나 유사하므로, 중복되는 설명은 반복하지 않기로 한다.
제4 전원선(PL4)은 화소 회로층(PCL)에 포함되고, 표시 영역(DA)에서 제2 방향(DR2)을 따라 연장할 수 있다. 제4 전원선(PL4)은 제2 서브 전원선(PL2-2) 및 제3 서브 전원선(PL2-3) 사이에 배치되거나, 제1 서브 화소(SPX1)(또는, 제1 서브 화소 영역(SPA1)) 및 제2 서브 화소(SPX2)(또는, 제2 서브 화소 영역(SPA2)) 사이에 배치되거나, 제2 서브 화소(SPX2)를 가로질러 배치될 수 있다.
제4 전원선(PL4)은 제2 전원선(PL2)과 동일한 층(예를 들어, 도 10을 참조하여 설명한 제2 전원선(PL2)과 동일한 층)에 배치되되, 제2 전원선(PL2)으로부터 이격되어 배치될 수 있다.
유사하게, 제5 전원선(PL5)은 화소 회로층(PCL)에 포함되고, 표시 영역(DA)에서 제2 방향(DR2)을 따라 연장할 수 있다. 제4 전원선(PL4)은 제2 서브 화소(SPX2)(또는, 제2 서브 화소 영역(SPA2)) 및 제3 서브 화소(SPX3)(또는, 제3 서브 화소 영역(SPA3)) 사이에 배치되거나, 제3 서브 화소(SPX3)를 가로질러 배치될 수 있다.
제5 전원선(PL5)은 제2 전원선(PL2)과 동일한 층(예를 들어, 도 10을 참조하여 설명한 제2 전원선(PL2)과 동일한 층)에 배치되되, 제2 전원선(PL2)으로부터 이격되어 배치될 수 있다.
실시예에 따라, 제7 발진기(CONV7)는 제2 서브 화소(SPX2)(또는, 제2 서브 화소 영역(SPA2)) 및 인접한 서브 화소(예를 들어, 제2 서브 화소(SPX2)를 기준으로 제2 방향(DR2)으로 인접한 서브 화소, 또는, 인접한 서브 화소 영역) 사이에 배치될 수 있다. 다른 실시예에 따라, 서브 화소 영역(SPA)이 제2 연결 전극(CNL2) 및 제2 전원선(PL2)에 의해 구획되는 경우, 제7 발진기(CONV7)는 제2 화소 영역(SPA2) 내에 배치될 수 있다.
한편, 도 15에서 제7 발진기(CONV7)는 제4 전원선(PL4) 및 제5 전원선(PL5) 사이에 연결되는 것으로 도시되어 있으나, 제7 발진기(CONV7)가 이에 한정되는 것은 아니다. 예를 들어, 제7 발진기(CONV7)는 제1 내지 제3 서브 화소들(SPX1 내지 SPX3) 중 2개의 이상의 서브 화소들에 걸쳐 배치될 수 있다. 또한, 제7 발진기(CONV7)는 제1 연결 전극(CNL1) 및/또는 제2 연결 전극(CNL2)과 중첩하여 배치될 수도 있다. 즉, 실시예에 따라서 제7 발진기(CONV7)의 배치는 변경될 수 있다.
도 16은 본 발명의 또 다른 실시예에 따른 표시 장치를 나타내는 평면도이다. 도 16에는 도 1a 내지 도 3b에서 설명한 발광 소자들(LD)을 광원으로서 이용할 수 있는 장치의 일 예로서, 표시 장치, 특히, 표시 장치에 구비되는 표시 패널(PNL)이 도시되어 있다.
도 14a 및 도 16을 참조하면, 도 16에 도시된 표시 패널(PNL)은 제1 내지 제6 발진기들(CONV1 내지 CONV6)을 포함하지 않는다는 점에서, 도 14a에 도시된 표시 패널(PNL)과 상이하다.
즉, 도 16에 도시된 표시 패널(PNL)은 베이스 층(SUB1)의 표시 영역(DA) 상에 배치되는 적어도 하나의 발진기, 예를 들어, 도 16에 도시된 바와 같이, 제7 발진기(CONV7)만을 포함할 수 있다.
도 17a 내지 도 17c는 본 발명의 일 실시예에 따른 원장 기판의 일 예를 나타내는 평면도들이다.
도 17a를 참조하면, 원장 기판(100)은 복수의 표시 패널들을 형성하기 위한 복수의 셀 영역들(110A)을 포함할 수 있다. 여기서, 원장 기판(100)은 하나의 대형 기판(SUB) 상에서 다수의 표시 패널을 동시에 제조하기 위한 것으로서, 이를 위한 베이스 부재가 되는 기판(SUB)과 더불어, 기판(SUB) 상에 형성된 전극들, 배선들 및/또는 회로 소자들을 포괄할 수 있다.
