WO2020164374A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2020164374A1
WO2020164374A1 PCT/CN2020/073365 CN2020073365W WO2020164374A1 WO 2020164374 A1 WO2020164374 A1 WO 2020164374A1 CN 2020073365 W CN2020073365 W CN 2020073365W WO 2020164374 A1 WO2020164374 A1 WO 2020164374A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
signal block
synchronization
resource
time slot
Prior art date
Application number
PCT/CN2020/073365
Other languages
English (en)
French (fr)
Inventor
黎超
莫勇
张兴炜
罗俊
袁璞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to MX2021009748A priority Critical patent/MX2021009748A/es
Priority to EP20756122.6A priority patent/EP3923641A4/en
Priority to BR112021015925-8A priority patent/BR112021015925A2/pt
Priority to KR1020217029866A priority patent/KR102655167B1/ko
Priority to JP2021547521A priority patent/JP7259064B2/ja
Publication of WO2020164374A1 publication Critical patent/WO2020164374A1/zh
Priority to US17/402,150 priority patent/US20210377889A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2692Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with preamble design, i.e. with negotiation of the synchronisation sequence with transmitter or sequence linked to the algorithm used at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • This application relates to the field of communication, and in particular to a communication method and communication device.
  • a terminal device can communicate with another terminal device through the transfer of a network device, or directly communicate with another terminal device without going through the network device.
  • the communication link between the two terminal devices may be referred to as a side link or a through link or a side link.
  • the vehicle-to-everything (V2X) communication system is the basis for the realization of unmanned driving.
  • the vehicle as a terminal device can use the side link to communicate with other terminal devices, because the V2X communication system
  • the transmitted data is related to the life and property safety of personnel during driving. Therefore, the data transmitted in the V2X communication system requires high transmission reliability.
  • Each communication device in the V2X communication system needs to adjust their respective clocks based on synchronization signals to facilitate Improve transmission reliability.
  • the communication device also needs to send and receive signals from other devices on the V2X link during the synchronization process. How to coordinate the transmission and reception of synchronization signals and service data signals to ensure synchronization signals and data at the same time Reliable reception.
  • the communication mode of the side link in the prior art cannot meet the requirements for data transmission reliability.
  • the present application provides a communication method that can meet the reliability of data transmission in the side link.
  • a communication method including: a first device sends instruction information, the instruction information is used to indicate whether the first device sends a first synchronization signal block in a synchronization time slot of a side link, The synchronization time slot is used to transmit a synchronization signal block; the first device sends the first data through the synchronization time slot of the side link.
  • the receiver can determine the processing mode of the receiver in the synchronization time slot according to the instruction information, thereby avoiding the transmission and reception conflict in the synchronization time slot Circumstances, improve the reliability of information transmission in the synchronization time slot.
  • the indication information instructs the first device to send the first synchronization signal block in the synchronization time slot, and the first data is adjacent to the time domain resource occupied by the first synchronization signal block .
  • the continuous transmission of the first synchronization signal block and the first data can improve resource utilization efficiency.
  • the time domain symbols occupied by the first data are symbols other than the symbols occupied by the first synchronization signal block and the last symbol in the synchronization slot.
  • the above solution leaves a null symbol at the end of the synchronization time slot, which is beneficial for the first device to use the null symbol to perform receiving and sending conversion or sending and receiving conversion, and receive or send information in the next time slot.
  • the indication information is carried in the first synchronization signal block.
  • the first synchronization signal block may be used to carry the indication information, for example, the PSBCH of the first synchronization signal block may be used to carry the indication information.
  • the indication information is the demodulation reference signal DMRS sequence of the first data or the frequency domain position of the DMRS of the first data.
  • using the DMRS sequence or the frequency domain position of the DMRS sequence as the indication information can reduce the amount of information sent by the first device and reduce the consumption of air interface resources.
  • the indication information indicates that the first device does not send the first synchronization signal block in the synchronization time slot.
  • the method further includes: the first device receives a second synchronization signal block in the synchronization time slot, and the first data and the time domain resources occupied by the second synchronization signal block are separated by one space. symbol.
  • the above solution is beneficial for the first device to use the empty symbol to perform the transmit/receive conversion or transmit/receive conversion, and receive the second synchronization signal block on the time domain resource occupied by the second synchronization signal block.
  • the time-domain symbols occupied by the first data are the symbols in the synchronization time slot other than the symbols occupied by the second synchronization signal block, the empty symbol, and the last symbol in the synchronization time slot symbol.
  • the above solution leaves a null symbol at the end of the synchronization time slot, which is beneficial for the first device to use the null symbol to perform receiving and sending conversion or sending and receiving conversion, and receive or send information in the next time slot.
  • the indication information is transmitted on a transmission resource of the first data, and the symbol occupied by the indication information is separated from the symbol occupied by the first synchronization signal block by at least one symbol.
  • the device that receives the instruction information can use the above-mentioned interval symbols to perform the transmission/reception conversion or the transmission/reception conversion. Therefore, the above solution can prevent the device receiving the instruction information from not receiving the instruction information because it is too late to perform the transmission/reception conversion or the transmission/reception conversion, which improves the indication The success rate of information reception.
  • the present application provides another communication method, including: a second device receives indication information from a first device, the indication information is used to indicate whether the first device is in a synchronization time slot of a side link The first synchronization signal block is sent, and the synchronization time slot is used to transmit the synchronization signal block; the second device receives the first data from the first device through the synchronization time slot of the side link.
  • the receiver can determine the receiver's processing mode in the synchronization time slot according to the instruction information, thereby avoiding the transmission and reception conflict in the synchronization time slot Circumstances, improve the reliability of information transmission in the synchronization time slot.
  • the indication information instructs the first device to send the first synchronization signal block in the synchronization time slot, and the first data is adjacent to the time domain resource occupied by the first synchronization signal block .
  • the continuous reception of the first synchronization signal block and the first data can improve resource utilization efficiency.
  • the time domain symbols occupied by the first data are symbols other than the symbols occupied by the first synchronization signal block and the last symbol in the synchronization slot.
  • the above solution leaves a null symbol at the end of the synchronization time slot, which is beneficial for the first device to use the null symbol to perform receiving and sending conversion or sending and receiving conversion, and receive or send information in the next time slot.
  • the indication information is carried in the first synchronization signal block.
  • the first synchronization signal block may be used to carry the indication information, for example, the PSBCH of the first synchronization signal block may be used to carry the indication information.
  • the indication information is the demodulation reference signal DMRS sequence of the first data or the frequency domain position of the DMRS of the first data.
  • using the DMRS sequence or the frequency domain position of the DMRS sequence as the indication information can reduce the amount of information sent by the first device and reduce the consumption of air interface resources.
  • the indication information indicates that the first device does not send the first synchronization signal block in the synchronization time slot.
  • the method further includes: the second device receives a second synchronization signal block in the synchronization time slot, and the first data is separated from the time domain resources occupied by the second synchronization signal block by one space. symbol.
  • the above solution is beneficial for the second device to use the empty symbol to perform the transmission/reception conversion or the transmission/reception conversion, and receive the second synchronization signal block on the time domain resource occupied by the second synchronization signal block.
  • the time-domain symbols occupied by the first data are the symbols in the synchronization time slot other than the symbols occupied by the second synchronization signal block, the empty symbol, and the last symbol in the synchronization time slot symbol.
  • the above solution leaves a null symbol at the end of the synchronization time slot, which is beneficial for the second device to use the null symbol to perform receiving and sending conversion or sending and receiving conversion, and receive or send information in the next time slot.
  • the indication information is transmitted on a transmission resource of the first data, and the symbol occupied by the indication information is separated from the symbol occupied by the first synchronization signal block by at least one symbol.
  • the second device can use the above-mentioned interval symbols to perform transmission/reception conversion or transmission/reception conversion. Therefore, the above solution can prevent the second device from not receiving the indication information because it is too late to perform the transmission/reception conversion or transmission/reception conversion, thereby improving the success of receiving the indication information. rate.
  • this application provides yet another communication method, including: a first device obtains first configuration information and second configuration information, where the first configuration information is used to configure the first synchronization signal block resource of the side link And a second synchronization signal block resource, the second configuration information is used to configure data resources of the side link, and the resources configured by the first configuration information and the resources configured by the second configuration information are in the time domain Partially overlap; the first device determines a target data resource according to the first configuration information and the second configuration information, the target data resource belongs to the data resource of the side link, and the target data resource is the same as the first A resource configured by configuration information does not overlap in the time domain; the first device sends or receives side link data on the target data resource.
  • Different side link resources configured by the network device for the first device may overlap. Since the S-SSB is a prerequisite for the normal reception of other data, the S-SSB resource usually has a higher priority. When the S-SSB resource overlaps with the data resource, the first device needs to avoid using the overlapping resource when sending the side link data. That is, the first device needs to determine the target data resource that does not contain overlapping resources, and send or receive side link data on the target data resource, so as to avoid the influence of the side link data on the S-SSB.
  • the first synchronization signal block resource is used for sending a first synchronization signal block
  • the second synchronization signal block resource is used for receiving a second synchronization signal block
  • the first synchronization signal block resource is used for The first synchronization signal block is received
  • the second synchronization signal block resource is used to send the second synchronization signal block.
  • the first device can flexibly select the sending and receiving modes on the synchronization resource signal block.
  • the first synchronization signal block resource and the second synchronization signal block resource are located in a first time slot, and the target data resource is located in a second time slot.
  • the above-mentioned solution can ensure that service data with a large amount of data has sufficient time domain resources to be used, and improve the transmission reliability of side link data.
  • the first synchronization signal block resource is located in a first time slot
  • the second synchronization signal block resource is located in a second time slot
  • the target data resource includes partial symbols of the first time slot and /Or part of the symbols of the second time slot.
  • the above scheme can use synchronous time slots to transmit some data with a small amount of information, and improve resource utilization.
  • the side link data includes control information and service data
  • the time domain resource of the control information is located in the first time slot and/or the second time slot, and the time domain resource of the service data is located in the third time slot; or,
  • the time domain resource of the service data is located in the first time slot and/or the second time slot, and the time domain resource of the control information is located in the third time slot.
  • the first device can flexibly select the target data resource according to the actual situation.
  • the first configuration information includes at least one of the following information:
  • Frequency domain positions of the first synchronization signal block resource and the second synchronization signal block resource are Frequency domain positions of the first synchronization signal block resource and the second synchronization signal block resource.
  • the unit of the time domain offset value is a time slot and/or a symbol.
  • the second configuration information includes at least one of the following information:
  • the time domain location indication information of the data resource
  • this application provides yet another communication method, including: a first device obtains synchronization resource configuration information, where the synchronization resource configuration information is used to configure the first synchronization resource and the second synchronization resource of the side link, so The first synchronization resource and the second synchronization resource occupy part of the symbols in the synchronization slot; the first device sends the first synchronization signal block on the first synchronization resource, and, in the second synchronization resource Receiving the second synchronization signal block on the synchronization resource; or, the first device receives the first synchronization signal block on the first synchronization resource, and sends the first synchronization signal block on the second synchronization resource Two synchronization signal blocks.
  • the first device After the network device configures synchronization resources for the first device, if there are symbols in the synchronization time slot to send the first data, the first device can execute the method described in the first aspect to indicate whether the first device in the synchronization time slot Send the synchronization signal block; or, the first device may send the first synchronization signal block in the synchronization time slot and indicate whether the first device sends the first data in the synchronization time slot.
  • the above-mentioned solution can coordinate the behavior of the transmitter and the receiver in the synchronization time slot, thereby avoiding receiving and sending conflicts in the synchronization time slot, and improving the reliability of information transmission in the synchronization time slot.
  • the synchronization resource configuration information includes at least one of the following:
  • the frequency domain position of the synchronization signal is the frequency domain position of the synchronization signal.
  • the first device can directly obtain the accurate position of the synchronization signal, avoiding unnecessary blind detection.
  • the unit of the time domain offset value of the synchronization signal is a time slot and/or a symbol.
  • the synchronization resource configuration information is further used to configure the first synchronization resource to be located in the first half of the synchronization time slot, and the second synchronization resource to be located in the second half of the synchronization time slot.
  • the method further includes:
  • the first synchronization resource may be configured with different numbers of synchronization signal blocks;
  • the second synchronization resource may be configured with different numbers of synchronization signal blocks.
  • the number of configurable synchronization signal blocks for the first synchronization resource with a larger subcarrier interval is greater. Therefore, it can be ensured that more synchronization signal blocks are configured under the condition of large subcarrier spacing, so that the same coverage of large subcarrier spacing and small subcarrier spacing can be achieved.
  • the present application provides yet another communication method, including: a network device generates synchronization resource configuration information, where the synchronization resource configuration information is used to configure a first synchronization resource and a second synchronization resource of a side link, the The first synchronization resource and the second synchronization resource occupy part of the symbols in the synchronization time slot; the network device sends the synchronization resource configuration information.
  • the first device After the network device configures synchronization resources for the first device, if there are symbols in the synchronization time slot to send the first data, the first device can execute the method described in the first aspect to indicate whether the first device in the synchronization time slot Send the synchronization signal block; or, the first device may send the first synchronization signal block in the synchronization time slot and indicate whether the first device sends the first data in the synchronization time slot.
  • the above-mentioned solution can coordinate the behavior of the transmitter and the receiver in the synchronization time slot, thereby avoiding receiving and sending conflicts in the synchronization time slot, and improving the reliability of information transmission in the synchronization time slot.
  • the synchronization resource configuration information includes at least one of the following:
  • the frequency domain position of the synchronization signal is the frequency domain position of the synchronization signal.
  • the first device can directly obtain the accurate position of the synchronization signal, avoiding unnecessary blind detection.
  • the unit of the time domain offset value of the synchronization signal is a time slot and/or a symbol.
  • the synchronization resource configuration information is further used to configure the first synchronization resource to be located in the first half of the synchronization time slot, and the second synchronization resource to be located in the second half of the synchronization time slot.
  • the method further includes:
  • the first synchronization resource may be configured with different numbers of synchronization signal blocks; and/or,
  • the second synchronization resource may be configured with different numbers of synchronization signal blocks.
  • the number of configurable synchronization signal blocks for the first synchronization resource with a larger subcarrier interval is greater. Therefore, it can be ensured that more synchronization signal blocks are configured under the condition of large subcarrier spacing, so that the same coverage of large subcarrier spacing and small subcarrier spacing can be achieved.
  • this application provides yet another communication method, including: a first device generates a first synchronization signal block, and the time domain resources occupied by the first synchronization signal block include at least one master synchronization signal P symbol and at least one slave synchronization signal block.
  • the first device sends the first synchronization signal block.
  • the above method can enable the first synchronization signal to realize the detectable performance of the basic synchronization signal and control information.
  • the first symbol of the time domain resource occupied by the first synchronization signal block is the B symbol, and/or the first symbol The last symbol of the time domain resource occupied by a synchronization signal block is a null symbol. So that the receiver can perform AGC operation on the B symbol of the first control information to improve the detection performance.
  • the number of the B symbols is greater than or equal to the number of the P symbols. In order to ensure sufficient detection performance of the control information.
  • the P symbol and the S symbol are adjacent, and the P The arrangement order of the symbol and the S symbol is one of the following arrangement orders:
  • the subcarrier interval of the frequency domain resources occupied by the first synchronization signal block is 15 kHz, and only the first synchronization signal block exists in the synchronization period in which the first synchronization signal block is located; or,
  • the subcarrier interval of the frequency domain resources occupied by the first synchronization signal block is 30 kHz, and there is another synchronization signal block in the synchronization period in which the first synchronization signal block is located; or,
  • the subcarrier interval of the frequency domain resources occupied by the first synchronization signal block is 60 kHz, and there are three other synchronization signal blocks in the synchronization period in which the first synchronization signal block is located; or,
  • the frequency domain resource occupied by the first synchronization signal block has a subcarrier interval of 120 kHz, and there are seven other synchronization signal blocks in the synchronization period in which the first synchronization signal block is located.
  • the above method is to ensure the coverage performance of the first synchronization signal block under a higher subcarrier spacing.
  • a second synchronization in the synchronization period in which the first synchronization signal block is located Signal block wherein the first synchronization signal block and the second synchronization signal block have at least one of the following four characteristics:
  • the number of B symbols in the time domain resources occupied by the first synchronization signal block is different from the number of B symbols in the time domain resources occupied by the second synchronization signal block;
  • the interval between the P symbol and the S symbol in the time domain resource occupied by the first synchronization signal block is different from the interval between the P symbol and the S symbol in the time domain resource occupied by the second synchronization signal block;
  • the sequence used by P symbols in the time domain resources occupied by the first synchronization signal block is different from the sequence used by P symbols in the time domain resources occupied by the second synchronization signal block;
  • the sequence used by the S symbols in the time domain resources occupied by the first synchronization signal block is different from the sequence used by the S symbols in the time domain resources occupied by the second synchronization signal block.
  • the above method is so that the receiver can distinguish the relative position of each synchronization signal block according to the difference of at least two synchronization signal blocks, so that the receiver can obtain more accurate timing information.
  • the first synchronization signal block and the second synchronization signal block are located in the same time slot ,
  • the first synchronization signal block and the second synchronization signal block time division multiplex the time slot.
  • the time domain resources occupied by the first synchronization signal block include 1 P symbol, 1 S symbol, 4 or 5 B symbols.
  • the above method is convenient to control the overhead of the entire first synchronization signal block.
  • the sequence of symbols in the time domain resources occupied by the first synchronization signal block is the following sequence One of:
  • G represents a null symbol
  • "-" represents that two symbols are adjacent in time domain.
  • the time domain resources occupied by the first synchronization signal block include 2 P symbols, 2 S symbols, 4 or 5 B symbols.
  • the sequence of symbols in the time domain resources occupied by the first synchronization signal block is the following sequence One of:
  • G represents a null symbol
  • "-" represents that two symbols are adjacent in time domain.
  • the time domain resource occupied by the first synchronization signal block Including 2 or 3 P symbols, 2 or 3 S symbols, 6, 7, or 8 B symbols.
  • the sequence of symbols in the time domain resources occupied by the first synchronization signal block is as follows One of the sorting order:
  • G represents a null symbol
  • "-" represents that two symbols are adjacent in time domain.
  • the P and the P in the first synchronization signal block is one of the following: 11, 12, or 20.
  • the above method makes it possible to transmit the first synchronization signal block under various performance bandwidths.
  • the sequence lengths of P and S of the first synchronization signal block are both 127.
  • the above method is to ensure the performance of the P and S sequences in the synchronization signal block.
  • the generation of the first synchronization signal block by the first device includes:
  • the first device generates the control information of the first synchronization signal block based on the CP-OFDM mode, where the symbol where the control information of the first synchronization signal block is located has demodulation reference signals DMRS at equal intervals in the frequency domain.
  • the CP type of the synchronization signal block is a normal CP or an extended CP.
  • the time slot where the first synchronization signal block is located also has a side row chain Channel control information
  • the side link control information and the first synchronization signal block are time-division multiplexed with the time slot in which the first synchronization signal block is located
  • the side link control information includes a control for indicating transmission Information or control information used to indicate feedback.
  • the structure of the first synchronization signal block is different under different subcarrier intervals
  • the structure of the first synchronization signal block includes the number and relative arrangement order of the P, S, and B symbols.
  • the structure of the first synchronization signal block is different under different subcarrier intervals, including:
  • the number of symbols of P in the first synchronization signal block with a subcarrier spacing of 15 kHz is more than the number of symbols of P in the first synchronization signal block with other subcarrier spacings;
  • the number of symbols of S in the first synchronization signal block with a subcarrier spacing of 15 kHz is more than the number of symbols of S in the first synchronization signal block with other subcarrier spacings;
  • the number of symbols of the S in the first synchronization signal block with a subcarrier interval of 15 kHz is more than the number of symbols of the S in the first synchronization signal block with other subcarrier intervals.
  • the present application provides yet another communication method, including: a second device receives a first synchronization signal block, and the time domain resources occupied by the first synchronization signal block include at least one master synchronization signal P symbol and at least one slave synchronization signal block.
  • the above method can enable the first synchronization signal to realize the detectable performance of the basic synchronization signal and control information.
