WO2021056580A1 - 信号接收、发送方法及装置 - Google Patents

信号接收、发送方法及装置 Download PDF

Info

Publication number
WO2021056580A1
WO2021056580A1 PCT/CN2019/109229 CN2019109229W WO2021056580A1 WO 2021056580 A1 WO2021056580 A1 WO 2021056580A1 CN 2019109229 W CN2019109229 W CN 2019109229W WO 2021056580 A1 WO2021056580 A1 WO 2021056580A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
time units
indication information
signal
terminal device
Prior art date
Application number
PCT/CN2019/109229
Other languages
English (en)
French (fr)
Inventor
贾琼
张佳胤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/109229 priority Critical patent/WO2021056580A1/zh
Priority to CN201980100497.5A priority patent/CN114402556B/zh
Priority to EP19946713.5A priority patent/EP4024738A4/en
Publication of WO2021056580A1 publication Critical patent/WO2021056580A1/zh
Priority to US17/707,557 priority patent/US20220225347A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing

Definitions

  • This application relates to the field of communications, and in particular to a method and device for receiving and sending signals.
  • LAA License Assisted Access
  • R-13 Release-13, R-13
  • eLAA Spectrum-assisted access
  • LTE Long Term Evolution
  • LTE-A LTE-advance
  • the multi-time unit scheduling scheme refers to a scheme for scheduling multiple time units through one scheduling indication information.
  • a multi-time unit scheduling scenario currently under study is a scenario where a network device such as a base station (for example, eNodeB) sends a scheduling instruction message to a terminal device (for example, a mobile phone) to instruct the terminal device to perform uplink transmission on multiple time units. That is to say, the network device can instruct the terminal device to occupy the licensed spectrum or unlicensed spectrum in multiple time units by sending a piece of scheduling instruction information to the terminal device to feed back the data required by the network device. It can be understood that scheduling multiple time units through one scheduling indication information can effectively reduce signaling consumption. Therefore, it is necessary to study how the network equipment can accurately instruct the terminal equipment to feed back the required information to the terminal equipment in multiple time units through a piece of scheduling information.
  • the embodiments of the present application disclose a signal receiving and sending method and device, which can be applied to communication systems, such as vehicle-to-everything (V2X), vehicle-to-vehicle (V2V) , Workshop information interaction (long term evolution-vehicle, LTE-V), car networking, machine type communication (MTC), internet of things (IoT), long term evolution-machine , LTE-M), machine-to-machine communication (M2M), etc., can receive or send at least two different types of signals in multiple time units to improve communication efficiency.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • Workshop information interaction long term evolution-vehicle, LTE-V
  • MTC machine type communication
  • IoT internet of things
  • LTE-M long term evolution-machine
  • M2M machine-to-machine communication
  • an embodiment of the present application provides a signal receiving method.
  • the method may include: a network device sends scheduling information to a terminal device; the scheduling information includes first indication information, and the first indication information is used to indicate M Time domain positions of time units, where the M is an integer greater than 1; the first signal is received on N time units among the M time units; the N is an integer greater than 0 and not greater than the M .
  • the scheduling information may be downlink control information (DCI), radio resource control (RRC) signaling, or other scheduling signaling.
  • DCI downlink control information
  • RRC radio resource control
  • the signal received on any time unit other than the N time units in the M time units is not the first signal.
  • M is greater than N. That is, the network device only receives the first signal on N time units among the M time units.
  • the network device can receive at least two types of signals on the M time units. For example, the network device receives the first signal on N time units, and receives the second signal on (MN) time units other than the N time units in the M time units, and the first signal and This second signal is different.
  • MN radio resource control
  • the first signal may include only channel state information (CSI), or may include only uplink data, may also include CSI and uplink data, or may be other signals, which is not limited in this application.
  • CSI channel state information
  • the signal receiving method provided in the embodiment of the present application is applied to an unlicensed spectrum scenario, that is, the network device receives the first signal on the unlicensed spectrum. It can be understood that the network device can receive at least two different types of signals in multiple time units, so that the network device can receive at least two types of signals in one uplink transmission of the terminal device, which can effectively reduce the number of uplink signals sent by the terminal device. The number of times of transmission and the number of times that the network device receives data has high communication efficiency.
  • the network device receives at least two types of signals in one uplink transmission of the terminal device, which can effectively improve communication efficiency.
  • the first signal includes channel state information CSI and/or uplink data.
  • the first signal may only include CSI, may also include only uplink data, and may also include both CSI and uplink data.
  • the uplink data can be any data sent by the terminal device to the network device.
  • the network device can receive CSI and other signals at the same time, and the network device can adjust its scheduling strategy accordingly according to the CSI; when the first signal does not include CSI, the network device can receive both at the same time.
  • Different types of signals have high communication efficiency.
  • the first indication information includes a first index
  • the time domain position indicated by the first index in the first configuration table is the time domain position of the M time units
  • the first configuration table is configured by the network device to the terminal device, or the first configuration table is preset by the system, or the first configuration table is stored in the terminal device.
  • the first indication information may be a time domain resource assignment (TDRA) field defined in 3GPP 38.212.
  • the first configuration table may be a physical uplink shared channel (PUSCH) time domain resource allocation list.
  • the network device may indicate the time domain positions of the M time units through the first index.
  • the terminal device may look up the time domain position indicated by the first index in the first configuration table to obtain the time domain position of the M time units.
  • the first time unit of the four time units is offset by 2 time slots relative to the time slot 1 in which the scheduling information is received. That is, the multiple time units are located in time slots. Slot 3, Slot 4, Slot 5, and Slot 6.
  • the terminal equipment receives scheduling information in time slot 1, and each time unit is a time slot.
  • the network device configures the first configuration table by sending RRC signaling to the terminal device.
  • the first configuration table is preset by the system.
  • the terminal device may search for the time domain position of the time unit used for CSI reporting in the time offset list indicated in the CSI reporting configuration information according to the first index. It can be understood that the terminal device can obtain one or one group or multiple or multiple groups of CSI report configuration information according to the scheduling information. If each or each group of CSI reported configuration information corresponds to multiple time offset lists, select one or more of the multiple time offset values found in the multiple time offset lists according to certain rules, for example, select the largest Or the smallest time offset value.
  • the CSI report configuration information can be indicated by CSI-ReportConfig defined in 3GPP 38.331, and the time offset list can be indicated by reportSlotOffsetList. It can be understood that the terminal device can use the first index to search for the time domain positions of the M time units from the first configuration table, or can use the first index to search for the time offset list indicated by the CSI reported configuration information. Time domain position of N time units.
  • the time domain positions of M time units are indicated by the combination of the first index and the first configuration table.
  • scheduling information can be reduced. Instruction information carried.
  • the scheduling information further includes second indication information, and the second indication information is used to indicate the time domain positions of the N time units.
  • the scheduling information further includes second indication information for indicating the time domain position of the N time units, so that the terminal device can accurately and quickly determine the time of the N time units according to the second indication information. Domain location.
  • the second indication information includes a second index
  • the time domain position indicated by the second index in the second configuration table is the time domain position of the N time units
  • the second configuration table is configured by the network device to the terminal device, or the second configuration table is preset by the system, or the second configuration table is stored in the terminal device.
  • the second configuration table may be a time offset list indicated in the CSI report configuration information.
  • the CSI report configuration information may be indicated by CSI-ReportConfig defined in 3GPP 38.331, and the time offset list may be indicated by reportSlotOffsetList.
  • the terminal device can obtain N CSI-ReportConfig according to the scheduling information, and then obtain the corresponding N reportSlotOffsetList, and then search for the time offset value indicated by the second index in each reportSlotOffsetList to obtain one or more times Offset value (ie offset information).
  • the time offset value obtained according to the second index is 3, and for the second or second group of reportSlotOffsetList, the time offset value obtained according to the second index is 4, It means that the time units that are offset by 3 time slots and 4 time slots respectively from the time slot 1 where the scheduling information is received are used for CSI transmission, namely, time slot 4 and time slot 5.
  • the first signal may only include CSI.
  • the time domain position of the N time units is indicated by the combination of the second index and the second configuration table.
  • the scheduling information can be reduced. Instruction information carried.
  • the second indication information indicates that the number of time units used for sending the first signal is the N.
  • the second indication information includes quantity information N, which is used to indicate that the number of time units for sending the first signal is the N.
  • the terminal device may determine that N time units among the M time units are used to send the first signal according to a preset rule.
  • the first N time units or the last N time units among the M time units are used to send the first signal.
  • the above-mentioned first signal may include CSI and uplink data. It can be understood that when the time domain positions of M time units are known, the time domain positions of the first N time units among the M time units can also be known. In this implementation manner, the quantity information contained in the scheduling information can accurately indicate the time domain positions of the N time units, occupying few bits or bytes, and reducing signaling consumption.
  • the second indication information indicates the positions of the N time units relative to the M time units.
  • the second indication information includes one or more time offset values.
  • N time units are continuous, the second indication information includes a time offset value, and the time offset value is used to indicate that the first or last time unit in the N time units is relative to the M The location of the time unit.
  • N is 4, and the time offset values included in the second indication information are 1, 3, 5, and 6, in order, then the second indication information indicates the 1, 3, 5, and 6th time units in the M time units.
  • the time units are the time units included in the N time units.
  • the second indication information includes a bitmap, the bitmap includes the M bits, each bit corresponds to a time unit of the M time units, and each bit indicates where Whether a time unit sends the first signal.
  • the N time units include the first time unit and the fourth time unit.
  • the above-mentioned first signal may include CSI and uplink data. It can be understood that when the time domain positions of the M time units and the positions of the N time units relative to the M time units are known, the time domain positions of the N time units can be quickly and accurately known.
  • the scheduling information further includes third indication information, and the third indication information is used to indicate a time unit used for sending only CSI among the N time units and/or used for sending The time unit of CSI and uplink data.
  • the network device uses the UL-SCH indicator (corresponding to the third indication information) as defined in 3GPP 38.212 to indicate whether only CSI is to be transmitted on each of the N time units, or whether CSI and data are transmitted together.
  • the third indication information is a newly defined field in the scheduling information.
  • the third indication information may indicate which of the N time units for performing CSI reporting, which only transmit CSI, and which transmit CSI and uplink data.
  • the third indication information may be indicated by a bitmap using a bitmap including N bits, and each bit corresponds to a time unit.
  • the terminal device can send CSI and data at the same time unit to improve resource utilization.
  • the network device can instruct the terminal device to transmit only CSI on some time units and simultaneously transmit CSI and data on other time units according to actual needs, which can make fuller use of time-frequency resources.
  • the terminal device can be accurately instructed to transmit different types of data on N time units, thereby improving resource utilization.
  • the scheduling information further includes fourth indication information, and the fourth indication information is used to indicate N CSI reporting configuration information.
  • the fourth indication information may correspond to N codepoints/values, each codepoint/value indicates one or a group of CSI reporting configuration information, and the N codepoint/value indicates N or N groups CSI reports configuration information.
  • Codepoint/value refers to code point or value.
  • the fourth indication information may correspond to N values, and the N values may be referred to as N code points or N values. In other words, the code point and the value can be regarded as the same concept, and both represent values.
  • the codepoint/value corresponding to an indication information refers to one or more values corresponding to the indication information.
  • the fourth indication information includes N subfields, and each subfield corresponds to a codepoint/value.
  • the list of CSI reporting configuration information can be configured in RRC signaling, and then the field in the scheduling information (ie the fourth indication information) and the RRC signaling can be combined to indicate, that is, through the fourth
  • the codepoint/value corresponding to the indication information is associated with the CSI reporting configuration information defined in RRC.
  • the network device can configure the CSI report configuration information of the terminal device through RRC signaling.
  • the terminal device can determine one or a group of CSI reporting configuration information through a codepoint/value corresponding to the fourth indication information.
  • the terminal device is configured with multiple or multiple groups of CSI reporting configuration information, and each or each group of CSI reporting configuration information is associated with a codepoint/value.
  • the terminal device can be configured according to each codepoint/value corresponding to the fourth indication information. Value to determine one or a group of CSI reporting configuration information, and then perform CSI feedback.
  • there is a preset CSI report configuration information list in the system of the terminal equipment and the fourth indication information may be indicated by using the index of the CSI report configuration information.
  • There is one or more index information in the fourth indication information and the terminal device can learn the configuration information required for CSI reporting according to the index information.
  • the scheduling information is a DCI.
  • a CSI report configuration information can include one or a combination of the following information: CSI report type; CSI report time information (can be one or more combinations of period, time offset relative to a certain time, absolute time, etc.) , CSI resource information (may be resource information used for CSI measurement, such as channel state information-reference signal (CSI-RS) resource information and/or synchronization signal block ( synchronization signal block (SSB) resource information and/or resource information used for interference measurement) and so on.
  • CSI-RS channel state information-reference signal
  • SSB synchronization signal block
  • the fourth indication information is used to indicate N or N groups of CSI report configuration information, so that the terminal device can report the required CSI in N time units.
  • the scheduling information further includes fifth indication information, and the fifth indication information is used to instruct the terminal device to report CSI.
  • the fifth indication information may use the CSI request field as defined in 3GPP 38.212.
  • the fifth indication information may also use a 1-bit (bit) field to indicate whether the terminal device needs to report CSI. For example, a bit "0" is used to indicate that the terminal device does not need to perform CSI reporting, and a bit "1" is used to indicate that the terminal device needs to perform CSI reporting.
  • Other indication methods can also be used, which are not limited in the present invention.
  • an embodiment of the present application provides a signal sending method, which may include: a terminal device receives scheduling information from a network device; the scheduling information includes first indication information, and the first indication information is used to indicate Time domain positions of M time units, where M is an integer greater than 1; N time units out of the M time units send a first signal to the network device; and N is greater than 0 and not greater than The integer of M.
  • M is greater than N.
  • the signal sent by the terminal device on any time unit other than the N time units among the M time units is not the first signal.
  • the terminal device can send different types of signals in different time units during an uplink transmission process. In this way, the terminal device can send multiple signals to the network device through one uplink transmission, which can effectively reduce the number of uplink transmissions performed by the terminal device, thereby improving communication efficiency.
  • the terminal device sends at least two different types of signals in multiple time units during one uplink transmission process, which can effectively improve communication efficiency.
  • the first signal includes channel state information CSI and/or uplink data.
  • the first signal may only include CSI, may also include only uplink data, and may also include both CSI and uplink data.
  • the network device can receive CSI and other signals at the same time, and the network device can adjust the scheduling strategy according to the CSI; when the first signal does not include CSI, the network device can receive two different signals at the same time. Type of signal, high communication efficiency.
  • the method before the N time units of the M time units send the first signal to the network device, the method further includes: the terminal device monitors the target channel Determining that the target channel is in a spatial state; sending a first signal to the network device at N time units among the M time units includes: sending a first signal through the target channel in the N time units .
  • the spectrum corresponding to the target channel may be an unlicensed spectrum.
  • the target channel belongs to a physical uplink shared channel. In this implementation manner, when the terminal device monitors that the target channel is in a spatial state, it performs uplink transmission on multiple time units through the target channel, which has high reliability.
  • the first indication information includes a first index
  • the time domain position indicated by the first index in the first configuration table is the time domain position of the M time units
  • the first configuration table is configured by the network device to the terminal device, or the first configuration table is preset by the system, or the first configuration table is stored in the terminal device.
  • the terminal device may parse the first indication information to obtain the first index; look up the time domain position indicated by the first index in the first configuration table to obtain the time domain position of the M time units.
  • the terminal device combines the first index and the first configuration table to determine the time domain positions of the M time units, which can accurately determine the time domain positions of the M time units, and the scheduling information carries more indication information. less.
  • the scheduling information further includes second indication information, and the second indication information is used to indicate the time domain positions of the N time units.
  • the second indication information may indicate the time domain positions of the N time units.
  • the scheduling information includes the second indication information of the time domain positions of the N time units, so that the terminal device can accurately and quickly determine the time domain positions of the N time units according to the second indication information.
  • the second indication information includes a second index
  • the time domain position indicated by the second index in the second configuration table is the time domain position of the N time units
  • the second configuration table is configured by the network device to the terminal device, or the second configuration table is preset by the system, or the second configuration table is stored in the terminal device.
  • the terminal device combines the second index and the second configuration table to determine the time domain position of the N time units, which can accurately determine the time domain position of the N time units, and the scheduling information carries more indication information. less.
  • the second indication information indicates that the number of time units used for feeding back the first signal is the N.
  • the second indication information includes quantity information N, which is used to indicate that the number of time units for sending the first signal is the N.
  • the terminal device may determine that N time units among the M time units are used to send the first signal according to a preset rule.
  • the first N time units or the last N time units among the M time units are used to send the first signal.
  • the above-mentioned first signal may include CSI and uplink data. It can be understood that when the time domain positions of M time units are known, the time domain positions of the first N time units among the M time units can also be known. In this implementation manner, the quantity information contained in the scheduling information can accurately indicate the time domain positions of the N time units, occupying few bits or bytes, and reducing signaling consumption.
  • the second indication information indicates the positions of the N time units relative to the M time units.
  • the second indication information includes one or more time offset values.
  • the second indication information includes a bitmap, the bitmap includes the M bits, each bit corresponds to a time unit of the M time units, and each bit indicates whether The first signal is sent in a time unit. Assuming that M is 4, "1001" indicates that the first signal is sent on the first time unit and the fourth time unit, that is, the N time units include the first time unit and the fourth time unit.
  • the above-mentioned first signal may include CSI and uplink data. It can be understood that when the time domain positions of the M time units and the positions of the N time units relative to the M time units are known, the time domain positions of the N time units can be quickly and accurately known.
  • the first signal includes CSI and does not include uplink data; before the N time units among the M time units send the first signal to the network device, the The method further includes: determining the time domain positions of the M time units according to the first configuration table and/or the first indication information; and according to the second configuration table and/or the second indication information , Determine the time domain positions of the N time units; the first configuration table is configured by the network device to the terminal device, or the first configuration table is preset by the system, or the first configuration table is stored in the Terminal device; the second configuration table is configured by the network device to the terminal device, or the second configuration table is preset by the system, or the second configuration table is stored in the terminal device.
  • the first configuration table may be a PUSCH time domain resource allocation list.
  • the first indication information includes a first index.
  • the network device may indicate the time domain positions of the M time units through the first index.
  • the terminal device may look up the time domain position indicated by the first index in the first configuration table to obtain the time domain position of the M time units.
  • the first index may be the codepoint/value corresponding to the first indication information.
  • the second indication information includes a second index.
  • the terminal device may search for the time domain position of the time unit used for CSI report in the time offset list indicated in the CSI report configuration information according to the second index, and obtain the time domain positions of the N time units.
  • the second indication information is implicit in the first indication information.
  • the terminal device may search for the time domain position of the time unit used for CSI reporting in the time offset list indicated in the CSI report configuration information according to the first index, and obtain the time domain positions of the N time units. It can be understood that the terminal device can obtain multiple or multiple sets of CSI report configuration information according to the scheduling information. If each or each group of reported configuration information corresponds to multiple time offset lists, select one or more of the multiple time offset values found in the multiple time offset lists according to certain rules, for example, select the largest or the smallest.
  • the CSI report configuration information can be indicated by the CSI-ReportConfig defined in 3GPP 38.331
  • the time offset list can be indicated by the parameter reportSlotOffsetList.
  • the terminal device can use the first index to find the time domain positions of the M time units from the first configuration table, or use the first index or the second index to report the time offset indicated by the configuration information from the CSI. Search the time domain position of the N time units in the shift list.
  • the first indication information is used to indicate the time offsets of the time domain positions of the M time units with respect to the time slot in which the scheduling information is received.
  • the first indication information is used to indicate that the 4 time units are respectively offset by 3 time slots, 4 time slots, 5 time slots, and 6 time slots relative to the time slot 1 in which the terminal device receives the scheduling information. Then the two time units are time slot 4, time slot 5, time slot 6, and time slot 7.
  • the second indication information is used to indicate the time offsets of the time domain positions of the N time units with respect to the time slot in which the scheduling information is received.
  • the second indication information is used to indicate that the 2 time units are respectively offset by 3 time slots and 4 time slots corresponding to the time slot 1 in which the terminal device receives the scheduling information, and then the 2 time units are time slot 4 And time slot 5.
  • the time domain position of the time unit can be determined quickly and accurately according to the instruction information and/or the configuration list.
  • the first signal includes uplink data; before the N time units among the M time units send the first signal to the network device, the method further includes: Determine the time domain positions of the M time units according to the first configuration table and/or the first indication information; and determine according to the time domain positions of the M time units and/or the second indication information The time domain position of the N time units.
  • the first configuration table is configured by the network device to the terminal device, or the first configuration table is preset by the system, or the first configuration table is stored in the terminal device.
  • the first configuration table may be a PUSCH time domain resource allocation list.
  • the first indication information includes a first index.
  • the network device may indicate the time domain positions of the M time units through the first index.
  • the terminal device may look up the time domain position indicated by the first index in the first configuration table to obtain the time domain position of the M time units.
  • the first index may be the codepoint/value corresponding to the first indication information.
  • the second indication information indicates that the number of time units used for feeding back the first signal is the N.
  • the second indication information includes quantity information N, which is used to indicate that the number of time units for sending the first signal is the N number.
  • the terminal device may determine that N time units among the M time units are used to send the first signal according to a preset rule.
  • the first N time units or the last N time units among the M time units are used to send the first signal. That is, the terminal device can determine which N time units among the M time units are used to send the first signal according to the preset rule and the second indication information.
  • the second indication information is used to indicate the positions of the N time units relative to the M time units.
  • the terminal device can determine the time domain positions of the N time units according to the second indication information.
  • the second indication information includes one or more time offset values, and these time offset values may indicate the positions of the N time units relative to the M time units. For example, if N is 4, the time offset values included in the second indication information are 1, 3, 5, and 6, then the second indication information indicates 1, 3, 5, and 6 of the M time units.
  • the time unit is a time unit included in the N time units.
  • the second indication information includes a bitmap, the bitmap includes the M bits, each bit corresponds to one time unit of the M time units, and each bit indicates one Whether the time unit sends the first signal. Assuming that M is 4, "1001" indicates that the first signal is sent on the first time unit and the fourth time unit, that is, the N time units include the first time unit and the fourth time unit.
  • the second indication information is used to indicate the time offsets of the time domain positions of the N time units with respect to the time slot in which the scheduling information is received.
  • the terminal device first determines the time domain positions of the M time units, and then determines the time domain positions of the N time units according to the positions of the M time units and/or the second indication information, which can quickly determine the time domain positions of the N time units.
  • the time domain position of the time unit is the time domain position of the time unit.
  • the first signal includes uplink data; before the N time units among the M time units send the first signal to the network device, the method further includes:
  • the first configuration table and/or the first indication information determine the time domain positions of the M time units; and according to the first configuration table and/or the second indication information, determine the Time domain positions of N time units; the first configuration table is configured by the network device to the terminal device, or the first configuration table is preset by the system, or the first configuration table is stored in the terminal device.
  • the terminal device can determine the time domain position of each time unit according to the first configuration table, and there is no need to configure multiple configuration tables, which is simple to implement.
  • the scheduling information further includes third indication information, and the third indication information is used to indicate a time unit used for sending only CSI among the N time units and/or used for sending The time unit of CSI and uplink data.
  • the network device uses the UL-SCH indicator (corresponding to the third indication information) as defined in 3GPP 38.212 to indicate whether to transmit only CSI or CSI and uplink data on each of the N time units.
  • the third indication information is a newly defined field in the scheduling information.
  • the third indication information may indicate which of the N time units for CSI reporting are to transmit only CSI and which transmit CSI and uplink data.
  • the third indication information may be indicated by a bitmap using a bitmap including N bits, and each bit corresponds to a time unit.
  • the network device can instruct the terminal device to transmit only CSI on some time units and simultaneously transmit CSI and data on other time units according to actual needs, which can make fuller use of time-frequency resources.
  • the scheduling information further includes fourth indication information, and the fourth indication information is used to indicate N CSI reporting configuration information.
  • the fourth indication information may correspond to N codepoints/values, and each codepoint/value indicates one or a group of CSI reporting configuration information. That is, the fourth indication information indicates N or N groups of CSI report configuration information. Exemplarily, the fourth indication information includes N subfields, and each subfield corresponds to a codepoint/value. Exemplarily, the fourth indication information may be configured in RRC signaling, and then indicated through a combination of a field in the scheduling information (that is, fourth indication information) and RRC signaling, that is, corresponding to the fourth indication information The codepoint/value of is associated with the CSI reporting configuration information defined in RRC. The network device can configure the CSI report configuration information of the terminal device through RRC signaling.
  • the terminal device can determine one or a group of CSI reporting configuration information through a codepoint/value corresponding to the fourth indication information.
  • the terminal device is configured with multiple or multiple groups of CSI reporting configuration information, and each or each group of CSI reporting configuration information is associated with a codepoint/value.
  • the terminal device can be configured according to each codepoint/value corresponding to the fourth indication information. Value to determine one or a group of CSI reporting configuration information, and then perform CSI feedback.
  • there is a preset CSI report configuration information list in the system of the terminal device and the fourth indication information may be indicated by using the index of the CSI report configuration information.
  • There is one or more index information in the fourth indication information and the terminal device can learn the configuration information required for CSI reporting according to the index information.
  • the scheduling information is a DCI.
  • the fourth indication information included in the scheduling information is used to indicate N CSI reporting configuration information, so that the terminal device can report multiple CSIs in one uplink transmission according to the fourth indication information, which is highly efficient.
  • the scheduling information further includes fifth indication information, and the fifth indication information is used to instruct the terminal device to report CSI.
  • the fifth indication information may use the CSI request field as defined in 3GPP 38.212.
