WO2020170313A1 - 培養容器ラック及び分析装置 - Google Patents

培養容器ラック及び分析装置 Download PDF

Info

Publication number
WO2020170313A1
WO2020170313A1 PCT/JP2019/005891 JP2019005891W WO2020170313A1 WO 2020170313 A1 WO2020170313 A1 WO 2020170313A1 JP 2019005891 W JP2019005891 W JP 2019005891W WO 2020170313 A1 WO2020170313 A1 WO 2020170313A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture container
culture
sample
container storage
storage section
Prior art date
Application number
PCT/JP2019/005891
Other languages
English (en)
French (fr)
Inventor
忠雄 藪原
常盤 幸恵
優 日下
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to JP2021501165A priority Critical patent/JP7150131B2/ja
Priority to US17/276,374 priority patent/US20220039334A1/en
Priority to EP19916259.5A priority patent/EP3929273A4/en
Priority to PCT/JP2019/005891 priority patent/WO2020170313A1/ja
Publication of WO2020170313A1 publication Critical patent/WO2020170313A1/ja
Priority to JP2022153226A priority patent/JP7411750B2/ja
Priority to JP2022153244A priority patent/JP7411751B2/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/14Incubators; Climatic chambers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/48Holding appliances; Racks; Supports
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control

Definitions

  • the present disclosure relates to a culture container rack and an analyzer.
  • tests are carried out by culturing cells and bacteria in samples and performing microscopic observation and turbidity measurement.
  • a microwell plate or a petri dish is used as a sample container, and the pretreated sample and nutrients are introduced into the sample container for culturing.
  • the sample inoculated in the sample container is subjected to repeated culture in the incubator and observation with the measuring device for a long time, and changes in the culture state are analyzed.
  • the temperature gradient in the incubator causes dew condensation on the lid of the sample container.
  • Water droplets due to dew condensation cause refraction of light in transmission observation, leading to erroneous determination of turbidity value due to deterioration of contrast and reduction of light amount.
  • Patent Document 1 As a culture observation apparatus that suppresses the occurrence of dew condensation in a sample container, for example, in Patent Document 1, "When the culture container 14 is carried into the incubator unit 12, the culture container 14 is placed on the platform 35, and the transport robot 15 is used. The heater 36 heats the culture container until the arm 31 of the device 31 carries in the culture container 14 placed on the base portion 35 (see the abstract of the same document).
  • Patent Document 2 in a biological sample culturing and observing apparatus, "the casing 7 of the incubator box 2 is used to culture the inside of the culturing environment E with respect to the inner surface 5a of the transparent plate 5 as shown in FIGS. 1 and 3.
  • a hot air supply nozzle (gas spraying means) 25 for spraying warm air (gas) H adjusted to a predetermined temperature so that the temperature is suitable for the temperature is attached. See paragraph [0035]).
  • Patent Document 1 since the number of culture vessels that can be put into the device is one, when a plurality of culture vessels are used for measurement, a waiting time for the user occurs when adding the culture vessels, and Can't leave.
  • the waiting time can be shortened by providing a plurality of the bases, but since a plurality of bases are required, the cost of mechanical parts increases and the size of the apparatus also increases.
  • Patent Document 2 in order to suppress the occurrence of dew condensation on the transparent plate, hot air is blown to the inner surface of the transparent plate inside the incubator box to heat the transparent plate and to generate water droplets generated by evaporation of humidifying water. Although it is difficult to attach, only one culture container can be installed. Therefore, when observing a plurality of culture vessels, a plurality of the same devices are required, resulting in an increase in cost, an increase in device size, and an increase in consumables such as culture gas and humidifying water.
  • the present disclosure provides a culture container rack and an analyzer that suppress the occurrence of dew condensation in the culture container.
  • the culture container rack of the present disclosure includes a culture container storage part for storing a culture container, and the culture container storage part includes a first member forming a top surface of the culture container storage part and the culture container storage part.
  • a second member that constitutes a bottom surface and a third member that is disposed on the second member and supports the culture container are provided, and the third member includes the first member and the culture container.
  • the culture container is supported so that the distance between and is less than or equal to the distance between the second member and the culture container.
  • FIG. 1A is a schematic front view showing the overall configuration of the analyzer 1 according to the first embodiment
  • FIG. 1B is a schematic plan view thereof.
  • the analyzer 1 includes a culture container rack 2, a transfer unit 3, a measurement unit 4, a temperature adjustment unit 5, and a control unit 7.
  • the culture container rack 2 has eight stages of culture container storage sections 21 stacked in the height direction, and one culture container 6 is stored in each culture container storage section 21.
  • a leg portion 22 that supports the culture container storage portion 21 is provided below the lowermost culture container storage portion 21.
  • the number of the culture container storage portions 21 is not limited to eight stages, and the number of stages may be increased or decreased.
  • the analyzer 1 may have a plurality of culture container racks 2. Details of the culture container storage unit 21 will be described later.
  • the culture container 6 is composed of a sample container 61 and a lid 62.
  • the sample container 61 is a well plate having a plurality of wells such as a 96-well plate and a 384-well plate, and the sample 63 is inoculated into each well. Examples of the sample 63 include cells, blood, urine, bacteria, and tissue pieces.
  • the lid 62 may be a seal.
  • the transport unit 3 includes actuators 31 and 32 and a holding unit 33, and is configured to transport the culture container 6.
  • the holding unit 33 holds the culture vessel 6 and is configured to move in the height direction and the horizontal direction by the actuators 31 and 32.
  • the actuator 31 and the actuator 32 are composed of, for example, a ball screw or a belt.
  • the holding unit 33 can receive and deliver the culture container 6 by a mechanism (not shown).
  • the holding unit 33 holds the first holding unit that holds the culture container 6 to be measured next in the measuring unit 4 and the culture container 6 that has been measured by the measuring unit 4.
  • a second holding unit may be provided, and the culture container 6 that has been measured may be taken out from the measurement unit 4, and the culture container 6 that has not been measured may be introduced into the measurement unit 4.
  • the measurement unit 4 includes a measurement unit 41 and a sample measurement unit 42.
  • the sample measurement unit 42 is a measurement device that is included in the measurement unit 41 and measures the culture state of the sample 63 in each well of the culture container 6.
  • the sample measurement unit 42 includes various mechanisms (not shown) for performing, for example, turbidity measurement, absorbance measurement, fluorescence measurement, image analysis, and the like.
  • the temperature controller 5 includes a heater 51, a heat sink 52, and a fan 53, and adjusts the temperature inside the analyzer 1.
  • the heat of the heater 51 is supplied into the analyzer 1 by the wind 54 generated by the fan 53 via the heat sink 52.
  • a heater such as an electric heater, a ceramic heater, a silicon rubber heater, a sheath heater, a band heater, a polyimide heater, a space heater, a code heater, a cartridge heater, and a metal embedded heater can be used.
  • Peltier may be used.
  • As a material of the heat sink 52 for example, aluminum, copper, iron, stainless steel or the like can be used.
  • the control unit 7 is, for example, a computer such as a personal computer, and controls the overall operation of the analyzer 1.
  • the control unit 7 is connected to the transport unit 3, the measurement unit 4, and the temperature control unit 5 by wire or wirelessly, and sends an instruction to each of these mechanisms and receives an output of each mechanism.
  • control unit 7 includes a display unit that displays the measurement result and the like in the sample measurement unit 42, and a data processing unit that calculates the change amount of the culture state of the sample 63 over time based on the measurement result.
  • An input unit for the user to input an instruction, a storage unit for storing the measurement result, and the like may be provided.
  • the control unit 7 may be built in the measurement unit 41.
  • the measurement unit 41 may include a temperature sensor (not shown) that measures the temperature of the sample measurement unit 42.
  • the control unit 7 controls the output of the heat quantity of the heater 51 based on the output value of the temperature sensor.
  • the user stores the culture container 6 inoculated with the sample 63 in each culture container storage portion 21. After that, the user inputs an instruction to start the operation of the analyzer 1 by using the input unit of the control unit 7 or the like.
  • control unit 7 When the control unit 7 receives the operation start instruction, the control unit 7 drives the transport unit 3.
  • the transport unit 3 receives the culture container 6 from the culture container storage unit 21 and transports it to the sample measuring unit 42.
  • the control unit 7 drives the sample measuring unit 42 when the transportation of the culture container 6 is completed, and the sample measuring unit 42 measures the culture state of the sample 63 in the sample container 61 (step S1).
  • the control unit 7 may receive the measurement result from the sample measurement unit 42 and display the measurement result on a display unit (not shown).
  • control unit 7 drives the transport unit 3.
  • the transport unit 3 moves the culture container 6 from the sample measuring unit 42 to the culture container storage unit 21 and stores it.
  • the specimen 63 in the culture container 6 is cultured in the culture container storage portion 21 for a predetermined time (step S2).
  • the control unit 7 repeats the measurement cycle of steps S1 and S2 for one culture container 6 at intervals of, for example, 20 to 30 minutes for about 18 hours. While the specimen 63 in the culture container 6 is being cultured in a certain culture container storage portion 21, the measurement of the specimen 63 in the culture container 6 stored in another culture container storage portion 21 is performed.
  • the time (culture time) during which the culture container 6 is stored in the culture container storage portion 21 is usually compared to the measurement time in the sample measurement unit 42. Is long.
  • the material of the member that supports the lower surface of the sample container 61, the air present in the slight unevenness of the lower surface of the sample container 61, and the like are supplied to the sample 63 in the sample container 61.
  • the thermal energy generated by the lid 62 is higher than the thermal energy supplied to the lid 62. As a result, dew condensation occurs inside the culture container 6.
  • FIG. 1C is a schematic diagram showing a location where dew condensation occurs when there is a gap between the sample container 61 and the lid 62.
  • FIG. 1C shows only a part of the culture container 6 for simplification of the drawing. As shown in FIG. 1C, when there is a gap between the sample container 61 and the lid 62 of the culture container 6, dew condensation C occurs between the upper surface of the sample container 61 and the bottom surface of the lid 62.
  • FIG. 1D is a schematic diagram showing a location where dew condensation occurs when there is no gap between the sample container 61 and the lid 62.
  • FIG. 1D shows only a part of the culture container 6 for simplification of the drawing.
  • dew condensation C occurs on the boundary surface between the open end of each well of the sample container 61 and the lid 62.
  • the location where the dew condensation C occurs as described above (between the upper surface of the sample container 61 and the bottom surface of the lid 62, and the boundary surface between the open end of each well of the sample container 61 and the lid 62) is referred to as " It may be referred to as a "condensation generation part”.
  • a culture container storage part 21 that can suppress or remove the dew condensation that occurs in the dew condensation part during the waiting time until the next measurement.
  • the culture container 6 one having no gap between the sample container 61 and the lid 62 is used, and the culture container storage part 21 for suppressing the dew condensation that occurs on the boundary surface between the open end of the sample container 61 and the lid 62 is used. Will be described.
  • FIG. 2A is a schematic front view showing a configuration example of the culture container storage unit 21 according to the present embodiment.