  • the first symbol of the time domain resource occupied by the first synchronization signal block is the B symbol, and/or the first symbol The last symbol of the time domain resource occupied by a synchronization signal block is a null symbol. So that the receiver can perform AGC operation on the B symbol of the first control information to improve the detection performance.
  • the number of the B symbols is greater than or equal to the number of the P symbols. In order to ensure sufficient detection performance of the control information.
  • the P symbol and the S symbol are adjacent, and the P The arrangement order of the symbol and the S symbol is one of the following arrangement orders:
  • the subcarrier interval of the frequency domain resources occupied by the first synchronization signal block is 15 kHz, and only the first synchronization signal block exists in the synchronization period in which the first synchronization signal block is located; or,
  • the subcarrier interval of the frequency domain resources occupied by the first synchronization signal block is 30 kHz, and there is another synchronization signal block in the synchronization period in which the first synchronization signal block is located; or,
  • the subcarrier interval of the frequency domain resources occupied by the first synchronization signal block is 60 kHz, and there are three other synchronization signal blocks in the synchronization period in which the first synchronization signal block is located; or,
  • the frequency domain resource occupied by the first synchronization signal block has a subcarrier interval of 120 kHz, and there are seven other synchronization signal blocks in the synchronization period in which the first synchronization signal block is located.
  • a second synchronization in the synchronization period in which the first synchronization signal block is located there is a second synchronization in the synchronization period in which the first synchronization signal block is located.
  • Signal block wherein the first synchronization signal block and the second synchronization signal block have at least one of the following four characteristics:
  • the number of B symbols in the time domain resources occupied by the first synchronization signal block is different from the number of B symbols in the time domain resources occupied by the second synchronization signal block;
  • the interval between the P symbol and the S symbol in the time domain resource occupied by the first synchronization signal block is different from the interval between the P symbol and the S symbol in the time domain resource occupied by the second synchronization signal block;
  • the sequence used by P symbols in the time domain resources occupied by the first synchronization signal block is different from the sequence used by P symbols in the time domain resources occupied by the second synchronization signal block;
  • the sequence used by the S symbols in the time domain resources occupied by the first synchronization signal block is different from the sequence used by the S symbols in the time domain resources occupied by the second synchronization signal block.
  • the first synchronization signal block and the second synchronization signal block are located in the same time slot ,
  • the first synchronization signal block and the second synchronization signal block time division multiplex the time slot.
  • the time domain resources occupied by the first synchronization signal block include 1 P symbol, 1 S symbol, 4 or 5 B symbols.
  • the sequence of symbols in the time domain resources occupied by the first synchronization signal block is the following sequence One of:
  • G represents a null symbol
  • "-" represents that two symbols are adjacent in time domain.
  • the time domain resources occupied by the first synchronization signal block include 2 P symbols, 2 S symbols, 4 or 5 B symbols.
  • the sequence of symbols in the time domain resources occupied by the first synchronization signal block is the following sequence One of:
  • G represents a null symbol
  • "-" represents that two symbols are adjacent in time domain.
  • the time domain resource occupied by the first synchronization signal block Including 2 or 3 P symbols, 2 or 3 S symbols, 6, 7, or 8 B symbols.
  • the sequence of symbols in the time domain resources occupied by the first synchronization signal block is as follows One of the sorting order:
  • G represents a null symbol
  • "-" represents that two symbols are adjacent in time domain.
  • the P and the P in the first synchronization signal block is one of the following: 11, 12, or 20.
  • the sequence lengths of P and S of the first synchronization signal block are both 127.
  • the first device generating the first synchronization signal block includes:
  • the first device generates the control information of the first synchronization signal block based on the CP-OFDM mode, where the symbol where the control information of the first synchronization signal block is located has demodulation reference signals DMRS at equal intervals in the frequency domain.
  • the CP type of the synchronization signal block is a normal CP or an extended CP.
  • the time slot where the first synchronization signal block is located also has a side row chain Channel control information
  • the side link control information and the first synchronization signal block are time-division multiplexed with the time slot in which the first synchronization signal block is located
  • the side link control information includes a control for indicating transmission Information or control information used to indicate feedback.
  • the structure of the first synchronization signal block is different under different subcarrier intervals
  • the structure of the first synchronization signal block includes the number and relative arrangement order of the P, S, and B symbols.
  • the structure of the first synchronization signal block is different under different subcarrier intervals, including:
  • the number of symbols of P in the first synchronization signal block with a subcarrier spacing of 15 kHz is more than the number of symbols of P in the first synchronization signal block with other subcarrier spacings;
  • the number of symbols of S in the first synchronization signal block with a subcarrier spacing of 15 kHz is more than the number of symbols of S in the first synchronization signal block with other subcarrier spacings;
  • the number of symbols of the S in the first synchronization signal block with a subcarrier interval of 15 kHz is more than the number of symbols of the S in the first synchronization signal block with other subcarrier intervals.
  • this application provides a communication device, which may be a terminal device or a chip in the terminal device.
  • the device may include a processing unit and a transceiving unit.
  • the processing unit may be a processor, and the transceiving unit may be a transceiver;
  • the terminal device may also include a storage unit, and the storage unit may be a memory; the storage unit is used to store instructions, and the processing The unit executes the instructions stored in the storage unit, so that the terminal device executes the method described in the first aspect.
  • the processing unit may be a processor, and the transceiver unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes the instructions stored in the storage unit to make the terminal
  • the device executes the method described in any one of the first, second, third, fourth, sixth, and seventh aspects
  • the storage unit may be a storage unit (for example, a register, a The cache, etc.) may also be a storage unit (for example, read-only memory, random access memory, etc.) located outside the chip in the terminal device.
  • this application provides another communication device.
  • the device may be a network device or a chip in the network device.
  • the device may include a processing unit and a transceiving unit.
  • the processing unit may be a processor, and the transceiving unit may be a transceiver;
  • the network device may also include a storage unit, and the storage unit may be a memory; the storage unit is used to store instructions, and the processing The unit executes the instructions stored in the storage unit, so that the network device executes the method described in the second aspect.
  • the processing unit may be a processor, and the transceiver unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes the instructions stored in the storage unit to enable the network
  • the device executes the method described in the fifth aspect, and the storage unit may be a storage unit (for example, register, cache, etc.) in the chip, or a storage unit (for example, read-only) located outside the chip in the network device. Memory, random access memory, etc.).
  • the present application provides a computer-readable storage medium in which a computer program is stored.
  • the processor executes the first, second, and first aspects. The method described in any one of the three aspects, the fourth aspect, the sixth aspect, and the seventh aspect.
  • the present application provides a computer-readable storage medium in which a computer program is stored.
  • the processor executes the method described in the fifth aspect.
  • the present application provides a computer program product, the computer program product includes: computer program code, when the computer program code is run by a processor, the processor executes the first aspect, the second aspect, and the third aspect.
  • the present application provides a computer program product, the computer program product comprising: computer program code, when the computer program code is run by a processor, the processor executes the method described in the fifth aspect.
  • Figure 1 is a schematic diagram of a communication system suitable for the present application
  • Figure 2 is a schematic diagram of a communication method provided by the present application.
  • FIG. 3 is a schematic diagram of the structure of a synchronization signal block provided by this application.
  • Figure 4 is a schematic diagram of another synchronization signal block structure provided by the present application.
  • FIG. 5 is a schematic diagram of another communication method provided by the present application.
  • FIG. 6 is a schematic diagram of a synchronization signal block resource configuration provided by this application.
  • FIG. 7 is a schematic diagram of a synchronization period configuration provided by this application.
  • FIG. 8 is a schematic diagram of yet another communication method provided by this application.
  • FIG. 9 is a schematic diagram of a communication device provided by the present application.
  • FIG. 10 is a schematic diagram of a terminal device provided by this application.
  • Fig. 11 is a schematic diagram of a network device provided by the present application.
  • V2V vehicle-to-vehicle
  • V2I vehicle-to-infrastructure
  • V2P vehicle-to-pedestrian communication
  • V2P vehicle-to-vehicle
  • V2X communication vehicle-to-vehicle
  • Figure 1 is a schematic diagram of V2V communication and V2I communication. As shown in Figure 1, through V2V communication between vehicles, they can broadcast their own speed, driving direction, specific location, whether emergency brakes are stepped on, and other information to surrounding vehicles.
  • roadside infrastructure for example, roadside units (RSU) can provide vehicles with various types of service information and data network access.
  • RSU roadside units
  • the vehicle can also interact with the base station (eNB) in the long term evolution (LTE) system, the base station (gNB) in the fifth generation (5G) communication system, and the global navigation satellite system (global navigation satellite system).
  • eNB base station
  • LTE long term evolution
  • gNB base station
  • 5G fifth generation
  • GNSS global navigation satellite system
  • the scenario shown in FIG. 1 is only an example, and the communication system applicable to this application is not limited to this.
  • the number of vehicles, eNB, gNB, RSU, and GNSS may also be other numbers.
  • first device and the second device described in this application may be a vehicle with communication function as shown in FIG. 1, or a vehicle-mounted electronic system, a mobile phone, or a wearable electronic device, or It can be other communication devices that communicate according to the V2X protocol or the relay link protocol between the base station and the base station.
  • FIG. 2 shows a communication method provided by this application.
  • the method 200 includes:
  • the first device sends instruction information, where the instruction information is used to indicate whether the first device sends the first synchronization signal block in the synchronization time slot of the side link, and the synchronization time slot is used to transmit the synchronization signal block.
  • S220 The first device sends the first data through the synchronization time slot of the side link.
  • the synchronization signal block in this application is the sidelink synchronization signal block (S-SSB), and the S-SSB includes the primary sidelink synchronization signal (PSSS) and the secondary side link synchronization signal.
  • PSSS primary sidelink synchronization signal
  • PSBCH sidelink physical broadcast channel
  • the time slot for sending or receiving S-SSB is the synchronization time slot.
  • This application does not limit the duration of the synchronization time slot.
  • the duration of the synchronization time slot may be related to subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • the duration of the synchronization time slot is also different.
  • the duration of the synchronization time slot may be 1 millisecond (ms), 0.5ms, 0.25ms, 0.125ms, etc. This application does not limit this.
  • the first synchronization signal block represents an S-SSB, and "first" is only used to distinguish it from the second synchronization signal block, and has no other limiting meaning.
  • the first data and the first device have similar meanings.
  • the first device is a communication device that has data to be sent (that is, the first data). Since the sending time of the first data is in the synchronization time slot, the first device needs to indicate whether the first device will synchronize before sending the first data.
  • the first synchronization signal block is sent in the time slot, so that the receiver (for example, the second device) receiving the first data can determine whether to prepare to receive the first synchronization signal block, or so that the receiver can determine that the first data is in the synchronization time slot The position of the symbol starting in.
  • the second device Corresponding reception preparation can be made based on the first data and the time domain position of the first S-SSB in the synchronization slot.
  • the reception preparation is, for example, vacating a symbol after receiving the first S-SSB, and in the empty symbol ( GAP) then performs automatic gain control (AGC) processing, and then receives and demodulates corresponding data.
  • GAP empty symbol
  • AGC automatic gain control
  • the first device when it transmits the first data and the first S-SSB, it is in a continuous transmission state and does not need to be transceived. Therefore, the first device can continuously send the first data and the first S-SSB. -SSB, no need to leave a symbol. Of course, optionally, the first device may also choose to leave a symbol between the first data and the first S-SSB.
  • the first device can choose to receive the second S-SSB in the synchronization time slot, and the second S-SSB can be a high priority synchronization
  • the first device can synchronize based on the second S-SSB.
  • the first device Since the first device needs to perform a transmission/reception conversion or a transmission/reception conversion at this time, the first device needs a blank symbol between the steps of receiving the second S-SSB and transmitting the first data. Transmitting between sending and receiving means that after the first device has finished sending the signal, it switches its duplexer to switch to a receiving state. Transceiving and receiving conversion means that after the first device receives the signal, it switches its duplexer to switch to the transmitting state. These two methods have a certain hardware switching time, so a null symbol duration is required to perform this operation.
  • the last symbol of the synchronization slot is also a null symbol in order to achieve the transmission and reception conversion.
  • the data packet of the first device can be transmitted in one time slot, and the last empty symbol of the synchronization time slot can be used to perform the transmission and reception conversion when the next time slot is converted to the receiving state. Therefore, no matter what information the first device transmits and receives in the synchronization time slot, it cannot occupy the last symbol of the synchronization time slot. That is, the time domain symbols occupied by the first data are symbols other than the symbols occupied by the first synchronization signal block and the last symbol in the synchronization slot.
  • the second device also needs to obey the above constraints.
  • Figures 3 and 4 show schematic structural diagrams of two synchronization time slots provided by this application.
  • the first device receives the second S-SSB in the first half of the time slot, and sends the first data in the second half of the time slot. Since the first device needs to perform transceiving conversion, there is a gap between the second S-SSB and the first data.
  • the second device can also receive the second S-SSB in the first half of the time slot, and receive the first data in the second half of the time slot. Since the second device needs to receive signals from different transmitters, the second device also needs to vacate a symbol to prepare for reception after receiving the second S-SSB.
  • the first device sends the first S-SSB in the first half of the time slot, and sends the first data in the second half of the time slot. Since the first device is in a continuous transmission state, there is no need to space a null symbol between the first S-SSB and the first data.
  • the second device may also receive the first S-SSB in the first half of the time slot, and receive the first data in the second half of the time slot. Since the second device receives signals from the same transmitter, the second device does not need to vacate a symbol to prepare for reception after receiving the second S-SSB.
  • Figures 3 and 4 are just examples.
  • the number of symbols occupied by the S-SSB and the first data can also be other numbers.
  • the first data can be located on the symbols in the second half of the synchronization slot or can be located in the synchronization slot. On the first half of the symbol.
  • the first device can instruct the second device in an explicit way.
  • the value of the indication information is used to indicate whether the first device sends the first S-SSB in the synchronization time slot.
  • the indication information can be a 1-bit field. When the value of this field is "0", it means that the first device is not sending the first S-SSB in the synchronization time slot; when the value of this field is "1" , Indicates that the first device sends the first S-SSB in the synchronization time slot.
  • the above field may be an independent field, or other fields may be used to indicate implicitly, which is not limited in this application.
  • the indication information may be carried in the PBSCH of the first S-SSB.
  • the above-mentioned indication information may also be sidelink control information (SCI), which may be carried in the first data; or it may be an information independent of the first data.
  • SCI sidelink control information
  • All or part of the resources are SCI transmission resources.
  • the first device can also instruct the second device in an implicit manner.
  • the sequence of the demodulation reference signal (DMRS) of the first data is used to indicate whether the first device transmits the first S-SSB in the synchronization time slot.
  • DMRS sequence is the first sequence, it means that the first device does not send the first S-SSB in the synchronization time slot;
  • the DMRS sequence is the second sequence, it means that the first device sends the first S-SSB in the synchronization time slot.
  • the first device may also indicate whether the first device transmits the first S-SSB in the synchronization time slot through the frequency domain position of the DMRS of the first data.
  • the frequency domain position of the DMRS is in the first frequency band, it means that the first device is not transmitting the first S-SSB in the synchronization time slot; when the frequency domain position of the DMRS is in the second frequency band, it means that the first device is transmitting in the synchronization time slot The first S-SSB.
  • the DMRS sequence When the DMRS sequence is used to indicate, optionally, the corresponding information can be indicated according to different initial values of the sequence.
  • the DMRS of PSBCH is used to indicate 2 states of 1 bit, indicating whether the first device sends the first S-SSB in the synchronization time slot.
  • the way of indicating can use the DMRS used for demodulation of PSBCH, and can use the sequence of generating DMRS to indicate.
  • the two states respectively correspond to two different sequences of DMRS. State 1: DMRS sequence 1; State 2: DMRS sequence 2.
  • the way of generating different DMRS sequences may be to use the initial value of the DMRS sequence.
  • the sequence for generating the DMRS is a random sequence
  • any of the following methods is used to generate the initial value (cinit) of the random sequence, and then the random sequence used by the DMRS is generated according to the cinit.
  • the initial sequence value of the DMRS sequence is determined according to the following formula:
  • the initial sequence value of the DMRS sequence is determined according to the following formula:
  • x b represents the indication information that needs to be indicated
  • cinit is the initial sequence value of the DMRS sequence
  • f(x) is a function of the second parameter
  • x represents the second parameter
  • mod represents a modulo operation
  • m, N1, N2, M, and N3 are preset integers.
  • the first device can send the first S-SSB in the synchronization time slot, and instruct the first device whether to send the first data in the synchronization time slot through the indication information.
  • the specific embodiments are as follows.
  • the first device sends instruction information, where the instruction information is used to indicate whether the first device sends first data in a synchronization time slot of a side link, and the synchronization time slot is used to transmit a synchronization signal block;
  • the first device sends the first synchronization signal block through the synchronization time slot of the side link.
  • the indication information indicates that the first device sends the first data in the synchronization time slot, and the first data is adjacent to the time domain resource occupied by the first synchronization signal block.
  • the time domain symbols occupied by the first data are symbols other than the symbols occupied by the first synchronization signal block and the last symbol in the synchronization slot.
  • the indication information is carried in the first synchronization signal block.
  • the indication information is the DMRS sequence of the first synchronization signal block or the frequency domain position of the DMRS of the first synchronization signal block.
  • the indication information indicates that the first device does not send the first data in the synchronization time slot.
  • the method further includes:
  • the first device receives a second synchronization signal block in the synchronization time slot, and the time domain resources occupied by the first synchronization signal block and the second synchronization signal block are separated by one null symbol.
  • the time domain symbol occupied by the second synchronization signal block is one of the symbols occupied by the first synchronization signal block, the empty symbol, and the last symbol in the synchronization slot in the synchronization slot. Outside symbol.
  • the indication information is transmitted on a transmission resource of the first data, and the symbol occupied by the indication information is separated from the symbol occupied by the first synchronization signal block by at least one symbol.
  • the first device may indicate whether the first device sends the first data in the synchronization time slot through an explicit indication manner, or may indicate whether the first device sends the first data in the synchronization time slot through an implicit indication manner.
  • the DMRS sequence of the first S-SSB is used to indicate whether the first device sends the first data in the synchronization time slot.
  • the DMRS sequence is the first sequence, it means that the first device does not send the first data in the synchronization time slot; when the DMRS sequence is the second sequence, it means that the first device sends the first data in the synchronization time slot.
  • the first device may also use the frequency domain position of the DMRS of the first S-SSB to indicate whether the first device sends the first data in the synchronization time slot.
  • the frequency domain position of the DMRS is in the first frequency band, it means that the first device is not sending the first data in the synchronization time slot; when the frequency domain position of the DMRS is in the second frequency band, it means that the first device is sending the first data in the synchronization time slot. data.
  • FIG. 5 shows another communication method provided by this application.
  • the method 500 includes:
  • the first device obtains first configuration information and second configuration information, where the first configuration information is used to configure the first synchronization signal block resource and the second synchronization signal block resource of the side link, and the second configuration information Used to configure the data resource of the side link, the resource configured by the first configuration information and the resource configured by the second configuration information partially overlap in the time domain.
  • the first device determines a target data resource according to the first configuration information and the second configuration information, the target data resource belongs to the data resource of the side link, and the target data resource is the same as the first The resources configured by the configuration information do not overlap in the time domain.
  • S530 The first device sends or receives side link data on the target data resource.
  • the first configuration information and the second configuration information may be indicated by the base station.
  • these two configuration information may be carried in system information block (SIB), radio resource control (radio resource control, RRC) or downlink control information (downlink control information, DCI).
  • SIB system information block
  • RRC radio resource control
  • DCI downlink control information
  • the first configuration information and the second configuration information may be indicated by pre-configured (pre-configured) information.
  • the aforementioned network equipment may be the eNB, gNB or RSU shown in FIG. 1.
  • Each synchronization signal block resource can be used to transmit one or more S-SSBs.
  • Each data resource can also be used to transmit one or more data.
  • data refers to information other than S-SSB, for example, business data and/or control information.
  • Different side link resources configured by the network device for the first device may overlap. Since the S-SSB is a prerequisite for the normal reception of other data, the S-SSB resource usually has a higher priority. When the S-SSB resource overlaps with the data resource, the first device needs to avoid using the overlapping resource when sending the side link data. That is, the first device needs to determine the target data resource that does not contain overlapping resources, and send or receive side link data on the target data resource, so as to avoid the influence of the side link data on the S-SSB.
  • the first configuration information includes at least one of the following information:
  • Time domain offset values of the first synchronization signal block resource and the second synchronization signal block resource
  • the frequency domain positions of the first synchronization signal block resource and the second synchronization signal block resource are identical to each other.
  • the unit of the time domain offset value is a time slot and/or a symbol.
  • the offset can indicate that the position of the first synchronization signal block is: the first synchronization signal block is placed from the 7th symbol in the second time slot; it can also be from the 0th symbol in the third time slot Place the first sync signal block.
  • the second configuration information includes at least one of the following information:
  • Time domain location indication information of data resources
  • the time domain position indication information indicates the time slot where the data resource is located and/or the specific symbol position in the time slot.
  • the indication information of the time domain position can be carried in the form of a bitmap.
  • Fig. 6 shows a configuration method of the first S-SSB resource and the second S-SSB resource.
  • the two resources are configured in one time slot, and the two resources time division multiplex the time slot.
  • Fig. 7 shows the configuration of the first S-SSB resource and the second S-SSB resource in one synchronization period.