  • the fifth indication information may also use a 1-bit (bit) field to indicate whether the terminal device needs to report CSI. For example, a bit "0" is used to indicate that the terminal device does not need to perform CSI reporting, and a bit "1" is used to indicate that the terminal device needs to perform CSI reporting.
  • Other indication methods can also be used, which are not limited in the present invention.
  • the terminal device can accurately determine whether to report CSI according to the fifth indication information.
  • an embodiment of the present application provides another signal receiving method, which may include: a network device receives a first signal on N time units out of M time units; where M is an integer greater than 1, The N is an integer greater than 1 and not greater than the M.
  • the signal received by the network device on any time unit other than the N time units among the M time units is not the first signal. That is, the network device only receives the first signal on N time units among the M time units.
  • the network device may receive the first signal on multiple time units, and receive other data or signals on other time units.
  • the signal receiving method provided in the embodiment of the present application is applied to an unlicensed spectrum scenario, that is, the network device receives the first signal on the unlicensed spectrum.
  • the network device receives at least two types of signals in one uplink transmission of the terminal device, which can effectively improve communication efficiency.
  • the first signal includes channel state information CSI and/or uplink data.
  • the network device can receive CSI and other signals at the same time, and the network device can adjust the scheduling strategy according to the CSI; when the first signal does not include CSI, the network device can receive two different signals at the same time.
  • Type of signal high communication efficiency.
  • the method before the network device receives the first signal on N time units among the M time units, the method further includes: receiving uplink control information from the terminal device, and
  • the uplink control information includes the indication information of the time domain positions of the N time units; and the time domain positions of the N time units are determined according to the uplink control information.
  • the terminal device can choose to send the first signal on the time unit when the LBT is successful based on the result of listen before talk (LBT) on the unlicensed spectrum, and send the first signal to the network device instructing to report the first signal
  • LBT listen before talk
  • the uplink control information further includes indication information of the time domain position of the M time units.
  • the network device can quickly and accurately report the time domain position of the time unit of the CSI according to the uplink control information.
  • the indication information includes a target index; the determining the time domain position of the N time units according to the uplink control information includes: determining the target index according to the fourth configuration table and the target index.
  • the network device can look up the time domain position indicated by the target index in the fourth configuration table to obtain the time domain position of the N time units.
  • the network device can accurately determine the time domain positions of the N time units in combination with the fourth configuration table and the target index.
  • an embodiment of the present application provides another signal sending method.
  • the method may include: a terminal device sends a first signal to a network device in N time units out of M time units; where M is greater than 1. An integer, and the N is an integer greater than 1 and not greater than the M.
  • the terminal device sends at least two different types of signals in multiple time units during one uplink transmission process, which can effectively improve communication efficiency.
  • the first signal includes channel state information CSI and/or uplink data.
  • the network device can receive CSI and other signals at the same time, and the network device can adjust the scheduling strategy according to the CSI; when the first signal does not include CSI, the network device can receive two different signals at the same time.
  • Type of signal high communication efficiency.
  • the sending of the first signal by the terminal device to the network device at N time units among the M time units includes: the terminal device monitors the unlicensed spectrum; and sends LBT after listening first. As a result, the N time units where the LBT is successful are selected; the first signal is sent on the N time units.
  • the CSI is reported on the N time units where the LBT is successful, and the reliability is strong.
  • an embodiment of the present application provides a network device, the network device includes: a sending unit configured to send scheduling information; the scheduling information includes first indication information, and the first indication information is used to indicate M The time domain position of the time unit, the M is an integer greater than 1; the receiving unit is used to receive the first signal on N time units out of the M time units; the N is greater than 0 and not greater than all The integer of M.
  • the first signal includes channel state information CSI and/or uplink data.
  • the first indication information includes a first index
  • the time domain position indicated by the first index in the first configuration table is the time domain position of the M time units
  • the first configuration table is configured by the network device to the terminal device, or the first configuration table is preset by the system, or the first configuration table is stored in the terminal device.
  • the scheduling information further includes second indication information, and the second indication information is used to indicate the time domain positions of the N time units.
  • the second indication information includes a second index
  • the time domain position indicated by the second index in the second configuration table is the time domain position of the N time units
  • the second configuration table is configured by the network device to the terminal device, or the second configuration table is preset by the system, or the second configuration table is stored in the terminal device.
  • the second indication information indicates that the number of time units used for sending the first signal is the N.
  • the second indication information includes quantity information N, which is used to indicate that the number of time units for sending the first signal is the N.
  • the second indication information indicates the positions of the N time units relative to the M time units.
  • the scheduling information further includes third indication information, and the third indication information is used to indicate a time unit used for sending only CSI among the N time units and/or used for The time unit for sending CSI and uplink data.
  • the scheduling information further includes fourth indication information, and the fourth indication information is used to indicate N CSI reporting configuration information.
  • the scheduling information further includes fifth indication information, and the fifth indication information is used to instruct the terminal device to report CSI.
  • an embodiment of the present application provides a terminal device.
  • the terminal device includes: a receiving unit configured to receive scheduling information from a network device; the scheduling information includes first indication information, and the first indication information is used for For indicating the time domain position of M time units, the M is an integer greater than 1; the sending unit is configured to send the first signal to the network device at N time units among the M time units; N is an integer greater than 0 and not greater than M.
  • the first signal includes channel state information CSI and/or uplink data.
  • the terminal device further includes: a monitoring unit, configured to monitor a target channel; a determining unit, configured to determine that the target channel is in a spatial state; and the sending unit is specifically configured to The N time units send the first signal through the target channel.
  • the spectrum occupied by the target channel may be an unlicensed spectrum.
  • the target channel belongs to a physical uplink shared channel. In this implementation manner, when the terminal device monitors that the target channel is in a spatial state, it performs uplink transmission on multiple time units through the target channel, which has high reliability.
  • the first indication information includes a first index
  • the time domain position indicated by the first index in the first configuration table is the time domain position of the M time units
  • the first configuration table is configured by the network device to the terminal device, or the first configuration table is preset by the system, or the first configuration table is stored in the terminal device.
  • the scheduling information further includes second indication information, and the second indication information is used to indicate the time domain positions of the N time units.
  • the second indication information includes a second index
  • the time domain position indicated by the second index in the second configuration table is the time domain position of the N time units
  • the second configuration table is configured by the network device to the terminal device, or the second configuration table is preset by the system, or the second configuration table is stored in the terminal device.
  • the second indication information indicates that the number of time units used for feeding back the first signal is the N.
  • the second indication information includes quantity information N, which is used to indicate that the number of time units for sending the first signal is the N.
  • the second indication information indicates the positions of the N time units relative to the M time units.
  • the first signal includes CSI and does not include uplink data; the terminal device further includes: a determining unit, configured to determine according to the first configuration table and/or the first indication information The time domain positions of the M time units; and the time domain positions of the N time units are determined according to a second configuration table and/or the second indication information.
  • the first signal includes uplink data; the terminal device further includes: a determining unit, configured to determine the M signals according to the first configuration table and/or the first indication information Time domain positions of the time units; and determining the time domain positions of the N time units according to the time domain positions of the M time units and/or the second indication information.
  • the first configuration table is configured by the network device to the terminal device, or the first configuration table is preset by the system, or the first configuration table is stored in the terminal device;
  • the second configuration table is configured by the network device For the terminal device, or the second configuration table is preset by the system, or the second configuration table is stored in the terminal device.
  • the first signal includes uplink data; the terminal device further includes: a determining unit, configured to determine the M signals according to the first configuration table and/or the first indication information The time domain position of the time unit; and determining the time domain position of the N time units according to the first configuration table and/or the second indication information; the first configuration table is configured by the network device to the terminal device , Or the first configuration table is preset by the system, or the first configuration table is stored in the terminal device.
  • a determining unit configured to determine the M signals according to the first configuration table and/or the first indication information The time domain position of the time unit; and determining the time domain position of the N time units according to the first configuration table and/or the second indication information
  • the first configuration table is configured by the network device to the terminal device , Or the first configuration table is preset by the system, or the first configuration table is stored in the terminal device.
  • the scheduling information further includes third indication information, and the third indication information is used to indicate a time unit used for sending only CSI among the N time units and/or used for sending The time unit of CSI and uplink data.
  • the scheduling information further includes fourth indication information, and the fourth indication information is used to indicate N CSI reporting configuration information.
  • the scheduling information further includes fifth indication information, and the fifth indication information is used to instruct the terminal device to report CSI.
  • an embodiment of the present application provides a network device, the network device includes: a receiving unit, configured to receive a first signal on N time units out of M time units; the M is an integer greater than 1. , The N is an integer greater than 1 and not greater than the M.
  • the first signal includes channel state information CSI and/or uplink data.
  • the receiving unit is further configured to receive uplink control information from the terminal device, where the uplink control information includes time domain position indication information of the N time units;
  • the network device further includes: a determining unit, configured to determine the time domain positions of the N time units according to the uplink control information.
  • the indication information includes a target index; the determining unit is specifically configured to determine the time domain positions of the N time units according to a fourth configuration table and the target index; the fourth The configuration table is preset by the system, or the fourth configuration table is stored in the network device.
  • an embodiment of the present application provides a terminal device.
  • the terminal device includes: a sending unit, configured to send a first signal to a network device in N time units among M time units; where M is greater than 1.
  • the N is an integer greater than 1 and not greater than the M.
  • the first signal includes channel state information CSI and/or uplink data.
  • the terminal device further includes: a monitoring unit, configured to monitor the unlicensed spectrum; and a selection unit, further configured to select the N whose LBT is successful based on the result of listening first and then sending the LBT. Time units.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor and a memory.
  • the memory is used to store a program.
  • the processor is used to execute the program stored in the memory.
  • the processor is configured to execute the signal receiving method shown in the first aspect or the third aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor and an interface circuit.
  • the interface circuit is configured to receive code instructions and transmit them to the processor; the processor runs the Code instructions to execute the signal receiving method as shown in the above-mentioned first aspect or the above-mentioned third aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor and a memory.
  • the memory is used to store a program.
  • the processor is used to execute the program stored in the memory.
  • the processor is configured to execute the signal sending method shown in the second aspect or the fourth aspect.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor and an interface circuit.
  • the interface circuit is configured to receive code instructions and transmit them to the processor;
  • the code instructions are used to execute the signal sending method as shown in the above-mentioned second aspect or the above-mentioned fourth aspect.
  • an embodiment of the present application provides a communication system.
  • the communication system includes a network device and a terminal device.
  • the network device can be used to execute the method described in the first aspect, and the terminal device is The method described in the second aspect.
  • an embodiment of the present application provides a communication system.
  • the communication system includes a network device and a terminal device.
  • the network device can be used to perform the method described in the third aspect, and the terminal device is used to perform the method described in the third aspect.
  • the method described in the fourth aspect is used to perform the method described in the fourth aspect.
  • an embodiment of the present application provides a readable storage medium, the readable storage medium is used to store instructions, and when the instructions are executed, the method described in the first aspect or the third aspect is Be realized.
  • an embodiment of the present application provides a readable storage medium, the readable storage medium is used to store instructions, and when the instructions are executed, the method described in the second aspect or the fourth aspect is enabled Be realized.
  • embodiments of the present application provide a computer program product including instructions, which when executed, enable the method described in the first aspect or the third aspect to be implemented.
  • embodiments of the present application provide a computer program product including instructions, which when executed, enable the method described in the second aspect or the fourth aspect to be implemented.
  • Figure 1 is a schematic diagram of a network architecture disclosed in an embodiment of the present application.
  • FIG. 2 is a flowchart of a signal receiving method provided by an embodiment of this application.
  • FIG. 3 is a flowchart of a method for interaction between a network device and a terminal device according to an embodiment of the application
  • FIG. 4 is a flowchart of another method for interaction between a network device and a terminal device according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of a signal sending method provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram of another signal sending method provided by an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of another network device provided by an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of another terminal device provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of another network device provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of another terminal device provided by an embodiment of this application.
  • the embodiment of the application discloses a signal receiving method, a signal sending method and equipment and related equipment.
  • the first signal includes CSI and/or uplink data. That is, a network device (for example, a base station) can instruct a terminal device (for example, a mobile phone) to perform multiple time units for uplink transmission through a piece of scheduling information, and instruct the terminal device on which time unit or units to send the first signal.
  • a network device for example, a base station
  • a terminal device for example, a mobile phone
  • the following describes the network architecture to which the embodiments of the present application are applicable.
  • the method disclosed in the embodiments of this application can be applied to 5G New RAT (radio access technology) (NR) system; it can also be applied to other communication systems, as long as there is an entity in the communication system that needs to indicate that another entity is in Which time unit or time units of the multiple time units send the first signal, and/or the existence entity needs to receive or receive the first signal on some time units of the multiple time units that are transmitted at one time.
  • NR radio access technology
  • FIG. 1 is a schematic diagram of a network architecture disclosed in an embodiment of the present application.
  • the network architecture is suitable for multiple time unit scheduling scenarios, that is, a scenario where one uplink transmission or downlink transmission occupies multiple time units to send data or signals.
  • a network device is an entity on the network side that is used to transmit or receive signals, such as gNB.
  • a terminal device is an entity on the user side that is used to receive or transmit signals, such as a mobile phone. Since there are many application scenarios for base stations and UEs, the base station is used as an example of network equipment in the following, and user equipment (UE) is used as an example of terminal equipment.
  • UE user equipment
  • a base station and UE1 to UE6 form a communication system.
  • the base station can send scheduling information to UE1 to UE6; UE1 to UE6 can report corresponding information according to the scheduling information.
  • UE4 to UE6 can also form a communication system.
  • UE5 can also send scheduling information to UE4 and UE6; UE4 and UE6 can also send feedback information for the scheduling information to UE5.
  • the base station may send a CSI request, that is, a CSI report request indication (an example of scheduling information) to UE1 to UE6; UE1 to UE6 may report CSI according to the CSI request.
  • UE4 to UE6 can also form a communication system.
  • UE5 can also send CSI request to UE4 and UE6; UE4 and UE6 can also send CSI report information to UE5.
  • FIG. 2 is a flowchart of a signal receiving method provided by an embodiment of the application. As shown in Figure 2, the method may include:
  • a network device sends scheduling information to a terminal device.
  • the scheduling information includes first indication information, the first indication information is used to indicate the time domain positions of M time units, and the M is an integer greater than 1.
  • the scheduling information may be DCI, RRC signaling, a combination of DCI and RRC signaling, or other scheduling signaling.
  • the time unit may be a subframe, a slot, a mini-slot, a radio frame, an orthogonal frequency division multiplexing (OFDM) symbol, a transmission time interval (TTI), and the like. It should be understood that the time unit is not limited to the listed ones, and may also be other time lengths.
  • the signal receiving method in FIG. 2 can be applied to an unlicensed spectrum scenario, and the network device needs to perform LBT before sending scheduling information.
  • the scheduling information sent by the network device should ensure that only the time unit for sending CSI is within the multiple time units scheduled by the network device.
  • the network device performs LBT on the channel before sending the scheduling information to the terminal device; when the channel is in a spatial state, it sends the scheduling information to the terminal device.
  • the N is an integer greater than 0 and not greater than the M.
  • the first signal may include CSI and/or uplink data.
  • the first signal can be either a signal carrying information or data.
  • M is greater than N. That is, the network device only receives the first signal on N time units among the M time units, and receives the first signal on (MN) time units other than the N time units among the M time units. Other signals.
  • the signal receiving method provided in the embodiment of the present application is applied to an unlicensed spectrum scenario, that is, the first signal is received on the unlicensed spectrum.
  • the network device sending the scheduling information to the terminal device may instruct the terminal device to send the first signal on N time units among the M time units. In other words, the scheduling information can schedule M time units and instruct the terminal device to send the first signal on N time units among them, which can effectively save signaling.
  • the network device can receive at least two types of signals in one uplink transmission of the terminal device; it can effectively reduce the number of times the terminal device sends uplink transmissions and the number of times the network device receives data, and the communication efficiency is high.
  • FIG. 3 is a flowchart of a method for interaction between a network device and a terminal device according to an embodiment of the application. As shown in Figure 3, the method may include:
  • a network device sends scheduling information to a terminal device.
  • the scheduling information includes first indication information, the first indication information is used to indicate the time domain positions of M time units, and the M is an integer greater than 1.
  • the terminal device parses the scheduling information to obtain the time domain positions of M time units and the time domain positions of N time units.
  • the terminal device sends the first signal on N time units among the M time units.
  • the terminal device transmits a second signal on a time unit other than the N time units among the M time units, and the second signal is different from the first signal.
  • the network device can instruct the terminal device to send at least two types of signals during one uplink transmission process by sending scheduling information to the terminal device.
  • the scheduling information can accurately indicate the time domain position of the terminal device in which time unit to send the first signal, and the time domain position of which time unit to send other signals (such as the second signal).
  • the interaction method in FIG. 3 can be applied to an unlicensed spectrum scenario, and the terminal device needs to perform LBT one or more times before sending the first signal. In the unlicensed spectrum scenario, scheduling multiple time units through one scheduling information can effectively reduce signaling overhead and LBT overhead.
  • the terminal device defaults to the previous M time units.
  • CSI is sent on N or the last N.
  • the terminal device may perform the following operations: monitor the target channel; determine that the target channel is in a spatial state.
  • Sending the first signal to the network device at N time units among the M time units may be: sending the first signal through the target channel in the N time units.
  • the spectrum corresponding to the target channel may be an unlicensed spectrum.
  • the target channel belongs to a physical uplink shared channel.
  • the terminal device can perform LBT once, and when it monitors that the target channel is in a spatial state, it performs uplink transmission on multiple time units through the target channel, which can effectively reduce the LBT overhead.
  • the network device receives the first signal on N time units among the M time units.
  • the first signal may include CSI, or may include CSI and uplink data.
  • the network device can perform CSI reporting instructions to the terminal device under the multi-time unit scheduling mechanism, which can effectively improve the efficiency of CSI reporting.
  • the network device can receive at least two types of signals in one uplink transmission of the terminal device, which can effectively reduce the number of times the terminal device sends uplink transmissions and the number of times the network device receives data, and the communication efficiency is high.
  • the following describes several implementation ways for the terminal device to parse the scheduling information to obtain the time domain positions of M time units and the time domain positions of N time units.
  • the first signal includes CSI and does not include uplink data.
  • the foregoing first indication information includes a first index, and the time domain position indicated by the first index in the first configuration table is the time domain position of the M time units.
  • the first configuration table is configured by the network device to the terminal device, or the first configuration table is preset by the system, or the first configuration table is stored in the terminal device.
  • the terminal device may parse the first indication information to obtain the first index; look up the time domain position indicated by the first index in the first configuration table to obtain the time domain position of the M time units.
  • the scheduling information is DCI
  • the first indication information may be time domain resource indication information (ie, a TDRA field) in the DCI
  • the first index may be a codepoint/value corresponding to the time domain resource indication information.
  • the first configuration table may be a PUSCH time domain resource allocation information list (also called a PUSCH time domain resource allocation list) preset by the network device or redefined in RRC signaling.
  • the time information of the above M time units is configured in the first configuration table in detail, including one or more of mapping mode, start time S, time offset K 2 , duration L and so on.
  • Table 1 is an example of a first configuration table. Table 1 shows the detailed configuration information of each time unit when there are two time units.
  • Table 1 is only used for illustration, and the first configuration table may be in other forms during actual configuration, for example, combining information common between different time units or joint instructions, which is not limited in this application.
  • a codepoint/value (that is, the first index) corresponding to the first indication information corresponds to a configuration in Table 1.
  • the base station schedules two consecutive time units, and the time offset K 2 of the first time unit in the two time units relative to the DCI is 2 time slots, that is, the 2 time units are located in time slot 3 and time slot 3. Gap 4. It should be understood that the time unit is not limited to a time slot, but may also be a subframe, a radio frame, an OFDM symbol, a mini-slot, a TTI, and the like.
  • the first indication information is used to indicate the time offsets of the time domain positions of the M time units with respect to the time slot in which the scheduling information is received.
  • the first indication information is used to indicate that the 4 time units are respectively offset by 3 time slots, 4 time slots, 5 time slots, and 6 time slots relative to the time slot 1 in which the terminal device receives the scheduling information. Then the two time units are time slot 4, time slot 5, time slot 6, and time slot 7.
  • Table 1 The first configuration table
  • the scheduling information further includes second indication information, and the second indication information is used to indicate the time domain positions of the N time units.
  • the second indication information may include a second index, and the time domain position indicated by the second index in the second configuration table is the time domain position of the N time units; the second configuration table is configured by the network device to the terminal device, Or the second configuration table is preset by the system, or the second configuration table is stored in the terminal device.
  • the terminal device may parse the second indication information to obtain the second index; look up the time domain position indicated by the second index in the second configuration table to obtain the time domain position of the N time units.
  • the second indication information is implicit in the first indication information, and the second index is the first index.
  • the terminal device may search for the time domain position of the time unit used to send CSI in the time offset list (corresponding to the above-mentioned second configuration table) indicated by the CSI report configuration information according to the first index or the second index, to obtain The time domain position of the N time units.
  • the terminal device can obtain multiple or multiple sets of CSI report configuration information (ie, CSI-ReportConfig information), and then obtain corresponding multiple or multiple sets of time offset lists, such as reportSlotOffsetList.
  • CSI-ReportConfig information ie, CSI-ReportConfig information
  • the offset information obtained by the terminal device according to the first index or the second index is 3, and for the second or second group of CSI-ReportConfig information, according to the first index or the second index, the offset information is 3.
  • the offset information obtained by one index or the second index is 4, which means that the time units that are offset by 3 time slots and 4 time slots respectively from the time slot 1 where the scheduling information is received are used to send CSI, namely, time slots 4 and Time slot 5.
  • the first configuration table may include the above-mentioned second configuration table, and the terminal device can find the time domain positions of the M time units and the N time units by using the first indication information and the first configuration table. Time domain location.
  • the terminal device can only send CSI on the time unit indicated by the scheduling information for sending CSI, it can determine the time domain positions of the above M time units and the time domain positions of the above N time units in combination with the indication information and the configuration list.
  • the first signal includes CSI and uplink data, or only includes uplink data.
  • the manner in which the terminal device obtains the time domain positions of M time units in the second manner may be the same as the manner in which the terminal device obtains the time domain positions of M time units in the manner 1, and will not be repeated here.
  • the terminal device may determine the time domain positions of the N time units for sending the first signal according to the time domain positions of the above M time units.
  • the second indication information indicates that the number of time units used for sending the first signal is N.
  • the second indication information includes quantity information N, indicating that the number of time units used to send the first signal is N.
  • the terminal device may determine which N time units of the M time units are used to send the first signal according to a preset rule. Exemplarily, the terminal device determines the first N time units or the last N time units among the M time units for sending the first signal. Since the terminal device knows the time domain positions of the M time units, the terminal device can determine the time domain positions of the N time units.
  • the second indication information indicates the positions of the N time units relative to the M time units.
  • the terminal device can determine the time domain positions of the N time units according to the second indication information.
  • the second indication information includes one or more time offset values, and these time offset values may indicate the positions of the N time units relative to the M time units. For example, if N is 4, the time offset values included in the second indication information are 1, 3, 5, and 6, then the second indication information indicates 1, 3, 5, and 6 of the M time units.
  • the time unit is a time unit included in the N time units.
  • the second indication information includes a bitmap
  • the bitmap includes the M bits
  • each bit corresponds to a time unit of the M time units
  • each bit indicates whether it is in its The first signal is sent on the corresponding time unit.
  • M is 4
  • "1001" indicates that the first signal is sent on the first time unit and the fourth time unit, that is, the N time units include the first time unit and the fourth time unit.
  • the second indication information may include a third index, and the time domain position indicated by the third index in the third configuration table is the time domain position of the N time units; the third configuration table is configured by the network device For the terminal device, or the third configuration table is preset by the system, or the third configuration table is stored in the terminal device.
  • the terminal device may parse the second indication information to obtain the third index; look up the time domain position indicated by the third index in the third configuration table to obtain the time domain position of the N time units.
  • the third configuration table may be a configuration list similar to the above-mentioned first configuration table, except that each row in the first configuration table contains configuration information for M time units, and each row in the third configuration table contains configuration information for N time units. information.
  • the terminal device determines the time domain positions of the N time units according to the first configuration table and the second indication information.
  • the foregoing first configuration table may include not only the time domain positions of the M time units indicated by the scheduling information, but also the time domain positions of the N time units used to transmit the first signal.
  • the terminal device may query the time domain position indicated by the index included in the second indication information in the first configuration list to obtain the time domain position of the N time units.
  • the second indication information is used to indicate the time offsets of the time domain positions of the N time units with respect to the time slot in which the scheduling information is received.
  • the second indication information is used to indicate that the 2 time units are respectively offset by 3 time slots and 4 time slots corresponding to the time slot 1 in which the terminal device receives the scheduling information, and then the 2 time units are time slot 4 And time slot 5.