원장 기판(100)은 셀 영역들(110A)의 외측에서, 셀 영역들(110A)의 가장자리를 따라 배열된 제3 전원선(PL3), 기준 전원선(PL0) 및 발진기(CONV)를 포함할 수 있다. 제3 전원선(PL3), 기준 전원선(PL0)은 제1 방향(DR1) 및 제2 방향(DR2)으로 연장하며, 메쉬 구조를 가질 수 있다.
발진기(CONV)는 셀 영역들(110A) 사이에 배치되며, 제3 전원선(PL3) 및 기준 전원선(PL0)과 연결될 수 있다. 발진기(CONV)는 셀 영역들(110A) 각각을 기준으로 일정 간격을 가지고 매트릭스 형태로 배치될 수 있다.
원장 기판(100)은 균등하게 분포되거나 배치된 발진기(CONV)를 통해 원장 기판(100) 전체에 걸쳐 전압 강하 없이 보다 일정한 전압 크기를 가지는 교류 전압을 제공할 수 있다.
한편, 도 17a에서 발진기(CONV)는 셀 영역들(110A) 각각에 대응하여 배치되는 것으로 도시되어 있으나, 본 발명이 이에 한정되는 것은 아니다. 예를 들어, 도 17b에 도시된 바와 같이, 발진기(CONV)는 2개의 셀 영역들(110A)(또는, 2개 이상의 셀 영역들(110A)에 대응하는 간격을 가지고 배치될 수 있다. 다른 예로, 도 17c에 도시된 바와 같이, 발진기(CONV)는 원장 기판(100)의 가장자리를 따라 일정한 간격을 가지고 배치되거나, 또는, 원장 기판(100)의 4개의 코너에 배치될 수도 있다.
발진기(CONV)는 원장 기판(100)에서 교류 전압의 전압 강하 특성을 고려하여 특정 간격을 가지고 배치된다면, 발진기(CONV)의 배치 위치 및 배열 구조가 특별히 한정되는 것은 아니다.
도 18은 도 17a 내지 도 17c의 원장 기판들에 포함된 표시 패널의 일 예를 나타내는 평면도이다.
도 4 및 도 18을 참조하면, 도 18의 표시 패널(PNL)은, 발진기들(CONV1 내지 CONV6), 기준 전원선(PL0), 및 제3 전원선(PL3)을 포함하지 않는다는 점에서, 도 4에 도시된 표시 패널(PNL)과 상이하다.
도 17a 내지 도 17c를 참조하여 설명한 바와 같이, 발진기(CONV)는 원장 기판(100)에서 셀 영역들(110A) 각각의 외측에 배치되고, 절단 공정 등을 통해 원장 기판(100)으로부터 셀 영역들(110A)을 분리되므로, 표시 패널(PNL)은 발진기(CONV), 기준 전원선(PL0), 및 제3 전원선(PL3)을 포함하지 않을 수 있다. 또한, 도 7을 참조하여 설명한 바와 같이, 도 17a 내지 도 17c의 원장 기판(100)에서 발진기(CONV)가 제1 전극(ETL1)에 직접적으로 연결된 경우(이후, 제1 전극(ELT1)이 발진기(CONV)로부터 분리된 경우), 표시 패널(PNL)은 발진기(CONV)와 제1 전극(ELT1)간의 연결 구성(예를 들어, 전극 패턴(P_ELT), 도 7 참조)을 포함하지 않을 수 있다.
도 19는 본 발명의 다른 실시예에 따른 표시 장치의 제조 방법을 나타내는 순서도이다. 도 20a 내지 도 20d는 도 19의 표시 장치의 제조 방법을 설명하는 도면들이다.
도 19 내지 도 20d를 참조하면, 표시 장치의 제조 방법은 원장 기판(100)(또는, 기판(SUB))을 준비할 수 있다(S1910).
실시예에 따라, 도 20a 내지 도 20e에서는 하나의 원장 기판(100) 상에서 복수의 표시 패널들을 동시에 형성한 이후, 절단 공정을 통해 표시 패널들을 개별적으로 분리하는 실시예를 도시한다. 여기서, 표시 패널들은 도 4, 도 14 및 도 18을 참조하여 설명한 표시 패널들 중 하나 일 수 있다.
도 20a를 참조하면, 도 17을 참조하여 설명한 바와 같이, 원장 기판(100)은 복수의 발광 표시 패널들을 형성하기 위한 셀 영역(110A)을 포함할 수 있다. 원장 기판(100)은 기판(SUB) 및 기판(SUB) 상에 형성된 제1 및 제2 전극들(ELT1, ELT2)을 포함할 수 있다. 또한, 원장 기판(100)은 기판(SUB) 상에 형성된 제1 및 제2 연결 전극들(CNL1, CNL2) 및 제1 및 제2 정렬 배선들(AL1, AL2)을 포함할 수 있다.
