WO2021062716A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021062716A1
WO2021062716A1 PCT/CN2019/109619 CN2019109619W WO2021062716A1 WO 2021062716 A1 WO2021062716 A1 WO 2021062716A1 CN 2019109619 W CN2019109619 W CN 2019109619W WO 2021062716 A1 WO2021062716 A1 WO 2021062716A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
signal block
resource set
groups
candidate resources
Prior art date
Application number
PCT/CN2019/109619
Other languages
English (en)
French (fr)
Inventor
黎超
张福强
向铮铮
袁璞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/109619 priority Critical patent/WO2021062716A1/zh
Priority to EP19947577.3A priority patent/EP4044713A4/en
Priority to CN201980095974.3A priority patent/CN113767682A/zh
Publication of WO2021062716A1 publication Critical patent/WO2021062716A1/zh
Priority to US17/657,071 priority patent/US20220231898A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2669Details of algorithms characterised by the domain of operation
    • H04L27/2671Time domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • H04L27/2678Blind, i.e. without using known symbols using cyclostationarities, e.g. cyclic prefix or postfix
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions

Definitions

  • This application relates to the field of mobile communication technology, and in particular to a communication method and device.
  • the terminal device can synchronize with the base station by receiving the SSB at the Uu port, and obtain system messages.
  • the primary synchronization signal primary synchronization signal
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • 1 SSB occupies 4 orthogonal frequency division multiplexing (OFDM) symbols, which are symbols 0 to 3, and in the frequency domain, 1
  • the SSB occupies 20 resource blocks (resource blocks, RBs), that is, 240 subcarriers. Within these 20 RBs, the subcarrier numbers are 0-239.
  • PSS is located on 127 subcarriers in the middle of symbol 0
  • SSS is located on 127 subcarriers in the middle of symbol 2.
  • the PBCH occupies all the subcarriers of symbol 1 and symbol 3, and occupies a part of the remaining subcarriers of all the subcarriers of symbol 2 except for the subcarriers occupied by SSS.
  • one SSB currently transmitted on the Uu port occupies 4 OFDM symbols. But in the NR-V2X system, it is stipulated that one SSB occupies one time slot. Obviously, the structure of the SSB currently used in the Uu port cannot be applied to the NR-V2X system.
  • the embodiments of the present application provide a communication method and device for providing synchronization signal blocks applicable to the NR-V2X system.
  • a first communication method includes: determining a first resource for transmitting N synchronization signal blocks from a first resource set, where the first resource set is located within a synchronization signal block period, and the first resource set is located within a synchronization signal block period.
  • a resource set includes M groups, the i-th group of the M groups includes X candidate resources, the first resource set includes M ⁇ X candidate resources, and each of the M ⁇ X candidate resources
  • Candidate resources can be used to transmit synchronization signal blocks, each of the N synchronization signal blocks occupies Y symbols in the time domain, M, i, and X are all integers greater than or equal to 1, and Y is greater than or An integer equal to 5, the first resource includes N candidate resources, and the N candidate resources belong to one or more of the M groups; on the jth candidate resource among the N candidate resources Send the j-th synchronization signal block among the N synchronization signal blocks, where j is an integer greater than or equal to 1 and less than or equal to N.
  • the method may be executed by a first communication device, and the first communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the first communication device is a terminal device, for example, referred to as a first terminal device.
  • the first terminal device is a terminal device, or a chip system set in the terminal device for realizing the function of the terminal device, or other component used for realizing the function of the terminal device.
  • the period of the synchronization signal block may include the first resource set, the first resource set includes M groups, and the X candidate resources included in the first group of the M groups can be used to carry X synchronizations.
  • the signal block is equivalent to specifying the resources used to send the synchronization signal block.
  • the synchronization signal block needs to be sent, only resources need to be selected from these resources, which simplifies the way of selecting resources.
  • one synchronization signal block can occupy Y symbols, so that the technical solution provided in the embodiments of the present application can be applied to the NR-V2X system, or can be applied to other communication systems that specify that the synchronization signal block occupies Y symbols.
  • M groups can be transmitted through M beams, and different beams correspond to different directions, that is, M groups can correspond to M transmission directions, or in other words, S-SSBs carried by M groups correspond to M Send direction.
  • Different groups point to different sending directions. If the first terminal device needs to switch the transmitting direction of the antenna, it only needs to switch between the two groups without switching within the group, which reduces the number of terminal device switching and correspondingly reduces the switching delay.
  • the S-SSB carried by different sub-groups in the M groups can be transmitted through antenna units installed in different positions, for example, by installing on a car The antenna units at different locations are sent out to achieve coverage of different locations around the vehicle.
  • the jth synchronization signal block occupies Y symbols in the time domain, including:
  • the Y symbols are all symbols of a time slot; or,
  • the Y symbols are all symbols except the last symbol in a slot.
  • a synchronization signal block can occupy all symbols of a time slot. For example, some time slots do not include intervals or empty symbols not used for data transmission and reception, then the synchronization signal block can occupy the time slot, which can improve the time slot The utilization rate of the synchronizing signal block can be improved. Alternatively, a synchronization signal block may not occupy the last symbol in a time slot. For example, some time slots include gaps or empty symbols that are not used for data transmission and reception.
  • the gap or empty symbol generally occupies the last symbol of the time slot, so
  • the synchronization signal block does not occupy the interval or the symbols occupied by the empty symbols not used for data transmission and reception, so that the required symbols can be reserved for the interval or the empty symbols not used for data transmission and reception, and the transmission of the synchronization signal block can also be realized.
  • Y symbols are all symbols in a slot except the last symbol, that is, a synchronization signal block occupies all symbols in a slot except the last symbol, then for a slot with a normal cyclic prefix , The total number of symbols included is 14, the synchronization signal block can occupy 13 of them, and for the time slot with extended cyclic prefix, the total number of symbols included is 12, then the synchronization signal block can occupy 11 of them symbol. If there are time slots in other formats, for example, the total number of symbols included in a time slot is D, then the synchronization signal block can occupy D-1 symbols in the time slot, and there is no restriction on the value of D.
  • the N synchronization signal blocks are transmitted in a repetitive manner, or every H synchronization signal blocks in the N synchronization signal blocks are transmitted in a repetitive manner, and H is less than or A positive integer equal to the N.
  • H can be understood as the repetition factor.
  • the so-called repeated transmission can also be described as repeated transmission, or in other words, transmission in a quasi co-location mode, that is, the same synchronization signal block is sent multiple times to improve the coverage of the synchronization signal block.
  • the embodiment of this application is more flexible.
  • These N synchronization signal blocks can belong to one of the M groups, which is equivalent to implementing within the group. Repetition, or the N synchronization signal blocks may also belong to different groups among M groups, which is equivalent to repeated transmission between groups.
  • the synchronization signal block sent belongs to one of the M groups, and the other two synchronization signal blocks sent synchronously belong to another group of the M groups, so that different groups can send different synchronization signal blocks, such as different groups.
  • the sent synchronization signal blocks can correspond to different directions, so as to achieve coverage in multiple directions.
  • the duration of time domain resources occupied by the synchronization signal block carried by the first resource set is less than or equal to 2 milliseconds; or,
  • the duration of time domain resources occupied by the synchronization signal block carried by the first resource set is less than or equal to 8 milliseconds.
  • the duration occupied by all synchronization signal blocks carried by the first resource set may be less than or equal to 2 ms, or in other words, all the candidate resources included in the first resource set occupy
  • the duration can be less than or equal to 2ms.
  • the subcarrier interval corresponding to the first resource set is 15KHz
  • the first resource set may include 2 candidate resources
  • the duration of each candidate resource may be 1ms
  • all the synchronization signal blocks carried by the first resource set are occupied
  • the duration of can be equal to 2ms.
  • a synchronization signal block does not occupy the last symbol of a time slot, in fact, the duration of the synchronization signal block can be less than 1ms, then all the synchronization signal blocks carried by the first resource set The time occupied may actually be less than 2ms. However, in the embodiment of the present application, the difference can be ignored, and it is considered that the time length occupied by one synchronization signal block is 1 ms, and the time length occupied by all the synchronization signal blocks carried by the first resource set is 2 ms.
  • the duration occupied by all synchronization signal blocks carried by the first resource set may be less than or equal to 8 ms, or in other words, all candidates included in the first resource set
  • the duration of resource occupation can be less than or equal to 8ms.
  • the subcarrier interval corresponding to the first resource set is 120KHz
  • the first resource set may include 8 candidate resources
  • the duration of each candidate resource may be 1ms
  • all the synchronization signal blocks carried by the first resource set are occupied
  • the duration of can be equal to 8ms.
  • the time length occupied by the synchronization signal block can be less than 1ms, and all the signals carried by the first resource set
  • the time length occupied by the synchronization signal block may actually be less than 8 ms.
  • this difference can be ignored in the embodiment of the present application, and it is considered that the time length occupied by one synchronization signal block is 1 ms, and the time length occupied by all the synchronization signal blocks carried by the first resource set is 8 ms.
  • the synchronization signal block carried by the i-th group occupies a time length of 1 ms in the time domain.
  • the time length occupied by all the candidate resources included in each group is 1 ms
  • the time length occupied by all the synchronization signal blocks carried by the first resource set may be 8 ms.
  • the value of X may be related to the subcarrier spacing of the carrier where the first resource set is located. If the subcarrier spacing of the carrier where the first resource set is located is larger, the value of X is smaller. On the contrary, if the first resource set is located The smaller the sub-carrier spacing of the carrier where the set is located, the larger the value of X.
  • the location of the resource set included in the S-SSB period it may be specified by agreement; or, it may be pre-configured in the first terminal device, and the first terminal device may determine that the resource set is within the period of the synchronization signal block according to the pre-configured information
  • the network device may send the first signaling to the first terminal device, and the first signaling may indicate the time domain position of the first resource set within the period of the synchronization signal block.
  • the first terminal device After receiving the first signaling, the first terminal device can determine the time domain position of the first resource set within the period of the synchronization signal block.
  • the time domain position of the first resource set in the period of the synchronization signal block is variable.
  • the first resource set may be located at different positions in the period of the synchronization signal block.
  • the network device may Different situations configure the first resource set to be located at different positions in the period of the synchronization signal block, or the protocol may specify multiple possible positions of the first resource set in the period of the synchronization signal block, etc., so that the technical solution of the embodiment of the present application More flexible.
  • the number of groups to which the N candidate resources belong is less than or equal to 2
  • the N candidate resources belong to The groups of are located in the same radio frame, or are located in different half-frames of the same radio frame.
  • the number of groups occupied by N candidate resources may be less than or equal to 2.
  • the group occupied by the N candidate resources may be located in the same radio frame.
  • the group occupied by N candidate resources may be located in the same half frame of a radio frame, for example, they are located in the first half frame or the second half frame of the radio frame; or, if the number of groups occupied by N candidate resources is 2. Then one of the two groups may be located in the first half of the wireless frame, and the other group may be located in the second half of the wireless frame.
  • the first resource set may include two sets of candidate resources for sending S-SSB, and the N candidate resources may belong to these two groups, or belong to the two groups.
  • the i-th group includes K subgroups, the X candidate resources belong to the K subgroups, and one of the K subgroups includes R candidate resources, so
  • the R candidate resources may be used to transmit R synchronization signal blocks, and the R synchronization signal blocks are repeatedly transmitted.
  • all of the M groups or each of the partial groups may be subdivided into multiple sub-groups. If each of the multiple groups is subdivided into multiple sub-groups, the number of sub-groups included in different groups may be the same or different.
  • the first group of the M groups may be divided into K subgroups, and then the X candidate resources included in the first group belong to the K subgroups.
  • each of the M groups may include K subgroups, or the number of subgroups included in the second group of the M groups may not be equal to K.
  • K can be a positive integer, for example, K can be equal to 1, or it can be equal to 2, or it can be equal to a larger value.
  • the number of candidate resources included in different subgroups of the K subgroups may be the same or different.
  • one of the K subgroups includes R candidate resources, and the R candidate resources can carry R S-SSBs, and these R S-SSBs may be repeatedly transmitted, or in other words, transmitted in a QCL manner.
  • each of the K subgroups may include R candidate resources, or the candidate resources included in the second subgroup of the K subgroups may not be equal to R.
  • R can be a positive integer, for example, R can be equal to 1, or it can be equal to 2, or it can be equal to a larger value.
  • the X S-SSBs are further divided into K subgroups, considering that for high-frequency scenes, when the beam's lobe width is smaller, or when part of the lobes needs to be overlapped in space during transmission, the S-SSB may need to be overlapped.
  • -SSB is divided into more groups. For example, K subgroups can be transmitted through K beams, and different beams correspond to different directions, that is, K subgroups can correspond to K transmission directions, or in other words, the S-SSB carried by K subgroups corresponds to K Send direction. Different subgroups point to different sending directions.
  • the first terminal device needs to switch the transmitting direction of the antenna, it only needs to switch between the two subgroups without switching within the subgroups, which reduces the number of terminal device switching and correspondingly reduces the switching delay.
  • the S-SSB carried by different subgroups of the K subgroups can be transmitted through antenna units installed in different positions, for example, by installing on a car The antenna units at different locations are sent out to achieve coverage of different locations around the vehicle.
  • the transmitted S-SSB can be The granularity of coverage is finer.
  • H can be less than or equal to R, which is equivalent to that every H synchronization signal blocks can be sent in a repetitive manner.
  • These H synchronization signal blocks can belong to one of the K subgroups, which is equivalent to implementing intra-subgroup repetition, or this
  • the H synchronization signal blocks may also belong to different subgroups in the K subgroups, which is equivalent to repeated transmission between the groups.
  • H may also be greater than R, and the H synchronization signal blocks may belong to different subgroups of the K subgroups, which is equivalent to repeated transmission between groups.
  • the first resource set includes a first part and a second part, the first part includes the first M/2 groups in the time domain among the M groups, and the first part The second part includes the last M/2 groups in the time domain among the M groups.
  • the first resource set includes a first part and a second part
  • the first part may include M/2 groups
  • the second part may also include M/2 groups.
  • the first part includes the first M/2 groups in the time domain among the M groups
  • the second part includes the last M/2 groups in the time domain among the M groups.
  • the first part is located in the second Part before. If each of the M groups includes X S-SSBs, the first part may include L max /2 S-SSBs, and the second part may also include L max /2 S-SSBs.
  • the first part may be located in the first half of the wireless frame, and the second part may be located in the second half of the wireless frame.
  • the structure of the first part and the structure of the second part may be the same or different.
  • the so-called identical structure means that the relative positions of the candidate resources included in the first part in the first part are the same as the relative positions of the candidate resources included in the second part in the second part.
  • the first resource set is subdivided into two parts, so that the first resource set can be viewed in each half frame, and the granularity of the first resource set is further refined.
  • a first resource for transmitting N synchronization signal blocks from a first resource set where the first resource set is located within a synchronization signal block period, the first resource set includes M groups, and The i-th group includes X candidate resources, the first resource set includes M ⁇ X candidate resources, each of the M ⁇ X candidate resources can be used to transmit synchronization signal blocks, and the N synchronization signals
  • Each synchronization signal block in the block occupies Y symbols in the time domain, M, i, and X are all integers greater than or equal to 1, and Y is an integer greater than or equal to 5, and the first resource includes N candidate resources ,
  • the N candidate resources belong to one or more of the M groups;
  • the j-th synchronization signal block in the N synchronization signal blocks is sent on the j-th candidate resource among the N candidate resources, where the j-th synchronization signal block indicates a time domain position of the j-th synchronization signal block.
  • the period of the synchronization signal block may include the first resource set, the first resource set includes M groups, and the X candidate resources included in the first group of the M groups can be used to carry X synchronizations.
  • the signal block is equivalent to specifying the resources used to send the synchronization signal block.
  • the synchronization signal block needs to be sent, only resources need to be selected from these resources, which simplifies the way of selecting resources.
  • one synchronization signal block can occupy Y symbols, so that the technical solution provided in the embodiments of the present application can be applied to the NR-V2X system, or can be applied to other communication systems that specify that the synchronization signal block occupies Y symbols.
  • the time domain position of the jth synchronization signal block can be indicated by the jth synchronization signal block, so that the second terminal device can receive the jth synchronization signal block at the correct time domain position, and the second terminal device detects the synchronization signal block. Power consumption.
  • a first synchronization signal block is determined, wherein the first synchronization signal block includes a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel, and the physical broadcast channel includes a demodulation reference signal, so
  • the first synchronization signal block occupies Y symbols in the time domain, Y is an integer greater than or equal to 6, the primary synchronization signal occupies the second symbol and the third symbol of the Y symbols, and the auxiliary
  • the synchronization signal occupies the 4th symbol and the 5th symbol, or the 5th symbol and the 6th symbol among the Y symbols, and the physical broadcast channel occupies the Y symbols except for the main synchronization signal and Symbols other than symbols occupied by the secondary synchronization signal; sending the first synchronization signal block.
  • the primary synchronization signal and the secondary synchronization signal can be located at the front end of the time slot, so that the primary synchronization signal and the secondary synchronization signal can be sent as soon as possible, and the second terminal device as the receiving end can be based on the primary synchronization signal and the secondary synchronization signal.
  • the demodulation reference signal only occupies the symbols of the physical broadcast channel, but does not occupy the symbols of the primary synchronization signal and the secondary synchronization signal, so that the reliability of the symbols occupied by the primary synchronization signal and the secondary synchronization signal can be guaranteed, and it can also make
  • the demodulation reference signal is transmitted normally.
  • a second communication method includes: determining a first resource for transmitting N synchronization signal blocks from a first resource set, where the first resource set is located within a synchronization signal block period, and the first resource set is located within a synchronization signal block period.
  • a resource set includes M groups, the i-th group of the M groups includes X candidate resources, the first resource set includes M ⁇ X candidate resources, and each of the M ⁇ X candidate resources
  • Candidate resources can be used to transmit synchronization signal blocks, each of the N synchronization signal blocks occupies Y symbols in the time domain, M, i, and X are all integers greater than or equal to 1, and Y is greater than or An integer equal to 5, the first resource includes N candidate resources, and the N candidate resources belong to one or more of the M groups; on the jth candidate resource among the N candidate resources Receive the j-th synchronization signal block in the N synchronization signal blocks, where j is an integer greater than or equal to 1 and less than or equal to N.
  • the method may be executed by a second communication device, and the second communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the second communication device is a terminal device, for example, referred to as a second terminal device.
  • the second terminal device is a terminal device, or a chip system set in the terminal device for realizing the function of the terminal device, or other component used for realizing the function of the terminal device.
  • the jth synchronization signal block occupies Y symbols in the time domain, including:
  • the Y symbols are all symbols of a time slot; or,
  • the Y symbols are all symbols except the last symbol in a slot.
  • the N synchronization signal blocks are transmitted in a repetitive manner, or every H synchronization signal blocks in the N synchronization signal blocks are transmitted in a repetitive manner, and H is less than or A positive integer equal to the N.
  • the duration of the time domain resources occupied by the synchronization signal block carried by the first resource set is less than or equal to 2 milliseconds; or,
  • the duration of time domain resources occupied by the synchronization signal block carried by the first resource set is less than or equal to 8 milliseconds.
  • the synchronization signal block carried by the i-th group occupies a time length of 1 ms in the time domain.
  • the number of groups to which the N candidate resources belong is less than or equal to 2
  • the N candidate resources belong to The groups of are located in the same radio frame, or are located in different half-frames of the same radio frame.
  • the i-th group includes K subgroups, the X candidate resources belong to the K subgroups, and one of the K subgroups includes R candidate resources, so
  • the R candidate resources may be used to transmit R synchronization signal blocks, and the R synchronization signal blocks are repeatedly transmitted.
  • the first resource set includes a first part and a second part, the first part includes the first M/2 groups in the time domain among the M groups, and the first part The second part includes the last M/2 groups in the time domain among the M groups.
  • the jth synchronization signal block of the N synchronization signal blocks is received on the jth candidate resource among the N candidate resources, where the N candidate resources belong to the first resource set, and the The first resource set is located within the synchronization signal block period, the first resource set includes M groups, the i-th group of the M groups includes X candidate resources, and the first resource set includes M ⁇ X candidates Resource, each of the M ⁇ X candidate resources can be used to transmit a synchronization signal block, and each synchronization signal block of the N synchronization signal blocks occupies Y symbols in the time domain, M, i, and X is an integer greater than or equal to 1, and Y is an integer greater than or equal to 5.
  • the N candidate resources belong to one or more of the M groups; determine all the resources according to the jth synchronization signal block. The time domain position of the j-th sync signal block.
  • a first synchronization signal block is received, wherein the first synchronization signal block includes a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel, and the physical broadcast channel includes a demodulation reference signal, so
  • the first synchronization signal block occupies Y symbols in the time domain, Y is an integer greater than or equal to 6, the primary synchronization signal occupies the second symbol and the third symbol of the Y symbols, and the auxiliary
  • the synchronization signal occupies the 4th symbol and the 5th symbol, or the 5th symbol and the 6th symbol among the Y symbols, and the physical broadcast channel occupies the Y symbols except for the main synchronization signal and Symbols other than those occupied by the secondary synchronization signal.
  • a third communication method includes: determining a first resource for transmitting N synchronization signal blocks from a first resource set, where the first resource set is located within a synchronization signal block period, and the first resource set is located within a synchronization signal block period.
  • a resource set includes M groups, the i-th group of the M groups includes X candidate resources, the first resource set includes M ⁇ X candidate resources, and each of the M ⁇ X candidate resources
  • Candidate resources can be used to transmit synchronization signal blocks, each of the N synchronization signal blocks occupies Y symbols in the time domain, M, i, and X are all integers greater than or equal to 1, and Y is greater than or An integer equal to 5, the first resource includes N candidate resources, and the N candidate resources belong to one or more of the M groups; on the jth candidate resource among the N candidate resources Sending a j-th synchronization signal block of the N synchronization signal blocks, where the j-th synchronization signal block indicates a time domain position of the j-th synchronization signal block.
  • the method may be executed by a third communication device, and the third communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the third communication device is a terminal device, for example, referred to as a first terminal device.
  • the first terminal device is a terminal device, or a chip system set in the terminal device for realizing the function of the terminal device, or other component used for realizing the function of the terminal device.
  • the period of the synchronization signal block may include the first resource set, the first resource set includes M groups, and the X candidate resources included in the first group of the M groups can be used to carry X synchronizations.
  • the signal block is equivalent to specifying the resources used to send the synchronization signal block.
  • the synchronization signal block needs to be sent, only resources need to be selected from these resources, which simplifies the way of selecting resources.
  • one synchronization signal block can occupy Y symbols, so that the technical solution provided in the embodiments of the present application can be applied to the NR-V2X system, or can be applied to other communication systems that specify that the synchronization signal block occupies Y symbols.
  • the time domain position of the jth synchronization signal block can be indicated by the jth synchronization signal block, so that the second terminal device can receive the jth synchronization signal block at the correct time domain position, and the second terminal device detects the synchronization signal block. Power consumption.
  • the time domain position of the j-th synchronization signal block includes an identifier of the group where the j-th synchronization signal block is located, and/or, the j-th synchronization signal block is located in the group where the j-th synchronization signal block is located.