  • the terminal device may first determine the time domain positions of the above M time units in combination with the first indication information and the configuration list, and then determine the time domain positions of the above M time units according to the above M The time domain position of the time unit determines the time domain positions of the above N time units.
  • the first signal in the foregoing embodiment may include CSI and uplink data, or may only include CSI.
  • the scheduling information further includes third indication information, and the third indication information is used to indicate a time unit used to send only CSI and/or used to send CSI and uplink data among the N time units.
  • Time unit is a bitmap including N bits, and each bit corresponds to a time unit.
  • the terminal device may determine, according to the third indication information, on which time units to send only CSI, and on which time units to send CSI and uplink data at the same time.
  • the terminal device can send CSI in 2 time units
  • “10” means that only CSI is sent on the first time unit of the 2 time units (that is, CSI only), and CSI and data are sent on the other time unit .
  • the third indication information includes 1 bit; if the bit is 1, it means that only CSI is sent on the N time units; if the bit is 0, it means that the CSI is sent on the N time units Both send CSI and uplink data.
  • sending CSI may not occupy a time unit.
  • the terminal device can send CSI and uplink data at the same time in the same time unit to improve resource utilization.
  • the network device can instruct the terminal device to transmit only CSI on some time units and simultaneously transmit CSI and data on other time units according to actual needs, which can make fuller use of time-frequency resources.
  • the scheduling information further includes fourth indication information, and the fourth indication information is used to indicate N CSI reporting configuration information.
  • the fourth indication information may correspond to N codepoints/values, each codepoint/value indicates one or a group of CSI report configuration information, and the N codepoints/value indicates N or N groups of CSI report configuration information.
  • the fourth indication information may use the CSI request field as defined in 3GPP 38.212.
  • the fourth indication information includes N subfields, and each subfield corresponds to a codepoint/value.
  • the fourth indication information may be configured in RRC signaling, and then indicated through a combination of a field in the scheduling information (that is, fourth indication information) and RRC signaling, that is, corresponding to the fourth indication information
  • the codepoint/value of is associated with the CSI reporting configuration information defined in RRC.
  • the network device can configure the CSI report configuration information of the terminal device through RRC signaling.
  • the terminal device can determine one or a group of CSI reporting configuration information through a codepoint/value corresponding to the fourth indication information.
  • the terminal device is configured with multiple or multiple groups of CSI reporting configuration information, and each or each group of CSI reporting configuration information is associated with a codepoint/value.
  • the terminal device can be configured according to each codepoint/value corresponding to the fourth indication information.
  • the fourth indication information may be indicated by using the index of the CSI report configuration information.
  • the terminal device can learn the configuration information required for CSI reporting according to the one or more index information.
  • the scheduling information is a DCI.
  • a CSI report configuration information can include one or a combination of the following information: CSI report type; CSI report time information (can be one or more combinations of period, time offset relative to a certain time, absolute time, etc.) CSI resource information (may be resource information used for CSI measurement, such as CSI-RS resource information and/or resource information of the corresponding SSB used for CSI measurement and/or resource information used for interference measurement), etc.
  • the terminal device may send the CSI in N time units according to the N or N groups of CSI report configuration information indicated by the fourth indication information. In practical applications, the terminal device can send the corresponding CSI in a time unit according to one or a group of CSI reported configuration information. In other words, the CSI sent on different time units may be different.
  • the scheduling information further includes fifth indication information, and the fifth indication information is used to instruct the terminal device to report CSI.
  • the fifth indication information may use the CSI request field as defined in 3GPP 38.212.
  • the fifth indication information may also use a 1-bit (bit) field to indicate whether the terminal device needs to report CSI. For example, a bit "0" is used to indicate that the terminal device does not need to perform CSI reporting, and a bit "1" is used to indicate that the terminal device needs to perform CSI reporting. Other indication methods can also be used, which are not limited in the present invention.
  • the fifth indication information is implicit in the foregoing fourth indication information. In other words, the terminal device may determine that CSI reporting is required according to the foregoing fourth indication information.
  • the foregoing embodiment describes a scheme in which a network device sends scheduling information to a terminal device, and the terminal device sends CSI in N time units out of M time units indicated by the scheduling information.
  • the embodiment of the present application also provides a solution in which the network device does not need to send scheduling information, and the terminal device can send the first signal on multiple time units among the M time units.
  • the embodiment of the present application provides a flowchart of another method for interaction between a network device and a terminal device. As shown in Figure 4, the method may include:
  • the terminal device monitors the unlicensed spectrum.
  • the terminal device selects N time units for which the LBT is successful according to the result of listening first and then sending the LBT.
  • N is an integer greater than 1.
  • the terminal equipment can judge its busy/idle status by the size of the received power on the unlicensed spectrum. If the received power is less than a certain threshold, the unlicensed spectrum is considered to be in an idle state and can send signals on the unlicensed spectrum, otherwise no signal is sent .
  • the terminal device performs uplink transmission on M time units, sends a first signal on N time units, and sends a second signal on (MN) time units, where the second signal is different from the first signal .
  • the first signal may include CSI and uplink data, or may only include CSI.
  • the terminal device sends uplink control information to the network device.
  • the uplink control information includes time domain position indication information of the N time units.
  • the uplink control information further includes indication information of the time domain position of the M time units.
  • the network device determines the time domain positions of the N time units according to the uplink control information.
  • the uplink control information may include a target index; the network device may look up the time domain position indicated by the target index in the fourth configuration table to obtain the time domain position of the N time units.
  • the fourth configuration table is preset by the system, or the fourth configuration table is stored in the network device.
  • the fourth configuration table is similar to the above-mentioned first configuration table, and will not be described in detail here.
  • the terminal device sends the first signal in N time units.
  • the network device receives the first signal on N time units among the M time units.
  • the network device receives the second signal in (M-N) time units.
  • the terminal device can send the first signal to the network device in multiple time units according to the result of the LBT, and the first signal can be sent on multiple time units only by executing the LBT once, which can save signaling and reduce LBT overhead and reduce the probability of losing the channel.
  • FIG. 5 is a schematic diagram of a signal sending process provided by an embodiment of this application.
  • the terminal equipment receives scheduling information (ie DCI in Figure 5) in time slot 1, and the time offset K 2 of the first time unit relative to the DCI in the 4 time units for the terminal equipment to send data is 2 time slots, that is, the 4 time units are located in time slot 3, time slot 4, time slot 5, and time slot 6.
  • the terminal device sends the first signal in time slot 5.
  • the UE needs to look up the first row of configuration information in the PUSCH time domain resource configuration information list (corresponding to the above-mentioned first configuration table) to obtain the time domain positions of multiple time units. For example, it is obtained that the base station schedules four consecutive time units, and the time offset K 2 of the first time unit in the four time units relative to the DCI is 2 time slots, that is, the multiple time units are located in time slots 3 and time slots.
  • the third indication information indicates that the time unit for sending CSI only sends CSI, that is, CSI only.
  • the UE needs to obtain the corresponding one or more CSI-ReportConfig information according to the codepoint corresponding to the CSI request, and then obtain the corresponding one or more reportSlotOffsetList, and then look up the first row of configuration information in the one or more reportSlotOffsetList according to TDRA to obtain one Or multiple offset information, and then select the largest one among the one or more offset information.
  • the maximum offset information is 4, which means that a time unit offset by 4 time slots relative to time slot 1 of the DCI is used to send CSI, that is, time slot 5.
  • the first signal only includes CSI.
  • the base station schedules four consecutive time units, and the time offset K 2 of the first time unit in the four time units relative to the DCI is 2 time slots, that is, the multiple time units are located in time slots 3 and time slots. Slot 4, Slot 5, and Slot 6.
  • the third indication information indicates that the time unit for sending CSI is used to send CSI and uplink data together.
  • the 4 bits included in the second indication information correspond to the 4 time units one-to-one. Among them, the time unit corresponding to bit 1 is used to send CSI and uplink data.
  • the UE may determine to send CSI and data on the third time unit (that is, time slot 5) among the 4 time units.
  • codepoint 3 corresponding to the second indication information
  • the second indication information indicates to send CSI and uplink data on the third time unit of the 4 time units.
  • the UE may determine to send CSI and uplink data on the third time unit (that is, time slot 5) of the 4 time units.
  • the first signal includes CSI and uplink data.
  • DCI that is, scheduling information
  • TDRA that is, the first indication information
  • CSI request that is, fourth indication information
  • the base station schedules four consecutive time units, and the time offset K 2 of the first time unit in the four time units relative to the DCI is 2 time slots, that is, the multiple time units are located in time slots 3 and time slots.
  • the third indication information indicates that the time unit for sending CSI is used to send CSI and uplink data together.
  • the UE needs to look up the third row of configuration information in another PUSCH time domain resource configuration information list (corresponding to the third configuration table) to obtain the time domain position of a time unit, that is, time slot 5.
  • the first signal includes CSI and uplink data.
  • the third indication information indicates that the time unit for sending CSI is used to send CSI and uplink data together.
  • the UE sends CSI and uplink data on the penultimate time unit of the M time units according to a preset rule.
  • the first signal includes CSI and uplink data.
  • FIG. 6 is a schematic diagram of another signal sending process provided by an embodiment of this application.
  • the terminal equipment receives scheduling information (ie DCI in Figure 6) in time slot 1, and the time offset K 2 of the first time unit relative to the DCI in the 4 time units for the terminal equipment to send data is 2 time slots, that is, the 4 time units are located in time slot 3, time slot 4, time slot 5, and time slot 6.
  • the terminal device sends the first signal in time slot 4 and time slot 5.
  • the base station schedules four consecutive time units, and the time offset K 2 of the first time unit in the four time units relative to the DCI is 2 time slots, that is, the M time units are located in time slots 3 and time slots. Slot 4, Slot 5, and Slot 6.
  • the UE needs to obtain the corresponding two or two groups of CSI-ReportConfig information according to the two codepoints corresponding to the CSI request, and then obtain the corresponding two or two groups of reportSlotOffsetList; for each or each group of reportSlotOffsetList, look up each or each group according to TDRA The first row of configuration information in reportSlotOffsetList is obtained, and one or more offset information is obtained, and then the largest one is selected among the one or more offset information.
  • the offset information obtained according to TDRA is 3; for the second or second group of CSI-ReportConfig information, the offset information obtained according to TDRA is 4, then It means that the time units that are offset by 3 and 4 time slots respectively from the time slot 1 in which the DCI is received are used to send CSI, namely, time slot 4 and time slot 5.
  • the first signal only includes CSI.
  • the third indication information indicates that CSI and uplink data are sent together in two time units for sending CSI.
  • the 4 bits included in the second indication information correspond to the 4 time units one-to-one. Among them, the time unit corresponding to bit 1 is used to send CSI and uplink data.
  • the UE may send CSI and uplink data on the second time unit (that is, time slot 4) and the third time unit (that is, time slot 5) of the 4 time units.
  • codepoint 2 and 3 corresponding to the second indication information
  • the second indication information indicates to send CSI and uplink data on the second time unit and the third time unit among the 4 time units.
  • the first signal includes CSI and uplink data.
  • DCI that is, scheduling information
  • TDRA that is, the first indication information
  • CSI request that is, fourth indication information
  • the base station schedules four consecutive time units, and the time offset K 2 of the first time unit in the four time units relative to the DCI is 2 time slots, that is, the multiple time units are located in time slots 3 and time slots. Slot 4, Slot 5, and Slot 6.
  • the third indication information indicates that the time unit for sending CSI is used to send CSI and uplink data together.
  • the UE needs to look up the third row of configuration information in another PUSCH time domain resource configuration information list (corresponding to the third configuration table), and obtain the time domain positions of two time units, namely time slot 4 and time slot 5.
  • the first signal includes CSI and uplink data.
  • the third indication information is "00", indicating that CSI and uplink data are sent in two time units.
  • the second indication information indicates that the number of time units used to send CSI and uplink data is 2.
  • the UE may send CSI and uplink data from the second to last time unit to the (N+1) last time unit among the 4 time units. Among them, N is 2. That is, the UE can send CSI and uplink data on the default N time units among the M time units.
  • the preset rule may be configured by the base station for the UE through RRC signaling.
  • the first signal includes CSI and uplink data.
  • the base station schedules four consecutive time units, and the time offset of the first time unit in the four time units relative to the DCI is 2 time slots, that is, the M time units are located in time slots 3 and 4 , Time slot 5 and time slot 6.
  • the third indication information is "01", indicating that only CSI is sent on one time unit and CSI and uplink data are sent on another time unit.
  • the codepoint corresponding to the CSI request can have a one-to-one correspondence with the codepoint (ie "01") corresponding to the third indication information, and the UE can obtain the codepoint corresponding to the CSI request, and the codepoint corresponding to the third indication information corresponds to the codepoint of 0 CSI-ReportConfig information.
  • the offset information obtained by the UE according to TDRA is 3, which means that the time unit offset by 3 time slots from the time slot 1 in which the DCI is received is only used to send CSI. Namely time slot 4.
  • the 4 bits included in the second indication information correspond to the 4 time units one-to-one.
  • the time unit corresponding to bit 1 is used to send CSI and uplink data.
  • the UE may send CSI and uplink data on the third time unit (that is, time slot 5) among the 4 time units.
  • codepoint 3 corresponding to the second indication information, and the second indication information indicates that the CSI and uplink data are sent on the third time unit among the 4 time units.
  • a part of the first signal includes CSI and uplink data, and another part of the first signal only includes CSI.
  • FIG. 7 is a schematic structural diagram of a network device provided by an embodiment of this application. As shown in Figure 7, the network equipment includes:
  • the sending unit 701 is configured to send scheduling information; the scheduling information includes first indication information, the first indication information is used to indicate the time domain positions of M time units, and the M is an integer greater than 1;
  • the receiving unit 702 is configured to receive the first signal on N time units among the M time units; the N is an integer greater than 0 and not greater than the M.
  • the first signal includes channel state information CSI and/or uplink data.
  • the first indication information includes a first index
  • the time domain position indicated by the first index in the first configuration table is the time domain position of the M time units
  • the first configuration The table is configured by the network device to the terminal device, or the first configuration table is preset by the system, or the first configuration table is stored in the terminal device.
  • the scheduling information further includes second indication information, and the second indication information is used to indicate the time domain positions of the N time units.
  • the second indication information includes a second index
  • the time domain position indicated by the second index in the second configuration table is the time domain position of the N time units
  • the second configuration The table is configured by the network device to the terminal device, or the second configuration table is preset by the system, or the second configuration table is stored in the terminal device.
  • the second indication information indicates that the number of time units used for feeding back the first signal is the N.
  • the second indication information includes quantity information N, which is used to indicate that the number of time units for sending the first signal is the N.
  • the second indication information indicates the positions of the N time units relative to the M time units.
  • the scheduling information further includes third indication information, and the third indication information is used to indicate a time unit used for sending only CSI among the N time units and/or used for sending The time unit of CSI and uplink data.
  • the scheduling information further includes fourth indication information, and the fourth indication information is used to indicate N CSI reporting configuration information.
  • the scheduling information further includes fifth indication information, and the fifth indication information is used to instruct the terminal device to report CSI.
  • FIG. 8 is a schematic structural diagram of a terminal device provided by an embodiment of the application. As shown in Figure 8, the terminal equipment includes:
  • the receiving unit 801 is configured to receive scheduling information from a network device; the scheduling information includes first indication information, the first indication information is used to indicate the time domain positions of M time units, and the M is an integer greater than 1;
  • the sending unit 802 is configured to send a first signal to the network device in N time units among the M time units; the N is an integer greater than 0 and not greater than the M.
  • the first signal includes channel state information CSI and/or uplink data.
  • the terminal device further includes:
  • the monitoring unit 803 is used to monitor the target channel
  • the determining unit 804 is configured to determine that the target channel is in a spatial state
  • the sending unit 802 is specifically configured to send the first signal through the target channel in the N time units.
  • the first indication information includes a first index
  • the time domain position indicated by the first index in the first configuration table is the time domain position of the M time units
  • the first configuration The table is configured by the network device to the terminal device, or the first configuration table is preset by the system, or the first configuration table is stored in the terminal device.
  • the scheduling information further includes second indication information, and the second indication information is used to indicate the time domain positions of the N time units.
  • the second indication information includes a second index
  • the time domain position indicated by the second index in the second configuration table is the time domain position of the N time units
  • the second configuration The table is configured by the network device to the terminal device, or the second configuration table is preset by the system, or the second configuration table is stored in the terminal device.
  • the second indication information indicates that the number of time units used for feeding back the first signal is the N.
  • the second indication information includes quantity information N, which is used to indicate that the number of time units for sending the first signal is the N.
  • the second indication information indicates the positions of the N time units relative to the M time units.
  • the first signal includes CSI and does not include uplink data
  • the determining unit 804 is further configured to determine the time domain positions of the M time units according to the first configuration table and/or the first indication information; determine the N time units according to the second configuration table and/or the second indication information
  • the time domain position of the time unit; the first configuration table is configured by the network device to the terminal device, or the first configuration table is preset by the system, or the first configuration table is stored in the terminal device; the first configuration table is stored in the terminal device;
  • the second configuration table is configured by the network device to the terminal device, or the second configuration table is preset by the system, or the second configuration table is stored in the terminal device.
  • the terminal device is configured with a third configuration table, and the first signal includes uplink data
  • the determining unit 804 is further configured to determine the time domain positions of the M time units according to the first configuration table and/or the first indication information; according to the time domain positions of the M time units and/or the second indication Information to determine the time domain position of the N time units; the first configuration table is configured by the network device to the terminal device, or the first configuration table is preset by the system, or the first configuration table is stored in the Terminal Equipment.
  • the first signal includes uplink data
  • the determining unit 804 is further configured to determine the time domain positions of the M time units according to the first configuration table and/or the first indication information; and according to the first configuration table and/or the second indication information , Determine the time domain positions of the N time units; the first configuration table is configured by the network device to the terminal device, or the first configuration table is preset by the system, or the first configuration table is stored in the Terminal Equipment.
  • the scheduling information further includes third indication information, and the third indication information is used to indicate a time unit used to send only CSI among the N time units and/or used to send CSI And the time unit of the upstream data;
  • the sending unit 802 is specifically configured to send the first signal to the network device in the N time units according to the third indication information.
  • the N time units may all send only CSI; or all CSI and uplink data may be sent; it is also possible to send one part of CSI and another part to send CSI and uplink data.
  • the sending unit 802 can determine which time units of the N time units only send CSI, and at which time units only CSI and uplink data are sent, and then send the first data according to the requirements of the network device. signal.
  • the scheduling information further includes fourth indication information, and the fourth indication information is used to indicate N CSI reporting configuration information.
  • the scheduling information further includes fifth indication information, and the fifth indication information is used to instruct the terminal device to perform CSI.
  • FIG. 9 is a schematic structural diagram of a network device provided by an embodiment of this application. As shown in Figure 9, the network equipment includes:
  • the receiving unit 901 is configured to receive the first signal on N time units out of M time units; the M is an integer greater than 1, and the N is an integer greater than 1 and not greater than the M.
  • the first signal includes channel state information CSI and/or uplink data.
  • the receiving unit 901 is further configured to receive uplink control information from the terminal device, where the uplink control information includes time domain position indication information of the N time units; the network device further includes: The determining unit 902 is configured to determine the time domain positions of the N time units according to the uplink control information.
  • the indication information includes a target index; the determining unit 902 is specifically configured to determine the time domain positions of the N time units according to the fourth configuration table and the target index.
  • FIG. 10 is a schematic structural diagram of a terminal device provided by an embodiment of this application. As shown in Figure 10, the terminal equipment includes:
  • the sending unit 1001 is configured to send a first signal to a network device in N time units among M time units; the M is an integer greater than 1, and the N is an integer greater than 1 and not greater than the M.
  • the first signal includes channel state information CSI and/or uplink data.
  • the terminal device further includes: a monitoring unit 1002, configured to monitor the unlicensed spectrum;
  • the selection unit 1003 is also used to select N time units where the LBT is successful according to the result of listening first and then sending the LBT.
  • each unit in the network device and the terminal device is only a division of logical functions, and may be fully or partially integrated into one physical entity in actual implementation, or may be physically separated.
  • each of the above units can be separately established processing elements, or they can be integrated in a certain chip of the terminal for implementation.
  • they can also be stored in the storage element of the controller in the form of program codes and processed by a certain processor.
  • the component calls and executes the functions of the above units.
  • each unit can be integrated together or implemented independently.
  • the processing element here can be an integrated circuit chip with signal processing capabilities.
  • each step of the above method or each of the above units may be completed by an integrated logic circuit of hardware in the processor element or instructions in the form of software.
  • the processing element may be a general-purpose processor, such as a network processor or a central processing unit (English: central processing unit, CPU for short), or one or more integrated circuits configured to implement the above methods, such as one or Multiple specific integrated circuits (English: application-specific integrated circuit, abbreviation: ASIC), or, one or more microprocessors (English: digital signal processor, abbreviation: DSP), or, one or more field programmable gates Array (English: field-programmable gate array, referred to as FPGA), etc.
  • ASIC application-specific integrated circuit
  • DSP digital signal processor
  • FPGA field-programmable gate array
  • FIG. 11 shows a schematic diagram of a possible structure of the network equipment involved in the above embodiment, especially the base station.
  • the illustrated network device includes a transceiver 1101 and a controller/processor 1102.
  • the transceiver 1101 may be used to support the sending and receiving of information between the network device and the terminal device (for example, UE) in the foregoing embodiment, and to support radio communication between the network device and other network devices.
  • the controller/processor 1102 may be used to control the function of the transceiver 1101 to communicate with UEs or other network devices.
  • the uplink signal from the UE is received via the antenna, mediated by the transceiver 1101, and further processed by the controller/processor 1102 to restore the service data and signaling information sent to the UE.
  • the controller/processor 1102 On the downlink, service data and signaling messages are processed by the controller/processor 1102, and mediated by the transceiver 1101 to generate a downlink signal, which is transmitted to the UE via an antenna.
  • the controller/processor 1102 is also used to execute the signal sending method and the signal receiving method described in the above embodiments.
  • the controller/processor 1102 specifically executes the steps 201 and 202 in FIG. 2 and 301 and 304 in FIG. 3.
  • the network device may also include a memory 1103, which may be used to store program codes and data of the network device.
  • the network device may also include a communication unit 1104, which is used to support the network device to communicate with other network entities.
  • the transceiver 1101 can implement the functions of the receiving unit 701 and the transmitting unit 702 in FIG. 8 and the function of the receiving unit 901 in FIG. 9.
  • the controller/processor 1102 can implement the function of the determining unit 902 in FIG. 9.
  • FIG. 11 only shows a simplified design of the network device.
  • the network device may include any number of transmitters, receivers, processors, controllers, memories, communication units, etc., and all network devices that can implement the present invention fall within the protection scope of the present invention.
  • FIG. 12 is a schematic structural diagram of a terminal device 1200 provided by an embodiment of the application.
  • the terminal device can perform operations performed by the terminal device in FIGS. 3 and 4, and operations performed by the terminal device in the foregoing embodiment.
  • FIG. 12 only shows the main components of the terminal device.
  • the terminal device 1200 includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program, for example, to support the terminal device to execute the process described in FIG. 3 or FIG. 4.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • the terminal device 1200 may also include input and output devices, such as a touch screen, a display screen, a keyboard, etc., which are mainly used to receive data input by the user and output data to the user. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor can read the software program in the storage unit, interpret and execute the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 12 only shows a memory and a processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit (CPU).
  • the baseband processor is mainly used to process communication protocols and communication data, and the CPU is mainly used to process the entire terminal.
  • the equipment controls, executes the software program, and processes the data of the software program.
  • the processor may also be a network processor (network processor, NP) or a combination of CPU and NP.
  • the processor may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • the memory may include volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit 1201 of the terminal device 1200, and the processor with the processing function can be regarded as the processing unit 1202 of the terminal device 1200.
  • the terminal device 1200 may include a transceiving unit 1201 and a processing unit 1202.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1201 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1201 as the sending unit, that is, the transceiver unit 1201 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the transceiver unit 1201 and the processing unit 1202 may be integrated into one device or separated into different devices.
  • the processor and the memory may also be integrated into one device or separate into different devices.
  • transceiving unit 1201 can be used to perform the sending operation and receiving operation of the terminal device in the foregoing method embodiment, and the processing unit 1202 is used to perform other operations of the terminal device in the foregoing method embodiment except the transceiving operation.
  • the transceiver unit 1201 can be used to perform the sending and receiving operations of 301, 303, and 304 in Figure 3 and the sending and receiving operations of 403, 405, and 406 in Figure 4, and the processing unit 1202 can be used to perform the operations shown in 302 in Figure 3. , And can also be used to perform the operations shown in Figure 4 401, 402, and 404.
  • Both the terminal devices in FIG. 8 and FIG. 10 can adopt the structure in FIG. 12.
  • the functions of the receiving unit 801 and the sending unit 802 in FIG. 8 are all implemented by the transceiver unit 1201, and the functions of the listening unit 803 and the determining unit 804 are implemented by the processing unit 1202.
  • the function of the sending unit 1001 in FIG. 10 is implemented by the transceiver unit 1201, and the function of the listening unit 1002 is implemented by the processing unit 1202.
  • the embodiments of the present application also provide a computer-readable storage medium, and the above-mentioned computer-readable storage medium stores instructions, which when run on a computer, cause the computer to execute the signal receiving method provided in the foregoing embodiments.
  • the above instructions can be implemented when running on a computer: sending scheduling information to a terminal device; the scheduling information includes first indication information of the time domain position of M time units, where M is an integer greater than 1; The first signal is received on N time units among the time units; the N is an integer greater than 0 and not greater than the M.
  • the above instructions can be implemented when running on a computer: receiving the first signal on N time units out of M time units; the M is an integer greater than 1, and the N is greater than 1 and not greater than the M Integer.
  • the embodiments of the present application also provide a computer-readable storage medium, and the above-mentioned computer-readable storage medium stores instructions, which when run on a computer, cause the computer to execute the signal sending method provided in the foregoing embodiments.
  • the above instructions can be implemented when running on a computer: receiving scheduling information from a network device; the scheduling information includes first indication information of the time domain position of M time units, where M is an integer greater than 1; N time units among the M time units send the first signal to the network device; the N is an integer greater than 0 and not greater than the M.
  • the above instructions can be implemented when running on a computer: N time units out of M time units send the first signal to the network device; the M is an integer greater than 1, and the N is greater than 1 and not greater than the The integer of M.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the signal sending method provided in the foregoing embodiments.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, cause the computer to execute the signal receiving method provided in the foregoing embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种信号接收、发送方法及装置,可以应用于通信系统,例如V2X、LTE-V、V2V、车联网、MTC、IoT、LTE-M,M2M,物联网等,该信号接收方法包括:网络设备向终端设备发送调度信息;所述调度信息包括M个时间单元的时域位置的第一指示信息,所述M为大于1的整数;在所述M个时间单元中的N个时间单元上接收第一信号;所述N为大于0且不大于所述M的整数。通过本申请实施例提供的方法及装置,能够在多个时间单元中接收或发送至少两种不同的类型的信号,提高通信效率。