  • the duration of the synchronization period is, for example, 160 milliseconds (ms).
  • the first device may receive the first S-SSB on the first S-SSB resource, and send the second S-SSB on the second S-SSB resource; It is also possible to send the first S-SSB on the first S-SSB resource, and receive the second S-SSB on the second S-SSB resource.
  • the first S-SSB resource and the second S-SSB resource are configured in one time slot (for example, the first time slot), because the remaining time domain resources in the time slot are too few, the target determined by the first device
  • the data resource is located in another time slot (for example, the second time slot), so that the code rate of the side link data can be increased, and the transmission reliability can be improved.
  • the remaining time domain resources in the time slot can also be transmitted.
  • the target data resource determined by the first device can be located in the first time slot and/or the second time slot, thereby improving resource utilization and reducing the time delay when the first device transmits data.
  • the first device may determine the location of the target data resource according to the information amount of the side link data. When the amount of information is small, it can be determined that the target data resource is located in the first time slot and/or the second time slot; when the amount of information is large, it can be determined that the target data resource is located in the third time slot.
  • the first device can transmit (send and/or receive) control information in the first time slot and/or the second time slot; when the side link data is service data At this time, the first device may transmit (send and/or receive) service data in the third time slot.
  • the method 500 can be used in combination with the method 200.
  • the first device may execute the method 200 to send indication information to the second device to indicate whether there is synchronization signal block transmission in the synchronization time slot where the first S-SSB resource is located, and/or, to indicate the second S-SSB resource. Whether there is synchronization signal block transmission in the synchronization time slot where the SSB resource is located.
  • Fig. 8 shows still another communication method provided by this application.
  • the method 800 includes:
  • the first device obtains synchronization resource configuration information, where the synchronization resource configuration information is used to configure the first synchronization resource and the second synchronization resource of the side link, and the first synchronization resource and the second synchronization resource occupy synchronously Part of the symbols in the time slot.
  • the first device sends the first synchronization signal block on the first synchronization resource, and receives the second synchronization signal block on the second synchronization resource; or, the first device Receiving the first synchronization signal block on the first synchronization resource, and sending the second synchronization signal block on the second synchronization resource.
  • the network device When the first device does not send data, the network device does not need to configure data resources for the first device. In this way, the first device can directly send the S-SSB on the synchronization resource.
  • the foregoing synchronization resource configuration information may be preset information, for example, information pre-configured by a communication protocol.
  • the synchronization resource configuration information may also be information received by the first device from the network device.
  • the network device configures the first device with the first synchronization resource and the second synchronization resource through SIB, RRC, or DCI signaling.
  • SIB, RRC, or DCI signaling carries synchronization resource configuration information.
  • the synchronization resource configuration information includes at least one of the following:
  • the frequency domain position of the synchronization signal is the frequency domain position of the synchronization signal.
  • the unit of the time domain offset value of the synchronization signal is a time slot and/or a symbol.
  • the offset can be 1 slot or 1 symbol, or 3 slots plus 5 symbols.
  • the synchronization resource configuration information is further used to configure the first synchronization resource to be located in the first half of the synchronization time slot, and the second synchronization resource to be located in the second half of the synchronization time slot.
  • the first half of the synchronization slot refers to multiple symbols used for synchronization signal blocks that are occupied from the first symbol in the slot.
  • the second half of the synchronization slot refers to the multiple symbols occupied by the synchronization signal block in the slot from a certain symbol in the middle of the slot to the last synchronization signal block in the slot.
  • the synchronization resource configured by the synchronization resource configuration information further has the following characteristics:
  • the first synchronization resource may be configured with different numbers of synchronization signal blocks;
  • the second synchronization resource may be configured with different numbers of synchronization signal blocks.
  • the number of configurable synchronization signal blocks may be the maximum number of available synchronization signal blocks, or the number of synchronization signal blocks actually configured for use.
  • the subcarrier interval of the synchronization signal is 15 kHz, and both the first synchronization resource and the second synchronization resource carry one S-SSB; or,
  • the frequency domain resource occupied by the synchronization signal has a subcarrier interval of 30 kHz, and the first synchronization resource and the second synchronization resource both carry two S-SSBs; or,
  • the subcarrier interval of the frequency domain resources occupied by the synchronization signal is 60 kHz, and the first synchronization resource and the second synchronization resource both carry four S-SSBs; or,
  • the frequency domain resource occupied by the synchronization signal has a subcarrier interval of 120 kHz, and the first synchronization resource and the second synchronization resource both carry eight S-SSBs.
  • the method 800 can be used in combination with the method 200.
  • the first device determines the first S-SSB resource and the second S-SSB resource, if the first data can be sent in the synchronization time slot, the first device can execute the method 200 to send instruction information to the second device, Indicate whether there is synchronization signal block transmission in the synchronization time slot where the first S-SSB resource is located, and/or indicate whether there is synchronization signal block transmission in the synchronization time slot where the second S-SSB resource is located.
  • the processing procedure of the network device corresponds to the processing procedure of the terminal device.
  • the terminal device receives configuration information from the network device, which means that the network device sends the Configuration information; the terminal device sends information to the network device, which means that the network device receives the information from the terminal device. Therefore, even if the processing procedure of the network device is not clearly stated in the above individual places, those skilled in the art can clearly understand the processing procedure of the network device based on the processing procedure of the terminal device.
  • the communication method provided by this application is described in detail above, and an example of the new synchronization signal block provided by this application will be introduced below.
  • the synchronization signal block in each of the above methods can be replaced by the new synchronization signal block described below.
  • the first device may generate the following synchronization signal block and transmit the synchronization signal block.
  • the second device can receive the following synchronization signal block, and obtain the slot number and the system frame number from the synchronization signal block.
  • the time domain resources occupied by the new synchronization signal block provided in this application include at least one PSSS symbol, at least one SSSS symbol, and at least two PSBCH symbols.
  • the PSSS symbol is the symbol that carries the PSSS, which can be abbreviated as the P symbol or P
  • the SSSS symbol is the symbol that carries the SSSS, and can be abbreviated as the S symbol or S
  • the PSBCH symbol is the symbol that carries the PSBCH, and can be abbreviated as the B symbol or B.
  • the new synchronization signal block is referred to as the first synchronization signal block.
  • the first synchronization signal block described below refers to the new synchronization signal block unless otherwise specified.
  • the first symbol of the time domain resource occupied by the first synchronization signal block is the B symbol, and/or, the last symbol of the time domain resource occupied by the first synchronization signal block is a null symbol .
  • the number of B symbols is greater than or equal to the number of P symbols.
  • the P symbol and the S symbol are adjacent, and the arrangement order of the P symbol and the S symbol is one of the following arrangement orders:
  • the subcarrier interval of the frequency domain resources occupied by the first synchronization signal block is 15 kHz, and only the first synchronization signal block exists in the synchronization period in which the first synchronization signal block is located; or,
  • the subcarrier interval of the frequency domain resources occupied by the first synchronization signal block is 30 kHz, and there is another synchronization signal block in the synchronization period in which the first synchronization signal block is located; or,
  • the subcarrier interval of the frequency domain resources occupied by the first synchronization signal block is 60 kHz, and there are three other synchronization signal blocks in the synchronization period in which the first synchronization signal block is located; or,
  • the frequency domain resource occupied by the first synchronization signal block has a subcarrier interval of 120 kHz, and there are seven other synchronization signal blocks in the synchronization period in which the first synchronization signal block is located.
  • first synchronization signal block and the second synchronization signal block have at least one of the following four characteristics Species:
  • the number of B symbols in the time domain resources occupied by the first synchronization signal block is different from the number of B symbols in the time domain resources occupied by the second synchronization signal block;
  • the interval between the P symbol and the S symbol in the time domain resource occupied by the first synchronization signal block is different from the interval between the P symbol and the S symbol in the time domain resource occupied by the second synchronization signal block;
  • the sequence used by P symbols in the time domain resources occupied by the first synchronization signal block is different from the sequence used by P symbols in the time domain resources occupied by the second synchronization signal block;
  • the sequence used by the S symbols in the time domain resources occupied by the first synchronization signal block is different from the sequence used by the S symbols in the time domain resources occupied by the second synchronization signal block.
  • the first synchronization signal block and the second synchronization signal block are located in the same time slot, and the first synchronization signal block and the second synchronization signal block are time-division multiplexed with the time slot.
  • the above scheme can facilitate the receiver to distinguish the source of the synchronization signal block.
  • the time domain resources occupied by the first synchronization signal block include 1 P symbol, 1 S symbol, 4 or 5 B symbols.
  • sequence of symbols in the time domain resources occupied by the first synchronization signal block is one of the following sequence of sequences:
  • G represents a null symbol
  • "-" represents that two symbols are adjacent in time domain.
  • the time domain resources occupied by the first synchronization signal block include 2 P symbols, 2 S symbols, 4 or 5 B symbols.
  • sequence of symbols in the time domain resources occupied by the first synchronization signal block is one of the following sequence of sequences:
  • G represents a null symbol
  • "-" represents that two symbols are adjacent in time domain.
  • the time domain resources occupied by the first synchronization signal block include 2 or 3 P symbols, 2 or 3 S symbols, and 6, 7, or 8 B symbols.
  • the first synchronization signal block containing 8 B symbols can be used in a scenario where the PSBCH bandwidth is 20 PRB.
  • sequence of symbols in the time domain resources occupied by the first synchronization signal block is one of the following sequence of sequences:
  • G represents a null symbol
  • "-" represents that two symbols are adjacent in time domain.
  • the number of frequency domain resource blocks occupied by the P, the S, or the B in the first synchronization signal block is one of the following: 11, 12, or 20.
  • sequence lengths of P and S of the first synchronization signal block are both 127.
  • the first device generates the control information of the first synchronization signal block based on the CP-OFDM mode, wherein the symbol where the control information of the first synchronization signal block is located has demodulation reference signals with equal intervals in the frequency domain DMRS.
  • the CP type of the synchronization signal block is a normal CP or an extended CP.
  • the time slot in which the first synchronization signal block is located also contains side link control information, and the side link control information and the first synchronization signal block are time-division multiplexed with the first synchronization signal block
  • the side link control information includes control information used to indicate transmission or control information used to indicate feedback.
  • the structure of the first synchronization signal block is different under different subcarrier intervals, and the structure of the first synchronization signal block includes the number and relative arrangement order of the P, S, and B symbols.
  • the structure of the first synchronization signal block is different under different subcarrier intervals includes:
  • the number of symbols of P in the first synchronization signal block with a subcarrier spacing of 15 kHz is more than the number of symbols of P in the first synchronization signal block with other subcarrier spacings;
  • the number of symbols of S in the first synchronization signal block with a subcarrier spacing of 15 kHz is more than the number of symbols of S in the first synchronization signal block with other subcarrier spacings;
  • the number of symbols of the S in the first synchronization signal block with a subcarrier interval of 15 kHz is more than the number of symbols of the S in the first synchronization signal block with other subcarrier intervals.
  • the communication device includes a hardware structure and/or software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the present application may divide the communication device into functional units according to the foregoing method examples.
  • each function may be divided into each functional unit, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in this application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • Fig. 9 shows a schematic structural diagram of a communication device provided by the present application.
  • the communication device 900 may be used to implement the methods described in the foregoing method embodiments.
  • the communication device 900 may be a chip, a network device or a terminal device.
  • the communication device 900 includes one or more processors 901, and the one or more processors 901 can support the communication device 900 to implement the method in the method embodiment corresponding to FIG. 3.
  • the processor 901 may be a general-purpose processor or a special-purpose processor.
  • the processor 901 may be a central processing unit (CPU) or a baseband processor.
  • the baseband processor can be used to process communication data (for example, the power saving signal described above), and the CPU can be used to control the communication device (for example, network equipment, terminal equipment, or chip), execute software programs, and process software Program data.
  • the communication device 900 may further include a transceiving unit 905 to implement signal input (reception) and output (transmission).
  • the communication device 900 may be a chip, and the transceiver unit 905 may be the input and/or output circuit of the chip, or the transceiver unit 905 may be a communication interface of the chip, and the chip may be used as a terminal device or a network device or other wireless communication. Components of equipment.
  • the communication device 900 may include one or more memories 902, on which a program 904 is stored.
  • the program 904 can be run by the processor 901 to generate an instruction 903 so that the processor 901 executes the method described in the foregoing method embodiment according to the instruction 903.
  • the memory 902 may also store data.
  • the processor 901 may also read data stored in the memory 902. The data may be stored at the same storage address as the program 904, or the data may be stored at a different storage address from the program 904.
  • the processor 901 and the memory 902 may be provided separately or integrated together, for example, integrated on a single board or a system-on-chip (SOC).
  • SOC system-on-chip
  • the communication device 900 may further include a transceiver unit 905 and an antenna 906.
  • the transceiver unit 905 may be called a transceiver, a transceiver circuit or a transceiver, and is used to implement the transceiver function of the communication device through the antenna 906.
  • the processor 901 is configured to execute through the transceiver unit 905 and the antenna 906:
  • Sending instruction information where the instruction information is used to indicate whether the first device sends the first synchronization signal block in the synchronization time slot of the side link, and the synchronization time slot is used to transmit the synchronization signal block;
  • the first data is sent through the synchronous time slot of the side link.
  • the processor 901 is configured to execute through the transceiver unit 905 and the antenna 906:
  • the first data is received from the first device through the synchronization time slot of the side link.
  • the processor 901 is configured to execute through the transceiver unit 905 and the antenna 906:
  • first configuration information is used to configure the first synchronization signal block resource and the second synchronization signal block resource of the side link
  • the second configuration information is used to configure the Data resources of the side link, where the resources configured by the first configuration information and the resources configured by the second configuration information partially overlap in the time domain
  • the target data resource belongs to the data resource of the side link, and the target data resource and the resource configured by the first configuration information are in time Do not overlap in domain;
  • the side link data is sent or received on the target data resource.
  • the processor 901 is configured to execute through the transceiver unit 905 and the antenna 906:
  • the synchronization resource configuration information is used to configure the first synchronization resource and the second synchronization resource of the side link, the first synchronization resource and the second synchronization resource occupy part of the synchronization time slot symbol;
  • the processor 901 is configured to execute through the transceiver unit 905 and the antenna 906:
  • the synchronization resource configuration information is used to configure the first synchronization resource and the second synchronization resource of the side link, the first synchronization resource and the second synchronization resource occupy part of the synchronization time slot symbol.
  • the processor 901 is configured to execute through the transceiver unit 905 and the antenna 906:
  • the time domain resources occupied by the first synchronization signal block include at least one master synchronization signal P symbol, at least one slave synchronization signal S symbol, and at least two control information B symbols;
  • the processor 901 is configured to execute through the transceiver unit 905 and the antenna 906:
  • the time domain resources occupied by the first synchronization signal block include at least one primary synchronization signal P symbol, at least one secondary synchronization signal S symbol, and at least two control information B symbols;
  • the processor 901 may be a CPU, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), a field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices , For example, discrete gates, transistor logic devices, or discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • This application also provides a computer program product, which, when executed by the processor 901, implements the communication method described in any method embodiment in this application.
  • the computer program product may be stored in the memory 902, for example, a program 904, which is finally converted into an executable object file that can be executed by the processor 901 after preprocessing, compilation, assembly, and linking.
  • This application also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a computer, the communication method described in any method embodiment in this application is implemented.
  • the computer program can be a high-level language program or an executable target program.
  • the computer-readable storage medium is, for example, the memory 902.
  • the memory 902 may be a volatile memory or a non-volatile memory, or the memory 902 may include both a volatile memory and a non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • FIG. 10 shows a schematic structural diagram of a terminal device provided in this application.
  • the terminal device 1000 can be applied to the system shown in FIG. 1 to implement the functions of the first device or the second device in the foregoing method embodiment.
  • FIG. 10 only shows the main components of the terminal device.
  • the terminal device 1000 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device. For example, the processor receives the power saving signal through the antenna and the control circuit.
  • the memory is mainly used to store programs and data, such as storing communication protocols and data to be sent.
  • the control circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the input and output device is, for example, a touch screen or a keyboard, and is mainly used to receive data input by the user and output data to the user.
  • the processor can read the program in the memory, interpret and execute the instructions contained in the program, and process the data in the program.
  • the processor performs baseband processing on the information to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal to obtain a radio frequency signal, and transmits the radio frequency signal to the antenna in the form of electromagnetic waves. Send outside.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into information And process the information.
  • FIG. 10 only shows one memory and one processor. In an actual terminal device, there may be multiple processors and multiple memories.
  • the memory may also be called a storage medium or a storage device, etc., which is not limited in this application.
  • the processor in FIG. 10 can integrate the functions of the baseband processor and the CPU.
  • the baseband processor and the CPU can also be independent processors, using technologies such as buses. interconnected.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple CPUs to enhance its processing capabilities, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be referred to as a baseband processing circuit or a baseband processing chip.
  • the CPU may also be called a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data may be built in the processor, or stored in the memory in the form of a program, and the processor executes the program in the memory to realize the baseband processing function.
  • the antenna and control circuit with the transceiver function can be regarded as the transceiver unit 1001 of the terminal device 1000, which is used to support the terminal device to implement the receiving function in the method embodiment, or to support the terminal device to implement the method embodiment.
  • the processor with processing function is regarded as the processing unit 1002 of the terminal device 1000.
  • the terminal device 1000 includes a transceiver unit 1001 and a processing unit 1002.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver, and so on.
  • the device for implementing the receiving function in the transceiver unit 1001 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1001 can be regarded as the sending unit, that is, the transceiver unit 1001 includes a receiving unit and a sending unit,
  • the receiving unit may also be called a receiver, an input port, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the processor 1002 may be used to execute programs stored in the memory to control the transceiver unit 1001 to receive signals and/or send signals, and complete the functions of the terminal device in the foregoing method embodiments.
  • the function of the transceiver unit 1001 may be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • FIG. 11 is a schematic structural diagram of a network device provided in this application, and the network device may be, for example, a base station.
  • the base station can be applied to the system shown in FIG. 1 to realize the function of the network device in the above method embodiment.
  • the base station 1100 may include one or more radio frequency units, such as a remote radio unit (RRU) 1101 and at least one baseband unit (BBU) 1102.
  • RRU remote radio unit
  • BBU baseband unit
  • the BBU 1102 may include a distributed unit (DU), or may include a DU and a centralized unit (CU).
  • DU distributed unit
  • CU centralized unit
  • the RRU1101 may be called a transceiver unit, a transceiver, a transceiver circuit or a transceiver, and it may include at least one antenna 11011 and a radio frequency unit 11012.
  • the RRU1101 is mainly used to transmit and receive radio frequency signals and convert radio frequency signals to baseband signals, for example, to support the base station to implement the sending and receiving functions in the method embodiments.
  • the BBU1102 is mainly used for baseband processing and control of base stations.
  • the RRU1101 and the BBU1102 can be physically set together, or physically separated, that is, a distributed base station.
  • the BBU1102 can also be called a processing unit, which is mainly used to perform baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU 1102 may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the BBU1102 can be composed of one or more single boards, and multiple single boards can jointly support a radio access network of a single access standard (for example, a long term evolution (LTE) network), and can also support different access standards. Wireless access network (such as LTE network and NR network).
  • the BBU 1102 also includes a memory 11021 and a processor 11022.
  • the memory 11021 is used to store necessary instructions and data.
  • the memory 11021 stores the power consumption saving signal in the foregoing method embodiment.
  • the processor 11022 is configured to control the base station to perform necessary actions, for example, to control the base station to perform the operation procedures in the foregoing method embodiments.
  • the memory 11021 and the processor 11022 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the disclosed system, device, and method may be implemented in other ways. For example, some features of the method embodiments described above may be ignored or not implemented.
  • the device embodiments described above are merely illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods, and multiple units or components may be combined or integrated into another system.
  • the coupling between the units or the coupling between the components may be direct coupling or indirect coupling, and the foregoing coupling includes electrical, mechanical, or other forms of connection.
  • the size of the sequence number of each process does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • system and “network” in this article are often used interchangeably in this article.
  • the term “and/or” in this article is only an association relationship describing associated objects, which means that there can be three types of relationships. For example, A and/or B can mean that there is A alone, and both A and B exist. There are three cases of B.
  • the character “/” in this text generally indicates that the associated objects before and after are in an "or” relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法,包括:第一设备发送指示信息,所述指示信息用于指示所述第一设备是否在侧行链路的同步时隙内发送第一同步信号块,所述同步时隙用于传输同步信号块;所述第一设备通过所述侧行链路的同步时隙发送第一数据。由于第一设备在发送第一数据前指示了其在同步时隙中的发送行为,接收机可以根据指示信息确定接收机在同步时隙中的处理方式,从而能够避免同步时隙中的收发冲突情况,提高同步时隙中信息传输的可靠性。

