WO2020168942A1 - 一种交联sbr微球粘结剂及制备方法及含有该粘结剂的锂离子电池 - Google Patents

一种交联sbr微球粘结剂及制备方法及含有该粘结剂的锂离子电池 Download PDF

Info

Publication number
WO2020168942A1
WO2020168942A1 PCT/CN2020/074724 CN2020074724W WO2020168942A1 WO 2020168942 A1 WO2020168942 A1 WO 2020168942A1 CN 2020074724 W CN2020074724 W CN 2020074724W WO 2020168942 A1 WO2020168942 A1 WO 2020168942A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
sbr
microsphere
cross
polymerization
Prior art date
Application number
PCT/CN2020/074724
Other languages
English (en)
French (fr)
Inventor
唐伟超
李素丽
赵伟
袁号
李俊义
徐延铭
Original Assignee
珠海冠宇电池股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海冠宇电池股份有限公司 filed Critical 珠海冠宇电池股份有限公司
Priority to EP20758651.2A priority Critical patent/EP3930054A4/en
Publication of WO2020168942A1 publication Critical patent/WO2020168942A1/zh
Priority to US17/402,272 priority patent/US20210371565A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • C08J9/286Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum the liquid phase being a solvent for the monomers but not for the resulting macromolecular composition, i.e. macroporous or macroreticular polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/20Making expandable particles by suspension polymerisation in the presence of the blowing agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/054Precipitating the polymer by adding a non-solvent or a different solvent
    • C08J2201/0542Precipitating the polymer by adding a non-solvent or a different solvent from an organic solvent-based polymer composition
    • C08J2201/0544Precipitating the polymer by adding a non-solvent or a different solvent from an organic solvent-based polymer composition the non-solvent being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/042Nanopores, i.e. the average diameter being smaller than 0,1 micrometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/06Copolymers with styrene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application belongs to the technical field of lithium ion batteries, and in particular relates to a cross-linked SBR microsphere binder and a preparation method and a lithium ion battery containing the binder.
  • Lithium-ion batteries have the characteristics of long cycle life, no memory effect, high energy density and low environmental pollution. In recent years, they have been widely used in the field of digital and power vehicles. Lithium-ion batteries are mainly composed of positive electrode, negative electrode, separator, and electrolyte. The composition of positive electrode and negative electrode contains binder. As an important part of lithium-ion battery, the binder is mainly responsible for the electrode activity in the electrode sheet. The substance, the conductive agent and the current collector are tightly bonded together to make the electrode sheet have good processability, and more importantly, to ensure that the finished battery cell can maintain its electrochemical performance for a long time.
  • Conventional lithium ion battery binders mainly include polyvinyl alcohol, polytetrafluoroethylene, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene, a combination of modified styrene butadiene rubber and sodium carboxymethyl cellulose, fluorinated rubber , Polyurethane, polyacrylic acid and other systems.
  • modified styrene-butadiene rubber and sodium carboxymethyl cellulose combined binders have been widely used in lithium-ion batteries due to their stable performance and price advantage.
  • sodium carboxymethyl cellulose and modified styrene-butadiene rubber are used as additives. Thickener and binder.
  • SBR styrene-butadiene rubber
  • the Chinese patent application with application number CN 201810283260.2 discloses a carbon black-modified water-based SBR lithium ion battery binder and its preparation method. It uses styrene and butadiene as raw materials and uses in-situ emulsion polymerization in the SBR molecular chain. Conductive carbon black is bonded to the upper to obtain carbon black modified water-based SBR, but in this method, carbon black cannot be fully combined effectively, and the stability of the material is difficult to control.
  • the Chinese patent application with the application number CN 201711144903.7 discloses a method for preparing a modified styrene-butadiene rubber type negative electrode binder.
  • the styrene-butadiene rubber is mixed and stirred with acrylic acid and then irradiated, and the irradiated product is mixed and stirred with sodium hydroxide. After washing, modified styrene-butadiene rubber is obtained.
  • This method uses acrylic acid-modified styrene-butadiene rubber with good affinity with the electrolyte. However, in this process, there will be incomplete polymerization and modification due to irradiation. Battery performance improvement is limited.
  • the particle size of the conventional modified SBR microsphere binder is about 80nm ⁇ 250nm.
  • the conventional modified SBR microspheres have a smooth surface. At present, it is mainly through grafting or copolymerization techniques to introduce structures with good affinity with the electrolyte to achieve the purpose of modification.
  • the purpose of this application is to provide a cross-linked SBR microsphere binder and preparation method and a lithium ion battery containing the binder, a lithium ion battery containing the binder and a lithium ion battery containing a conventional SBR binder In comparison, it has better rate performance, low temperature performance, fast charge performance, and long cycle performance advantages.
  • a cross-linked SBR microsphere binder The cross-linked SBR microsphere has a porous cross-linked structure.
  • the particle size of the cross-linked SBR microspheres ranges from 10 nm to 1 ⁇ m.
  • the porosity of the crosslinked SBR microspheres ranges from 0.01% to 40%.
  • the porosity of the crosslinked SBR microspheres ranges from 4% to 29%.
  • the porosity of the cross-linked SBR microspheres ranges from 12% to 29%.
  • the pore diameter range is greater than 0 and less than or equal to 200 nm.
  • the polymerized system is demulsified, extracted, and washed to obtain the crosslinked SBR microsphere binder;
  • the A system includes deionized water, styrene from which polymerization inhibitor is removed, porogen, butadiene from which polymerization inhibitor is removed, molecular weight regulator, emulsifier, co-emulsifier, deoxidizer, electrolyte, and reducing agent , Complexing agent.
  • the A system also includes a modified monomer.
  • the modified monomer is unsaturated alkenyl polyether and its derivatives, unsaturated alkenyl ester and its derivatives, unsaturated alkenyl alcohol ether and its derivatives, unsaturated alkenyl nitrile and its derivatives
  • unsaturated alkenyl polyether and its derivatives unsaturated alkenyl ester and its derivatives
  • unsaturated alkenyl alcohol ether and its derivatives unsaturated alkenyl nitrile and its derivatives
  • unsaturated alkenyl nitrile and its derivatives One or more of the following substances, unsaturated alkenyl acids and their derivatives.
  • a preparation method of cross-linked SBR microsphere binder includes the following steps:
  • Step 1 The butadiene and styrene are sprayed with 8%-16% sodium hydroxide aqueous solution at 20 ⁇ 40°C, and then washed with deionized water to neutrality, and the polymerization inhibition is obtained. Butadiene and styrene to remove polymerization inhibitor;
  • Step 2 According to mass parts, mix 200-800 parts of deionized water, 25-100 parts of styrene from which polymerization inhibitor is removed, 200-800 parts of pore-forming reagent, and 75-300 parts of dibutylene from polymerization inhibitor Add olefin and 0-50 parts of modified monomer to the reactor, stir until evenly mixed, add 0.16 ⁇ 0.72 parts of molecular weight regulator, 4.62 ⁇ 20.79 parts of emulsifier, 0.15 ⁇ 0.675 parts of co-emulsifier, 0.025 ⁇ 0.18 parts Deoxidizer and 0.24 ⁇ 2.03 parts of electrolyte are continuously stirred until the mixing is uniform, and the temperature is kept at 25 ⁇ 35°C; then 0.01 ⁇ 0.045 parts of reducing agent and 0.01 ⁇ 1.13 parts of complexing agent are added to fully mix to obtain system A, and the temperature is reduced to 5 ⁇ 8°C;
  • Step 3 Add 0.06 ⁇ 0.54 parts of oxidant to system A to start polymerization, where polymerization pressure is 0.1 ⁇ 0.3MPa, polymerization temperature is 5 ⁇ 8°C, stirring speed is 100 ⁇ 130r/min, polymerization time is 7 ⁇ 12h After the polymerization is over, add 0.1 ⁇ 0.45 parts of terminator and 0.06 ⁇ 0.5 parts of auxiliary terminator to obtain modified SBR latex;
  • Step 4 After the modified SBR latex is demulsified, extracted and washed, a cross-linked SBR microsphere binder is obtained.
  • the porogen is alkanes and derivative systems, alcohols and derivative systems, ethers and derivative systems, aromatics and derivative systems, ketones and derivative systems, esters and derivative systems, chlorine Substitutes and derivative systems, amines and derivative systems, oligomer polystyrene and oligomer polyaromatic derivative systems, oligomer polyether and polyether derivative systems, oligomer polyvinyl alcohol ether derivative systems, low One or a combination of polymer polyacrylonitrile and polynitrile derivative system, oligomer polyacrylic acid and polyacrylic acid derivative system.
  • the modified monomer is unsaturated alkenyl polyether and its derivatives, unsaturated alkenyl ester and its derivatives, unsaturated alkenyl alcohol ether and its derivatives, unsaturated alkenyl One or more of nitrile and its derivatives, unsaturated alkenyl acid and its derivatives.
  • a preparation method of cross-linked SBR microsphere binder includes the following steps:
  • Step 1 Spray styrene with a sodium hydroxide aqueous solution with a mass fraction of 8%-16% at 20-40°C, and then wash with deionized water to neutrality to obtain styrene from which the polymerization inhibitor has been removed;
  • Step 2 According to mass parts, 200-800 parts of deionized water, 25-100 parts of styrene from which polymerization inhibitor is removed, 200-800 parts of pore-forming reagent, 75-300 parts of butadiene, 0-50 parts The modified monomer is added to the reactor and stirred until it is evenly mixed.
  • Step 3 Add 0.06 ⁇ 0.54 parts of oxidant to system A to start polymerization, where polymerization pressure is 0.1 ⁇ 0.3MPa, polymerization temperature is 5 ⁇ 8°C, stirring speed is 100 ⁇ 130r/min, polymerization time is 7 ⁇ 12h After the polymerization is over, add 0.1 ⁇ 0.45 parts of terminator and 0.06 ⁇ 0.5 parts of auxiliary terminator to obtain modified SBR latex;
  • Step 4 After the modified SBR latex is demulsified, extracted and washed, a cross-linked SBR microsphere binder is obtained.
  • step 2 it also includes pretreatment of the butadiene, and the pretreatment includes: spraying butadiene with a sodium hydroxide aqueous solution with a mass fraction of 8% to 16% at 20 to 40°C. Pour, then wash with deionized water until neutral.
  • the porogen is alkanes and derivative systems, alcohols and derivative systems, ethers and derivative systems, aromatics and derivative systems, ketones and derivative systems, esters and derivative systems, chlorine Substitutes and derivative systems, amines and derivative systems, oligomer polystyrene and oligomer polyaromatic derivative systems, oligomer polyether and polyether derivative systems, oligomer polyvinyl alcohol ether derivative systems, low One or a combination of polymer polyacrylonitrile and polynitrile derivative system, oligomer polyacrylic acid and polyacrylic acid derivative system.
  • the modified monomer is unsaturated alkenyl polyether and its derivatives, unsaturated alkenyl ester and its derivatives, unsaturated alkenyl alcohol ether and its derivatives, unsaturated alkenyl One or more of nitrile and its derivatives, unsaturated alkenyl acid and its derivatives.
  • a lithium ion battery including a positive electrode, a negative electrode, and a separator
  • At least one of the positive electrode, the negative electrode, and the separator includes the cross-linked SBR microsphere binder described in any one of the above.
  • This application is different from the traditional modified styrene-butadiene rubber, adopts a microscopic morphology design method, and uses a pore-forming agent to prepare styrene-butadiene rubber microspheres with a porous structure in the preparation process of the conventional modified styrene-butadiene rubber.
  • This application refers to the production process of SBR for conventional lithium-ion batteries.
  • the porogen is introduced.
  • the porogen has a certain affinity with SBR and does not participate in the system reaction during the entire process. It can be formed after subsequent processing SBR microspheres with porous structure.
  • the SBR microspheres with porous structure prepared in this application have the same chemical structure as conventional SBR microspheres. The difference is mainly reflected in that the SBR microspheres with porous structure in this application have more pores and cross-linked structures, which are different from conventional SBR microspheres. Compared with microspheres, it has better liquid absorption performance and less swelling.
  • the pole piece prepared by using SBR microspheres with porous structure as the binder has good liquid absorption performance and good lithium ion transmission channel.
  • lithium-ion batteries prepared with porous SBR microspheres as binders have obvious advantages in terms of rate performance, low temperature performance, fast charging performance, and long cycle performance. Advantage.
  • the porosity of SBR microspheres can be controlled by controlling the type of porogen, the amount of addition, and the degree of reaction.
  • the porosity is within a certain range, SBR with a porous structure has good adhesion, Crosslinking degree and certain porosity have good application prospects in digital and power direction lithium ion batteries.
  • Figure 1 is a schematic diagram of the modified SBR microspheres of the present application.
  • Figure 2 is the first electron microscope image of conventional SBR microspheres
  • Figure 3 is the second electron microscope image of conventional SBR microspheres
  • Fig. 4 is a graph of cycle performance data of lithium ion batteries in Examples 1-7 of the present invention and comparative examples.
  • FIG. 1 is a schematic diagram of the modified SBR microspheres of the present application
  • FIG. 2 is an electron microscope image of conventional SBR microspheres
  • FIG. 3 is an electron microscope image of conventional SBR microspheres. The application will be further described below in conjunction with Figures 1-3.
  • a cross-linked SBR microsphere binder The cross-linked SBR microsphere has a porous cross-linked structure.
  • the cross-linked SBR microspheres have a particle size range of 10 nm to 1 ⁇ m, and preferably, the cross-linked SBR microspheres have a particle size range of 50 nm to 250 nm.
  • the porosity of the crosslinked SBR microspheres ranges from 0.01% to 40%.
  • the porosity of the crosslinked SBR microspheres ranges from 4% to 29%.
  • the porosity of the cross-linked SBR microspheres ranges from 12% to 29%.
  • the pore diameter range is greater than 0 and less than or equal to 200 nm, and the pores include micropores, mesopores and macropores.
  • the pore diameter of the micropores is less than 2nm, the mesopore diameter is 2nm-50nm, and the macropore diameter is 50nm-200nm. .
  • the polymerized system is demulsified, extracted and washed to obtain the crosslinked SBR microsphere binder; the system A includes deionized water and removal of polymerization inhibitor Styrene, pore-forming agent, butadiene for removing polymerization inhibitor, molecular weight regulator, emulsifier, co-emulsifier, deoxidizer, electrolyte, reducing agent, complexing agent.
  • the system A includes deionized water and removal of polymerization inhibitor Styrene, pore-forming agent, butadiene for removing polymerization inhibitor, molecular weight regulator, emulsifier, co-emulsifier, deoxidizer, electrolyte, reducing agent, complexing agent.
  • the A system also includes a modified monomer.
  • the modified monomer is unsaturated alkenyl polyether and its derivatives, unsaturated alkenyl ester and its derivatives, unsaturated alkenyl alcohol ether and its derivatives, unsaturated alkenyl nitrile and its derivatives One or more of the following substances, unsaturated alkenyl acids and their derivatives.