  • the time domain position of the first resource set may be determined in advance by the second terminal device.
  • the second terminal device may be configured by the network device, or the second terminal device may be notified by the first terminal device, or specified by agreement, or may be pre-determined. Configured in the second terminal device. After knowing the time domain position of the first resource set, the second terminal device only needs to determine the identity of the group where the j-th synchronization signal block is located, or determine the identity of the j-th synchronization signal block in the group, or determine the j-th synchronization signal block.
  • the identification of the group in which the synchronization signal block is located and the identification of the j-th synchronization signal block in the group can determine the time domain position of the j-th synchronization signal block, so that the j-th synchronization signal block can be received at the correct time domain position.
  • the time domain position of the j-th synchronization signal block may also include other information, which is not specifically limited.
  • the j-th synchronization signal block indicating the time domain position of the j-th synchronization signal block includes:
  • the signaling carried by the broadcast channel included in the j-th synchronization signal block indicates the time domain position of the j-th synchronization signal block; or,
  • the demodulation reference signal carried by the broadcast channel included in the jth synchronization signal block indicates the time domain position of the jth synchronization signal block;
  • a reference signal used for scrambling the signaling carried by the broadcast channel included in the j-th synchronization signal block indicates the time domain position of the j-th synchronization signal block.
  • the broadcast channel included in the j-th synchronization signal block is, for example, a physical side-line broadcast channel, and the signaling carried by the physical side-line broadcast channel is, for example, a side-line main information block.
  • the time domain position of the j-th synchronization signal block can be indicated by a variety of different information corresponding to the j-th synchronization signal block, which is more flexible.
  • the time-domain position of the j-th synchronization signal block may include a variety of information, or different information corresponding to the j-th synchronization signal block may be used to indicate different information included in the time-domain information of the j-th synchronization signal block, Therefore, more information is indicated, and the second terminal device can obtain more information.
  • the demodulation reference signal carried by the broadcast channel included in the j-th synchronization signal block and indicating the time domain position of the j-th synchronization signal block includes:
  • the initial value or initial position of the demodulation reference signal sequence indicates the time domain position of the j-th synchronization signal block.
  • the time domain position of the jth synchronization signal block can be indicated by the initial value of the demodulation reference signal sequence. If the initial value of the sequence is different, the time domain position of the j-th synchronization signal block is different.
  • the initial value of the demodulation reference signal sequence can have multiple values, so that the content that can be indicated is also richer.
  • the time domain position of the j-th synchronization signal block can also be indicated by the initial position of the demodulation reference signal sequence. If the initial position of the demodulation reference signal sequence is different, the time domain position of the j-th synchronization signal block is different. There can be multiple initial positions of the demodulation reference signal sequence, so that the content that can be indicated is also richer.
  • a reference signal used to scramble the signaling carried by the broadcast channel included in the j-th synchronization signal block, indicating the time domain position of the j-th synchronization signal block include:
  • the initial value or initial position of the reference signal sequence used to scramble the signaling carried by the broadcast channel included in the jth synchronization signal block indicates the time domain position of the jth synchronization signal block.
  • the initial value of the reference signal sequence can be used to indicate the The time domain position of the j synchronization signal block, if the initial value of the reference signal sequence is different, the time domain position of the jth synchronization signal block is different.
  • the initial value of the reference signal sequence can have multiple values, so that the content that can be indicated is also richer.
  • the initial position of the reference signal sequence may also be used to indicate the time domain position of the j-th synchronization signal block. If the initial position of the reference signal sequence is different, the time domain position of the j-th synchronization signal block is different. There can be multiple initial positions of the reference signal sequence, so that the content that can be indicated is also richer.
  • the initial value of the demodulation reference signal sequence is determined by one or more of the following parameters:
  • the identifier of the group in which the jth synchronization signal block is located
  • the identifier of the time slot in which the j-th synchronization signal block is located is located; or,
  • the initial value of the demodulation reference signal sequence may be determined according to the identity of the group where the j-th synchronization signal block is located; or the initial value of the demodulation reference signal sequence may be determined according to the identity of the group where the j-th synchronization signal block is located and the j-th synchronization signal block.
  • the identity of the signal block in the group is determined; or, the initial value of the demodulation reference signal sequence can be based on the identity of the group where the j-th synchronization signal block is located, the identity of the j-th synchronization signal block in the group where it is located, and the source of the synchronization signal
  • the identification of the time slot where the j-th synchronization signal block is located, and the CP type corresponding to the time slot where the j-th synchronization signal block is located are determined, etc.
  • the initial value of the demodulation reference signal sequence can also be determined based on other information besides the above information, or the initial value of the demodulation reference signal sequence can also be determined not based on the above information, but based on other information. , No specific restrictions.
  • the initial value of the reference signal sequence is determined by one or more of the following parameters:
  • the identifier of the group in which the jth synchronization signal block is located
  • the identifier of the time slot in which the j-th synchronization signal block is located is located; or,
  • the initial value of the reference signal sequence may be determined according to the identity of the group where the j-th synchronization signal block is located; or, the initial value of the reference signal sequence may be determined based on the identity of the group where the j-th synchronization signal block is located and where the j-th synchronization signal block is located.
  • the initial value of the reference signal sequence can be based on the identity of the group where the j-th synchronization signal block is located, the identity of the j-th synchronization signal block in the group where it is located, the identity of the synchronization signal source, and the j-th synchronization The identification of the time slot where the signal block is located, and the determination of the CP type corresponding to the time slot where the j-th synchronization signal block is located, and so on.
  • the initial value of the reference signal sequence may also be determined based on other information besides the above information, or the initial value of the reference signal sequence may not be determined based on the above information, but based on other information. Do restrictions.
  • a first resource used to transmit N synchronization signal blocks is determined from a first resource set, the first resource set is located within a synchronization signal block period, and the first resource set includes M Groups, the i-th group of the M groups includes X candidate resources, the first resource set includes M ⁇ X candidate resources, and each candidate resource in the M ⁇ X candidate resources can be used for transmission
  • a synchronization signal block each of the N synchronization signal blocks occupies Y symbols in the time domain, M, i, and X are all integers greater than or equal to 1, and Y is an integer greater than or equal to 5.
  • the first resource includes N candidate resources, and the N candidate resources belong to one or more of the M groups; the N candidate resources are sent on the jth candidate resource among the N candidate resources.
  • j is an integer greater than or equal to 1 and less than or equal to N.
  • the period of the synchronization signal block may include the first resource set, the first resource set includes M groups, and the X candidate resources included in the first group of the M groups can be used to carry X synchronizations.
  • the signal block is equivalent to specifying the resources used to send the synchronization signal block.
  • the synchronization signal block needs to be sent, only resources need to be selected from these resources, which simplifies the way of selecting resources.
  • one synchronization signal block can occupy Y symbols, so that the technical solution provided in the embodiments of the present application can be applied to the NR-V2X system, or can be applied to other communication systems that specify that the synchronization signal block occupies Y symbols.
  • a first synchronization signal block is determined, wherein the first synchronization signal block includes a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel, and the physical broadcast channel includes a demodulation reference signal, so
  • the first synchronization signal block occupies Y symbols in the time domain, Y is an integer greater than or equal to 6, the primary synchronization signal occupies the second symbol and the third symbol of the Y symbols, and the auxiliary
  • the synchronization signal occupies the 4th symbol and the 5th symbol, or the 5th symbol and the 6th symbol among the Y symbols, and the physical broadcast channel occupies the Y symbols except for the main synchronization signal and Symbols other than symbols occupied by the secondary synchronization signal; sending the first synchronization signal block.
  • the primary synchronization signal and the secondary synchronization signal can be located at the front end of the time slot, so that the primary synchronization signal and the secondary synchronization signal can be sent as soon as possible, and the second terminal device as the receiving end can be based on the primary synchronization signal and the secondary synchronization signal.
  • the demodulation reference signal only occupies the symbols of the physical broadcast channel, but does not occupy the symbols of the primary synchronization signal and the secondary synchronization signal, so that the reliability of the symbols occupied by the primary synchronization signal and the secondary synchronization signal can be guaranteed, and it can also make
  • the demodulation reference signal is transmitted normally.
  • a fourth communication method includes: receiving a j-th synchronization signal block among N synchronization signal blocks on a j-th candidate resource among N candidate resources, where the N candidate resources belong to the first A resource set, the first resource set is located within a synchronization signal block period, the first resource set includes M groups, the i-th group of the M groups includes X candidate resources, and the first resource set includes M ⁇ X candidate resources, each of the M ⁇ X candidate resources can be used to transmit synchronization signal blocks, and each of the N synchronization signal blocks occupies Y symbols in the time domain , M, i, and X are all integers greater than or equal to 1, and Y is an integer greater than or equal to 5.
  • the N candidate resources belong to one or more of the M groups; according to the jth synchronization
  • the signal block determines the time domain position of the j-th synchronization signal block.
  • the method may be executed by a fourth communication device, and the fourth communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the fourth communication device is a terminal device, for example, referred to as a second terminal device.
  • the second terminal device is a terminal device, or a chip system set in the terminal device for realizing the function of the terminal device, or other component used for realizing the function of the terminal device.
  • the time domain position of the j-th synchronization signal block includes an identifier of the group where the j-th synchronization signal block is located, and/or, the j-th synchronization signal block is located in the group where the j-th synchronization signal block is located.
  • determining the time domain position of the j-th synchronization signal block according to the j-th synchronization signal block includes:
  • determining the time domain position of the j-th synchronization signal block according to the demodulation reference signal carried by the broadcast channel included in the j-th synchronization signal block includes:
  • determining the time domain position of the j-th synchronization signal block according to a reference signal used to scramble the signaling carried by the broadcast channel included in the j-th synchronization signal block includes :
  • the initial value of the sequence is determined by one or more of the following parameters:
  • the identifier of the group in which the jth synchronization signal block is located
  • the identifier of the time slot in which the j-th synchronization signal block is located is located; or,
  • a first resource for transmitting N synchronization signal blocks is determined from a first resource set, the first resource set is located within a synchronization signal block period, and the first resource set includes M Groups, the i-th group of the M groups includes X candidate resources, the first resource set includes M ⁇ X candidate resources, and each candidate resource in the M ⁇ X candidate resources can be used for transmission
  • a synchronization signal block each of the N synchronization signal blocks occupies Y symbols in the time domain, M, i, and X are all integers greater than or equal to 1, and Y is an integer greater than or equal to 5.
  • the first resource includes N candidate resources, the N candidate resources belong to one or more of the M groups; the N candidate resources are received on the jth candidate resource among the N candidate resources In the j-th synchronization signal block in the synchronization signal block, j is an integer greater than or equal to 1 and less than or equal to N.
  • a first synchronization signal block is received, wherein the first synchronization signal block includes a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel, and the physical broadcast channel includes a demodulation reference signal, so
  • the first synchronization signal block occupies Y symbols in the time domain, Y is an integer greater than or equal to 6, the primary synchronization signal occupies the second symbol and the third symbol of the Y symbols, and the auxiliary
  • the synchronization signal occupies the 4th symbol and the 5th symbol, or the 5th symbol and the 6th symbol among the Y symbols, and the physical broadcast channel occupies the Y symbols except for the main synchronization signal and Symbols other than those occupied by the secondary synchronization signal.
  • a fifth communication method comprising: determining a first synchronization signal block, wherein the first synchronization signal block includes a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel, and the physical broadcast channel includes a solution
  • the first synchronization signal block occupies Y symbols in the time domain, where Y is an integer greater than or equal to 6, and the primary synchronization signal occupies the second symbol and the third symbol among the Y symbols
  • the secondary synchronization signal occupies the 4th symbol and the 5th symbol, or the 5th symbol and the 6th symbol among the Y symbols
  • the physical broadcast channel occupies the Y symbols. Symbols other than symbols occupied by the primary synchronization signal and the secondary synchronization signal; sending the first synchronization signal block.
  • the method may be executed by a fifth communication device, and the fifth communication device may be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the fifth communication device is a terminal device, for example, referred to as a first terminal device.
  • the first terminal device is a terminal device, or a chip system set in the terminal device for realizing the function of the terminal device, or other component used for realizing the function of the terminal device.
  • the primary synchronization signal and the secondary synchronization signal can be located at the front end of the time slot, so that the primary synchronization signal and the secondary synchronization signal can be sent as soon as possible, and the second terminal device as the receiving end can be based on the primary synchronization signal and the secondary synchronization signal.
  • the demodulation reference signal only occupies the symbols of the physical broadcast channel, but does not occupy the symbols of the primary synchronization signal and the secondary synchronization signal, so that the reliability of the symbols occupied by the primary synchronization signal and the secondary synchronization signal can be guaranteed, and it can also make
  • the demodulation reference signal is transmitted normally.
  • the first synchronization signal block occupies Y symbols in the time domain, including:
  • the Y symbols are all symbols of a time slot; or,
  • the Y symbols are all symbols except the last symbol in a slot.
  • One synchronization signal block can occupy all symbols of a time slot. For example, if some time slots do not include intervals, the synchronization signal block can occupy the time slot, which can improve the utilization rate of the time slot. Or, a synchronization signal block may not occupy the last symbol in a time slot. For example, some time slots include intervals. The interval generally occupies the last symbol of the time slot. Therefore, the synchronization signal block does not occupy the symbols occupied by the interval. Set aside the required symbols for the interval, and can also realize the transmission of the synchronization signal block.
  • Y symbols are all symbols in a slot except the last symbol, that is, a synchronization signal block occupies all symbols in a slot except the last symbol, then for a slot with a normal cyclic prefix , The total number of symbols included is 14, the synchronization signal block can occupy 13 of them, and for the time slot with extended cyclic prefix, the total number of symbols included is 12, then the synchronization signal block can occupy 11 of them symbol. If there are time slots in other formats, for example, the total number of symbols included is D, then the synchronization signal block can occupy D-1 symbols in the time slot, and the value of D is not limited.
  • the demodulation reference signal occupies all or part of the Y symbols except for symbols occupied by the primary synchronization signal and the secondary synchronization signal.
  • the demodulation reference signal only occupies the symbols of the physical broadcast channel, and does not occupy the symbols of the primary synchronization signal and the secondary synchronization signal, thereby ensuring the reliability of the symbols occupied by the primary synchronization signal and the secondary synchronization signal, and also enables the demodulation
  • the reference signal is sent normally.
  • the demodulation reference signal can occupy part of the Y symbols except the primary synchronization signal and the secondary synchronization signal, and the remaining part of the symbols can be occupied by the physical broadcast channel, for example, can be used to send broadcast information, etc., so that the synchronization signal block is occupied.
  • the content included is richer.
  • the demodulation reference signal may also occupy all the Y symbols except the primary synchronization signal and the secondary synchronization signal, thereby improving the coverage of the demodulation reference signal.
  • the demodulation reference signal occupies 3 or 4 subcarriers at equal intervals, so The broadcast information carried by the physical broadcast signal occupies the remaining sub-carriers in the physical resource block except for the sub-carriers occupied by the demodulation reference signal.
  • the demodulation reference signal can occupy 3 or 4 subcarriers at equal intervals, or in other words, the demodulation reference signal can have an interval of 3 or 4, Occupy subcarriers at equal intervals.
  • the broadcast information carried by the physical broadcast channel may occupy the remaining sub-carriers in the physical resource block except for the sub-carriers occupied by the demodulation reference signal.
  • a time slot includes 12 symbols, which are respectively symbol 0 to symbol 11.
  • the primary synchronization signal occupies symbol 1 and symbol 2
  • the secondary synchronization signal occupies symbol 3 and symbol 4
  • the symbol occupied by the physical broadcast channel includes symbol 5.
  • the demodulation reference signal occupies symbol 5, of course, the demodulation reference signal can also occupy other symbols of the physical broadcast signal.
  • symbol 5 occupies 1 physical resource block in the frequency domain, and 1 physical resource block may include 12 subcarriers, which are subcarrier 0 to subcarrier 11, respectively.
  • the demodulation reference signal occupies 3 subcarriers at equal intervals, the interval of these 3 subcarriers is 4.
  • the demodulation reference signal occupies subcarrier 0, subcarrier 4, and subcarrier 8, then the broadcast information carried by the physical broadcast channel Occupy one or more of the remaining subcarriers 1 to 3, subcarriers 5 to 7, or subcarriers 9 to 11.
  • the demodulation reference signal occupies only part of the subcarriers in the frequency domain, which not only ensures the transmission of the demodulation reference signal, but also reserves part of the subcarriers for other information to occupy, which can improve the utilization of frequency domain resources.
  • the demodulation reference signal is located at the following symbol position in the first synchronization signal block:
  • the demodulation reference signal is located at the 7th symbol, the 8th symbol, the 11th symbol, and the 12th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 7th symbol, the 10th symbol, and the 13th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 8th symbol and the 11th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 7th symbol and the 12th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 7th symbol and the 13th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 9th symbol or the 10th symbol in the synchronization signal block.
  • the demodulation reference signal is located at the following symbol position in the first synchronization signal block:
  • the demodulation reference signal is located at the seventh symbol, the eighth symbol, the tenth symbol, and the eleventh symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the seventh symbol, the ninth symbol, and the eleventh symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 7th symbol and the 10th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 8th symbol or the 9th symbol in the synchronization signal block.
  • a first resource used to transmit N synchronization signal blocks is determined from a first resource set, the first resource set is located within a synchronization signal block period, and the first resource set includes M Groups, the i-th group of the M groups includes X candidate resources, the first resource set includes M ⁇ X candidate resources, and each candidate resource in the M ⁇ X candidate resources can be used for transmission
  • a synchronization signal block each of the N synchronization signal blocks occupies Y symbols in the time domain, M, i, and X are all integers greater than or equal to 1, and Y is an integer greater than or equal to 5.
  • the first resource includes N candidate resources, and the N candidate resources belong to one or more of the M groups; the N candidate resources are sent on the jth candidate resource among the N candidate resources.
  • j is an integer greater than or equal to 1 and less than or equal to N.
  • the period of the synchronization signal block may include the first resource set, the first resource set includes M groups, and the X candidate resources included in the first group of the M groups can be used to carry X synchronizations.
  • the signal block is equivalent to specifying the resources used to send the synchronization signal block.
  • the synchronization signal block needs to be sent, only resources need to be selected from these resources, which simplifies the way of selecting resources.
  • one synchronization signal block can occupy Y symbols, so that the technical solution provided in the embodiments of the present application can be applied to the NR-V2X system, or can be applied to other communication systems that specify that the synchronization signal block occupies Y symbols.
  • a first resource used to transmit N synchronization signal blocks is determined from a first resource set, the first resource set is located within a synchronization signal block period, and the first resource set includes M Groups, the i-th group of the M groups includes X candidate resources, the first resource set includes M ⁇ X candidate resources, and each candidate resource in the M ⁇ X candidate resources can be used for transmission
  • a synchronization signal block each of the N synchronization signal blocks occupies Y symbols in the time domain, M, i, and X are all integers greater than or equal to 1, and Y is an integer greater than or equal to 5.
  • the first resource includes N candidate resources, and the N candidate resources belong to one or more of the M groups; the N candidate resources are sent on the jth candidate resource among the N candidate resources.
  • the period of the synchronization signal block may include the first resource set, the first resource set includes M groups, and the X candidate resources included in the first group of the M groups can be used to carry X synchronizations.
  • the signal block is equivalent to specifying the resources used to send the synchronization signal block.
  • the synchronization signal block needs to be sent, only resources need to be selected from these resources, which simplifies the way of selecting resources.
  • one synchronization signal block can occupy Y symbols, so that the technical solution provided in the embodiments of the present application can be applied to the NR-V2X system, or can be applied to other communication systems that specify that the synchronization signal block occupies Y symbols.
  • the time domain position of the jth synchronization signal block can be indicated by the jth synchronization signal block, so that the second terminal device can receive the jth synchronization signal block at the correct time domain position, and the second terminal device detects the synchronization signal block. Power consumption.
  • a sixth communication method comprising: receiving a first synchronization signal block, wherein the first synchronization signal block includes a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel, and the physical broadcast channel includes a solution
  • the first synchronization signal block occupies Y symbols in the time domain, where Y is an integer greater than or equal to 6, and the primary synchronization signal occupies the second symbol and the third symbol among the Y symbols Symbol
  • the secondary synchronization signal occupies the 4th symbol and the 5th symbol, or the 5th symbol and the 6th symbol among the Y symbols
  • the physical broadcast channel occupies the Y symbols.
  • the symbols other than the symbols occupied by the primary synchronization signal and the secondary synchronization signal. Demodulate the physical broadcast channel according to the first synchronization signal block.
  • the method may be executed by a sixth communication device, which may be a communication device or a communication device capable of supporting the functions required by the communication device to implement the method, such as a chip system.
  • the sixth communication device is a terminal device, for example, referred to as a second terminal device.
  • the second terminal device is a terminal device, or a chip system set in the terminal device for realizing the function of the terminal device, or other component used for realizing the function of the terminal device.
  • the first synchronization signal block occupies Y symbols in the time domain, including:
  • the Y symbols are all symbols of a time slot; or,
  • the Y symbols are all symbols except the last symbol in a slot.
  • the demodulation reference signal occupies all or part of the Y symbols except for symbols occupied by the primary synchronization signal and the secondary synchronization signal.
  • the demodulation reference signal occupies 3 or 4 subcarriers at equal intervals, and
  • the broadcast information carried by the physical broadcast signal occupies the remaining sub-carriers in the physical resource block except for the sub-carriers occupied by the demodulation reference signal.
  • the demodulation reference signal is located at the following symbol position in the first synchronization signal block:
  • the demodulation reference signal is located at the 7th symbol, the 8th symbol, the 11th symbol, and the 12th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 7th symbol, the 10th symbol, and the 13th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 8th symbol and the 11th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 7th symbol and the 12th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 7th symbol and the 13th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 9th symbol or the 10th symbol in the synchronization signal block.
  • the demodulation reference signal is located at the following symbol position in the first synchronization signal block:
  • the demodulation reference signal is located at the seventh symbol, the eighth symbol, the tenth symbol, and the eleventh symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the seventh symbol, the ninth symbol, and the eleventh symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 7th symbol and the 10th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 8th symbol or the 9th symbol in the synchronization signal block.
  • a first resource for transmitting N synchronization signal blocks is determined from a first resource set, the first resource set is located within a synchronization signal block period, and the first resource set includes M Groups, the i-th group of the M groups includes X candidate resources, the first resource set includes M ⁇ X candidate resources, and each candidate resource in the M ⁇ X candidate resources can be used for transmission
  • a synchronization signal block each of the N synchronization signal blocks occupies Y symbols in the time domain, M, i, and X are all integers greater than or equal to 1, and Y is an integer greater than or equal to 5.
  • the first resource includes N candidate resources, the N candidate resources belong to one or more of the M groups; the N candidate resources are received on the jth candidate resource among the N candidate resources In the j-th synchronization signal block in the synchronization signal block, j is an integer greater than or equal to 1 and less than or equal to N.