Description

通信方法和通信装置
本申请要求于2019年02月15日提交中国专利局、申请号为201910117982.5、申请名称为“通信方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法和通信装置。
背景技术
在无线通信领域,一个终端设备可以通过网络设备的中转与另一个终端设备通信,也可以不经过网络设备直接与另一个终端设备通信,当一个终端设备不经过网络设备直接与另一个终端设备通信时,该两个终端设备之间的通信链路可以称为侧行链路(sidelink)或直通链路或边链路。
车与万物(vehicle to X,V2X)通信系统是实现无人驾驶的基础,在V2X通信系统中,车辆作为一种终端设备可以采用侧行链路与其它终端设备进行通信,由于V2X通信系统中传输的数据关乎行车过程中人员的生命、财产安全,因此,V2X通信系统中传输的数据对传输的可靠性要求较高,V2X通信系统中各个通信设备需要基于同步信号调整各自的时钟,以便于提高传输可靠性。另外,在实际通信的过程中,通信设备在同步的过程中也需要发送和接收来自其他设备在V2X链路上的信号,如何协调同步信号和业务数据信号的收发,以同时保证同步信号和数据的可靠接收。现有技术中侧行链路的通信方式无法满足对数据传输可靠性的要求。
发明内容
本申请提供了一种通信方法,能够满足侧行链路中数据传输的可靠性。
第一方面,提供了一种通信方法,包括:第一设备发送指示信息,所述指示信息用于指示所述第一设备是否在侧行链路的同步时隙内发送第一同步信号块,所述同步时隙用于传输同步信号块;所述第一设备通过所述侧行链路的同步时隙发送第一数据。
由于第一设备在发送第一数据前指示了其在同步时隙中的发送行为,接收机可以根据指示信息确定接收机在同步时隙中的处理方式,从而能够避免同步时隙中的收发冲突情况,提高同步时隙中信息传输的可靠性。
可选地,所述指示信息指示所述第一设备在所述同步时隙内发送所述第一同步信号块,所述第一数据与所述第一同步信号块占用的时域资源相邻。
第一同步信号块与第一数据连续发送能够提高资源利用效率。
可选地,所述第一数据占用的时域符号为除所述第一同步信号块占用的符号以及所述同步时隙中最后一个符号之外的符号。
上述方案为同步时隙的结束位置留出一个空符号,有利于第一设备使用该空符号进行收发转换或发收转换,在下一个时隙中接收或发送信息。
可选地,所述指示信息承载于所述第一同步信号块中。
当第一设备发送第一同步信号块时,可以利用第一同步信号块承载指示信息,例如,利用第一同步信号块的PSBCH承载指示信息。
可选地,所述指示信息为所述第一数据的解调参考信号DMRS序列或所述第一数据的DMRS的频域位置。
相比于利用专用字段承载指示信息,利用DMRS序列或DMRS序列频域位置作为指示信息能够减小第一设备发送的信息量,减小空口资源的消耗。
可选地,所述指示信息指示所述第一设备在所述同步时隙内不发送所述第一同步信号块。
可选地,所述方法还包括:所述第一设备在所述同步时隙内接收第二同步信号块,所述第一数据与所述第二同步信号块占用的时域资源间隔一个空符号。
上述方案有利于第一设备使用该空符号进行收发转换或发收转换,在第二同步信号块占用的时域资源上接收第二同步信号块。
可选地,所述第一数据占用的时域符号为所述同步时隙中除所述第二同步信号块占用的符号、所述空符号以及所述同步时隙中最后一个符号之外的符号。
上述方案为同步时隙的结束位置留出一个空符号,有利于第一设备使用该空符号进行收发转换或发收转换,在下一个时隙中接收或发送信息。
可选地,所述指示信息在所述第一数据的传输资源上传输,所述指示信息占用的符号与所述第一同步信号块占用的符号间隔至少一个符号。
接收指示信息的设备可以利用上述间隔的符号进行收发转换或者发收转换,因此,上述方案能够避免接收指示信息的设备因来不及进行收发转换或者发收转换而导致未收到指示信息,提高了指示信息的接收成功率。
第二方面,本申请提供了另一种通信方法,包括:第二设备从第一设备接收指示信息,所述指示信息用于指示所述第一设备是否在侧行链路的同步时隙内发送第一同步信号块,所述同步时隙用于传输同步信号块;所述第二设备通过所述侧行链路的同步时隙从所述第一设备接收第一数据。
由于第一设备在发送第一数据前指示了其在同步时隙中的发送行为,接收机可以根据指示信息确定接收机在同步时隙中的处理方式,从而能够避免同步时隙中的收发冲突情况,提高同步时隙中信息传输的可靠性。
可选地,所述指示信息指示所述第一设备在所述同步时隙内发送所述第一同步信号块,所述第一数据与所述第一同步信号块占用的时域资源相邻。
第一同步信号块与第一数据连续接收能够提高资源利用效率。
可选地,所述第一数据占用的时域符号为除所述第一同步信号块占用的符号以及所述同步时隙中最后一个符号之外的符号。
上述方案为同步时隙的结束位置留出一个空符号,有利于第一设备使用该空符号进行收发转换或发收转换,在下一个时隙中接收或发送信息。
可选地,所述指示信息承载于所述第一同步信号块中。
当第一设备发送第一同步信号块时,可以利用第一同步信号块承载指示信息,例如,利用第一同步信号块的PSBCH承载指示信息。
可选地,所述指示信息为所述第一数据的解调参考信号DMRS序列或所述第一数据的DMRS的频域位置。
相比于利用专用字段承载指示信息,利用DMRS序列或DMRS序列频域位置作为指示信息能够减小第一设备发送的信息量,减小空口资源的消耗。
可选地,所述指示信息指示所述第一设备在所述同步时隙内不发送所述第一同步信号块。
可选地,所述方法还包括:所述第二设备在所述同步时隙内接收第二同步信号块,所述第一数据与所述第二同步信号块占用的时域资源间隔一个空符号。
上述方案有利于第二设备使用该空符号进行收发转换或发收转换,在第二同步信号块占用的时域资源上接收第二同步信号块。
可选地,所述第一数据占用的时域符号为所述同步时隙中除所述第二同步信号块占用的符号、所述空符号以及所述同步时隙中最后一个符号之外的符号。
上述方案为同步时隙的结束位置留出一个空符号,有利于第二设备使用该空符号进行收发转换或发收转换,在下一个时隙中接收或发送信息。
可选地,所述指示信息在所述第一数据的传输资源上传输,所述指示信息占用的符号与所述第一同步信号块占用的符号间隔至少一个符号。
第二设备可以利用上述间隔的符号进行收发转换或者发收转换,因此,上述方案能够避免第二设备因来不及进行收发转换或者发收转换而导致未收到指示信息,提高了指示信息的接收成功率。
第三方面,本申请提供了再一种通信方法,包括:第一设备获取第一配置信息和第二配置信息,所述第一配置信息用于配置侧行链路的第一同步信号块资源和第二同步信号块资源,所述第二配置信息用于配置所述侧行链路的数据资源,所述第一配置信息配置的资源与所述第二配置信息配置的资源在时域上部分重叠;所述第一设备根据第一配置信息和第二配置信息确定目标数据资源,所述目标数据资源属于所述侧行链路的数据资源,且,所述目标数据资源与所述第一配置信息配置的资源在时域上不重合;所述第一设备在所述目标数据资源上发送或接收侧行链路数据。
网络设备为第一设备配置的不同侧行链路资源有可能出现重叠情况。由于S-SSB是保证其它数据正常接收的前提条件,因此,S-SSB资源通常具有较高的优先级。当S-SSB资源与数据资源重叠时,第一设备在发送侧行链路数据时需要避免使用重叠资源。即第一设备需要确定不包含重叠资源的目标数据资源,并在目标数据资源上发送或者接收侧行链路数据,从而避免侧行链路数据对S-SSB的影响。
可选地,所述第一同步信号块资源用于发送第一同步信号块,所述第二同步信号块资源用于接收第二同步信号块;或者,所述第一同步信号块资源用于接收第一同步信号块,所述第二同步信号块资源用于发送第二同步信号块。
第一设备可以灵活选择同步资源信号块上的发送和接收方式。
可选地,所述第一同步信号块资源和所述第二同步信号块资源位于第一时隙内,所述目标数据资源位于第二时隙内。
上述方案能够保证数据量较大的业务数据有足够的时域资源可以使用,提高侧行链路数据的传输可靠性。
可选地,所述第一同步信号块资源位于第一时隙内,所述第二同步信号块资源位于第二时隙内,所述目标数据资源包括所述第一时隙的部分符号和/或所述第二时隙的部分符号。
上述方案可以利用同步时隙传输一些信息量较小的数据,提高资源利用率。
可选地,所述侧行链路数据包括控制信息和业务数据,
所述控制信息的时域资源位于所述第一时隙和/或所述第二时隙内,所述业务数据的时域资源位于第三时隙内;或者,
所述业务数据的时域资源位于所述第一时隙和/或所述第二时隙内,所述控制信息的时域资源位于第三时隙内。
第一设备可以根据实际情况灵活选择目标数据资源。
可选地,所述第一配置信息包括以下信息中的至少一种:
所述第一同步信号块资源和所述第二同步信号块资源的周期;
所述第一同步信号块资源和所述第二同步信号块资源的时域偏移值;
所述第一同步信号块资源和所述第二同步信号块资源在一个周期内的同步信号块数量;
所述第一同步信号块资源和所述第二同步信号块资源的频域位置。
可选地,所述时域偏移值的单位为时隙和/或符号。
可选地,所述第二配置信息包括以下信息中的至少一种:
所述数据资源的时域位置指示信息;
所述数据资源的周期指示信息;
所述数据资源的频域位置指示信息。
第四方面,本申请提供了再一种通信方法,包括:第一设备获取同步资源配置信息,所述同步资源配置信息用于配置侧行链路的第一同步资源和第二同步资源,所述第一同步资源和所述第二同步资源占用同步时隙中的部分符号;所述第一设备在所述第一同步资源上发送所述第一同步信号块,以及,在所述第二同步资源上接收所述第二同步信号块;或者,所述第一设备在所述第一同步资源上接收所述第一同步信号块,以及,在所述第二同步资源上发送所述第二同步信号块。
网络设备为第一设备配置了同步资源后,若同步时隙内还有符号可以发送第一数据,则第一设备可以执行第一方面所述的方法,指示该同步时隙内第一设备是否发送同步信号块;或者,第一设备可以在同步时隙中发送第一同步信号块,并指示该同步时隙中第一设备是否发送第一数据。上述方案能够协调发射机和接收机在同步时隙中的行为,从而能够避免同步时隙中的收发冲突情况,提高同步时隙中信息传输的可靠性。
可选地,所述同步资源配置信息包括以下中的至少一种:
所述同步信号的周期;
所述同步信号的时域偏移值;
所述同步信号在同一个周期内的数量;
所述同步信号的频域位置。
从而能够让第一设备直接获取到同步信号的准确位置,避免不必要的盲检。
可选地,所述同步信号的时域偏移值的单位为时隙和/或符号。
从而能够利用到时隙内所有潜在能使用的资源,避免资源的浪费。
可选地,所述同步资源配置信息还用于配置所述第一同步资源位于所述同步时隙的前半部分,以及,所述第二同步资源位于所述同步时隙的后半部分。
从而能够利用到时隙内所有潜在能使用的资源,避免资源的浪费。
可选地,所述方法还包括:
对于不同的子载波间隔,所述第一同步资源可配置不同数量的同步信号块;和/或
对于不同的子载波间隔,所述第二同步资源可配置不同数量的同步信号块。
可选地,更大子载波间隔的第一同步资源可配置的同步信号块数量更多。从而可以保证在大子载波间隔的条件下,配置更多的同步信号块,从而可以实现大子载波间隔与小子载波间隔一样的覆盖。
第五方面,本申请提供了再一种通信方法,包括:网络设备生成同步资源配置信息,所述同步资源配置信息用于配置侧行链路的第一同步资源和第二同步资源,所述第一同步资源和所述第二同步资源占用同步时隙中的部分符号;所述网络设备发送所述同步资源配置信息。
网络设备为第一设备配置了同步资源后,若同步时隙内还有符号可以发送第一数据,则第一设备可以执行第一方面所述的方法,指示该同步时隙内第一设备是否发送同步信号块;或者,第一设备可以在同步时隙中发送第一同步信号块,并指示该同步时隙中第一设备是否发送第一数据。上述方案能够协调发射机和接收机在同步时隙中的行为,从而能够避免同步时隙中的收发冲突情况,提高同步时隙中信息传输的可靠性。
可选地,所述同步资源配置信息包括以下中的至少一种:
所述同步信号的周期;
所述同步信号的时域偏移值;
所述同步信号在同一个周期内的数量;
所述同步信号的频域位置。
从而能够让第一设备直接获取到同步信号的准确位置,避免不必要的盲检。
可选地,所述同步信号的时域偏移值的单位为时隙和/或符号。
从而能够利用到时隙内所有潜在能使用的资源,避免资源的浪费。
可选地,所述同步资源配置信息还用于配置所述第一同步资源位于所述同步时隙的前半部分,以及,所述第二同步资源位于所述同步时隙的后半部分。
从而能够利用到时隙内所有潜在能使用的资源,避免资源的浪费。
可选地,所述方法还包括:
对于不同的子载波间隔,所述第一同步资源可配置不同数量的同步信号块;和/或,
对于不同的子载波间隔,所述第二同步资源可配置不同数量的同步信号块。
可选地,更大子载波间隔的第一同步资源可配置的同步信号块数量更多。从而可以保证在大子载波间隔的条件下,配置更多的同步信号块,从而可以实现大子载波间隔与小子载波间隔一样的覆盖。
第六方面,本申请提供了再一种通信方法,包括:第一设备生成第一同步信号块,所 述第一同步信号块占用的时域资源包括至少一个主同步信号P符号、至少一个从同步信号S符号以及至少两个控制信息B符号;
所述第一设备发送所述第一同步信号块。
上述方法可以使得第一同步信号的能够实现基本的同步信号以及控制信息的可检测的性能。
结合第六方面,在第六方面的第一种可选的实施方式中,所述第一同步信号块占用的时域资源的第一个符号为所述B符号,和/或,所述第一同步信号块占用的时域资源的最后一个符号为空符号。以便于接收机可以在第一个控制信息的B符号上做AGC操作,提高检测的性能。
结合第六方面或第六方面的第一种可选的实施方式,在第六方面的第二种可选的实施方式中,所述B符号的数量大于或等于所述P符号的数量。以便于保证控制信息的足够的检测性能。
结合第六方面或第六方面的任一种可选的实施方式,在第六方面的第三种可选的实施方式中,所述P符号和所述S符号相邻,且,所述P符号和所述S符号的排列顺序为下列排列顺序中的一种:
{P-S},{P-P-S-S},{P-S-P-S},{P-P-S-S-S},{P-P-P-S-S-S},其中“-”表示时2个符号时域相邻。以便于P符号和S符号的好的检测性能,方便接收机的接收。
结合第六方面或第六方面的任一种可选的实施方式,在第六方面的第四种可选的实施方式中:
所述第一同步信号块占用的频域资源的子载波间隔为15kHz,所述第一同步信号块所在的同步周期内仅存在所述第一同步信号块;或者,
所述第一同步信号块占用的频域资源的子载波间隔为30kHz,所述第一同步信号块所在的同步周期内还存在另外一个同步信号块;或者,
所述第一同步信号块占用的频域资源的子载波间隔为60kHz,所述第一同步信号块所在的同步周期内还存在另外三个同步信号块;或者,
所述第一同步信号块占用的频域资源的子载波间隔为120kHz,所述第一同步信号块所在的同步周期内还存在另外七个同步信号块。
以上方法以便于确保更高子载波间隔下第一同步信号块的覆盖的性能。
结合第六方面或第六方面的任一种可选的实施方式,在第六方面的第五种可选的实施方式中,所述第一同步信号块所在的同步周期内还存在第二同步信号块,其中,所述第一同步信号块与所述第二同步信号块具有以下四种特征中的至少一种:
所述第一同步信号块占用的时域资源中B符号与所述第二同步信号块占用的时域资源中B符号的数量不同;
所述第一同步信号块占用的时域资源中P符号与S符号之间的间隔与所述第二同步信号块占用的时域资源中P符号与S符号之间的间隔不同;
所述第一同步信号块占用的时域资源中P符号使用的序列与所述第二同步信号块占用的时域资源中P符号使用的序列不同;
所述第一同步信号块占用的时域资源中S符号使用的序列与所述第二同步信号块占用的时域资源中S符号使用的序列不同。
以上方法以便于接收机能够根据至少两个同步信号块的不同来区分出每个同步信号块的相对位置,从而使接收机获得更精确的定时信息。
结合第六方面的第五种可选的实施方式,在第六方面的第六种可选的实施方式中,所述第一同步信号块与所述第二同步信号块位于同一个时隙中,所述第一同步信号块与所述第二同步信号块时分复用所述时隙。
结合第六方面或第六方面的第一种或第二种可选的实施方式,在第六方面的第七种可选的实施方式中,所述第一同步信号块占用的时域资源包括1个P符号,1个S符号,4个或5个B符号。
以上方法以便于控制整个第一同步信号块的开销。
结合第六方面的第七种可选的实施方式,在第六方面的第八种可选的实施方式中,所述第一同步信号块占用的时域资源中的符号排列顺序为下列排列顺序中的一种:
{B-P-B-B-B-S-B},
{B-P-B-B-B-S-G},
{B-P-B-B-B-S},
{B-P-B-B-S-B},
{B-P-B-B-S-G}
其中,G表示空符号,“-”表示2个符号时域相邻。
结合第六方面或第六方面的第一种或第二种可选的实施方式,在第六方面的第九种可选的实施方式中,所述第一同步信号块占用的时域资源包括2个P符号,2个S符号,4个或5个B符号。
结合第六方面的第九种可选的实施方式,在第六方面的第十种可选的实施方式中,所述第一同步信号块占用的时域资源中的符号排列顺序为下列排列顺序中的一种:
{B-P-B-B-B-S-B},
{B-P-B-B-B-S-G},
{B-P-S-B-B-B-B},
{B-P-S-B-B-B-G},
{B-P-B-B-B-S},
{B-P-B-B-S-B},
{B-P-B-B-S-G},
{B-P-S-B-B-B},
{B-P-S-B-B-G},
其中,G表示空符号,“-”表示2个符号时域相邻。
结合第六方面或第六方面的第一种或第二种可选的实施方式,在第六方面的第十一种可选的实施方式中,所述第一同步信号块占用的时域资源包括2个或3个P符号,2个或3个S符号,6个、7个或8个B符号。
结合第六方面的第十一种可选的实施方式,在第六方面的第十二种可选的实施方式中,所述第一同步信号块占用的时域资源中的符号排列顺序为下列排列顺序中的一种:
{B-P-P-B-B-B-B-S-S-B},
{B-P-P-B-B-B-B-S-S-G},
{B-P-P-S-S-B-B-B-B-B},
{B-P-P-S-S-B-B-B-B-G},
{B-P-P-B-B-B-B-B-B-S-S-B},
{B-P-P-B-B-B-B-B-B-S-S-G},
{B-P-P-S-S-B-B-B-B-B-B-B},
{B-P-P-S-S-B-B-B-B-B-B-G},
其中,G表示空符号,“-”表示2个符号时域相邻。
结合第六方面或第六方面的任意一种可选的实施方式,在第六方面的第十三种可选的实施方式中,所述第一同步信号块的中的所述P、所述S或所述B占用的频域资源块的数量为以下中的一种:11,12或20。
以上方法以便于能够在各种性能带宽下能够传输第一同步信号块。
结合第六方面或第六方面的任意一种可选的实施方式,在第六方面的第十四种可选的实施方式中,所述第一同步信号块的P和S的序列长度均为127。
以上方法以便于确保同步信号块中的P和S序列的性能。
结合第六方面或第六方面的任意一种可选的实施方式,在第六方面的第十五种可选的实施方式中,所述第一设备生成第一同步信号块,包括:
所述第一设备基于CP-OFDM方式生成所述第一同步信号块的控制信息,其中,所述第一同步信号块的控制信息所在的符号上存在频域等间隔的解调参考信号DMRS。
结合第六方面或第六方面的任意一种可选的实施方式,在第六方面的第十六种可选的实施方式中,所述同步信号块的CP类型为正常CP或扩展CP。
结合第六方面或第六方面的任意一种可选的实施方式,在第六方面的第十七种可选的实施方式中,所述第一同步信号块所在的时隙还存在侧行链路控制信息,所述侧行链路控制信息与所述第一同步信号块时分复用所述第一同步信号块所在的时隙,所述侧行链路控制信息包括用于指示传输的控制信息或用于指示反馈的控制信息。
结合第六方面或第六方面的任意一种可选的实施方式,在第六方面的第十八种可选的实施方式中,所述第一同步信号块的结构在不同子载波间隔下不同,所述第一同步信号块的结构包括所述P、所述S和所述B符号的数量以及相对排列顺序。
结合第六方面的第十八种可选的实施方式,在第六方面的第十九种可选的实施方式中,所述第一同步信号块的结构在不同子载波间隔下不同,包括:
子载波间隔为15kHz的所述第一同步信号块中的所述P的符号数量比其它子载波间隔下的所述第一同步信号块中的所述P的符号的数量要多;和/或
子载波间隔为15kHz的所述第一同步信号块中的所述S的符号数量比其它子载波间隔下的所述第一同步信号块中的所述S的符号的数量要多;和/或
子载波间隔为15kHz的所述第一同步信号块中的所述S的符号数量比其它子载波间隔下的所述第一同步信号块中的所述S的符号的数量要多。
第七方面,本申请提供了再一种通信方法,包括:第二设备接收第一同步信号块,所述第一同步信号块占用的时域资源包括至少一个主同步信号P符号、至少一个从同步信号S符号以及至少两个控制信息B符号;所述第二设备根据所述第一同步信号块获取时隙号和系统帧号。
上述方法可以使得第一同步信号的能够实现基本的同步信号以及控制信息的可检测的性能。
结合第七方面,在第七方面的第一种可选的实施方式中,所述第一同步信号块占用的时域资源的第一个符号为所述B符号,和/或,所述第一同步信号块占用的时域资源的最后一个符号为空符号。以便于接收机可以在第一个控制信息的B符号上做AGC操作,提高检测的性能。
结合第七方面或第七方面的第一种可选的实施方式,在第七方面的第二种可选的实施方式中,所述B符号的数量大于或等于所述P符号的数量。以便于保证控制信息的足够的检测性能。
结合第七方面或第七方面的任一种可选的实施方式,在第七方面的第三种可选的实施方式中,所述P符号和所述S符号相邻,且,所述P符号和所述S符号的排列顺序为下列排列顺序中的一种:
{P-S},{P-P-S-S},{P-S-P-S},{P-P-S-S-S},{P-P-P-S-S-S},其中“-”表示时2个符号时域相邻。以便于P符号和S符号的好的检测性能,方便接收机的接收。
结合第七方面或第七方面的任一种可选的实施方式,在第七方面的第四种可选的实施方式中:
所述第一同步信号块占用的频域资源的子载波间隔为15kHz,所述第一同步信号块所在的同步周期内仅存在所述第一同步信号块;或者,
所述第一同步信号块占用的频域资源的子载波间隔为30kHz,所述第一同步信号块所在的同步周期内还存在另外一个同步信号块;或者,
所述第一同步信号块占用的频域资源的子载波间隔为60kHz,所述第一同步信号块所在的同步周期内还存在另外三个同步信号块;或者,
所述第一同步信号块占用的频域资源的子载波间隔为120kHz,所述第一同步信号块所在的同步周期内还存在另外七个同步信号块。
结合第七方面或第七方面的任一种可选的实施方式,在第七方面的第五种可选的实施方式中,所述第一同步信号块所在的同步周期内还存在第二同步信号块,其中,所述第一同步信号块与所述第二同步信号块具有以下四种特征中的至少一种:
所述第一同步信号块占用的时域资源中B符号与所述第二同步信号块占用的时域资源中B符号的数量不同;
所述第一同步信号块占用的时域资源中P符号与S符号之间的间隔与所述第二同步信号块占用的时域资源中P符号与S符号之间的间隔不同;