기판(SUB)의 셀 영역(110A)은, 복수의 화소 영역들(PXA)을 포함하는 표시 영역(DA)과, 표시 영역(DA)의 외곽에 배치되는 비표시 영역(NDA)을 포함할 수 있다. 셀 영역(110A)은 스크라이빙 라인(SCL)에 의해 규정될 수 있다.
기판(SUB)은 복수의 회로 소자들을 포함한 화소 회로층을 포함하고, 화소 회로층은 기준 전원선(PL0), 제3 전원선(PL3) 및 발진기(CONV)를 포함할 수 있다.
제3 전원선(PL3)은 셀 영역(110A)의 외측에 배치되되, 예를 들어, 제2 방향(DR2)을 따라 연장할 수 있으나, 이에 한정되는 것은 아니다. 제3 전원선(PL3)은 원장 기판(100)의 일 영역(예컨대, 가장자리 영역)에 배치된 제2 정렬 패드(AP2)에 연결될 수 있다.
유사하게, 기준 전원선(PL0)은 셀 영역(110A)의 외측에 배치되며, 원장 기판(100)의 일 영역(예컨대, 가장자리 영역)에 배치된 제2 정렬 패드(AP2)에 연결될 수 있다.
발진기(CONV)는 제3 전원선(PL3)(또는 기준 전원선(PL0))과 제1 정렬 배선(AL1) 사이에 배치되며, 기준 전원선(PL0), 제3 전원선(PL3) 및 제1 정렬 배선(AL1)과 연결될 수 있다. 도 20a에 도시된 바와 같이, 발진기(CONV)는 셀 영역(110A)의 외측에 배치될 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, 발진기(CONV)는 셀 영역(110A) 내 비표시 영역(NDA) 및/또는 표시 영역(DA)에 배치될 수 있으며, 이 경우, 도 4, 도 14 및 도 16을 참조하여 설명한 표시 패널(PNL)이 제조될 수 있다.
제1 및 제2 전극들(ELT1, ELT2)은 셀 영역(110A)의 표시 영역(DA)에 배치될 수 있다.
실시예에 따라, 제1 전극(ELT1)은 제1 연결 전극(CNL1)을 통해 제1 정렬 배선(AL1)에 전기적으로 연결되고, 제2 전극(ELT2)은 제2 연결 전극(CNL2)을 통해 제2 정렬 배선(AL2)에 전기적으로 연결될 수 있다. 실시예에 따라, 발광 소자들(LD)의 정렬 공정이 완료되기 이전의 단계에서는, 셀 영역(110A)의 내부에 형성된 제1 전극들(ELT1)은 제1 정렬 배선(AL1)에 공통으로 연결되고, 제2 전극들(ELT2)은 제2 정렬 배선(AL2)에 공통으로 연결될 수 있다.
제1 및 제2 정렬 배선들(AL1, AL2)은 셀 영역(110A)의 비표시 영역(NDA)에 배치될 수 있다. 예를 들어, 셀 영역(110A)의 내부에서, 제1 및 제2 정렬 배선들(AL1, AL2)은 표시 영역(DA)을 사이에 두고 기판(SUB)의 서로 다른 단부에 마주하여 배치될 수 있다. 예를 들어, 셀 영역(110A)의 내부에서, 제1 정렬 배선(AL1)은 표시 영역(DA) 좌측의 비표시 영역(NDA)에 배치되고, 제2 정렬 배선(AL2)은 표시 영역(DA) 우측의 비표시 영역(NDA)에 배치될 수 있다.
제1 정렬 배선(AL1)은 원장 기판(100)의 일 영역(예컨대, 가장자리 영역)에 배치된 제1 정렬 패드(AP1)에 연결될 수 있다.
실시예에 따라, 제1 및 제2 정렬 배선들(AL1, AL2) 각각은 다층 구조로 구성될 수 있다. 예를 들어, 제1 및 제2 정렬 배선들(AL1, AL2) 각각은, 제1 및 제2 전극들(ELT1, ELT2) 중 적어도 하나와 동일한 층에 배치되는 메인 배선(미도시) 및 화소 회로층에 배치되는 서브 배선(미도시)을 포함한 다층 구조를 가질 수 있다.
이후, 도 19의 방법은 제1 및 제2 전극들 사이에 발광 소자들(LD)을 공급하고(S1920), 발진기(CONV)에 직류 전압(VDC)을 인가하여 발광 소자들(LD)을 정렬시킬 수 있다(S1930).
도 20b를 참조하면, 도 19의 방법은 원장 기판(100)의 화소 영역(PXA)에 발광 소자들(LD)을 공급할 수 있다. 또한, 도 19의 방법은 제1 및 제2 정렬 패드들(AP1, AP2)에 소정의 전압을 인가할 수 있다. 도 19의 방법은 외부 신호 인가 장치를 통해 제1 및 제2 정렬 패드들(AP1, AP2)에 소정의 전압을 인가할 수 있다.