  • the culture container storage unit 21 includes a metal material 201 (first member), a heat insulating material 202 (third member), a metal material 203 (second member), a metal material 204, and a metal material. 205 is provided.
  • the metal material 201 constitutes the top surface of the culture container storage portion 21, and the metal material 203 constitutes the bottom surface of the culture container storage portion 21.
  • the lower surface of the metal material 201 faces the upper surface of the lid 62.
  • the heat insulating material 202 is disposed on the metal material 203 and contacts the lower surface of the sample container 61 to support the sample container 61 when the culture container 6 is stored.
  • the culture vessel 6 is housed between the metal material 201 and the heat insulating material 202.
  • the metal materials 204 and 205 respectively constitute the side surfaces of the culture container storage section 21. In this way, the culture vessel 6 is surrounded by the metal materials 201, 203, 204, and 205 in the upper, lower, left, and right directions, and can be stored and taken out from the front side and the rear side of the culture vessel storage section 21.
  • the metal material 203 of the culture container storage section 21 located at the upper stage and the metal material 201 of the culture container storage section 21 located at the lower stage may be in contact with each other. Other members may be arranged between them.
  • the metal material 201 of the culture container storage portion 21 located in the lower stage may also serve as the metal material 203.
  • the metal material 203 is arranged on the lower surface of the heat insulating material 202.
  • the material of the metal materials 201, 203, 204 and 205 for example, aluminum, stainless steel, copper, iron, titanium or the like can be used.
  • the heat insulating material 202 for example, glass wool, cellulose fiber, insulation board, wool heat insulating material, rock wool, rigid urethane foam, bead method polystyrene foam, phenol foam, vacuum heat insulating material, resin material and the like can be used.
  • the resin material include polyamide, POM, PEEK, PPS, PTFE, PVC, PE, PP, PS and ABS.
  • the culture container housing portion 21 has a structure in which the top, bottom, left and right sides of the culture container 6 are surrounded, so that heat convection does not easily occur around the culture container 6.
  • the room temperature of the room in which the analyzer 1 is installed and the thermal energy supplied from the temperature control unit 5 balance the culture container storage unit 21 with a certain temperature distribution. Therefore, in order to prevent dew condensation, in this equilibrium state, the amount of thermal energy supplied to the interface between the open end of the sample container 61 and the lid 62 is equal to the amount of thermal energy supplied to the sample 63 in the sample container 61.
  • the thermal conductivity of the member (metal material 201) in contact with the upper surface of the lid 62 is made higher than the thermal conductivity of the member (heat insulating material 202) in contact with the lower surface of the sample container 61 so as to be increased. Further, the thermal conductivity of the heat insulating material 202 is made lower than that of the metal material 203. In addition to this, the thermal conductivity of the metal material 201 may be higher than that of the metal material 203.
  • the thermal energy supplied to the boundary surface between the open end of the sample container 61 and the lid 62 is the same as the inner bottom of the sample container 61 (well) and the sample 63. Since the heat energy supplied to the boundary surface is higher than that of the sample container 61, the temperature of the upper surface of the lid 62 is higher than that of the lower surface of the sample container 61. Can be suppressed.
  • FIG. 2B is a schematic front view showing another example of the configuration of the culture container storage section 21. 2B is different from FIG. 2A in that an air layer 206 (first air layer) is provided between the upper surface of the lid 62 and the lower surface of the metal material 201.
  • the other configuration is similar to that of FIG. 2A, and thus the description is omitted.
  • the thickness a of the air layer 206 (distance between the first member and the culture container) is defined as the distance from the lower surface of the metal material 201 to the boundary surface between the open end of the sample container 61 and the lid 62.
  • the thickness a of the air layer 206 is such that the thermal energy (heat conduction+heat transfer+radiation) supplied to the boundary surface between the inner bottom portion of the sample container 61 and the sample 63 ⁇ the boundary between the open end of the sample container 61 and the lid 62.
  • the heat energy supplied to the surface (heat conduction+heat transfer+radiation) is appropriately set in accordance with the materials of the metal material 201 and the heat insulating material 202 within a range where the relational expression holds.
  • the distance from the upper surface of the heat insulating material 202 to the boundary surface between the inner bottom portion of the sample container 61 and the sample 63 is t.
  • the thickness of the heat insulating material 202 is W.
  • W+t is equal to the distance from the upper surface of the metal material 203 to the boundary surface between the inner bottom portion of the sample container 61 and the sample 63 (the distance between the second member and the culture container).
  • the thermal energy applied to the interface between the open end of the sample container 61 and the lid 62 by the metal material 201 can be made higher than the thermal energy to the interface between the inner bottom portion of the sample container 61 and the sample 63, Condensation can be prevented.
  • the surface shape of the lower surface of the metal material 201 facing the lid 62 is made uneven, or the lower surface of the metal material 201 is surface-treated (for example, alumite treatment) so as to increase the emissivity.
  • the lower surface of the metal material 201 may be colored with a high emissivity.
  • FIG. 2C is a schematic front view showing another example of the structure of the culture container storage section 21.
  • the heat insulating material 202 is formed in a substantially U shape, and an air layer 207 (second air layer) is formed below the portion of the sample container 61 in which the sample 63 is stored. 2B in that respect.
  • the heat insulating material 202 supports the left and right ends of the lower surface of the sample container 61.
  • the thickness b of the air layer 207 is defined as the distance from the boundary surface between the inner bottom portion of the sample container 61 and the sample 63 to the upper surface of the concave portion of the heat insulating material 202.
  • the heat insulating material 202 When a material having a higher thermal conductivity than air (for example, about 10 times) is used as the heat insulating material 202, by providing an air layer 207 on the heat insulating material 202 as shown in FIG. 2C, as compared with FIG. 2B, The thermal energy supplied to the boundary surface between the inner bottom portion of the sample container 61 and the sample 63 can be reduced.
  • a material having a higher thermal conductivity than air for example, about 10 times
  • the boundary between the inner bottom portion of the sample container 61 and the sample 63 is more than the thermal energy supplied to the boundary surface between the open end of the sample container 61 and the lid 62.
  • the thermal energy supplied to the surface can be reduced, which can prevent dew condensation.
  • FIG. 2D is a schematic front view showing another configuration example of the culture container storage section 21.
  • the heat insulating material 202 does not exist below the portion of the sample container 61 where the sample 63 is stored (not filled), and the lower surface of the sample container 61 and the metal material 203 are included.
  • 2C in that an air layer 208 (second air layer) is provided between the upper surface and the upper surface.
  • the heat insulating material 202 is used as a scaffold that supports the left and right ends of the lower surface of the sample container 61, and can actively supply heat energy to the metal materials 201 and 203. Further, in the configuration of FIG. 2D, by making the thermal conductivity of the metal material 201 higher than that of the metal material 203, the thermal energy supplied to the boundary surface between the open end of the sample container 61 and the lid 62 is increased. It can be made larger than the thermal energy supplied to the boundary surface between the inner bottom portion of the sample container 61 and the sample 63.
  • the thickness c of the air layer 208 is defined as the distance from the boundary surface between the inner bottom portion of the sample container 61 and the sample 63 to the upper surface of the metal material 203.
  • the thickness W of the heat insulating material 202 is set so as to be the thickness c of the air layer 208.
  • the thickness a of the air layer 206 may be the same as the thickness c of the air layer 208.
  • the surface shape of the lower surface of the metal material 201 facing the upper surface of the lid 62 is the same as the lower surface of the sample container 61. It is made rougher than the upper surface of the facing metal material 203.
  • the surface treatment of the lower surface of the metal material 201 is different from the surface treatment of the upper surface of the metal material 203.
  • the radiant energy to the interface between the lid 62 and the sample container 61 can be made higher than the radiant energy to the interface between the inner bottom of the sample container 61 and the sample 63, and dew condensation can be prevented. it can.
  • the lid 62 and the sample are more radiated than the radiant energy supplied to the boundary surface between the inner bottom portion of the sample container 61 and the sample 63.
  • the radiant energy supplied to the boundary surface with the container 61 may be increased.
  • the thickness W of the heat insulating material 202 is set so that the ratio (emission rate/emissivity of the upper surface of the metal material 203). Thereby, the occurrence of dew condensation can be suppressed. Further, thermal energy supplied to the interface between the inner bottom of the sample container 61 and the sample 63 (heat conduction+heat transfer+radiation) ⁇ thermal energy supplied to the interface between the open end of the sample container 61 and the lid 62.
  • the emissivity of the metal material 201 is set higher than that of the metal material 203, and the heat conductivity of the metal material 201 is the heat conduction of the metal material 203. It can be lower than the rate.
  • the thermal energy supplied to the boundary surface between the open end of the sample container 61 and the lid 62 is transferred to the boundary surface between the inner bottom of the sample container 61 and the sample 63.
  • the heat energy supplied to the device can be larger than the heat energy supplied to the device, and the occurrence of dew condensation in the dew condensation generation part can be suppressed.
  • FIG. 2E is a schematic front view showing another example of the structure of the culture container storage section 21.
  • the culture container storage unit 21 of FIG. 2E is different from that of FIG. 2D in that a heat insulating material 209 having a thermal conductivity lower than that of air is arranged on the upper surface of the metal material 203.
  • the thickness of the heat insulating material 209 can be set to a thickness at which the air layer 210 (second air layer) is formed between the lower surface of the sample container 61 and the upper surface of the heat insulating material 209.
  • the thickness d of the air layer 210 is defined as the distance from the boundary surface between the inner bottom portion of the sample container 61 and the sample 63 to the upper surface of the heat insulating material 209.
  • the relationship of the thickness a of the air layer 206 ⁇ the thickness d of the air layer 210 may be established. As a result, the amount of thermal energy supplied to the lower surface of the sample container 61 can be reduced, and the occurrence of dew condensation can be suppressed.
  • the heat insulating material 209 does not necessarily have to be in contact with the upper surface of the metal material 203 and can be arranged at any position between the lower surface of the sample container 61 and the upper surface of the metal material 203.
  • an air layer may be formed between the lower surface of the heat insulating material 209 and the upper surface of the metal material 203.
  • the heat insulating material 209 may be arranged so that the upper surface of the heat insulating material 209 and the bottom surface of the sample container 61 are in contact with each other.
  • FIG. 2F is a schematic front view showing another configuration example of the culture container storage section 21. 2F is different from FIG. 2E in that the heat insulating material 211 is arranged over the entire upper surface of the metal material 203, and the heat insulating material 202 is arranged on the heat insulating material 211.
  • the thickness of the heat insulating material 211 can be a thickness at which an air layer 212 (second air layer) is formed between the lower surface of the sample container 61 and the upper surface of the heat insulating material 211.