  • a preparation method of cross-linked SBR microsphere binder includes the following steps:
  • Step 1 Spray butadiene and styrene with 8%-16% sodium hydroxide aqueous solution at 20 ⁇ 40°C for 10min ⁇ 4h, and then wash with deionized water to neutrality to obtain deionized water. Butadiene from the polymerization inhibitor and styrene from the polymerization inhibitor;
  • Step 2 According to mass parts, mix 200-800 parts of deionized water, 25-100 parts of styrene from which polymerization inhibitor is removed, 200-800 parts of pore-forming reagent, and 75-300 parts of dibutylene from polymerization inhibitor Add olefin and 0-50 parts of modified monomer to the reactor, stir until evenly mixed, add 0.16 ⁇ 0.72 parts of molecular weight regulator, 4.62 ⁇ 20.79 parts of emulsifier, 0.15 ⁇ 0.675 parts of co-emulsifier, 0.025 ⁇ 0.18 parts Deoxidizer and 0.24 ⁇ 2.03 parts of electrolyte are continuously stirred until they are evenly mixed, and the temperature is kept at 25 ⁇ 35°C. After 5 ⁇ 20 minutes, 0.01 ⁇ 0.045 parts of reducing agent and 0.01 ⁇ 1.13 parts of complexing agent are added to fully mix to obtain system A, and Cool down to 5 ⁇ 8°C;
  • Step 3 Add 0.06 ⁇ 0.54 parts of oxidant to system A to start polymerization, where polymerization pressure is 0.1 ⁇ 0.3MPa, polymerization temperature is 5 ⁇ 8°C, stirring speed is 100 ⁇ 130r/min, polymerization time is 7 ⁇ 12h After the polymerization is completed, add 0.1 to 0.45 parts of terminator and 0.06 to 0.5 parts of auxiliary terminator and react for 5 to 30 minutes to obtain modified SBR latex;
  • Step 4 Mix the modified SBR latex with 20%-30% sodium chloride solution, then mix with 0.5% dilute sulfuric acid and stir well, add deionized water several times, wash at 50 ⁇ 70°C to remove sodium chloride and Dilute sulfuric acid is used for extraction with an organic solvent for heat treatment at 50-70° C., and then deionized water is added for multiple times to remove the organic solvent to obtain a cross-linked SBR microsphere binder.
  • the above preparation method can be carried out in any suitable pressurized vessel, for example, an autoclave can be used to complete the above preparation.
  • the porogen is a solvent or linear oligomer with good compatibility with polymerized monomers
  • the porogen is alkanes and derivative systems, alcohols and derivative systems, ethers and Derivative systems, aromatics and derivative systems, ketones and derivative systems, esters and derivative systems, chlorinated substances and derivative systems, amines and derivative systems, oligomer polystyrene and oligomer polyaromatic derivative systems,
  • oligomer polyether and polyether derivative system oligomer polyvinyl alcohol ether derivative system, oligomer polyacrylonitrile and polynitrile derivative system, oligomer polyacrylic acid and polyacrylic acid derivative system The combination.
  • the alkanes are one or more of alkanes with a carbon molecular weight of C5 to C13.
  • the alkanes are cyclohexane, n-heptane or n-octane;
  • the alcohols are methanol, One or more of isooctanol, n-propanol, 2-ethylbutanol, isopropanol methanol, cyclohexanol, dodecanol, isoamyl alcohol, and glycerol;
  • the ether is n-butanol Ether and/or di-n-pentyl ether;
  • the aromatics are one or more of toluene, xylene, and benzene, the aromatic derivative system is diethyl phthalate;
  • the ketones are acetone and / Or methyl ethyl ketone;
  • the nitrile is succinonitrile and/or acet
  • the modified monomer in step two is unsaturated alkenyl polyether and its derivatives, unsaturated alkenyl ester and its derivatives, unsaturated alkenyl alcohol ether and its derivatives, unsaturated alkenyl nitrile One or more of its derivatives, unsaturated alkenyl acid and its derivatives.
  • the unsaturated alkenyl polyether is polyethylene glycol monoallyl ether;
  • the unsaturated alkenyl polyether derivative is polyethylene glycol methyl methacrylate and polyethylene glycol methyl acrylate , One or more of polyethylene glycol diacrylate, polyethylene glycol monomethyl ether methyl methacrylate, and polyethylene glycol monomethyl ether methyl acrylate;
  • the unsaturated alkenyl ester is methyl One or more of methyl acrylate, methyl acrylate, 2-ethylhexyl acrylate, and ethyl methacrylate;
  • the unsaturated alkenyl alcohol ether is polyethylene glycol monoallyl ether;
  • the unsaturated alkenyl nitrile is acrylonitrile;
  • the unsaturated alkenyl acid is acrylic acid.
  • the molecular weight regulator, deoxidizer, emulsifier, co-emulsifier, oxidizer, reducing agent, complexing agent, electrolyte, terminator and co-terminator mentioned in step 2 are all industrial reagents for mature SBR industrial production; Wherein the molecular weight regulator is one or a combination of aliphatic mercaptans, xanthogenic disulfides, polyphenols, sulfur, halides, and nitroso compounds.
  • the aliphatic The mercaptans are dodecyl mercaptan
  • the xanthogen disulfide is diisopropyl xanthogen disulfide
  • the deoxidizer is an inorganic deoxidizer and/or an organic deoxidizer, preferably The inorganic deoxidizer is sodium dithionite dihydrate
  • the emulsifier is one or a combination of anionic emulsifier, cationic emulsifier, and nonionic emulsifier.
  • the emulsifier is fatty acid soap and/or disproportionated rosin acid soap; the co-emulsifier is one or more of the common naphthalenesulfonic acid, naphthalenesulfonic acid and formaldehyde condensate sodium salt, preferably, the naphthalenesulfonic acid
  • the sodium salt of the condensate with formaldehyde is sodium methylene dinaphthalene sulfonate;
  • the oxidizing agent is an organic peroxide, preferably, the organic peroxide is cumene hydrogen peroxide and/or hydrogen peroxide p-menthane
  • the reducing agent is a ferrous salt, preferably, the ferrous salt is ferrous sulfate;
  • the complexing agent is a complexing agent complexed with iron, preferably ethylenediaminetetraacetic acid-disodium Salt;
  • the electrolyte is one or a combination of soluble phosphate, chloride
  • the organic solvent in step 4 is one or more of ether, acetone, ethylene oxide, methanol, and benzene.
  • a preparation method of cross-linked SBR microsphere binder includes the following steps:
  • Step 1 Spray styrene with a sodium hydroxide aqueous solution with a mass fraction of 8%-16% at 20-40°C, and then wash with deionized water to neutrality to obtain styrene from which the polymerization inhibitor has been removed;
  • Step 2 According to mass parts, 200-800 parts of deionized water, 25-100 parts of styrene from which polymerization inhibitor is removed, 200-800 parts of pore-forming reagent, 75-300 parts of butadiene, 0-50 parts The modified monomer is added to the reactor and stirred until it is evenly mixed.
  • Step 3 Add 0.06 ⁇ 0.54 parts of oxidant to system A to start polymerization, where polymerization pressure is 0.1 ⁇ 0.3MPa, polymerization temperature is 5 ⁇ 8°C, stirring speed is 100 ⁇ 130r/min, polymerization time is 7 ⁇ 12h After the polymerization is over, add 0.1 ⁇ 0.45 parts of terminator and 0.06 ⁇ 0.5 parts of auxiliary terminator to obtain modified SBR latex;
  • Step 4 Mix the modified SBR latex with 20%-30% sodium chloride solution, then mix with 0.5% dilute sulfuric acid and stir well, add deionized water several times, wash at 50 ⁇ 70°C to remove sodium chloride and Dilute sulfuric acid is used for extraction with an organic solvent for heat treatment at 50-70° C., and then deionized water is added for multiple times to remove the organic solvent to obtain a cross-linked SBR microsphere binder.
  • the above preparation method can be carried out in any suitable pressurized vessel, for example, an autoclave can be used to complete the above preparation.
  • step 2 it further includes pretreatment of the butadiene, and the pretreatment includes: spraying butadiene with a sodium hydroxide aqueous solution with a mass fraction of 8% to 16% at 20 to 40°C. Pour, then wash with deionized water until neutral.
  • the porogen is alkanes and derivative systems, alcohols and derivative systems, ethers and derivative systems, aromatics and derivative systems, ketones and derivative systems, esters and derivative systems, chlorine Substitutes and derivative systems, amines and derivative systems, oligomer polystyrene and oligomer polyaromatic derivative systems, oligomer polyether and polyether derivative systems, oligomer polyvinyl alcohol ether derivative systems, low One or a combination of polymer polyacrylonitrile and polynitrile derivative system, oligomer polyacrylic acid and polyacrylic acid derivative system.
  • the modified monomer is unsaturated alkenyl polyether and its derivatives, unsaturated alkenyl ester and its derivatives, unsaturated alkenyl alcohol ether and its derivatives, unsaturated alkenyl One or more of nitrile and its derivatives, unsaturated alkenyl acid and its derivatives.
  • a lithium ion battery includes a positive electrode, a negative electrode, and a separator; at least one of the positive electrode, the negative electrode, and the separator includes the cross-linked SBR microsphere binder described in any one of the above.
  • the positive electrode active material of the lithium ion battery is one or more of lithium cobalt oxide, nickel cobalt aluminum ternary material, lithium iron phosphate, nickel cobalt manganese ternary material, lithium manganate, and sulfur;
  • the lithium ion battery is a liquid lithium ion battery, a semi-solid lithium ion battery or an all solid state lithium ion battery.
  • the lithium ion battery is a liquid lithium-sulfur battery, a semi-solid or solid lithium-sulfur battery, a battery with lithium cobalt oxide as the positive electrode, a solid nickel-cobalt aluminum battery, a solid-state lithium iron phosphate battery, and a solid nickel-cobalt-manganese ternary material battery , Solid-state lithium manganate batteries, lithium-ion batteries containing electrolyte and carbon material as the negative electrode.
  • reagents, materials, and instruments used in the following descriptions are conventional reagents, conventional materials, and conventional instruments unless otherwise specified, all of which are commercially available, and the reagents involved can also be synthesized by conventional synthetic methods.
  • a preparation method of cross-linked SBR microsphere binder includes the following steps:
  • Step 1 Spray butadiene and styrene with 8% sodium hydroxide aqueous solution at 20°C for 4 hours, and then wash with deionized water to neutrality to obtain butadiene with polymerization inhibitor removed Alkenes and styrene without polymerization inhibitors;
  • Step 2 According to mass parts, 200 parts of deionized water, 25 parts of styrene from which polymerization inhibitor is removed, 80 parts of n-heptane, 20 parts of n-propanol, 20 parts of methanol, 40 parts of glycerol, 40 parts Xylene and 75 parts of butadiene from which polymerization inhibitor has been removed are added to the reactor and stirred until they are evenly mixed; 0.16 parts of dodecyl mercaptan, 4.62 parts of disproportionated rosin acid soap, and 0.15 parts of methylene dinaphthalene are added Sodium sulfonate, 0.025 parts of sodium dithionite dihydrate, 0.24 parts of potassium phosphate, keep stirring until the mixture is uniform, and keep the temperature to 25°C; after 20 minutes, add 0.01 part of ferrous sulfate and 0.01 part of ethylenediaminetetraacetic acid-disodium salt Mix thoroughly to obtain system A, and lower the temperature to 5°C.
  • Step 3 Add 0.06 parts of cumene hydroperoxide to system A to start polymerization.
  • the polymerization conditions include adjusting the pressure in the cooling reactor to 0.1MPa, polymerization temperature 8°C, stirring speed 100r/min, and polymerization time 7h. After the polymerization, add 0.1 part of sodium dimethyldithiocarbamate, 0.02 part of sodium nitrite, 0.02 part of sodium polysulfide, and 0.02 part of polyvinylamine to react for 5 minutes to obtain a modified SBR latex;
  • Step 4 Mix the modified SBR latex with 20% sodium chloride solution, then mix with 0.5% dilute sulfuric acid and stir well, add deionized water several times and wash at 50°C to remove sodium chloride and dilute sulfuric acid, and more The organic solvent diethyl ether was used for heat treatment at 50° C. for extraction, and then deionized water was added multiple times to remove the organic solvent diethyl ether to obtain the porous cross-linked SBR microsphere binder of Example 1.
  • the particle size of the porous cross-linked SBR microspheres ranges from 10 nm to 100 nm, the porosity ranges from 0.01 to 3%, and the pore diameter range is greater than 0 nm and less than or equal to 10 nm.
  • the lithium ion battery in this embodiment includes the porous cross-linked SBR microsphere binder of embodiment 1 above.
  • the specific composition of the lithium ion battery is as follows:
  • Negative electrode sheet 90% negative active material graphite, 5% conductive agent SP, 2% CMC, 3% porous crosslinked SBR microsphere binder of this embodiment
  • Positive electrode sheet 90% positive active material NCM811, 5% conductive agent SP, 5% binder PVDF
  • the aforementioned negative electrode sheet and positive electrode sheet were matched with a separator (purchased from CELGARD, 20 ⁇ m), electrolyte (purchased from Xinzhoubang, LBC445A13), and the examples were prepared by conventional lithium ion battery preparation processes 1 lithium ion battery.
  • a preparation method of cross-linked SBR microsphere binder includes the following steps:
  • Step 1 Raw material pretreatment: including the purification of monomers and the preparation of initiators and other additional components; spraying butadiene and styrene with 10% sodium hydroxide aqueous solution at 40°C for 10 minutes, Then, deionized water is washed to neutrality to obtain butadiene from the polymerization inhibitor and styrene from the polymerization inhibitor; the butadiene from the polymerization inhibitor, porogen, modified monomer, and The combination of styrene, molecular weight regulator, deoxidizer, electrolyte, reducing agent, complexing agent, oxidant, emulsifier and co-emulsifier except polymerization inhibitor, combination of terminator and co-terminator are prepared with deionized water respectively Aqueous solution or emulsion, the concentration is not required; wherein, the porogen includes n-octane, cyclohexane, cyclohexanol, 2-ethylbutanol, n-but
  • the oxidizing agent is hydrogen peroxide p-menthane
  • the terminator is sodium dimethyl dithiocarbamate
  • the auxiliary terminator is sodium nitrite
  • sodium polysulfide and polyvinylamine wherein In parts by mass, the total amount of deionized water is 400 parts, 50 parts of styrene, 100 parts of n-octane, 50 parts of cyclohexane, 30 parts of cyclohexanol, and 30 parts of 2-ethylbutanol from which polymerization inhibitor is removed.
  • Step 2 Remove styrene, n-octane, cyclohexane, cyclohexanol, 2-ethylbutanol, n-butyl ether, benzene, acetonitrile, and remove polymerization inhibitor prepared in step 1 Add butadiene, polyethylene glycol methyl methacrylate, polyethylene glycol diacrylate and methyl methacrylate into the reactor and stir until the mixture is uniform; add diisopropyl xanthogen disulfide Ester, fatty acid soap, naphthalene sulfonic acid, sodium dithionite dihydrate, potassium phosphate, keep stirring until the mixture is uniform, and keep the temperature to 30 °C, after 15 minutes, add ferrous sulfate and ethylene diamine tetraacetic acid-disodium salt to mix thoroughly , Obtain system A, and cool to 6°C;
  • Step 3 Add hydrogen peroxide p-menthane prepared in step 1 to system A to start polymerization; wherein the polymerization pressure is 0.25MPa, the polymerization temperature is 6°C, the stirring speed is 120r/min, and the polymerization time is 11h; After the end, add sodium dimethyl dithiocarbamate, sodium nitrite, sodium polysulfide, and polyvinylamine to react for 30 minutes to obtain a modified SBR latex;
  • Step 4 Mix the modified SBR latex with 26% sodium chloride solution, then mix with 0.5% dilute sulfuric acid and stir well, add deionized water at 70°C several times to wash to neutrality, remove sodium chloride and dilute sulfuric acid
  • deionized water is added for multiple times to remove the organic solvents to obtain the porous crosslinked SBR microsphere binder of Example 1.
  • the particle size of the porous cross-linked SBR microspheres ranges from 40 nm to 150 nm, the porosity ranges from 4 to 8%, and the pore diameter range is greater than 0 nm and less than or equal to 40 nm.