실시예에 따라, 도 19의 방법은 제1 정렬 패드(AP1)에 직류 전압(VDC)을 인가하고, 제2 정렬 패드(AP2)에 그라운드 전압(GND)을 인가할 수 있다. 이 경우, 발진기(CONV)는 제3 전원선(PL3)을 통해 제공된 직류 전압(VDC)을 교류 전압으로 변환하여 제1 정렬 배선(AL1) 및 제1 전극(ELT1)에 제공할 수 있다. 제1 전극(ELT1) 및 제2 전극(ELT1) 사이에 인가된 교류 전압에 의해, 화소 영역(PXA)에 전계가 형성될 수 있다. 이에 따라, 발광 소자들(LD)이 화소 영역(PXA)의 제1 및 제2 전극들(ELT1, ELT2) 사이에 자가 정렬할 수 있다.
실시예에 따라, 도 19의 방법은 발광 소자들(LD)의 공급 및 정렬을 순차 또는 동시에 수행할 수 있다. 일 예로, 도 19의 방법은 화소 영역(PXA)에 발광 소자들(LD)을 공급함과 동시에, 화소 영역(PXA)의 제1 및 제2 전극들(ELT1, ELT2)에 소정의 전압을 공급하여 발광 소자들(LD)을 정렬할 수 있다. 또는, 다른 실시예에서는, 도 19의 방법은 화소 영역(PXA)에 발광 소자들(LD)을 공급한 이후에, 화소 영역(PXA)의 제1 및 제2 전극들(ELT1, ELT2)에 소정의 전압을 공급하여 발광 소자들(LD)을 정렬할 수도 있다. 즉, 본 발명에서 발광 소자들(LD)의 공급 및 정렬 단계의 순서 및/또는 그 방식 등이 특별히 한정되지는 않는다.
발광 소자들(LD)의 공급 및 정렬이 완료된 이후에, 도 19의 방법은 화소 영역들(PXA)의 사이에서 제1 및/또는 제2 전극들(ELT1, ELT2)을 분리할 수 있다(S1940). 이에 따라, 화소(PXL)가 독립적으로 구동할 수 있다.
도 20c를 참조하면, 도 19의 방법은 화소 영역들(PXA)의 사이에서 서로 연결되어 있던 제1 전극들(ELT1) 사이의 연결을 끊어줌으로써, 제1 전극들(ELT1)을 화소(PXL) 별로 분리할 수 있다. 또한, 도 19의 방법은, 제1 정렬 배선(AL1)을 표시 영역(DA)의 화소들(PXL)로부터 분리하거나, 제거할 수 있다.
제2 전극들(ELT2)의 경우에는 각각의 셀 영역(110A)별로 동일한 전원선에 공통으로 연결되므로, 도 19의 방법은 화소 영역들(PXA)의 사이에서 제2 전극들(ELT2)을 서로 분리하지 않고 연결한 상태로 유지할 수 있다. 도 19의 방법은 제2 정렬 배선(AL2)을 표시 영역(DA)의 화소들(PXL)로부터 분리하거나, 제거할 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, 제2 정렬 배선(AL2)은 표시 영역(DA)의 화소들(PXL)과 연결된 상태로 유지될 수도 있다.
이후, 도 19의 방법은 발광 소자들(LD)을 제1 및 제2 전극들(ELT1, ELT2)에 전기적으로 연결할 수 있다(S1950).
도 20d를 참조하면, 도 19의 방법은 발광 소자들(LD)의 양단에 각각 제1 및 제2 컨택 전극들(CNE1, CNE2)을 형성하여 발광 소자들(LD)의 양단을 각각 제1 및 제2 전극들(ELT1, ELT2)에 물리적 및/또는 전기적으로 연결할 수 있다.
한편, 도 20c에 도시된 바와 같이 화소 영역들(PXA)의 사이에서 제1 및/또는 제2 전극들(ELT1, ELT2)이 분리된 이후, 도 20d에 도시된 바와 같이 각 화소 영역(PXA)에 제1 및 제2 컨택 전극들(CNE1, CNE2)이 형성되는 것으로 설명하였으나, 본 발명이 이에 한정되지는 않는다. 예컨대, 도 20c에 도시된 제1 및/또는 제2 전극들(ELT1, ELT2)의 분리 공정과, 도 20d에 도시된 제1 및 제2 컨택 전극들(CNE1, CNE2)의 형성 공정은 반대의 순서로 진행될 수도 있다. 일 예로, 도 19의 방법은, 도 20d에 도시된 바와 같이 제1 및 제2 컨택 전극들(CNE1, CNE2)을 먼저 형성한 이후, 도 20c에 도시된 바와 같이 화소 영역들(PXA)의 사이에서 제1 전극들(ELT1)을 서로 분리할 수도 있다.