  • the thickness e of the air layer 212 is defined as the distance from the boundary surface between the inner bottom portion of the sample container 61 and the sample 63 to the upper surface of the heat insulating material 211.
  • the relationship of the thickness a of the air layer 206 ⁇ the thickness e of the air layer 212 may be established.
  • the structure of FIG. 2F can also reduce the amount of heat energy supplied to the lower surface of the sample container 61, and can suppress the occurrence of dew condensation.
  • the heat insulating material 202 is installed on the metal material 203.
  • a supporting member for suspending the heat insulating material 202 is further provided on the lower surface of the metal material 201, and the suspended heat insulating material is provided.
  • the culture container 6 may be placed on the material 202.
  • the heat insulating material 202 may be fixed to the metal material 204 and the metal material 205.
  • the thermal energy supplied to the interface between the open end of the sample container 61 and the lid 62 is supplied to the interface between the inner bottom of the sample container 61 and the sample 63.
  • 2A to 2F may be combined so that the thermal energy is larger than the thermal energy.
  • the temperature control unit 5 is arranged above the analyzer 1 so that a temperature gradient is formed such that the temperature decreases from the upper stage to the lower stage of the culture container rack 2. You may do it. Further, the temperature control unit 5 may be arranged directly above the culture container rack 2 so that the temperature gradient from the upper stage to the lower stage of the culture container rack 2 can be formed more efficiently.
  • the internal temperature of the incubator is controlled so that a temperature gradient is not generated, but the temperature of the sample container 61 is set to be higher in the upper stage of the culture container rack 2 so that the culture of the sample 63 is not affected.
  • the thermal energy supplied to the interface between the inner bottom of the sample container 61 and the sample 63 can be made smaller than the thermal energy supplied to the interface between the open end of the container and the lid 62, thereby preventing dew condensation. can do.
  • the boundary between the inner bottom portion of the sample container 61 and the sample 63 is more than the thermal energy supplied to the boundary surface between the open end of the sample container 61 and the lid 62.
  • the heat energy supplied to the surface is configured to be small.
  • the time for removing or suppressing the dew condensation of the culture container 6 that occurs during the culture time is unnecessary, so that the culture container 6 can be immediately supplied to the sample measuring unit 42, and the measurement can be performed efficiently. be able to.
  • the dew condensation is suppressed, the accuracy of the measurement result is improved, and it is not necessary to open the lid 62 to remove the dew condensation, so that the contamination can be prevented.
  • FIGS. 3A to 3H show an example of using the culture container storage section 21 shown in FIG. 2D, other configuration examples of the culture container storage section 21 (FIGS. 2A to 2C, 2E, or 2F) may be used. ..
  • FIG. 3A is a schematic front view showing an arrangement example of the heat source 213 and the temperature sensor 214 according to the second embodiment.
  • the culture container rack 2 further includes heat sources 213a to 213d and temperature sensors 214a to 214d.
  • the heat sources 213a and 213c are provided so as to cover the entire left side surface of the culture container rack 2, and the heat sources 213b and 213d are provided so as to cover the entire right side surface of the culture container rack 2.
  • the heat sources 213a and 213c are provided on the outer wall surface of the metal material 204
  • the heat sources 213b and 213d are provided on the outer wall surface of the metal material 205.
  • the heat sources 213a to 213d for example, an electric heater, a ceramic heater, a silicon rubber heater, a sheath heater, a band heater, a polyimide heater, a space heater, a cord heater, a cartridge heater, a heater such as a metal embedded heater, or a Peltier heater is used. ..
  • the heat sources 213a to 213d are attached to the side surface of the culture container rack 2 with a double-sided tape, a heat conductive sheet, a bond, etc., which are not shown, and contact the metal members 201, 204 and 205. Although illustration is omitted, a metal layer or a resin layer is arranged on the surfaces of the heat sources 213a to 213d.
  • the temperature sensors 214a to 214d measure the temperature inside the culture container storage section 21.
  • the drawing on the right side of FIG. 3A is an enlarged view of the culture container storage portion 21 provided with the temperature sensors 214a and 214b.
  • a temperature sensor 214a is arranged on the inner wall surface of the metal material 204
  • a temperature sensor 214b is arranged on the inner wall surface of the metal material 205. It is arranged.
  • a temperature sensor 214c is arranged on the inner wall surface of the metal material 204, and a temperature sensor 214d is arranged on the inner wall surface of the metal material 205.
  • the positions of the heat sources 213a to 213d and the temperature sensors 214a to 214d are not limited to the positions shown in FIG. 3A.
  • FIG. 3B is a block diagram showing a control mechanism of the heat sources 213a to 213d and the temperature sensors 214a to 214d in FIG. 3A.
  • the heat sources 213a to 213d and the temperature sensors 214a to 214d are connected to the control unit 7, respectively.
  • the temperature sensors 214a to 214d output temperature measurement values to the control unit 7.
  • the control unit 7 receives the temperature measurement values from the temperature sensors 214a to 214d, and controls the current amount, the voltage amount, etc. corresponding to the heat amount, which are supplied to the heat sources 213a to 213d, based on the measurement values.
  • the control unit 7 may control the amount of heat supplied to the heat sources 213a to 213d so as to form a temperature gradient such that the temperature decreases from the upper stage to the lower stage of the culture container rack 2.
  • the inner bottom portion of the sample container 61 and the sample 63 are more efficiently than the thermal energy supplied to the boundary surface between the open end of the sample container 61 and the lid 62.
  • the thermal energy supplied to the boundary surface can be reduced.
  • the heat sources 213a to 213d may be configured such that the heat supply amount decreases from the upper portion to the lower portion.
  • an electrothermal heater configured such that the number of turns decreases from the upper portion to the lower portion can be used.
  • FIG. 3A four heat sources 213a to 213d and four temperature sensors 214a to 214d are arranged, but if the number of heat sources 213 and temperature sensors 214 is one or more, respectively. Good. Further, the number of heat sources 213 may be smaller than the number of temperature sensors 214.
  • control unit 7 controls the lowest output value among the plurality of temperature sensors 214, the highest output value, the average value of the output values of the plurality of temperature sensors 214, or The amount of current and the amount of voltage corresponding to the amount of heat supplied to the heat source 213 are controlled based on the output value such as the sum.
  • the culture container storage unit 21 shown in FIG. 3A can increase the supply amount of thermal energy as compared with the first embodiment, and can accelerate the temperature rise of the metal material 201. .. This makes it possible to more efficiently suppress the occurrence of dew condensation.
  • FIG. 3C is a schematic front view showing another arrangement example of the heat source 213 and the temperature sensor 214 according to the second embodiment.
  • the example shown in FIG. 3C is different from FIG. 3A in that one temperature sensor 214 is arranged only in the central portion of the culture container rack 2 (the fifth-stage culture container storage portion 21).
  • the diagram on the right side of FIG. 3C is an enlarged view of the culture container storage portion 21 provided with the temperature sensor 214. As shown in the diagram on the right side of FIG. 3C, the temperature sensor 214 is installed on the lower surface of the metal material 201, for example.
  • 3D is a block diagram showing a control mechanism of the heat sources 213a to 213d and the temperature sensor 214 of FIG. 3C. Similarly to the above, the amount of current and the amount of voltage supplied to the heat sources 213a to 213d are controlled based on the output of the temperature sensor 214. The other points are similar to those described above, and thus the description thereof is omitted.
  • FIG. 3E is a schematic front view showing still another arrangement example of the heat source 213 and the temperature sensor 214 according to the second embodiment.
  • the above-mentioned culture container rack 2 had one row of 8-stage culture container storage parts 21 arranged in the height direction, but the culture container rack 2 of FIG. 3E has two 8-stage culture container storage parts 21. There are rows, and the culture container storages 21 are arranged in the horizontal direction.
  • the metal material 205 of the culture container storage portion 21 in the left column and the metal material 204 of the culture container storage portion 21 in the right column are arranged to be in contact with each other. Note that the number of rows of the culture container storage section 21 is not limited to two, and can be any number.
  • the heat sources 213a and 213c are attached to the metal material 204 of the culture container storage section 21 in the left column, and the heat sources 213b and 213d are attached to the metal material 205 of the culture container storage section 21 in the right column.
  • a heat source 213e is arranged on the upper surface of the uppermost culture container storage section 21, and a heat source 213f is arranged on the lower surface of the lowermost culture container storage section 21.
  • the temperature sensors 214a to 214f are arranged near the heat sources 213a to 213f inside the culture container housing section 21, respectively.
  • FIG. 3F is a block diagram showing a control mechanism of the heat sources 213a to 213f and the temperature sensors 214a to 214f of FIG. 3E. As shown in FIG. 3F, the heat sources 213a to 213f are controlled by the controller 7 of the analyzer 1 based on the outputs of the temperature sensors 214a to 214f. The other points are similar to those described above, and thus the description thereof is omitted.
  • FIG. 3G is a schematic front view showing another arrangement example of the heat source 213 and the temperature sensor 214 according to the second embodiment.
  • the example shown in FIG. 3G is different from FIG. 3E in that one temperature sensor 214 is arranged at the center of the culture container rack 2.
  • FIG. 3H is a block diagram showing a control mechanism of the heat sources 213a to 213f and the temperature sensor 214 of FIG. 3G. As shown in FIG. 3H, the heat sources 213a to 213f are controlled by the controller 7 of the analyzer 1 based on the output of the temperature sensor 214. The other points are similar to those described above, and thus the description thereof is omitted.
  • the heat source 213 is directly attached to the culture container storage portion 21, but a metal plate or the like is arranged between the heat source 213 and the culture container storage portion 21, and the metal plate
  • the heat energy of the heat source 213 may be supplied to the culture container storage section 21 via the.
  • the culture container rack 2 since the culture container rack 2 has the heat source 213 and the temperature sensor 214, it is possible to increase the supply amount of heat energy as compared with the first embodiment, and the temperature of the metal material 201. It is possible to accelerate the rise. As a result, it is possible to efficiently suppress the occurrence of dew condensation in the dew condensation generating section. Further, by controlling the heat supply amount by the heat source 213 so as to form a temperature gradient such that the temperature decreases from the upper stage to the lower stage of the culture container rack 2, it is possible to more efficiently suppress the occurrence of dew condensation. ..
  • the present disclosure is not limited to the above-described embodiments and includes various modifications.
  • the above-described embodiment has been described in detail for the purpose of easily understanding the present disclosure, and does not necessarily have to include all the configurations described.
  • part of one embodiment can be replaced with the configuration of another embodiment.
  • the configuration of another embodiment may be added to the configuration of one embodiment.
  • a part of the configuration of each embodiment may be added, deleted, or replaced with a part of the configuration of another embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Environmental Sciences (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Water Supply & Treatment (AREA)
  • Mycology (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Abstract