所述第一同步信号块占用的时域资源中P符号使用的序列与所述第二同步信号块占用的时域资源中P符号使用的序列不同;
所述第一同步信号块占用的时域资源中S符号使用的序列与所述第二同步信号块占用的时域资源中S符号使用的序列不同。
结合第七方面的第五种可选的实施方式,在第七方面的第六种可选的实施方式中,所述第一同步信号块与所述第二同步信号块位于同一个时隙中,所述第一同步信号块与所述第二同步信号块时分复用所述时隙。
结合第七方面或第七方面的第一种或第二种可选的实施方式,在第七方面的第七种可 选的实施方式中,所述第一同步信号块占用的时域资源包括1个P符号,1个S符号,4个或5个B符号。
结合第七方面的第七种可选的实施方式,在第七方面的第八种可选的实施方式中,所述第一同步信号块占用的时域资源中的符号排列顺序为下列排列顺序中的一种:
{B-P-B-B-B-S-B},
{B-P-B-B-B-S-G},
{B-P-B-B-B-S},
{B-P-B-B-S-B},
{B-P-B-B-S-G}
其中,G表示空符号,“-”表示2个符号时域相邻。
结合第七方面或第七方面的第一种或第二种可选的实施方式,在第七方面的第九种可选的实施方式中,所述第一同步信号块占用的时域资源包括2个P符号,2个S符号,4个或5个B符号。
结合第七方面的第九种可选的实施方式,在第七方面的第十种可选的实施方式中,所述第一同步信号块占用的时域资源中的符号排列顺序为下列排列顺序中的一种:
{B-P-B-B-B-S-B},
{B-P-B-B-B-S-G},
{B-P-S-B-B-B-B},
{B-P-S-B-B-B-G},
{B-P-B-B-B-S},
{B-P-B-B-S-B},
{B-P-B-B-S-G},
{B-P-S-B-B-B},
{B-P-S-B-B-G},
其中,G表示空符号,“-”表示2个符号时域相邻。
结合第七方面或第七方面的第一种或第二种可选的实施方式,在第七方面的第十一种可选的实施方式中,所述第一同步信号块占用的时域资源包括2个或3个P符号,2个或3个S符号,6个、7个或8个B符号。
结合第七方面的第十一种可选的实施方式,在第七方面的第十二种可选的实施方式中,所述第一同步信号块占用的时域资源中的符号排列顺序为下列排列顺序中的一种:
{B-P-P-B-B-B-B-S-S-B},
{B-P-P-B-B-B-B-S-S-G},
{B-P-P-S-S-B-B-B-B-B},
{B-P-P-S-S-B-B-B-B-G},
{B-P-P-B-B-B-B-B-B-S-S-B},
{B-P-P-B-B-B-B-B-B-S-S-G},
{B-P-P-S-S-B-B-B-B-B-B-B},
{B-P-P-S-S-B-B-B-B-B-B-G},
其中,G表示空符号,“-”表示2个符号时域相邻。
结合第七方面或第七方面的任意一种可选的实施方式,在第七方面的第十三种可选的实施方式中,所述第一同步信号块的中的所述P、所述S或所述B占用的频域资源块的数量为以下中的一种:11,12或20。
结合第七方面或第七方面的任意一种可选的实施方式,在第七方面的第十四种可选的实施方式中,所述第一同步信号块的P和S的序列长度均为127。
结合第七方面或第七方面的任意一种可选的实施方式,在第七方面的第十五种可选的实施方式中,所述第一设备生成第一同步信号块,包括:
所述第一设备基于CP-OFDM方式生成所述第一同步信号块的控制信息,其中,所述第一同步信号块的控制信息所在的符号上存在频域等间隔的解调参考信号DMRS。
结合第七方面或第七方面的任意一种可选的实施方式,在第七方面的第十六种可选的实施方式中,所述同步信号块的CP类型为正常CP或扩展CP。
结合第七方面或第七方面的任意一种可选的实施方式,在第七方面的第十七种可选的实施方式中,所述第一同步信号块所在的时隙还存在侧行链路控制信息,所述侧行链路控制信息与所述第一同步信号块时分复用所述第一同步信号块所在的时隙,所述侧行链路控制信息包括用于指示传输的控制信息或用于指示反馈的控制信息。
结合第七方面或第七方面的任意一种可选的实施方式,在第七方面的第十八种可选的实施方式中,所述第一同步信号块的结构在不同子载波间隔下不同,所述第一同步信号块的结构包括所述P、所述S和所述B符号的数量以及相对排列顺序。
结合第七方面的第十八种可选的实施方式,在第七方面的第十九种可选的实施方式中,所述第一同步信号块的结构在不同子载波间隔下不同,包括:
子载波间隔为15kHz的所述第一同步信号块中的所述P的符号数量比其它子载波间隔下的所述第一同步信号块中的所述P的符号的数量要多;和/或
子载波间隔为15kHz的所述第一同步信号块中的所述S的符号数量比其它子载波间隔下的所述第一同步信号块中的所述S的符号的数量要多;和/或
子载波间隔为15kHz的所述第一同步信号块中的所述S的符号数量比其它子载波间隔下的所述第一同步信号块中的所述S的符号的数量要多。
第八方面,本申请提供了一种通信装置,该装置可以是终端设备,也可以是终端设备内的芯片。该装置可以包括处理单元和收发单元。当该装置是终端设备时,该处理单元可以是处理器,该收发单元可以是收发器;该终端设备还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该终端设备执行第一方面所述的方法。当该装置是终端设备内的芯片时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该终端设备执行第一方面、第二方面、第三方面、第四方面、第六方面和第七方面中任意一个方面所述的方法,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该终端设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第九方面,本申请提供了另一种通信装置,该装置可以是网络设备,也可以是网络设备内的芯片。该装置可以包括处理单元和收发单元。当该装置是网络设备时,该处理单元可以是处理器,该收发单元可以是收发器;该网络设备还可以包括存储单元,该存储单元 可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该网络设备执行第二方面所述的方法。当该装置是网络设备内的芯片时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该网络设备执行第五方面所述的方法,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该网络设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第十方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质中存储了计算机程序,该计算机程序被处理器执行时,使得处理器执行第一方面、第二方面、第三方面、第四方面、第六方面和第七方面中任意一个方面所述的方法。
第十一方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质中存储了计算机程序,该计算机程序被处理器执行时,使得处理器执行第五方面所述的方法。
第十二方面,本申请提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被处理器运行时,使得处理器执行第一方面、第二方面、第三方面、第四方面、第六方面和第七方面中任意一个方面所述的方法。
第十三方面,本申请提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被处理器运行时,使得处理器执行第五方面所述的方法。
附图说明
图1是一种适用于本申请的通信系统的示意图;
图2是本申请提供的一种通信方法的示意图;
图3是本申请提供的一种同步信号块的结构的示意图;
图4是本申请提供的另一种同步信号块的结构的示意图;
图5是本申请提供的另一种通信方法的示意图;
图6是本申请提供的一种同步信号块资源配置的示意图;
图7是本申请提供的一种同步周期配置的示意图;
图8是本申请提供的再一种通信方法的示意图;
图9是本申请提供的一种通信装置的示意图;
图10是本申请提供的一种终端设备的示意图;
图11是本申请提供的一种网络设备的示意图。
具体实施方式
目前,车辆可以通过车辆与车辆(vehicle to vehicle,V2V)、车辆与路边基础设施(vehicle to infrastructure,V2I)、车辆与行人之间的通信(vehicle to pedestrian,V2P)或者车辆与网络(vehicle to network,V2N)等通信方式来及时获取路况信息或接收信息服务,这些通信方式可以统称为V2X通信。以最常见的V2V通信和V2I通信为例,图1是V2V通信和V2I通信的示意性。如图1所示,车辆之间通过V2V通信,可以将自身的车速、行驶方向、具体位置、是否踩了紧急刹车等信息广播给周围车辆,周围车辆的驾驶员通过获取该类信息,可以更好的感知视距外的交通状况,从而对危险状况做出提前预判进而做出避让。而对于V2I通信,除了上述安全信息的交互外,路边基础设施,例如,路侧 单元(road side unit,RSU)可以为车辆提供各类服务信息和数据网络的接入。
车辆还可以与长期演进(long term evolution,LTE)系统中的基站(eNB)、第五代(the fifth generation,5G)通信系统中的基站(gNB)以及全球导航卫星系统(global navigation satellite system,GNSS)进行信息交互,例如,从上述设备获取同步信号。
图1所示的场景仅是举例说明,适用于本申请的通信系统不限于此。车辆、eNB、gNB、RSU和GNSS的数量还可以是其它数量。
此外,本申请中所述的第一设备、第二设备可以是如图1所示的具有通信功能的车辆,也可以是车载电子系统,还可以是手机,还可以是可穿戴电子设备,还可以是其它依据V2X协议或基站到基站之间的中继链路协议进行通信的通信设备。
下面将详细介绍本申请提供的通信方法的示例。
图2示出了本申请提供的一种通信方法。该方法200包括:
S210,第一设备发送指示信息,指示信息用于指示第一设备是否在侧行链路的同步时隙内发送第一同步信号块,同步时隙用于传输同步信号块。
S220,第一设备通过侧行链路的同步时隙发送第一数据。
在本申请中的同步信号块即侧行链路同步信号块(sidelink synchronization signal block,S-SSB),S-SSB包括主侧行链路同步信号(primary sidelink synchronization signal,PSSS)、辅侧行链路同步信号(secondary sidelink synchronization signal,SSSS)和侧行链路物理广播信道(physical sidelink broadcast channel,PSBCH)中的至少一种信息。
发送或接收S-SSB的时隙即同步时隙。本申请不限定同步时隙的时长,例如,同步时隙的时长可以与子载波间隔(subcarrier spacing,SCS)相关,随着子载波间隔的不同,同步时隙的时长也不同。例如,同步时隙的时长可以是1毫秒(ms),0.5ms,0.25ms,0.125ms等。本申请对此不做限定。
第一同步信号块表示一个S-SSB,“第一”仅用于与第二同步信号块进行区分,没有其它的限定含义。第一数据和第一设备也是类似的含义。
第一设备为存在待发送数据(即,第一数据)的通信设备,由于第一数据的发送时间位于同步时隙中,第一设备在发送第一数据前需要指示第一设备是否会在同步时隙中发送第一同步信号块,以便于接收第一数据的接收机(例如,第二设备)确定是否进行接收第一同步信号块的准备,或者以便接收机确定第一数据在同步时隙中开始的符号位置。
例如,当指示信息指示第一设备将在同步时隙中发送第一S-SSB时,并且,第二设备需要在同步时隙内接收第一设备发送的第一S-SSB,则第二设备可以基于第一数据和第一S-SSB在同步时隙内的时域位置做相应的接收准备,该接收准备例如是在收到第一S-SSB之后空出一个符号,并且在空符号(GAP)之后进行自动增益控制(automatic gain control,AGC)处理,然后接收解调相应的数据。
需要说明的是,对于第一设备,当其发射第一数据和第一S-SSB时,处于连续发射状态,不需要进行收发转换,因此,第一设备可以连续发送第一数据和第一S-SSB,不需要空出一个符号。当然,可选地,第一设备也可以选择在第一数据和第一S-SSB之间空出一个符号。
当指示信息指示第一设备不在同步时隙内发送第一S-SSB时,第一设备可以选择在该同步时隙内接收第二S-SSB,第二S-SSB可以是高优先级的同步源发送的同步信号,第一 设备可以基于第二S-SSB进行同步。
由于第一设备此时需要进行收发或发收转换,因此,第一设备在执行接收第二S-SSB和执行发送第一数据这两个步骤之间需要间隔一个空符号。发收转换是指:第一设备发送完信号之后,切换它的双工器,以转换为接收的状态。收发转换是指:第一设备接收完信号之后,切换它的双工器,以转换为发射的状态。这两种方式都有一定的硬件切换的时间,因此需要一个空符号的时长来执行这种操作。
除了收发转换需要一个空符号之外,同步时隙的最后一个符号也是空符号,以便实现发收的转换。例如,第一设备的数据包在一个时隙内能够传输完成,在下一个时隙转为接收状态时即可利用同步时隙的最后一个空符号执行发收转换。因此,无论第一设备在同步时隙内收发什么信息,均不能占用同步时隙的最后一个符号。即,第一数据占用的时域符号为除第一同步信号块占用的符号以及同步时隙中最后一个符号之外的符号。第二设备也需要服从上述约束。
图3和图4示出了本申请提供的两种同步时隙的结构示意图。
图3中,第一设备在前半个时隙内接收第二S-SSB,在后半个时隙内发送第一数据。由于第一设备需要进行收发转换,因此,第二S-SSB和第一数据之间需要间隔一个空符号。
相应地,第二设备也可以在前半个时隙内接收第二S-SSB,在后半个时隙内接收第一数据。由于第二设备需要从不同的发射机接收信号,因此,第二设备在收到第二S-SSB之后也需要空出一个符号进行接收准备。
图4中,第一设备在前半个时隙内发送第一S-SSB,在后半个时隙内发送第一数据。由于第一设备处于连续发送状态,因此,第以S-SSB和第一数据之间不需要间隔一个空符号。
相应地,第二设备也可以在前半个时隙内接收第一S-SSB,在后半个时隙内接收第一数据。由于第二设备从同一个的发射机接收信号,因此,第二设备在收到第二S-SSB之后不需要空出一个符号进行接收准备。
图3和图4仅是举例说明,S-SSB和第一数据占用的符号数量还可以是其它数量,第一数据即可以位于同步时隙的后半部分的符号上,也可以位于同步时隙的前半部分的符号上。
第一设备可以通过显式指示的方式来指示第二设备。例如,通过指示信息的取值来指示第一设备是否在同步时隙内发送第一S-SSB。指示信息可以是一个1比特大小的字段,当该字段的取值为“0”时,表示第一设备不在同步时隙中发送第一S-SSB;当该字段的取值为“1”时,表示第一设备在同步时隙中发送第一S-SSB。上述字段可以是一个独立的字段,也可以使用其它的字段来隐式指示,本申请对此不做限定。
当第一设备发送第一S-SSB时,指示信息可以承载于第一S-SSB的PBSCH中。
上述指示信息还可以是侧行链路控制信息(sidelink control information,SCI),该SCI可以承载于第一数据中;也可以是与第一数据相互独立的一个信息,此时第一数据的传输资源中的全部或部分资源即为SCI的传输资源。
第一设备还可以通过隐式指示的方式来指示第二设备。例如,通过第一数据的解调参考信号(demodulation reference signal,DMRS)的序列来指示第一设备是否在同步时隙内发送第一S-SSB。当DMRS序列为第一序列时,表示第一设备不在同步时隙中发送第一 S-SSB;当DMRS序列为第二序列时,表示第一设备在同步时隙中发送第一S-SSB。
类似地,第一设备还可以通过第一数据的DMRS的频域位置来指示第一设备是否在同步时隙内发送第一S-SSB。当DMRS的频域位置位于第一频段时,表示第一设备不在同步时隙中发送第一S-SSB;当DMRS的频域位置位于第二频段时,表示第一设备在同步时隙中发送第一S-SSB。
当使用DMRS的序列来指示的时候,可选的,可以根据序列的不同的初始值来指示相应的信息。
例如:使用PSBCH的DMRS来指示1比特的2个状态,指示第一设备是否在同步时隙内发送第一S-SSB。指示的方式可以使用PSBCH用来解调的DMRS,可以使用生成DMRS的序列来指示。2个状态分别对应DMRS的两种不同的序列。状态1:DMRS序列1;状态2:DMRS序列2。
可选地,生成不同的DMRS序列的方式可以是使用DMRS序列的初始值。例如,生成DMRS的序列为随机序列,则使用如下方式的任意一种来生成随机序列的初始值(cinit),然后根据cinit来生成DMRS所使用的随机序列。
c init=(2 m*N 1*N 2+N 3+x b)mod(M);
或者,根据以下公式确定所述DMRS序列的序列初始值:
c init=(2 m*(N 1+x b)*N 2+N 3)mod(M);
或者,根据以下公式确定所述DMRS序列的序列初始值:
c init=(2 m*N 1*(N 2+x b)+N 3)mod(M);
其中,x b表示上述需要指示的指示信息,cinit为所述DMRS序列的序列初始值,f(x)为所述第二参数的函数,x表示所述第二参数,mod表示取模运算,m、N1、N2、M以及N3为预设整数。
本申请还提供了另一种通信方法,第一设备可以在同步时隙内发送第一S-SSB,并通过指示信息指示第一设备是否在该同步时隙内发送第一数据。具体实施方式如下所述。
第一设备发送指示信息,所述指示信息用于指示所述第一设备是否在侧行链路的同步时隙内发送第一数据,所述同步时隙用于传输同步信号块;
所述第一设备通过所述侧行链路的同步时隙发送第一同步信号块。
可选地,所述指示信息指示所述第一设备在所述同步时隙内发送所述第一数据,所述第一数据与所述第一同步信号块占用的时域资源相邻。
可选地,所述第一数据占用的时域符号为除所述第一同步信号块占用的符号以及所述同步时隙中最后一个符号之外的符号。
可选地,所述指示信息承载于所述第一同步信号块中。
可选地,所述指示信息为所述第一同步信号块的DMRS序列或所述第一同步信号块的DMRS的频域位置。
可选地,所述指示信息指示所述第一设备在所述同步时隙内不发送所述第一数据。
可选地,所述方法还包括:
所述第一设备在所述同步时隙内接收第二同步信号块,所述第一同步信号块与所述第二同步信号块占用的时域资源间隔一个空符号。
可选地,所述第二同步信号块占用的时域符号为所述同步时隙中除所述第一同步信号块占用的符号、所述空符号以及所述同步时隙中最后一个符号之外的符号。
可选地,所述指示信息在所述第一数据的传输资源上传输,所述指示信息占用的符号与所述第一同步信号块占用的符号间隔至少一个符号。
第一设备可以通过显式指示方式指示第一设备是否在该同步时隙内发送第一数据,也可以通过隐式指示方式指示第一设备是否在该同步时隙内发送第一数据。
例如,通过第一S-SSB的DMRS序列来指示第一设备是否在同步时隙内发送第一数据。当DMRS序列为第一序列时,表示第一设备不在同步时隙中发送第一数据;当DMRS序列为第二序列时,表示第一设备在同步时隙中发送第一数据。
类似地,第一设备还可以通过第一S-SSB的DMRS的频域位置来指示第一设备是否在同步时隙内发送第一数据。当DMRS的频域位置位于第一频段时,表示第一设备不在同步时隙中发送第一数据;当DMRS的频域位置位于第二频段时,表示第一设备在同步时隙中发送第一数据。
图5示出了本申请提供的另一种通信方法。该方法500包括:
S510,第一设备获取第一配置信息和第二配置信息,所述第一配置信息用于配置侧行链路的第一同步信号块资源和第二同步信号块资源,所述第二配置信息用于配置所述侧行链路的数据资源,所述第一配置信息配置的资源与所述第二配置信息配置的资源在时域上部分重叠。
S520,所述第一设备根据第一配置信息和第二配置信息确定目标数据资源,所述目标数据资源属于所述侧行链路的数据资源,且,所述目标数据资源与所述第一配置信息配置的资源在时域上不重合。
S530,所述第一设备在所述目标数据资源上发送或接收侧行链路数据。
可选地,第一配置信息和第二配置信息可以是通过基站指示的。例如,这两个配置信息可以承载于系统消息(system information block,SIB),无线资源控制消息(radio resource control,RRC)或下行控制信息(downlink control information,DCI)中。可选的,第一配置信息和第二配置信息可以是通过预配置的(pre-configured)信息指示的。
上述网络设备可以是图1所示的eNB、gNB或RSU。每个同步信号块资源可以用于传输一个或者多个S-SSB。每个数据资源也可以用于传输一个或者多个数据。在本申请中,若无特别说明,数据指的是除S-SSB之外的信息,例如,业务数据和/或控制信息。
网络设备为第一设备配置的不同侧行链路资源有可能出现重叠情况。由于S-SSB是保证其它数据正常接收的前提条件,因此,S-SSB资源通常具有较高的优先级。当S-SSB资源与数据资源重叠时,第一设备在发送侧行链路数据时需要避免使用重叠资源。即第一设备需要确定不包含重叠资源的目标数据资源,并在目标数据资源上发送或者接收侧行链路数据,从而避免侧行链路数据对S-SSB的影响。
可选地,第一配置信息包括以下信息中的至少一种:
第一同步信号块资源和第二同步信号块资源的周期;
第一同步信号块资源和第二同步信号块资源的时域偏移值;
第一同步信号块资源和第二同步信号块资源在一个周期内的同步信号块数量;
第一同步信号块资源和第二同步信号块资源的频域位置。
上述时域偏移值的单位为时隙和/或符号。例如,偏移量可以指示第一同步信号块的位置为:第2个时隙中从第7个符号开始放置第一同步信号块;也可以是第3个时隙中从第0个符号开始放置第一同步信号块。
可选地,第二配置信息包括以下信息中的至少一种:
数据资源的时域位置指示信息;
数据资源的周期指示信息;
数据资源的频域位置指示信息。
其中时域位置指示信息,指示所述数据资源所在的时隙和/或时隙中的具体符号位置。时域位置的指示信息可以使用位图的方式承载。
图6示出了第一S-SSB资源与第二S-SSB资源的一种配置方法。该两个资源配置在一个时隙内,并且,该两个资源时分复用该时隙。
图7示出了第一S-SSB资源与第二S-SSB资源在一个同步周期中的配置情况。同步周期的时长例如是160毫秒(ms)。
第一设备确定第一S-SSB资源和第二S-SSB资源之后,可以在第一S-SSB资源上接收第一S-SSB,在第二S-SSB资源上发送第二S-SSB;也可以在第一S-SSB资源上发送第一S-SSB,在第二S-SSB资源上接收第二S-SSB。