이후, 도 19의 방법은 복수의 발광 소자들(LD)을 보호하기 위한 보호층(예를 들어, 도 10을 참조하여 설명한 제3 절연층(INS3), 오버코트층) 등을 형성할 수 있다.
이후, 도 19의 방법은 원장 기판(100)을 절단하여 발진기(CONV)를 제거할 수 있다(S1960).
예를 들어, 도 19의 방법은 스크라이빙 라인(SCL)을 따른 절단 공정을 수행할 수 있다. 도 19의 방법은 원장 기판(100)에 배치된 복수의 셀 영역들(110A)을 개별적으로 분리함으로써, 표시 패널(및 표시 패널을 포함하는 표시 장치)을 제조할 수 있다.
발진기(CONV) 및 제1 및 제2 정렬 배선들(AL1, AL2)는 이전 공정에서 제거되므로, 도 18에 도시된 표시 패널(PNL)이 제조될 수 있다.
다만, 이에 제한되는 것은 아니며, 발진기(CONV)의 배치 위치에 따라, 도 4, 도 8 및 도 14에 도시된 표시 패널(PNL) 등이 제조될 수도 있다.
도 21은 본 발명의 다른 실시예에 따른 표시 장치의 제조 방법을 설명하는 도면이다.
도 19 내지 도 21을 참조하면, 도 19의 방법은 발광 소자들(LD)을 정렬하는 단계에서, 제1 정렬 배선(AL1)에 교류 전압(VAC)을 인가할 수 있다. 여기서, 외부로부터 제1 정렬 배선(AL1)에 인가되는 교류 전압(VAC)은 발진기(CONV)로부터 제1 정렬 배선(AL1)에 제공되는 교류 전압과 실질적으로 동일한 진폭 및 파형을 가질 수 있다.
도 21에 도시된 바와 같이, 원장 기판(100)은 일 영역(예컨대, 가장자리 영역)에 배치된 제3 정렬 패드(AP3)를 더 포함하고, 제1 정렬 배선(AL1)은 제3 정렬 패드(AP3)에 연결될 수 있다.
이 경우, 도 19의 방법은 제1 정렬 패드(AP1)에 직류 전압(VDC)을 인가하고, 제2 정렬 패드(AP2)에 그라운드 전압(GND)을 인가하며, 제3 정렬 패드(AP3)에 교류 전압(VAC)을 인가할 수 있다.
제3 정렬 패드(AP3)를 통해 인가되는 교류 전압(VAC)에 의해, 제2 화소(ELT2)에 최종적으로 인가된 교류 전압은 원장 기판(100)의 전체에 걸쳐 균일하게 나타날 수 있다.
본 발명의 기술 사상은 전술한 실시예에 따라 구체적으로 기술되었으나, 상기 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 지식을 가진 자라면 본 발명의 기술 사상의 범위 내에서 다양한 변형 예가 가능함을 이해할 수 있을 것이다.
본 발명의 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라, 특허 청구범위에 의해 정해져야만 할 것이다. 또한, 특허 청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (20)

  1. 기판;
    상기 기판 상에 배치되며, 각각 제1 전극, 제2 전극 및 상기 제1 및 제2 전극들 사이에 연결된 복수의 발광 소자들을 포함하는 화소들; 및
    상기 기판 상에 배치되며, 상기 화소들 중 제1 화소의 제1 전극에 연결되고, 적어도 하나의 트랜지스터 및 적어도 하나의 커패시터를 포함하는 제1 발진기를 포함하는, 표시 장치.
  2. 제1 항에 있어서, 상기 제1 화소의 제1 전극은 상기 화소들 중 제2 화소의 제1 전극과 분리되고,
    상기 제1 발진기는 상기 제2 화소와 전기적으로 연결되지 않는, 표시 장치.
  3. 제1 항에 있어서, 상기 기판은 영상이 표시되는 표시 영역 및 상기 표시 영역의 일측에 위치하는 비표시 영역을 포함하고,
    상기 제1 화소들은 상기 표시 영역에 배치되며,
    상기 제1 발진기는 상기 비표시 영역에 배치되는, 표시 장치.
  4. 제3 항에 있어서,
    상기 비표시 영역에 배치되는 제2 발진기 및 제3 발진기를 더 포함하고,
    상기 제1 발진기, 상기 제2 발진기 및 상기 제3 발진기는 상기 표시 영역의 가장자리를 따라 등간격으로 배치되는, 표시 장치.
  5. 제4 항에 있어서,
    상기 기판 상에 배치되고 상호 분리된 제1 전원선, 제2 전원선, 제3 전원선 및 제4 전원선을 더 포함하고,
    상기 화소들 각각은 상기 제1 전원선 및 상기 제2 전원선 사이에 연결되며,
    상기 제1 발진기는 상기 제3 전원선 및 상기 제4 전원선에 연결되며,
    상기 제3 전원선 및 상기 제4 전원선 각각은 플로팅 상태인, 표시 장치.