本開示の培養容器ラックは、培養容器を収納する培養容器収納部を備え、前記培養容器収納部は、前記培養容器収納部の天面を構成する第1の部材と、前記培養容器収納部の底面を構成する第2の部材と、前記第2の部材上に配置され、前記培養容器を支持する第3の部材とを備え、前記第3の部材は、前記第1の部材と前記培養容器との距離が前記第2の部材と前記培養容器との距離以下となるように、前記培養容器を支持することを特徴とする。

Description

培養容器ラック及び分析装置
 本開示は、培養容器ラック及び分析装置に関する。
 医療研究機関や病院などでは、検体中の細胞や細菌を培養し、顕微鏡観察や濁度測定を行う検査が実施されている。細胞培養や細菌培養においては、検体容器としてマイクロウェルプレートやシャーレが用いられ、前処理した検体及び栄養素を検体容器に導入して培養が実施される。検体容器に接種された検体は、インキュベータ内での培養と測定装置での観察が長時間にわたって繰り返され、培養状態の変化が分析される。
 しかしながら、培養及び観察を長時間繰り返すと、インキュベータ内の温度勾配により、検体容器の蓋などに結露が発生してしまう。結露による水滴は、例えば透過観察において光の屈折の原因となり、コントラスト悪化や、光量の低下による濁度値への誤判定へとつながる。
 検体容器における結露の発生を抑制する培養観察装置として、例えば特許文献1には、「インキュベータ部12に培養容器14を搬入する際に、台部35に培養容器14が載置され、搬送ロボット15のアーム31が台部35に載置された培養容器14を搬入するまでの間に、ヒータ36が培養容器を加温する」ことが開示されている(同文献の要約参照)。
 特許文献2には、生体試料培養観察装置において、「インキュベータボックス2の筐体7には、図1及び図3に示すように、透明板5の内面5aに対して、培養環境E内が培養に適した温度になるように、所定の温度に調節された温風(気体)Hを吹き付ける温風供給ノズル(気体吹付手段)25が取り付けられている」ことが開示されている(同文献の段落[0035]参照)。
特開2010-158185号公報 特開2007-166982号公報
 しかしながら、特許文献1においては、装置に投入できる培養容器の数は1つずつであるため、培養容器を複数用いて測定する場合は、培養容器の追加投入時にユーザの待ち時間が発生し、装置を離れることができない。上記台部を複数台設けることにより待ち時間を短縮することができるが、台部が複数台必要となるため機械部品のコストが上がり、装置サイズも大きくなる。
 特許文献2においては、透明板への結露発生を抑制するため、インキュベータボックスの内部の透明板の内面に温風を吹き付け、透明板を加温して加湿水の蒸発によって生じた水滴を透明板につきにくくしているが、設置できる培養容器は1つのみである。従って、複数の培養容器を観察する場合は、同じ装置が複数必要となるためコストが上がり、装置サイズも大きくなるうえ、培養ガスや加湿水などの消耗品も増えてしまう。
 そこで、本開示は、培養容器における結露の発生を抑制する培養容器ラック及び分析装置を提供する。
 本開示の培養容器ラックは、培養容器を収納する培養容器収納部を備え、前記培養容器収納部は、前記培養容器収納部の天面を構成する第1の部材と、前記培養容器収納部の底面を構成する第2の部材と、前記第2の部材上に配置され、前記培養容器を支持する第3の部材とを備え、前記第3の部材は、前記第1の部材と前記培養容器との距離が前記第2の部材と前記培養容器との距離以下となるように、前記培養容器を支持することを特徴とする。
 本開示に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、本開示の態様は、要素及び多様な要素の組み合わせ及び以降の詳細な記述と添付される特許請求の範囲の様態により達成され実現される。
 本明細書の記述は典型的な例示に過ぎず、本開示の特許請求の範囲又は適用例を如何なる意味に於いても限定するものではないことを理解する必要がある。
 本開示によれば、培養容器における結露の発生を抑制することができる。
 上記以外の課題、構成及び効果は、以下の実施の形態の説明により明らかにされる。
第1の実施形態に係る分析装置の全体構成を示す概略正面図である。 第1の実施形態に係る分析装置の全体構成を示す概略平面図である。 結露の発生箇所を示す模式図である。 結露の発生箇所を示す模式図である。 培養容器収納部の構成例を示す概略正面図である。 培養容器収納部の構成例を示す概略正面図である。 培養容器収納部の構成例を示す概略正面図である。 培養容器収納部の構成例を示す概略正面図である。 培養容器収納部の構成例を示す概略正面図である。 培養容器収納部の構成例を示す概略正面図である。 第2の実施形態に係る熱源及び温度センサの配置例を示す概略正面図である。 図3Aの熱源及び温度センサの制御機構を示すブロック図である。 第2の実施形態に係る熱源及び温度センサの配置例を示す概略正面図である。 図3Cの熱源及び温度センサの制御機構を示すブロック図である。 第2の実施形態に係る熱源及び温度センサの配置例を示す概略正面図である。 図3Eの熱源及び温度センサの制御機構を示すブロック図である。 第2の実施形態に係る熱源及び温度センサの配置例を示す概略正面図である。 図3Gの熱源及び温度センサの制御機構を示すブロック図である。
[第1の実施形態]
 図1Aは、第1の実施形態に係る分析装置1の全体構成を示す概略正面図であり、図1Bは、その概略平面図である。図1A及び1Bに示すように、分析装置1は、培養容器ラック2、搬送部3、測定部4、温調部5及び制御部7を備える。
 培養容器ラック2は、高さ方向に積み重ねられた8段の培養容器収納部21を有し、各培養容器収納部21に1つの培養容器6が収納される。最下段の培養容器収納部21の下部には、この培養容器収納部21を支持する脚部22が設けられる。なお、培養容器収納部21の数は8段に限定されず、段数を増減してもよい。また、分析装置1は、培養容器ラック2を複数有していてもよい。培養容器収納部21の詳細については、後述する。
 培養容器6は、検体容器61及び蓋62から構成される。検体容器61は、例えば96ウェルプレート、384ウェルプレートなどの複数のウェルを有するウェルプレートであり、各ウェルに検体63が接種される。検体63としては、例えば細胞、血液、尿、細菌、組織片などが挙げられる。なお、蓋62は、シール状のものであってもよい。
 搬送部3は、アクチュエータ31及び32、並びに保持部33を備え、培養容器6を搬送可能に構成される。保持部33は、培養容器6を保持し、アクチュエータ31及び32により高さ方向及び水平方向に移動するよう構成される。アクチュエータ31及びアクチュエータ32は、例えばボールねじやベルト等により構成される。保持部33は、図示しない機構により、培養容器6の受取りや受渡しが可能である。
 図示は省略しているが、保持部33は、測定部4において次に測定される培養容器6を保持する第1の保持部と、測定部4での測定が終了した培養容器6を保持する第2の保持部とを備えていてもよく、測定済みの培養容器6を測定部4から取り出すと共に、未測定の培養容器6を測定部4へ導入してもよい。
 測定部4は、測定ユニット41及び検体測定部42を備える。検体測定部42は、測定ユニット41内にあり、培養容器6の各ウェル内の検体63の培養状態を測定する測定装置である。検体測定部42は、例えば濁度測定、吸光度測定、蛍光測定、画像解析などを行うための各種機構(図示せず)を備える。
 温調部5は、ヒータ51、ヒートシンク52及びファン53を備え、分析装置1内の温度を調節する。ヒータ51の熱は、ヒートシンク52を介してファン53が生成する風54により分析装置1内へ供給される。ヒータ51としては、例えば電熱ヒータ、セラミックヒータ、シリコンラバーヒータ、シーズヒータ、バンドヒータ、ポリイミドヒータ、スペースヒータ、コードヒータ、カートリッジヒータ、金属埋め込み式ヒータなどのヒータを用いることができる。また、これらのヒータ以外に、ペルチェを使用してもよい。ヒートシンク52の材質としては、例えばアルミニウム、銅、鉄、ステンレスなどを用いることができる。
 制御部7は、例えばパーソナルコンピュータ等のコンピュータであり、分析装置1全体の動作を制御する。制御部7は、有線又は無線により搬送部3、測定部4及び温調部5に接続され、これら各機構に指示を送信したり、各機構の出力を受信したりする。
 図示は省略しているが、制御部7は、検体測定部42における測定結果などを表示する表示部、測定結果に基づいて検体63の経時的な培養状態の変化量などを算出するデータ処理部、ユーザが指示を入力するための入力部、測定結果を記憶する記憶部などを備えていてもよい。なお、制御部7は測定ユニット41に内蔵されていてもよい。