  • the lithium ion battery in this embodiment includes the porous cross-linked SBR microsphere binder of Embodiment 2 above.
  • the lithium ion battery is basically the same as the lithium ion battery in Example 1, except that the binder of the negative electrode sheet in the lithium ion battery of Example 2 adopts the porous crosslinked SBR microsphere binder of Example 2.
  • a preparation method of cross-linked SBR microsphere binder includes the following steps:
  • Step 1 Spray the butadiene and styrene with a 12% sodium hydroxide aqueous solution at 30°C for 2 hours, and then wash them with deionized water to neutrality to obtain butadiene with the inhibitor removed Alkenes and styrene without polymerization inhibitors;
  • Step 2 According to mass parts, 600 parts of deionized water, 75 parts of styrene from which polymerization inhibitor is removed, 100 parts of ethyl acetate, 50 parts of acetone, 50 parts of diethyl phthalate, 100 parts of cyclohexane , 20 parts of isooctyl alcohol, 30 parts of n-butyl ether, 20 parts of succinonitrile, 20 parts of chloroform, 5 parts of urea, 3 parts of polystyrene, 2 parts of polyethylene glycol, 225 parts of polymerization inhibitor removal Butadiene, 6 parts of polyethylene glycol monoallyl ether, 8 parts of polyethylene glycol methyl acrylate, 8 parts of ethyl methacrylate, and 10 parts of acrylic acid were added to the reactor and stirred until the mixture was uniform; 0.528 parts of dodecyl mercaptan, 15.25 parts of disproportionated rosin acid soap, 0.495 parts of sodium methylene dina
  • Step 3 Add 0.36 parts of cumene hydroperoxide to system A to start polymerization, and the polymerization conditions include adjusting the pressure in the cooling reactor to 0.25MPa, polymerization temperature 7°C, stirring speed 110r/min, and polymerization time 9h. After the polymerization, add 0.33 parts of sodium dimethyl dithiocarbamate, 0.13 parts of sodium polysulfide, 0.10 parts of polyvinylamine, and 0.10 parts of sodium nitrite to react for 10 minutes to obtain modified SBR latex;
  • Step 4 Mix the modified SBR latex with 24% sodium chloride solution, then mix it with 0.5% dilute sulfuric acid and stir well, add deionized water at 60°C for several times and wash until the sodium chloride and dilute sulfuric acid are neutralized.
  • the organic solvent methanol is used for heat treatment at 65° C. for extraction several times, and then deionized water is added several times to remove the organic solvent methanol to obtain the porous cross-linked SBR microsphere binder of Example 3.
  • the particle size of the porous cross-linked SBR microspheres ranges from 60 nm to 200 nm, the porosity ranges from 8 to 12%, and the pore diameter range is greater than 0 nm and less than or equal to 60 nm.
  • the lithium ion battery in this embodiment includes the porous cross-linked SBR microsphere binder of Embodiment 3 above.
  • the lithium ion battery is basically the same as the lithium ion battery in Example 1, except that the binder of the negative electrode sheet in the lithium ion battery of Example 3 uses the porous crosslinked SBR microsphere binder of Example 3.
  • a preparation method of cross-linked SBR microsphere binder includes the following steps:
  • Step 1 Spray butadiene and styrene with a 14% sodium hydroxide aqueous solution at 25°C for 1 hour, and then wash with deionized water to neutrality to obtain butadiene with polymerization inhibitor removed Alkenes and styrene without polymerization inhibitors;
  • Step 2 According to mass parts, 800 parts of deionized water, 100 parts of styrene from which the polymerization inhibitor is removed, 150 parts of fatty acid methyl ester, 345 parts of toluene, 50 parts of isopropanol, 50 parts of di-n-pentyl ether, 50 parts methyl ethyl ketone, 50 parts acetonitrile, 30 parts chloroform, 20 parts urea, 55 parts polyethylene glycol, 300 parts butadiene with polymerization inhibitor removed, 10 parts acrylonitrile, 10 parts methyl acrylate, 20 parts Polyethylene glycol monomethyl ether methyl methacrylate and 10 parts of 2-ethylhexyl acrylate were added to the reactor and stirred until they were evenly mixed; 0.72 parts of dodecyl mercaptan, 20.79 parts of fatty acid soap, 0.675 parts of sodium methylene dinaphthalene sulfonate, 0.18 parts of sodium dithionite dihydrate,
  • Step 3 Add 0.54 parts of cumene hydroperoxide to system A to start polymerization.
  • the polymerization conditions include adjusting the pressure in the cooling reactor to 0.3MPa, polymerization temperature 5°C, stirring speed 130r/min, and polymerization time 12h. After the polymerization, add 0.45 parts of sodium dimethyldithiocarbamate, 0.2 parts of sodium nitrite, 0.15 parts of sodium nitrite sodium polysulfide, and 0.15 parts of sodium nitrite polyvinylamine to react for 20 minutes to obtain a modified SBR latex;
  • Step 4 Mix the modified SBR latex with 30% sodium chloride solution, then mix it with 0.5% dilute sulfuric acid and stir well, add deionized water at 55°C for several times and wash until the sodium chloride and dilute sulfuric acid are neutralized.
  • the mixture of organic solvent acetone and benzene was heat-treated at 70°C for multiple times for extraction, and then deionized water was added multiple times to remove the organic solvent to obtain the porous cross-linked SBR microsphere binder of Example 4.
  • the particle size of the porous cross-linked SBR microspheres ranges from 80 nm to 300 nm, the porosity ranges from 12 to 20%, and the pore diameter range is greater than 0 nm and less than or equal to 80 nm.
  • the lithium ion battery in this embodiment includes the porous cross-linked SBR microsphere binder of embodiment 4 above.
  • the lithium ion battery is basically the same as the lithium ion battery in Example 1, except that the binder of the negative electrode sheet in the lithium ion battery of Example 4 uses the porous crosslinked SBR microsphere binder of Example 4.
  • a preparation method of cross-linked SBR microsphere binder includes the following steps:
  • Step 1 The butadiene and styrene were sprayed with 16% sodium hydroxide aqueous solution at 35°C for 3h, and then washed with deionized water to neutrality to obtain butadiene with the polymerization inhibitor removed. Alkenes and styrene without polymerization inhibitors;
  • Step 2 According to mass parts, 500 parts of deionized water, 62.5 parts of styrene from which polymerization inhibitor is removed, 100 parts of ethyl acetate, 100 parts of acetone, 100 parts of diethyl phthalate, 50 parts of n-heptane , 50 parts dodecanol, 15 parts succinonitrile, 10 parts 1,2-dichloroethane, 10 parts amino acid, 5 parts polystyrene, 5 parts polyacrylic acid, 5 parts polyvinyl alcohol, 187.5 parts Polymerizing agent butadiene, 8 parts of polyethylene glycol monomethyl ether methyl acrylate, 8 parts of polyethylene glycol monoallyl ether, and 9 parts of acrylonitrile are added to the reactor and stirred until the mixture is uniform; add 0.44 Parts dodecyl mercaptan, 12.71 parts disproportionated rosin acid soap, 0.4125 parts sodium methylene dinaphthalene sulfonate, 0.1025 parts sodium dithi
  • Step 3 Add 0.30 parts of p-menthane hydrogen peroxide to the system A to start polymerization.
  • the polymerization conditions include adjusting the pressure in the cooling reactor to 0.15MPa, polymerization temperature 7°C, stirring speed 120r/min, and polymerization time 8h. After the polymerization, add 0.275 parts of sodium dimethyl dithiocarbamate, 0.1 parts of sodium nitrite, 0.08 parts of sodium polysulfide, and 0.1 parts of polyvinylamine to react for 15 minutes to obtain modified SBR latex;
  • Step 4 Mix the modified SBR latex with 26% sodium chloride solution, then mix with 0.5% dilute sulfuric acid and stir well, add deionized water at 70°C for several times and wash until the sodium chloride and dilute sulfuric acid are neutralized.
  • the organic solvent acetone was used for heat treatment at 55° C. for extraction several times, and then deionized water was added several times to remove the organic solvent to obtain the porous cross-linked SBR microsphere binder of Example 5.
  • the particle size of the porous cross-linked SBR microspheres ranges from 90 nm to 400 nm, the porosity ranges from 29 to 35%, and the pore diameter range is greater than 0 nm and less than or equal to 90 nm.
  • the lithium ion battery in this embodiment includes the porous cross-linked SBR microsphere binder of Embodiment 5 above.
  • the lithium ion battery is basically the same as the lithium ion battery in Example 1, except that the binder of the negative electrode sheet in the lithium ion battery of Example 5 adopts the porous crosslinked SBR microsphere binder of Example 5.
  • a preparation method of cross-linked SBR microsphere binder includes the following steps:
  • Step 1 Spray butadiene and styrene with a 9% sodium hydroxide aqueous solution at 20°C for 2.5 hours, and then wash them with deionized water to neutrality to obtain butadiene with the polymerization inhibitor removed. Diene and styrene without polymerization inhibitor;
  • Step 2 According to mass parts, 300 parts of deionized water, 37.5 parts of styrene from which polymerization inhibitor has been removed, 100 parts of fatty acid methyl ester, 200 parts of diethyl phthalate, 100 parts of n-octane, 100 parts of N-amyl ether, 50 parts methyl ethyl ketone, 50 parts acetonitrile, 70 parts 1,2-dichloroethane, 10 parts amino acid, 5 parts polystyrene, 10 parts polyethylene glycol, 5 parts polyacrylonitrile, 112.5 parts
  • the polymerization inhibitor butadiene, 10 parts of polyethylene glycol methyl methacrylate, 2 parts of methyl methacrylate, and 3 parts of acrylic acid were added to the reactor and stirred until the mixture was uniform; 0.264 parts of disulfide were added Isopropyl xanthate, 7.63 parts of disproportionated rosin acid soap, 0.25 parts of sodium methylene dinaphthalene
  • Step 3 Add 0.18 parts of cumene hydroperoxide to system A to start polymerization.
  • the polymerization conditions include adjusting the pressure in the cooling reactor to 0.25MPa, polymerization temperature 6°C, stirring speed 130r/min, and polymerization time 10h. After the polymerization, add 0.165 parts of sodium dimethyldithiocarbamate, 0.056 parts of sodium nitrite, 0.056 parts of sodium polysulfide, and 0.056 parts of polyvinylamine to react for 25 minutes to obtain modified SBR latex;
  • Step 4 Mix the modified SBR latex with 25% sodium chloride solution, then mix with 0.5% dilute sulfuric acid and stir well, add deionized water at 65°C for several times and wash until the sodium chloride and dilute sulfuric acid are neutralized.
  • the mixture of organic solvent ethylene oxide and methanol was used for heat treatment at 60° C. for extraction several times, and then deionized water was added several times to remove the organic solvent to obtain the porous cross-linked SBR microsphere binder of Example 6.
  • the particle size of the porous cross-linked SBR microspheres ranges from 90 nm to 400 nm, the porosity ranges from 29 to 35%, and the pore diameter range is greater than 0 nm and less than or equal to 90 nm.
  • the lithium ion battery in this embodiment includes the porous cross-linked SBR microsphere binder of the sixth embodiment.
  • the lithium ion battery is basically the same as the lithium ion battery in Example 1, except that the binder of the negative electrode sheet in the lithium ion battery of Example 6 adopts the porous crosslinked SBR microsphere binder of Example 6.
  • a preparation method of cross-linked SBR microsphere binder includes the following steps:
  • Step 1 The butadiene and styrene were sprayed with 8% sodium hydroxide aqueous solution at 28°C for 3.5 hours, and then washed with deionized water to neutrality, to obtain butadiene with the polymerization inhibitor removed. Diene and styrene without polymerization inhibitor;
  • Step 2 According to mass parts, 400 parts of deionized water, 50 parts of styrene, 100 parts of fatty acid methyl ester, 50 parts of acetone, 200 parts of toluene, 100 parts of isoamyl alcohol, 50 parts of n-butyl Ether, 50 parts of acetonitrile, 30 parts of 1,2-dichloroethane, 10 parts of amino acids, 5 parts of polyethylene glycol monomethyl ether, 5 parts of polyvinyl alcohol, 150 parts of butadiene with polymerization inhibitor removed, 10 Part of polyethylene glycol methyl methacrylate, 4 parts of acrylic acid, and 6 parts of methyl methacrylate were added to the reactor and stirred until mixed uniformly; 0.352 parts of lauryl mercaptan and 10.16 parts of disproportionated rosin acid soap were added , 0.33 parts of sodium methylene dinaphthalene sulfonate, 0.082 parts of sodium dithionite dihydrate, 0.908 parts of potassium phosphate
  • Step 3 Add 0.24 parts of p-menthane hydrogen peroxide to system A to start polymerization.
  • the polymerization conditions include adjusting the pressure in the cooling reactor to 0.25MPa, polymerization temperature 8°C, stirring speed 110r/min, and polymerization time 9h. After the polymerization, add 0.22 parts of sodium dimethyldithiocarbamate, 0.075 parts of sodium nitrite, 0.075 parts of sodium polysulfide, and 0.075 parts of polyvinylamine to react for 10 minutes to obtain modified SBR latex;
  • Step 4 Mix the modified SBR latex with 28% sodium chloride solution, then mix it with 0.5% dilute sulfuric acid and stir well, add deionized water at 70°C for several times to wash to neutralize sodium chloride and dilute sulfuric acid.
  • the organic solvent ethanol is used for heat treatment at 65° C. for extraction several times, and then deionized water is added several times to remove the organic solvent, to obtain the porous cross-linked SBR microsphere binder of Example 7.
  • the particle size of the porous cross-linked SBR microspheres ranges from 100 nm to 1 ⁇ m, the porosity ranges from 20 to 29%, and the pore diameter ranges from more than 0 nm to 100 nm.
  • the lithium ion battery in this embodiment includes the porous cross-linked SBR microsphere binder of embodiment 7 above.
  • the lithium ion battery is basically the same as the lithium ion battery in Example 1, except that the binder of the negative electrode sheet in the lithium ion battery of Example 7 uses the porous crosslinked SBR microsphere binder of Example 7.
  • the lithium ion battery in this comparative example is basically the same as the lithium ion battery in Example 1, except that the binder of the negative electrode sheet in the lithium ion battery in this comparative example uses SBR for commercial lithium ion batteries.
  • porous cross-linked SBR prepared in Examples 1-7 and the SBR for commercial lithium-ion batteries were used to measure tensile modulus (after immersion in electrolyte), affinity with electrolyte and ionic conductivity.
  • the test results are shown in the following table:
  • the tensile modulus is that the SBR adhesive is formed into a dumbbell shape after being formed into a film. After being immersed in the electrolyte for 2 and 6 days, the breaking strength and elongation are tested; the affinity with the electrolyte reflects that the SBR is bonded to the The state present in the battery directly reflects the degree of affinity with the electrolyte; the ionic conductivity reflects the ability of the SBR material to transport lithium ions in the lithium-ion battery system.
  • the modified porous cross-linked SBR of the present application has better application potential; Compared with commercial SBR, the porous cross-linked SBR has better electrolyte affinity.
  • SBR is modified by copolymerization to improve the affinity with electrolyte.
  • the modified SBR is manufactured.
  • Fig. 4 is a graph of cycle performance data of lithium ion batteries in Examples 1-7 of the present invention and comparative examples.
  • the lithium ion battery prepared by the commercial SBR binder has a capacity retention rate of 89.0% after 1400 cycles; while the lithium ion battery prepared by the binder in Examples 1-7 of the present invention The battery has a capacity retention rate of 90.5%-96.0% after 1400 cycles.
  • the main reason is that the porous cross-linked SBR of the present application has a better pore structure than commercial SBR, and lithium ions can directly pass through the pore structure to perform charge and discharge reactions.
  • the lithium ion battery prepared by the binder of the present invention has lower impedance, can effectively improve the lithium ion transmission, and enhance the lithium ion long-cycle performance, and has good application value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