  6. 제4 항에 있어서, 상기 제1 전원선, 상기 제2 전원선, 상기 제3 전원선, 상기 제4 전원선, 및 상기 제1 발진기는 화소 회로층에 포함되고,
    상기 제1 전극 및 상기 제2 전극은 상기 화소 회로층 상에 상호 이격되어 배치되며,
    상기 발광 소자들은 상기 제1 전극 및 상기 제2 전극 사이에 배치되는, 표시 장치.
  7. 제6 항에 있어서,
    상기 화소 회로층 상에 상기 제1 발진기의 적어도 하나의 커패시터와 중첩하여 배치되고 상기 적어도 하나의 커패시터와 연결되는 전극 패턴을 더 포함하고,
    상기 전극 패턴과 상기 제1 화소의 제1 전극으로부터 분리되어 형성된, 표시 장치.
  8. 제3 항에 있어서,
    상기 표시 영역에 배치되는 제2 발진기를 더 포함하는, 표시 장치.
  9. 제1 항에 있어서, 상기 제1 발진기는 상기 화소들 사이에 배치되는, 표시 장치.
  10. 제1 항에 있어서, 상기 발광 소자들 각각은, 나노 스케일 내지 마이크로 스케일의 크기를 가진 발광 다이오드인, 표시 장치.
  11. 제1 항에 있어서,
    상기 기판 상에 배치된 제1 전원선 및 제2 전원선을 더 포함하고,
    상기 제1 발진기는, 적어도 하나의 스테이지를 포함하고,
    상기 적어도 하나의 스테이지 각각은,
    상기 제1 전원선에 연결되는 제1 전극, 제1 노드에 연결되는 제2 전극, 및 입력단과 연결되는 게이트 전극을 포함하는 제1 트랜지스터;
    상기 제1 노드에 연결되는 제1 전극, 상기 제2 전원선에 연결되는 제2 전극, 및 상기 입력단에 연결되는 게이트 전극을 포함하는 제2 트랜지스터; 및
    상기 제1 노드 및 상기 제2 전원선 사이에 직렬 연결되는 제1 저항 및 제1 커패시터를 포함하고,
    상기 제1 저항 및 제1 커패시터가 연결된 제2 노드는 출력단으로서 상기 입력단과 전기적으로 연결된, 표시 장치.
  12. 제11 항에 있어서, 상기 제1 발진기는, 제1, 제2 및 제3 스테이지들을 포함하고,
    상기 제1 스테이지의 출력단은 상기 제2 스테이지의 입력단에 연결되며,
    상기 제2 스테이지의 출력단은 상기 제3 스테이지의 입력단에 연결되고,
    상기 제3 스테이지의 출력단은 상기 제1 스테이지의 입력단에 연결되는, 표시 장치.
  13. 기판;
    상기 기판 상에 배치되며, 각각 제1 전극, 제2 전극 및 상기 제1 및 제2 전극들 사이에 연결된 복수의 발광 소자들을 포함하는 화소들; 및
    상기 기판 상에서 상호 화소들 사이에 배치되되, 상기 화소들과 전기적으로 분리되고, 적어도 하나의 트랜지스터 및 적어도 하나의 커패시터를 포함하는 발진기를 포함하는, 표시 장치.
  14. 발진기를 포함하는 화소 회로층, 상기 발진기와 전기적으로 연결되되 상기 화소 회로층 상에 형성된 제1 전극, 및 상기 화소 회로층 상에 형성된 제2 전극을 포함하는 기판을 준비하는 단계;
    상기 제1 전극 및 상기 제2 전극 사이에 발광 소자들을 공급하는 단계; 및
    상기 발진기에 직류전압을 인가하여 상기 제1 전극 및 상기 제2 전극 사이에서 발광 소자들을 정렬시키는 단계를 포함하는, 표시 장치의 제조 방법.
  15. 제14 항에 있어서, 발진기는 상기 직류전압을 교류전압으로 변환하여, 상기 제1 전극에 공급하는, 표시 장치의 제조 방법.
  16. 제15 항에 있어서, 상기 발광 소자들을 정렬시키는 단계는,
    상기 발진기에 직류전압을 인가함과 동시에, 상기 제2 전극에 접지 전압을 인가하는 단계를 더 포함하는, 표시 장치의 제조 방법.
  17. 제16 항에 있어서,
    상기 제1 전극을 화소 영역별로 분할하고, 상기 제1 전극을 상기 발진기의 출력단로부터 분리시키는 단계를 더 포함하는, 표시 장치의 제조 방법.
  18. 제16 항에 있어서,
    상기 발광 소자들 각각의 일단을 상기 제1 전극에 연결하는 제1 콘택 전극 및 상기 발광 소자들 각각의 타단을 상기 제2 전극에 전기적으로 연결하는 제2 콘택 전극을 형성하는 단계를 더 포함하는, 표시 장치의 제조 방법.