Description

信号接收、发送方法及装置 技术领域
本申请涉及通信领域,尤其涉及一种信号接收、发送方法及装置。
背景技术
无线通信技术的飞速发展,导致频谱资源日益紧缺,促进了对于非授权频段的探索。第三代合作计划(3rd generation partnership project,3GPP)分别在版本13(Release-13,简称R-13)和版本14中引入了授权频谱辅助接入(License Assisted Access,简称LAA)和增强的授权频谱辅助接入(enhanced LAA,简称eLAA)技术,即在非授权频谱上非独立(Non-standalone)的部署长期演进(Long Term Evolution,LTE)/演进的LTE(LTE-advance,简称LTE-A)系统,通过授权频谱的辅助来最大化利用非授权频谱资源。
多时间单元调度方案是指通过一个调度指示信息来调度多个时间单元的方案。当前正在研究的一种多时间单元调度场景是基站(例如eNodeB)等网络设备向终端设备(例如手机)发送一个调度指示信息,以指示终端设备在多个时间单元上进行上行传输的场景。也就是说,网络设备通过向终端设备发送一个调度指示信息,能够指示该终端设备在多个时间单元上占用授权频谱或非授权频谱反馈该网络设备所需的数据。可以理解,通过一个调度指示信息来调度多个时间单元,可以有效减少信令消耗。因此,需要研究网络设备怎样通过一个调度信息来准确地指示终端设备在多个时间单元上,向其反馈其所需信息的方案。
发明内容
本申请实施例公开了一种信号接收、发送方法及装置,可以应用于通信系统,例如车与任何事物通信(vehicle-to-everything,V2X)、车与车的通信(vehicle to vehicle,V2V)、车间信息交互(long term evolution-vehicle,LTE-V)、车联网、机器类通信(machine type communication,MTC)、物联网(internet of things,IoT)、机器间信息交互(long term evolution-machine,LTE-M),机器到机器通信(machine to machine,M2M)等,能够在多个时间单元中接收或发送至少两种不同类型的信号,提高通信效率。
第一方面,本申请实施例提供了一种信号接收方法,该方法可包括:网络设备向终端设备发送调度信息;所述调度信息包括第一指示信息,所述第一指示信息用于指示M个时间单元的时域位置,所述M为大于1的整数;在所述M个时间单元中的N个时间单元上接收第一信号;所述N为大于0且不大于所述M的整数。
调度信息可以是下行控制信息(downlink control information,DCI),也可以是无线资源控制(radio resource control,RRC)信令,还可以是其他调度信令。可选的,在该M个时间单元中除该N个时间单元之外的任一时间单元上接收的信号不为该第一信号。优选的,M大于N。也就是说,网络设备只在该M个时间单元中的N个时间单元上接收该第一信号。网络设备在该M个时间单元上可以接收至少两种类型的信号。举例来说,网络设备在N个时间单元上接收第一信号,在该M个时间单元中除该N个时间单元之外的(M-N)个时间单元上接收第二信号,该第一信号和该第二信号不同。该第一信号可以仅包括信道状 态信息(channel state information,CSI),也可以仅包括上行数据,还可以包括CSI和上行数据,还可以是其他信号,本申请不作限定。可选的,本申请实施例提供的信号接收方法应用于非授权频谱场景,即网络设备在非授权频谱上接收第一信号。可以理解,网络设备可以在多个时间单元上接收至少两种不同类型的信号,这样该网络设备可以在终端设备的一次上行传输中接收到至少两种类型的信号,能够有效减少终端设备发送上行传输的次数以及该网络设备接收数据的次数,通信效率高。
本申请实施例中,网络设备在终端设备的一次上行传输中接收至少两种类型的信号,能够有效提高通信效率。
在一个可选的实现方式中,所述第一信号包括信道状态信息CSI和/或上行数据。
可以理解,该第一信号可以仅包括CSI,也可以仅包括上行数据,还可以同时包括CSI和上行数据。上行数据可以是终端设备向网络设备发送的任意数据。在第一信号包括CSI时,网络设备可以同时接收到CSI和其他信号,该网络设备可以根据CSI来相应的调整其调度策略;在第一信号不包括CSI时,网络设备可以同时接收到两种不同类型的信号,通信效率高。
在一个可选的实现方式中,所述第一指示信息包括第一索引,所述第一索引在第一配置表中指示的时域位置为所述M个时间单元的时域位置,所述第一配置表由网络设备配置给终端设备,或者所述第一配置表为系统预设,或所述第一配置表存储于所述终端设备。
可选的,该第一指示信息可以是3GPP 38.212中定义的时域资源分配(Time domain resource assignment,TDRA)字段。示例性地,该第一配置表可以是物理上行共享信道(physical uplink shared channel,PUSCH)time domain resource allocation列表。网络设备可以通过该第一索引指示该M个时间单元的时域位置。终端设备可以在该第一配置表中查找该第一索引所指示的时域位置,得到该M个时间单元的时域位置。该第一索引可以是该第一指示信息对应的码点(codepoint)或取值。举例来说,第一指示信息对应的codepoint=0,终端设备在第一配置表中查找第一行配置信息,获取多个时间单元的时域位置。例如获取到网络设备调度连续的四个时间单元,该四个时间单元中第一个时间单元相对于接收到调度信息的时隙1偏移为2个时隙,即该多个时间单元位于时隙3、时隙4、时隙5以及时隙6。其中,终端设备在时隙1接收到调度信息,每个时间单元为一个时隙。可选的,网络设备通过向终端设备发送RRC信令来配置该第一配置表。或者可选的,第一配置表为系统预设的。
可选的,终端设备可以根据该第一索引在CSI上报配置信息中所指示的时间偏移列表中,查找用于CSI上报的时间单元的时域位置。可以理解,终端设备根据调度信息,可以获取到一个或一组或多个或多组CSI上报配置信息。如果每个或每组CSI上报配置信息对应多个时间偏移列表,则在该多个时间偏移列表中查找的多个时间偏移值中按照一定的规则选择一个或多个,例如选择最大的或者最小的时间偏移值。示例性地,CSI上报配置信息可通过3GPP 38.331中定义的CSI-ReportConfig指示,时间偏移列表通过reportSlotOffsetList进行指示。可以理解,终端设备可以使用该第一索引从第一配置表中查找该M个时间单元的时域位置,也可以使用该第一索引从CSI上报配置信息所指示的时间偏移列表中查找该N个时间单元的时域位置。
在该实现方式中,通过第一索引和第一配置表相结合的方式指示M个时间单元的时域位置,在准确地指示该M个时间单元的时域位置的情况下,能够减少调度信息携带的指示信息。
在一个可选的实现方式中,所述调度信息还包括第二指示信息,所述第二指示信息用于指示所述N个时间单元的时域位置。
在该实现方式中,调度信息还包括用于指示N个时间单元的时域位置的第二指示信息,以便于终端设备根据该第二指示信息,准确、快速地确定该N个时间单元的时域位置。
在一个可选的实现方式中,所述第二指示信息包括第二索引,所述第二索引在第二配置表中指示的时域位置为所述N个时间单元的时域位置,所述第二配置表由网络设备配置给终端设备,或者所述第二配置表为系统预设,或所述第二配置表存储于所述终端设备。
该第二配置表可以是CSI上报配置信息中所指示的时间偏移列表。示例性地,所述CSI上报配置信息可通过3GPP 38.331中定义的CSI-ReportConfig指示,时间偏移列表通过reportSlotOffsetList进行指示。举例来说,终端设备可以根据调度信息获取N个CSI-ReportConfig,进而获得相应的N个reportSlotOffsetList,然后查找每个reportSlotOffsetList中的该第二索引所指示的时间偏移值,得到一个或多个时间偏移值(即offset信息)。例如对于第一个或第一组reportSlotOffsetList,根据该第二索引得到的时间偏移值为3,对于对于第二个或第二组reportSlotOffsetList,根据该第二索引得到的时间偏移值为4,则表示相对于接收到调度信息的时隙1分别偏移3个时隙和4个时隙的时间单元用于CSI的发送,即时隙4和时隙5。可选的,在该实现方式中第一信号可以仅包括CSI。
在该实现方式中,通过第二索引和第二配置表相结合的方式指示N个时间单元的时域位置,在准确地指示该N个时间单元的时域位置的情况下,能够减少调度信息携带的指示信息。
在一个可选的实现方式中,所述第二指示信息指示用于发送第一信号的时间单元的个数为所述N个。可选的,所述第二指示信息包括数量信息N,用于指示发送第一信号的时间单元的个数为所述N个。
终端设备可以根据预设规则确定该M个时间单元中N个时间单元用于发送第一信号。示例性的,该M个时间单元中的前N个时间单元或者最后N个时间单元,用于发送第一信号。在该实现方式中,上述第一信号可以包括CSI和上行数据。可以理解,在知道M个时间单元的时域位置时,该M个时间单元中的前N个时间单元的时域位置也就能够知道。在该实现方式中,调度信息包含的数量信息可以准确地指示N个时间单元的时域位置,占用的比特位或字节很少,减少信令消耗。
在一个可选的实现方式中,所述第二指示信息指示所述N个时间单元相对于所述M个时间单元的位置。
可选的,该第二指示信息包括一个或多个时间偏移值。举例来说,N个时间单元为连续的,该第二指示信息包括一个时间偏移值,该时间偏移值用于指示该N时间单元中的第一个或最后一个时间单元相对于该M个时间单元的位置。又举例来说,N为4,该第二指示信息包括的时间偏移值依次为1、3、5、6,则该第二指示信息指示M个时间单元中第1、3、5、6个时间单元为该N个时间单元包括的时间单元。可选的,第二指示信息包括一个 位图(bitmap),该位图包括所述M个比特位,每个比特位对应所述M个时间单元中的一个时间单元,每个比特位指示在一个时间单元是否发送第一信号。假设M为4,则“1001”表示在第一个时间单元和第四个时间单元上发送第一信号,即N个时间单元包括第一时间单元和第四个时间单元。在该实现方式中,上述第一信号可以包括CSI和上行数据。可以理解,在知道M个时间单元的时域位置以及该N个时间单元相对于该M个时间单元的位置时,可以快速、准确地知道该N个时间单元的时域位置。
在一个可选的实现方式中,所述调度信息还包括第三指示信息,所述第三指示信息用于指示所述N个时间单元中用于仅发送CSI的时间单元和/或用于发送CSI和上行数据的时间单元。
可选的,网络设备采用如3GPP 38.212中定义的UL-SCH indicator(对应于第三指示信息)指示在该N个时间单元中各时间单元上仅传输CSI,还是CSI和数据一起传输。可选的,该第三指示信息为调度信息中新定义的字段。第三指示信息可以指示N个进行CSI上报的时间单元中,哪些仅传输CSI,哪些传输CSI和上行数据。示例性地,第三指示信息可以通过位图的方式,用包括N个比特位的位图指示,每一个比特位对应一个时间单元。假设有2个时间单元可以进行CSI上报,“10”则在表示该2个时间单元中第一个时间单元上仅发送CSI(即CSI only),在另一个时间单元上发送CSI和上行数据。在一些应用场景中,一次CSI反馈可能不需要占用一个时间单元,这时终端设备可以在同一个时间单元上同时发送CSI和数据,以提高资源利用率。在实际应用中,网络设备可以根据实际需要指示终端设备在一些时间单元上仅传输CSI,在另一些时间单元上同时传输CSI和数据,可以更充分的利用时频资源。
在该实现方式中,可以准确地指示终端设备在N个时间单元上传输不同类型的数据,提高资源利用率。
在一个可选的实现方式中,所述调度信息还包括第四指示信息,所述第四指示信息用于指示N个CSI上报配置信息。
该第四指示信息可以对应N个码点(codepoint)/取值(value),每个codepoint/取值指示一个或一组CSI上报配置信息,该N个codepoint/取值指示N个或N组CSI上报配置信息。codepoint/取值是指码点或取值。该第四指示信息可以对应N个数值,该N个数值既可以称为N个码点,也可以称为N个取值。也就是说,码点和取值可以视为同一概念,均表示数值。一个指示信息对应的codepoint/取值是指该指示信息对应的一个或多个数值。
示例性地,该第四指示信息包含N个子字段,每个子字段对应一个codepoint/取值。示例性地,可以在RRC信令中进行配置所述CSI上报配置信息的列表,然后通过调度信息中的字段(即第四指示信息)和RRC信令相结合的方式进行指示,即通过第四指示信息对应的codepoint/取值跟RRC中所定义的CSI上报配置信息进行关联。网络设备可以通过RRC信令配置终端设备的CSI上报配置信息。终端设备通过该第四指示信息对应的一个codepoint/取值可以确定一个或一组CSI上报配置信息。举例来说,终端设备配置有多个或多组CSI上报配置信息,每个或每组CSI上报配置信息关联一个codepoint/取值,该终端设备可以根据第四指示信息对应的每个codepoint/取值来确定一个或一组CSI上报配置信息,进而进行CSI反馈。可选的,终端设备的系统中有预设的CSI上报配置信息列表,所述第 四指示信息可以采用CSI上报配置信息的索引进行指示。第四指示信息中有一个或多个索引信息,终端设备根据该索引信息即可获知进行CSI上报所需的配置信息。可选的,调度信息为一个DCI。一个CSI上报配置信息可以包含以下一种或多种信息的组合:CSI上报类型;CSI上报时间信息(可以是周期、相对于某一时间的时间偏移、绝对时间等一种或多种组合),CSI资源信息(可以是用于进行CSI测量的资源信息,例如信道状态信息参考信号(channel state information-reference signal,CSI-RS)的资源信息和/或用于进行CSI测量对应同步信号块(synchronization signal block,SSB)的资源信息和/或用于进行干扰测量的资源信息)等。在该实现方式中,利用第四指示信息指示N个或N组CSI上报配置信息,以便于终端设备在N个时间单元上上报所需的CSI。
在一个可选的实现方式中,所述调度信息还包括第五指示信息,所述第五指示信息用于指示所述终端设备进行CSI上报。
示例性地,该第五指示信息,可以采用如3GPP 38.212中定义的CSI request字段。可选的,第五指示信息也可以采用1比特(bit)的字段用于指示终端设备是否需要进行CSI上报。例如用比特“0”表示终端设备不需要进行CSI上报,用比特“1”表示该终端设备需要进行CSI上报,还可以为其他指示方式,本发明不做限定。
第二方面,本申请实施例提供了一种信号发送方法,该方法可包括:终端设备接收来自网络设备的调度信息;所述调度信息包括第一指示信息,所述第一指示信息用于指示M个时间单元的时域位置,所述M为大于1的整数;在所述M个时间单元中的N个时间单元向所述网络设备发送第一信号;所述N为大于0且不大于所述M的整数。
优选的,M大于N。可选的,终端设备在该M个时间单元中除该N个时间单元之外的任一时间单元上发送的信号不为该第一信号。也就是说,终端设备在一次上行传输过程中,可以在不同的时间单元上发送不同类型的信号。这样终端设备就可以通过一次上行传输向网络设备发送多种信号,可以有效减少该终端设备进行上行传输的次数,进而提高通信效率。
本申请实施例中,终端设备在一次上行传输过程中,在多个时间单元上发送至少两种不同类型的信号,能够有效提高通信效率。
在一个可选的实现方式中,所述第一信号包括信道状态信息CSI和/或上行数据。
可以理解,该第一信号可以仅包括CSI,也可以仅包括上行数据,还可以同时包括CSI和上行数据。在第一信号包括CSI时,网络设备可以同时接收到CSI和其他信号,该网络设备可以根据CSI来相应的调整调度策略;在第一信号不包括CSI时,网络设备可以同时接收到两种不同类型的信号,通信效率高。
在一个可选的实现方式中,所述在所述M个时间单元中的N个时间单元向所述网络设备发送第一信号之前,所述方法还包括:所述终端设备对目标信道进行监听;确定所述目标信道处于空间状态;在所述M个时间单元中的N个时间单元向所述网络设备发送第一信号包括:在所述N个时间单元通过所述目标信道发送第一信号。
该目标信道对应的频谱可以是非授权频谱。可选的,该目标信道属于物理上行共享信道。在该实现方式中,终端设备在监听到目标信道处于空间状态时,通过该目标信道在多个时间单元上进行上行传输,可靠性高。
在一个可选的实现方式中,所述第一指示信息包括第一索引,所述第一索引在第一配置表中指示的时域位置为所述M个时间单元的时域位置,所述第一配置表由网络设备配置给终端设备,或者所述第一配置表为系统预设,或所述第一配置表存储于所述终端设备。
终端设备可以解析该第一指示信息,得到该第一索引;在该第一配置表中查找该第一索引指示的时域位置,得到该M个时间单元的时域位置。
在该实现方式中,终端设备结合第一索引和第一配置表来确定M个时间单元的时域位置,能够准确地确定该M个时间单元的时域位置,并且调度信息携带的指示信息较少。
在一个可选的实现方式中,所述调度信息还包括第二指示信息,所述第二指示信息用于指示所述N个时间单元的时域位置。
该第二指示信息可以指示该N个时间单元的时域位置。在该实现方式中,调度信息包括N个时间单元的时域位置的第二指示信息,以便于终端设备根据该第二指示信息,准确、快速地确定该N个时间单元的时域位置。
在一个可选的实现方式中,所述第二指示信息包括第二索引,所述第二索引在第二配置表中指示的时域位置为所述N个时间单元的时域位置,所述第二配置表由网络设备配置给终端设备,或者所述第二配置表为系统预设,或所述第二配置表存储于所述终端设备。
在该实现方式中,终端设备结合第二索引和第二配置表来确定N个时间单元的时域位置,能够准确地确定该N个时间单元的时域位置,并且调度信息携带的指示信息较少。
在一个可选的实现方式中,所述第二指示信息指示用于反馈第一信号的时间单元的个数为所述N个。可选的,所述第二指示信息包括数量信息N,用于指示发送第一信号的时间单元的个数为所述N个。
终端设备可以根据预设规则确定该M个时间单元中N个时间单元用于发送第一信号。示例性的,该M个时间单元中的前N个时间单元或者最后N个时间单元,用于发送第一信号。在该实现方式中,上述第一信号可以包括CSI和上行数据。可以理解,在知道M个时间单元的时域位置时,该M个时间单元中的前N个时间单元的时域位置也就能够知道。在该实现方式中,调度信息包含的数量信息可以准确地指示N个时间单元的时域位置,占用的比特位或字节很少,减少信令消耗。
在一个可选的实现方式中,所述第二指示信息指示所述N个时间单元相对于所述M个时间单元的位置。
可选的,该第二指示信息包括一个或多个时间偏移值。可选的,第二指示信息包括一个位图(bitmap),该位图包括所述M个比特位,每个比特位对应所述M个时间单元中的一个时间单元,每个比特位指示是否在一个时间单元发送第一信号。假设M为4,则“1001”表示在第一个时间单元和第四个时间单元上发送第一信号,即N个时间单元包括第一时间单元和第四个时间单元。在该实现方式中,上述第一信号可以包括CSI和上行数据。可以理解,在知道M个时间单元的时域位置以及该N个时间单元相对于该M个时间单元的位置时,可以快速、准确地知道该N个时间单元的时域位置。
在一个可选的实现方式中,所述第一信号包括CSI且未包括上行数据;所述在所述M个时间单元中的N个时间单元向所述网络设备发送第一信号之前,所述方法还包括:根据所述第一配置表和/或所述第一指示信息,确定所述M个时间单元的时域位置;以及根据所 述第二配置表和/或所述第二指示信息,确定所述N个时间单元的时域位置;所述第一配置表由网络设备配置给终端设备,或者所述第一配置表为系统预设,或所述第一配置表存储于所述终端设备;所述第二配置表由网络设备配置给终端设备,或者所述第二配置表为系统预设,或所述第二配置表存储于所述终端设备。
示例性地,该第一配置表可以是PUSCH time domain resource allocation列表。可选的,所述第一指示信息包括第一索引。网络设备可以通过该第一索引指示该M个时间单元的时域位置。终端设备可以在该第一配置表中查找该第一索引所指示的时域位置,得到该M个时间单元的时域位置。该第一索引可以是该第一指示信息对应的codepoint/取值。可选的,所述第二指示信息包括第二索引。终端设备可以根据该第二索引在CSI上报配置信息中所指示的时间偏移列表中,查找用于CSI上报的时间单元的时域位置,得到该N个时间单元的时域位置。可选的,第二指示信息隐含在该第一指示信息。终端设备可以根据该第一索引在CSI上报配置信息中所指示的时间偏移列表中,查找用于CSI上报的时间单元的时域位置,得到该N个时间单元的时域位置。可以理解,终端设备根据调度信息,可以获取到多个或多组CSI上报配置信息。如果每个或每组上报配置信息对应多个时间偏移列表,则在多个时间偏移列表中查找的多个时间偏移值中按照一定的规则选择一个或多个,例如选择最大的或者最小的。示例性地,CSI上报配置信息可通过3GPP 38.331中定义的CSI-ReportConfig指示,时间偏移列表通过参数reportSlotOffsetList进行指示。可以理解,终端设备可以使用该第一索引从第一配置表中查找该M个时间单元的时域位置,也可以使用该第一索引或该第二索引从CSI上报配置信息所指示的时间偏移列表中查找该N个时间单元的时域位置。可选的,该第一指示信息用于指示该M个时间单元的时域位置分别相对于接收到调度信息的时隙的时间偏移。例如,该第一指示信息用于指示4个时间单元分别相对于该终端设备接收到调度信息的时隙1偏移3个时隙、4个时隙、5个时隙以及6个时隙,则该2个时间单元为时隙4、时隙5、时隙6以及时隙7。可选的,该第二指示信息用于指示该N个时间单元的时域位置分别相对于接收到调度信息的时隙的时间偏移。例如,该第二指示信息用于指示2个时间单元分别对应于该终端设备接收到调度信息的时隙1偏移3个时隙和4个时隙,则该2个时间单元为时隙4和时隙5。
在该实现方式中,根据指示信息和/或配置列表,能够快速、准确地确定时间单元的时域位置。
在一个可选的实现方式中,所述第一信号包括上行数据;所述在所述M个时间单元中的N个时间单元向所述网络设备发送第一信号之前,所述方法还包括:根据第一配置表和/或所述第一指示信息,确定所述M个时间单元的时域位置;以及根据所述M个时间单元的时域位置和/或所述第二指示信息,确定所述N个时间单元的时域位置。所述第一配置表由网络设备配置给终端设备,或者所述第一配置表为系统预设,或所述第一配置表存储于所述终端设备。
示例性地,该第一配置表可以是PUSCH time domain resource allocation列表。可选的,所述第一指示信息包括第一索引。网络设备可以通过该第一索引指示该M个时间单元的时域位置。终端设备可以在该第一配置表中查找该第一索引所指示的时域位置,得到该M个时间单元的时域位置。该第一索引可以是该第一指示信息对应的codepoint/取值。
可选的,所述第二指示信息指示用于反馈第一信号的时间单元的个数为所述N个。例如第二指示信息包括数量信息N,用于指示发送第一信号的时间单元的个数为所述N个。终端设备可以根据预设规则确定该M个时间单元中N个时间单元用于发送第一信号。示例性的,该M个时间单元中的前N个时间单元或者最后N个时间单元,用于发送第一信号。也就是说,终端设备可以根据预设规则和该第二指示信息,确定M个时间单元中哪N个时间单元用于发送第一信号。
可选的,所述第二指示信息用于指示所述N个时间单元相对于所述M个时间单元的位置。这样知道M个时间单元的时域位置之后,终端设备根据该第二指示信息就可以确定该N个时间单元的时域位置。可选的,该第二指示信息包括一个或多个时间偏移值,这些时间偏移值可以表示该N个时间单元相对于所述M个时间单元的位置。举例来说,N为4,该第二指示信息包括的时间偏移值依次为1、3、5、6,则该第二指示信息指示M个时间单元中第1、3、5、6个时间单元为该N个时间单元包括的时间单元。可选的,第二指示信息包括一个位图(bitmap),该位图包括所述M个比特位,每个比特位对应所述M个时间单元中的一个时间单元,每个比特位指示一个时间单元是否发送第一信号。假设M为4,则“1001”表示在第一个时间单元和第四个时间单元上发送第一信号,即N个时间单元包括第一时间单元和第四个时间单元。
可选的,该第二指示信息用于指示该N个时间单元的时域位置分别相对于接收到调度信息的时隙的时间偏移。
在该实现方式中,终端设备先确定M个时间单元的时域位置,再根据该M个时间单元的位置和/或第二指示信息确定N个时间单元的时域位置,能够快速地确定各时间单元的时域位置。
在一个可选的实现方式中,所述第一信号包括上行数据;所述在所述M个时间单元中的N个时间单元向所述网络设备发送第一信号之前,所述方法还包括:
根据所述第一配置表和/或所述第一指示信息,确定所述M个时间单元的时域位置;以及根据所述第一配置表和/或所述第二指示信息,确定所述N个时间单元的时域位置;所述第一配置表由网络设备配置给终端设备,或者所述第一配置表为系统预设,或所述第一配置表存储于所述终端设备。
在该实现方式中,终端设备可以根据第一配置表确定各时间单元的时域位置,不需要配置多个配置表,实现简单。
在一个可选的实现方式中,所述调度信息还包括第三指示信息,所述第三指示信息用于指示所述N个时间单元中用于仅发送CSI的时间单元和/或用于发送CSI和上行数据的时间单元。
可选的,网络设备采用如3GPP 38.212中定义的UL-SCH indicator(对应于第三指示信息)指示在该N个时间单元中各时间单元上仅传输CSI,还是传输CSI和上行数据。可选的,该第三指示信息为调度信息中新定义的字段。第三指示信息可以指示N个进行CSI上报的时间单元中,哪些是仅传输CSI,哪些传输CSI和上行数据。示例性地,第三指示信息可以通过位图的方式,用包括N个比特位的位图指示,每一个比特位对应一个时间单元。假设有2个时间单元可以进行CSI上报,“10”则在表示该2个时间单元中第一个时间单元 上仅发送CSI(即CSI only),在另一个时间单元上发送CSI和上行数据。在一些应用场景中,一次CSI反馈可能不需要占用一个时间单元,这时可以在同一个时间单元上同时发送CSI和数据,以提高资源利用率。在实际应用中,网络设备可以根据实际需要指示终端设备在一些时间单元上仅传输CSI,在另一些时间单元上同时传输CSI和数据,可以更充分的利用时频资源。
在一个可选的实现方式中,所述调度信息还包括第四指示信息,所述第四指示信息用于指示N个CSI上报配置信息。
该第四指示信息可以对应N个码点(codepoint)/取值,每个codepoint/取值指示一个或一组CSI上报配置信息。也就是说,该第四指示信息指示N个或N组CSI上报配置信息。示例性地,该第四指示信息包含N个子字段,每个子字段对应一个codepoint/取值。示例性地,该第四指示信息可以在RRC信令中进行配置,然后通过调度信息中的字段(即第四指示信息)和RRC信令相结合的方式进行指示,即通过第四指示信息对应的codepoint/取值跟RRC中所定义的CSI上报配置信息进行关联。网络设备可以通过RRC信令配置终端设备的CSI上报配置信息。终端设备通过该第四指示信息对应的一个codepoint/取值可以确定一个或一组CSI上报配置信息。举例来说,终端设备配置有多个或多组CSI上报配置信息,每个或每组CSI上报配置信息关联一个codepoint/取值,该终端设备可以根据第四指示信息对应的每个codepoint/取值来确定一个或一组CSI上报配置信息,进而进行CSI反馈。可选的,终端设备的系统中有预设的CSI上报配置信息列表,所述第四指示信息可以采用CSI上报配置信息的索引进行指示。第四指示信息中有一个或多个索引信息,终端设备根据该索引信息即可获知进行CSI上报所需的配置信息。可选的,调度信息为一个DCI。
在该实现方式中,调度信息包括的第四指示信息用于指示N个CSI上报配置信息,以便于终端设备根据该第四指示信息在一次上行传输中上报多个CSI,效率高。
在一个可选的实现方式中,所述调度信息还包括第五指示信息,所述第五指示信息用于指示所述终端设备进行CSI上报。
示例性地,该第五指示信息,可以采用如3GPP 38.212中定义的CSI request字段。可选的,第五指示信息也可以采用1比特(bit)的字段用于指示终端设备是否需要进行CSI上报。例如用比特“0”表示终端设备不需要进行CSI上报,用比特“1”表示该终端设备需要进行CSI上报,还可以为其他指示方式,本发明不做限定。
在该实现方式中,终端设备根据第五指示信息,可以准确地确定是否需要上报CSI。
第三方面,本申请实施例提供了另一种信号接收方法,该方法可包括:网络设备在M个时间单元中的N个时间单元上接收第一信号;所述M为大于1的整数,所述N为大于1且不大于所述M的整数。
网络设备在该M个时间单元中除该N个时间单元之外的任一时间单元上接收的信号不为该第一信号。也就是说,网络设备只在该M个时间单元中的N个时间单元上接收该第一信号。网络设备在终端设备的一次上行传输中,可以在多个时间单元上接收第一信号,在其他时间单元上接收另外的数据或信号。可选的,本申请实施例提供的信号接收方法应用于非授权频谱场景,即网络设备在非授权频谱上接收第一信号。
本申请实施例中,网络设备在终端设备的一次上行传输中接收至少两种类型的信号, 能够有效提高通信效率。
在一个可选的实现方式中,所述第一信号包括信道状态信息CSI和/或上行数据。
在第一信号包括CSI时,网络设备可以同时接收到CSI和其他信号,该网络设备可以根据CSI来相应的调整调度策略;在第一信号不包括CSI时,网络设备可以同时接收到两种不同类型的信号,通信效率高。
在一个可选的实现方式中,所述网络设备在M个时间单元中的N个时间单元上接收第一信号之前,所述方法还包括:接收来自所述终端设备的上行控制信息,所述上行控制信息包括所述N个时间单元的时域位置的指示信息;根据所述上行控制信息,确定所述N个时间单元的时域位置。