一种交联SBR微球粘结剂及制备方法及含有该粘结剂的锂离子电池,所述交联SBR微球粘结剂为具有多孔的交联结构,所述交联SBR微球的粒径范围为10nm~1μm,孔隙率范围为0.01%~40%,所述孔的孔径范围大于0小于等于200nm。含有该粘结剂的锂离子电池与含有常规SBR粘结剂的锂离子电池相比,具有更好的倍率性能、低温性能、快充性能、长循环性能优势。

Description

一种交联SBR微球粘结剂及制备方法及含有该粘结剂的锂离子电池
本申请要求于2019年2月18日提交中国专利局、申请号为201910120401.3、申请名称为“一种交联SBR微球粘结剂及制备方法及含有该粘结剂的锂离子电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于锂离子电池技术领域,尤其涉及一种交联SBR微球粘结剂及制备方法及含有该粘结剂的锂离子电池。
背景技术
锂离子电池具有循环寿命长、无记忆效应、能量密度高和环境污染小等特点,近年来在数码领域和动力汽车领域得到广泛应用。锂离子电池主要是由正极、负极、隔膜、电解液构成,其中正极和负极的组成均包含粘结剂,作为锂离子电池中的重要组成部分,粘结剂主要负责将电极片中的电极活性物质、导电剂和集流体紧密地粘结在一起,使电极片具有良好的可加工性能,更重要的是保证制成后的电芯能够长久地保持其电化学性能。
常规锂离子电池粘结剂主要有聚乙烯醇、聚四氟乙烯、聚偏氟乙烯、聚偏氟乙烯-六氟丙烯、改性丁苯橡胶和羧甲基纤维素钠的组合、氟化橡胶、聚氨酯、聚丙烯酸等体系。其中改性丁苯橡胶和羧甲基纤维素钠组合粘结剂由于性能稳定和价格优势,在锂离子电池中得到广泛的应用,其中羧甲基纤维素钠和改性丁苯橡胶分别作为增稠剂和粘结剂。值得注意的是由于丁苯橡胶(SBR)自身化学结构的影响,其与电解液亲和力较弱,在锂离子电池的制备过程中存在极片吸液效果差、电芯存液量少、大倍率放电性能差、低温性能和长循环性能不佳等问题。
为改善丁苯橡胶与电解液的亲和力,提高锂离子电池性能。申请号为CN 201810283260.2的中国专利申请公开了一种炭黑改性水系SBR锂离子电池粘 结剂及其制备方法,以苯乙烯与丁二烯为原料,通过原位乳液聚合法在SBR分子链上键接导电炭黑,得到炭黑改性水系SBR,但在该方法中炭黑不能完全进行有效结合,材料稳定性能难以控制。申请号为CN 201711144903.7的中国专利申请公开了一种改性丁苯橡胶型负极粘结剂的制备方法,将丁苯橡胶与丙烯酸混合搅拌后进行辐照,将辐照产物与氢氧化钠混合搅拌,洗涤后得到改性丁苯橡胶,该方法采用与电解液亲和性好的丙烯酸改性丁苯橡胶,但是在该过程中采用辐照会存在聚合改性不完全等情况,对整体锂离子电池性能改善有限。
常规改性SBR微球粘结剂粒径约为80nm~250nm,微球内部存在一定的交联结构,根据产品需求有高交联度和低交联度SBR,良好的SBR在满足基础应用的需求上还应该具有更好的吸液性能和更小的膨胀性能。常规的改性SBR微球表面光滑,当前主要是通过接枝或共聚等技术,引入与电解液亲和性好的结构,从而达到改性目的。
发明内容
本申请的目的在于提供一种交联SBR微球粘结剂及制备方法及含有该粘结剂的锂离子电池,含有该粘结剂的锂离子电池与含有常规SBR粘结剂的锂离子电池相比,具有更好的倍率性能、低温性能、快充性能、长循环性能优势。
为了实现上述目的,本申请采取如下的技术方案:
一种交联SBR微球粘结剂,所述交联SBR微球具有多孔的交联结构。
进一步的,所述交联SBR微球的粒径范围为10nm~1μm。
进一步的,所述交联SBR微球的孔隙率范围为0.01%~40%。
进一步的,所述交联SBR微球的孔隙率范围为4%~29%。
进一步的,所述交联SBR微球的孔隙率范围为12%~29%。
进一步的,所述孔的孔径范围大于0小于等于200nm。
进一步的,将A体系与氧化剂聚合后,对聚合后的体系进行破乳、萃取和洗涤,得到所述交联SBR微球粘结剂;
所述A体系包括去离子水、脱除阻聚剂的苯乙烯、致孔试剂、脱除阻聚剂的丁二烯、分子量调节剂、乳化剂、助乳化剂、脱氧剂、电解质、还原剂、 络合剂。
进一步的,所述A体系中还包括改性单体。
进一步的,所述改性单体为不饱和烯基聚醚及其衍生物、不饱和烯基酯及其衍生物、不饱和烯基醇醚及其衍生物、不饱和烯基腈及其衍生物、不饱和烯基酸及其衍生物中的一种或几种。
一种交联SBR微球粘结剂的制备方法,包括如下步骤:
步骤一:将丁二烯和苯乙烯分别用质量分数为8%~16%的氢氧化钠水溶液20~40℃下进行喷淋,然后分别用去离子水洗涤至中性,得到脱除阻聚剂的丁二烯和脱除阻聚剂的苯乙烯;
步骤二:按质量份计,将200~800份去离子水、25~100份脱除阻聚剂的苯乙烯、200~800份致孔试剂、75~300份脱除阻聚剂的丁二烯、0~50份改性单体,加入到反应器中,搅拌至混合均匀,加入0.16~0.72份分子量调节剂、4.62~20.79份乳化剂、0.15~0.675份助乳化剂、0.025~0.18份脱氧剂、0.24~2.03份电解质不断搅拌至混合均匀,并恒温至25~35℃;然后加入0.01~0.045份还原剂、0.01~1.13份络合剂进行充分混合,得到A体系,并降温至5~8℃;
步骤三:将0.06~0.54份氧化剂加入到A体系中,开始聚合,其中聚合压力为0.1~0.3MPa、聚合温度为5~8℃、搅拌速度为100~130r/min、聚合时间为7~12h,聚合结束后,加入0.1~0.45份终止剂、0.06~0.5份助终止剂后得到改性SBR胶乳;
步骤四:将改性SBR胶乳进行破乳、萃取和洗涤后,得到交联SBR微球粘结剂。
进一步的,步骤二中,所述致孔试剂为烷类及衍生体系、醇类及衍生体系、醚类及衍生体系、芳香类及衍生体系、酮类及衍生体系、酯类及衍生体系、氯代物类及衍生体系、胺类及衍生体系、低聚物聚苯乙烯及低聚物聚芳族衍生体系、低聚物聚醚及聚醚衍生体系、低聚物聚乙烯醇醚衍生体系、低聚物聚丙烯腈及聚腈衍生体系、低聚物聚丙烯酸及聚丙烯酸衍生体系中的一种或几种的组合。
进一步的,步骤二中,所述改性单体为不饱和烯基聚醚及其衍生物、不饱和烯基酯及其衍生物、不饱和烯基醇醚及其衍生物、不饱和烯基腈及其衍生物、不饱和烯基酸及其衍生物中的一种或几种。
一种交联SBR微球粘结剂的制备方法,包括如下步骤:
步骤一:将苯乙烯用质量分数为8%~16%的氢氧化钠水溶液20~40℃下进行喷淋,然后用去离子水洗涤至中性,得到脱除阻聚剂的苯乙烯;
步骤二:按质量份计,将200~800份去离子水、25~100份脱除阻聚剂的苯乙烯、200~800份致孔试剂、75~300份丁二烯、0~50份改性单体,加入到反应器中,搅拌至混合均匀,加入0.16~0.72份分子量调节剂、4.62~20.79份乳化剂、0.15~0.675份助乳化剂、0.025~0.18份脱氧剂、0.24~2.03份电解质不断搅拌至混合均匀,并恒温至25~35℃;然后加入0.01~0.045份还原剂、0.01~1.13份络合剂进行充分混合,得到A体系,并降温至5~8℃;
步骤三:将0.06~0.54份氧化剂加入到A体系中,开始聚合,其中聚合压力为0.1~0.3MPa、聚合温度为5~8℃、搅拌速度为100~130r/min、聚合时间为7~12h,聚合结束后,加入0.1~0.45份终止剂、0.06~0.5份助终止剂后得到改性SBR胶乳;
步骤四:将改性SBR胶乳进行破乳、萃取和洗涤后,得到交联SBR微球粘结剂。
进一步的,步骤二之前,还包括对所述丁二烯进行预处理,所述预处理包括:将丁二烯用质量分数为8%~16%的氢氧化钠水溶液20~40℃下进行喷淋,然后用去离子水洗涤至中性。
进一步的,步骤二中,所述致孔试剂为烷类及衍生体系、醇类及衍生体系、醚类及衍生体系、芳香类及衍生体系、酮类及衍生体系、酯类及衍生体系、氯代物类及衍生体系、胺类及衍生体系、低聚物聚苯乙烯及低聚物聚芳族衍生体系、低聚物聚醚及聚醚衍生体系、低聚物聚乙烯醇醚衍生体系、低聚物聚丙烯腈及聚腈衍生体系、低聚物聚丙烯酸及聚丙烯酸衍生体系中的一种或几种的组合。
进一步的,步骤二中,所述改性单体为不饱和烯基聚醚及其衍生物、不饱和烯基酯及其衍生物、不饱和烯基醇醚及其衍生物、不饱和烯基腈及其衍生物、不饱和烯基酸及其衍生物中的一种或几种。
一种锂离子电池,包括正极、负极、隔膜;
所述正极、负极、隔膜中的至少一个包括上述任一项所述的交联SBR微球粘结剂。
一种上述交联SBR微球粘结剂在锂离子电池的应用。
本申请的有益效果:
本申请区别于传统的改性丁苯橡胶,采用微观形貌设计的方法,在常规的改性丁苯橡胶的制备过程中,采用致孔试剂制备具有多孔结构的丁苯橡胶微球。
本申请参考常规锂离子电池的SBR的生产工艺,在常规SBR制造过程中引入致孔试剂,致孔试剂与SBR有一定的亲和性且在整个过程中不参与体系反应,经过后续处理可形成具有多孔结构的SBR微球。本申请制备的具有多孔结构的SBR微球与常规的SBR微球化学结构一致,差异性主要体现在本申请的具有多孔结构的SBR微球具有更多的孔道和交联结构,与常规的SBR微球相比具有更好的吸液性能且较小的膨胀。以具有多孔结构的SBR微球为粘结剂制备的极片具有良好的吸液性能以及良好的锂离子传输通道。以具有多孔结构的SBR微球为粘结剂制备的锂离子电池和使用常规的SBR粘结剂锂离子电池相比,在倍率性能、低温性能、快充性能、长循环性能等方面具有明显的优势。
与此同时,在本申请中可以通过控制致孔试剂种类、加入量和反应程度等,控制SBR微球的孔隙率,孔隙率在一定范围时,具有多孔结构的SBR具有良好的粘结性、交联度和一定的孔隙率,在数码和动力方向锂离子电池中具有良好的应用前景。
附图说明
图1是本申请改性SBR微球示意图;
图2是常规SBR微球电镜图一;
图3是常规SBR微球电镜图二;
图4为本发明实施例1-7以及对比例中的锂离子电池的循环性能数据图。
具体实施方式
图1是本申请改性SBR微球示意图,图2是常规SBR微球电镜图一,图3是常规SBR微球电镜图二。下面结合附图1-3对本申请做进一步的描述。
具体实施方式一:
一种交联SBR微球粘结剂,所述交联SBR微球具有多孔的交联结构。
进一步的,所述交联SBR微球的粒径范围为10nm~1μm,优选的,所述交联SBR微球的粒径范围为50nm~250nm。
进一步的,所述交联SBR微球的孔隙率范围为0.01%~40%。
进一步的,所述交联SBR微球的孔隙率范围为4%~29%。
进一步的,所述交联SBR微球的孔隙率范围为12%~29%。
进一步的,所述孔的孔径范围大于0小于等于200nm,所述孔包括微孔、介孔和大孔,所述微孔的孔径<2nm,介孔孔径2nm~50nm、大孔孔径50nm~200nm。
进一步的,将A体系与氧化剂聚合后,对聚合后的体系进行破乳、萃取和洗涤,得到所述交联SBR微球粘结剂;所述A体系包括去离子水、脱除阻聚剂的苯乙烯、致孔试剂、脱除阻聚剂的丁二烯、分子量调节剂、乳化剂、助乳化剂、脱氧剂、电解质、还原剂、络合剂。
进一步的,所述A体系中还包括改性单体。进一步的,所述改性单体为不饱和烯基聚醚及其衍生物、不饱和烯基酯及其衍生物、不饱和烯基醇醚及其衍生物、不饱和烯基腈及其衍生物、不饱和烯基酸及其衍生物中的一种或几种。
一种交联SBR微球粘结剂的制备方法,包括如下步骤:
步骤一:将丁二烯和苯乙烯分别用质量分数为8%~16%的氢氧化钠水溶液20~40℃下进行喷淋10min~4h,然后分别用去离子水洗涤至中性,得到脱除阻聚剂的丁二烯和脱除阻聚剂的苯乙烯;
步骤二:按质量份计,将200~800份去离子水、25~100份脱除阻聚剂的苯乙烯、200~800份致孔试剂、75~300份脱除阻聚剂的丁二烯、0~50份改性单体,加入到反应器中,搅拌至混合均匀,加入0.16~0.72份分子量调节剂、4.62~20.79份乳化剂、0.15~0.675份助乳化剂、0.025~0.18份脱氧剂、0.24~2.03份电解质不断搅拌至混合均匀,并恒温至25~35℃,5~20min后加入0.01~0.045份还原剂、0.01~1.13份络合剂进行充分混合,得到A体系,并降温至5~8℃;
步骤三:将0.06~0.54份氧化剂加入到A体系中,开始聚合,其中聚合压力为0.1~0.3MPa、聚合温度为5~8℃、搅拌速度为100~130r/min、聚合时间为7~12h,聚合结束后,加入0.1~0.45份终止剂、0.06~0.5份助终止剂后反应 5~30min得到改性SBR胶乳;
步骤四:将改性SBR胶乳与20%~30%氯化钠溶液混合,然后再与0.5%的稀硫酸混合后充分搅拌,多次加入去离子水,50~70℃洗涤去除氯化钠和稀硫酸,再多次采用有机溶剂进行50~70℃热处理进行萃取,然后再多次加入去离子水除去有机溶剂,得到交联SBR微球粘结剂。