当第一S-SSB资源和第二S-SSB资源被配置在一个时隙(例如,第一时隙)内时,由于该时隙内剩余的时域资源过少,第一设备确定的目标数据资源则位于另一个时隙(例如,第二时隙)中,从而可以提高侧行链路数据的码率,提高传输可靠性。
当第一S-SSB资源和第二S-SSB资源被配置在两个时隙(例如,第一时隙和第二时隙)内时,该时隙内剩余的时域资源还能够传输侧行链路数据,因此,第一设备确定的目标数据资源则可以位于第一时隙和/或第二时隙,从而可以提高资源利用率,且减少第一设备传输数据时的时延。
第一设备可以根据侧行链路数据的信息量确定目标数据资源的位置。当信息量较小时,可以确定目标数据资源位于第一时隙和/或第二时隙;当信息量较大时,可以确定目标数据资源位于第三时隙内。
例如,当侧行链路数据为控制信息时,第一设备可以在第一时隙和/或第二时隙内传输(发送和/或接收)控制信息;当侧行链路数据为业务数据时,第一设备可以在第三时隙内传输(发送和/或接收)业务数据。
应理解,方法500可以与方法200结合使用。例如,第一设备确定第一S-SSB资源和第二S-SSB资源之后,若同步时隙中还可以发送第一数据,例如,第一S-SSB资源和第二S-SSB资源不在一个时隙中,则第一设备可以执行方法200,向第二设备发送指示信息,指示第一S-SSB资源所在的同步时隙内有无同步信号块传输,和/或,指示第二S-SSB资源所在的同步时隙内有无同步信号块传输。
图8示出了本申请提供的再一种通信方法。该方法800包括:
S810,第一设备获取同步资源配置信息,所述同步资源配置信息用于配置侧行链路的第一同步资源和第二同步资源,所述第一同步资源和所述第二同步资源占用同步时隙中的部分符号。
S820,所述第一设备在所述第一同步资源上发送所述第一同步信号块,以及,在所述 第二同步资源上接收所述第二同步信号块;或者,所述第一设备在所述第一同步资源上接收所述第一同步信号块,以及,在所述第二同步资源上发送所述第二同步信号块。
当第一设备不发送数据时,网络设备无需为第一设备配置数据资源,这样,第一设备可以直接在同步资源上发送S-SSB。
上述同步资源配置信息可以是预设的信息,例如,通信协议预配置的信息。同步资源配置信息也可以是第一设从网络设备接收的信息,例如,网络设备通过SIB,RRC或DCI信令为第一设备配置了第一同步资源和第二同步资源,该SIB,RRC或DCI信令承载了同步资源配置信息。
可选地,所述同步资源配置信息包括以下中的至少一种:
所述同步信号的周期;
所述同步信号的时域偏移值;
所述同步信号在同一个周期内的数量;
所述同步信号的频域位置。
可选地,所述同步信号的时域偏移值的单位为时隙和/或符号。例如,偏移量可以是1个时隙或1个符号,也可以是3个时隙加5个符号。
可选地,所述同步资源配置信息还用于配置所述第一同步资源位于所述同步时隙的前半部分,以及,所述第二同步资源位于所述同步时隙的后半部分。
可选地,本说明书中,同步时隙的前半部分是指时隙中从第1个符号开始占用的多个用于同步信号块的符号。同步时隙的后半部分是指时隙中从时隙中间的某个符号开始到时隙最后的同步信号块占用的多个符号。
可选地,在方法800中,同步资源配置信息配置的同步资源还具有以下特征:
对于不同的子载波间隔,所述第一同步资源可配置不同数量的同步信号块;和/或
对于不同的子载波间隔,所述第二同步资源可配置不同数量的同步信号块。
可选地,其中可配置的同步信号块的数量可以是最大可用的同步信号块的数量,也可以是实际配置用于使用的同步信号块的数量。
例如,所述同步信号的子载波间隔为15kHz,所述第一同步资源和所述第二同步资源均承载一个S-SSB;或,
所述同步信号占用的频域资源的子载波间隔为30kHz,所述第一同步资源和所述第二同步资源均承载两个个S-SSB;或,
所述同步信号占用的频域资源的子载波间隔为60kHz,所述第一同步资源和所述第二同步资源均承载四个S-SSB;或,
所述同步信号占用的频域资源的子载波间隔为120kHz,所述第一同步资源和所述第二同步资源均承载八个S-SSB。
应理解,方法800可以与方法200结合使用。例如,第一设备确定第一S-SSB资源和第二S-SSB资源之后,若同步时隙中还可以发送第一数据,则第一设备可以执行方法200,向第二设备发送指示信息,指示第一S-SSB资源所在的同步时隙内有无同步信号块传输,和/或,指示第二S-SSB资源所在的同步时隙内有无同步信号块传输。
上文主要从终端设备的角度描述了本申请提供的通信方法,网络设备的处理过程与终端设备的处理过程具有对应关系,例如,终端设备从网络设备接收配置信息,意味着网络 设备发送了该配置信息;终端设备向网络设备发送信息,意味着网络设备从终端设备接收该信息。因此,即使上文个别地方未明确写明网络设备的处理过程,本领域技术人员也可以基于终端设备的处理过程清楚地了解网络设备的处理过程。
上文详细描述了本申请提供的通信方法,下面将介绍本申请提供的新的同步信号块的示例。需要说明的是,以上各个方法中的同步信号块均可由下文所述的新同步信号块替代。例如,第一设备可以生成下述同步信号块,并发送该同步信号块。相应地,第二设备可以接收下述同步信号块,并从该同步信号块中获取时隙号和系统帧号。
本申请提供的新同步信号块占用的时域资源包括至少一个PSSS符号、至少一个SSSS符号和至少两个PSBCH符号。其中,PSSS符号即承载PSSS的符号,可以简称为P符号或P;SSSS符号即承载SSSS的符号,可以简称为S符号或S;PSBCH符号即承载PSBCH的符号,可以简称为B符号或B。
为了便于理解,将新同步信号块称为第一同步信号块,下文所述的第一同步信号块若无特别说明,均指新同步信号块。
可选地,所述第一同步信号块占用的时域资源的第一个符号为所述B符号,和/或,所述第一同步信号块占用的时域资源的最后一个符号为空符号。
可选地,所述B符号的数量大于或等于所述P符号的数量。
可选地,所述P符号和所述S符号相邻,且,所述P符号和所述S符号的排列顺序为下列排列顺序中的一种:
{P-S},{P-P-S-S},{P-S-P-S},{P-P-S-S-S},{P-P-P-S-S-S},其中“-”表示时2个符号时域相邻。
可选地,所述第一同步信号块占用的频域资源的子载波间隔为15kHz,所述第一同步信号块所在的同步周期内仅存在所述第一同步信号块;或者,
所述第一同步信号块占用的频域资源的子载波间隔为30kHz,所述第一同步信号块所在的同步周期内还存在另外一个同步信号块;或者,
所述第一同步信号块占用的频域资源的子载波间隔为60kHz,所述第一同步信号块所在的同步周期内还存在另外三个同步信号块;或者,
所述第一同步信号块占用的频域资源的子载波间隔为120kHz,所述第一同步信号块所在的同步周期内还存在另外七个同步信号块。
可选地,所述第一同步信号块所在的同步周期内还存在第二同步信号块,其中,所述第一同步信号块与所述第二同步信号块具有以下四种特征中的至少一种:
所述第一同步信号块占用的时域资源中B符号与所述第二同步信号块占用的时域资源中B符号的数量不同;
所述第一同步信号块占用的时域资源中P符号与S符号之间的间隔与所述第二同步信号块占用的时域资源中P符号与S符号之间的间隔不同;
所述第一同步信号块占用的时域资源中P符号使用的序列与所述第二同步信号块占用的时域资源中P符号使用的序列不同;
所述第一同步信号块占用的时域资源中S符号使用的序列与所述第二同步信号块占用的时域资源中S符号使用的序列不同。
可选地,所述第一同步信号块与所述第二同步信号块位于同一个时隙中,所述第一同 步信号块与所述第二同步信号块时分复用所述时隙。
上述方案可以方便接收机区分同步信号块的来源。
可选地,所述第一同步信号块占用的时域资源包括1个P符号,1个S符号,4个或5个B符号。
可选地,所述第一同步信号块占用的时域资源中的符号排列顺序为下列排列顺序中的一种:
{B-P-B-B-B-S-B},
{B-P-B-B-B-S-G},
{B-P-B-B-B-S},
{B-P-B-B-S-B},
{B-P-B-B-S-G}
其中,G表示空符号,“-”表示2个符号时域相邻。
可选地,所述第一同步信号块占用的时域资源包括2个P符号,2个S符号,4个或5个B符号。
可选地,所述第一同步信号块占用的时域资源中的符号排列顺序为下列排列顺序中的一种:
{B-P-B-B-B-S-B},
{B-P-B-B-B-S-G},
{B-P-S-B-B-B-B},
{B-P-S-B-B-B-G},
{B-P-B-B-B-S},
{B-P-B-B-S-B},
{B-P-B-B-S-G},
{B-P-S-B-B-B},
{B-P-S-B-B-G},
其中,G表示空符号,“-”表示2个符号时域相邻。
可选地,所述第一同步信号块占用的时域资源包括2个或3个P符号,2个或3个S符号,6个、7个或8个B符号。
包含8个B符号的第一同步信号块可以用于PSBCH带宽为20PRB的场景。
可选地,所述第一同步信号块占用的时域资源中的符号排列顺序为下列排列顺序中的一种:
{B-P-P-B-B-B-B-S-S-B},
{B-P-P-B-B-B-B-S-S-G},
{B-P-P-S-S-B-B-B-B-B},
{B-P-P-S-S-B-B-B-B-G},
{B-P-P-B-B-B-B-B-B-S-S-B},
{B-P-P-B-B-B-B-B-B-S-S-G},
{B-P-P-S-S-B-B-B-B-B-B-B},
{B-P-P-S-S-B-B-B-B-B-B-G},
其中,G表示空符号,“-”表示2个符号时域相邻。
可选地,所述第一同步信号块的中的所述P、所述S或所述B占用的频域资源块的数量为以下中的一种:11,12或20。
可选地,所述第一同步信号块的P和S的序列长度均为127。
可选地,第一设备基于CP-OFDM方式生成所述第一同步信号块的控制信息,其中,所述第一同步信号块的控制信息所在的符号上存在频域等间隔的解调参考信号DMRS。
可选地,所述同步信号块的CP类型为正常CP或扩展CP。
可选地,所述第一同步信号块所在的时隙还存在侧行链路控制信息,所述侧行链路控制信息与所述第一同步信号块时分复用所述第一同步信号块所在的时隙,所述侧行链路控制信息包括用于指示传输的控制信息或用于指示反馈的控制信息。
可选地,所述第一同步信号块的结构在不同子载波间隔下不同,所述第一同步信号块的结构包括所述P、所述S和所述B符号的数量以及相对排列顺序。
可选地,所述第一同步信号块的结构在不同子载波间隔下不同包括:
子载波间隔为15kHz的所述第一同步信号块中的所述P的符号数量比其它子载波间隔下的所述第一同步信号块中的所述P的符号的数量要多;和/或
子载波间隔为15kHz的所述第一同步信号块中的所述S的符号数量比其它子载波间隔下的所述第一同步信号块中的所述S的符号的数量要多;和/或
子载波间隔为15kHz的所述第一同步信号块中的所述S的符号数量比其它子载波间隔下的所述第一同步信号块中的所述S的符号的数量要多。
上文详细介绍了本申请提供的通信方法的示例。可以理解的是,通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请可以根据上述方法示例对通信装置进行功能单元的划分,例如,可以将各个功能划分为各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图9示出了本申请提供的一种通信装置的结构示意图。通信装置900可用于实现上述方法实施例中描述的方法。该通信装置900可以是芯片、网络设备或终端设备。
通信装置900包括一个或多个处理器901,该一个或多个处理器901可支持通信装置900实现图3所对应方法实施例中的方法。处理器901可以是通用处理器或者专用处理器。例如,处理器901可以是中央处理器(central processing unit,CPU)或基带处理器。基带处理器可以用于处理通信数据(例如,上文所述的功耗节省信号),CPU可以用于对通信装置(例如,网络设备、终端设备或芯片)进行控制,执行软件程序,处理软件程序的数据。通信装置900还可以包括收发单元905,用以实现信号的输入(接收)和输出(发送)。
例如,通信装置900可以是芯片,收发单元905可以是该芯片的输入和/或输出电路,或者,收发单元905可以是该芯片的通信接口,该芯片可以作为终端设备或网络设备或其它无线通信设备的组成部分。
通信装置900中可以包括一个或多个存储器902,其上存有程序904,程序904可被处理器901运行,生成指令903,使得处理器901根据指令903执行上述方法实施例中描述的方法。可选地,存储器902中还可以存储有数据。可选地,处理器901还可以读取存储器902中存储的数据,该数据可以与程序904存储在相同的存储地址,该数据也可以与程序904存储在不同的存储地址。
处理器901和存储器902可以单独设置,也可以集成在一起,例如,集成在单板或者系统级芯片(system on chip,SOC)上。
通信装置900还可以包括收发单元905以及天线906。收发单元905可以称为收发机、收发电路或者收发器,用于通过天线906实现通信装置的收发功能。
在一种可能的设计中,处理器901用于通过收发单元905以及天线906执行:
发送指示信息,所述指示信息用于指示第一设备是否在侧行链路的同步时隙内发送第一同步信号块,所述同步时隙用于传输同步信号块;
通过所述侧行链路的同步时隙发送第一数据。
在另一种可能的设计中,处理器901用于通过收发单元905以及天线906执行:
从第一设备接收指示信息,所述指示信息用于指示所述第一设备是否在侧行链路的同步时隙内发送第一同步信号块,所述同步时隙用于传输同步信号块;
通过所述侧行链路的同步时隙从所述第一设备接收第一数据。
在另一种可能的设计中,处理器901用于通过收发单元905以及天线906执行:
获取第一配置信息和第二配置信息,所述第一配置信息用于配置侧行链路的第一同步信号块资源和第二同步信号块资源,所述第二配置信息用于配置所述侧行链路的数据资源,所述第一配置信息配置的资源与所述第二配置信息配置的资源在时域上部分重叠;
根据第一配置信息和第二配置信息确定目标数据资源,所述目标数据资源属于所述侧行链路的数据资源,且,所述目标数据资源与所述第一配置信息配置的资源在时域上不重合;
在所述目标数据资源上发送或接收侧行链路数据。
在另一种可能的设计中,处理器901用于通过收发单元905以及天线906执行:
获取同步资源配置信息,所述同步资源配置信息用于配置侧行链路的第一同步资源和第二同步资源,所述第一同步资源和所述第二同步资源占用同步时隙中的部分符号;
在所述第一同步资源上发送所述第一同步信号块,以及,在所述第二同步资源上接收所述第二同步信号块;或者,在所述第一同步资源上接收所述第一同步信号块,以及,在所述第二同步资源上发送所述第二同步信号块。
在另一种可能的设计中,处理器901用于通过收发单元905以及天线906执行:
生成同步资源配置信息,所述同步资源配置信息用于配置侧行链路的第一同步资源和第二同步资源,所述第一同步资源和所述第二同步资源占用同步时隙中的部分符号。
发送所述同步资源配置信息。
在另一种可能的设计中,处理器901用于通过收发单元905以及天线906执行:
生成第一同步信号块,所述第一同步信号块占用的时域资源包括至少一个主同步信号P符号、至少一个从同步信号S符号以及至少两个控制信息B符号;
发送所述第一同步信号块。
在另一种可能的设计中,处理器901用于通过收发单元905以及天线906执行:
接收第一同步信号块,所述第一同步信号块占用的时域资源包括至少一个主同步信号P符号、至少一个从同步信号S符号以及至少两个控制信息B符号;
根据所述第一同步信号块获取时隙号和系统帧号。
上述各个可能的设计的具体实现方式可以参见上述方法实施例中的相关描述。
应理解,上述方法实施例的各步骤可以通过处理器901中的硬件形式的逻辑电路或者软件形式的指令完成。处理器901可以是CPU、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件,例如,分立门、晶体管逻辑器件或分立硬件组件。
本申请还提供了一种计算机程序产品,该计算机程序产品被处理器901执行时实现本申请中任一方法实施例所述的通信方法。
该计算机程序产品可以存储在存储器902中,例如是程序904,程序904经过预处理、编译、汇编和链接等处理过程最终被转换为能够被处理器901执行的可执行目标文件。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现本申请中任一方法实施例所述的通信方法。该计算机程序可以是高级语言程序,也可以是可执行目标程序。
该计算机可读存储介质例如是存储器902。存储器902可以是易失性存储器或非易失性存储器,或者,存储器902可以同时包括易失性存储器和非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
在通信装置900为终端设备的情况下,图10示出了本申请提供的一种终端设备的结构示意图。该终端设备1000可适用于图1所示的系统中,实现上述方法实施例中第一设备或第二设备的功能。为了便于说明,图10仅示出了终端设备的主要部件。
如图10所示,终端设备1000包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及用于对整个终端设备进行控制。例如,处理器通过天线和控制电路接收功耗节省信号。存储器主要用于存储程序和数据,例如存储通信协议和待发送数据。控制电路主要用于基带信号与射频信号的转换以及 对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置例如是触摸屏或键盘,主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储器中的程序,解释并执行该程序所包含的指令,处理程序中的数据。当需要通过天线发送信息时,处理器对待发送的信息进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后得到射频信号,并将射频信号通过天线以电磁波的形式向外发送。当承载信息的电磁波(即,射频信号)到达终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为信息并对该信息进行处理。
本领域技术人员可以理解,为了便于说明,图10仅示出了一个存储器和一个处理器。在实际的终端设备中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等,本申请对此不做限定。
作为一种可选的实现方式,图10中的处理器可以集成基带处理器和CPU的功能,本领域技术人员可以理解,基带处理器和CPU也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个CPU以增强其处理能力,终端设备的各个部件可以通过各种总线连接。基带处理器也可以被称为基带处理电路或者基带处理芯片。CPU也可以被称为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以程序的形式存储在存储器中,由处理器执行存储器中的程序以实现基带处理功能。
在本申请中,可以将具有收发功能的天线和控制电路视为终端设备1000的收发单元1001,用于支持终端设备实现方法实施例中的接收功能,或者,用于支持终端设备实现方法实施例中的发送功能。将具有处理功能的处理器视为终端设备1000的处理单元1002。如图10所示,终端设备1000包括收发单元1001和处理单元1002。收发单元也可以称为收发器、收发机、收发装置等。可选地,可以将收发单元1001中用于实现接收功能的器件视为接收单元,将收发单元1001中用于实现发送功能的器件视为发送单元,即收发单元1001包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理器1002可用于执行存储器存储的程序,以控制收发单元1001接收信号和/或发送信号,完成上述方法实施例中终端设备的功能。作为一种实现方式,收发单元1001的功能可以考虑通过收发电路或者收发专用芯片实现。
在通信装置900为网络设备的情况下,图11是本申请提供的一种网络设备的结构示意图,该网络设备例如可以为基站。如图11所示,该基站可应用于如图1所示的系统中,实现上述方法实施例中网络设备的功能。基站1100可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1101和至少一个基带单元(baseband unit,BBU)1102。其中,BBU1102可以包括分布式单元(distributed unit,DU),也可以包括DU和集中单元(central unit,CU)。
RRU1101可以称为收发单元、收发机、收发电路或者收发器,其可以包括至少一个天线11011和射频单元11012。RRU1101主要用于射频信号的收发以及射频信号与基带信 号的转换,例如用于支持基站实现方法实施例中的发送功能和接收功能。BBU1102主要用于进行基带处理,对基站进行控制等。RRU1101与BBU1102可以是物理上设置在一起的,也可以物理上分离设置的,即分布式基站。
BBU1102也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如,BBU1102可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
BBU1102可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(例如,长期演进(long term evolution,LTE)网),也可以分别支持不同接入制式的无线接入网(如LTE网和NR网)。BBU1102还包括存储器11021和处理器11022,存储器11021用于存储必要的指令和数据。例如,存储器11021存储上述方法实施例中的功耗节省信号。处理器11022用于控制基站进行必要的动作,例如,用于控制基站执行上述方法实施例中的操作流程。存储器11021和处理器11022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
本领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的方法实施例的一些特征可以忽略,或不执行。以上所描述的装置实施例仅仅是示意性的,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,多个单元或组件可以结合或者可以集成到另一个系统。另外,各单元之间的耦合或各个组件之间的耦合可以是直接耦合,也可以是间接耦合,上述耦合包括电的、机械的或其它形式的连接。
应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (30)