可选的,终端设备可以在非授权频谱上,根据先监听后发送(listen before talk,LBT)的结果选择在LBT成功的时间单元上发送第一信号,并向网络设备发送指示上报第一信号的时间单元的时域位置。可选的,所述上行控制信息还包括所述M个时间单元的时域位置的指示信息。
在该实现方式中,网络设备根据上行控制信息,可以快速、准确地上报CSI的时间单元的时域位置。
在一个可选的实现方式中,所述指示信息包括目标索引;所述根据所述上行控制信息,确定所述N个时间单元的时域位置包括:根据第四配置表和目标索引,确定所述N个时间单元的时域位置;该第四配置表为系统预设或者所述第四配置表存储于所述网络设备
网络设备可以在该第四配置表中查找该目标索引所指示的时域位置,得到该N个时间单元的时域位置。
在该实现方式中,网络设备结合第四配置表和目标索引,可以准确地确定N个时间单元的时域位置。
第四方面,本申请实施例提供了另一种信号发送方法,该方法可包括:终端设备在M个时间单元中的N个时间单元向网络设备发送第一信号;所述M为大于1的整数,所述N为大于1且不大于所述M的整数。
本申请实施例中,终端设备在一次上行传输过程中,在多个时间单元上发送至少两种不同类型的信号,能够有效提高通信效率。
在一个可选的实现方式中,所述第一信号包括信道状态信息CSI和/或上行数据。
在第一信号包括CSI时,网络设备可以同时接收到CSI和其他信号,该网络设备可以根据CSI来相应的调整调度策略;在第一信号不包括CSI时,网络设备可以同时接收到两种不同类型的信号,通信效率高。
在一个可选的实现方式中,所述终端设备在M个时间单元中的N个时间单元向网络设备发送第一信号包括:所述终端设备对非授权频谱进行监听;根据先监听后发送LBT的结果,选择LBT成功的所述N个时间单元;在所述N个时间单元上发送第一信号。
在该实现方式中,在LBT成功的N个时间单元上上报CSI,可靠性强。
第五方面,本申请实施例提供了一种网络设备,该网络设备包括:发送单元,用于发送调度信息;所述调度信息包括第一指示信息,所述第一指示信息用于指示M个时间单元的时域位置,所述M为大于1的整数;接收单元,用于在所述M个时间单元中的N个时 间单元上接收第一信号;所述N为大于0且不大于所述M的整数。
在一个可选的实现方式中,所述第一信号包括信道状态信息CSI和/或上行数据。
在一个可选的实现方式中,所述第一指示信息包括第一索引,所述第一索引在第一配置表中指示的时域位置为所述M个时间单元的时域位置,所述第一配置表由网络设备配置给终端设备,或者所述第一配置表为系统预设,或所述第一配置表存储于所述终端设备。
在一个可选的实现方式中,所述调度信息还包括第二指示信息,所述第二指示信息用于指示所述N个时间单元的时域位置。
在一个可选的实现方式中,所述第二指示信息包括第二索引,所述第二索引在第二配置表中指示的时域位置为所述N个时间单元的时域位置,所述第二配置表由网络设备配置给终端设备,或者所述第二配置表为系统预设,或所述第二配置表存储于所述终端设备。
在一个可选的实现方式中,所述第二指示信息指示用于发送第一信号的时间单元的个数为所述N个。可选的,所述第二指示信息包括数量信息N,用于指示发送第一信号的时间单元的个数为所述N个。
在一个可选的实现方式中,所述第二指示信息指示所述N个时间单元相对于所述M个时间单元的位置。
在一个可选的实现方式中,所述调度信息还包括第三指示信息,,所述第三指示信息用于指示所述N个时间单元中用于仅发送CSI的时间单元和/或用于发送CSI和上行数据的时间单元。
在一个可选的实现方式中,所述调度信息还包括第四指示信息,所述第四指示信息用于指示N个CSI上报配置信息。
在一个可选的实现方式中,所述调度信息还包括第五指示信息,所述第五指示信息用于指示所述终端设备进行CSI上报。
第六方面,本申请实施例提供了一种终端设备,该终端设备包括:接收单元,用于接收来自网络设备的调度信息;所述调度信息包括第一指示信息,所述第一指示信息用于指示M个时间单元的时域位置,所述M为大于1的整数;发送单元,用于在所述M个时间单元中的N个时间单元向所述网络设备发送第一信号;所述N为大于0且不大于所述M的整数。
在一个可选的实现方式中,所述第一信号包括信道状态信息CSI和/或上行数据。
在一个可选的实现方式中,所述终端设备还包括:监听单元,用于对目标信道进行监听;确定单元,用于确定所述目标信道处于空间状态;所述发送单元,具体用于在所述N个时间单元通过所述目标信道发送第一信号。
该目标信道占用的频谱可以是非授权频谱。可选的,该目标信道属于物理上行共享信道。在该实现方式中,终端设备在监听到目标信道处于空间状态时,通过该目标信道在多个时间单元上进行上行传输,可靠性高。
在一个可选的实现方式中,所述第一指示信息包括第一索引,所述第一索引在第一配置表中指示的时域位置为所述M个时间单元的时域位置;所述第一配置表由网络设备配置给终端设备,或者所述第一配置表为系统预设,或所述第一配置表存储于所述终端设备。
在一个可选的实现方式中,所述调度信息还包括第二指示信息,所述第二指示信息用 于指示所述N个时间单元的时域位置。
在一个可选的实现方式中,所述第二指示信息包括第二索引,所述第二索引在第二配置表中指示的时域位置为所述N个时间单元的时域位置;所述第二配置表由网络设备配置给终端设备,或者所述第二配置表为系统预设,或所述第二配置表存储于所述终端设备。
在一个可选的实现方式中,所述第二指示信息指示用于反馈第一信号的时间单元的个数为所述N个。可选的,所述第二指示信息包括数量信息N,用于指示发送第一信号的时间单元的个数为所述N个。
在一个可选的实现方式中,所述第二指示信息指示所述N个时间单元相对于所述M个时间单元的位置。
在一个可选的实现方式中,所述第一信号包括CSI且未包括上行数据;所述终端设备还包括:确定单元,用于根据第一配置表和/或所述第一指示信息,确定所述M个时间单元的时域位置;根据第二配置表和/或所述第二指示信息,确定所述N个时间单元的时域位置。
在一个可选的实现方式中,所述第一信号包括上行数据;所述终端设备还包括:确定单元,用于根据第一配置表和/或所述第一指示信息,确定所述M个时间单元的时域位置;以及根据所述M个时间单元的时域位置和/或所述第二指示信息,确定所述N个时间单元的时域位置。所述第一配置表由网络设备配置给终端设备,或者所述第一配置表为系统预设,或所述第一配置表存储于所述终端设备;所述第二配置表由网络设备配置给终端设备,或者所述第二配置表为系统预设,或所述第二配置表存储于所述终端设备。
在一个可选的实现方式中,所述第一信号包括上行数据;所述终端设备还包括:确定单元,用于根据第一配置表和/或所述第一指示信息,确定所述M个时间单元的时域位置;以及根据所述第一配置表和/或所述第二指示信息,确定所述N个时间单元的时域位置;所述第一配置表由网络设备配置给终端设备,或者所述第一配置表为系统预设,或所述第一配置表存储于所述终端设备。
在一个可选的实现方式中,所述调度信息还包括第三指示信息,所述第三指示信息用于指示所述N个时间单元中用于仅发送CSI的时间单元和/或用于发送CSI和上行数据的时间单元。
在一个可选的实现方式中,所述调度信息还包括第四指示信息,所述第四指示信息用于指示N个CSI上报配置信息。
在一个可选的实现方式中,所述调度信息还包括第五指示信息,所述第五指示信息用于指示所述终端设备进行CSI上报。
第七方面,本申请实施例提供了一种网络设备,该网络设备包括:接收单元,用于在M个时间单元中的N个时间单元上接收第一信号;所述M为大于1的整数,所述N为大于1且不大于所述M的整数。
在一个可选的实现方式中,所述第一信号包括信道状态信息CSI和/或上行数据。
在一个可选的实现方式中,所述接收单元,还用于接收来自所述终端设备的上行控制信息,所述上行控制信息包括所述N个时间单元的时域位置的指示信息;所述网络设备还包括:确定单元,用于根据所述上行控制信息,确定所述N个时间单元的时域位置。
在一个可选的实现方式中,所述指示信息包括目标索引;所述确定单元,具体用于根 据第四配置表和目标索引,确定所述N个时间单元的时域位置;所述第四配置表为系统预设,或所述第四配置表存储于所述网络设备。
第八方面,本申请实施例提供了一种终端设备,该终端设备包括:发送单元,用于在M个时间单元中的N个时间单元向网络设备发送第一信号;所述M为大于1的整数,所述N为大于1且不大于所述M的整数。
在一个可选的实现方式中,所述第一信号包括信道状态信息CSI和/或上行数据。
在一个可选的实现方式中,所述终端设备还包括:监听单元,用于对非授权频谱进行监听;选择单元,还用于根据先监听后发送LBT的结果,选择LBT成功的所述N个时间单元。
第九方面,本申请实施例提供一种通信设备,所述通信设备包括处理器和存储器,所述存储器用于存储程序;所述处理器用于执行所述存储器存储的所述程序,当所述程序被执行时,所述处理器用于执行上述第一方面或上述第三方面中所示的信号接收方法。
第十方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如上述第一方面或上述第三方面中所示的信号接收方法。
第十一方面,本申请实施例提供一种通信装置,所述通信设备包括处理器和存储器,所述存储器用于存储程序;所述处理器用于执行所述存储器存储的所述程序,当所述程序被执行时,所述处理器用于执行上述第二方面或上述第四方面中所示的信号发送方法。
第十二方面,本申请实施例提供一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如上述第二方面或上述第四方面中所示的信号发送方法。
第十三方面,本申请实施例提供一种通信系统,所述通信系统包括网络设备和终端设备,所述网络设备可用于执行如第一方面所述的方法,所述终端设备用于执行如第二方面所述的方法。
第十四方面,本申请实施例提供一种通信系统,所述通信系统包括网络设备和终端设备,所述网络设备可用于执行如第三方面所述的方法,所述终端设备用于执行如第四方面所述的方法。
第十五方面,本申请实施例提供一种可读存储介质,所述可读存储介质用于存储指令,当所述指令被执行时,使得上述第一方面或上述第三方面所述的方法被实现。
第十六方面,本申请实施例提供一种可读存储介质,所述可读存储介质用于存储指令,当所述指令被执行时,使得上述第二方面或上述第四方面所述的方法被实现。
第十七方面,本申请实施例提供一种包括指令的计算机程序产品,当所述指令被执行时,使得上述第一方面或上述第三方面所述的方法被实现。
第十八方面,本申请实施例提供一种包括指令的计算机程序产品,当所述指令被执行时,使得上述第二方面或上述第四方面所述的方法被实现。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或 背景技术中所需要使用的附图进行说明。
图1是本申请实施例公开的一种网络构架示意图;
图2为本申请实施例提供的一种信号接收方法流程图;
图3为本申请实施例提供的一种网络设备和终端设备的交互方法流程图;
图4本申请实施例提供的另一种网络设备和终端设备的交互方法流程图;
图5为本申请实施例提供的一种信号发送方法示意图;
图6为本申请实施例提供的另一种信号发送方法示意图
图7为本申请实施例提供的一种网络设备的结构示意图;
图8为本申请实施例提供的一种终端设备的结构示意图;
图9为本申请实施例提供的另一种网络设备的结构示意图;
图10为本申请实施例提供的另一种终端设备的结构示意图;
图11为本申请实施例提供的另一种网络设备的结构示意图;
图12为本申请实施例提供的另一种终端设备的结构示意图。
具体实施方式
本申请的说明书实施例和权利要求书及上述附图中的术语“第一”、“第二”、和“第三”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。“和/或”用于表示在其所连接的两个对象之间选择一个或全部。例如“A和/或B”表示A、B或A+B。
本申请实施例公开了信号接收方法、信号发送方法及设备及相关设备,通过对数据和第一信号上报的独立指示/联合指示,实现在多时间单元调度场景下的第一信号上报,避免网络设备和终端设备之间对于第一信号上报的指示信息之间出现混淆。该第一信号包括CSI和/或上行数据。也就是说,网络设备(例如基站)可以通过一个调度信息指示终端设备(例如手机)进行上行传输的多个时间单元,并指示该终端设备在哪个或哪些时间单元上发送第一信号。为了更好理解本申请实施例公开的信号接收方法、信号发送方法及设备及相关设备,下面先对本申请实施例适用的网络构架进行描述。本申请实施例公开的方法可以应用于5G新无线接入技术(New RAT(radio access technology),NR)系统;也可以应用于其它通信系统,只要该通信系统中存在实体需要指示另外的实体在多个时间单元的哪个或哪些时间单元上发送第一信号,和/或,存在实体需要在一次传输的多个时间单元中的部分时间单元上接收或接收第一信号。下面先介绍本申请实施例公开的方法所适用的一种网络架构。
请参阅图1,图1是本申请实施例公开的一种网络构架示意图。如图1所示,该网络构架适用于多时间单元调度场景,即一次上行传输或下行传输占用多个时间单元发送数据或信号的场景。网络设备是网络侧的一种用于发射或接收信号的实体,如gNB。终端设备是用户侧的一种用于接收或发射信号的实体,如手机。由于基站和UE的应用场景较多,下面以基站作为网络设备的示例,以用户设备(user equipment,UE)作为终端设备的示例。 如图1所示,基站(base station)和UE1~UE6组成一个通信系统。在该通信系统中,基站可以给UE1~UE6发送调度信息;UE1~UE6可以根据该调度信息上报相应的信息。此外,UE4~UE6也可以组成一个通信系统。在该通信系统中,UE5也可以发送调度信息给UE4、UE6;UE4、UE6也可以给UE5发送针对该调度信息的反馈信息。举例来说,基站可以给UE1~UE6发送CSI request即CSI上报请求指示(调度信息的一种示例);UE1~UE6可以根据该CSI reques进行CSI上报。此外,UE4~UE6也可以组成一个通信系统。在该通信系统中,UE5也可以发送CSI request给UE4、UE6;UE4、UE6也可以给UE5发送CSI上报信息。
下面来详细描述本申请实施例提供的信号接收方法和信号发送方法。
图2为本申请实施例提供的一种信号接收方法流程图。如图2所示,该方法可包括:
201、网络设备向终端设备发送调度信息。
该调度信息包括第一指示信息,该第一指示信息用于指示M个时间单元的时域位置,该M为大于1的整数。该调度信息可以是DCI,也可以是RRC信令,还可以是DCI和RRC信令的组合,还可以是其他调度信令。时间单元可以是子帧、时隙(slot)、微时隙、无线帧、正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号、传输时间间隔(Transmission Time Interval,TTI)等。应理解,时间单元并不限定于列举的几种,还可以是其他时间长度。可选的,图2中的信号接收方法可应用于非授权频谱场景,网络设备在发送调度信息之前需要进行LBT。可选的,在多时间单元调度场景下,网络设备发送的调度信息,应保证用于仅发送CSI的时间单元位于其所调度的多个时间单元之内。可选的,网络设备在向终端设备发送调度信息之前,对信道进行LBT;在信道处于空间状态的情形下,向终端设备发送调度信息。
202、在M个时间单元中的N个时间单元上接收第一信号。
该N为大于0且不大于该M的整数。该第一信号可以包括CSI和/或上行数据。该第一信号既可以是携带信息的信号,也可以是数据。优选的,M大于N。也就是说,网络设备只在该M个时间单元中的N个时间单元上接收该第一信号,在该M个时间单元中除该N个时间单元之外的(M-N)个时间单元上接收其他信号。可选的,本申请实施例提供的信号接收方法应用于非授权频谱场景,即在非授权频谱上接收第一信号。该网络设备向该终端设备发送该调度信息,可指示该终端设备在M个时间单元中的N个时间单元上发送该第一信号。也就是说,该调度信息可调度M个时间单元,并指示该终端设备在其中的N个时间单元上发送第一信号,可以有效节省信令。
本申请实施例中,网络设备可以在终端设备的一次上行传输中接收到至少两种类型的信号,;能够有效减少终端设备发送上行传输的次数以及该网络设备接收数据的次数,通信效率高。
图2仅描述了网络设备执行的操作,为更清楚地描述本申请实施例提供的方法,下面来描述网络设备和终端设备的交互流程。图3为本申请实施例提供的一种网络设备和终端设备的交互方法流程图。如图3所示,该方法可包括:
301、网络设备向终端设备发送调度信息。
该调度信息包括第一指示信息,该第一指示信息用于指示M个时间单元的时域位置, 该M为大于1的整数。
302、终端设备解析调度信息,得到M个时间单元的时域位置以及N个时间单元的时域位置。
303、终端设备在M个时间单元中的N个时间单元上发送第一信号。
在一些实施例中,终端设备在该M个时间单元中除该N个时间单元之外的时间单元上发送第二信号,该第二信号不同于该第一信号。在这些实施例中,网络设备通过向终端设备发送调度信息,可以指示该终端设备在一次上行传输过程中,发送至少两种类型的信号。该调度信息可以准确地指示终端设备在哪些时间单元的时域位置上发送第一信号,在哪些时间单元的时域位置上发送其他信号(例如第二信号)。可选的,图3中的交互方法可应用于非授权频谱场景,终端设备在发送第一信号前需要进行一次或多次LBT。在非授权频谱场景下,通过一个调度信息调度多个时间单元,可以有效降低信令开销以及LBT开销。
可选的,在多时间单元调度场景下,如果调度信息指示的用于仅发送CSI的时间单元落在其所调度的多个时间单元之外,则终端设备默认在该M个时间单元的前N个或最后N个上发送CSI。
可选的,终端设备在执行步骤303之前,可以执行如下操作:对目标信道进行监听;确定所述目标信道处于空间状态。在所述M个时间单元中的N个时间单元向所述网络设备发送第一信号可以是:在所述N个时间单元通过所述目标信道发送第一信号。该目标信道对应的频谱可以是非授权频谱。可选的,该目标信道属于物理上行共享信道。在该实现方式中,终端设备可以执行一次LBT,在监听到目标信道处于空间状态时,通过该目标信道在多个时间单元上进行上行传输,可以有效减少LBT开销。
304、网络设备在M个时间单元中的N个时间单元上接收第一信号。
该第一信号可以包括CSI,也可以包括CSI和上行数据。网络设备可以在多时间单元调度机制下对终端设备进行CSI上报指示,可以有效提高CSI上报的效率。
本申请实施例中,网络设备可以在终端设备的一次上行传输中接收到至少两种类型的信号,能够有效减少终端设备发送上行传输的次数以及该网络设备接收数据的次数,通信效率高。
下面介绍终端设备解析调度信息,得到M个时间单元的时域位置以及N个时间单元的时域位置的几种实现方式。
方式一
在方式一中,第一信号包括CSI且未包括上行数据。上述第一指示信息包括第一索引,该第一索引在第一配置表中指示的时域位置为该M个时间单元的时域位置。该第一配置表由网络设备配置给终端设备,或者该第一配置表为系统预设,或该第一配置表存储于该终端设备。终端设备可以解析该第一指示信息,得到该第一索引;在该第一配置表中查找该第一索引指示的时域位置,得到该M个时间单元的时域位置。示例性的,调度信息为DCI,该第一指示信息可以是DCI中的时域资源指示信息(即TDRA字段),该第一索引可以是时域资源指示信息对应的codepoint/取值。该第一配置表可以为网络设备预设的或者在RRC信令重定义的PUSCH时域资源配置信息列表(也称PUSCH time domain resource allocation列表)。该第一配置表中详细的配置了上述M个时间单元的时间信息,包括映射方式,起 始时间S,时间偏移K 2,持续时间L等中的一种或多种。表1为一种第一配置表的示例。表1中示出了时间单元为2个时,每个时间单元详细的配置信息。可以理解的,表1仅用于举例说明,在实际配置时第一配置表可以为其他形式,例如将不同时间单元之间公共的信息进行合并或者联合指示,本申请不做限定。可选的,该第一指示信息对应的一个codepoint/取值(即第一索引)对应表1中的一个配置。终端设备根据第一指示信息以及该第一配置表,即可确定上述M个时间单元的时域位置。假定网络设备在时隙1向终端设备发送调度信息,第一指示信息对应的codepoint=0,终端设备需要在该第一配置表中查找第一行配置信息,获取到M个时间单元的时域位置。例如获取到基站调度连续的2个时间单元,该2个时间单元中第一个时间单元相对于DCI的时间偏移K 2为2个时隙,即该2个时间单元位于时隙3和时隙4。应理解,时间单元不限于时隙,还可以是子帧、无线帧、OFDM符号、微时隙、TTI等。
可选的,该第一指示信息用于指示该M个时间单元的时域位置分别相对于接收到调度信息的时隙的时间偏移。例如,该第一指示信息用于指示4个时间单元分别相对于该终端设备接收到调度信息的时隙1偏移3个时隙、4个时隙、5个时隙以及6个时隙,则该2个时间单元为时隙4、时隙5、时隙6以及时隙7。
表1第一配置表
Figure PCTCN2019109229-appb-000001
该调度信息还包括第二指示信息,该第二指示信息用于指示该N个时间单元的时域位 置。该第二指示信息可以包括第二索引,该第二索引在第二配置表中指示的时域位置为该N个时间单元的时域位置;该第二配置表由网络设备配置给终端设备,或者该第二配置表为系统预设,或该第二配置表存储于该终端设备。终端设备可以解析该第二指示信息,得到该第二索引;在该第二配置表中查找该第二索引指示的时域位置,得到该N个时间单元的时域位置。可选的,第二指示信息隐含在该第一指示信息中,该第二索引为该第一索引。终端设备可以根据该第一索引或该第二索引在CSI上报配置信息所指示的时间偏移列表(对应于上述第二配置表)中,查找用于发送CSI的时间单元的时域位置,得到该N个时间单元的时域位置。终端设备根据调度信息,可以获取到多个或多组CSI上报配置信息(即CSI-ReportConfig信息),进而获得相应的多个或多组时间偏移列表,例如reportSlotOffsetList。后续再描述终端设备根据调度信息,获取到多个或多组CSI上报配置信息的实现方式。对于每个或每组reportSlotOffsetList,终端设备查找每个或每组reportSlotOffsetList(对应于第二配置表)中该第一索引或第二索引指示的配置信息,得到一个或多个时间偏移值(即offset信息),然后在该一个或多个offset信息中选择最大的一个,得到每个用于发送CSI的时间单元相对于调度信息的时间偏移值。假定第一索引对应的codepoint=0,则终端设备查找每个或每组reportSlotOffsetList中第一行的配置信息。假定第二索引对应的codepoint=3,则终端设备查找每个或每组reportSlotOffsetList中第四行的配置信息。举例来说,对于第一个或第一组reportSlotOffsetList,终端设备根据该第一索引或该第二索引得到的offset信息为3,对于对于第二个或第二组CSI-ReportConfig信息,根据该第一索引或该第二索引得到的offset信息为4,则表示相对于接收到调度信息的时隙1分别偏移3个时隙和4个时隙的时间单元用于发送CSI,即时隙4和时隙5。在一些实施例中,第一配置表可以包含上述第二配置表,终端设备利用该第一指示信息以及该第一配置表可以查找到该M个时间单元的时域位置以及该N个时间单元的时域位置。
终端设备在调度信息指示用于发送CSI的时间单元上仅能发送CSI时,可以结合指示信息和配置列表来确定上述M个时间单元的时域位置以及上述N个时间单元的时域位置。
方式二
在方式二中,第一信号包括CSI和上行数据,或者,仅包括上行数据。方式二中终端设备得到M个时间单元的时域位置的实现方式可以与方式一中终端设备得到M个时间单元的时域位置的实现方式相同,这里不再赘述。在方式二中,终端设备可根据上述M个时间单元的时域位置来确定用于发送第一信号的N个时间单元的时域位置。
可选的,第二指示信息指示用于发送第一信号的时间单元的个数为N个。例如第二指示信息包括数量信息N,指示用于发送第一信号的时间单元的个数为N个。终端设备可以根据预设规则确定该M个时间单元中哪N个时间单元用于发送第一信号。示例性的,终端设备确定该M个时间单元中的前N个时间单元或者最后N个时间单元,用于发送第一信号。由于终端设备已知该M个时间单元的时域位置,该终端设备可以确定该N个时间单元的时域位置。
可选的,该第二指示信息指示该N个时间单元相对于该M个时间单元的位置。这样终端设备在获得M个时间单元的时域位置之后,根据该第二指示信息就可以确定该N个时间单元的时域位置。可选的,该第二指示信息包括一个或多个时间偏移值,这些时间偏移值 可以表示该N个时间单元相对于该M个时间单元的位置。举例来说,N为4,该第二指示信息包括的时间偏移值依次为1、3、5、6,则该第二指示信息指示M个时间单元中第1、3、5、6个时间单元为该N个时间单元包括的时间单元。可选的,第二指示信息包括一个位图(bitmap),该位图包括该M个比特位,每个比特位对应该M个时间单元中的一个时间单元,每个比特位指示是否在其对应的时间单元上发送第一信号。假设M为4,则“1001”表示在第一个时间单元和第四个时间单元上发送第一信号,即N个时间单元包括第一个时间单元和第四个时间单元。
可选的,该第二指示信息可以包括第三索引,该第三索引在第三配置表中指示的时域位置为该N个时间单元的时域位置;该第三配置表由网络设备配置给终端设备,或者该第三配置表为系统预设,或该第三配置表存储于该终端设备。终端设备可以解析该第二指示信息,得到该第三索引;在该第三配置表中查找该第三索引指示的时域位置,得到该N个时间单元的时域位置。该第三配置表可以为与上述第一配置表类似的配置列表,区别在于该第一配置表中每行为M个时间单元的配置信息,该第三配置表中每行为N个时间单元的配置信息。举例来说,第三索引为3,终端设备查找第三配置表中row index=4时的K 2取值,得到N个时间单元的时间偏移信息。如果终端设备在时隙n接收到调度信息,则应该在时隙n+K 2发送CSI。
可选的,终端设备根据第一配置表和第二指示信息,确定所述N个时间单元的时域位置。上述第一配置表可以既包括调度信息指示的M个时间单元的时域位置,又包括用于发送第一信号的N个时间单元的时域位置。终端设备可以查询该第二指示信息包括的索引在该第一配置列表中所指示的时域位置,得到该N个时间单元的时域位置。
可选的,该第二指示信息用于指示该N个时间单元的时域位置分别相对于接收到调度信息的时隙的时间偏移。例如,该第二指示信息用于指示2个时间单元分别对应于该终端设备接收到调度信息的时隙1偏移3个时隙和4个时隙,则该2个时间单元为时隙4和时隙5。
终端设备在调度信息指示需要发送的第一信号为CSI和上行数据或者为上行数据时,可以先结合第一指示信息和配置列表来确定上述M个时间单元的时域位置,再根据上述M个时间单元的时域位置确定上述N个时间单元的时域位置。
前述实施例中的第一信号可以包括CSI和上行数据,也可以仅包括CSI。在一些实施例中,该调度信息还包括第三指示信息,所述第三指示信息用于指示所述N个时间单元中用于仅发送CSI的时间单元和/或用于发送CSI和上行数据的时间单元。可选的,第三指示信息为一个包括N个比特位的位图,每一个比特位对应一个时间单元。终端设备可以根据该第三指示信息,确定在哪些时间单元上仅发送CSI,在哪些时间单元上同时发送CSI和上行数据。假设终端设备在2个时间单元可以发送CSI,“10”则表示在该2个时间单元中的第一个时间单元上仅发送CSI(即CSI only),在另一个时间单元上发送CSI和数据。可选的,第三指示信息包括1个比特位,;若该比特位为1,表示在该N个时间单元上均仅发送CSI;若该比特位为0,表示在该N个时间单元上均发送CSI和上行数据。在一些应用场景中,发送CSI可能不需要占用一个时间单元,这时终端设备可以在同一个时间单元上同时发送CSI和上行数据,以提高资源利用率。在实际应用中,网络设备可以根据实际需要指 示终端设备在一些时间单元上仅传输CSI,在另一些时间单元上同时传输CSI和数据,可以更充分的利用时频资源。
在一些实施例中,该调度信息还包括第四指示信息,该第四指示信息用于指示N个CSI上报配置信息。该第四指示信息可以对应N个码点(codepoint)/取值,每个codepoint/取值指示一个或一组CSI上报配置信息,该N个codepoint/取值指示N个或N组CSI上报配置信息。该第四指示信息可以采用如3GPP 38.212中定义的CSI request字段。示例性地,该第四指示信息包含N个子字段,每个子字段对应一个codepoint/取值。示例性地,该第四指示信息可以在RRC信令中进行配置,然后通过调度信息中的字段(即第四指示信息)和RRC信令相结合的方式进行指示,即通过第四指示信息对应的codepoint/取值跟RRC中所定义的CSI上报配置信息进行关联。网络设备可以通过RRC信令配置终端设备的CSI上报配置信息。终端设备通过该第四指示信息对应的一个codepoint/取值可以确定一个或一组CSI上报配置信息。举例来说,终端设备配置有多个或多组CSI上报配置信息,每个或每组CSI上报配置信息关联一个codepoint/取值,该终端设备可以根据第四指示信息对应的每个codepoint/取值来确定一个或一组CSI上报配置信息,进而进行CSI反馈。可选的,终端设备的系统中有预设的CSI上报配置信息列表,该第四指示信息可以采用CSI上报配置信息的索引进行指示。第四指示信息中有一个或多个索引信息,终端设备根据该一个或多个索引信息即可获知进行CSI上报所需的配置信息。可选的,调度信息为一个DCI。一个CSI上报配置信息可以包含以下一种或多种信息的组合:CSI上报类型;CSI上报时间信息(可以是周期、相对于某一时间的时间偏移、绝对时间等一种或多种组合),CSI资源信息(可以是用于进行CSI测量的资源信息,例如CSI-RS的资源信息和/或用于进行CSI测量对应SSB的资源信息和/或用于进行干扰测量的资源信息)等。终端设备可以根据第四指示信息指示的N个或N组CSI上报配置信息,在N个时间单元上上发送CSI。在实际应用中,终端设备可以根据一个或一组CSI上报配置信息在一个时间单元上发送相应的CSI。也就是说,在不同时间单元上发送的CSI可以不同。