上述制备方法可以在任何适合加压的溶器中进行,例如可以采用高压反应釜完成上述制备。
优选的,步骤二中,所述致孔试剂为与聚合单体相容性好的溶剂或者线性低聚物,所述致孔试剂为烷类及衍生体系、醇类及衍生体系、醚类及衍生体系、芳香类及衍生体系、酮类及衍生体系、酯类及衍生体系、氯代物类及衍生体系、胺类及衍生体系、低聚物聚苯乙烯及低聚物聚芳族衍生体系、低聚物聚醚及聚醚衍生体系、低聚物聚乙烯醇醚衍生体系、低聚物聚丙烯腈及聚腈衍生体系、低聚物聚丙烯酸及聚丙烯酸衍生体系中的一种或几种的组合。
优选的,所述烷类为碳分子量为C5~C13烷烃中的一种或几种,优选的,所述烷类为环己烷、正庚烷或正辛烷;所述醇类为甲醇、异辛醇、正丙醇、2-乙基丁醇、异丙醇甲醇、环己醇、十二醇、异戊醇、丙三醇中的一种或几种;所述醚类为正丁醚和/或二正戊基醚;所述芳香类为甲苯、二甲苯、苯的一种或几种,所述芳香类的衍生体系为苯二甲酸二乙酯;所述酮类为丙酮和/或甲乙酮;所述腈类为丁二腈和/或乙腈;所述酯类为乙酸乙酯和/或脂肪酸甲酯;所述氯代物类为三氯甲烷和/或1,2-二氯乙烷;所述胺类为尿素;所述胺类的衍生体系为氨基酸;所述低聚物聚苯乙烯为聚苯乙烯;所述低聚物聚醚为聚乙二醇单甲醚,所述聚醚衍生体系为聚乙二醇;低聚物聚乙烯醇醚衍生体系为聚乙烯醇;所述低聚物聚丙烯腈为聚丙烯腈;所述聚腈衍生体系为聚乙腈;所述低聚物聚丙烯酸为聚丙烯酸。
进一步的,步骤二中所述改性单体为不饱和烯基聚醚及其衍生物、不饱和烯基酯及其衍生物、不饱和烯基醇醚及其衍生物、不饱和烯基腈及其衍生物、不饱和烯基酸及其衍生物中的一种或几种。
优选的,所述不饱和烯基聚醚为聚乙二醇单烯丙基醚;所述不饱和烯基聚醚衍生物为聚乙二醇甲基丙烯酸甲酯、聚乙二醇丙烯酸甲酯、聚乙二醇二丙烯酸酯、聚乙二醇单甲醚甲基丙烯酸甲酯、聚乙二醇单甲醚丙烯酸甲酯中 的一种或几种;所述不饱和烯基酯为甲基丙烯酸甲酯、丙烯酸甲酯、丙烯酸-2-乙基己酯、甲基丙烯酸乙酯中的一种或几种;所述不饱和烯基醇醚为聚乙二醇单烯丙基醚;所述不饱和烯基腈为丙烯腈;所述不饱和烯基酸为丙烯酸。
进一步的,步骤二中所述分子量调节剂、脱氧剂、乳化剂、助乳化剂、氧化剂、还原剂、络合剂、电解质、终止剂和助终止剂均为成熟SBR产业化生产的工业试剂;其中所述分子量调节剂为脂肪族硫醇类、黄原酸二硫化物类、多元酚、硫磺、卤化物及亚硝基化合物中的一种或几种的组合,优选的,所述脂肪族硫醇类为十二烷基硫醇,所述黄原酸二硫化物类为二硫化二异丙基黄原酸酯;所述脱氧剂为无机系脱氧剂和/或有机系脱氧剂,优选的,所述无机系脱氧剂为连二亚硫酸钠二水合物;所述乳化剂为阴离子型乳化剂、阳离子型乳化剂、非离子型乳化剂中的一种或多种的组合,优选的,所述乳化剂为脂肪酸皂和/或歧化松香酸皂;所述助乳化剂为常用萘磺酸、萘磺酸与甲醛缩合物钠盐中的一种或几种,优选的,所述萘磺酸与甲醛缩合物钠盐为亚甲基双萘磺酸钠;所述氧化剂为有机过氧化物,优选的,所述有机过氧化物为异丙苯过氧化氢和/或过氧化氢对孟烷;所述还原剂为亚铁盐系,优选的,所述亚铁盐系为硫酸亚铁;所述络合剂为与铁络合的络合剂,优选为乙二胺四乙酸-二钠盐;所述电解质为可溶性磷酸盐、氯化物、硫酸盐中的一种或几种的组合,优选的,所述可溶性磷酸盐为磷酸钾;所述终止剂为二甲基二硫代氨基甲酸钠;所述助终止剂为亚硝酸钠、多硫化钠、多乙烯胺中的一种或几种的组合。
优选的,步骤四中有机溶剂为乙醚、丙酮、环氧乙烷、甲醇、苯的一种或几种。
一种交联SBR微球粘结剂的制备方法,包括如下步骤:
步骤一:将苯乙烯用质量分数为8%~16%的氢氧化钠水溶液20~40℃下进行喷淋,然后用去离子水洗涤至中性,得到脱除阻聚剂的苯乙烯;
步骤二:按质量份计,将200~800份去离子水、25~100份脱除阻聚剂的苯乙烯、200~800份致孔试剂、75~300份丁二烯、0~50份改性单体,加入到反应器中,搅拌至混合均匀,加入0.16~0.72份分子量调节剂、4.62~20.79份乳化剂、0.15~0.675份助乳化剂、0.025~0.18份脱氧剂、0.24~2.03份电解质不断搅拌至混合均匀,并恒温至25~35℃;然后加入0.01~0.045份还原剂、 0.01~1.13份络合剂进行充分混合,得到A体系,并降温至5~8℃;
步骤三:将0.06~0.54份氧化剂加入到A体系中,开始聚合,其中聚合压力为0.1~0.3MPa、聚合温度为5~8℃、搅拌速度为100~130r/min、聚合时间为7~12h,聚合结束后,加入0.1~0.45份终止剂、0.06~0.5份助终止剂后得到改性SBR胶乳;
步骤四:将改性SBR胶乳与20%~30%氯化钠溶液混合,然后再与0.5%的稀硫酸混合后充分搅拌,多次加入去离子水,50~70℃洗涤去除氯化钠和稀硫酸,再多次采用有机溶剂进行50~70℃热处理进行萃取,然后再多次加入去离子水除去有机溶剂,得到交联SBR微球粘结剂。
上述制备方法可以在任何适合加压的溶器中进行,例如可以采用高压反应釜完成上述制备。
优选的,步骤二之前,还包括对所述丁二烯进行预处理,所述预处理包括:将丁二烯用质量分数为8%~16%的氢氧化钠水溶液20~40℃下进行喷淋,然后用去离子水洗涤至中性。
优选的,步骤二中,所述致孔试剂为烷类及衍生体系、醇类及衍生体系、醚类及衍生体系、芳香类及衍生体系、酮类及衍生体系、酯类及衍生体系、氯代物类及衍生体系、胺类及衍生体系、低聚物聚苯乙烯及低聚物聚芳族衍生体系、低聚物聚醚及聚醚衍生体系、低聚物聚乙烯醇醚衍生体系、低聚物聚丙烯腈及聚腈衍生体系、低聚物聚丙烯酸及聚丙烯酸衍生体系中的一种或几种的组合。
进一步的,步骤二中,所述改性单体为不饱和烯基聚醚及其衍生物、不饱和烯基酯及其衍生物、不饱和烯基醇醚及其衍生物、不饱和烯基腈及其衍生物、不饱和烯基酸及其衍生物中的一种或几种。
一种锂离子电池,包括正极、负极、隔膜;所述正极、负极、隔膜中的至少一个包括上述任一项所述的交联SBR微球粘结剂。
进一步的,所述锂离子电池的正极活性材料为钴酸锂、镍钴铝三元材料、磷酸铁锂、镍钴锰三元材料、锰酸锂、硫中的一种或几种;负极活性材料为碳材料、锂金属负极、氮化物、硅基材料、锡基氧化物、锡化物、锡基合金、锑基合金、锗基合金、铝基合金、铅基合金、钛的氧化物、纳米过渡金属氧化物MO(M=Co、Ni、Cu、Fe)、铁的氧化物、铬的氧化物、钼的氧化物和磷 化物。
进一步的,所述锂离子电池为液态锂离子电池、半固态锂离子电池或全固态锂离子电池。
进一步的,所述锂离子电池为液态锂硫电池、半固态或固态锂硫电池、正极为钴酸锂的电池、固态镍钴铝电池、固态磷酸铁锂电池、固态镍钴锰三元材料电池、固态锰酸锂电池、含有电解液且负极为碳材料的锂离子电池。
下面通过具体实施例对本申请作进一步的说明。下述说明中所使用到的试剂、材料以及仪器如没有特殊的说明,均为常规试剂、常规材料以及常规仪器,均可商购获得,所涉及的试剂也可通过常规合成方法合成获得。
实施例1
一种交联SBR微球粘结剂的制备方法,包括以下步骤:
步骤一:将丁二烯和苯乙烯分别用质量分数为8%的氢氧化钠水溶液20℃下进行喷淋4h,然后分别用去离子水洗涤至中性,得到脱除阻聚剂的丁二烯和脱除阻聚剂的苯乙烯;
步骤二:按质量份计,将200份去离子水、25份脱除阻聚剂的苯乙烯、80份正庚烷、20份正丙醇、20份甲醇、40份丙三醇、40份二甲苯、75份脱除阻聚剂的丁二烯,加入到反应器中,搅拌至混合均匀;加入0.16份十二烷基硫醇、4.62份歧化松香酸皂、0.15份亚甲基双萘磺酸钠、0.025份连二亚硫酸钠二水合物、0.24份磷酸钾,不断搅拌至混合均匀,并恒温至25℃;20min后加入0.01份硫酸亚铁、0.01份乙二胺四乙酸-二钠盐进行充分混合,得到A体系,并降温至5℃。
步骤三:将0.06份异丙苯过氧化氢加入到A体系中,开始聚合,其中聚合条件有降温反应器中压力调节为0.1MPa、聚合温度8℃、搅拌速度100r/min、聚合时间7h,聚合结束后,加入0.1份二甲基二硫代氨基甲酸钠、0.02份亚硝酸钠、0.02份多硫化钠、0.02份多乙烯胺反应5min得到改性SBR胶乳;
步骤四:将改性SBR胶乳与20%氯化钠溶液混合,然后再与0.5%的稀硫酸混合后充分搅拌,多次加入去离子水50℃洗涤后去除氯化钠和稀硫酸,再多次采用有机溶剂乙醚进行50℃热处理进行萃取,然后再多次加入去离子水除去有机溶剂乙醚,得到实施例1的多孔交联SBR微球粘结剂。
所述多孔交联SBR微球的粒径范围为10nm~100nm,孔隙率范围为 0.01~3%,所述孔的孔径范围大于0nm小于等于10nm。
本实施例中的锂离子电池,包括上述实施例1的多孔交联SBR微球粘结剂。该锂离子电池的具体组成如下:
负极片:90%负极活性物质石墨、5%导电剂SP、2%CMC、3%本实施例的多孔交联SBR微球粘结剂
正极片:90%正极活性物质NCM811、5%导电剂SP、5%粘结剂PVDF
以正负极N/P为1.10,将前述负极片与正极片搭配隔膜(购自CELGARD,20μm)、电解液(购自新宙邦,LBC445A13),通过锂离子电池常规制备工艺制备得到实施例1的锂离子电池。
实施例2
一种交联SBR微球粘结剂制备方法,包括以下步骤:
步骤一:原料预处理:包括单体的纯化和引发剂及其它添加组分的配制;将丁二烯和苯乙烯分别用质量分数为10%的氢氧化钠水溶液40℃下进行喷淋10min,然后去离子水洗涤至中性,得到脱除阻聚剂的丁二烯和脱除阻聚剂的苯乙烯;将脱除阻聚剂的丁二烯、致孔试剂、改性单体、脱除阻聚剂的苯乙烯、分子量调节剂、脱氧剂、电解质、还原剂、络合剂、氧化剂、乳化剂和助乳化剂的组合、终止剂和助终止剂的组合分别用去离子水配制成水溶液或乳液,浓度不做要求;其中,所述致孔试剂包括正辛烷、环己烷、环己醇、2-乙基丁醇、正丁醚、苯和乙腈,所述改性单体为聚乙二醇甲基丙烯酸甲酯、聚乙二醇二丙烯酸酯和甲基丙烯酸甲酯,所述分子量调节剂为二硫化二异丙基黄原酸酯,所述乳化剂为脂肪酸皂,所述助乳化剂为萘磺酸,所述脱氧剂为连二亚硫酸钠二水合物,所述电解质为磷酸钾,所述还原剂为硫酸亚铁,所述络合剂为乙二胺四乙酸-二钠盐,所述氧化剂为过氧化氢对孟烷、所述终止剂为二甲基二硫代氨基甲酸钠、所述助终止剂为亚硝酸钠、多硫化钠和多乙烯胺,其中,按质量份计,去离子水总量为400份、脱除阻聚剂的苯乙烯50份、正辛烷100份、环己烷50份、环己醇30份、2-乙基丁醇30份、正丁醚30份、苯50份、乙腈10份、脱除阻聚剂的丁二烯150份、聚乙二醇甲基丙烯酸甲酯10份、聚乙二醇二丙烯酸酯2份、甲基丙烯酸甲酯8份、二硫化二异丙基黄原酸酯0.352份、脂肪酸皂10.16份、萘磺酸0.33份、连二亚硫酸钠二水合物0.082份、磷酸钾0.908份、硫酸亚铁0.022份、乙二胺四乙酸- 二钠盐0.456份、过氧化氢对孟烷0.24份、二甲基二硫代氨基甲酸钠0.22份、亚硝酸钠0.075份、多硫化钠0.075份、多乙烯胺0.075份;
步骤二:将步骤一配制好的脱除阻聚剂的苯乙烯、正辛烷、环己烷、环己醇、2-乙基丁醇、正丁醚、苯、乙腈、脱除阻聚剂的丁二烯、聚乙二醇甲基丙烯酸甲酯、聚乙二醇二丙烯酸酯和甲基丙烯酸甲酯,加入到反应器中,搅拌至混合均匀;加入二硫化二异丙基黄原酸酯、脂肪酸皂和萘磺酸、连二亚硫酸钠二水合物、磷酸钾,不断搅拌至混合均匀,并恒温至30℃,15min后加入硫酸亚铁和乙二胺四乙酸-二钠盐进行充分混合,得到A体系,并降温至6℃;
步骤三:将步骤一配制好的过氧化氢对孟烷加入到A体系中,开始聚合;其中聚合压力为0.25MPa,聚合温度为6℃,搅拌速度为120r/min,聚合时间为11h;聚合结束后,加入二甲基二硫代氨基甲酸钠、亚硝酸钠、多硫化钠、多乙烯胺反应30min得到改性SBR胶乳;
步骤四:将改性SBR胶乳与26%氯化钠溶液混合,然后再与0.5%的稀硫酸混合后充分搅拌,多次加入去离子水70℃洗涤至中性,去除氯化钠和稀硫酸,再多次采用有机溶剂丙酮和环氧乙烷进行60℃热处理,然后再多次加入去离子水除去有机溶剂,得到实施例1的多孔交联SBR微球粘结剂。
所述多孔交联SBR微球的粒径范围为40nm~150nm,孔隙率范围为4~8%,所述孔的孔径范围大于0nm小于等于40nm。
本实施例中的锂离子电池,包括上述实施例2的多孔交联SBR微球粘结剂。
该锂离子电池与实施例1中的锂离子电池基本相同,唯一不同的是实施例2的锂离子电池中负极片的粘结剂采用实施例2的多孔交联SBR微球粘结剂。
实施例3
一种交联SBR微球粘结剂制备方法,包括以下步骤:
步骤一:将丁二烯和苯乙烯分别用质量分数为12%的氢氧化钠水溶液30℃下进行喷淋2h,然后分别用去离子水洗涤至中性,得到脱除阻聚剂的丁二烯和脱除阻聚剂的苯乙烯;