  19. 제16 항에 있어서,
    상기 제1 전극과 상기 발진기 사이에서 상기 기판을 절단하여 상기 발진기를 제거하는 단계를 더 포함하는, 표시 장치의 제조 방법.
  20. 제15 항에 있어서, 상기 발광 소자들을 정렬시키는 단계는,
    외부 교류 전원으로부터 상기 제1 전극에 교류 전압을 인가하는 단계를 더 포함하는, 표시 장치의 제조 방법.
PCT/KR2019/010816 2019-02-21 2019-08-23 표시 장치 및 이의 제조 방법 WO2020171323A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980092785.0A CN113454785B (zh) 2019-02-21 2019-08-23 显示装置及用于该显示装置的制造方法
EP19916492.2A EP3926683A4 (en) 2019-02-21 2019-08-23 DISPLAY DEVICE AND MANUFACTURING METHOD THEREOF
US17/432,610 US12119436B2 (en) 2019-02-21 2019-08-23 Display device and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0020605 2019-02-21
KR1020190020605A KR20200102607A (ko) 2019-02-21 2019-02-21 표시 장치 및 이의 제조 방법

Publications (1)

Publication Number Publication Date
WO2020171323A1 true WO2020171323A1 (ko) 2020-08-27

Family

ID=72144920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010816 WO2020171323A1 (ko) 2019-02-21 2019-08-23 표시 장치 및 이의 제조 방법

Country Status (5)

Country Link
US (1) US12119436B2 (ko)
EP (1) EP3926683A4 (ko)
KR (1) KR20200102607A (ko)
CN (1) CN113454785B (ko)
WO (1) WO2020171323A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220157917A1 (en) * 2020-11-17 2022-05-19 Samsung Display Co., Ltd. Display device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210016122A (ko) 2019-07-31 2021-02-15 삼성디스플레이 주식회사 쌍극자 정렬 장치, 쌍극자 정렬 방법 및 표시 장치의 제조 방법
US11894412B2 (en) * 2019-11-14 2024-02-06 Samsung Display Co., Ltd. Display device including a light-emitting element between a first electrode and a second electrode thereon
KR20210065239A (ko) * 2019-11-26 2021-06-04 삼성디스플레이 주식회사 표시 장치
KR20220034267A (ko) * 2020-09-10 2022-03-18 삼성디스플레이 주식회사 표시 장치
KR20220118571A (ko) * 2021-02-18 2022-08-26 삼성디스플레이 주식회사 표시 장치
KR20220145947A (ko) 2021-04-20 2022-10-31 삼성디스플레이 주식회사 표시 장치
KR20220146725A (ko) * 2021-04-23 2022-11-02 삼성디스플레이 주식회사 표시 장치
KR20230006689A (ko) * 2021-07-01 2023-01-11 삼성디스플레이 주식회사 표시 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004535A (ja) * 2010-05-17 2012-01-05 Sharp Corp 発光装置の製造方法
KR20170057818A (ko) * 2015-11-17 2017-05-25 피에스아이 주식회사 초소형 led 전극어셈블리를 포함하는 디스플레이용 백라이트유닛 및 이를 포함하는 디스플레이
KR20170101334A (ko) * 2016-02-26 2017-09-06 피에스아이 주식회사 초소형 led 모듈을 포함하는 디스플레이 장치
KR20180071465A (ko) * 2016-12-19 2018-06-28 삼성디스플레이 주식회사 발광장치 및 그의 제조방법
KR20180072909A (ko) * 2016-12-21 2018-07-02 삼성디스플레이 주식회사 발광 장치 및 이를 구비한 표시 장치

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7639226B2 (en) 2004-05-31 2009-12-29 Lg Display Co., Ltd. Liquid crystal display panel with built-in driving circuit
KR20060003968A (ko) 2004-07-05 2006-01-12 삼성전자주식회사 어레이 기판과 이를 갖는 표시 장치와, 이의 구동장치 및방법
JP5245195B2 (ja) * 2005-11-14 2013-07-24 ソニー株式会社 画素回路
KR20120138805A (ko) 2010-03-12 2012-12-26 샤프 가부시키가이샤 발광 장치의 제조 방법, 발광 장치, 조명 장치, 백라이트, 액정 패널, 표시 장치, 표시 장치의 제조 방법, 표시 장치의 구동 방법 및 액정 표시 장치
KR101119531B1 (ko) 2010-11-17 2012-02-28 주식회사 티엘아이 노이즈 영상 방지 기능을 가지면서 부피를 감소시키는 평판 디스플레이 장치 및 이에 사용되는 링 오실레이터
KR20120077470A (ko) * 2010-12-30 2012-07-10 삼성모바일디스플레이주식회사 유기 발광 표시 장치 및 그 제조 방법