在一些实施例中,该调度信息还包括第五指示信息,该第五指示信息用于指示该终端设备进行CSI上报。示例性地,该第五指示信息,可以采用如3GPP 38.212中定义的CSI request字段。可选的,第五指示信息也可以采用1比特(bit)的字段用于指示终端设备是否需要进行CSI上报。例如用比特“0”表示终端设备不需要进行CSI上报,用比特“1”表示该终端设备需要进行CSI上报,还可以为其他指示方式,本发明不做限定。可选的,该第五指示信息隐含在上述第四指示信息中。也就是说,终端设备可以根据上述第四指示信息,确定需要进行CSI上报。
前述实施例中描述了网络设备向终端设备发送调度信息,该终端设备在该调度信息指示的M个时间单元中的N个时间单元发送CSI的方案。本申请实施例还提供了一种网络设备不需要发送调度信息,终端设备可在M个时间单元中的多个时间单元上发送第一信号的方案。本申请实施例提供的另一种网络设备和终端设备的交互方法流程图。如图4所示,该方法可包括:
401、终端设备对非授权频谱进行监听。
402、终端设备根据先监听后发送LBT的结果,选择LBT成功的N个时间单元。
N为大于1的整数。终端设备可以通过非授权频谱上的接收功率的大小来判断其忙闲状态,如果接收功率小于一定门限,则认为非授权频谱处于空闲状态,可以在该非授权频谱上发送信号,否则不发送信号。可选的,终端设备在M个时间单元上进行上行传输,在N个时间单元上发送第一信号,在(M-N)个时间单元上发送第二信号,该第二信号不同于该第一信号。该第一信号可以包括CSI和上行数据,也可以仅包括CSI。
403、终端设备向网络设备发送上行控制信息。
该上行控制信息包括该N个时间单元的时域位置的指示信息。可选的,该上行控制信息还包括该M个时间单元的时域位置的指示信息。
404、网络设备根据上行控制信息,确定N个时间单元的时域位置。
该上行控制信息可以包括目标索引;网络设备可以在该第四配置表中查找该目标索引所指示的时域位置,得到该N个时间单元的时域位置。该第四配置表为系统预设,或所述第四配置表存储于所述网络设备。该第四配置表类似于上述第一配置表,这里不再详述。
405、终端设备在N个时间单元上发送第一信号。
406、网络设备在M个时间单元中的N个时间单元上接收第一信号。
可选的,网络设备在(M-N)个时间单元上接收第二信号。
本申请实施例中,终端设备可以根据LBT的结果在多个时间单元向网络设备发送第一信号,只需执行一次LBT就可在多个时间单元上发送第一信号,可以节约信令、降低LBT开销以及降低丢失信道的概率。
下面结合附图来描述终端设备在M个时间单元中的1个时间单元上发送第一信号的示例。
图5为本申请实施例提供的一种信号发送过程示意图。如图5所示,终端设备在时隙1接收到调度信息(即图5中的DCI),终端设备发送数据的4个时间单元中第一个时间单元相对于DCI的时间偏移K 2为2个时隙,即该4个时间单元位于时隙3、时隙4、时隙5以及时隙6。其中,终端设备在时隙5发送第一信号。下面介绍几种与图5中的信号发送过程一致的示例。
示例1
假设基站在时隙1发送DCI(即调度信息),且指示字段TDRA(即第一指示信息)对应的codepoint=0,CSI request(即第四指示信息)对应的codepoint=0,第三指示信息对应的codepoint=1,则UE需要在PUSCH时域资源配置信息列表(对应于上述第一配置表)中查找第一行配置信息,获取多个时间单元的时域位置。例如获取到基站调度连续的四个时间单元,该四个时间单元中第一个时间单元相对于DCI的时间偏移K 2为2个时隙,即该多个时间单元位于时隙3、时隙4、时隙5以及时隙6。该第三指示信息指示用于发送CSI的时间单元仅发送CSI,即CSI only。UE需要根据CSI request对应的codepoint获取对应的一个或多个CSI-ReportConfig信息,进而获得相应的一个或多个reportSlotOffsetList,然后根据TDRA查找该一个或多个reportSlotOffsetList中的第一行配置信息,得到一个或多个offset信息,然后在该一个或多个offset信息中选择最大的一个。例如最大的offset信息为4,则表示相对于DCI的时隙1偏移4个时隙的时间单元用于发送CSI,即时隙5。示例1中,第一信号仅包括CSI。
示例2
假设基站在时隙1发送DCI(即调度信息),且指示字段TDRA(即第一指示信息)对应的codepoint=0,第二指示信息为“0010”,CSI request(即第四指示信息)对应的codepoint=0,第三指示信息对应的codepoint=0,则UE需要在PUSCH时域资源配置信息列表(对应于上述第一配置表)中查找第一行配置信息,获取多个时间单元的时域位置。例如获取到基站调度连续的四个时间单元,该四个时间单元中第一个时间单元相对于DCI的时间偏移K 2为2个时隙,即该多个时间单元位于时隙3、时隙4、时隙5以及时隙6。该第三指示信息指示用于发送CSI的时间单元一起发送CSI和上行数据。该第二指示信息包括的4个比特位与该4个时间单元一一对应。其中,比特1对应的时间单元用于发送CSI和上行数据。UE根据第二指示信息,可以确定在该4个时间单元中的第三个时间单元(即时隙5)上发送CSI和数据。可选的,第二指示信息对应的codepoint=3,该第二指示信息指示在该4个时间单元的第3个时间单元上发送CSI和上行数据。UE根据第二指示信息,可以确定在该4个时间单元的第三个时间单元(即时隙5)上发送CSI和上行数据。示例2中,第一信号包括CSI和上行数据。
示例3
假设基站在时隙1发送DCI(即调度信息),且指示字段TDRA(即第一指示信息)对应的codepoint=0,第二指示信息对应的codepoint=2,CSI request(即第四指示信息)对应的codepoint=0,第三指示信息对应的codepoint=0,则UE需要在PUSCH时域资源配置信息列表(对应于上述第一配置表)中查找第一行配置信息,获取多个时间单元的时域位置。例如获取到基站调度连续的四个时间单元,该四个时间单元中第一个时间单元相对于DCI的时间偏移K 2为2个时隙,即该多个时间单元位于时隙3、时隙4、时隙5以及时隙6。该第三指示信息指示用于发送CSI的时间单元一起发送CSI和上行数据。UE需要在另一个PUSCH时域资源配置信息列表(对应于上述第三配置表)中查找第3行配置信息,获取到一个时间单元的时域位置,即时隙5。示例3中,第一信号包括CSI和上行数据。
示例4
假设基站在时隙1发送DCI(即调度信息),且指示字段TDRA(即第一指示信息)对应的codepoint=0,CSI request(即第四指示信息)对应的codepoint=0,且第三指示信息对应的codepoint=0,则UE需要在PUSCH时域资源配置信息列表(对应于上述第一配置表)中查找第一行配置信息,获取多个时间单元的时域位置。例如获取到基站调度连续的四个时间单元,该四个时间单元中第一个时间单元相对于DCI的时间偏移K 2为2个时隙,即该M个时间单元位于时隙3、时隙4、时隙5以及时隙6。该第三指示信息指示用于发送CSI的时间单元一起发送CSI和上行数据。UE根据预设规则,在该M个时间单元的倒数第二个时间单元上发送CSI和上行数据。示例4中,第一信号包括CSI和上行数据。
应理解,上述示例仅是一部分示例,而不是全部的示例。
下面结合附图来描述终端设备在M个时间单元中的多个时间单元上发送第一信号的示例。
图6为本申请实施例提供的另一种信号发送过程示意图。如图6所示,终端设备在时隙1接收到调度信息(即图6中的DCI),终端设备发送数据的4个时间单元中第一个时间 单元相对于DCI的时间偏移K 2为2个时隙,即该4个时间单元位于时隙3、时隙4、时隙5以及时隙6。其中,终端设备在时隙4和时隙5发送第一信号。下面介绍几种与图6中的信号发送过程一致的示例。
示例5
假设基站在时隙1发送DCI(即调度信息),且指示字段TDRA(即第一指示信息)对应的codepoint=0,CSI request(即第四指示信息)对应的codepoint=0和1,且第三指示信息指示“11”即两个用于CSI上报的时间单元仅发送CSI,则UE需要在PUSCH时域资源配置信息列表(对应于上述第一配置表)中查找第一行配置信息,获取多个时间单元的时域位置。例如获取到基站调度连续的四个时间单元,该四个时间单元中第一个时间单元相对于DCI的时间偏移K 2为2个时隙,即该M个时间单元位于时隙3、时隙4、时隙5以及时隙6。UE需要根据CSI request对应的两个codepoint获取对应的两个或两组CSI-ReportConfig信息,进而获得相应的两个或两组reportSlotOffsetList;对于每个或每组reportSlotOffsetList,根据TDRA查找每个或每组reportSlotOffsetList中的第一行配置信息,得到一个或多个offset信息,然后在该一个或多个offset信息中选择最大的一个。举例来说,对于第一个或第一组CSI-ReportConfig信息,根据TDRA得到的offset信息为3;对于对于第二个或第二组CSI-ReportConfig信息,根据TDRA得到的offset信息为4,则表示相对于接收到DCI的时隙1分别偏移3和4个时隙的时间单元用于发送CSI,即时隙4和时隙5。示例5中,第一信号仅包括CSI。
示例6
假设基站在时隙1发送DCI(即调度信息),且指示字段TDRA(即第一指示信息)对应的codepoint=0,第二指示信息为“0110”,CSI request(即第四指示信息)对应的codepoint=0,第三指示信息为“00”,则UE需要在PUSCH时域资源配置信息列表(对应于上述第一配置表)中查找第一行配置信息,获取多个时间单元的时域位置。例如获取到基站调度连续的四个时间单元,该四个时间单元中第一个时间单元相对于DCI的时间偏移K 2为2个时隙,即该多个时间单元位于时隙3、时隙4、时隙5以及时隙6。该第三指示信息指示在用于发送CSI的两个时间单元上一起发送CSI和上行数据。该第二指示信息包括的4个比特位与该4个时间单元一一对应。其中,比特1对应的时间单元用于发送CSI和上行数据。UE根据第二指示信息,可以在该4个时间单元中的第2个时间单元(即时隙4)和第3个时间单元(即时隙5)上发送CSI和上行数据。可选的,第二指示信息对应的codepoint=2和3,该第二指示信息指示在该4个时间单元中的第2个时间单元和第3个时间单元上发送CSI和上行数据。示例6中,第一信号包括CSI和上行数据。
示例7
假设基站在时隙1发送DCI(即调度信息),且指示字段TDRA(即第一指示信息)对应的codepoint=0,第二指示信息对应的codepoint=2,CSI request(即第四指示信息)对应的codepoint=0,第三指示信息对应的codepoint=0,则UE需要在PUSCH时域资源配置信息列表(对应于上述第一配置表)中查找第一行配置信息,获取多个时间单元的时域位置。例如获取到基站调度连续的四个时间单元,该四个时间单元中第一个时间单元相对于DCI的时间偏移K 2为2个时隙,即该多个时间单元位于时隙3、时隙4、时隙5以及时 隙6。该第三指示信息指示用于发送CSI的时间单元一起发送CSI和上行数据。UE需要在另一个PUSCH时域资源配置信息列表(对应于上述第三配置表)中查找第3行配置信息,获取到2个时间单元的时域位置,即时隙4和时隙5。示例7中,第一信号包括CSI和上行数据。
示例8
假设基站在时隙1发送DCI(即调度信息),且指示字段TDRA(即第一指示信息)对应的codepoint=0,第二指示信息对应的codepoint=2,CSI request(即第四指示信息)对应的codepoint=0和1,第三指示信息为“00”,则UE需要在PUSCH时域资源配置信息列表(对应于上述第一配置表)中查找第一行配置信息,获取多个时间单元的时域位置。例如获取到基站调度连续的四个时间单元,该四个时间单元中第一个时间单元相对于DCI的时间偏移为2个时隙,即该M个时间单元位于时隙3、时隙4、时隙5以及时隙6。第三指示信息为“00”,指示在两个时间单元上发送CSI和上行数据。该第二指示信息指示用于发送CSI和上行数据的时间单元的个数为2。UE根据预设规则,可以在该4个时间单元中的倒数第2个时间单元至倒数第(N+1)个时间单元上发送CSI和上行数据。其中,N为2。也就是说,UE可以在M个时间单元中的默认N个时间单元上发送CSI和上行数据。该预设规则可以是基站通过RRC信令给UE配置的。示例8中,第一信号包括CSI和上行数据。
示例9
假设基站在时隙1发送DCI(即调度信息),且指示字段TDRA(即第一指示信息)对应的codepoint=0,第二指示信息为“0010”,CSI request(即第四指示信息)对应的codepoint=0和1,第三指示信息为“01”,则UE需要在PUSCH时域资源配置信息列表(对应于上述第一配置表)中查找第一行配置信息,获取多个时间单元的时域位置。例如获取到基站调度连续的四个时间单元,该四个时间单元中第一个时间单元相对于DCI的时间偏移为2个时隙,即该M个时间单元位于时隙3、时隙4、时隙5以及时隙6。第三指示信息为“01”,指示在一个时间单元上仅发送CSI在另一个时间单元上发送CSI和上行数据。该CSI request对应的codepoint可以与该第三指示信息对应的codepoint(即“01”)一一对应,UE可以获取CSI request对应的codepoint中,在该第三指示信息对应的codepoint为0的codepoint对应的CSI-ReportConfig信息。假定CSI request对应的codepoint=0、1、2、3,第三指示信息为“1001”,则UE获取codepoint=1和2对应的CSI-ReportConfig信息。UE需要根据CSI request对应的codepoint=1获取一个或一组CSI-ReportConfig信息,进而获得相应的一个或一组reportSlotOffsetList;根据TDRA查找该reportSlotOffsetList中的第1行配置信息,得到一个或多个offset信息;然后在该一个或多个offset信息中选择最大的一个。举例来说,对于一个或一组CSI-ReportConfig信息,UE根据TDRA得到的offset信息为3,则表示相对于接收到DCI的时隙1偏移3个时隙的时间单元仅用于发送CSI,即时隙4。
该第二指示信息包括的4个比特位与该4个时间单元一一对应。其中,比特1对应的时间单元用于发送CSI和上行数据。UE根据第二指示信息,可以在该4个时间单元中的第3个时间单元(即时隙5)上发送CSI和上行数据。可选的,第二指示信息对应的codepoint=3,该第二指示信息指示在该4个时间单元中的第3个时间单元上发送CSI和上行数据。示例9中,一部分第一信号包括CSI和上行数据,另一部分第一信号仅包括CSI。
图7为本申请实施例提供的一种网络设备的结构示意图。如图7所示,该网络设备包括:
发送单元701,用于发送调度信息;该调度信息包括第一指示信息,该第一指示信息用于指示M个时间单元的时域位置,该M为大于1的整数;
接收单元702,用于在该M个时间单元中的N个时间单元上接收第一信号;该N为大于0且不大于该M的整数。
在一个可选的实现方式中,该第一信号包括信道状态信息CSI和/或上行数据。
在一个可选的实现方式中,该第一指示信息包括第一索引,该第一索引在第一配置表中指示的时域位置为该M个时间单元的时域位置;所述第一配置表由网络设备配置给终端设备,或者所述第一配置表为系统预设,或所述第一配置表存储于所述终端设备。
在一个可选的实现方式中,该调度信息还包括第二指示信息,该第二指示信息用于指示该N个时间单元的时域位置。
在一个可选的实现方式中,该第二指示信息包括第二索引,该第二索引在第二配置表中指示的时域位置为该N个时间单元的时域位置;所述第二配置表由网络设备配置给终端设备,或者所述第二配置表为系统预设,或所述第二配置表存储于所述终端设备。
在一个可选的实现方式中,该第二指示信息指示用于反馈第一信号的时间单元的个数为该N个。可选的,该第二指示信息包括数量信息N,用于指示发送第一信号的时间单元的个数为该N个。
在一个可选的实现方式中,该第二指示信息指示该N个时间单元相对于该M个时间单元的位置。
在一个可选的实现方式中,该调度信息还包括第三指示信息,,所述第三指示信息用于指示所述N个时间单元中用于仅发送CSI的时间单元和/或用于发送CSI和上行数据的时间单元。
在一个可选的实现方式中,该调度信息还包括第四指示信息,该第四指示信息用于指示N个CSI上报配置信息。
在一个可选的实现方式中,该调度信息还包括第五指示信息,该第五指示信息用于指示该终端设备进行CSI上报。
图8为本申请实施例提供的一种终端设备的结构示意图。如图8所示,该终端设备包括:
接收单元801,用于接收来自网络设备的调度信息;该调度信息包括第一指示信息,该第一指示信息用于指示M个时间单元的时域位置,该M为大于1的整数;
发送单元802,用于在该M个时间单元中的N个时间单元向该网络设备发送第一信号;该N为大于0且不大于该M的整数。
在一个可选的实现方式中,该第一信号包括信道状态信息CSI和/或上行数据。
在一个可选的实现方式中,所述终端设备还包括:
监听单元803,用于对目标信道进行监听;
确定单元804,用于确定所述目标信道处于空间状态;
发送单元802,具体用于在所述N个时间单元通过所述目标信道发送第一信号。
在一个可选的实现方式中,该第一指示信息包括第一索引,该第一索引在第一配置表中指示的时域位置为该M个时间单元的时域位置;所述第一配置表由网络设备配置给终端设备,或者所述第一配置表为系统预设,或所述第一配置表存储于所述终端设备。
在一个可选的实现方式中,该调度信息还包括第二指示信息,该第二指示信息用于指示该N个时间单元的时域位置。
在一个可选的实现方式中,该第二指示信息包括第二索引,该第二索引在第二配置表中指示的时域位置为该N个时间单元的时域位置;所述第二配置表由网络设备配置给终端设备,或者所述第二配置表为系统预设,或所述第二配置表存储于所述终端设备。
在一个可选的实现方式中,该第二指示信息指示用于反馈第一信号的时间单元的个数为该N个。可选的,该第二指示信息包括数量信息N,用于指示发送第一信号的时间单元的个数为该N个。
在一个可选的实现方式中,该第二指示信息指示该N个时间单元相对于该M个时间单元的位置。
在一个可选的实现方式中,该第一信号包括CSI且未包括上行数据;
确定单元804,还用于根据第一配置表和/或该第一指示信息,确定该M个时间单元的时域位置;根据第二配置表和/或该第二指示信息,确定该N个时间单元的时域位置;所述第一配置表由网络设备配置给终端设备,或者所述第一配置表为系统预设,或所述第一配置表存储于所述终端设备;所述第二配置表由网络设备配置给终端设备,或者所述第二配置表为系统预设,或所述第二配置表存储于所述终端设备。
在一个可选的实现方式中,该终端设备配置有第三配置表,该第一信号包括上行数据;
确定单元804,还用于根据该第一配置表和/或该第一指示信息,确定该M个时间单元的时域位置;根据该M个时间单元的时域位置和/或该第二指示信息,确定该N个时间单元的时域位置;所述第一配置表由网络设备配置给终端设备,或者所述第一配置表为系统预设,或所述第一配置表存储于所述终端设备。
在一个可选的实现方式中,该第一信号包括上行数据;
确定单元804,还用于根据第一配置表和/或所述第一指示信息,确定所述M个时间单元的时域位置;以及根据该第一配置表和/或所述第二指示信息,确定所述N个时间单元的时域位置;所述第一配置表由网络设备配置给终端设备,或者所述第一配置表为系统预设,或所述第一配置表存储于所述终端设备。
在一个可选的实现方式中,该调度信息还包括第三指示信息,所述第三指示信息用于指示所述N个时间单元中用于仅发送CSI的时间单元和/或用于发送CSI和上行数据的时间单元;
发送单元802,具体用于根据所述第三指示信息,在所述N个时间单元上向该网络设备发送第一信号。
可以理解,N个时间单元可以均仅发送CSI;也可以均发送CSI和上行数据;还可以一部分发送CSI,另一部分发送CSI和上行数据。发送单元802,根据该第三指示信息,可以确定在该N个时间单元中的哪些时间单元上仅发送CSI,在哪些时间单元上仅发送CSI和上行数据,进而按照网络设备的要求发送第一信号。
在一个可选的实现方式中,该调度信息还包括第四指示信息,该第四指示信息用于指示N个CSI上报配置信息。
在一个可选的实现方式中,该调度信息还包括第五指示信息,该第五指示信息用于指示该终端设备进行CSI。
图9为本申请实施例提供的一种网络设备的结构示意图。如图9所示,该网络设备包括:
接收单元901,用于在M个时间单元中的N个时间单元上接收第一信号;该M为大于1的整数,该N为大于1且不大于该M的整数。
在一个可选的实现方式中,该第一信号包括信道状态信息CSI和/或上行数据。
在一个可选的实现方式中,接收单元901,还用于接收来自该终端设备的上行控制信息,该上行控制信息包括该N个时间单元的时域位置的指示信息;该网络设备还包括:确定单元902,用于根据该上行控制信息,确定该N个时间单元的时域位置。
在一个可选的实现方式中,该指示信息包括目标索引;确定单元902,具体用于根据第四配置表和目标索引,确定该N个时间单元的时域位置。
图10为本申请实施例提供的一种终端设备的结构示意图。如图10所示,该终端设备包括:
发送单元1001,用于在M个时间单元中的N个时间单元向网络设备发送第一信号;该M为大于1的整数,该N为大于1且不大于该M的整数。
在一个可选的实现方式中,该第一信号包括信道状态信息CSI和/或上行数据。
在一个可选的实现方式中,该终端设备还包括:监听单元1002,用于对非授权频谱进行监听;
选择单元1003,还用于根据先监听后发送LBT的结果,选择LBT成功的N个时间单元。
应理解以上网络设备和终端设备中的各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。例如,以上各个单元可以为单独设立的处理元件,也可以集成在终端的某一个芯片中实现,此外,也可以以程序代码的形式存储于控制器的存储元件中,由处理器的某一个处理元件调用并执行以上各个单元的功能。此外各个单元可以集成在一起,也可以独立实现。这里的处理元件可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。该处理元件可以是通用处理器,例如网络处理器或中央处理器(英文:central processing unit,简称:CPU),还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(英文:application-specific integrated circuit,简称:ASIC),或,一个或多个微处理器(英文:digital signal processor,简称:DSP),或,一个或者多个现场可编程门阵列(英文:field-programmable gate array,简称:FPGA)等。
图11示出了上述实施例中所涉及的网络设备,尤其是基站的一种可能的结构示意图。所示网络设备包括收发器1101,控制器/处理器1102。该收发器1101可以用于支持网络设备与上述实施例中的该的终端设备(例如UE)之间收发信息,以及支持该网络设备与其它 网络设备之间进行无线电通信。该控制器/处理器1102可以用于控制收发器1101来与UE或其他网络设备通信的功能。在上行链路,来自该UE的上行链路信号经由天线接收,由收发器1101进行调解,并进一步由控制器/处理器1102进行处理来恢复UE所发送到业务数据和信令信息。在下行链路上,业务数据和信令消息由控制器/处理器1102进行处理,并由收发器1101进行调解来产生下行链路信号,并经由天线发射给UE。该控制器/处理器1102还用于执行如上述实施例描述的信号发送方法和信号接收方法。该控制器/处理器1102具体执行如图2中的201和202以及图3中的301和304的步骤。该网络设备还可以包括存储器1103,可以用于存储网络设备的程序代码和数据。该网络设备还可以包括通信单元1104,用于支持网络设备与其他网络实体进行通信。收发器1101可实现图8中的接收单元701和发送单元702的功能,以及图9中的接收单元901的功能。控制器/处理器1102可实现图9中确定单元902的功能。
可以理解的是,图11仅仅示出了网络设备的简化设计。在实际应用中,网络设备可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等,而所有可以实现本发明的网络设备都在本发明的保护范围之内。
图12为本申请实施例提供的一种终端设备1200的结构示意图。该终端设备可执行如图3和图4中终端设备执行的操作,以及前述实施例中终端设备执行的操作。
为了便于说明,图12仅示出了终端设备的主要部件。如图12所示,终端设备1200包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行图3或图4所描述的流程。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。终端设备1200还可以包括输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图12仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器(central processing unit,CPU),基带处理器主要用于对通信协议以及通信数据进行处理,CPU主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。可选的,该处理器还可以是网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated  circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。存储器可以包括易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
示例性的,在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备1200的收发单元1201,将具有处理功能的处理器视为终端设备1200的处理单元1202。
如图12所示,终端设备1200可以包括收发单元1201和处理单元1202。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1201中用于实现接收功能的器件视为接收单元,将收发单元1201中用于实现发送功能的器件视为发送单元,即收发单元1201包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
在一些实施例中,收发单元1201、处理单元1202可能集成为一个器件,也可以分离为不同的器件,此外,处理器与存储器也可以集成为一个器件,或分立为不同器件。
可理解,收发单元1201可用于执行上述方法实施例中终端设备的发送操作和接收操作,处理单元1202用于执行上述方法实施例中终端设备除了收发操作之外的其他操作。
例如,收发单元1201可用于执行图3中301、303、304的发送和接收操作以及图4中403、405以及406的发送和接收操作,处理单元1202可用于执行图3中302所示的操作,以及还可用于执行图4中401、402以及404所示的操作。图8和图10中的终端设备均可以采用图12中的结构。图8中的接收单元801和发送单元802的功能均由收发单元1201实现,监听单元803和确定单元804的功能由处理单元1202实现。图10中的发送单元1001的功能由收发单元1201实现,监听单元1002的功能由处理单元1202实现。
可理解的是,本申请实施例中的终端设备的实现方式,具体可参考前述各个实施例,这里不再详述。
本申请实施例还提供一种计算机可读存储介质,上述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行前述实施例所提供的信号接收方法。
可选地,上述指令在计算机上运行时可实现:向终端设备发送调度信息;该调度信息包括M个时间单元的时域位置的第一指示信息,该M为大于1的整数;在该M个时间单元中的N个时间单元上接收第一信号;该N为大于0且不大于该M的整数。
可选地,上述指令在计算机上运行时可实现:在M个时间单元中的N个时间单元上接收第一信号;该M为大于1的整数,该N为大于1且不大于该M的整数。
本申请实施例还提供一种计算机可读存储介质,上述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行前述实施例所提供的信号发送方法。
可选地,上述指令在计算机上运行时可实现:接收来自网络设备的调度信息;该调度信息包括M个时间单元的时域位置的第一指示信息,该M为大于1的整数;在该M个时间单元中的N个时间单元向该网络设备发送第一信号;该N为大于0且不大于该M的整数。
可选地,上述指令在计算机上运行时可实现:在M个时间单元中的N个时间单元向网络设备发送第一信号;该M为大于1的整数,该N为大于1且不大于该M的整数。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行前述实施例所提供的信号发送方法。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行前述实施例所提供的信号接收方法。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (31)