步骤二:按质量份计,将600份去离子水、75份脱除阻聚剂的苯乙烯、 100份乙酸乙酯、50份丙酮、50份苯二甲酸二乙酯、100份环己烷、20份异辛醇、30份正丁醚、20份丁二腈、20份三氯甲烷、5份尿素、3份聚苯乙烯、2份聚乙二醇、225份脱除阻聚剂的丁二烯、6份聚乙二醇单烯丙基醚、8份聚乙二醇丙烯酸甲酯、8份甲基丙烯酸乙酯、10份丙烯酸,加入到反应器中,搅拌至混合均匀;加入0.528份十二烷基硫醇、15.25份歧化松香酸皂、0.495份亚甲基双萘磺酸钠、0.123份连二亚硫酸钠二水合物、1.362份磷酸钾,不断搅拌至混合均匀,并恒温至30℃;10min后加入0.033份硫酸亚铁、0.684份乙二胺四乙酸-二钠盐进行充分混合,得到A体系,并降温至8℃。
步骤三:将0.36份异丙苯过氧化氢加入到A体系中,开始聚合,其中聚合条件有降温反应器中压力调节为0.25MPa、聚合温度7℃、搅拌速度110r/min、聚合时间9h,聚合结束后,加入0.33份二甲基二硫代氨基甲酸钠、0.13份多硫化钠、0.10份多乙烯胺、0.10份亚硝酸钠反应10min得到改性SBR胶乳;
步骤四:将改性SBR胶乳与24%氯化钠溶液混合,然后再与0.5%的稀硫酸混合后充分搅拌,多次加入去离子水60℃洗涤至中性去除氯化钠和稀硫酸,再多次采用有机溶剂甲醇进行65℃热处理进行萃取,然后再多次加入去离子水除去有机溶剂甲醇,得到实施例3的多孔交联SBR微球粘结剂。
所述多孔交联SBR微球的粒径范围为60nm~200nm,孔隙率范围为8~12%,所述孔的孔径范围大于0nm小于等于60nm。
本实施例中的锂离子电池,包括上述实施例3的多孔交联SBR微球粘结剂。
该锂离子电池与实施例1中的锂离子电池基本相同,唯一不同的是实施例3的锂离子电池中负极片的粘结剂采用实施例3的多孔交联SBR微球粘结剂。
实施例4
一种交联SBR微球粘结剂制备方法,包括以下步骤:
步骤一:将丁二烯和苯乙烯分别用质量分数为14%的氢氧化钠水溶液25℃下进行喷淋1h,然后分别用去离子水洗涤至中性,得到脱除阻聚剂的丁二烯和脱除阻聚剂的苯乙烯;
步骤二:按质量份计,将800份去离子水、100份脱除阻聚剂的苯乙烯、 150份脂肪酸甲酯、345份甲苯、50份异丙醇、50份二正戊基醚、50份甲乙酮、50份乙腈、30份三氯甲烷、20份尿素、55份聚乙二醇、300份脱除阻聚剂的丁二烯、10份丙烯腈、10份丙烯酸甲酯、20份聚乙二醇单甲醚甲基丙烯酸甲酯、10份丙烯酸-2-乙基己酯,加入到反应器中,搅拌至混合均匀;加入0.72份十二烷基硫醇、20.79份脂肪酸皂、0.675份亚甲基双萘磺酸钠、0.18份连二亚硫酸钠二水合物、2.03份磷酸钾,不断搅拌至混合均匀,并恒温至35℃;5min后加入0.045份硫酸亚铁、1.13份乙二胺四乙酸-二钠盐进行充分混合,得到A体系,并降温至8℃。
步骤三:将0.54份异丙苯过氧化氢加入到A体系中,开始聚合,其中聚合条件有降温反应器中压力调节为0.3MPa、聚合温度5℃、搅拌速度130r/min、聚合时间12h,聚合结束后,加入0.45份二甲基二硫代氨基甲酸钠、0.2份亚硝酸钠、0.15份亚硝酸钠多硫化钠、0.15份亚硝酸钠多乙烯胺反应20min得到改性SBR胶乳;
步骤四:将改性SBR胶乳与30%氯化钠溶液混合,然后再与0.5%的稀硫酸混合后充分搅拌,多次加入去离子水55℃洗涤至中性去除氯化钠和稀硫酸,再多次采用有机溶剂丙酮和苯的混合物进行70℃热处理进行萃取,然后再多次加入去离子水除去有机溶剂,得到实施例4的多孔交联SBR微球粘结剂。
所述多孔交联SBR微球的粒径范围为80nm~300nm,孔隙率范围为12~20%,所述孔的孔径范围大于0nm小于等于80nm。
本实施例中的锂离子电池,包括上述实施例4的多孔交联SBR微球粘结剂。
该锂离子电池与实施例1中的锂离子电池基本相同,唯一不同的是实施例4的锂离子电池中负极片的粘结剂采用实施例4的多孔交联SBR微球粘结剂。
实施例5
一种交联SBR微球粘结剂制备方法,包括以下步骤:
步骤一:将丁二烯和苯乙烯分别用质量分数为16%的氢氧化钠水溶液35℃下进行喷淋3h,然后分别用去离子水洗涤至中性,得到脱除阻聚剂的丁二烯和脱除阻聚剂的苯乙烯;
步骤二:按质量份计,将500份去离子水、62.5份脱除阻聚剂的苯乙烯、 100份乙酸乙酯、100份丙酮、100份苯二甲酸二乙酯、50份正庚烷、50份十二醇、15份丁二腈、10份1,2-二氯乙烷、10份氨基酸、5份聚苯乙烯、5份聚丙烯酸、5份聚乙烯醇、187.5份脱除阻聚剂的丁二烯、8份聚乙二醇单甲醚丙烯酸甲酯、8份聚乙二醇单烯丙基醚、9份丙烯腈,加入到反应器中,搅拌至混合均匀;加入0.44份十二烷基硫醇、12.71份歧化松香酸皂、0.4125份亚甲基双萘磺酸钠、0.1025份连二亚硫酸钠二水合物、1.135份磷酸钾,不断搅拌至混合均匀,并恒温至30℃,15min后加入0.0275份硫酸亚铁、0.57份乙二胺四乙酸-二钠盐进行充分混合,得到A体系,并降温至7℃;
步骤三:将0.30份过氧化氢对孟烷加入到A体系中,开始聚合,其中聚合条件有降温反应器中压力调节为0.15MPa、聚合温度7℃、搅拌速度120r/min、聚合时间8h,聚合结束后,加入0.275份二甲基二硫代氨基甲酸钠、0.1份亚硝酸钠、0.08份多硫化钠、0.1份多乙烯胺反应15min得到改性SBR胶乳;
步骤四:将改性SBR胶乳与26%氯化钠溶液混合,然后再与0.5%的稀硫酸混合后充分搅拌,多次加入去离子水70℃洗涤至中性去除氯化钠和稀硫酸,再多次采用有机溶剂丙酮进行55℃热处理进行萃取,然后再多次加入去离子水除去有机溶剂,得到实施例5的多孔交联SBR微球粘结剂。
所述多孔交联SBR微球的粒径范围为90nm~400nm,孔隙率范围为29~35%,所述孔的孔径范围大于0nm小于等于90nm。
本实施例中的锂离子电池,包括上述实施例5的多孔交联SBR微球粘结剂。
该锂离子电池与实施例1中的锂离子电池基本相同,唯一不同的是实施例5的锂离子电池中负极片的粘结剂采用实施例5的多孔交联SBR微球粘结剂。
实施例6
一种交联SBR微球粘结剂制备方法,包括以下步骤:
步骤一:将丁二烯和苯乙烯分别用质量分数为9%的氢氧化钠水溶液20℃下进行喷淋2.5h,然后分别用去离子水洗涤至中性,得到脱除阻聚剂的丁二烯和脱除阻聚剂的苯乙烯;
步骤二:按质量份计,将300份去离子水、37.5份脱除阻聚剂的苯乙烯、 100份脂肪酸甲酯、200份苯二甲酸二乙酯、100份正辛烷、100份二正戊基醚、50份甲乙酮、50份乙腈、70份1,2-二氯乙烷、10份氨基酸、5份聚苯乙烯、10份聚乙二醇、5份聚丙烯腈、112.5份脱除阻聚剂的丁二烯、10份聚乙二醇甲基丙烯酸甲酯、2份甲基丙烯酸甲酯、3份丙烯酸,加入到反应器中,搅拌至混合均匀;加入0.264份二硫化二异丙基黄原酸酯、7.63份歧化松香酸皂、0.25份亚甲基双萘磺酸钠、0.0615份连二亚硫酸钠二水合物、0.682份磷酸钾,不断搅拌至混合均匀,并恒温至28℃,10min后加入0.0165份硫酸亚铁、0.342份乙二胺四乙酸-二钠盐进行充分混合,得到A体系,并降温至7℃;
步骤三:将0.18份异丙苯过氧化氢加入到A体系中,开始聚合,其中聚合条件有降温反应器中压力调节为0.25MPa、聚合温度6℃、搅拌速度130r/min、聚合时间10h,聚合结束后,加入0.165份二甲基二硫代氨基甲酸钠、0.056份亚硝酸钠、0.056份多硫化钠、0.056份多乙烯胺反应25min得到改性SBR胶乳;
步骤四:将改性SBR胶乳与25%氯化钠溶液混合,然后再与0.5%的稀硫酸混合后充分搅拌,多次加入去离子水65℃洗涤至中性去除氯化钠和稀硫酸,再多次采用有机溶剂环氧乙烷和甲醇的混合物进行60℃热处理进行萃取,然后再多次加入去离子水除去有机溶剂,得到实施例6的多孔交联SBR微球粘结剂。
所述多孔交联SBR微球的粒径范围为90nm~400nm,孔隙率范围为29~35%,所述孔的孔径范围大于0nm小于等于90nm。
本实施例中的锂离子电池,包括上述实施例6的多孔交联SBR微球粘结剂。
该锂离子电池与实施例1中的锂离子电池基本相同,唯一不同的是实施例6的锂离子电池中负极片的粘结剂采用实施例6的多孔交联SBR微球粘结剂。
实施例7
一种交联SBR微球粘结剂制备方法,包括以下步骤:
步骤一:将丁二烯和苯乙烯分别用质量分数为8%的氢氧化钠水溶液28℃下进行喷淋3.5h,然后分别用去离子水洗涤至中性,得到脱除阻聚剂的丁二烯和脱除阻聚剂的苯乙烯;
步骤二:按质量份计,将400份去离子水、50份脱除阻聚剂的苯乙烯、100份脂肪酸甲酯、50份丙酮、200份甲苯、100份异戊醇、50份正丁醚、50份乙腈、30份1,2-二氯乙烷、10份氨基酸、5份聚乙二醇单甲醚、5份聚乙烯醇、150份脱除阻聚剂的丁二烯、10份聚乙二醇甲基丙烯酸甲酯、4份丙烯酸、6份甲基丙烯酸甲酯,加入到反应器中,搅拌至混合均匀;加入0.352份十二烷基硫醇、10.16份歧化松香酸皂、0.33份亚甲基双萘磺酸钠、0.082份连二亚硫酸钠二水合物、0.908份磷酸钾,不断搅拌至混合均匀,并恒温至30℃;8min后加入0.022份硫酸亚铁、0.456份乙二胺四乙酸-二钠盐进行充分混合,得到A体系,并降温至7℃。
步骤三:将0.24份过氧化氢对孟烷加入到A体系中,开始聚合,其中聚合条件有降温反应器中压力调节为0.25MPa、聚合温度8℃、搅拌速度110r/min、聚合时间9h,聚合结束后,加入0.22份二甲基二硫代氨基甲酸钠、0.075份亚硝酸钠、0.075份多硫化钠、0.075份多乙烯胺反应10min得到改性SBR胶乳;
步骤四:将改性SBR胶乳与28%氯化钠溶液混合,然后再与0.5%的稀硫酸混合后充分搅拌,多次加入去离子水70℃洗涤至中性去除氯化钠和稀硫酸,再多次采用有机溶剂乙醇进行65℃热处理进行萃取,然后再多次加入去离子水除去有机溶剂,得到实施例7的多孔交联SBR微球粘结剂。
所述多孔交联SBR微球的粒径范围为100nm~1μm,孔隙率范围为20~29%,所述孔的孔径范围大于0nm小于等于100nm。
本实施例中的锂离子电池,包括上述实施例7的多孔交联SBR微球粘结剂。
该锂离子电池与实施例1中的锂离子电池基本相同,唯一不同的是实施例7的锂离子电池中负极片的粘结剂采用实施例7的多孔交联SBR微球粘结剂。
对比例
本对比例中的锂离子电池与实施例1中的锂离子电池基本相同,唯一不同的是本对比例的锂离子电池中负极片的粘结剂采用商用锂离子电池用SBR。
试验例1
将实施例1~7制备得到的多孔交联SBR以及商用锂离子电池用SBR测量拉伸模量(浸电解液后)、与电解液亲和性和离子电导率,测试结果如下表所示:
拉伸模量是将SBR粘结剂成膜后制备成哑铃状式样,浸入电解液2天和6天后,对其断裂强度和伸长率进行测试;与电解液亲和性能反应该SBR粘结在电池中呈现的状态,与电解液亲和性的程度直接反应电池性能好坏;离子电导率反应该SBR材料在锂离子电池体系中锂离子运输的能力。
表格1 SBR粘结剂性能测试表
Figure PCTCN2020074724-appb-000001
由上表的结果可以看出,本申请与常规的商业SBR相比,在浸入电解液后断裂强度和伸长率有效改善,本申请改性多孔交联SBR具有较好的应用潜力;本申请改性多孔交联SBR与商业SBR相比具有更好的电解液亲和性,主要是一方面SBR进行共聚改性,提升了与电解液的亲和性,另一方面是对改性SBR进行造孔,使其具有多的孔道结构,与电解液具有更多的接触面;由于与电解液亲和性强、保液能力强,在实际应用中具有更高的锂离子电导率,能更加有效的传输锂离子,能有效改善锂离子电池的循环性能。
试验例2
在25℃常温条件下,用蓝点充放电仪器对实施例1-7以及对比例中的锂 离子电池进行1C充电、1C放电,其在1000次循环后的容量保持率以及1400次循环后的容量保持率见表2。图4为本发明实施例1-7以及对比例中的锂离子电池的循环性能数据图。
表格2 锂离子电池容量保持率
Figure PCTCN2020074724-appb-000002
由表2和图4的结果可以看出,商业SBR粘结剂制备的锂离子电池在1400次循环,容量保持率为89.0%;而本发明的实施例1~7粘结剂制备的锂离子电池,在1400次循环,容量保持率为90.5%~96.0%之间。主要原因在于本申请的多孔交联SBR与商业SBR相比具有良好的孔道结构,锂离子可以直接通过孔道结构,进行充放电反应。因此,在锂离子电池充放电过程中,本发明粘结剂制备的锂离子电池,具有更低的阻抗、能够有效提升锂离子传输、提升锂离子长循环性能,具有良好的应用价值。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (18)