  • the jth synchronization signal block of the N synchronization signal blocks is received on the jth candidate resource among the N candidate resources, where the N candidate resources belong to the first resource set, and the The first resource set is located within the synchronization signal block period, the first resource set includes M groups, the i-th group of the M groups includes X candidate resources, and the first resource set includes M ⁇ X candidates Resource, each of the M ⁇ X candidate resources can be used to transmit a synchronization signal block, and each synchronization signal block of the N synchronization signal blocks occupies Y symbols in the time domain, M, i, and X is an integer greater than or equal to 1, and Y is an integer greater than or equal to 5.
  • the N candidate resources belong to one or more of the M groups; determine all the resources according to the jth synchronization signal block. The time domain position of the j-th sync signal block.
  • a communication device is provided, for example, the communication device is the first communication device as described above.
  • the first communication device is used to execute the method in the foregoing first aspect or any possible implementation manner.
  • the first communication device may include a module for executing the method in the first aspect or any possible implementation manner, for example, including a processing module and a transceiver module.
  • the first communication device is a first terminal device.
  • the first terminal device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the transceiver module may also be implemented by a transceiver
  • the processing module may also be implemented by a processor.
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the communication device.
  • the transceiver is, for example, a communication interface in the chip, and the communication interface is connected to a radio frequency transceiving component in the communication device to implement information transmission and reception through the radio frequency transceiving component.
  • the processing module and the transceiver module are used as examples to continue the introduction. among them,
  • the processing module is configured to determine a first resource for transmitting N synchronization signal blocks from a first resource set, the first resource set is located within a synchronization signal block period, and the first resource set includes M groups, The i-th group of the M groups includes X candidate resources, the first resource set includes M ⁇ X candidate resources, and each candidate resource in the M ⁇ X candidate resources can be used to transmit a synchronization signal block , Each of the N synchronization signal blocks occupies Y symbols in the time domain, M, i, and X are all integers greater than or equal to 1, and Y is an integer greater than or equal to 5.
  • a resource includes N candidate resources, and the N candidate resources belong to one or more of the M groups;
  • the transceiver module is configured to send the j-th synchronization signal block among the N synchronization signal blocks on the j-th candidate resource among the N candidate resources, where j is an integer greater than or equal to 1 and less than or equal to N .
  • the jth synchronization signal block occupies Y symbols in the time domain, including:
  • the Y symbols are all symbols of a time slot; or,
  • the Y symbols are all symbols except the last symbol in a slot.
  • the N synchronization signal blocks are transmitted in a repetitive manner, or every H synchronization signal blocks in the N synchronization signal blocks are transmitted in a repetitive manner, and H is less than or A positive integer equal to the N.
  • the duration of time domain resources occupied by the synchronization signal block carried by the first resource set is less than or equal to 2 milliseconds; or,
  • the duration of time domain resources occupied by the synchronization signal block carried by the first resource set is less than or equal to 8 milliseconds.
  • the synchronization signal block carried by the i-th group occupies a time length of 1 ms in the time domain.
  • the processing module is further configured to determine the time domain position of the first resource set within the synchronization signal block period according to pre-configured information; or,
  • the transceiver module is further configured to receive first signaling from a network device, where the first signaling is used to indicate the time domain position of the first resource set within the synchronization signal block period.
  • the number of groups to which the N candidate resources belong is less than or equal to 2, wherein the groups to which the N candidate resources belong are located in the same radio frame, or They are located in different half frames of the same radio frame.
  • the i-th group includes K subgroups, the X candidate resources belong to the K subgroups, and one of the K subgroups includes R candidate resources, so
  • the R candidate resources may be used to transmit R synchronization signal blocks, and the R synchronization signal blocks are repeatedly transmitted.
  • the first resource set includes a first part and a second part, the first part includes the first M/2 groups in the time domain among the M groups, and the first part The second part includes the last M/2 groups in the time domain among the M groups.
  • the processing module is further configured to determine a first resource for transmitting N synchronization signal blocks from a first resource set, the first resource set is located within a synchronization signal block period, and the first resource set includes M groups ,
  • the i-th group of the M groups includes X candidate resources, the first resource set includes M ⁇ X candidate resources, and each candidate resource in the M ⁇ X candidate resources can be used to transmit synchronization signals Block, each of the N synchronization signal blocks occupies Y symbols in the time domain, M, i, and X are all integers greater than or equal to 1, and Y is an integer greater than or equal to 5.
  • the first resource includes N candidate resources, and the N candidate resources belong to one or more of the M groups;
  • the transceiver module is further configured to send the jth synchronization signal block of the N synchronization signal blocks on the jth candidate resource among the N candidate resources, and the jth synchronization signal block indicates the jth synchronization signal block.
  • the time domain position of the sync signal block is further configured to send the jth synchronization signal block of the N synchronization signal blocks on the jth candidate resource among the N candidate resources, and the jth synchronization signal block indicates the jth synchronization signal block.
  • the processing module is further configured to determine a first synchronization signal block, wherein the first synchronization signal block includes a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel, the physical broadcast channel includes a demodulation reference signal, and the first synchronization signal block includes a demodulation reference signal.
  • a synchronization signal block occupies Y symbols in the time domain, Y is an integer greater than or equal to 6, the primary synchronization signal occupies the second symbol and the third symbol of the Y symbols, and the secondary synchronization signal Occupies the 4th symbol and the 5th symbol, or the 5th symbol and the 6th symbol among the Y symbols, the physical broadcast channel occupies the Y symbols except the primary synchronization signal and the secondary synchronization Symbols other than the symbols occupied by the signal;
  • the transceiver module is also used to send the first synchronization signal block.
  • a communication device is provided, for example, the communication device is the second communication device as described above.
  • the second communication device is used to execute the method in the foregoing second aspect or any possible implementation manner.
  • the second communication device may include a module for executing the method in the second aspect or any possible implementation manner, for example, including a processing module and a transceiver module.
  • the second communication device is a second terminal device.
  • the second terminal device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the transceiver module may also be implemented by a transceiver
  • the processing module may also be implemented by a processor.
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the communication device.
  • the transceiver is, for example, a communication interface in the chip, and the communication interface is connected to a radio frequency transceiver component in the communication device to implement information transmission and reception through the radio frequency transceiver component.
  • the processing module and the transceiver module are used as examples to continue the introduction. among them,
  • the processing module is configured to determine a first resource for transmitting N synchronization signal blocks from a first resource set, the first resource set is located within a synchronization signal block period, and the first resource set includes M groups, The i-th group of the M groups includes X candidate resources, the first resource set includes M ⁇ X candidate resources, and each candidate resource in the M ⁇ X candidate resources can be used to transmit a synchronization signal block , Each of the N synchronization signal blocks occupies Y symbols in the time domain, M, i, and X are all integers greater than or equal to 1, and Y is an integer greater than or equal to 5.
  • a resource includes N candidate resources, and the N candidate resources belong to one or more of the M groups;
  • the transceiver module is configured to receive the j-th synchronization signal block in the N synchronization signal blocks on the j-th candidate resource among the N candidate resources, where j is an integer greater than or equal to 1 and less than or equal to N .
  • the processing module is further configured to, after the transceiver module receives the j-th synchronization signal block, acquire timing and/or the j-th synchronization signal block according to the j-th synchronization signal block. Information about the frequency of the signal block.
  • the jth synchronization signal block occupies Y symbols in the time domain, including:
  • the Y symbols are all symbols of a time slot; or,
  • the Y symbols are all symbols except the last symbol in a slot.
  • the N synchronization signal blocks are transmitted in a repetitive manner, or every H synchronization signal blocks in the N synchronization signal blocks are transmitted in a repetitive manner, and H is less than or equal to The positive integer of N.
  • the duration of time domain resources occupied by the synchronization signal block carried by the first resource set is less than or equal to 2 milliseconds; or,
  • the duration of time domain resources occupied by the synchronization signal block carried by the first resource set is less than or equal to 8 milliseconds.
  • the time length occupied by the synchronization signal block carried by the i-th group in the time domain is 1 ms.
  • the number of groups to which the N candidate resources belong is less than or equal to 2, wherein the groups to which the N candidate resources belong are located in the same radio frame, or They are located in different half frames of the same radio frame.
  • the i-th group includes K subgroups
  • the X candidate resources belong to the K subgroups
  • one of the K subgroups includes R candidate resources
  • the The R candidate resources can be used to transmit R synchronization signal blocks, and the R synchronization signal blocks are repeatedly transmitted.
  • the first resource set includes a first part and a second part, the first part includes the first M/2 groups in the time domain among the M groups, and the second The part includes the last M/2 groups in the time domain among the M groups.
  • the transceiver module is further configured to receive the j-th synchronization signal block in the N synchronization signal blocks on the j-th candidate resource among the N candidate resources, where the N candidate resources belong to a first resource set, and the first The resource set is located within a synchronization signal block period, the first resource set includes M groups, the i-th group of the M groups includes X candidate resources, and the first resource set includes M ⁇ X candidate resources, Each of the M ⁇ X candidate resources can be used to transmit synchronization signal blocks, and each of the N synchronization signal blocks occupies Y symbols in the time domain, and M, i, and X are all Is an integer greater than or equal to 1, Y is an integer greater than or equal to 5, and the N candidate resources belong to one or more of the M groups;
  • the processing module is further configured to determine the time domain position of the j-th synchronization signal block according to the j-th synchronization signal block.
  • the transceiver module is further configured to receive a first synchronization signal block, where the first synchronization signal block includes a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel, the physical broadcast channel includes a demodulation reference signal, and the first synchronization signal block includes a demodulation reference signal.
  • a synchronization signal block occupies Y symbols in the time domain, Y is an integer greater than or equal to 6, the primary synchronization signal occupies the second symbol and the third symbol of the Y symbols, and the secondary synchronization signal Occupies the 4th symbol and the 5th symbol, or the 5th symbol and the 6th symbol among the Y symbols, the physical broadcast channel occupies the Y symbols except the primary synchronization signal and the secondary synchronization Symbols other than the symbols occupied by the signal;
  • the processing module is further configured to demodulate the physical broadcast channel according to the first synchronization signal block.
  • a communication device is provided, for example, the communication device is the aforementioned third communication device.
  • the third communication device is used to execute the method in the foregoing third aspect or any possible implementation manner.
  • the third communication device may include a module for executing the method in the third aspect or any possible implementation manner, for example, including a processing module and a transceiver module.
  • the third communication device is a first terminal device.
  • the first terminal device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the transceiver module may also be implemented by a transceiver
  • the processing module may also be implemented by a processor.
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the communication device.
  • the transceiver is, for example, a communication interface in the chip, and the communication interface is connected to a radio frequency transceiving component in the communication device to implement information transmission and reception through the radio frequency transceiving component.
  • the processing module and the transceiver module are used as examples to continue the introduction. among them,
  • the processing module is configured to determine a first resource for transmitting N synchronization signal blocks from a first resource set, the first resource set is located within a synchronization signal block period, and the first resource set includes M groups, The i-th group of the M groups includes X candidate resources, the first resource set includes M ⁇ X candidate resources, and each candidate resource in the M ⁇ X candidate resources can be used to transmit a synchronization signal block , Each of the N synchronization signal blocks occupies Y symbols in the time domain, M, i, and X are all integers greater than or equal to 1, and Y is an integer greater than or equal to 5.
  • a resource includes N candidate resources, and the N candidate resources belong to one or more of the M groups;
  • the transceiver module is configured to send the j-th synchronization signal block of the N synchronization signal blocks on the j-th candidate resource among the N candidate resources, where the j-th synchronization signal block indicates the j-th synchronization The time domain position of the signal block.
  • the time domain position of the j-th synchronization signal block includes an identifier of the group where the j-th synchronization signal block is located, and/or, the j-th synchronization signal block is in the group where the j-th synchronization signal block is located Logo.
  • the jth synchronization signal block indicating the time domain position of the jth synchronization signal block includes:
  • the signaling carried by the broadcast channel included in the j-th synchronization signal block indicates the time domain position of the j-th synchronization signal block; or,
  • the demodulation reference signal carried by the broadcast channel included in the jth synchronization signal block indicates the time domain position of the jth synchronization signal block;
  • a reference signal used for scrambling the signaling carried by the broadcast channel included in the j-th synchronization signal block indicates the time domain position of the j-th synchronization signal block.
  • the demodulation reference signal carried by the broadcast channel included in the jth synchronization signal block indicating the time domain position of the jth synchronization signal block includes:
  • the initial value or initial position of the demodulation reference signal sequence indicates the time domain position of the j-th synchronization signal block.
  • a reference signal used to scramble the signaling carried by the broadcast channel included in the j-th synchronization signal block, indicating the time domain position of the j-th synchronization signal block includes :
  • the initial value or initial position of the reference signal sequence used to scramble the signaling carried by the broadcast channel included in the jth synchronization signal block indicates the time domain position of the jth synchronization signal block.
  • the initial value of the sequence is determined by one or more of the following parameters:
  • the identifier of the group in which the jth synchronization signal block is located
  • the identifier of the time slot in which the j-th synchronization signal block is located is located; or,
  • the processing module is further configured to determine a first resource for transmitting N synchronization signal blocks from a first resource set, the first resource set is located within a synchronization signal block period, and the first resource set includes M groups ,
  • the i-th group of the M groups includes X candidate resources, the first resource set includes M ⁇ X candidate resources, and each candidate resource in the M ⁇ X candidate resources can be used to transmit synchronization signals Block, each of the N synchronization signal blocks occupies Y symbols in the time domain, M, i, and X are all integers greater than or equal to 1, and Y is an integer greater than or equal to 5.
  • the first resource includes N candidate resources, and the N candidate resources belong to one or more of the M groups;
  • the transceiver module is further configured to send the j-th synchronization signal block among the N synchronization signal blocks on the j-th candidate resource among the N candidate resources, where j is greater than or equal to 1, less than or equal to N Integer.
  • the processing module is further configured to determine a first synchronization signal block, wherein the first synchronization signal block includes a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel, the physical broadcast channel includes a demodulation reference signal, and the first synchronization signal block includes a demodulation reference signal.
  • a synchronization signal block occupies Y symbols in the time domain, Y is an integer greater than or equal to 6, the primary synchronization signal occupies the second symbol and the third symbol of the Y symbols, and the secondary synchronization signal Occupies the 4th symbol and the 5th symbol, or the 5th symbol and the 6th symbol among the Y symbols, the physical broadcast channel occupies the Y symbols except the primary synchronization signal and the secondary synchronization Symbols other than the symbols occupied by the signal;
  • the transceiver module is also used to send the first synchronization signal block.
  • a communication device is provided, for example, the communication device is the fourth communication device as described above.
  • the fourth communication device is configured to execute the method in the foregoing fourth aspect or any possible implementation manner.
  • the fourth communication device may include a module for executing the method in the fourth aspect or any possible implementation manner, for example, including a processing module and a transceiver module.
  • the fourth communication device is a second terminal device.
  • the second terminal device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the transceiver module may also be implemented by a transceiver
  • the processing module may also be implemented by a processor.
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the communication device.
  • the transceiver is, for example, a communication interface in the chip, and the communication interface is connected to a radio frequency transceiving component in the communication device to implement information transmission and reception through the radio frequency transceiving component.
  • the processing module and the transceiver module are used as examples to continue the introduction. among them,
  • the transceiver module is configured to receive a j-th synchronization signal block in N synchronization signal blocks on a j-th candidate resource among N candidate resources, where the N candidate resources belong to a first resource set, and the first resource
  • the set is located in the synchronization signal block period, the first resource set includes M groups, the i-th group of the M groups includes X candidate resources, and the first resource set includes M ⁇ X candidate resources, so Each of the M ⁇ X candidate resources can be used to transmit synchronization signal blocks, and each of the N synchronization signal blocks occupies Y symbols in the time domain, and M, i, and X are all An integer greater than or equal to 1, Y is an integer greater than or equal to 5, and the N candidate resources belong to one or more of the M groups;
  • the processing module is configured to determine the time domain position of the j-th synchronization signal block according to the j-th synchronization signal block.
  • the time domain position of the j-th synchronization signal block includes an identifier of the group where the j-th synchronization signal block is located, and/or, the j-th synchronization signal block is located in the group where the j-th synchronization signal block is located.
  • the processing module is configured to determine the time domain position of the j-th synchronization signal block according to the j-th synchronization signal block in the following manner:
  • the processing module is configured to determine the time domain position of the jth synchronization signal block according to the demodulation reference signal carried by the broadcast channel included in the jth synchronization signal block in the following manner :
  • the processing module is configured to determine the jth synchronization signal block according to the reference signal used to scramble the signaling carried by the broadcast channel included in the jth synchronization signal block in the following manner.
  • Time domain position of the synchronization signal block :
  • the initial value of the sequence is determined by one or more of the following parameters:
  • the identifier of the group in which the jth synchronization signal block is located
  • the identifier of the time slot in which the j-th synchronization signal block is located is located; or,
  • the processing module is further configured to determine a first resource for transmitting N synchronization signal blocks from a first resource set, the first resource set is located within a synchronization signal block period, and the first resource set includes M groups ,
  • the i-th group of the M groups includes X candidate resources, the first resource set includes M ⁇ X candidate resources, and each candidate resource in the M ⁇ X candidate resources can be used to transmit synchronization signals Block, each of the N synchronization signal blocks occupies Y symbols in the time domain, M, i, and X are all integers greater than or equal to 1, and Y is an integer greater than or equal to 5.
  • the first resource includes N candidate resources, and the N candidate resources belong to one or more of the M groups;
  • the transceiver module is further configured to receive the j-th synchronization signal block in the N synchronization signal blocks on the j-th candidate resource among the N candidate resources, where j is greater than or equal to 1, less than or equal to N Integer.
  • the transceiver module is further configured to receive a first synchronization signal block, where the first synchronization signal block includes a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel, the physical broadcast channel includes a demodulation reference signal, and the first synchronization signal block includes a demodulation reference signal.
  • a synchronization signal block occupies Y symbols in the time domain, Y is an integer greater than or equal to 6, the primary synchronization signal occupies the second symbol and the third symbol of the Y symbols, and the secondary synchronization signal Occupies the 4th symbol and the 5th symbol, or the 5th symbol and the 6th symbol among the Y symbols, the physical broadcast channel occupies the Y symbols except the primary synchronization signal and the secondary synchronization Symbols other than the symbols occupied by the signal;
  • the processing module is further configured to demodulate the physical broadcast channel according to the first synchronization signal block.
  • a communication device is provided, for example, the communication device is the fifth communication device as described above.
  • the fifth communication device is configured to execute the method in the fifth aspect or any possible implementation manner.
  • the fifth communication device may include a module for executing the method in the fifth aspect or any possible implementation manner, for example, including a processing module and a transceiver module.
  • the fifth communication device is a first terminal device.
  • the first terminal device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the transceiver module may also be implemented by a transceiver
  • the processing module may also be implemented by a processor.
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the communication device.
  • the transceiver is, for example, a communication interface in the chip, and the communication interface is connected to a radio frequency transceiving component in the communication device to implement information transmission and reception through the radio frequency transceiving component.
  • the processing module and the transceiver module are used as examples to continue the introduction. among them,
  • the processing module is configured to determine a first synchronization signal block, where the first synchronization signal block includes a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel, the physical broadcast channel includes a demodulation reference signal, and the first synchronization signal block includes a demodulation reference signal.
  • the synchronization signal block occupies Y symbols in the time domain, Y is an integer greater than or equal to 6, the primary synchronization signal occupies the second symbol and the third symbol of the Y symbols, and the secondary synchronization signal occupies The fourth symbol and the fifth symbol among the Y symbols, or the fifth symbol and the sixth symbol, the physical broadcast channel occupies the Y symbols except for the primary synchronization signal and the secondary synchronization signal Symbols other than the occupied symbols;
  • the transceiver module is used to send the first synchronization signal block.
  • the first synchronization signal block occupies Y symbols in the time domain, including:
  • the Y symbols are all symbols of a time slot; or,
  • the Y symbols are all symbols except the last symbol in a slot.
  • the demodulation reference signal occupies all or part of the Y symbols except for symbols occupied by the primary synchronization signal and the secondary synchronization signal.
  • the demodulation reference signal occupies 3 or 4 subcarriers at equal intervals, so The broadcast information carried by the physical broadcast signal occupies the remaining sub-carriers in the physical resource block except for the sub-carriers occupied by the demodulation reference signal.
  • the demodulation reference signal is located at the following symbol position in the first synchronization signal block:
  • the demodulation reference signal is located at the 7th symbol, the 8th symbol, the 11th symbol, and the 12th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 7th symbol, the 10th symbol, and the 13th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 8th symbol and the 11th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 7th symbol and the 12th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 7th symbol and the 13th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 9th symbol or the 10th symbol in the synchronization signal block.
  • the demodulation reference signal is located at the following symbol position in the first synchronization signal block:
  • the demodulation reference signal is located at the seventh symbol, the eighth symbol, the tenth symbol, and the eleventh symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the seventh symbol, the ninth symbol, and the eleventh symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 7th symbol and the 10th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 8th symbol or the 9th symbol in the synchronization signal block.
  • the processing module is further configured to determine a first resource for transmitting N synchronization signal blocks from a first resource set, the first resource set is located within a synchronization signal block period, and the first resource set includes M groups ,
  • the i-th group of the M groups includes X candidate resources, the first resource set includes M ⁇ X candidate resources, and each candidate resource in the M ⁇ X candidate resources can be used to transmit synchronization signals Block, each of the N synchronization signal blocks occupies Y symbols in the time domain, M, i, and X are all integers greater than or equal to 1, and Y is an integer greater than or equal to 5.
  • the first resource includes N candidate resources, and the N candidate resources belong to one or more of the M groups;
  • the transceiver module is further configured to send the j-th synchronization signal block among the N synchronization signal blocks on the j-th candidate resource among the N candidate resources, where j is greater than or equal to 1, less than or equal to N Integer.
  • the processing module is further configured to determine a first resource for transmitting N synchronization signal blocks from a first resource set, the first resource set is located within a synchronization signal block period, and the first resource set includes M groups ,
  • the i-th group of the M groups includes X candidate resources, the first resource set includes M ⁇ X candidate resources, and each candidate resource in the M ⁇ X candidate resources can be used to transmit synchronization signals Block, each of the N synchronization signal blocks occupies Y symbols in the time domain, M, i, and X are all integers greater than or equal to 1, and Y is an integer greater than or equal to 5.
  • the first resource includes N candidate resources, and the N candidate resources belong to one or more of the M groups;
  • the transceiver module is further configured to send the jth synchronization signal block of the N synchronization signal blocks on the jth candidate resource among the N candidate resources, and the jth synchronization signal block indicates the jth synchronization signal block.
  • the time domain position of the sync signal block is further configured to send the jth synchronization signal block of the N synchronization signal blocks on the jth candidate resource among the N candidate resources, and the jth synchronization signal block indicates the jth synchronization signal block.
  • a communication device is provided, for example, the communication device is the sixth communication device as described above.
  • the sixth communication device is configured to execute the method in the sixth aspect or any possible implementation manner.
  • the sixth communication device may include a module for executing the method in the sixth aspect or any possible implementation manner, for example, including a processing module and a transceiver module.
  • the sixth communication device is a second terminal device.
  • the second terminal device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the transceiver module may also be implemented by a transceiver
  • the processing module may also be implemented by a processor.
  • the transceiver is realized by, for example, an antenna, a feeder, and a codec in the communication device.