 測定ユニット41は、検体測定部42の温度を測定する温度センサ(図示せず)を備えていてもよい。この場合、制御部7は、温度センサの出力値に基づいてヒータ51の熱量の出力を制御する。
 次に、分析装置1の動作について説明する。まず、ユーザは、検体63を接種した培養容器6を各培養容器収納部21へ収納する。その後、ユーザは、制御部7の入力部などにより、分析装置1の動作を開始するための指示を入力する。
 制御部7は、動作開始の指示を受信すると、搬送部3を駆動する。搬送部3は、培養容器収納部21から培養容器6を受け取り、検体測定部42まで搬送させる。制御部7は、培養容器6の搬送が完了したら検体測定部42を駆動し、検体測定部42は、検体容器61内の検体63の培養状態を測定する(ステップS1)。ここで、制御部7は、検体測定部42から測定結果を受信して、図示しない表示部に測定結果を表示させてもよい。
 検体測定部42による測定が終了したら、制御部7は搬送部3を駆動する。搬送部3は、培養容器6を検体測定部42から培養容器収納部21に移動させて収納する。培養容器6中の検体63は、培養容器収納部21において所定の時間だけ培養が行われる(ステップS2)。
 制御部7は、1つの培養容器6について、上記ステップS1及びS2の測定サイクルを例えば20~30分の間隔で約18時間繰り返す。ある培養容器収納部21において培養容器6内の検体63の培養を行っている間に、他の培養容器収納部21に収納される培養容器6の検体63の測定が行われる。
 上記のような分析装置1での検体の培養及び測定においては、通常、検体測定部42における測定時間に対し、培養容器6が培養容器収納部21に収納されている時間(培養時間)の方が長い。一般に、インキュベータ内に培養容器6を設置すると、検体容器61の下面を支持する部材の材料や、検体容器61の下面のわずかな凹凸に存在する空気などから検体容器61内の検体63へ供給される熱エネルギーが、蓋62へ供給される熱エネルギーよりも高くなる。これにより、培養容器6内部に結露が発生してしまう。
 図1Cは、検体容器61と蓋62との間に隙間がある場合における結露の発生箇所を示す模式図である。図1Cは、図示の簡略化のため、培養容器6の一部のみを示している。図1Cに示すように、培養容器6の検体容器61と蓋62との間に隙間がある場合、検体容器61の上面と蓋62の底面との間に結露Cが生じる。
 図1Dは、検体容器61と蓋62との間に隙間がない場合における結露の発生箇所を示す模式図である。図1Dは、図示の簡略化のため、培養容器6の一部のみを示している。図1Dに示すように、検体容器61と蓋62との間に隙間がない場合、検体容器61の各ウェルの開口端と蓋62との境界面に結露Cが生じる。
 本明細書において、上記のように結露Cが発生する箇所(検体容器61の上面と蓋62の底面との間、及び検体容器61の各ウェルの開口端と蓋62との境界面)を「結露発生部」という場合がある。
 そこで、次の測定までの待ち時間に、結露発生部に発生する結露の抑制や除去が可能な培養容器収納部21を提案する。以下、培養容器6として、検体容器61と蓋62との間に隙間がないものを使用し、検体容器61の開口端と蓋62との境界面に発生する結露を抑制する培養容器収納部21について説明する。
 図2Aは、本実施形態に係る培養容器収納部21の構成例を示す概略正面図である。図2Aに示すように、培養容器収納部21は、金属材201(第1の部材)、断熱材202(第3の部材)、金属材203(第2の部材)、金属材204及び金属材205を備える。
 金属材201は、培養容器収納部21の天面を構成し、金属材203は、培養容器収納部21の底面を構成する。金属材201の下面は、蓋62の上面に対向する。断熱材202は、金属材203上に配置され、培養容器6の収納時に検体容器61の下面に接して検体容器61を支持する。換言すれば、培養容器6は、金属材201と断熱材202との間に収納される。金属材204及び205は、それぞれ培養容器収納部21の側面を構成する。このように、培養容器6は、金属材201、203、204及び205により上下左右が囲まれ、培養容器収納部21の前側及び後側から収納したり取り出したりすることができる。
 培養容器収納部21が複数段ある場合、上段に位置する培養容器収納部21の金属材203と、下段に位置する培養容器収納部21の金属材201とは、互いに接触していてもよいし、これらの間に他の部材が配置されていてもよい。なお、下段に位置する培養容器収納部21の金属材201が金属材203を兼ねていてもよい。培養容器ラック2の最下段に位置する培養容器収納部21においては、断熱材202の下面に金属材203のみが配置される。
 金属材201、203、204及び205の材質としては、例えばアルミニウム、ステンレス、銅、鉄、チタンなどを用いることができる。断熱材202としては、例えばグラスウール、セルローズファイバー、インシュレーションボード、羊毛断熱材、ロックウール、硬質ウレタンフォーム、ビーズ法ポリスチレンフォーム、フェノールフォーム、真空断熱材、樹脂材料などを用いることができる。樹脂材料としては、例えばポリアミド、POM、PEEK、PPS、PTFE、PVC、PE、PP、PS、ABSなどが挙げられる。
 以上のように、培養容器収納部21は、培養容器6の上下左右が囲まれる構造を有することで、培養容器6の周囲に熱の対流が起きにくくなっている。
 一般に、分析装置1が設置される部屋の室温と、温調部5から供給される熱エネルギーとにより、培養容器収納部21はある一定の温度分布で均衡する。そこで、結露を防止するために、この均衡状態において、検体容器61の開口端と蓋62との境界面への熱エネルギーの供給量が、検体容器61内の検体63への熱エネルギーの供給量より多くなるように、蓋62の上面に接する部材(金属材201)の熱伝導率を検体容器61の下面に接する部材(断熱材202)の熱伝導率より高くする。また、断熱材202の熱伝導率を金属材203の熱伝導率より低くする。これに加えて、金属材201の熱伝導率を金属材203の熱伝導率より高くしてもよい。
 上記構成を有する培養容器収納部21を採用することにより、検体容器61の開口端と蓋62との境界面へ供給される熱エネルギーが、検体容器61(ウェル)の内底部と検体63との境界面へ供給される熱エネルギーよりも大きくなり、蓋62の上面の温度が検体容器61の下面の温度より高くなるため、検体容器61の開口端と蓋62との境界面における結露の発生を抑制することができる。
 図2Bは、培養容器収納部21の他の構成例を示す概略正面図である。図2Bの培養容器収納部21は、蓋62の上面と金属材201の下面との間に空気層206(第1の空気層)が設けられる点で、図2Aと異なっている。その他の構成については図2Aと同様であるので、説明を省略する。
 空気層206の厚さa(第1の部材と培養容器との距離)は、金属材201の下面から、検体容器61の開口端と蓋62との境界面までの距離と定義する。空気層206の厚さaは、検体容器61の内底部と検体63との境界面へ供給される熱エネルギー(熱伝導+熱伝達+輻射)<検体容器61の開口端と蓋62との境界面へ供給される熱エネルギー(熱伝導+熱伝達+輻射)の関係式が成り立つ範囲で、金属材201や断熱材202の材質に応じて適宜設定される。
 断熱材202の上面から、検体容器61の内底部と検体63との境界面までの距離をtとする。また、断熱材202の厚さをWとする。図2Bに示されるように、W+tは、金属材203の上面から、検体容器61の内底部と検体63との境界面までの距離(第2の部材と培養容器との距離)に等しい。ここで、断熱材202の熱伝導率が空気の熱伝導率以下の場合、a<W+tを満たすようにする。これにより、金属材201が検体容器61の開口端と蓋62との境界面へ与える熱エネルギーを検体容器61の内底部と検体63との境界面への熱エネルギーよりも高くすることができ、結露を防止することができる。
 さらに、図2Bの構成において、蓋62と対面する金属材201の下面の表面形状を凸凹とする、あるいは金属材201の下面を輻射率が高くなるような表面処理(例えばアルマイト処理)とする、あるいは金属材201の下面を輻射率の高い色としてもよい。このような構成を採用することにより、金属材201が検体容器61の開口端と蓋62との境界面へ与える輻射の熱エネルギーをさらに高くすることができ、結露を防止することができる。
 図2Cは、培養容器収納部21の他の構成例を示す概略正面図である。図2Cの培養容器収納部21は、断熱材202が略U字状に形成され、検体容器61の検体63が収容される箇所の下方に空気層207(第2の空気層)が形成される点で、図2Bと異なっている。図2Cに示すように、断熱材202は、検体容器61の下面の左右両端部を支持する。空気層207の厚さbは、検体容器61の内底部と検体63との境界面から、断熱材202の凹部の上面までの距離と定義する。