  1. 一种信号接收方法,其特征在于,包括:
    网络设备向终端设备发送调度信息;所述调度信息包括第一指示信息,所述第一指示信息用于指示M个时间单元的时域位置,所述M为大于1的整数;
    在所述M个时间单元中的N个时间单元上接收第一信号;所述N为大于0且不大于所述M的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信号包括信道状态信息CSI和/或上行数据。
  3. 根据权利要求1或2所述的方法,其特征在于,所述调度信息还包括第二指示信息,所述第二指示信息用于指示所述N个时间单元的时域位置。
  4. 一种信号发送方法,其特征在于,包括:
    终端设备接收来自网络设备的调度信息;所述调度信息包括第一指示信息,所述第一指示信息用于指示M个时间单元的时域位置,所述M为大于1的整数;
    在所述M个时间单元中的N个时间单元向所述网络设备发送第一信号;所述N为大于0且不大于所述M的整数。
  5. 根据权利要求4所述的方法,其特征在于,所述第一信号包括信道状态信息CSI和/或上行数据。
  6. 根据权利要求4或5所述的方法,其特征在于,所述调度信息还包括第二指示信息,所述第二指示信息用于指示所述N个时间单元的时域位置。
  7. 根据权利要求6所述的方法,其特征在于,所述第一信号包括CSI且未包括上行数据;所述在所述M个时间单元中的N个时间单元向所述网络设备发送第一信号之前,所述方法还包括:
    根据第一配置表和/或所述第一指示信息,确定所述M个时间单元的时域位置;以及根据第二配置表和/或所述第二指示信息,确定所述N个时间单元的时域位置。
  8. 根据权利要求6所述的方法,其特征在于,所述第一信号包括上行数据;所述在所述M个时间单元中的N个时间单元向所述网络设备发送第一信号之前,所述方法还包括:
    根据第一配置表和/或所述第一指示信息,确定所述M个时间单元的时域位置;以及根据所述M个时间单元的时域位置和/或所述第二指示信息,确定所述N个时间单元的时域位置。
  9. 根据权利要求6所述的方法,其特征在于,所述第一信号包括上行数据;所述在所 述M个时间单元中的N个时间单元向所述网络设备发送第一信号之前,所述方法还包括:
    根据所述第一配置表和/或所述第一指示信息,确定所述M个时间单元的时域位置;以及根据所述第一配置表和/或所述第二指示信息,确定所述N个时间单元的时域位置。
  10. 一种信号接收方法,其特征在于,包括:
    网络设备在M个时间单元中的N个时间单元上接收第一信号;所述M为大于1的整数,所述N为大于1且不大于所述M的整数。
  11. 一种信号发送方法,其特征在于,包括:
    终端设备在M个时间单元中的N个时间单元向网络设备发送第一信号;所述M为大于1的整数,所述N为大于1且不大于所述M的整数。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第一信号包括信道状态信息CSI和/或上行数据。
  13. 一种网络设备,其特征在于,包括:
    发送单元,用于发送调度信息;所述调度信息包括M个时间单元的时域位置的第一指示信息,所述M为大于1的整数;
    接收单元,用于在所述M个时间单元中的N个时间单元上接收第一信号;所述N为大于0且不大于所述M的整数。
  14. 根据权利要求13所述的网络设备,其特征在于,所述第一信号包括信道状态信息CSI和/或上行数据。
  15. 根据权利要求13或14所述的网络设备,其特征在于,所述调度信息还包括第二指示信息,所述第二指示信息用于指示所述N个时间单元的时域位置。
  16. 一种终端设备,其特征在于,包括:
    接收单元,用于接收来自网络设备的调度信息;所述调度信息包括M个时间单元的时域位置的第一指示信息,所述M为大于1的整数;
    发送单元,用于在所述M个时间单元中的N个时间单元向所述网络设备发送第一信号;所述N为大于0且不大于所述M的整数。
  17. 根据权利要求16所述的终端设备,其特征在于,所述第一信号包括信道状态信息CSI和/或上行数据。
  18. 根据权利要求16或17所述的终端设备,其特征在于,所述调度信息还包括第二指示信息,所述第二指示信息用于指示所述N个时间单元的时域位置。
  19. 根据权利要求18所述的终端设备,其特征在于,所述第一信号包括CSI且未包括上行数据;所述终端设备还包括:
    确定单元,用于根据第一配置表和/或所述第一指示信息,确定所述M个时间单元的时域位置;以及根据第二配置表和/或所述第二指示信息,确定所述N个时间单元的时域位置。
  20. 根据权利要求18所述的终端设备,其特征在于,所述第一信号包括上行数据;所述终端设备还包括:
    确定单元,用于根据第一配置表和/或所述第一指示信息,确定所述M个时间单元的时域位置;以及根据所述M个时间单元的时域位置和/或所述第二指示信息,确定所述N个时间单元的时域位置。
  21. 根据权利要求18所述的终端设备,其特征在于,所述第一信号包括上行数据;所述终端设备还包括:
    确定单元,用于根据所述第一配置表和/或所述第一指示信息,确定所述M个时间单元的时域位置;以及根据所述第一配置表和/或所述第二指示信息,确定所述N个时间单元的时域位置。
  22. 一种网络设备,其特征在于,包括:
    接收单元,用于在M个时间单元中的N个时间单元上接收第一信号;所述M为大于1的整数,所述N为大于1且不大于所述M的整数。
  23. 根据权利要求22所述的终端设备,其特征在于,所述第一信号包括信道状态信息CSI和/或上行数据。
  24. 一种终端设备,其特征在于,包括:
    发送单元,用于在M个时间单元中的N个时间单元向网络设备发送第一信号;所述M为大于1的整数,所述N为大于1且不大于所述M的整数。
  25. 根据权利要求24所述的终端设备,其特征在于,所述第一信号包括信道状态信息CSI和/或上行数据。
  26. 一种通信设备,其特征在于,包括存储器和处理器;所述存储器,用于存储程序;所述处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述处理器用于执行如权利要求1至3任一项所述的方法或者执行如权利要求10所述的方法。
  27. 一种通信装置,其特征在于,包括处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如权利要求1至3任一项所述的方法或者执行如权利要求10所述的方法。
  28. 一种通信装置,其特征在于,包括存储器和处理器;所述存储器,用于存储程序;所述处理器,用于执行所述存储器存储的所述程序,当所述程序被执行时,所述处理器用于执行如权利要求4至9任一项所述的方法或者执行如权利要求11至12任一项所述的方法。
  29. 一种通信装置,其特征在于,包括处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如权利要求4至9任一项所述的方法或者执行如权利要求11至12任一项所述的方法。
  30. 一种可读存储介质,用于存储指令,当所述指令被执行时,使如权利要求1至3任一项所述的方法或者使如权利要求10所述的方法被实现。
  31. 一种可读存储介质,用于存储指令,当所述指令被执行时,使如权利要求4至9任一项所述的方法或者使如权利要求11至12任一项所述的方法被实现。
PCT/CN2019/109229 2019-09-29 2019-09-29 信号接收、发送方法及装置 WO2021056580A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/109229 WO2021056580A1 (zh) 2019-09-29 2019-09-29 信号接收、发送方法及装置
CN201980100497.5A CN114402556B (zh) 2019-09-29 2019-09-29 信号接收、发送方法及装置
EP19946713.5A EP4024738A4 (en) 2019-09-29 2019-09-29 SIGNAL RECEIVING METHOD AND DEVICE AND SIGNAL TRANSMITTING METHOD AND DEVICE
US17/707,557 US20220225347A1 (en) 2019-09-29 2022-03-29 Signal receiving method, signal sending method, and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109229 WO2021056580A1 (zh) 2019-09-29 2019-09-29 信号接收、发送方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/707,557 Continuation US20220225347A1 (en) 2019-09-29 2022-03-29 Signal receiving method, signal sending method, and apparatus