KR101871993B1 (ko) * 2011-08-23 2018-06-28 삼성디스플레이 주식회사 표시 장치
CN103383836B (zh) * 2013-07-02 2015-05-27 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示面板及显示装置
CN103941507B (zh) * 2014-04-02 2017-01-11 上海天马微电子有限公司 一种阵列基板、显示面板及显示装置
CN103927988B (zh) * 2014-04-03 2016-03-30 深圳市华星光电技术有限公司 一种oled显示器的阵列基板
KR20230044334A (ko) * 2014-09-12 2023-04-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
KR102369858B1 (ko) * 2015-06-29 2022-03-07 삼성디스플레이 주식회사 표시 장치
CN107134264B (zh) * 2016-02-26 2020-08-14 瀚宇彩晶股份有限公司 驱动电路和显示装置
KR102489594B1 (ko) * 2016-07-29 2023-01-18 엘지디스플레이 주식회사 협 베젤을 갖는 표시장치
CN106448552B (zh) * 2016-11-29 2018-11-23 京东方科技集团股份有限公司 显示基板、显示装置及显示控制方法
CN107144994B (zh) * 2017-06-29 2018-10-23 惠科股份有限公司 一种显示面板的驱动方法、驱动装置及显示装置
KR102333549B1 (ko) * 2017-07-05 2021-11-30 엘지디스플레이 주식회사 표시장치
KR102704782B1 (ko) * 2019-02-08 2024-09-10 삼성디스플레이 주식회사 표시 장치
KR102622348B1 (ko) * 2019-02-11 2024-01-10 삼성디스플레이 주식회사 화소 및 이를 구비한 표시 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004535A (ja) * 2010-05-17 2012-01-05 Sharp Corp 発光装置の製造方法
KR20170057818A (ko) * 2015-11-17 2017-05-25 피에스아이 주식회사 초소형 led 전극어셈블리를 포함하는 디스플레이용 백라이트유닛 및 이를 포함하는 디스플레이
KR20170101334A (ko) * 2016-02-26 2017-09-06 피에스아이 주식회사 초소형 led 모듈을 포함하는 디스플레이 장치
KR20180071465A (ko) * 2016-12-19 2018-06-28 삼성디스플레이 주식회사 발광장치 및 그의 제조방법
KR20180072909A (ko) * 2016-12-21 2018-07-02 삼성디스플레이 주식회사 발광 장치 및 이를 구비한 표시 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3926683A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220157917A1 (en) * 2020-11-17 2022-05-19 Samsung Display Co., Ltd. Display device

Also Published As

Publication number Publication date
US12119436B2 (en) 2024-10-15
CN113454785B (zh) 2024-09-24
EP3926683A1 (en) 2021-12-22
KR20200102607A (ko) 2020-09-01
EP3926683A4 (en) 2022-11-09
CN113454785A (zh) 2021-09-28
US20220158052A1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
WO2020171323A1 (ko) 표시 장치 및 이의 제조 방법
WO2020059989A1 (ko) 표시 장치 및 그의 제조 방법
WO2020149475A1 (ko) 발광 장치 및 이를 포함하는 표시 장치
WO2020017718A1 (ko) 발광 장치, 그의 제조 방법, 및 이를 포함한 표시 장치
WO2019208880A1 (ko) 발광 장치, 이를 구비한 표시 장치, 및 그의 제조 방법
WO2020213832A1 (ko) 표시 장치 및 그의 제조 방법
WO2020059990A1 (ko) 표시 장치 및 그의 제조 방법
WO2020017719A1 (ko) 발광 장치 및 이를 구비한 표시 장치
WO2020032335A1 (ko) 표시 장치 및 그의 제조 방법
WO2020013407A1 (ko) 발광 장치 및 이를 구비한 표시 장치
WO2020145462A1 (ko) 표시 장치 및 이의 제조 방법
WO2020116732A1 (ko) 표시 장치 및 이의 제조 방법
WO2022108157A1 (ko) 표시 장치
WO2020013403A1 (ko) 발광 장치, 그의 제조 방법, 및 이를 포함한 표시 장치
WO2021045605A1 (ko) 표시 장치 및 그의 제조 방법
WO2020071599A1 (ko) 표시 장치 및 그의 제조 방법
WO2020080624A1 (ko) 표시 장치
WO2020166774A1 (ko) 화소 및 이를 구비한 표시 장치
WO2020075935A1 (ko) 발광 장치, 그의 제조 방법, 및 이를 구비한 표시 장치
WO2020209484A1 (ko) 화소, 이를 구비한 표시 장치 및 그의 제조 방법
WO2020256265A1 (ko) 표시 장치 및 그의 제조 방법
WO2020149471A1 (ko) 표시 장치
WO2020226276A1 (ko) 화소 및 이를 구비한 표시 장치
WO2021096070A1 (ko) 표시 장치
WO2020013408A1 (ko) 발광 장치, 그의 제조 방법, 및 이를 구비한 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019916492

Country of ref document: EP

Effective date: 20210915