 断熱材202として、例えば空気よりも熱伝導率が高い(例えば10倍程度)材質を使用した場合、図2Cのように断熱材202に空気層207を設けることで、図2Bと比較して、検体容器61の内底部と検体63との境界面へ供給される熱エネルギーを低くすることができる。
 以上のように、図2Cに示す構造を採用することにより、検体容器61の開口端と蓋62との境界面へ供給される熱エネルギーよりも、検体容器61の内底部と検体63との境界面へ供給される熱エネルギーを小さくすることができ、これにより結露を防止することができる。
 図2Dは、培養容器収納部21の他の構成例を示す概略正面図である。図2Dの培養容器収納部21は、検体容器61の検体63が収容される箇所の下方には断熱材202が存在せず(充填されておらず)、検体容器61の下面と、金属材203の上面との間に空気層208(第2の空気層)が設けられる点で、図2Cと異なる。
 図2Dに示すように、断熱材202は、検体容器61の下面の左右両端部を支持する足場として用いられ、金属材201及び203への熱エネルギーの供給を積極的に行うことができる。また、図2Dの構成において、金属材201の熱伝導率を金属材203の熱伝導率よりも高くすることで、検体容器61の開口端と蓋62との境界面へ供給される熱エネルギーを検体容器61の内底部と検体63との境界面へ供給される熱エネルギーよりも大きくすることができる。
 空気層208の厚さcは、検体容器61の内底部と検体63との境界面から、金属材203の上面までの距離と定義する。金属材201の下面と金属材203の上面の材質及び表面状態が同じである場合は、金属材201からの輻射熱を培養容器6の上面に効率よく供給するため、空気層206の厚さa<空気層208の厚さcとなるように、断熱材202の厚さWを設定する。
 なお、空気層206の厚さaと空気層208の厚さcを同じにしてもよく、この場合、蓋62の上面に対面する金属材201の下面の表面形状が、検体容器61の下面に対面する金属材203の上面より粗くなるようにする。あるいは、金属材201の下面の表面処理と、金属材203の上面の表面処理とを異ならせる。例えば、金属材201及び203としてアルミニウムを用いる場合、金属材201の下面にはアルマイト処理し、金属材203の上面は脱脂処理のみを行う。これにより、検体容器61の内底部と検体63との境界面への輻射エネルギーよりも、蓋62と検体容器61との境界面への輻射エネルギーを高くすることができ、結露を防止することができる。
 また、金属材201の下面の色と金属材203の上面の色とを異ならせることにより、検体容器61の内底部と検体63との境界面へ供給される輻射エネルギーよりも、蓋62と検体容器61との境界面へ供給される輻射エネルギーが高くなるようにしてもよい。
 ここで、金属材201の下面の輻射率と金属材203の上面の輻射率が異なる場合は、空気層206の厚さa<空気層208の厚さc×√(金属材201の下面の輻射率/金属材203の上面の輻射率)となるように、断熱材202の厚さWを設定する。これにより、結露の発生を抑制することができる。また、検体容器61の内底部と検体63との境界面へ供給される熱エネルギー(熱伝導+熱伝達+輻射)<検体容器61の開口端と蓋62との境界面へ供給される熱エネルギー(熱伝導+熱伝達+輻射)の関係式を満たしていれば、金属材201の輻射率を金属材203の輻射率より高くし、かつ金属材201の熱伝導率を金属材203の熱伝導率より低くすることもできる。
 以上のように、図2Dに示す培養容器収納部21においても、検体容器61の開口端と蓋62との境界面へ供給される熱エネルギーを検体容器61の内底部と検体63との境界面へ供給される熱エネルギーよりも大きくすることができ、結露発生部における結露の発生を抑制することができる。
 図2Eは、培養容器収納部21の他の構成例を示す概略正面図である。図2Eの培養容器収納部21は、熱伝導率が空気よりも低い断熱材209を金属材203の上面に配置する点で、図2Dと異なっている。断熱材209の厚さは、検体容器61の下面と断熱材209の上面との間に空気層210(第2の空気層)が形成される厚さとすることができる。
 空気層210の厚さdは、検体容器61の内底部と検体63との境界面から断熱材209の上面までの距離と定義する。図2Eの培養容器収納部21において、空気層206の厚さa<空気層210の厚さdの関係が成立するようにしてもよい。これにより、検体容器61の下面への熱エネルギーの供給量を下げることができ、結露の発生を抑制することができる。
 なお、断熱材209は必ずしも金属材203の上面に接している必要はなく、検体容器61の下面と金属材203の上面との間であれば、任意の位置に配置できる。例えば、断熱材209上の空気層210に加えて、断熱材209の下面と金属材203の上面との間にも空気層が形成されるようにしてもよい。また、断熱材209の熱伝導率が空気の熱伝導率以下の場合、断熱材209の上面と検体容器61の底面とが接するように断熱材209を配置してもよい。
 図2Fは、培養容器収納部21の他の構成例を示す概略正面図である。図2Fの培養容器収納部21は、金属材203の上面全体にわたって断熱材211が配置され、断熱材211上に断熱材202が配置される点で、図2Eと異なっている。断熱材211の厚さは、検体容器61の下面と断熱材211の上面との間に空気層212(第2の空気層)が形成される厚さとすることができる。空気層212の厚さeは、検体容器61の内底部と検体63との境界面から断熱材211の上面までの距離と定義する。図2Fの培養容器収納部21において、空気層206の厚さa<空気層212の厚さeの関係が成立するようにしてもよい。
 図2Fの構造によっても、検体容器61の下面への熱エネルギーの供給量を下げることができ、結露の発生を抑制することができる。
 上述のように、図2A~図2Eにおいては、金属材203上に断熱材202を設置しているが、断熱材202を懸架する支持部材を金属材201の下面にさらに設け、懸架された断熱材202上に培養容器6を載置する構成としてもよい。また、断熱材202は、金属材204及び金属材205に固定してもよい。
 なお、本実施形態の培養容器収納部21において、検体容器61の開口端と蓋62との境界面へ供給される熱エネルギーが、検体容器61の内底部と検体63との境界面へ供給される熱エネルギーよりも大きくなるように、図2A~図2Fの構成を組み合わせてもよい。例えば、図2Aと図2Dを組み合わせて、検体容器61の下方にのみ空気層208を有する構成とすることができる。
 本実施形態において、図1Aに示すように、温調部5を分析装置1の上部に配置して、培養容器ラック2の上段から下段にかけて温度が低くなるような温度勾配を形成するようにするようにしてもよい。また、温調部5を培養容器ラック2の直上に配置して、培養容器ラック2の上段から下段にかけての温度勾配がより効率的に形成されるようにしてもよい。一般にインキュベータは、温度勾配が生じないように内部の温度が制御されるが、検体63の培養に影響がない程度に培養容器ラック2の上段ほど温度が高くなるようにすることで、検体容器61の開口端と蓋62との境界面へ供給される熱エネルギーよりも、検体容器61の内底部と検体63との境界面へ供給される熱エネルギーを小さくすることができ、これにより結露を防止することができる。
 以上のように、本実施形態の培養容器収納部21は、検体容器61の開口端と蓋62との境界面へ供給される熱エネルギーよりも、検体容器61の内底部と検体63との境界面へ供給される熱エネルギーが小さくなるように構成される。これにより、培養時間に発生する培養容器6の結露を除去したり、抑制したりするための時間が不要となるため、検体測定部42へ即座に培養容器6を供給でき、効率良く測定を行うことができる。また、上記構成を有することにより、結露を除去するための機構を設ける必要がなくなり、分析装置1のサイズやコストが増大することもない。さらに、結露が抑制されることで、測定結果の正確性が向上し、結露を除去するために蓋62を開ける必要もないため、コンタミネーションを防止することもできる。
[第2の実施形態]
 次に、図3A~3Hを参照して、第2の実施形態に係る分析装置について説明する。第2の実施形態に係る分析装置は、培養容器ラック2が熱源213及び温度センサ214をさらに備える点で、第1の実施形態と異なる。なお、図3A~3Hにおいては、図2Dに示す培養容器収納部21を用いる例を示すが、培養容器収納部21の他の構成例(図2A~2C、2E又は2F)を用いてもよい。