  1. 一种交联SBR微球粘结剂,其中,所述交联SBR微球具有多孔的交联结构。
  2. 根据权利要求1所述的交联SBR微球粘结剂,其中,所述交联SBR微球的粒径范围为10nm~1μm。
  3. 根据权利要求1所述的交联SBR微球粘结剂,其中,所述交联SBR微球的孔隙率范围为0.01%~40%。
  4. 根据权利要求2或3所述的交联SBR微球粘结剂,其中,所述交联SBR微球的孔隙率范围为4%~29%。
  5. 根据权利要求1所述的交联SBR微球粘结剂,其中,所述交联SBR微球的孔隙率范围为12%~29%。
  6. 根据权利要求1所述的交联SBR微球粘结剂,其中,所述孔的孔径范围大于0小于等于200nm。
  7. 根据权利要求1所述的交联SBR微球粘结剂,其中,将A体系与氧化剂聚合后,对聚合后的体系进行破乳、萃取和洗涤,得到所述交联SBR微球粘结剂;
    所述A体系包括去离子水、脱除阻聚剂的苯乙烯、致孔试剂、脱除阻聚剂的丁二烯、分子量调节剂、乳化剂、助乳化剂、脱氧剂、电解质、还原剂、络合剂。
  8. 根据权利要求7所述的交联SBR微球粘结剂,其中,所述A体系中还包括改性单体。
  9. 根据权利要求8所述的交联SBR微球粘结剂,其中,所述改性单体为不饱和烯基聚醚及其衍生物、不饱和烯基酯及其衍生物、不饱和烯基醇醚及其衍生物、不饱和烯基腈及其衍生物、不饱和烯基酸及其衍生物中的一种或几种。
  10. 一种权利要求1-9任一权利要求所述的交联SBR微球粘结剂的制备方法,其中,包括如下步骤:
    步骤一:将丁二烯和苯乙烯分别用质量分数为8%~16%的氢氧化钠水溶液20~40℃下进行喷淋,然后分别用去离子水洗涤至中性,得到脱除阻聚剂的丁二烯和脱除阻聚剂的苯乙烯;
    步骤二:按质量份计,将200~800份去离子水、25~100份脱除阻聚剂的苯乙烯、200~800份致孔试剂、75~300份脱除阻聚剂的丁二烯、0~50份改性单体,加入到反应器中,搅拌至混合均匀,加入0.16~0.72份分子量调节剂、4.62~20.79份乳化剂、0.15~0.675份助乳化剂、0.025~0.18份脱氧剂、0.24~2.03份电解质不断搅拌至混合均匀,并恒温至25~35℃;然后加入0.01~0.045份还原剂、0.01~1.13份络合剂进行充分混合,得到A体系,并降温至5~8℃;
    步骤三:将0.06~0.54份氧化剂加入到A体系中,开始聚合,其中聚合压力为0.1~0.3MPa、聚合温度为5~8℃、搅拌速度为100~130r/min、聚合时间为7~12h,聚合结束后,加入0.1~0.45份终止剂、0.06~0.5份助终止剂后得到改性SBR胶乳;
    步骤四:将改性SBR胶乳进行破乳、萃取和洗涤后,得到交联SBR微球粘结剂。
  11. 根据权利要求10所述的交联SBR微球粘结剂的制备方法,其中,步骤二中,所述致孔试剂为烷类及衍生体系、醇类及衍生体系、醚类及衍生体系、芳香类及衍生体系、酮类及衍生体系、酯类及衍生体系、氯代物类及衍生体系、胺类及衍生体系、低聚物聚苯乙烯及低聚物聚芳族衍生体系、低聚物聚醚及聚醚衍生体系、低聚物聚乙烯醇醚衍生体系、低聚物聚丙烯腈及聚腈衍生体系、低聚物聚丙烯酸及聚丙烯酸衍生体系中的一种或几种的组合。
  12. 根据权利要求10所述的交联SBR微球粘结剂的制备方法,其中,步骤二中,所述改性单体为不饱和烯基聚醚及其衍生物、不饱和烯基酯及其衍生物、不饱和烯基醇醚及其衍生物、不饱和烯基腈及其衍生物、不饱和烯基酸及其衍生物中的一种或几种。
  13. 一种权利要求1-9任一权利要求所述的交联SBR微球粘结剂的制备方法,其中,包括如下步骤:
    步骤一:将苯乙烯用质量分数为8%~16%的氢氧化钠水溶液20~40℃下进行喷淋,然后用去离子水洗涤至中性,得到脱除阻聚剂的苯乙烯;
    步骤二:按质量份计,将200~800份去离子水、25~100份脱除阻聚剂的苯乙烯、200~800份致孔试剂、75~300份丁二烯、0~50份改性单体,加 入到反应器中,搅拌至混合均匀,加入0.16~0.72份分子量调节剂、4.62~20.79份乳化剂、0.15~0.675份助乳化剂、0.025~0.18份脱氧剂、0.24~2.03份电解质不断搅拌至混合均匀,并恒温至25~35℃;然后加入0.01~0.045份还原剂、0.01~1.13份络合剂进行充分混合,得到A体系,并降温至5~8℃;
    步骤三:将0.06~0.54份氧化剂加入到A体系中,开始聚合,其中聚合压力为0.1~0.3MPa、聚合温度为5~8℃、搅拌速度为100~130r/min、聚合时间为7~12h,聚合结束后,加入0.1~0.45份终止剂、0.06~0.5份助终止剂后得到改性SBR胶乳;
    步骤四:将改性SBR胶乳进行破乳、萃取和洗涤后,得到交联SBR微球粘结剂。
  14. 根据权利要求13所述的交联SBR微球粘结剂的制备方法,其中,步骤二之前,还包括对所述丁二烯进行预处理,所述预处理包括:将丁二烯用质量分数为8%~16%的氢氧化钠水溶液20~40℃下进行喷淋,然后用去离子水洗涤至中性。
  15. 根据权利要求13所述的交联SBR微球粘结剂的制备方法,其中,步骤二中,所述致孔试剂为烷类及衍生体系、醇类及衍生体系、醚类及衍生体系、芳香类及衍生体系、酮类及衍生体系、酯类及衍生体系、氯代物类及衍生体系、胺类及衍生体系、低聚物聚苯乙烯及低聚物聚芳族衍生体系、低聚物聚醚及聚醚衍生体系、低聚物聚乙烯醇醚衍生体系、低聚物聚丙烯腈及聚腈衍生体系、低聚物聚丙烯酸及聚丙烯酸衍生体系中的一种或几种的组合。
  16. 根据权利要求13所述的交联SBR微球粘结剂的制备方法,其中,步骤二中,所述改性单体为不饱和烯基聚醚及其衍生物、不饱和烯基酯及其衍生物、不饱和烯基醇醚及其衍生物、不饱和烯基腈及其衍生物、不饱和烯基酸及其衍生物中的一种或几种。
  17. 一种锂离子电池,其中,包括正极、负极、隔膜;所述正极、负极、隔膜中的至少一个包括权利要求1-9任一项所述的交联SBR微球粘结剂。
  18. 一种含有权利要求1-9任一权利要求所述的交联SBR微球粘结剂在锂离子电池的应用。
PCT/CN2020/074724 2019-02-18 2020-02-11 一种交联sbr微球粘结剂及制备方法及含有该粘结剂的锂离子电池 WO2020168942A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20758651.2A EP3930054A4 (en) 2019-02-18 2020-02-11 CROSSLINKED SBR MICROBALL BINDER, MANUFACTURING PROCESS AND LITHIUM-ION BATTERY WITH SAID BINDER
US17/402,272 US20210371565A1 (en) 2019-02-18 2021-08-13 Cross-linked sbr microsphere binder and preparation method thereof and lithium-ion battery containing the binder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910120401.3 2019-02-18
CN201910120401.3A CN109786749B (zh) 2019-02-18 2019-02-18 一种交联sbr微球粘结剂及制备方法及含有该粘结剂的锂离子电池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/402,272 Continuation US20210371565A1 (en) 2019-02-18 2021-08-13 Cross-linked sbr microsphere binder and preparation method thereof and lithium-ion battery containing the binder