Publications (1)

Publication Number Publication Date
WO2021056580A1 true WO2021056580A1 (zh) 2021-04-01

Family

ID=75165463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109229 WO2021056580A1 (zh) 2019-09-29 2019-09-29 信号接收、发送方法及装置

Country Status (4)

Country Link
US (1) US20220225347A1 (zh)
EP (1) EP4024738A4 (zh)
CN (1) CN114402556B (zh)
WO (1) WO2021056580A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106301738A (zh) * 2016-06-28 2017-01-04 宇龙计算机通信科技(深圳)有限公司 基于帧结构的通信方法
CN107689852A (zh) * 2016-08-04 2018-02-13 北京信威通信技术股份有限公司 一种上报csi‑rs的方法及装置
CN109150487A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 用于确定传输方向的方法和设备
WO2019165638A1 (zh) * 2018-03-02 2019-09-06 Oppo广东移动通信有限公司 无线通信方法和设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11025456B2 (en) * 2018-01-12 2021-06-01 Apple Inc. Time domain resource allocation for mobile communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106301738A (zh) * 2016-06-28 2017-01-04 宇龙计算机通信科技(深圳)有限公司 基于帧结构的通信方法
CN107689852A (zh) * 2016-08-04 2018-02-13 北京信威通信技术股份有限公司 一种上报csi‑rs的方法及装置
CN109150487A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 用于确定传输方向的方法和设备
WO2019165638A1 (zh) * 2018-03-02 2019-09-06 Oppo广东移动通信有限公司 无线通信方法和设备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
3GPP 38.212
3GPP 38.331
ERICSSON: "Comeback issues for CSI reporting", R1-1809912, 3GPP TSG-RAN WG1 MEETING #94, 24 August 2018 (2018-08-24), XP051517267 *
See also references of EP4024738A4

Also Published As

Publication number Publication date
EP4024738A4 (en) 2022-09-14
EP4024738A1 (en) 2022-07-06
CN114402556A (zh) 2022-04-26
CN114402556B (zh) 2023-07-18
US20220225347A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
US20210067258A1 (en) Radio Resource Management Measurement Method and Apparatus
US11903010B2 (en) Sidelink quality measurement method and communications apparatus
WO2020143750A1 (zh) 侧行参考信号的传输方法和通信装置
JP2020145715A (ja) 無線システムにおける信号伝達構成
WO2020143059A1 (zh) 侧行通信的方法和终端设备
WO2020124353A1 (zh) 侧行通信的方法和终端设备
CN110521156B (zh) 用于多个harq传输的方法
US11259308B2 (en) Signal processing method and apparatus
EP4142405A1 (en) Wireless communication method and device, chip, and system
EP3905573A1 (en) Communication method, communication apparatus, and storage medium
EP3565150B1 (en) Uplink transmission method, terminal, and network device
WO2020164384A1 (zh) 一种反馈信息发送方法及装置
WO2020221225A1 (zh) 通信方法和装置
WO2020248101A1 (zh) 上报csi的方法和终端设备
WO2020220253A1 (zh) 一种信息传输方法和通信设备
JP2022532016A (ja) 通信方法、端末機器およびネットワーク機器
WO2021031042A1 (zh) 信号发送和接收方法以及装置
US11871403B2 (en) Resource use status reporting method and communications apparatus
CN113711518A (zh) Harq信息反馈的方法和设备
JP2022500906A (ja) 情報伝送方法、装置及び記憶媒体
CN112088507B (zh) 一种信息传输方法和通信设备以及网络设备
WO2021000239A1 (zh) 无线通信方法、网络设备和终端设备
US20220086804A1 (en) Data Transmission Method And Communication Apparatus
US20210258961A1 (en) Data transmission method and device
WO2021056580A1 (zh) 信号接收、发送方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019946713

Country of ref document: EP

Effective date: 20220331