  • the transceiver is, for example, a communication interface in the chip, and the communication interface is connected to a radio frequency transceiver component in the communication device to implement information transmission and reception through the radio frequency transceiver component.
  • the processing module and the transceiver module are used as examples to continue the introduction. among them,
  • the transceiver module is configured to receive a first synchronization signal block, where the first synchronization signal block includes a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel, the physical broadcast channel includes a demodulation reference signal, and the first synchronization signal block includes a demodulation reference signal.
  • the synchronization signal block occupies Y symbols in the time domain, Y is an integer greater than or equal to 6, the primary synchronization signal occupies the second symbol and the third symbol of the Y symbols, and the secondary synchronization signal occupies The fourth symbol and the fifth symbol among the Y symbols, or the fifth symbol and the sixth symbol, the physical broadcast channel occupies the Y symbols except for the primary synchronization signal and the secondary synchronization signal Symbols other than the occupied symbols.
  • the processing module is configured to demodulate the physical broadcast channel according to the first synchronization signal block.
  • the first synchronization signal block occupies Y symbols in the time domain, including:
  • the Y symbols are all symbols of a time slot; or,
  • the Y symbols are all symbols except the last symbol in a slot.
  • the demodulation reference signal occupies all or part of the Y symbols except for symbols occupied by the primary synchronization signal and the secondary synchronization signal.
  • the demodulation reference signal occupies 3 or 4 subcarriers at equal intervals, so The broadcast information carried by the physical broadcast signal occupies the remaining sub-carriers in the physical resource block except for the sub-carriers occupied by the demodulation reference signal.
  • the demodulation reference signal is located at the following symbol position in the first synchronization signal block:
  • the demodulation reference signal is located at the 7th symbol, the 8th symbol, the 11th symbol, and the 12th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 7th symbol, the 10th symbol, and the 13th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 8th symbol and the 11th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 7th symbol and the 12th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 7th symbol and the 13th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 9th symbol or the 10th symbol in the synchronization signal block.
  • the demodulation reference signal is located at the following symbol position in the first synchronization signal block:
  • the demodulation reference signal is located at the seventh symbol, the eighth symbol, the tenth symbol, and the eleventh symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the seventh symbol, the ninth symbol, and the eleventh symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 7th symbol and the 10th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 8th symbol or the 9th symbol in the synchronization signal block.
  • the processing module is further configured to determine a first resource for transmitting N synchronization signal blocks from a first resource set, the first resource set is located within a synchronization signal block period, and the first resource set includes M groups ,
  • the i-th group of the M groups includes X candidate resources, the first resource set includes M ⁇ X candidate resources, and each candidate resource in the M ⁇ X candidate resources can be used to transmit synchronization signals Block, each of the N synchronization signal blocks occupies Y symbols in the time domain, M, i, and X are all integers greater than or equal to 1, and Y is an integer greater than or equal to 5.
  • the first resource includes N candidate resources, and the N candidate resources belong to one or more of the M groups;
  • the transceiver module is further configured to receive the j-th synchronization signal block in the N synchronization signal blocks on the j-th candidate resource among the N candidate resources, where j is greater than or equal to 1, less than or equal to N Integer.
  • the transceiver module is further configured to receive the j-th synchronization signal block in the N synchronization signal blocks on the j-th candidate resource among the N candidate resources, where the N candidate resources belong to a first resource set, and the first The resource set is located within a synchronization signal block period, the first resource set includes M groups, the i-th group of the M groups includes X candidate resources, and the first resource set includes M ⁇ X candidate resources, Each of the M ⁇ X candidate resources can be used to transmit synchronization signal blocks, and each of the N synchronization signal blocks occupies Y symbols in the time domain, and M, i, and X are all Is an integer greater than or equal to 1, Y is an integer greater than or equal to 5, and the N candidate resources belong to one or more of the M groups;
  • the processing module is further configured to determine the time domain position of the j-th synchronization signal block according to the j-th synchronization signal block.
  • a communication device is provided.
  • the communication device is, for example, the first communication device as described above.
  • the communication device includes a processor.
  • it may also include a memory for storing computer instructions.
  • the processor and the memory are coupled with each other, and are used to implement the method described in the first aspect or any possible implementation manner.
  • the first communication device may not include a memory, and the memory may be located outside the first communication device.
  • the first communication device may further include a communication interface for communicating with other devices or equipment.
  • the processor, the memory, and the communication interface are coupled with each other, and are used to implement the method described in the first aspect or any possible implementation manner.
  • the first communication device is caused to execute the method in the foregoing first aspect or any possible implementation manner.
  • the first communication device is a first terminal device.
  • the first terminal device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the communication interface is realized by, for example, a transceiver in the communication device, for example, the transceiver is realized by an antenna, a feeder, and a codec in the communication device.
  • the communication interface is, for example, an input/output interface of the chip, such as input/output pins, etc., and the communication interface is connected to a radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components. among them,
  • the memory is used to store computer instructions
  • the processor is configured to determine a first resource for sending N synchronization signal blocks from a first resource set, the first resource set is located within a synchronization signal block period, and the first resource set includes M groups, The i-th group of the M groups includes X candidate resources, the first resource set includes M ⁇ X candidate resources, and each candidate resource in the M ⁇ X candidate resources can be used to transmit a synchronization signal block , Each of the N synchronization signal blocks occupies Y symbols in the time domain, M, i, and X are all integers greater than or equal to 1, and Y is an integer greater than or equal to 5.
  • a resource includes N candidate resources, and the N candidate resources belong to one or more of the M groups;
  • the communication interface is configured to send the j-th synchronization signal block among the N synchronization signal blocks on the j-th candidate resource among the N candidate resources, where j is an integer greater than or equal to 1 and less than or equal to N .
  • the jth synchronization signal block occupies Y symbols in the time domain, including:
  • the Y symbols are all symbols of a time slot; or,
  • the Y symbols are all symbols except the last symbol in a slot.
  • the N synchronization signal blocks are transmitted in a repetitive manner, or every H synchronization signal blocks in the N synchronization signal blocks are transmitted in a repetitive manner, and H is less than or A positive integer equal to the N.
  • the duration of time domain resources occupied by the synchronization signal block carried by the first resource set is less than or equal to 2 milliseconds; or,
  • the duration of time domain resources occupied by the synchronization signal block carried by the first resource set is less than or equal to 8 milliseconds.
  • the synchronization signal block carried by the i-th group occupies a time length of 1 ms in the time domain.
  • the processor is further configured to determine the time domain position of the first resource set within the synchronization signal block period according to pre-configured information; or,
  • the communication interface is further configured to receive first signaling from a network device, where the first signaling is used to indicate the time domain position of the first resource set within the synchronization signal block period.
  • the number of groups to which the N candidate resources belong is less than or equal to 2, wherein the groups to which the N candidate resources belong are located in the same radio frame, or They are located in different half frames of the same radio frame.
  • the i-th group includes K subgroups, the X candidate resources belong to the K subgroups, and one of the K subgroups includes R candidate resources, so
  • the R candidate resources may be used to transmit R synchronization signal blocks, and the R synchronization signal blocks are repeatedly transmitted.
  • the first resource set includes a first part and a second part, the first part includes the first M/2 groups in the time domain among the M groups, and the first part The second part includes the last M/2 groups in the time domain among the M groups.
  • a communication device is provided.
  • the communication device is, for example, the second communication device as described above.
  • the communication device includes a processor.
  • it may also include a memory for storing computer instructions.
  • the processor and the memory are coupled with each other, and are used to implement the method described in the second aspect or any possible implementation manner.
  • the second communication device may not include a memory, and the memory may be located outside the second communication device.
  • the second communication device includes a memory as an example.
  • the second communication device may further include a communication interface for communicating with other devices or equipment.
  • the processor, the memory, and the communication interface are coupled with each other, and are used to implement the method described in the second aspect or any possible implementation manner.
  • the second communication device is caused to execute the method in the foregoing second aspect or any possible implementation manner.
  • the second communication device is a second terminal device.
  • the second terminal device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the communication interface is realized by, for example, a transceiver in the communication device, for example, the transceiver is realized by an antenna, a feeder, and a codec in the communication device.
  • the communication interface is, for example, an input/output interface of the chip, such as an input/output pin, etc., and the communication interface is connected to the radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components. among them,
  • the memory is used to store computer instructions
  • the processor is configured to determine a first resource for transmitting N synchronization signal blocks from a first resource set, the first resource set is located within a synchronization signal block period, and the first resource set includes M groups, The i-th group of the M groups includes X candidate resources, the first resource set includes M ⁇ X candidate resources, and each candidate resource of the M ⁇ X candidate resources can be used to transmit a synchronization signal block , Each of the N synchronization signal blocks occupies Y symbols in the time domain, M, i, and X are all integers greater than or equal to 1, and Y is an integer greater than or equal to 5.
  • a resource includes N candidate resources, and the N candidate resources belong to one or more of the M groups;
  • the transceiver is configured to receive the j-th synchronization signal block among the N synchronization signal blocks on the j-th candidate resource among the N candidate resources, where j is an integer greater than or equal to 1 and less than or equal to N .
  • the processor is further configured to obtain timing and/or the j-th synchronization signal block according to the j-th synchronization signal block after the transceiver receives the j-th synchronization signal block Information about the frequency of the signal block.
  • the jth synchronization signal block occupies Y symbols in the time domain, including:
  • the Y symbols are all symbols of a time slot; or,
  • the Y symbols are all symbols except the last symbol in a slot.
  • the N synchronization signal blocks are transmitted in a repetitive manner, or every H synchronization signal blocks in the N synchronization signal blocks are transmitted in a repetitive manner, and H is less than or equal to The positive integer of N.
  • the duration of time domain resources occupied by the synchronization signal block carried by the first resource set is less than or equal to 2 milliseconds; or,
  • the duration of time domain resources occupied by the synchronization signal block carried by the first resource set is less than or equal to 8 milliseconds.
  • the time length occupied by the synchronization signal block carried by the i-th group in the time domain is 1 ms.
  • the number of groups to which the N candidate resources belong is less than or equal to 2, wherein the groups to which the N candidate resources belong are located in the same radio frame, or They are located in different half frames of the same radio frame.
  • the i-th group includes K subgroups
  • the X candidate resources belong to the K subgroups
  • one of the K subgroups includes R candidate resources
  • the The R candidate resources can be used to transmit R synchronization signal blocks, and the R synchronization signal blocks are repeatedly transmitted.
  • the first resource set includes a first part and a second part, the first part includes the first M/2 groups in the time domain among the M groups, and the second The part includes the last M/2 groups in the time domain among the M groups.
  • a communication device is provided.
  • the communication device is, for example, the third communication device as described above.
  • the communication device includes a processor.
  • it may also include a memory for storing computer instructions.
  • the processor and the memory are coupled with each other, and are used to implement the method described in the third aspect or any possible implementation manner.
  • the third communication device may not include a memory, and the memory may be located outside the third communication device.
  • the third communication device includes a memory as an example.
  • the third communication device may further include a communication interface for communicating with other devices or equipment.
  • the processor, the memory, and the communication interface are coupled with each other, and are used to implement the method described in the third aspect or any possible implementation manner.
  • the third communication device is caused to execute the method in the third aspect or any possible implementation manner.
  • the third communication device is a first terminal device.
  • the first terminal device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the communication interface is realized by a transceiver in the communication device, for example, the transceiver is realized by an antenna, a feeder, a codec, etc. in the communication device.
  • the communication interface is, for example, an input/output interface of the chip, such as an input/output pin, etc., and the communication interface is connected to a radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components. among them,
  • the memory is used to store computer instructions
  • the processor is configured to determine a first resource for sending N synchronization signal blocks from a first resource set, the first resource set is located within a synchronization signal block period, and the first resource set includes M groups, The i-th group of the M groups includes X candidate resources, the first resource set includes M ⁇ X candidate resources, and each candidate resource in the M ⁇ X candidate resources can be used to transmit a synchronization signal block , Each of the N synchronization signal blocks occupies Y symbols in the time domain, M, i, and X are all integers greater than or equal to 1, and Y is an integer greater than or equal to 5.
  • a resource includes N candidate resources, and the N candidate resources belong to one or more of the M groups;
  • the communication interface is configured to send the j-th synchronization signal block of the N synchronization signal blocks on the j-th candidate resource among the N candidate resources, where the j-th synchronization signal block indicates the j-th synchronization The time domain position of the signal block.
  • the time domain position of the j-th synchronization signal block includes an identifier of the group where the j-th synchronization signal block is located, and/or, the j-th synchronization signal block is in the group where the j-th synchronization signal block is located Logo.
  • the jth synchronization signal block indicating the time domain position of the jth synchronization signal block includes:
  • the signaling carried by the broadcast channel included in the j-th synchronization signal block indicates the time domain position of the j-th synchronization signal block; or,
  • the demodulation reference signal carried by the broadcast channel included in the jth synchronization signal block indicates the time domain position of the jth synchronization signal block;
  • a reference signal used for scrambling the signaling carried by the broadcast channel included in the j-th synchronization signal block indicates the time domain position of the j-th synchronization signal block.
  • the demodulation reference signal carried by the broadcast channel included in the jth synchronization signal block indicating the time domain position of the jth synchronization signal block includes:
  • the initial value or initial position of the demodulation reference signal sequence indicates the time domain position of the j-th synchronization signal block.
  • a reference signal used to scramble the signaling carried by the broadcast channel included in the j-th synchronization signal block, indicating the time domain position of the j-th synchronization signal block includes :
  • the initial value or initial position of the reference signal sequence used to scramble the signaling carried by the broadcast channel included in the jth synchronization signal block indicates the time domain position of the jth synchronization signal block.
  • the initial value of the sequence is determined by one or more of the following parameters:
  • the identifier of the group in which the jth synchronization signal block is located
  • the identifier of the time slot in which the j-th synchronization signal block is located is located; or,
  • a communication device is provided.
  • the communication device is, for example, the fourth communication device as described above.
  • the communication device includes a processor.
  • it may also include a memory for storing computer instructions.
  • the processor and the memory are coupled with each other, and are used to implement the method described in the fourth aspect or any possible implementation manner.
  • the fourth communication device may not include a memory, and the memory may be located outside the fourth communication device.
  • the fourth communication device including a memory is taken as an example.
  • the fourth communication device may further include a communication interface for communicating with other devices or equipment.
  • the processor, the memory, and the communication interface are coupled with each other, and are used to implement the method described in the fourth aspect or any possible implementation manner.
  • the fourth communication device is caused to execute the method in the fourth aspect or any possible implementation manner.
  • the fourth communication device is a second terminal device.
  • the second terminal device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the communication interface is realized by, for example, a transceiver in the communication device, for example, the transceiver is realized by an antenna, a feeder, and a codec in the communication device.
  • the communication interface is, for example, an input/output interface of the chip, such as an input/output pin, etc., and the communication interface is connected to the radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components. among them,
  • the memory is used to store computer instructions
  • the communication interface is configured to receive a j-th synchronization signal block in N synchronization signal blocks on a j-th candidate resource among N candidate resources, where the N candidate resources belong to a first resource set, and the first resource
  • the set is located in the synchronization signal block period, the first resource set includes M groups, the i-th group of the M groups includes X candidate resources, and the first resource set includes M ⁇ X candidate resources, so Each of the M ⁇ X candidate resources can be used to transmit synchronization signal blocks, and each of the N synchronization signal blocks occupies Y symbols in the time domain, and M, i, and X are all An integer greater than or equal to 1, Y is an integer greater than or equal to 5, and the N candidate resources belong to one or more of the M groups;
  • the processor is configured to determine the time domain position of the j-th synchronization signal block according to the j-th synchronization signal block.
  • the time domain position of the j-th synchronization signal block includes an identifier of the group where the j-th synchronization signal block is located, and/or, the j-th synchronization signal block is located in the group where the j-th synchronization signal block is located.
  • the processor is configured to determine the time domain position of the j-th synchronization signal block according to the j-th synchronization signal block in the following manner:
  • the processor is configured to determine the time domain position of the j-th synchronization signal block according to the demodulation reference signal carried by the broadcast channel included in the j-th synchronization signal block in the following manner:
  • the processor is configured to determine the jth synchronization signal block according to a reference signal used to scramble the signaling carried by the broadcast channel included in the jth synchronization signal block in the following manner Time domain position of the signal block:
  • the initial value of the sequence is determined by one or more of the following parameters:
  • the identifier of the group in which the jth synchronization signal block is located
  • the identifier of the time slot in which the j-th synchronization signal block is located is located; or,
  • a communication device is provided.
  • the communication device is, for example, the fifth communication device as described above.
  • the communication device includes a processor.
  • it may also include a memory for storing computer instructions.
  • the processor and the memory are coupled with each other, and are used to implement the method described in the fifth aspect or any possible implementation manner.
  • the fifth communication device may not include a memory, and the memory may be located outside the fifth communication device.
  • the fifth communication device including a memory is taken as an example.
  • the fifth communication device may further include a communication interface for communicating with other devices or equipment.
  • the processor, the memory, and the communication interface are coupled with each other, and are used to implement the method described in the fifth aspect or any possible implementation manner.
  • the fifth communication device is caused to execute the method in the fifth aspect or any possible implementation manner.
  • the fifth communication device is a first terminal device.
  • the first terminal device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the communication interface is realized by a transceiver in the communication device, for example, the transceiver is realized by an antenna, a feeder, a codec, etc. in the communication device.
  • the communication interface is, for example, an input/output interface of the chip, such as input/output pins, etc., and the communication interface is connected to a radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components. among them,
  • the memory is used to store computer instructions
  • the processor is configured to determine a first synchronization signal block, where the first synchronization signal block includes a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel, the physical broadcast channel includes a demodulation reference signal, and the first synchronization signal block includes a demodulation reference signal.
  • the synchronization signal block occupies Y symbols in the time domain, Y is an integer greater than or equal to 6, the primary synchronization signal occupies the second symbol and the third symbol of the Y symbols, and the secondary synchronization signal occupies The fourth symbol and the fifth symbol among the Y symbols, or the fifth symbol and the sixth symbol, the physical broadcast channel occupies the Y symbols except for the primary synchronization signal and the secondary synchronization signal Symbols other than the occupied symbols;
  • the communication interface is used to send the first synchronization signal block.
  • the first synchronization signal block occupies Y symbols in the time domain, including:
  • the Y symbols are all symbols of a time slot; or,
  • the Y symbols are all symbols except the last symbol in a slot.
  • the demodulation reference signal occupies all or part of the Y symbols except for symbols occupied by the primary synchronization signal and the secondary synchronization signal.
  • the demodulation reference signal occupies 3 or 4 subcarriers at equal intervals, so The broadcast information carried by the physical broadcast signal occupies the remaining sub-carriers in the physical resource block except for the sub-carriers occupied by the demodulation reference signal.
  • the demodulation reference signal is located at the following symbol position in the first synchronization signal block:
  • the demodulation reference signal is located at the 7th symbol, the 8th symbol, the 11th symbol, and the 12th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 7th symbol, the 10th symbol, and the 13th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 8th symbol and the 11th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 7th symbol and the 12th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 7th symbol and the 13th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 9th symbol or the 10th symbol in the synchronization signal block.
  • the demodulation reference signal is located at the following symbol position in the first synchronization signal block:
  • the demodulation reference signal is located at the seventh symbol, the eighth symbol, the tenth symbol, and the eleventh symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the seventh symbol, the ninth symbol, and the eleventh symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 7th symbol and the 10th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 8th symbol or the 9th symbol in the synchronization signal block.
  • a communication device is provided.
  • the communication device is, for example, the sixth communication device as described above.
  • the communication device includes a processor.
  • it may also include a memory for storing computer instructions.
  • the processor and the memory are coupled with each other, and are used to implement the method described in the sixth aspect or any possible implementation manner.
  • the sixth communication device may not include a memory, and the memory may be located outside the sixth communication device.
  • the sixth communication device including a memory is taken as an example.
  • the sixth communication device may further include a communication interface for communicating with other devices or equipment.
  • the processor, the memory, and the communication interface are coupled with each other, and are used to implement the method described in the sixth aspect or any possible implementation manner.
  • the sixth communication device is caused to execute the method in the sixth aspect or any possible implementation manner.
  • the sixth communication device is a second terminal device.
  • the second terminal device is a communication device, or a chip or other component provided in the communication device.
  • the communication device is a terminal device.
  • the communication interface is realized by, for example, a transceiver in the communication device, for example, the transceiver is realized by an antenna, a feeder, and a codec in the communication device.
  • the communication interface is, for example, an input/output interface of the chip, such as an input/output pin, etc., and the communication interface is connected to the radio frequency transceiver component in the communication device to Information is sent and received through radio frequency transceiver components. among them,
  • the memory is used to store computer instructions
  • the communication interface is configured to receive a first synchronization signal block, wherein the first synchronization signal block includes a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel, the physical broadcast channel includes a demodulation reference signal, and the first synchronization signal block includes a demodulation reference signal.
  • the synchronization signal block occupies Y symbols in the time domain, Y is an integer greater than or equal to 6, the primary synchronization signal occupies the second symbol and the third symbol of the Y symbols, and the secondary synchronization signal occupies The fourth symbol and the fifth symbol among the Y symbols, or the fifth symbol and the sixth symbol, the physical broadcast channel occupies the Y symbols except for the primary synchronization signal and the secondary synchronization signal Symbols other than the occupied symbols;
  • the processor is configured to demodulate the physical broadcast channel according to the first synchronization signal block.
  • the first synchronization signal block occupies Y symbols in the time domain, including:
  • the Y symbols are all symbols of a time slot; or,
  • the Y symbols are all symbols except the last symbol in a slot.
  • the demodulation reference signal occupies all or part of the Y symbols except for symbols occupied by the primary synchronization signal and the secondary synchronization signal.
  • the demodulation reference signal occupies 3 or 4 subcarriers at equal intervals, so The broadcast information carried by the physical broadcast signal occupies the remaining sub-carriers in the physical resource block except for the sub-carriers occupied by the demodulation reference signal.
  • the demodulation reference signal is located at the following symbol position in the first synchronization signal block:
  • the demodulation reference signal is located at the 7th symbol, the 8th symbol, the 11th symbol, and the 12th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 7th symbol, the 10th symbol, and the 13th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 8th symbol and the 11th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 7th symbol and the 12th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 7th symbol and the 13th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 9th symbol or the 10th symbol in the synchronization signal block.
  • the demodulation reference signal is located at the following symbol position in the first synchronization signal block:
  • the demodulation reference signal is located at the seventh symbol, the eighth symbol, the tenth symbol, and the eleventh symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the seventh symbol, the ninth symbol, and the eleventh symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 7th symbol and the 10th symbol in the synchronization signal block; or,
  • the demodulation reference signal is located at the 8th symbol or the 9th symbol in the synchronization signal block.
  • a first communication system comprising the communication device according to the seventh aspect or the communication device according to the thirteenth aspect, and the communication device according to the eighth aspect or the fourteenth aspect The communication device.
  • a second communication system comprising the communication device according to the ninth aspect or the communication device according to the fifteenth aspect, and the communication device according to the tenth aspect or the sixteenth aspect The communication device.
  • a third communication system includes the communication device according to the eleventh aspect or the communication device according to the seventeenth aspect, and the communication device according to the twelfth aspect or the communication device according to the seventeenth aspect.