  1. 一种通信方法,其特征在于,包括:
    第一设备发送指示信息,所述指示信息用于指示所述第一设备是否在侧行链路的同步时隙内发送第一同步信号块,所述同步时隙用于传输同步信号块;
    所述第一设备通过所述侧行链路的同步时隙发送第一数据。
  2. 根据权利要求1所述的方法,其特征在于,所述指示信息指示所述第一设备在所述同步时隙内发送所述第一同步信号块,所述第一数据与所述第一同步信号块占用的时域资源相邻。
  3. 根据权利要求2所述的方法,其特征在于,所述第一数据占用的时域符号为除所述第一同步信号块占用的符号以及所述同步时隙中最后一个符号之外的符号。
  4. 根据权利要求2或3所述的方法,其特征在于,所述指示信息承载于所述第一数据中。
  5. 根据权利要求4所述的方法,其特征在于,所述指示信息为所述第一数据的解调参考信号DMRS序列或所述第一数据的DMRS的频域位置。
  6. 根据权利要求1所述的方法,其特征在于,所述指示信息指示所述第一设备在所述同步时隙内不发送所述第一同步信号块。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述第一设备在所述同步时隙内接收第二同步信号块,所述第一数据与所述第二同步信号块占用的时域资源间隔一个空符号。
  8. 根据权利要求7所述的方法,其特征在于,所述第一数据占用的时域符号为所述同步时隙中除所述第二同步信号块占用的符号、所述空符号以及所述同步时隙中最后一个符号之外的符号。
  9. 根据权利要求1、2、3、6、7、8中的任一项所述的方法,其特征在于,所述指示信息在所述第一数据的传输资源上传输,所述指示信息占用的符号与所述第一同步信号块占用的符号间隔至少一个符号。
  10. 一种通信方法,其特征在于,包括:
    第二设备从第一设备接收指示信息,所述指示信息用于指示所述第一设备是否在侧行链路的同步时隙内发送第一同步信号块,所述同步时隙用于传输同步信号块;
    所述第二设备通过所述侧行链路的同步时隙从所述第一设备接收第一数据。
  11. 根据权利要求10所述的方法,其特征在于,所述指示信息指示所述第一设备在所述同步时隙内发送所述第一同步信号块,所述第一数据与所述第一同步信号块占用的时域资源相邻。
  12. 根据权利要求11所述的方法,其特征在于,所述第一数据占用的时域符号为除所述第一同步信号块占用的符号以及所述同步时隙中最后一个符号之外的符号。
  13. 根据权利要求11或12所述的方法,其特征在于,所述指示信息承载于所述第一数据中。
  14. 根据权利要求13所述的方法,其特征在于,所述指示信息为所述第一数据的解 调参考信号DMRS序列或所述第一数据的DMRS的频域位置。
  15. 根据权利要求10所述的方法,其特征在于,所述指示信息指示所述第一设备在所述同步时隙内不发送所述第一同步信号块。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    所述第二设备在所述同步时隙内接收第二同步信号块,所述第一数据与所述第二同步信号块占用的时域资源间隔一个空符号。
  17. 根据权利要求16所述的方法,其特征在于,所述第一数据占用的时域符号为所述同步时隙中除所述第二同步信号块占用的符号、所述空符号以及所述同步时隙中最后一个符号之外的符号。
  18. 根据权利要求10、11、12、15、16、17中的任一项所述的方法,其特征在于,所述指示信息在所述第一数据的传输资源上传输,所述指示信息占用的符号与所述第一同步信号块占用的符号间隔至少一个符号。
  19. 一种通信方法,其特征在于,包括:
    第一设备获取第一配置信息和第二配置信息,所述第一配置信息用于配置侧行链路的第一同步信号块资源和第二同步信号块资源,所述第二配置信息用于配置所述侧行链路的数据资源,所述第一配置信息配置的资源与所述第二配置信息配置的资源在时域上部分重叠;
    所述第一设备根据第一配置信息和第二配置信息确定目标数据资源,所述目标数据资源属于所述侧行链路的数据资源,且,所述目标数据资源与所述第一配置信息配置的资源在时域上不重合;
    所述第一设备在所述目标数据资源上发送或接收侧行链路数据。
  20. 根据权利要求19所述的方法,其特征在于,
    所述第一同步信号块资源用于发送第一同步信号块,所述第二同步信号块资源用于接收第二同步信号块;或者,
    所述第一同步信号块资源用于接收第一同步信号块,所述第二同步信号块资源用于发送第二同步信号块。
  21. 根据权利要求19或20所述的方法,其特征在于,所述第一同步信号块资源和所述第二同步信号块资源位于第一时隙内,所述目标数据资源位于第二时隙内。
  22. 根据权利要求19或20所述的方法,其特征在于,所述第一同步信号块资源位于第一时隙内,所述第二同步信号块资源位于第二时隙内,所述目标数据资源包括所述第一时隙的部分符号和/或所述第二时隙的部分符号。
  23. 根据权利要求22所述的方法,其特征在于,所述侧行链路数据包括控制信息和业务数据,
    所述控制信息的时域资源位于所述第一时隙和/或所述第二时隙内,所述业务数据的时域资源位于第三时隙内;或者,
    所述业务数据的时域资源位于所述第一时隙和/或所述第二时隙内,所述控制信息的时域资源位于第三时隙内。
  24. 根据权利要求19至23中任一项所述的方法,其特征在于,所述第一配置信息包括以下信息中的至少一种:
    所述第一同步信号块资源和所述第二同步信号块资源的周期;
    所述第一同步信号块资源和所述第二同步信号块资源的时域偏移值;
    所述第一同步信号块资源和所述第二同步信号块资源在一个周期内的同步信号块数量;
    所述第一同步信号块资源和所述第二同步信号块资源的频域位置。
  25. 根据权利要求24所述的方法,其特征在于,所述时域偏移值的单位为时隙和/或符号。
  26. 根据权利要求19至25中任一项所述的方法,其特征在于,所述第二配置信息包括以下信息中的至少一种:
    所述数据资源的时域位置指示信息;
    所述数据资源的周期指示信息;
    所述数据资源的频域位置指示信息。
  27. 一种通信设备,其特征在于,包括处理单元和发送单元,所述处理单元用于控制所述发送单元执行权利要求1-9中任一项所述的方法。
  28. 一种通信设备,其特征在于,包括处理单元和发送单元,所述处理单元用于控制所述发送单元执行权利要求10-18中任一项所述的方法。
  29. 一种通信设备,其特征在于,包括处理单元和发送单元,所述处理单元用于控制所述发送单元执行权利要求19-26中任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储了计算机程序,当所述计算机程序被处理器执行时,使得所述处理器执行权利要求1-9中任一项所述的方法,或者,使得所述处理器执行权利要求10-18中任一项所述的方法,或者,使得所述处理器执行权利要求19-26中任一项所述的方法。
PCT/CN2020/073365 2019-02-15 2020-01-21 通信方法和通信装置 WO2020164374A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2021009748A MX2021009748A (es) 2019-02-15 2020-01-21 Método de comunicación y aparato de comunicaciónes.
EP20756122.6A EP3923641A4 (en) 2019-02-15 2020-01-21 COMMUNICATION METHOD AND COMMUNICATION DEVICE
BR112021015925-8A BR112021015925A2 (pt) 2019-02-15 2020-01-21 Método de comunicação e aparelho de comunicações
KR1020217029866A KR102655167B1 (ko) 2019-02-15 2020-01-21 통신 방법 및 통신 디바이스
JP2021547521A JP7259064B2 (ja) 2019-02-15 2020-01-21 通信方法および通信装置
US17/402,150 US20210377889A1 (en) 2019-02-15 2021-08-13 Communication Method and Communications Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910117982.5A CN111586623A (zh) 2019-02-15 2019-02-15 通信方法和通信装置
CN201910117982.5 2019-02-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/402,150 Continuation US20210377889A1 (en) 2019-02-15 2021-08-13 Communication Method and Communications Apparatus