 図3Aは、第2の実施形態に係る熱源213及び温度センサ214の配置例を示す概略正面図である。図3Aに示すように、培養容器ラック2は、熱源213a~213d及び温度センサ214a~214dをさらに備える。
 熱源213a及び213cは、培養容器ラック2の左側面の全体を覆うように設けられ、熱源213b及び213dは、培養容器ラック2の右側面の全体を覆うように設けられる。換言すれば、熱源213a及び213cは、金属材204の外壁面に設けられ、熱源213b及び213dは、金属材205の外壁面に設けられる。
 熱源213a~213dとしては、例えば電熱ヒータ、セラミックヒータ、シリコンラバーヒータ、シーズヒータ、バンドヒータ、ポリイミドヒータ、スペースヒータ、コードヒータ、カートリッジヒータ、金属埋め込み式ヒータなどのヒータや、ペルチェなどが用いられる。熱源213a~213dは、図示しない両面テープ、熱伝導シート、ボンドなどにより培養容器ラック2の側面に取り付けられ、金属材201、204及び205と接触する。図示は省略しているが、熱源213a~213dの表面には、金属層あるいは樹脂層が配置される。
 温度センサ214a~214dは、培養容器収納部21内部の温度を測定する。図3Aの右側の図は、温度センサ214a及び214bが設けられた培養容器収納部21の拡大図である。図3Aに示すように、培養容器ラック2の上から2段目の培養容器収納部21において、金属材204の内壁面に温度センサ214aが配置され、金属材205の内壁面に温度センサ214bが配置されている。また、上から6段目の培養容器収納部21において、金属材204の内壁面に温度センサ214cが配置され、金属材205の内壁面に温度センサ214dが配置されている。なお、熱源213a~213d及び温度センサ214a~214dの位置は、図3Aの位置に限定されない。
 図3Bは、図3Aの熱源213a~213d及び温度センサ214a~214dの制御機構を示すブロック図である。図3Bに示すように、熱源213a~213d及び温度センサ214a~214dは、それぞれ制御部7に接続される。温度センサ214a~214dは、温度の測定値を制御部7に出力する。制御部7は、温度センサ214a~214dから温度の測定値を受信して、該測定値に基づいて、熱源213a~213dに供給する、熱量に相当する電流量、電圧量などを制御する。
 制御部7は、培養容器ラック2の上段から下段に向かって温度が低くなるような温度勾配を形成するように、熱源213a~213dに供給する熱量を制御してもよい。これにより、各段の培養容器収納部21において、より効率的に、検体容器61の開口端と蓋62との境界面へ供給される熱エネルギーよりも、検体容器61の内底部と検体63との境界面へ供給される熱エネルギーが小さくすることができる。また、熱源213a~213dは、上部から下部に向かって熱供給量が小さくなるように構成されていてもよい。この場合、熱源213a~213dとして、例えば巻数が上部から下部に向かって小さくなるように構成された電熱ヒータを用いることができる。
 なお、図3Aにおいては、熱源213a~213dの4つの熱源と、温度センサ214a~214dの4つの温度センサを配置しているが、熱源213及び温度センサ214の数はそれぞれ一つ以上であればよい。また、熱源213の数が温度センサ214の数より少なくてもよい。
 温度センサ214の数が熱源213よりも多い場合は、制御部7は、複数の温度センサ214の中で最も低い出力値、最も高い出力値、複数の温度センサ214の出力値の平均値、あるいは総和などの出力値などに基づいて、熱源213へ供給する、熱量に相当する電流量や電圧量などを制御する。
 以上のように、図3Aに示す培養容器収納部21は、第1の実施形態と比較して熱エネルギーの供給量を増やすことができ、金属材201の温度上昇を加速させることが可能となる。これにより、より効率的に結露の発生を抑制することができる。
 図3Cは、第2の実施形態に係る熱源213及び温度センサ214の他の配置例を示す概略正面図である。図3Cに示す例においては、1つの温度センサ214が培養容器ラック2の中央部(5段目の培養容器収納部21)のみに配置される点で、図3Aと異なる。
 図3Cの右側の図は、温度センサ214が設けられた培養容器収納部21の拡大図である。図3Cの右側の図に示すように、温度センサ214は、例えば金属材201の下面に設置される。
 図3Dは、図3Cの熱源213a~213d及び温度センサ214の制御機構を示すブロック図である。上記と同様に、温度センサ214の出力に基づいて、熱源213a~213dに供給する電流量、電圧量を制御する。その他の点については上記と同様であるので、説明を省略する。
 図3Eは、第2の実施形態に係る熱源213及び温度センサ214のさらに別の配置例を示す概略正面図である。上述の培養容器ラック2は、高さ方向に配列した8段の培養容器収納部21を1列有していたが、図3Eの培養容器ラック2は、8段の培養容器収納部21を2列有し、水平方向にも培養容器収納部21が配列している。図3Eに示すように、左側の列の培養容器収納部21の金属材205と、右側の列の培養容器収納部21の金属材204とが接触するように配置される。なお、培養容器収納部21の列の数は2列に限定されず、任意の数とすることができる。
 熱源213a及び213cは、左側の列の培養容器収納部21の金属材204に取り付けられ、熱源213b及び213dは、右側の列の培養容器収納部21の金属材205に取り付けられる。また、最上段の培養容器収納部21の上面には、熱源213eが配置され、最下段の培養容器収納部21の下面には、熱源213fが配置される。
 温度センサ214a~214fは、それぞれ培養容器収納部21の内部において、熱源213a~213fの近傍に配置される。
 このように、培養容器収納部21を高さ方向及び水平方向に配列する場合、図3Eに示すように、培養容器ラック2の上下にそれぞれ熱源213e及び213fを設けることで、培養容器ラック2の中央部への熱の供給量を確保することができる。
 図3Fは、図3Eの熱源213a~213f及び温度センサ214a~214fの制御機構を示すブロック図である。図3Fに示すように、熱源213a~213fは、温度センサ214a~214fの出力に基づいて、分析装置1の制御部7により制御される。その他の点については上記と同様であるので、説明を省略する。
 図3Gは、第2の実施形態に係る熱源213及び温度センサ214の他の配置例を示す概略正面図である。図3Gに示す例においては、1つの温度センサ214が培養容器ラック2の中央部に配置される点で、図3Eと異なっている。
 図3Hは、図3Gの熱源213a~213f及び温度センサ214の制御機構を示すブロック図である。図3Hに示すように、熱源213a~213fは、温度センサ214の出力に基づいて、分析装置1の制御部7により制御される。その他の点については上記と同様であるので、説明を省略する。
 上述のように、本実施形態においては、熱源213を培養容器収納部21に直接取り付けることとしたが、熱源213と培養容器収納部21との間に金属板などを配置して、該金属板を介して熱源213の熱エネルギーを培養容器収納部21に供給してもよい。
 以上のように、本実施形態は、培養容器ラック2が熱源213及び温度センサ214を有するため、第1の実施形態と比較して熱エネルギーの供給量を増やすことができ、金属材201の温度上昇を加速させることが可能となる。これにより、結露発生部における結露の発生を効率的に抑制することができる。また、培養容器ラック2の上段から下段にかけて温度が低くなるような温度勾配を形成するように、熱源213による熱供給量を制御することで、さらに効率的に結露の発生を抑制することができる。
[変形例]
 本開示は、上述した実施形態に限定されるものでなく、様々な変形例を含んでいる。例えば、上述した実施形態は、本開示を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備える必要はない。また、ある実施形態の一部を他の実施形態の構成に置き換えることができる。また、ある実施形態の構成に他の実施形態の構成を加えることもできる。また、各実施形態の構成の一部について、他の実施形態の構成の一部を追加、削除又は置換することもできる。
1…分析装置
2…培養容器ラック
3…搬送部
4…測定部
5…温調部
6…培養容器
7…制御部
21…培養容器収納部
22…脚部
31、32…アクチュエータ
33…保持部
41…測定ユニット
42…検体測定部
51…ヒータ
52…ヒートシンク
53…ファン
54…風
61…検体容器
62…蓋
63…検体
201、203、204、205…金属材
202、209、211…断熱材
206~208、210、212…空気層
213…熱源
214…温度センサ