  • the communication device of the eighteenth aspect includes the communication device according to the eleventh aspect or the communication device according to the seventeenth aspect, and the communication device according to the twelfth aspect or the communication device according to the seventeenth aspect.
  • the communication device of the eighteenth aspect includes the communication device according to the eleventh aspect or the communication device according to the seventeenth aspect, and the communication device according to the twelfth aspect or the communication device according to the seventeenth aspect.
  • the first communication system provided by the nineteenth aspect, the second communication system provided by the twentieth aspect, and the third communication system provided by the twenty-first aspect may be the same communication system, or they may be different communications.
  • the system, or any two of them may be the same communication system, while the other is a different communication system.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store computer instructions, and when the computer instructions run on a computer, the computer executes the first aspect or any of the above The method described in one possible implementation.
  • a computer-readable storage medium is provided, and the computer-readable storage medium is used to store computer instructions.
  • the computer instructions run on a computer, the computer can execute the second aspect or any of the above. The method described in one possible implementation.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store computer instructions, and when the computer instructions run on a computer, the computer executes the third aspect or any of the above The method described in one possible implementation.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store computer instructions, and when the computer instructions run on a computer, the computer executes the fourth aspect or any of the above The method described in one possible implementation.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store computer instructions, and when the computer instructions run on a computer, the computer executes the fifth aspect or any of the above The method described in one possible implementation.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store computer instructions, and when the computer instructions are executed on a computer, the computer executes the sixth aspect or any of the above The method described in one possible implementation.
  • a computer program product containing instructions is provided, the computer program product is used to store computer instructions, and when the computer instructions are executed on a computer, the computer executes the first aspect or any one of the above.
  • a computer program product containing instructions is provided, the computer program product is used to store computer instructions, and when the computer instructions are executed on a computer, the computer executes the second aspect or any one of the foregoing.
  • a computer program product containing instructions is provided, the computer program product is used to store computer instructions, and when the computer instructions run on a computer, the computer executes the third aspect or any one of the foregoing The methods described in the possible implementations.
  • a computer program product containing instructions is provided, the computer program product is used to store computer instructions, and when the computer instructions are executed on a computer, the computer executes the fourth aspect or any one of the foregoing.
  • a computer program product containing instructions is provided, the computer program product is used to store computer instructions, and when the computer instructions are executed on a computer, the computer executes the fifth aspect or any one of the foregoing.
  • a computer program product containing instructions is provided, the computer program product is used to store computer instructions, and when the computer instructions are run on a computer, the computer can execute the sixth aspect or any one of the foregoing.
  • one synchronization signal block can occupy Y symbols, so that the technical solution provided by the embodiment of the present application can be applied to the NR-V2X system, or can be applied to other synchronization signal blocks that occupies Y symbols.
  • Symbolic communication system Symbolic communication system.
  • Figure 1 is a schematic diagram of SSB
  • FIG. 2 shows several schematic diagrams of V2X
  • Figure 3 is a schematic diagram of SS burst set
  • Figures 4A to 4E show several distribution modes of SSB transmitted on the Uu port
  • FIG. 5 is a schematic diagram of an application scenario of an embodiment of the application.
  • FIG. 6 is a flowchart of the first communication method provided by an embodiment of this application.
  • FIG. 7A is a schematic diagram showing that the actually scheduled S-SSB occupies one of the M groups in an embodiment of the application.
  • FIG. 7B is a schematic diagram of the time domain position of the first resource set in the S-SSB period in an embodiment of this application.
  • 7C to 7D are schematic diagrams of two structures of S-SSB in an embodiment of the application.
  • FIG. 8 is a schematic diagram of a first resource set and a second resource set in an embodiment of the application.
  • FIG. 9A is a schematic diagram of a first resource set and a second resource set in an embodiment of this application.
  • FIG. 9B is a schematic diagram showing that the actually scheduled S-SSB occupies one of the M groups in an embodiment of the application.
  • FIG. 10 is a schematic diagram of a first resource set and a second resource set in an embodiment of this application.
  • FIG. 11 is a schematic diagram of X candidate resources distributed at equal intervals in the time domain in an embodiment of the application.
  • 12A is a schematic diagram of X candidate resources distributed at unequal intervals in the time domain in an embodiment of this application;
  • 12B is another schematic diagram of X candidate resources distributed at unequal intervals in the time domain in an embodiment of this application;
  • FIG. 13 is a flowchart of a second communication method provided by an embodiment of this application.
  • 14A to 14C are several schematic diagrams of the j-th synchronization signal block provided by an embodiment of this application.
  • FIG. 15 is a flowchart of a third communication method provided by an embodiment of this application.
  • FIG. 16A is several patterns of the positions of DMRS in the time slot of the normal CP in the embodiment of the application.
  • FIG. 16B is several patterns of positions of DMRS in the time slot of the extended CP in the embodiment of the application.
  • 17A to 17D are several schematic diagrams of the j-th synchronization signal block provided by an embodiment of this application.
  • 18A to 18C are several schematic diagrams of the j-th synchronization signal block provided by an embodiment of this application.
  • 19A to 19E are several schematic diagrams of the j-th synchronization signal block provided by an embodiment of this application.
  • 20A to 20D are several schematic diagrams of the j-th synchronization signal block provided by an embodiment of this application.
  • 21A to 21D are several schematic diagrams of the j-th synchronization signal block provided by an embodiment of this application.
  • 22A-22C are several schematic diagrams of the j-th synchronization signal block provided by an embodiment of this application.
  • FIG. 23 is a schematic block diagram of a first terminal device of the first type according to an embodiment of this application.
  • FIG. 24 is another schematic block diagram of the first terminal device of the first type according to an embodiment of this application.
  • FIG. 25 is a schematic block diagram of a first type of second terminal device according to an embodiment of this application.
  • FIG. 26 is another schematic block diagram of the first type of second terminal device according to an embodiment of this application.
  • FIG. 27 is a schematic block diagram of a second type of first terminal device according to an embodiment of this application.
  • FIG. 28 is another schematic block diagram of a second type of first terminal device according to an embodiment of this application.
  • FIG. 29 is a schematic block diagram of a second type of second terminal device according to an embodiment of this application.
  • FIG. 30 is another schematic block diagram of a second type of second terminal device according to an embodiment of this application.
  • FIG. 31 is a schematic block diagram of a third type of first terminal device according to an embodiment of this application.
  • FIG. 32 is another schematic block diagram of a third type of first terminal device according to an embodiment of the application.
  • FIG. 33 is a schematic block diagram of a third type of second terminal device according to an embodiment of the application.
  • FIG. 34 is another schematic block diagram of a third type of second terminal device according to an embodiment of this application.
  • FIG. 35 is another schematic block diagram of a communication device according to an embodiment of the application.
  • FIG. 36 is still another schematic block diagram of a communication device provided by an embodiment of this application.
  • FIG. 37 is another schematic block diagram of a communication device provided by an embodiment of this application.
  • a terminal device for example, a terminal device, or a chip or other component set in the terminal device that can realize the function of the terminal device.
  • Terminal devices include devices that provide users with voice and/or data connectivity. Specifically, they include devices that provide users with voice, or include devices that provide users with data connectivity, or include devices that provide users with voice and data connectivity. . For example, it may include a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN), exchange voice or data with the RAN, or exchange voice and data with the RAN.
  • RAN radio access network
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, vehicle to everything (V2X) terminal equipment , Machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit, subscriber station (subscriber) station), mobile station (mobile station), remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user Agent (user agent), or user equipment (user device), etc.
  • UE user equipment
  • M2M/MTC Machine-to-machine/machine-type communications
  • IoT Internet of things
  • subscriber unit subscriber station (subscriber) station)
  • mobile station mobile station
  • remote station remote station
  • access point access point
  • AP remote terminal
  • remote terminal remote terminal
  • access terminal access terminal
  • user terminal user terminal
  • user Agent
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket-sized, hand-held, mobile devices with built-in computers, and so on.
  • PCS personal communication service
  • PCS cordless phones
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable device is not only a kind of hardware device, but also realizes powerful functions through software support, data interaction and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be regarded as vehicle-mounted terminal equipment, for example, the vehicle-mounted terminal equipment is also called on-board unit (OBU). ).
  • OBU on-board unit
  • all that can perform data communication with a base station can be regarded as a terminal device.
  • Network equipment including, for example, access network (AN) equipment, such as a base station (e.g., access point), which may refer to equipment that communicates with wireless terminal equipment through one or more cells on the air interface in the access network
  • AN access network
  • a base station e.g., access point
  • a network device in a V2X technology is a roadside unit (RSU).
  • the base station can be used to convert the received air frame and IP packet to each other, as a router between the terminal device and the rest of the access network, where the rest of the access network can include the IP network.
  • the RSU can be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in the LTE system or long term evolution-advanced (LTE-A), or may also include 5G new radio (
  • the next generation node B (gNB) in the new radio, NR system also referred to as the NR system for short
  • may also include the centralized unit in the cloud radio access network (Cloud RAN) system (centralized unit, CU) and distributed unit (distributed unit, DU) are not limited in the embodiment of the present application.
  • the network equipment may also include core network equipment, but because the embodiments of the present application mainly relate to access network equipment, in the following text, unless otherwise specified, all mentioned network equipment may refer to access network equipment.
  • V2X Vehicle to everything
  • V2X specifically includes vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-pedestrian (V2P) direct communication, and There are several application requirements such as vehicle-to-network (V2N) communication and interaction. as shown in picture 2.
  • V2V refers to the communication between vehicles
  • V2P refers to the communication between vehicles and people (including pedestrians, cyclists, drivers, or passengers)
  • V2I refers to the communication between vehicles and network equipment, such as RSU, and There is another type of V2N that can be included in V2I.
  • V2N refers to the communication between the vehicle and the base station/network.
  • V2P can be used as a safety warning for pedestrians or non-motorized vehicles on the road.
  • vehicles can communicate with roads and even other infrastructure, such as traffic lights, roadblocks, etc., to obtain road management information such as traffic light signal timing.
  • V2V can be used for information interaction and reminding between vehicles, and the most typical application is for the anti-collision safety system between vehicles.
  • V2N is currently the most widely used form of Internet of Vehicles. Its main function is to connect vehicles to a cloud server through a mobile network, and use the navigation, entertainment, or anti-theft application functions provided by the cloud server.
  • V2X it is mainly the communication between terminal equipment and terminal equipment.
  • the current standard protocols support broadcast, multicast, and unicast.
  • the broadcast mode means that the terminal device as the sender uses the broadcast mode to send data, and multiple terminal device ends can receive sidelink control information (SCI) or sidelink sharing from the sender Channel (sidelink shared channel, SSCH).
  • SCI sidelink control information
  • SSCH sidelink shared channel
  • the multicast mode is similar to broadcast transmission.
  • the terminal equipment as the sender uses the broadcast mode for data transmission, and a group of terminal equipment can parse SCI or SSCH.
  • the unicast mode is that one terminal device sends data to another terminal device, and other terminal devices do not need or cannot parse the data.
  • the time unit is, for example, a slot or a subframe, or other time units.
  • Time slot Under the normal cyclic prefix, one time slot in the NR system includes 14 OFDM symbols; under the extended cyclic prefix, one time slot in the NR system includes 12 OFDM symbols.
  • the time slot length corresponding to the 15kHz subcarrier interval is 1ms
  • the time slot length corresponding to the 30kHz subcarrier interval is 0.5ms
  • the time slot length corresponding to the 60kHz subcarrier interval is 0.25ms
  • the time slot length corresponding to the 120kHz subcarrier interval is 0.125. ms.
  • At least one means one or more, and “plurality” means two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • "The following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one item (a) of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or order of multiple objects. Importance.
  • the first value and the second value are only for distinguishing different values, but do not indicate the difference in content, priority, or importance of the two values.
  • D2D communication or V2X communication is a technology for direct communication between terminal devices.
  • NR-V2X When NR-V2X defines the requirements for system design, it clearly defines the requirements. Some services need to meet the requirements of 99.99% or 99.999% of communication reliability.
  • a key technology in V2X is to support the transmission mode in which terminal devices independently select resources when there is no network. To achieve such high reliability, NR-V2X agrees to the data channel retransmission and hybrid automatic repeat request (HARQ) feedback mechanism for the data channel. Thereby, the reliability of data transmission can be improved.
  • HARQ hybrid automatic repeat request
  • NR-V2X proposes to support repeated transmission of S-SSB.
  • the transmission structure of S-SSB on a slot is also given.
  • how to realize the repeated transmission of S-SSB is currently unclear.
  • the terminal device can synchronize with the base station by receiving the SSB at the Uu port, and obtain system messages.
  • PSS, SSS and PBCH together form an SSB.
  • 1 SSB occupies 4 OFDM symbols, which are symbols 0 to 3.
  • 1 SSB occupies 20 RBs, that is, 240 subcarriers.
  • the subcarrier numbers are 0 ⁇ 239.
  • PSS is located on 127 subcarriers in the middle of symbol
  • SSS is located on 127 subcarriers in the middle of symbol 2.
  • the PBCH occupies all the subcarriers of symbol 1 and symbol 3, and occupies a part of the remaining subcarriers of all the subcarriers of symbol 2 except for the subcarriers occupied by SSS.
  • a synchronization signal burst set refers to a set of SSBs included in a beam sweep (beam sweep).
  • the period of the SS burst set is equivalent to the period of the SSB corresponding to a specific beam, and can be configured as 5ms (milliseconds), 10ms, 20ms, 40ms, 80ms, or 160ms.
  • 20ms is the default period, that is, the period assumed when the terminal device performs the initial cell search.
  • each SS burst set is always within a time interval of 5 ms.
  • the period of the SS burst set is 20 ms, and one SS burst set includes P SSBs as an example.
  • Figure 4A shows a distribution of the SSBs included in a slot when the subcarrier spacing is 15KHz. It can be seen that a slot includes 2 SSBs.
  • the slashed box in Figure 4A represents the OFDM symbols occupied by the SSB. .
  • Figure 4B shows a distribution of SSBs included in a time slot when the subcarrier spacing is 30KHz. It can be seen that a time slot includes 2 SSBs.
  • the slashed box in Figure 4B represents the OFDM symbols occupied by the SSB. .
  • Figure 4C shows another distribution method of the SSB included in a slot when the subcarrier spacing is 30KHz. It can be seen that a slot includes 2 SSBs.
  • the slashed box in Figure 4C represents the OFDM occupied by the SSB. symbol.
  • Figure 4D shows a distribution of SSBs included in a time slot when the subcarrier spacing is 60KHz. It can be seen that a time slot includes 4 SSBs.
  • the slashed box in Figure 4D represents the OFDM symbols occupied by the SSB. .
  • Figure 4E shows a distribution of SSBs included in a time slot when the subcarrier spacing is 120KHz. It can be seen that a time slot includes 8 SSBs.
  • the slashed box in Figure 4E represents the OFDM symbols occupied by the SSB. .
  • one SSB currently transmitted on the Uu port occupies 4 OFDM symbols.
  • the number of OFDM symbols occupied by one SSB is greater than 4.
  • the structure of the SSB currently used in the Uu port cannot be applied to the NR-V2X system.
  • the period of the synchronization signal block may include a first resource set, the first resource set includes M groups, and X candidate resources included in the i-th group of the M groups can be used to carry X synchronizations
  • the signal block is equivalent to specifying the resources used to send the synchronization signal block. When the synchronization signal block needs to be sent, only resources need to be selected from these resources, which simplifies the way of selecting resources.
  • one synchronization signal block can occupy Y symbols, so that the technical solution provided in the embodiments of the present application can be applied to the NR-V2X system, or can be applied to other communication systems that specify that the synchronization signal block occupies Y symbols.
  • D2D scenarios which can be NR D2D scenarios or LTE D2D scenarios, etc.
  • V2X scenarios which can be NR V2X scenarios or LTE V2X scenarios, etc.
  • it can also be used in LTE system or NR system through Uu interface communication scenarios, used in communication scenarios between multiple aircraft (such as drones, airplanes, hot air balloons)
  • It can also be used in the scenarios of communication between the base station and the base station (such as the scenes of the communication between the macro station, the macro station and the small station, and the communication between the small station and the small station), and there is no specific limitation.
  • the implementation subject of the embodiments of the present application may be a terminal device or a network device. That is to say, the method in the embodiment of the present application is not limited to being implemented by the terminal device.
  • FIG. 5 is a network architecture applied in the embodiment of this application.
  • Figure 5 includes a network device and two terminal devices, namely terminal device 1 and terminal device 2. Both of these terminal devices can be connected to the network device, or only the terminal device 1 can be connected to the network device of the two terminal devices.
  • the terminal device 2 is not connected to the network device, and the two terminal devices can also communicate through sidelink, that is, the terminal device 1 is a terminal device with network coverage, and the terminal device 2 is a terminal device with partial network coverage.
  • Figure 5 takes as an example that only the terminal device 1 is connected to the network device.
  • the number of terminal devices in FIG. 5 is only an example. In practical applications, a network device can provide services for multiple terminal devices.
  • the network device in FIG. 5 is, for example, an access network device, such as a base station.
  • the access network device in different systems corresponding to different devices for example, in the fourth generation mobile communication technology (the 4 th generation, 4G) system
  • the eNB may correspond, a corresponding access network device 5G 5G in the system, For example, gNB, or access network equipment in the subsequent evolution of the communication system.
  • the terminal device in FIG. 5 is a vehicle-mounted terminal device or a car as an example, but the terminal device in the embodiment of the present application is not limited to this.
  • the time-domain symbols that carry modulated data and signals are also referred to as "symbols" for short.
  • symbols can be symbols generated based on OFDM waveforms, symbols generated based on DFT-S-OFDM symbols, or based on single carrier modulation (such as code division multiple access (CDMA)) or time division multiple access (time division multiple access, TDMA), etc.).
  • CDMA code division multiple access
  • TDMA time division multiple access
  • the embodiment of the present application provides a first communication method. Please refer to FIG. 6, which is a flowchart of this method.
  • the application of this method to the network architecture shown in FIG. 5 is taken as an example.
  • the method can be executed by two communication devices, for example, the first communication device and the second communication device.
  • the first communication device or the second communication device may be a network device or a communication device capable of supporting the network device to implement the functions required by the method, or may be a terminal device or a terminal device capable of supporting the functions required by the terminal device to implement the method.
  • the communication device may of course also be other communication devices, such as a chip system. And there are no restrictions on the implementation of the first communication device or the second communication device.
  • the two communication devices can be implemented in the same form, for example, both can be implemented in the form of equipment, or the two communication devices can also be implemented as Different forms, for example, the first communication device is implemented in the form of a device, the second communication device is implemented in the form of a chip system, and so on.
  • the network device is, for example, a base station.
  • the method is executed by the terminal device and the terminal device as an example, that is, the first communication device is a terminal device (for example, referred to as the first terminal device), and the second communication device is also a terminal device (for example, (Referred to as the second terminal device) as an example.
  • the first terminal device described below can implement the functions of the terminal device 1 in the network architecture shown in FIG. 5, as described below
  • the second terminal device may implement the function of the terminal device 2 in the network architecture shown in FIG. 5.
  • network devices may also be involved in the following, and the network devices described in the following can implement the functions of the network devices in the network architecture shown in FIG. 5.
  • the synchronization signal block is an S-SSB as an example. In fact, it is not limited to this. As long as it is a signal used for synchronization, it can be included in the synchronization signal block described in the embodiment of the present application. Within the range, for example, the side line synchronization signal block may be included, or may also include the synchronization signal block used for the Uu port.
  • the first terminal device determines a first resource for sending N synchronization signal blocks from the first resource set.
  • N is a positive integer.
  • the first resource set may be located in the period of the synchronization signal block, the first resource is included in the first resource set, or the first resource belongs to the first resource set, or the first resource is a subset of the first resource set.
  • the first resource set may include M groups, the i-th group of the M groups may include X candidate resources, and the X candidate resources may be used to carry X synchronization signal blocks, or in other words, X candidate resources may be used for transmission X
  • One synchronization signal block, one of the candidate resources can be used to transmit one synchronization signal block.
  • the first resource set may include M ⁇ X candidate resources, and each candidate resource of the M ⁇ X candidate resources may be used to transmit synchronization signal blocks.
  • Each of the N synchronization signal blocks can occupy Y symbols in the time domain.
  • Y is an integer greater than or equal to 5
  • M, i, and X are all positive integers.
  • the first resource can include N candidate resources, and the N candidate resources belong to one or more of the M groups. That is, the N candidate resources may be located in one of the M groups, or may also be located in multiple of the M groups.
  • N can be greater than or equal to X, and of course it can also be less than X.
  • the N candidate resources may appear periodically with the period of the synchronization signal block as the interval, and then the N synchronization signal blocks may be periodically transmitted with the period of the synchronization signal block as the interval.
  • FIG. 7A is a schematic diagram of M groups included in the first resource set.
  • the third group from left to right in Fig. 7A represents the group of the actually sent S-SSB, and the S in each small box represents the actual S-SSB sent in the group. Number.
  • the N synchronization signal blocks include the j-th synchronization signal block, and the j-th synchronization signal block may occupy all symbols of a time slot in the time domain, that is, the Y symbols are all symbols of a time slot.
  • the gap (GAP) is not included, or the empty symbols that are not used for data transmission and reception are not included, then one synchronization signal block can occupy the entire time slot.
  • the j-th synchronization signal block may occupy the remaining symbols in a slot except the last symbol in the time domain, that is, the Y symbols are symbols other than the last symbol in a slot, for example The Y symbols can be all symbols remaining in a slot except the last symbol.
  • some time slots may include GAP or empty symbols that are not used for data transmission and reception.
  • GAP is carried on the last symbol of the time slot, and the synchronization signal block cannot occupy the last symbol of the time slot, but can occupy the time. The remaining symbols except the last symbol in the slot.
  • j is an integer greater than or equal to 1 and less than or equal to N.
  • the j-th synchronization signal block may be any synchronization signal block among the N synchronization signal blocks.
  • the synchronization signal block occupies Y symbols, which may be equivalent to that the candidate resource occupies Y symbols.
  • the last symbol of the synchronization signal block may be the symbol of PSBCH, that is, the last symbol at this time The symbol is not GAP.
  • the last symbol of the synchronization signal block can be a GAP symbol when it needs to receive data or signals on subsequent time slots, that is, the last symbol is not done at this time. Send or receive.
  • the last symbol of each synchronization signal block is PSBCH in the time slot where the previous N-1 synchronization signal blocks are located, and the first symbol is PSBCH.
  • the last symbol of the N synchronization signal blocks is a GAP symbol.
  • the number of symbols occupied by the synchronization signal block is greater than 4, which is equivalent to that the embodiment of the present application provides a new synchronization signal block (relative to the SSB of the Uu port in the NR system).
  • Transmission mode so that the technical solutions provided in the embodiments of the present application can be applied to the NR-V2X system, or can be applied to other communication systems that specify that the synchronization signal block occupies Y symbols.
  • the period of the synchronization signal block is the period of the S-SSB.