Publications (1)

Publication Number Publication Date
WO2020164374A1 true WO2020164374A1 (zh) 2020-08-20

Family

ID=72045476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073365 WO2020164374A1 (zh) 2019-02-15 2020-01-21 通信方法和通信装置

Country Status (8)

Country Link
US (1) US20210377889A1 (zh)
EP (1) EP3923641A4 (zh)
JP (1) JP7259064B2 (zh)
KR (1) KR102655167B1 (zh)
CN (2) CN112672309B (zh)
BR (1) BR112021015925A2 (zh)
MX (1) MX2021009748A (zh)
WO (1) WO2020164374A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200120533A (ko) * 2019-04-12 2020-10-21 한양대학교 산학협력단 사이드링크 통신을 수행하는 방법 및 그 장치
WO2020209657A1 (ko) * 2019-04-12 2020-10-15 한양대학교 산학협력단 사이드링크 통신을 수행하는 방법 및 그 장치
CN117178510A (zh) * 2021-03-31 2023-12-05 华为技术有限公司 一种资源调度方法、通信装置与终端设备
CN115250524A (zh) * 2021-04-25 2022-10-28 维沃移动通信有限公司 同步资源配置方法、装置、用户设备及存储介质
CN117675148A (zh) * 2022-09-08 2024-03-08 华为技术有限公司 资源确定方法和装置
WO2024065384A1 (en) * 2022-09-29 2024-04-04 Lenovo (Beijing) Ltd. On-demand ssb transmission

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107027166A (zh) * 2016-02-01 2017-08-08 电信科学技术研究院 一种节点的同步信息的发送方法、装置及节点
CN108419295A (zh) * 2017-02-10 2018-08-17 华为技术有限公司 一种终端与终端之间通信的方法、网络侧设备和终端
CN108668371A (zh) * 2017-03-28 2018-10-16 中兴通讯股份有限公司 数据传输方法及装置,终端
US20190045465A1 (en) * 2017-03-24 2019-02-07 Lg Electronics Inc. Method for transmitting sidelink synchronization signal in wireless communication system and user equipment using same

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8526347B2 (en) * 2010-06-10 2013-09-03 Qualcomm Incorporated Peer-to-peer communication with symmetric waveform for downlink and uplink
US9591660B2 (en) * 2012-04-03 2017-03-07 Lg Electronics Inc. Communication method taking carrier type into consideration, and apparatus therefor
US20170019915A1 (en) * 2015-07-17 2017-01-19 Sharp Laboratories Of America, Inc. User equipments, base stations and methods for license assisted access (laa)
WO2017057987A1 (ko) * 2015-10-01 2017-04-06 엘지전자 주식회사 D2d 통신에서의 참조신호 송신 방법 및 단말
CN107295626B (zh) * 2016-04-01 2022-02-08 北京三星通信技术研究有限公司 一种v2x同步信号和psbch的发送方法和设备
US10805893B2 (en) * 2016-08-19 2020-10-13 Samsung Electronics Co., Ltd System and method for providing universal synchronization signals for new radio
US20180254797A1 (en) * 2017-03-06 2018-09-06 Qualcomm Incorporated System and method for detection of cell-specific reference signals
US10673552B2 (en) * 2017-04-14 2020-06-02 Qualcomm Incorporated Synchronization signal block designs for wireless communication
CN109151985A (zh) * 2017-06-16 2019-01-04 电信科学技术研究院 一种同步信号块SSblock的发送方法、基站以及终端
CN109121198A (zh) * 2017-06-23 2019-01-01 维沃移动通信有限公司 一种非授权频段下的信息传输方法及网络设备
KR20190016767A (ko) * 2017-08-09 2019-02-19 삼성전자주식회사 무선 통신 시스템에서 pdsch를 전송하는 방법 및 장치
US11457472B2 (en) * 2017-12-18 2022-09-27 Samsung Electronics Co., Ltd. Method and apparatus for initial access block on stand-alone NR unlicensed spectrum
JPWO2019234901A1 (ja) * 2018-06-07 2021-07-01 株式会社Nttドコモ ユーザ装置及び基地局装置
US10834708B2 (en) * 2018-07-06 2020-11-10 Samsung Electronics Co., Ltd. Method and apparatus for NR sidelink SS/PBCH block
CN112640346A (zh) * 2018-08-09 2021-04-09 康维达无线有限责任公司 用于5g ev2x的侧链路上的广播、多播和单播
EP3821658A1 (en) * 2018-08-09 2021-05-19 Convida Wireless, Llc Resource management for 5g ev2x
CN112567673A (zh) * 2018-08-09 2021-03-26 康维达无线有限责任公司 用于nr v2x的波束赋形和分组
US11856537B2 (en) * 2018-08-10 2023-12-26 Beijing Xiaomi Mobile Software Co., Ltd. Method, apparatus, vehicle-mounted device and terminal for transmitting and receiving reference signal
RU2759426C1 (ru) * 2018-08-10 2021-11-12 Бейдзин Сяоми Мобайл Софтвэр Ко., Лтд. Способ и устройство для передачи опорного сигнала, способ и устройство для приема опорного сигнала, устройство, установленное на транспортном средстве, и терминал
US20210360549A1 (en) * 2018-09-20 2021-11-18 Lg Electronics Inc. Method and terminal for transmitting and receiving signal in wireless communication system
CA3113097A1 (en) * 2018-09-27 2020-04-02 Ntt Docomo, Inc. User equipment and communication method
US11991000B2 (en) * 2018-09-28 2024-05-21 Lg Electronics Inc. Method and device for transmitting preemptive message related to sidelink communication in NR V2X
US11963114B2 (en) * 2018-10-25 2024-04-16 Lg Electronics Inc. Method and apparatus for determining whether to transmit synchronization information in NR V2X
WO2020096693A1 (en) * 2018-11-08 2020-05-14 Convida Wireless, Llc Sidelink transmit power control for new radio v2x
WO2020136852A1 (ja) * 2018-12-27 2020-07-02 株式会社Nttドコモ ユーザ装置、及び通信装置
WO2020145268A1 (en) * 2019-01-10 2020-07-16 Sharp Kabushiki Kaisha Synchronization for v2x communication
JP7278391B2 (ja) * 2019-01-21 2023-05-19 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてサイドリンクharqフィードバックを送信する方法
JP7003245B2 (ja) * 2019-01-23 2022-01-20 エルジー エレクトロニクス インコーポレイティド Nr v2xのサイドリンク制御情報の送信
WO2020157986A1 (ja) * 2019-02-01 2020-08-06 株式会社Nttドコモ ユーザ装置及び基地局装置
US20220140967A1 (en) * 2019-02-14 2022-05-05 Apple Inc. Design of nr sidelink synchronization signal for enhanced vehicle-to-everything use cases with optimized receiver processing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107027166A (zh) * 2016-02-01 2017-08-08 电信科学技术研究院 一种节点的同步信息的发送方法、装置及节点
CN108419295A (zh) * 2017-02-10 2018-08-17 华为技术有限公司 一种终端与终端之间通信的方法、网络侧设备和终端
US20190045465A1 (en) * 2017-03-24 2019-02-07 Lg Electronics Inc. Method for transmitting sidelink synchronization signal in wireless communication system and user equipment using same
CN108668371A (zh) * 2017-03-28 2018-10-16 中兴通讯股份有限公司 数据传输方法及装置,终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3923641A4
VIVO: "NR sidelink synchronization mechanism", 3GPP TSG RAN WG1 MEETING #95, R1-1812308, 16 September 2018 (2018-09-16), XP051478497, DOI: 20200317180557A *

Also Published As

Publication number Publication date
CN112672309B (zh) 2022-01-11
KR102655167B1 (ko) 2024-04-04
EP3923641A1 (en) 2021-12-15
CN112672309A (zh) 2021-04-16
CN111586623A (zh) 2020-08-25
KR20210126734A (ko) 2021-10-20
EP3923641A4 (en) 2022-03-30
BR112021015925A2 (pt) 2021-10-05
US20210377889A1 (en) 2021-12-02
JP7259064B2 (ja) 2023-04-17
JP2022521185A (ja) 2022-04-06
MX2021009748A (es) 2021-11-04

Similar Documents

Publication Publication Date Title
WO2020164374A1 (zh) 通信方法和通信装置
CN110381474B (zh) 一种通信方法、通信装置及计算机存储介质
CN103069899A (zh) 配置用于在蜂窝网络下的设备到设备通信的上行链路和下行链路划分模式
CN111586872A (zh) 基于多个下行控制信息的传输方法、设备及系统、存储介质
US20230156670A1 (en) Partial sensing method and device for device-to-device communication in wireless communication system
CN111866814A (zh) 通信方法和装置
WO2021062716A1 (zh) 一种通信方法及装置
EP3855827B1 (en) Wireless communication method, terminal device and network device
CN115175143A (zh) 一种通信方法及装置
CN112399564B (zh) 一种侧行链路通信方法及装置
WO2019061366A1 (zh) 信号处理方法和装置
WO2021000954A1 (zh) 一种数据传输方法及通信装置
CN110178404A (zh) 一种资源使用方法、相关装置及系统
WO2021056584A1 (zh) 一种通信方法及装置
JP2022544333A (ja) 通信方法及び装置
WO2023207485A1 (zh) 时间单元确定的方法和通信装置
KR20200050820A (ko) Nr v2x 시스템에서 harq 피드백 송수신 방법 및 그 장치
CN111699737A (zh) 一种harq信息的传输方法及装置、计算机存储介质
CN112584343B (zh) 通信方法及相关产品
CN114503696B (zh) 一种通信方法及装置
WO2022241658A1 (zh) 半双工的数据传输方法、终端设备和网络设备
WO2021056580A1 (zh) 信号接收、发送方法及装置
CN116981061A (zh) 通信方法、装置及系统
CN117751653A (zh) 用于通信的方法、设备和计算机可读介质
CN117460079A (zh) 指示信息发送方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20756122

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2021547521

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021015925

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020756122

Country of ref document: EP

Effective date: 20210906

ENP Entry into the national phase

Ref document number: 20217029866

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112021015925

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210812