Claims (16)

  1.  培養容器を収納する培養容器収納部を備え、
     前記培養容器収納部は、
     前記培養容器収納部の天面を構成する第1の部材と、
     前記培養容器収納部の底面を構成する第2の部材と、
     前記第2の部材上に配置され、前記培養容器を支持する第3の部材とを備え、
     前記第3の部材は、前記第1の部材と前記培養容器との距離が前記第2の部材と前記培養容器との距離以下となるように、前記培養容器を支持することを特徴とする培養容器ラック。
  2.  前記第3の部材の熱伝導率が、前記第1の部材の熱伝導率及び前記第2の部材の熱伝導率よりも低いことを特徴とする請求項1記載の培養容器ラック。
  3.  高さ方向に積み重ねられた複数の前記培養容器収納部を有することを特徴とする請求項1記載の培養容器ラック。
  4.  前記第3の部材は、前記培養容器の下部に第2の空気層が形成されるように構成されることを特徴とする請求項1記載の培養容器ラック。
  5.  前記第1の部材の材質及び前記第2の部材の材質が同じであり、
     前記第1の部材と前記培養容器との距離が、前記第2の部材と前記培養容器との距離より小さいことを特徴とする請求項1記載の培養容器ラック。
  6.  前記培養容器収納部に設置される熱源と、前記培養容器収納部の内部の温度を測定する温度センサとをさらに備え、
     前記熱源は、前記温度センサの出力に基づいて熱を供給することを特徴とする請求項1記載の培養容器ラック。
  7.  高さ方向に積み重ねられた複数の前記培養容器収納部を有し、
     前記熱源は、前記複数の前記培養容器収納部の上段から下段へ向かって温度勾配が生じるように、熱量を供給することを特徴とする請求項6記載の培養容器ラック。
  8.  請求項1に記載の培養容器ラックと、
     前記培養容器を搬送する搬送部と、
     前記培養容器ラックから前記培養容器が搬送され、前記培養容器中の検体の培養状態を測定する測定部と、
     内部の温度を調節する温調部と、を備える分析装置。
  9.  前記培養容器ラックは、高さ方向に積み重ねられた複数の前記培養容器収納部を有し、
     前記温調部は、前記複数の前記培養容器収納部の上段から下段へ向かって温度勾配が生じるように熱を供給することを特徴とする請求項8記載の分析装置。
  10.  培養容器を収納する培養容器収納部を備え、
     前記培養容器収納部は、
     前記培養容器収納部の天面を構成する第1の部材と、
     前記培養容器収納部の底面を構成する第2の部材と、を備え、
     前記第1の部材の熱伝導率は、前記第2の部材の熱伝導率よりも高いことを特徴とする培養容器ラック。
  11.  前記第2の部材上に配置され、前記培養容器を支持する第3の部材をさらに備え、
     前記第3の部材の熱伝導率は、前記第1の部材の熱伝導率及び前記第2の部材の熱伝導率よりも低いことを特徴とする請求項10記載の培養容器ラック。
  12.  請求項10に記載の培養容器ラックと、
     前記培養容器を搬送する搬送部と、
     前記培養容器ラックから前記培養容器が搬送され、前記培養容器中の検体の培養状態を測定する測定部と、
     内部の温度を調節する温調部と、を備える分析装置。
  13.  培養容器を収納する培養容器収納部を備え、
     前記培養容器収納部は、
     前記培養容器収納部の天面を構成する第1の部材と、
     前記培養容器収納部の底面を構成する第2の部材と、を備え、
     前記第1の部材は、前記培養容器の上面及び前記第1の部材の下面との間に第1の空気層が形成されるように構成され、
     前記第1の部材の輻射率は、前記第2の部材の輻射率よりも高く、
     前記第1の部材の熱伝導率は、前記第2の部材の熱伝導率よりも高いことを特徴とする培養容器ラック。
  14.  前記第2の部材上に配置され、前記培養容器を支持する第3の部材をさらに備え、
     前記第3の部材は、前記培養容器の下部に第2の空気層が形成されるように構成されることを特徴とする請求項13記載の培養容器ラック。
  15.  前記第2の空気層の厚さは、前記第1の空気層の厚さよりも大きいことを特徴とする請求項14記載の培養容器ラック。
  16.  請求項13に記載の培養容器ラックと、
     前記培養容器を搬送する搬送部と、
     前記培養容器ラックから前記培養容器が搬送され、前記培養容器中の検体の培養状態を測定する測定部と、
     内部の温度を調節する温調部と、を備える分析装置。
PCT/JP2019/005891 2019-02-18 2019-02-18 培養容器ラック及び分析装置 WO2020170313A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021501165A JP7150131B2 (ja) 2019-02-18 2019-02-18 培養容器ラック及び分析装置
US17/276,374 US20220039334A1 (en) 2019-02-18 2019-02-18 Cultivation Container Rack and Analyzing Device
EP19916259.5A EP3929273A4 (en) 2019-02-18 2019-02-18 CULTURE VESSEL RACK AND ANALYSIS DEVICE
PCT/JP2019/005891 WO2020170313A1 (ja) 2019-02-18 2019-02-18 培養容器ラック及び分析装置
JP2022153226A JP7411750B2 (ja) 2019-02-18 2022-09-27 培養容器ラック及び分析装置
JP2022153244A JP7411751B2 (ja) 2019-02-18 2022-09-27 培養容器ラック及び分析装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/005891 WO2020170313A1 (ja) 2019-02-18 2019-02-18 培養容器ラック及び分析装置

Publications (1)

Publication Number Publication Date
WO2020170313A1 true WO2020170313A1 (ja) 2020-08-27

Family

ID=72144227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005891 WO2020170313A1 (ja) 2019-02-18 2019-02-18 培養容器ラック及び分析装置

Country Status (4)

Country Link
US (1) US20220039334A1 (ja)
EP (1) EP3929273A4 (ja)
JP (3) JP7150131B2 (ja)
WO (1) WO2020170313A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023105627A1 (ja) * 2021-12-07 2023-06-15 株式会社日立ハイテク 温度制御装置
WO2024057425A1 (ja) * 2022-09-14 2024-03-21 株式会社日立ハイテク 検体分析装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137964A (ja) * 1987-11-24 1989-05-30 Terumo Corp 培養容器
JP2003093044A (ja) * 2001-09-21 2003-04-02 Sumitomo Bakelite Co Ltd 培養容器の包装方法及び使用方法
JP2007166982A (ja) 2005-12-22 2007-07-05 Olympus Corp 生体試料培養観察装置
JP2010158185A (ja) 2009-01-07 2010-07-22 Nikon Corp 培養観察装置
JP2015089363A (ja) * 2013-11-07 2015-05-11 大日本印刷株式会社 細胞培養容器および細胞培養方法
WO2018179081A1 (ja) * 2017-03-28 2018-10-04 株式会社日立ハイテクノロジーズ 検査装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631339B2 (ja) * 2004-07-27 2011-02-16 株式会社ニコン 環境制御装置、温度調節装置および環境制御型分析装置
JP4606093B2 (ja) * 2004-08-30 2011-01-05 株式会社日本医化器械製作所 恒温装置
JP4810093B2 (ja) * 2004-12-28 2011-11-09 オリンパス株式会社 培養観察装置および標本トレー保温装置および蓋
JP4821279B2 (ja) * 2005-11-11 2011-11-24 株式会社ニコン 培養装置
JP5783353B2 (ja) * 2010-03-03 2015-09-24 横河電機株式会社 インキュベータ装置
JP2013101192A (ja) * 2011-11-07 2013-05-23 Altair Giken Kk 顕微鏡用培養装置
WO2014155500A1 (ja) * 2013-03-25 2014-10-02 株式会社日立製作所 細胞培養装置、培養容器、及び保持容器
CN105555944B (zh) * 2013-10-11 2017-03-15 松下健康医疗控股株式会社 培养装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01137964A (ja) * 1987-11-24 1989-05-30 Terumo Corp 培養容器
JP2003093044A (ja) * 2001-09-21 2003-04-02 Sumitomo Bakelite Co Ltd 培養容器の包装方法及び使用方法
JP2007166982A (ja) 2005-12-22 2007-07-05 Olympus Corp 生体試料培養観察装置
JP2010158185A (ja) 2009-01-07 2010-07-22 Nikon Corp 培養観察装置
JP2015089363A (ja) * 2013-11-07 2015-05-11 大日本印刷株式会社 細胞培養容器および細胞培養方法
WO2018179081A1 (ja) * 2017-03-28 2018-10-04 株式会社日立ハイテクノロジーズ 検査装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023105627A1 (ja) * 2021-12-07 2023-06-15 株式会社日立ハイテク 温度制御装置
WO2024057425A1 (ja) * 2022-09-14 2024-03-21 株式会社日立ハイテク 検体分析装置

Also Published As

Publication number Publication date
EP3929273A1 (en) 2021-12-29
JP2022173361A (ja) 2022-11-18
JP7411751B2 (ja) 2024-01-11
JP7411750B2 (ja) 2024-01-11
JP2022173354A (ja) 2022-11-18
EP3929273A4 (en) 2022-10-05
JP7150131B2 (ja) 2022-10-07
US20220039334A1 (en) 2022-02-10
JPWO2020170313A1 (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
JP7411750B2 (ja) 培養容器ラック及び分析装置
CA2616673C (en) System comprising a plurality of incubators
US8080412B2 (en) Multiwell incubation apparatus and method of analysis using the same
US11506675B2 (en) Inspection device
US11597905B2 (en) Cell culture and tissue engineering systems with controlled environmental zones
JP2010158185A (ja) 培養観察装置
US11703447B2 (en) Measurement apparatus for measuring the concentration of a gaseous substance
KR100960106B1 (ko) 다중 세포배양기를 구비한 인큐베이터
JP4310653B2 (ja) 生体試料培養装置
WO2012098380A1 (en) Incubators
WO2020084324A1 (en) Environment sensor for mammalian ivf incubator
WO2014060360A1 (en) Embryo incubator incorporating gas control
US7634330B2 (en) Temperature controlling method and temperature controller
JP6437103B2 (ja) 感受性計測装置及び検査装置
US11471891B2 (en) Benchtop incubator
JP2019532658A (ja) バイオリアクタトレイ
US11650172B2 (en) Calorimeter
JP6999916B2 (ja) 細胞培養観察装置と細胞観察ユニット
WO2024057425A1 (ja) 検体分析装置
WO2024057426A1 (ja) 検体分析装置
WO2021201742A1 (en) A cell monitoring device for use inside a humid incubator and a humid incubator system
US20240240132A1 (en) Incubator for cell cultures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19916259

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501165

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019916259

Country of ref document: EP

Effective date: 20210920