  • the S-SSB period can be configured by the network device to the first terminal device through signaling. For example, the network device sends a third signaling to the first terminal device. The third signaling indicates the period of the S-SSB, and the first terminal device receives the first terminal device. After three signalings, the period of the S-SSB can be determined. Alternatively, the period of the S-SSB may also be pre-configured in the first terminal device, or the period of the S-SSB may also be specified by a protocol, for example, the protocol specifies that the S-SSB period is 160 ms.
  • One S-SSB period includes one or more resource sets, for example, one S-SSB period may include one resource set, two resource sets, or more resource sets. As an optional manner, one S-SSB period may include at least two resource sets, that is, one S-SSB period may include two resource sets, three resource sets, or more resource sets. Taking two resource sets included in one S-SSB period as an example, one resource set of the two resource sets may include candidate resources for sending synchronization signal blocks, and the remaining resource set may include a resource set for receiving synchronization signal blocks.
  • candidate resources For example, an S-SSB includes two resource sets. The two resource sets are a first resource set and a second resource set.
  • the first resource set includes candidate resources for sending synchronization signal blocks
  • the second resource set includes Candidate resources for receiving synchronization signal blocks.
  • the number of the N synchronization signal blocks included in each of the different resource sets corresponds to the same position in each resource set.
  • all resource sets included in an S-SSB or each resource set in a partial resource set include candidate resources for sending synchronization signal blocks and candidate resources for receiving synchronization signal blocks, that is to say , Through a resource set, you can send synchronization signal blocks, you can also receive synchronization signal blocks.
  • a resource set can also be called a synchronization signal set or a candidate resource set.
  • a resource set can include one or more candidate resources.
  • Candidate resources are also the concept of resources and can also be understood as resources.
  • candidate resources can also be referred to as candidate resources.
  • Resources, each candidate resource can be used to carry one S-SSB.
  • the structures of different resource sets included in one S-SSB period may be the same or different.
  • one S-SSB cycle includes a first resource set and a second resource set, and the structure of the first resource set and the structure of the second resource set may be the same or different.
  • the so-called structure of the resource set may refer to the number of candidate resources included in the resource set and the position of the candidate resources in the time domain.
  • the location of the resource set included in the S-SSB period it may be specified by a protocol, or it may be configured by a network device to a terminal device.
  • the time domain position of the first resource set in the S-SSB period can be referred to as shown in FIG. 7B.
  • the time domain length of the first resource set is 10 ms and the S-SSB period is 160 ms as an example.
  • the offset 1 in FIG. 7A refers to the time difference between the time domain start time of the first resource set and the time domain start time of the S-SSB period.
  • the network device may send the first signaling to the first terminal device, and the first signaling may indicate the time domain position of the first resource set within the period of the synchronization signal block.
  • the first terminal device can determine the time domain position of the first resource set within the period of the synchronization signal block.
  • the second terminal device may also receive it. If the second terminal device can also receive it, the second terminal device may also determine the position of the first resource set in the period of the synchronization signal block. However, for the second terminal device, it may not be possible to determine whether the first resource set determined at this time is the resource set for the received synchronization signal block.
  • the second terminal device can determine that the first resource set is a resource set for receiving the synchronization signal block, and the second terminal device may perform blind detection in the first resource set when receiving the synchronization signal block. Or, for the second terminal device, before the synchronization signal block is received, there is no way to know the timing information and the accurate frequency position of the synchronization signal block during the current communication. These need to be obtained by detecting the synchronization signal block.
  • the first terminal device may also obtain first configuration information, and the first configuration information may indicate one or more of the following information: the value of N, the number of synchronization signal blocks that are repeatedly sent on the first resource , The time slot position of the synchronization signal block sent on the first resource in the period of the synchronization signal block, the time domain offset value of the start position of the first resource in the period of the synchronization signal block, or, the first resource Time domain position in the first resource set.
  • the first configuration information may indicate the value of N; or, the first configuration information may indicate the number of synchronization signal blocks sent in a repetitive manner on the first resource, and the synchronization signal blocks sent on the first resource are in synchronization The slot position within the period of the signal block; or, the first configuration information may indicate the value of N, the slot position of the synchronization signal block sent on the first resource in the period of the synchronization signal block, and the first The time domain offset value of the starting position of the resource within the period of the synchronization signal block; or, the first configuration information may indicate the value of N, and the number of synchronization signal blocks sent in a repetitive manner on the first resource is in the first The time slot position of the synchronization signal block sent on a resource in the period of the synchronization signal block, the time domain offset value of the start position of the first resource in the period of the synchronization signal block, and the first resource in the first resource Time domain position within the set, etc.
  • the first configuration information may be pre-configured in the first terminal device, which may be directly obtained by the first terminal device, or the first configuration information may also be sent by the network device to the first terminal device, and the first terminal device receives the information from the network
  • the first configuration information of the device means that the first configuration information is acquired.
  • the number of synchronization signal blocks sent in a repetitive manner on the first resource may be referred to as a repetition factor, for example, represented by R.
  • the first resource may be used to transmit N synchronization signal blocks, and the repetition factor H may be less than or equal to N. If the repetition factor H is equal to N, that is to say, N synchronization signal blocks are transmitted in a repetitive manner. If the repetition factor H is less than N, part of the synchronization signal blocks in the N synchronization signal blocks are transmitted in a repetitive manner. It is considered that every H synchronization signal blocks in the N synchronization signal blocks are transmitted in a repetitive manner.
  • the synchronization signal block 1 and the synchronization signal block 2 are transmitted in a repeated manner, and the other synchronization signal block 3 and the synchronization signal block 4 are also transmitted in a repeated manner.
  • the synchronization signal block 1 and the synchronization signal block 2 are also transmitted in a repeated manner.
  • the content is the same, the content of the synchronization signal block 3 and the synchronization signal block 4 are the same, but the content or the transmission direction of the synchronization signal block 1 and the synchronization signal block 3 may be different.
  • the value of H can be greater than, equal to, or less than X.
  • H can be configured as 1, 2, 4, 8.
  • R is configured as 1, 2, 4
  • H synchronization signal blocks can be sent in a repetitive manner in the same group, and when H is 8, they can be sent in a repetitive manner in two consecutive groups.
  • it may be configured through signaling or pre-configured whether the N synchronization signal blocks appear continuously in the same or multiple groups or appear in multiple groups in a distributed manner.
  • N synchronization signal blocks can be configured on 4 groups for transmission, and one appears in the same position on each group.
  • Sync signal block Further optionally, when N synchronization signal blocks appear in multiple groups in a distributed manner, the number of synchronization signal blocks appearing in each group is also configurable.
  • the first configuration information may also indicate the time domain location of the first resource.
  • the first configuration information may indicate the time domain position of the first resource by indicating the position of the time slot of the synchronization signal block sent on the first resource in the period in which the synchronization signal block is located.
  • the time slot position of the synchronization signal block sent on the first resource in the period of the synchronization signal block can also be understood as the time when the N candidate resources included in the first resource are located in the period of the synchronization signal block.
  • Slot position, or the slot position of the first candidate resource among the N candidate resources included in the first resource in the period in which the synchronization signal block is located, and the remaining candidate resources among the N candidate resources The slot offset relative to the first candidate resource.
  • the first candidate resource among the N candidate resources mentioned here refers to the candidate resource that is at the top in the time domain.
  • the first configuration information may indicate the position of the time slot where each of the N candidate resources is located, and the first terminal device may directly determine the position of the time slot where the N candidate resources are located; or, the first configuration information It can also indicate the position of the slot in which the first candidate resource of the N candidate resources is located in the period of the synchronization signal block, and indicate that the remaining candidate resources of the N candidate resources are relative to each other except the first candidate resource.
  • the first candidate resource is in the synchronization signal block.
  • the position of the time slot in the period is time slot 2.
  • the first configuration information also indicates that the time slot offset of the second candidate resource from the first candidate resource among the 4 candidate resources is 1 ,
  • the slot offset of the third candidate resource relative to the first candidate resource is 3, and the slot offset of the fourth candidate resource relative to the first candidate resource is 5.
  • the first terminal device can determine the first candidate resource.
  • the slot position of a candidate resource in the period of the synchronization signal block is slot 2
  • the slot position of the second candidate resource in the period of the synchronization signal block is slot 3.
  • the slot position of the three candidate resources in the period of the synchronization signal block is slot 5
  • the slot position of the fourth candidate resource in the period of the synchronization signal block is slot 7.
  • the first configuration information may also indicate the time domain position of the first resource by indicating the time domain offset value of the first resource in the period of the synchronization signal block.
  • the time domain offset value of a candidate resource in the period of the synchronization signal block may refer to the time domain offset value of the start position of the candidate resource with respect to the start position of the period of the synchronization signal block.
  • the first configuration information may indicate the time domain offset value of each candidate resource in the period of the synchronization signal block in the N candidate resources, and the first terminal device is based on the start position of the period of the synchronization signal block, and N The time domain offset value of each of the candidate resources in the period of the synchronization signal block can determine the time domain positions of the N candidate resources.
  • the first configuration information may also indicate the time domain position of the first resource by indicating the time domain position of the first resource in the first resource set.
  • the location of the first resource set may be specified by a protocol, or configured by a network device, for example, may also be indicated by the first configuration information.
  • the first configuration information indicates the time domain position of the first resource in the first resource set.
  • the first configuration information may indicate the time domain position of each of the N candidate resources in the first resource set.
  • the first configuration information indicates the time domain position of the first resource in the first resource set, which may also be implemented as: the first configuration information indicates when the first candidate resource among the N candidate resources is in the first resource set.
  • the domain location may indicate the identity of the group in which the first candidate resource is located in the first resource set, and may also indicate the identity of the first candidate resource in the group in which the first candidate resource is located, etc., or may also indicate the The identifier of the time slot where the first candidate resource is located in the first resource set.
  • the first configuration information may also indicate the offset value of each of the N candidate resources except the first candidate resource relative to the first candidate resource, so that the first terminal device is based on The time domain position of the first candidate resource in the first resource set, and the offset value of the remaining candidate resources relative to the first candidate resource, the time domain position of the N candidate resources in the first resource set can be determined .
  • the position of the first resource set in the period of the synchronization signal block is configurable, that is, the position of the first resource set in the period of the synchronization signal block is not fixed, for example, the first resource set may be configured by the network device Position within the period of the sync signal block.
  • the period of the first resource set in the synchronization signal block may occupy a limited period of time.
  • the period occupied by the first resource set may be less than or equal to 10 ms, and optionally, the first resource set is located in the same radio frame, so that This enables the receiving end to combine the synchronization signals received through the first resource set to obtain a combined gain, reducing the receiving delay, and correspondingly reducing the buffering of the receiving end.
  • the position of the first resource set within the period of the synchronization signal block is indicated by an offset value in a unit of a radio frame.
  • the size of the first resource set should be a value much smaller than the period of the synchronization signal block, such as not exceeding 10 ms, so that the buffer size and detection complexity of the receiver of the synchronization signal block can be reduced.
  • the time domain position within the period indicates the offset of the remaining candidate resources with respect to the first candidate resource among the N candidate resources except the first candidate resource.
  • the first configuration information is to indicate the time domain position of the N candidate resources, it can directly indicate the time domain position of the N candidate resources; or it can indicate the first candidate among the N candidate resources.
  • the time domain position of the resource within the period of the synchronization signal block, and the offset of the remaining candidate resources except the first candidate resource among the N candidate resources with respect to the first candidate resource; or, N candidates may be indicated The time domain position of the first candidate resource in the resource in the first resource set, and the offset of the remaining candidate resources except the first candidate resource among the N candidate resources with respect to the first candidate resource.
  • a synchronization signal block occupies all the remaining symbols except the last symbol in a time slot. Then, if the time slot occupied by the j-th synchronization signal block corresponds to a normal (normal) cyclic prefix (CP), and the time slot of the normal CP includes a total of 14 symbols, then the j-th synchronization signal block is in this time slot
  • the number of occupied symbols is 13, or, if the time slot occupied by the j-th synchronization signal block corresponds to an extended CP, and the time slot of the extended CP includes a total of 12 symbols, then the j-th synchronization signal block is in the time slot
  • the number of symbols occupied is 11.
  • a synchronization signal block can include a primary synchronization signal, a secondary synchronization signal, and a broadcast channel.
  • the primary synchronization signal can occupy 2 symbols
  • the secondary synchronization signal can occupy 2 symbols
  • the broadcast channel can occupy at least 6 symbols, or Described as, the primary synchronization signal occupies 2 of the Y symbols
  • the secondary synchronization signal occupies 2 of the Y symbols
  • the broadcast channel occupies at least 6 of the Y symbols.
  • Y can be greater than Or an integer equal to 10.
  • the at least 6 symbols mentioned here may include 6 symbols, 7 symbols or more symbols.
  • the S-SSB may include the sidelink primary synchronization signal (SPSS), the sidelink secondary synchronization signal (SSSS) and the physical Sidelink broadcast channel (physical sidelink broadcast channel, PSBCH).
  • the broadcast channel is the physical side broadcast channel PSBCH.
  • SPSS can occupy 2 symbols
  • SSSS can occupy 2 symbols
  • PBSCH can occupy at least 6 symbols.
  • a synchronization signal block can occupy multiple consecutive symbols in a slot. If the slot corresponds to a normal CP, the consecutive multiple symbols are, for example, ⁇ BPPSSBBBBBBBB ⁇ , or if the slot corresponds to Corresponding to the extended CP, the consecutive multiple symbols are, for example, ⁇ BPPSSBBBBBB ⁇ .
  • “-" indicates that the two symbols before and after "-" are adjacent in the time domain
  • B indicates the symbol occupied by the broadcast channel
  • P indicates the symbol occupied by the first synchronization sequence (such as the primary synchronization signal sequence)
  • S indicates the first synchronization sequence (such as the primary synchronization signal sequence).
  • Symbols occupied by two synchronization sequences (such as secondary synchronization signal sequences).
  • FIG. 7C which is a schematic diagram of the symbol occupied by an S-SSB as ⁇ B-P-P-S-S-B-B-B-B-B-B-B ⁇ .
  • FIG. 7D which is a schematic diagram of the symbol occupied by an S-SSB being ⁇ B-P-P-S-S-B-B-B-B-B ⁇ . It can be seen that the S-SSB does not occupy the last symbol in the time slot.
  • Figures 7C and 7D both take the last symbol of the time slot occupied by the GAP as an example.
  • part or all of the synchronization signal blocks in the X synchronization signal blocks carried by the X candidate resources are repeatedly transmitted.
  • repeated transmission can also be described as transmission in a quasi-co-located (QCL) manner or transmission in the same direction.
  • the transmission here can include sending or receiving.
  • the embodiment of the present application provides a structure for repeated transmission of synchronization signal blocks, so that the repeated transmission mechanism can be realized. By repeatedly transmitting the synchronization signal, the reliability of the transmission can be improved.
  • the quasi co-location of QCL here means that the signal is sent from the same device and the same location to the same direction; or sent by multiple different devices, but from the receiver's point of view, the transmission from multiple devices can be delayed
  • One or more of parameters such as Doppler spread, transmission direction, power, etc. can be regarded as transmission from the same device.
  • the duration occupied by all synchronization signal blocks carried by the first resource set may be less than or equal to 2 milliseconds (ms), or in other words, all the synchronization signal blocks included in the first resource set
  • the duration occupied by the candidate resource may be less than or equal to 2 ms.
  • the subcarrier interval corresponding to the first resource set is 15KHz
  • the first resource set may include 2 candidate resources
  • the duration of each candidate resource may be 1ms
  • all the synchronization signal blocks carried by the first resource set are occupied
  • the duration of can be equal to 2ms.
  • a synchronization signal block does not occupy the last symbol of a time slot, in fact, the duration of the synchronization signal block can be less than 1ms, then all the synchronization signal blocks carried by the first resource set The time occupied may actually be less than 2ms.
  • the description of the embodiments of this application does not list the differences one by one. In the description, the time occupied by using one synchronization signal block is 1ms, and the time occupied by all the synchronization signal blocks carried by the first resource set is 2ms. .
  • the foregoing description of the embodiments of the present application also includes a scenario in which the time domain resource occupied by a synchronization signal block is less than a time slot corresponding to a time slot and equal to the duration occupied by a time slot.
  • the duration occupied by all synchronization signal blocks carried by the first resource set may be less than or equal to 8 ms, or in other words, all candidates included in the first resource set
  • the duration of resource occupation can be less than or equal to 8ms.
  • the subcarrier interval corresponding to the first resource set is 120KHz
  • the first resource set may include 8 candidate resources
  • the duration of each candidate resource may be 1ms
  • all the synchronization signal blocks carried by the first resource set are occupied
  • the duration of can be equal to 8ms.
  • the time length occupied by the synchronization signal block can be less than 1ms, and all the signals carried by the first resource set
  • the time length occupied by the synchronization signal block may actually be less than 8 ms.
  • this difference can be ignored in the embodiment of the present application, and it is considered that the time length occupied by one synchronization signal block is 1 ms, and the time length occupied by all the synchronization signal blocks carried by the first resource set is 8 ms.
  • the time length occupied by the synchronization signal blocks carried by the i-th group in the M groups may be 1 ms, or the time length occupied by the synchronization signal blocks carried by each group in the M groups may be 1 ms.
  • the duration occupied by the X candidate resources included in the i-th group in the M groups is 1 ms, or the duration occupied by all the candidate resources included in each of the M groups is 1 ms.
  • M 8 the first resource set includes a total of 8 groups, and the duration occupied by all candidate resources included in one group is 1 ms, or the duration occupied by all candidate resources included in each group is 1ms.
  • the time length occupied by all the candidate resources included in each group is 1 ms
  • the time length occupied by all the synchronization signal blocks carried by the first resource set may be 8 ms.
  • the value of X may be related to the subcarrier spacing of the carrier where the first resource set is located. If the subcarrier spacing of the carrier where the first resource set is located is larger, the value of X is smaller. On the contrary, if the first resource set is located The smaller the sub-carrier spacing of the carrier where the set is located, the larger the value of X.
  • a frequency greater than a first threshold is called a high frequency
  • a frequency less than or equal to the first threshold is called a low frequency
  • a frequency greater than or equal to the first threshold is called a high frequency
  • the frequency less than the first threshold is called low frequency.
  • the first threshold may be specified by agreement, or it may be pre-configured in the terminal device, or may be configured by the network device, or there may not be a first threshold, and it is just an intermediate concept introduced to distinguish between high frequency and low frequency.
  • the first threshold is, for example, 6 GHz, or 7 GHz, or 7.125 GHz, or other values, which are not limited in the embodiment of the present application.
  • the first resource set may include at most L max candidate resources, and L max candidate resources may be divided into M groups, that is, the first resource set includes M groups, and M groups include L max in total.
  • the M groups may include the i-th group, the i-th group includes X candidate resources, the X candidate resources belong to L max candidate resources, and X is less than or equal to L max .
  • the number of candidate resources included in each of the M groups may be the same or different. Taking the same number of candidate resources included in each of the M groups as an example, for example, each of the M groups includes X candidate resources.
  • L max may represent the maximum number of candidate resources supported by the first resource set.
  • the maximum number of candidate resources supported by each resource set may be the same or different.
  • an S-SSB cycle includes a first resource set and a second resource set, the maximum number of candidate resources supported by the first resource set and the maximum number of candidate resources supported by the first resource set may be the same, or the first The maximum number of candidate resources supported by the resource set and the maximum number of candidate resources supported by the first resource set may also be different, and there is no restriction on the size relationship between the two.
  • M is 1
  • X is L max .
  • the reason for dividing L max S-SSBs into M groups is that if the frequency of the first resource set belongs to high frequency, the S-SSBs carried by the candidate resources in the M groups can be carried on beams pointing in different spatial directions If the beams corresponding to the S-SSB carried by different groups are different, the transmission directions corresponding to different groups are different.
  • M groups correspond to M transmission directions, or in other words, the S-SSB carried by M groups corresponds to M transmission directions. Different groups point to different transmission directions. If the first terminal device needs to switch the transmission direction of the antenna, it only needs to switch between the two groups, and there is no need to switch within the group, which reduces the number of terminal device switching. The handover delay is reduced accordingly.
  • the S-SSB carried by different groups of the M groups can be installed through antennas installed in different positions.
  • the unit is sent out, for example, it can be sent out through antenna units installed in different positions on the vehicle to achieve coverage of different positions around the vehicle.
  • the lobe width of the antenna element in each beam direction can be considered as a factor for determining the value of M.
  • M can be set to 8
  • 8 non-overlapping beams are used to transmit S-SSB, which can achieve omnidirectional coverage of a 360° omnidirectional space.
  • the subcarrier spacing corresponding to S-SSB may also be used as a factor for determining the value of M.
  • the subcarrier interval corresponding to the S-SSB, the subcarrier interval of the carrier where the first resource set is located, or the subcarrier interval corresponding to the first resource set, etc. may refer to the same subcarrier interval.
  • the value of M when the frequency of the carrier where the first resource set is located is high frequency, the value of M may be 8. Or, when the frequency of the carrier where the first resource set is located is a low frequency, the value of M may be 2, 4, or 8.
  • the S-SSB carried by different groups can also be used for different antenna panels, or in other words, the S-SSB carried by different groups can be transmitted through different antenna panels; or, multiple The S-SSB carried by the group can be used for the same antenna panel, or in other words, the S-SSB carried by multiple groups can be transmitted through the same antenna panel.
  • the embodiments of this application do not impose restrictions on this. In actual applications or deployment, one antenna panel often cannot completely cover all directions in the entire airspace. Therefore, in actual applications, different antenna panels can be arranged in different directions and positions of the device according to the coverage requirements to achieve effective coverage of signals in different directions. For example, for V2X, you can install different in different positions of the car.
  • the M groups can be continuously distributed in the time domain, so that continuous transmission of the S-SSB can be realized and the demodulation complexity of the receiving end can be reduced.
  • the M groups may also be distributed at equal intervals in the time domain, for example, one or more OFDM symbols or one or more time slots may be spaced between two adjacent groups.
  • the M groups may be distributed at unequal intervals in the time domain. For example, two adjacent groups may be separated by one or more OFDM symbols, or one or more time slots. Regardless of whether it is distributed at equal intervals or at unequal intervals, certain candidate resources can be set aside among the M groups, or a certain amount of resources can be set aside. These resources can be used to transmit other information, for example, data can be transmitted. The utilization rate of resources can be improved, and the transmission delay of data can also be reduced.
  • the interval between any two groups in the M groups can be 1 time slot or 2 Time slots.
  • the subcarrier spacing of the carrier where the first resource set is located is 60KHz (60KHz here is treated as high frequency), and the M groups are equally spaced in the time domain, then the difference between any two groups in the M groups The interval can be 1 time slot.
  • the frequency of the carrier where the first resource set is located is low frequency
  • the M groups are equally spaced in the time domain
  • the interval between any two groups in the M groups can be 0 time slots, or M Any two groups in the two groups have no interval time slots in the time domain, or understood as that M groups are continuously distributed in the time domain.
  • the number of groups occupied by candidate resources (or candidate resources) included in the first resource set for sending synchronization signal blocks may be less than or equal to 2.
  • the groups occupied by the candidate resources used to transmit the signal block can be located in the same radio frame, for example, these groups can be located in the same half frame of a radio frame, for example, they are all located in the first half or the second half of the radio frame. Frame, or, if the number of groups occupied by candidate resources for sending synchronization signal blocks is 2, then one of the two groups can be located in the first half of the radio frame, and the other group can be located after the radio frame. Half frame.