Publications (1)

Publication Number Publication Date
WO2020168942A1 true WO2020168942A1 (zh) 2020-08-27

Family

ID=66504433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074724 WO2020168942A1 (zh) 2019-02-18 2020-02-11 一种交联sbr微球粘结剂及制备方法及含有该粘结剂的锂离子电池

Country Status (4)

Country Link
US (1) US20210371565A1 (zh)
EP (1) EP3930054A4 (zh)
CN (1) CN109786749B (zh)
WO (1) WO2020168942A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109786749B (zh) * 2019-02-18 2021-03-30 珠海冠宇电池股份有限公司 一种交联sbr微球粘结剂及制备方法及含有该粘结剂的锂离子电池
CN111244454A (zh) * 2019-10-10 2020-06-05 江苏正力新能电池技术有限公司 一种高比例硅负极水系复合粘结剂及其应用
CN111600075A (zh) * 2020-05-06 2020-08-28 中国科学院高能物理研究所 一种辐照提高锂电池负极极片中粘结剂耐电解液性能的方法
CN114520329A (zh) * 2020-11-19 2022-05-20 比亚迪股份有限公司 粘接剂及其制备方法和浆料
CN114085320B (zh) * 2021-12-06 2023-05-12 宁波大学 一种改性丁苯橡胶的制备方法
CN114361706A (zh) * 2021-12-29 2022-04-15 上海恩捷新材料科技有限公司 一种涂覆隔膜及其制备方法
CN115312777A (zh) * 2022-09-07 2022-11-08 湖北亿纬动力有限公司 一种低曲折度厚电极及其制备方法和应用
CN116435507A (zh) * 2022-12-13 2023-07-14 湖北亿纬动力有限公司 一种制备改性聚丙烯酸粘结剂的方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101156264A (zh) * 2005-04-07 2008-04-02 Lg化学株式会社 用于锂二次电池的具有优良的倍率特性和长期循环性能的粘合剂
CN102142560A (zh) * 2011-01-28 2011-08-03 深圳新宙邦科技股份有限公司 水溶性三维网络型电极粘结剂及其制备方法、电极片及其制备方法以及电化学装置
CN103947020A (zh) * 2011-11-22 2014-07-23 Jsr株式会社 蓄电设备用粘合剂组合物、蓄电设备电极用浆料、蓄电设备电极、保护膜形成用浆料、保护膜以及蓄电设备
CN105324868A (zh) * 2013-07-10 2016-02-10 日本瑞翁株式会社 锂离子二次电池用粘接剂、锂离子二次电池用隔板、及锂离子二次电池
CN106328865A (zh) * 2015-06-19 2017-01-11 宁德时代新能源科技股份有限公司 隔离膜及锂离子二次电池
CN108359050A (zh) * 2018-03-02 2018-08-03 上海三瑞高分子材料股份有限公司 一种核壳结构的改性丁苯胶乳的制备方法
JP2018190703A (ja) * 2016-12-09 2018-11-29 ユニチカ株式会社 バインダ溶液および塗液ならびに蓄電素子電極の製造方法
CN109273717A (zh) * 2018-08-30 2019-01-25 安普瑞斯(无锡)有限公司 一种锂离子电池硅基负极改性粘结剂及含有该粘结剂电池的制备方法
CN109786749A (zh) * 2019-02-18 2019-05-21 珠海光宇电池有限公司 一种交联sbr微球粘结剂及制备方法及含有该粘结剂的锂离子电池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990541A (en) * 1989-11-09 1991-02-05 Hoechst Celanese Corp. Water absorbent latex polymer foams
CN101323447B (zh) * 2008-07-21 2012-02-22 深圳市贝特瑞新能源材料股份有限公司 锂离子电池负极的石墨粉及其制备方法
CN104981927B (zh) * 2013-05-23 2018-06-08 Lg化学株式会社 用于二次电池的粘合剂以及包含该粘合剂的二次电池
CN106147950B (zh) * 2015-04-20 2019-05-31 中国石油化工股份有限公司 一种润滑油组合物及其制备方法
CN106519119B (zh) * 2016-11-30 2019-10-11 黄河三角洲京博化工研究院有限公司 一种丁苯胶乳的制备方法
CN109320972A (zh) * 2018-09-27 2019-02-12 江南大学 一种多孔聚乙烯亚胺微球的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101156264A (zh) * 2005-04-07 2008-04-02 Lg化学株式会社 用于锂二次电池的具有优良的倍率特性和长期循环性能的粘合剂
CN102142560A (zh) * 2011-01-28 2011-08-03 深圳新宙邦科技股份有限公司 水溶性三维网络型电极粘结剂及其制备方法、电极片及其制备方法以及电化学装置
CN103947020A (zh) * 2011-11-22 2014-07-23 Jsr株式会社 蓄电设备用粘合剂组合物、蓄电设备电极用浆料、蓄电设备电极、保护膜形成用浆料、保护膜以及蓄电设备
CN105324868A (zh) * 2013-07-10 2016-02-10 日本瑞翁株式会社 锂离子二次电池用粘接剂、锂离子二次电池用隔板、及锂离子二次电池
CN106328865A (zh) * 2015-06-19 2017-01-11 宁德时代新能源科技股份有限公司 隔离膜及锂离子二次电池
JP2018190703A (ja) * 2016-12-09 2018-11-29 ユニチカ株式会社 バインダ溶液および塗液ならびに蓄電素子電極の製造方法
CN108359050A (zh) * 2018-03-02 2018-08-03 上海三瑞高分子材料股份有限公司 一种核壳结构的改性丁苯胶乳的制备方法
CN109273717A (zh) * 2018-08-30 2019-01-25 安普瑞斯(无锡)有限公司 一种锂离子电池硅基负极改性粘结剂及含有该粘结剂电池的制备方法
CN109786749A (zh) * 2019-02-18 2019-05-21 珠海光宇电池有限公司 一种交联sbr微球粘结剂及制备方法及含有该粘结剂的锂离子电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3930054A4

Also Published As

Publication number Publication date
EP3930054A4 (en) 2022-04-27
CN109786749B (zh) 2021-03-30
EP3930054A1 (en) 2021-12-29
CN109786749A (zh) 2019-05-21
US20210371565A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
WO2020168942A1 (zh) 一种交联sbr微球粘结剂及制备方法及含有该粘结剂的锂离子电池
TWI608023B (zh) Acrylonitrile Copolymer Adhesive and Its Application in Lithium Ion Battery
CN101510625B (zh) 一种超高倍率锂离子电池
WO2016107564A1 (zh) 一种高倍率性能锂硫电池的复合正极材料及制备方法
KR20150064008A (ko) 전기 화학 소자 전극용 도전성 접착제 조성물, 접착제층이 부착된 집전체 및 전기 화학 소자용 전극
KR101280145B1 (ko) 전극용 결합제 조성물, 전극용 슬러리, 전극 및 축전 디바이스
KR101371988B1 (ko) 전극용 결합제 조성물, 전극용 슬러리, 전극 및 축전 디바이스
EP3316360A1 (en) Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
CN111509232B (zh) 正极片及其制备方法和应用
KR20130099872A (ko) 전극용 결합제 조성물, 전극용 슬러리, 전극 및 축전 디바이스
KR20170078624A (ko) 리튬이온 이차전지 정극용 바인더 조성물, 리튬이온 이차전지 정극용 슬러리 조성물, 리튬이온 이차전지용 정극 및 리튬이온 이차전지
CN106711460B (zh) 一种电极浆料组合物及其制备电极及锂离子电池的用途
CN113363414B (zh) 一种使用多层包覆三元正极材料的锂离子电池正极片及其制备方法
JP2019110125A (ja) 非水電解質電池電極用バインダー溶液
CN115298860A (zh) 导电材料分散液、二次电池正极用浆料、二次电池用正极以及二次电池
US11949107B2 (en) Binder composition for secondary battery electrode, conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
JP5835581B2 (ja) 蓄電デバイスの電極用バインダー組成物
CN116097467A (zh) 导电材料分散液、非水系二次电池正极用浆料的制造方法、非水系二次电池用正极的制造方法以及非水系二次电池的制造方法
TWI770263B (zh) 正極活性物質塗料、正極、及二次電池
EP3981804A1 (en) Binder composition for secondary cell positive electrode, electroconductive member paste composition for secondary cell positive electrode, slurry composition for secondary cell positive electrode, secondary cell positive electrode and method for manufacturing same, and secondary cell
US11811065B2 (en) Method of producing slurry composition for secondary battery positive electrode, method of producing positive electrode for secondary battery, and method of producing secondary battery
US11936047B2 (en) Binder composition for electrochemical device, conductive material dispersion liquid for electrochemical device, slurry composition for electrochemical device electrode, electrode for electrochemical device, and electrochemical device
CN117916915A (zh) 电化学元件正极用黏结剂组合物、电化学元件正极用导电材料分散液、电化学元件正极用浆料组合物、电化学元件用正极和电化学元件
CN113036090A (zh) 一种氧化物修饰三元正极材料及其制备方法、二次电池
CN114614070A (zh) 一种用于硫化聚丙烯腈电池体系的纤维素凝胶电解质膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20758651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020758651

Country of ref document: EP

Effective date: 20210920