  • the first resource set may include 2 sets of candidate resources for sending S-SSB.
  • These two groups are located in the same radio frame, and these two groups can be both located in the first half or the second half of the wireless frame, or one of the two groups is located in the first half of the wireless frame, and the other is located in the first half of the wireless frame. The second half of the radio frame.
  • the M groups may be located in the same radio frame, for example, the M groups may be located in different subframes of the same radio frame, that is, the M groups do not span the radio frame.
  • the time length occupied by each radio frame is 10 ms. Because for one of the M groups, it can be used to repeatedly transmit the S-SSB, and for the repeatedly transmitted S-SSB, the receiving end can combine to obtain the combined gain. If the receiving end wants to combine the received S-SSBs, the parameters corresponding to these S-SSBs are required to be the same. For example, the frame numbers of the radio frames corresponding to these S-SSBs need to be the same, otherwise the receiving end cannot perform the combination.
  • the receiving end can detect the repeatedly sent S-SSB (or in other words, with The S-SSB sent in the QCL mode is combined to obtain a combined gain.
  • each of the M groups can also be located in one subframe, that is, each group does not span a subframe.
  • the duration occupied by one subframe is 1ms
  • the duration occupied by each group can be 1ms.
  • the total duration occupied by the M groups may be less than or equal to 8 ms.
  • each of the 8 groups may occupy a time length of 1 ms, and the total time length occupied by the 8 groups may be 8 ms.
  • the receiving end wants to combine the received S-SSBs, the parameters corresponding to these S-SSBs are required to be the same.
  • the frame numbers of the subframes corresponding to these S-SSBs need to be the same, otherwise the receiving end cannot perform the combination. Then in the embodiment of this application, each of the M groups is located in the same subframe. Obviously, the frame numbers of the subframes corresponding to the S-SSB included in one of the M groups are the same, so the receiving The terminal can combine the repeated S-SSB (or S-SSB sent in the QCL mode) in a group to obtain the combined gain.
  • FIG. 8 is a schematic diagram of the first resource set and the second resource set. Take an S-SSB cycle including the first resource set and the second resource set as an example.
  • M 8
  • each of the M groups includes X candidate resources
  • the time domain length of the first resource set is 10 ms as an example.
  • the distribution of M groups at equal intervals in the time domain is taken as an example.
  • the offset 1 in FIG. 8 refers to the time difference between the start position of the first resource set and the start position of the S-SSB period
  • the offset 2 refers to the start position of the second resource set and The time difference between the start positions of the S-SSB period.
  • X represents the number of candidate resources included in a group
  • L represents the number of candidate resources included in the first resource set.
  • the number of candidate resources included in a resource set is greater than or equal to the number of S-SSBs actually sent (or received) through the resource set.
  • the number of candidate resources included in a group is greater than Or equal to the number of S-SSBs actually sent (or received) through the group.
  • the number of S-SSBs actually sent through the first resource set is expressed as L
  • the value of L can be less than or equal to the corresponding frequency or sub-carrier space (sub-carrier space, SCS), a resource set supports the largest The number of S-SSBs, that is, L ⁇ L max .
  • L max can satisfy one or more of the following:
  • the frequency of the carrier where the first resource set is located is low frequency. If the subcarrier interval of the carrier where the first resource set is located is 15KHz, the L max corresponding to the first resource set may be equal to 2; or, the frequency of the first resource set is Low frequency, if the subcarrier interval of the carrier where the first resource set is located is 30KHz, the L max corresponding to the first resource set can be equal to 4; or the frequency of the first resource set is low frequency, if the carrier where the first resource set is located If the subcarrier spacing of is 60KHz, the L max corresponding to the first resource set may be equal to 8;
  • the frequency of the carrier where the first resource set is located is low frequency, and if the subcarrier interval of the carrier where the first resource set is located is 15KHz, the L max corresponding to the first resource set may be equal to 1; or, the frequency of the first resource set The frequency is low frequency. If the subcarrier interval of the carrier where the first resource set is located is 30KHz, the L max corresponding to the first resource set can be equal to 2; or the frequency of the first resource set is low frequency, if the first resource set is located If the sub-carrier spacing of the carrier is 60KHz, the L max corresponding to the first resource set may be equal to 4;
  • the frequency of the carrier where the first resource set is located is high frequency, and if the subcarrier spacing of the carrier where the first resource set is located is 60KHz, the L max corresponding to the first resource set may be equal to 32; or, the first resource set The frequency of is high frequency. If the subcarrier spacing of the carrier where the first resource set is located is 120KHz, the L max corresponding to the first resource set may be equal to 64.
  • L max may satisfy: if the sub-carrier spacing of the carrier where the first resource set is located is 15 KHz, L max corresponding to the first resource set may be equal to 2; If the subcarrier interval of the carrier where the first resource set is located is 30KHz, the L max corresponding to the first resource set can be equal to 4; if the subcarrier interval of the carrier where the first resource set is located is 60KHz, then the first resource set is located The corresponding L max can be equal to 8.
  • L max may satisfy: if the subcarrier interval of the carrier where the first resource set is located is 15 KHz, L max corresponding to the first resource set may be equal to 1; If the subcarrier interval of the carrier where the first resource set is located is 30KHz, the Lmax corresponding to the first resource set can be equal to 2; if the subcarrier interval of the carrier where the first resource set is located is 60KHz, then the first resource set is located The corresponding L max can be equal to 4.
  • L max may satisfy: if the sub-carrier spacing of the carrier where the first resource set is located is 60 KHz, the L max corresponding to the first resource set may be equal to 32 ; If the sub-carrier interval of the carrier where the first resource set is located is 120KHz, the L max corresponding to the first resource set may be equal to 64.
  • the L candidate resources are divided into M groups.
  • all of the M groups or each of the partial groups may be subdivided into multiple sub-groups. If each of the multiple groups is subdivided into multiple sub-groups, the number of sub-groups included in different groups may be the same or different.
  • the first group of the M groups may be divided into K subgroups, and then the X candidate resources included in the first group belong to the K subgroups.
  • each of the M groups may include K subgroups, or the number of subgroups included in the second group of the M groups may not be equal to K.
  • K can be a positive integer, for example, K can be equal to 1, or it can be equal to 2, or it can be equal to a larger value.
  • the number of candidate resources included in different subgroups of the K subgroups may be the same or different.
  • the first subgroup of the K subgroups includes R candidate resources, and the R candidate resources can carry R S-SSBs, and these R S-SSBs may be repeatedly transmitted, or in other words, transmitted in a QCL manner.
  • each of the K subgroups may include R candidate resources, or the candidate resources included in the second subgroup of the K subgroups may not be equal to R.
  • R can be a positive integer, for example, R can be equal to 1, or it can be equal to 2, or it can be equal to a larger value.
  • each of the K subgroups includes R candidate resources, and the R candidate resources can carry R S-SSBs that are repeatedly transmitted. Then, the S-SSB carried by different sub-groups may be different, which is equivalent to that one S-SSB is only repeatedly transmitted in one sub-group. Or, it is possible that all the sub-groups or part of the sub-groups in the K sub-groups bear the same S-SSB, or all the sub-groups or part of the sub-groups included in the first resource set bear the same S-SSB Yes, it is equivalent to that one S-SSB can be repeatedly transmitted in multiple sub-groups.
  • the network device configures the first terminal device to send S-SSB1, and the network device configures the repetition factor H for S-SSB1. If the repetition factor H is less than or equal to R, the S-SSB1 can be repeated in a subgroup If the repetition factor H is greater than R, the S-SSB1 can be repeatedly transmitted in multiple subgroups.
  • the X S-SSBs are further divided into K subgroups, considering that for high-frequency scenes, when the beam's lobe width is smaller, or when part of the lobes needs to be overlapped in space during transmission, the S-SSB may need to be overlapped.
  • -SSB is divided into more groups. For example, K subgroups can be transmitted through K beams, and different beams correspond to different directions, that is, K subgroups can correspond to K transmission directions, or in other words, the S-SSB carried by K subgroups corresponds to K Send direction. Different subgroups point to different sending directions.
  • the first terminal device needs to switch the transmitting direction of the antenna, it only needs to switch between the two subgroups without switching within the subgroups, which reduces the number of terminal device switching and correspondingly reduces the switching delay.
  • the S-SSB carried by different subgroups of the K subgroups can be transmitted through antenna units installed in different positions, for example, by installing on a car The antenna units at different locations are sent out to achieve coverage of different locations around the vehicle.
  • the transmitted S-SSB can be The granularity of coverage is finer.
  • the included R candidate resources may be continuously distributed in the time domain, so that continuous transmission of the S-SSB can be realized and the demodulation complexity of the receiving end can be reduced.
  • the R candidate resources may also be distributed at equal intervals in the time domain, or the R candidate resources may also be distributed at unequal intervals in the time domain. Regardless of whether it is distributed at equal intervals or at unequal intervals, a certain candidate resource can be set aside among the R candidate resources, or a certain amount of resources can be set aside, and these resources can be used to transmit other information, such as data transmission. Thereby, the utilization rate of resources can be improved, and the data transmission delay can also be reduced.
  • the first resource set may also be divided into two parts.
  • the first resource set includes a first part and a second part, the first part may include M/2 groups, and the second part may also include M/2 groups.
  • the first part includes the first M/2 groups in the time domain among the M groups, and the second part includes the last M/2 groups in the time domain among the M groups. In the time domain, the first part is located in the second Part before. If each of the M groups includes X S-SSBs, the first part may include L max /2 S-SSBs, and the second part may also include L max /2 S-SSBs.
  • the first part may be located in the first half of the wireless frame
  • the second part may be located in the second half of the wireless frame.
  • the structure of the first part and the structure of the second part may be the same or different.
  • the so-called identical structure means that the relative positions of the candidate resources included in the first part in the first part are the same as the relative positions of the candidate resources included in the second part in the second part.
  • FIG. 9A is a schematic diagram of the first resource set and the second resource set. Take an S-SSB cycle including the first resource set and the second resource set as an example.
  • M 8
  • each of the M groups includes X candidate resources as an example
  • the time domain length of the first resource set is 10 ms as an example.
  • M groups are distributed at equal intervals in the time domain as an example.
  • the offset 1 in FIG. 9A refers to the time difference between the start position of the first resource set and the start position of the S-SSB period
  • the offset 2 refers to the start position of the second resource set and The time difference between the start positions of the S-SSB period.
  • the second vertical dashed line indicates that the first resource set is divided into a first part and a second part. The first part includes the first 4 groups, and the second part includes the last 4 groups.
  • FIG. 9B is a schematic diagram of M groups included in the first resource set.
  • the third group from left to right in Fig. 9B represents the group of the actually sent S-SSB, and the S in each small box represents the actual S-SSB sent in the group. Number.
  • Fig. 9A is an example of the distribution of M groups at equal intervals.
  • the 2 ⁇ ith group and the (2 ⁇ i+1)th group among the M groups are adjacent in the time domain, and the (2 ⁇ i+1)th group and the 2 ⁇ th group are adjacent to each other in the time domain.
  • M groups are adjacent to each other in pairs, and there is a certain interval between two adjacent groups, such as one or more OFDM symbols, or one or more time slots. And the two adjacent groups can be equally spaced.
  • FIG. 10 is a schematic diagram of the first resource set and the second resource set. Take an S-SSB cycle including the first resource set and the second resource set as an example.
  • the distribution of M groups at equal intervals in the time domain is taken as an example.
  • the offset 1 in FIG. 10 refers to the time difference between the start position of the first resource set and the start position of the S-SSB period
  • the offset 2 refers to the time difference between the start position of the second resource set and the start position of the S-SSB period.
  • the vertical dashed line indicates that the first resource set is divided into a first part and a second part.
  • the first part includes the first 4 groups
  • the second part includes the last 4 groups.
  • the 8 groups are adjacent to each other in pairs, and there is a certain interval between the two adjacent groups. For example, the 0th group and the 1st group are adjacent, the 1st group and the 2nd group are not adjacent, the 2nd group and the 3rd group are adjacent, and the 3rd group and the 4th group are not adjacent Oh, wait.
  • the interval between the first group and the second group, the interval between the third group and the fourth group, and the interval between the fifth group and the sixth group, these three intervals can be equal, It may not be equal.
  • Figure 10 takes the three equal intervals as an example.
  • the structure of the first resource set that is not divided into the first part and the second part is taken as an example below, and the structure of the first resource set is described as an example for different subcarrier intervals.
  • the subcarrier spacing is 120kHz, and you can continue to refer to FIG. 8.
  • the start time of the first group in the time domain among these 8 groups can be aligned with the start boundary of the radio frame where the first resource set is located, and the remaining groups in the 8 groups except the first group
  • the start time of each group in has a corresponding offset value from the start boundary of the radio frame in which the first resource set is located, and the offset between each group and the start boundary of the radio frame in which the first resource set is located
  • the offset value may be fixed, for example, may be specified by a protocol, or these offset values may also be variable, for example, may be configured by the network device to the first terminal device.
  • the start time of the first group in the time domain among the 8 groups is aligned with the start boundary of the radio frame where the first resource set is located, then the end of the last group in the time domain among the 8 groups There may be a certain interval between the time and the end boundary of the radio frame where the first resource set is located, for example, the interval is 1.125 ms.
  • the start time of the first group in the time domain among these 8 groups can be aligned with the start boundary of the radio frame where the first resource set is located, and the remaining groups in the 8 groups except the first group.
  • the start time of each group in has a corresponding offset value from the start boundary of the radio frame in which the first resource set is located, and the offset between each group and the start boundary of the radio frame in which the first resource set is located
  • the offset value may be fixed, for example, may be specified by a protocol, or these offset values may also be variable, for example, may be configured by the network device to the first terminal device.
  • the start time of the first group in the time domain among the 8 groups is aligned with the start boundary of the radio frame where the first resource set is located, then the end of the last group in the time domain among the 8 groups There may be a certain interval between the time and the end boundary of the radio frame where the first resource set is located, for example, the interval is 0.25 ms.
  • L can be equal to 64.
  • each group can include 8 candidate resources.
  • the value of X can be less than or equal to 8, for example, X can be equal to 1, 2, or 4, and so on.
  • the actually sent S-SSB may only appear on part of the candidate resources.
  • the subcarrier interval is 60 kHz, if the M groups are equally spaced, the interval between two adjacent groups in the M groups may be one time slot at 60 kHz.
  • L can be equal to 32.
  • each group can include 4 candidate resources.
  • the value of X can be less than or equal to 4, for example, X can be equal to 1 or 2, and so on.
  • L is less than 4
  • the actually sent S-SSB may only appear on part of the candidate resources.
  • the following takes the structure of dividing the first resource set into the first part and the second part as an example.
  • the structure of the first resource set is described as an example for different subcarrier intervals.
  • M groups are located in one radio frame.
  • the first part includes 4 groups
  • the second part also includes 4 groups.
  • the 8 groups can be distributed at equal intervals, for example, the interval between every two adjacent groups is 2 time slots at 120 KHz.
  • the interval between the 0th group and the first group of 8 groups is 2 time slots at 120KHz
  • the interval between the first group and the second group is also 2 time slots at 120KHz. Gap, wait.
  • these 8 groups can also be distributed at unequal intervals.
  • the interval between the 0th group and the first group included in the first part is 1 time slot at 120KHz, and the interval between the first group and the second group is 1 time slot at 120KHz,
  • the interval between the second group and the third group is 1 time slot at 120KHz, and the interval between the third group and the fourth group is 5 time slots at 120KHz; the same goes for the second part
  • the interval between the 4th group and the 5th group included is 1 time slot at 120KHz
  • the interval between the 5th group and the 6th group is 1 time slot at 120KHz
  • the interval with the seventh group is 1 time slot at 120 KHz
  • the interval between the seventh group and the end boundary of the wireless frame is 5 time slots at 120 KHz.
  • M groups are located in one radio frame.
  • the first part includes 4 groups
  • the second part also includes 4 groups.
  • the 8 groups can be distributed at equal intervals, for example, the interval between every two adjacent groups is 1 time slot at 60 KHz.
  • the interval between the 0th group and the first group of 8 groups is 1 time slot at 60KHz
  • the interval between the first group and the second group is also 1 time slot at 60KHz. Gap, wait.
  • the 8 groups may also be distributed at unequal intervals, and the specifics are not limited.
  • L max can be 2, 4, or 8, or 1, 2, or 4.
  • the total duration occupied by L max candidate resources may be 1 ms or 2 ms.
  • the structure of the first resource set described above can also be directly used to send the S-SSB, and the corresponding candidate resource can be selected from the first resource set described above to send the S-SSB.
  • one S-SSB cycle includes the first resource set and the second resource set, the candidate resources included in the first resource set can be used to send the S-SSB, and the candidate resources included in the second resource set can be used to receive the S-SSB.
  • L max can be 2, 4, or 8
  • the L candidate resources can be divided into 4 groups, and the candidate resources included in 2 of the groups can be used to send S-SSB, and the remaining 2 are The candidate resources included in the group can be used to receive the S-SSB.
  • the number of groups M may be the same as that of high frequencies, and the synchronization signal blocks actually sent may only be located in the same group.
  • the number of groups M may be different from that of high frequencies.
  • M is fixed at 2
  • N synchronization signal blocks can be located in these two groups.
  • the two groups may be respectively located in the first half frame or the second half frame of a radio frame.
  • the number of groups M may also be fixed to 1, and N synchronization signal blocks are configured at N positions in the first resource set. At this time, the size of the first resource set does not exceed 10 ms.
  • L max 1 or 2.
  • L max candidate resources are divided into M groups, each of the M groups is divided into K subgroups, each of the K subgroups includes R candidate resources, and the R candidate resources carry S-SSB can be sent repeatedly.
  • R is less than or equal to 2.
  • the first resource set includes only one group in which the S-SSB is repeatedly transmitted at R times. Or, in another way, R is less than or equal to 1.
  • the first resource set includes at most two groups that repeatedly transmit S-SSB at R times. Taking into account the difference in transmission and reception resources, the first resource set includes at most two groups that repeatedly transmit S-SSB at R times and two groups that repeatedly receive S-SSB at R times.
  • the time-frequency position of each actual transmitted S-SSB resource can be configured by the network device through signaling.
  • L max 2 or 4.
  • L max candidate resources are divided into M groups, each of the M groups is divided into K subgroups, each of the K subgroups includes R candidate resources, and the R candidate resources carry S-SSB can be sent repeatedly.
  • R is less than or equal to 4.
  • the first resource set includes only one group in which the S-SSB is repeatedly transmitted at R times. Or, in another way, R is less than or equal to 2.
  • the first resource set includes at most two groups that repeatedly transmit S-SSB at R times. Taking into account the difference in transmission and reception resources, the first resource set includes at most two groups that repeatedly transmit S-SSB at R times and two groups that repeatedly receive S-SSB at R times.
  • the time-frequency position of each actual transmitted S-SSB resource can be configured by the network device through signaling.
  • L max 4 or 8.
  • L max candidate resources are divided into M groups, each of the M groups is divided into K subgroups, each of the K subgroups includes R candidate resources, and the R candidate resources carry S-SSB can be sent repeatedly.
  • R is less than or equal to 8.
  • the first resource set includes only one group in which the S-SSB is repeatedly transmitted at R times.
  • R is less than or equal to 4.
  • the first resource set includes at most two groups that repeatedly transmit S-SSB at R times. Taking into account the difference in transmission and reception resources, the first resource set includes at most two groups that repeatedly transmit S-SSB at R times and two groups that repeatedly receive S-SSB at R times.
  • the time-frequency position of each actual transmitted S-SSB resource can be configured by the network device through signaling.
  • one of the M groups may include X candidate resources, and the X candidate resources may be continuous in the time domain, or the X candidate resources may be distributed at equal intervals in the time domain, or X candidate resources It can be distributed at unequal intervals in the time domain. If X candidate resources are distributed at unequal intervals in the time domain, one way is that, among the X candidate resources, the interval between every two adjacent candidate resources can be one or more time slots, and they are different. The duration of the interval is different.
  • interval 1 can be one or more time slots
  • interval 2 can be one or more time slots
  • interval 3 can be one or more time slots
  • interval 1, interval 2 and interval 3 are not equal to each other.
  • FIG. 11 is a schematic diagram of X candidate resources distributed at equal intervals in the time domain.
  • Fig. 11 takes an S-SSB cycle including the first resource set and the second resource set as an example.
  • three candidate resources included in the first resource set and three candidate resources included in the second resource set are taken as an example.
  • the 3 candidate resources included in the first resource set are distributed at equal intervals, for example, the interval is U time slots.
  • the 3 candidate resources included in the second resource set are also distributed at equal intervals, for example, the interval is also U time slots.
  • the value of U can be greater than 0.
  • the offset 1 in FIG. 11 refers to the time difference between the start position of the first resource set and the start position of the S-SSB period
  • the offset 2 refers to the start position of the second resource set and The time difference between the start positions of the S-SSB period.
  • FIG. 12A is a schematic diagram of X candidate resources distributed at unequal intervals in the time domain.
  • FIG. 12A takes an S-SSB cycle including the first resource set and the second resource set as an example.
  • four candidate resources included in the first resource set and four candidate resources included in the second resource set are taken as an example.
  • the 4 candidate resources included in the first resource set are distributed at unequal intervals.
  • the interval between the 0th candidate resource and the first candidate resource is U1 time slots
  • the first candidate resource and the first candidate resource are distributed at different intervals.
  • the interval between the two candidate resources is U2 time slots
  • the interval between the second candidate resource and the third candidate resource is U3 time slots.
  • the 4 candidate resources included in the second resource set are also distributed at unequal intervals.
  • the interval between the 0th candidate resource and the first candidate resource is U1 time slots
  • the first candidate resource and the second candidate resource The interval between is U2 time slots
  • the interval between the second candidate resource and the third candidate resource is U3 time slots.
  • U1 can be greater than or equal to 0, and the values of U2 and U3 can both be greater than 0.
  • the offset 1 in FIG. 12A refers to the time difference between the time domain start position of the first resource set and the time domain start position of the S-SSB period
  • the offset 2 refers to the time domain start position of the second resource set. The time difference between the time domain start position and the time domain start position of the S-SSB period.
  • FIG. 12B is another schematic diagram of X candidate resources distributed at unequal intervals in the time domain.
  • FIG. 12B takes an S-SSB cycle including the first resource set and the second resource set as an example.
  • four candidate resources included in the first resource set and four candidate resources included in the second resource set are taken as an example.
  • the 4 candidate resources included in the first resource set are distributed at unequal intervals.
  • the interval between the 0th candidate resource and the first candidate resource is U1 time slots
  • the first candidate resource and the first candidate resource are distributed at different intervals.
  • the interval between the two candidate resources is U2 time slots
  • the interval between the second candidate resource and the third candidate resource is U3 time slots.
  • the 3 candidate resources included in the second resource set are also distributed at unequal intervals.
  • the interval between the 0th candidate resource and the first candidate resource is U1 time slots
  • the first candidate resource and the second candidate resource The interval between is U2 time slots
  • the interval between the second candidate resource and the third candidate resource is U3 time slots.
  • the offset 1 in FIG. 12B refers to the time difference between the time domain start position of the first resource set and the time domain start position of the S-SSB period
  • the offset 2 refers to the time domain start position of the second resource set. The time difference between the time domain start position and the time domain start position of the S-SSB period.
  • X candidate resources can also be divided into K subgroups, each subgroup can include R candidate resources, and the values of U1, U2, U3, etc. can be related to R.
  • the value of the interval between X candidate resources belongs to ⁇ 0, 1, 2 ⁇ , and the unit is, for example, a symbol or a time slot. That is to say, in a subgroup, the interval U1 between the 0th candidate resource and the 1st candidate resource is 0 symbols or 0 time slots, and the interval between the 1st candidate resource and the 2nd candidate resource U2 is 1 symbol or 1 time slot, and the interval U3 between the first candidate resource and the second candidate resource is 2 symbols or 2 time slots.
  • the value of the interval between X candidate resources belongs to ⁇ 0, 1, 2, 3, 4, 5, 6 ⁇ , and the unit is, for example, a symbol or a time slot. That is to say, in a subgroup, the interval U1 between the 0th candidate resource and the 1st candidate resource is 0 symbols or 0 time slots, and the interval between the 1st candidate resource and the 2nd candidate resource U2 is 1 symbol or 1 time slot, the interval between the first candidate resource and the second candidate resource U3 is 1 symbol or 1 time slot, between the second candidate resource and the third candidate resource
  • the interval U4 is 3 symbols or 3 time slots, etc., and so on.
  • the value of the interval between X candidate resources belongs to ⁇ 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14 ⁇
  • the unit is, for example, a symbol or a time slot. That is to say, in a subgroup, the interval U1 between the 0th candidate resource and the 1st candidate resource is 0 symbols or 0 time slots, and the interval between the 1st candidate resource and the 2nd candidate resource U2 is 1 symbol or 1 time slot, the interval between the first candidate resource and the second candidate resource U3 is 1 symbol or 1 time slot, between the second candidate resource and the third candidate resource
  • the interval U4 is 3 symbols or 3 time slots, etc., and so on.
  • the value of the interval between X candidate resources can be used at least for low frequencies. For example, at low frequencies, divide L candidate resources into M groups, and divide each of the M groups into K subgroups, and each subgroup includes R candidate resources, that is, R repetitions can be configured
  • the interval between R candidate resources can be ⁇ 0, 1, 2, 3, 4,..., R-2 ⁇ .
  • the interval U1 between the 0th candidate resource and the 1st candidate resource is 0 OFDM symbols or 0 timeslots
  • the interval between the 1st candidate resource and the 2nd candidate resource is
  • the interval U2 is 1 OFDM symbol or 1 slot
  • the interval U3 between the 1st candidate resource and the 2nd candidate resource is 1 OFDM symbol or 1 slot
  • the 2nd candidate resource and the 3rd candidate The interval U4 between resources is 3 OFDM symbols or 3 slots
  • the interval UR between the R-2th candidate resource and the R-1th candidate resource is R-2 OFDM symbols or R-2. Gaps, etc., and so on.
  • the receiving end adopts the cross-correlation method when receiving the S-SSB, the main peak of R times can be generated, thereby improving the receiving performance. Or the timing of the receiving end is not aligned with the timing of the transmitting side. If there is a difference of one or more time slots, the receiving end can only generate at most 1 times the detection energy of the main peak. Therefore, the method here can greatly improve the detection performance during time alignment.
  • the demodulation complexity is low for the receiving end, and the reception delay is small.
  • the X candidate resources are distributed at equal intervals or unequal intervals in the time domain, that is, there is a certain interval between the X candidate resources, then if the first terminal device needs to switch antennas before the two candidate resources In the array, through the interval between two candidate resources, handover time can be reserved for the first terminal device.
  • handover time can be reserved for the first terminal device.
  • by reserving a certain interval between X candidate resources it is equivalent to reserving resources for other information. For example, you can send data or feedback information through the interval between X candidate resources, which can be avoided as much as possible.
  • S-SSB takes a long time and reduces the processing delay of other services.
  • the first terminal device may determine the time domain positions of the N candidate resources according to the first configuration information.
  • the first configuration information may indicate that the synchronization signal block sent on the first resource is located within the period of the synchronization signal block.
  • the first terminal device may also determine information such as the number of candidate resources used to transmit the synchronization signal block according to the signaling from the network device.
  • the network device may send second signaling to the first terminal device, the first terminal device receives the second signaling from the network device, and the second signaling is used to indicate one or more of X1, L, R1, or K1.
  • the second signaling may indicate L and X1, and the first terminal device may determine M1 based on L and X1; or, the second signaling may indicate L and M1, and the first terminal device may determine X1 based on L and M1; Alternatively, the second signaling may indicate X1 and M1, and the first terminal device may determine L according to X1 and M1.
  • X1 represents the number of synchronization signal blocks actually used for transmission in the i-th group in the M group, or represents the number of synchronization signal blocks actually used for transmission in each group in the M group, and X1 may be less than or equal to X.
  • M1 represents the number of groups actually used for sending in the first resource set, and M1 may be less than or equal to M.
  • L represents the number of synchronization signal blocks actually used for transmission in the first resource set, or in other words, represents the number of candidate resources actually called in the first resource set, and L is less than or equal to L max .
  • the first terminal device may also determine the number of candidate resources used to send the synchronization signal block according to pre-configured information, and the pre-configured information may be information pre-configured to the first terminal device.
  • the pre-configured information may indicate one or more of X1, L, R1, or K1.
  • the pre-configured information may indicate L and X1, and the first terminal device may determine M1 according to L and X1; or, the pre-configured information may indicate L and M1, and the first terminal device may determine X1 according to L and M1; Or, the pre-configured information may indicate X1 and M1, and the first terminal device may determine L according to X1 and M1.
  • the second signaling may indicate one or more of L, X1, M1, R1, or K1.
  • the second signaling can indicate L, R1, and X1
  • the first terminal device can determine M1 based on L and X1, and can determine K1 based on L, R1, and M1; or, the second signaling can indicate X1, M1, and K1.
  • the first terminal device can determine L according to X1 and M1, and can determine R1 according to X1 and K1, and so on.
  • R1 represents the number of synchronization signal blocks actually used for transmission in the first subgroup included in the i-th group in the M1 group, or represents the synchronization signal actually used for transmission by each subgroup included in the i-th group in the M1 group
  • the number of blocks, or the number of synchronization signal blocks actually used for transmission in each subgroup in the M1 group, R1 is less than or equal to R.
  • K1 represents the number of subgroups actually used for transmission in the i-th group in the M1 group, or represents the number of subgroups actually used for transmission in each group in the M1 group, and K1 is less than or equal to K.
  • the two formulas are based on the example that the number of candidate resources used for transmission in each group in the M1 group is the same, and the number of candidate resources used for transmission in each subgroup included in each group in the M1 group is the same as an example.
  • the first terminal device may also determine the number of candidate resources for sending synchronization signal blocks according to pre-configured information.
  • pre-configured information For example, one or more of L, X1, M1, R1, or K1 can be indicated.
  • the pre-configured information may indicate L, R1, and X1, the first terminal device may determine M1 according to L and X1, and K1 may be determined according to L, R1, and M1; or, the pre-configured information may indicate X1, M1, and K1 ,
  • the first terminal device can determine L according to X1 and M1, and can determine R1 according to X1 and K1, and so on.
  • the time domain resources corresponding to the first resource set may occupy uplink resources, or may occupy side row resources.
  • the first sub-resource overlaps with one or more of the following resources, discard the synchronization signal blocks that overlap the following resources among the N synchronization signal blocks: downlink symbols or downlink time slots, flexible symbols or symbol time slots, Or, uplink symbols or uplink time slots.
  • the j-th candidate resource included in the first resource is a resource for transmitting the j-th synchronization signal block, and the j-th candidate resource is a subset of the first resource.
  • the j-th candidate resource overlaps with the downlink symbol, the j-th synchronization signal block is discarded; or, for example, if the j-th candidate resource overlaps the flexible symbol, the j-th synchronization signal block is discarded, and so on.
  • the j-th candidate resource occupies all the remaining symbols in a slot except the last symbol, and the second symbol in the slot is a downlink symbol, then on the second symbol in the slot, the first symbol The j candidate resource overlaps the downlink symbol, and therefore, the j-th synchronization signal block can be discarded.
  • the candidate resource can be configured on the uplink (UL) time slot, that is, when the candidate resource is configured, it is necessary to skip the downlink (DL) time slot and where the F symbol is located.
  • the time slots or the time slots where the X symbol is located, these time slots are not configured as candidate resources.
  • the F symbol refers to a flexible OFDM symbol
  • the X symbol refers to an OFDM symbol that can be configured as an uplink symbol or a downlink symbol.
  • the candidate resources can still be configured normally. After the candidate resources are configured, the first resource set may repeatedly appear periodically. When there is no resource configured for sideline transmission on the candidate resource, the candidate resource cannot be selected when actually sending or receiving the S-SSB. For example, in the radio frame where the first resource set is located, there is a symbol where a candidate resource is located, but the symbol is not configured to send sideline information, so the symbol cannot be used when actually sending or receiving S-SSB .
  • one S-SSB cycle includes, for example, the first resource set and the second resource set, and the first resource set can be used to send the S-SSB,
  • the second resource set can be used to receive S-SSB.
  • the length of time occupied by the resource set can be predefined, for example, stipulated by agreement. For example, the length of time occupied by the first resource set is 5ms, and the length of time occupied by the second resource set is 5ms; or, the length of time occupied by the first resource set is 10ms, The duration occupied by the second resource set is 10ms.
  • the specific location of the first resource set in the S-SSB period may be configured by the network device to the first terminal device through signaling.
  • the physical sidelink feedback channel (PSFCH) is configured on the logical time slot, and the resources occupied by the S-SSB need to be removed Then configure PSFCH resources. For example, when configuring PSFCH resources, first remove the physical resources occupied by the S-SSB. After removing these resources, the remaining resources may be discontinuous resources. Then the remaining resources can be renumbered to make these resources The numbering is continuous, and the renumbered resources are regarded as logical resources, and PSFCH resources can be configured on these logical resources.
  • the resources occupied by the PSFCH need to be removed before configuring the candidate resources of the S-SSB.
  • the first resource set may be located in the period of the synchronization signal block, and the period of the synchronization signal block may further include the second resource of the synchronization signal block.
  • the second resource may include candidate resources used by the first terminal device to receive the synchronization signal block, or in other words, include candidate resources used by the third terminal device to transmit the synchronization signal block.
  • the first resource set and the second resource set occupy different time slots or different radio frames in the time domain.
  • the network coverage status of the first terminal device using the first resource and the first terminal device using the second resource may be different.
  • the so-called network coverage status of the terminal device may refer to whether the terminal device is located within the coverage area of the network or is located outside the coverage area of the network (or not covered by the network).
  • the fact that the terminal device is located within the coverage of the network means that the terminal device can detect the signal sent by the network device on a specific frequency, or the quality of the signal sent by the detected network device exceeds a preset or configured threshold. Conversely, when the terminal device cannot detect the signal sent by the network device on a specific frequency, or the quality of the signal sent by the detected network device is lower than the preset or configured threshold, the terminal device is located in the network coverage Out of scope.
  • the first terminal device in order to enable the first terminal device to not only use the first resource to send the synchronization signal block, but also use the second resource to receive the synchronization signal block, one or both of the following may also be satisfied:
  • the network coverage status of the first terminal device using the first resource is the same as the network coverage status of the third terminal device using the second resource, and the synchronization signal identifier of the first resource is different from the synchronization signal identifier of the second resource; or, use
  • the network coverage state of the first terminal device of the first resource is the same as the network coverage state of the third terminal device using the second resource, and the synchronization reference source of the first terminal device is different from the synchronization reference source of the third terminal device.
  • it may be satisfied that the network coverage status of the first terminal device using the first resource is the same as the network coverage status of the third terminal device using the second resource, and the synchronization signal identifier of the first resource is the same as the synchronization signal identifier of the second resource.
  • the network coverage status of the first terminal device using the first resource is the same as the network coverage status of the third terminal device using the second resource
  • the synchronization reference source of the first terminal device is synchronized with the third terminal device
  • the reference source is different; or, it can be satisfied that the network coverage status of the first terminal device using the first resource is the same as the network coverage status of the third terminal device using the second resource, and the synchronization signal identifier of the first resource is the same as that of the second resource
  • the synchronization signal identification is different, and the network coverage status of the first terminal device using the first resource is the same as the network coverage status of the third terminal device using the second resource, and the synchronization reference source of the first terminal device is the same as that of the third terminal device.
  • the synchronization reference source is different. Satisfying these conditions can enable the first terminal device to not only use the first resource to send the synchronization signal block, but also use the second resource to receive the synchronization signal block.
  • the two devices when two devices sending synchronization signal blocks have different synchronization source types, priorities or hop counts when used as synchronization sources, the two devices need to use at least two different synchronization resources , So that the two devices can also detect the synchronization signal block sent by the other device on another resource when sending their respective synchronization signal blocks.
  • the first resource set is located in the period of the synchronization signal block, and the second resource and the third resource of the synchronization signal block may also be included in the period of the synchronization signal block.
  • the first terminal device that uses the first resource may be located in the network and synchronized to the satellite or network equipment; or the first terminal device that uses the first resource is located outside the network and is not synchronized to the fifth terminal device in the network .
  • the third terminal device using the second resource may be located outside the network and synchronized to the fifth terminal device in the network.
  • the fourth terminal device using the third resource may be located outside the network and synchronized to the satellite.
  • the first resource belongs to the first resource set
  • the second resource may belong to the second resource set in the period of the synchronization signal block.
  • the second resource set may be a resource set for the first terminal device to receive the synchronization signal block. If there is a third resource, the third resource may belong to the third resource set in the period of the synchronization signal block.
  • the second terminal device determines, from the first resource set, a first resource used to transmit N synchronization signal blocks.
  • N is a positive integer.
  • the second terminal device determines the first resource for receiving N synchronization signal blocks from the first resource set.
  • the network device may configure the first resource to the second terminal device, or the first resource may also be configured through a protocol. If the network device configures the first resource to the second terminal device, as described in S61, for example, the network device can send the first configuration information to the first terminal device, then the network device can also send the first configuration information to the second terminal device. For the terminal device, this is equivalent to configuring the first resource.
  • S61 can be executed before S62, or S61 can be executed after S62, or S61 and S62 can be executed simultaneously.
  • the first terminal device sends the jth synchronization signal block of the N synchronization signal blocks on the jth candidate resource among the N candidate resources, and the second terminal device receives the jth synchronization signal block from the jth candidate resource among the N candidate resources.
  • the j-th synchronization signal block of the first terminal device is not limited to the first terminal device.
  • the first terminal device may use the first resource to send N synchronization signal blocks to the second terminal device.
  • the j-th synchronization signal block may be one of the N synchronization signal blocks
  • the j-th candidate resource is a subset of the first resource.
  • the first resource includes N candidate resources
  • the jth candidate resource may be one of the N candidate resources.
  • the second terminal device determines the first resource, and can perform detection on the first resource to receive N synchronization signal blocks. Alternatively, in order to avoid missing synchronization signal blocks, the second terminal device may also perform detection on the first resource set to receive N synchronization signal blocks.
  • the second terminal device may obtain timing information according to the j-th synchronization signal block, or obtain information about the frequency of the j-th synchronization signal block according to the j-th synchronization signal block, or, according to the j-th synchronization signal block.
  • the signal block acquires timing information, and acquires information about the frequency of the j-th sync signal block.
  • the period of the synchronization signal block may include the first resource set, the first resource set includes M groups, and the X candidate resources included in the first group of the M groups can be used to carry X synchronizations.
  • the signal block is equivalent to specifying the resources used to send the synchronization signal block.
  • the synchronization signal block needs to be sent, only resources need to be selected from these resources, which simplifies the way of selecting resources.
  • one synchronization signal block can occupy Y symbols, so that the technical solution provided in the embodiments of the present application can be applied to the NR-V2X system, or can be applied to other communication systems that specify that the synchronization signal block occupies Y symbols.
  • the period of the synchronization signal block may include the first resource set, the first resource set includes M groups, and the X candidate resources included in the first group of the M groups can be used to carry X synchronizations.
  • the signal block is equivalent to specifying the resources used to send the synchronization signal block.
  • the synchronization signal block needs to be sent, only resources need to be selected from these resources, which simplifies the way of selecting resources.
  • one synchronization signal block can occupy Y symbols, so that the technical solution provided in the embodiments of the present application can be applied to the NR-V2X system, or can be applied to other communication systems that specify that the synchronization signal block occupies Y symbols.
  • an embodiment of the present application provides a second communication method.
  • FIG. 13 is a flowchart of this method.
  • the application of this method to the network architecture shown in FIG. 5 is taken as an example.
  • the method can be executed by two communication devices, for example, the first communication device and the second communication device.
  • the first communication device or the second communication device may be a network device or a communication device capable of supporting the network device to implement the functions required by the method, or may be a terminal device or a terminal device capable of supporting the functions required by the terminal device to implement the method.
  • the communication device may of course also be other communication devices, such as a chip system.
  • the two communication devices can be implemented in the same form, for example, both can be implemented in the form of equipment, or the two communication devices can also be implemented as Different forms, for example, the first communication device is implemented in the form of a device, the second communication device is implemented in the form of a chip system, and so on.
  • the network device is, for example, a base station.
  • the method is executed by the terminal device and the terminal device as an example, that is, the first communication device is a terminal device (for example, referred to as the first terminal device), and the second communication device is also a terminal device (for example, (Referred to as the second terminal device) as an example.
  • the first terminal device described below can implement the functions of the terminal device 1 in the network architecture shown in FIG. 5, as described below
  • the second terminal device may implement the function of the terminal device 2 in the network architecture shown in FIG. 5.
  • network devices may also be involved in the following, and the network devices described in the following can implement the functions of the network devices in the network architecture shown in FIG. 5.
  • the synchronization signal block is an S-SSB as an example. In fact, it is not limited to this. As long as it is a signal used for synchronization, it can be included in the synchronization signal block described in the embodiment of the present application. Within the range, for example, the side line synchronization signal block may be included, or may also include the synchronization signal block used for the Uu port.
  • the first terminal device determines, from the first resource set, a first resource used to send N synchronization signal blocks.
  • N is a positive integer.
  • the first resource set may be located in the period of the synchronization signal block, the first resource is included in the first resource set, or the first resource belongs to the first resource set, or the first resource is a subset of the first resource set.
  • the first resource set may include M groups, the i-th group of the M groups may include X candidate resources, and the X candidate resources may be used to carry X synchronization signal blocks, or in other words, X candidate resources may be used for transmission X
  • One synchronization signal block, one of the candidate resources can be used to transmit one synchronization signal block.
  • the first resource set may include M ⁇ X candidate resources, and each candidate resource of the M ⁇ X candidate resources may be used to transmit synchronization signal blocks.
  • Each of the N synchronization signal blocks can occupy Y symbols in the time domain.
  • Y is an integer greater than or equal to 5
  • M, i, and X are all positive integers.
  • the first resource can include N candidate resources, and the N candidate resources belong to one or more of the M groups. That is, the N candidate resources may be located in one of the M groups, or may also be located in multiple of the M groups.
  • N can be greater than or equal to X, and of course it can also be less than X.
  • the first terminal device transmits the jth synchronization signal block of the N synchronization signal blocks on the jth candidate resource among the N candidate resources, and the second terminal device receives the jth synchronization signal block from the jth candidate resource among the N candidate resources.
  • the j-th synchronization signal block of the first terminal device transmits the jth synchronization signal block of the N synchronization signal blocks on the jth candidate resource among the N candidate resources, and the second terminal device receives the jth synchronization signal block from the jth candidate resource among the N candidate resources.
  • the second terminal device determines the time domain position of the j-th synchronization signal block according to the j-th synchronization signal block.
  • the jth synchronization signal block may indicate the time domain position of the jth synchronization signal block
  • the second terminal device can determine the time domain position of the jth synchronization signal block according to the jth synchronization signal block, thereby receiving the jth synchronization signal block.
  • the first terminal device may inform the second terminal device of the location of the actually sent S-SSB.
  • the jth synchronization signal block may indicate the time domain position of the jth synchronization signal block
  • the second terminal device can determine the time domain position of the jth synchronization signal block according to the jth synchronization signal block, thereby receiving the jth synchronization signal block.
  • the time domain position of the j-th synchronization signal block may include the relative position of the j-th synchronization signal block in the first resource set, or include the position of the time slot where the j-th synchronization signal block is actually located.
  • the time domain position of the jth synchronization signal block may include the identity of the group where the jth synchronization signal block is located; Or, include the identity of the jth synchronization signal block in the group; or, include the identity of the jth synchronization signal block in the group, and the identity of the jth synchronization signal block in the group; or, include the jth synchronization The position of the time slot where the signal block is located.
  • the time domain position of the j-th synchronization signal block may further include one or more of the following: the frame number of the radio frame where the j-th synchronization signal block is located, and the j-th synchronization signal block is in the radio frame.
  • the time domain position of the jth synchronization signal block includes the frame number of the radio frame where the jth synchronization signal block is located; or, the time domain position of the jth synchronization signal block includes the half frame where the jth synchronization signal block is located in the wireless frame.
  • the time domain position of the j-th synchronization signal block includes the frame number of the radio frame in which the j-th synchronization signal block is located, and the j-th synchronization signal block is in The frame number of the half frame in the radio frame, and the number of synchronization signal blocks repeatedly sent on the first resource, and so on.
  • the time domain position of the first synchronization signal block may be indicated through the broadcast channel included in the first synchronization signal block, or in other words, the time domain position of the jth synchronization signal block may be indicated through the broadcast channel included in the jth synchronization signal block .
  • the broadcast channel included in the j-th synchronization signal block is the side-line broadcast channel, for example, the physical sidelink broadcast channel (PSBCH) included in the S-SSB. ).
  • PSBCH physical sidelink broadcast channel
  • the time domain position of the j-th synchronization signal block may be indicated by the broadcast channel included in the j-th synchronization signal block, and there may be multiple implementation manners, which are described below with examples.
  • the time domain position of the j-th synchronization signal block is indicated by the signaling carried by the broadcast channel included in the j-th synchronization signal block.
  • the broadcast channel included in the j-th synchronization signal block may carry signaling, and the time domain position of the j-th synchronization signal block is indicated through the signaling.
  • the j-th synchronization signal block is an S-SSB
  • the signaling carried by the broadcast channel of the S-SSB is, for example, an SL-master information block (master information block, MIB), or may also be other signaling.
  • the SL-MIB can indicate the identity of the group in which the S-SSB is located through 3 bits.
  • DMRS demodulation reference signal
  • the time domain position of the j-th synchronization signal block may be indicated by the DMRS sequence carried by the broadcast channel included in the j-th synchronization signal block.
  • the initial value of the DMRS sequence may be used for indication, or the initial position of the DMRS sequence may also be used for indication.
  • Manner 1 Use the initial value of the DMRS sequence to indicate the time domain position of the j-th synchronization signal block.
  • the initial value of the DMRS sequence can be determined by one or more of the following parameters: the identity of the group where the j-th synchronization signal block is located, the identity of the group where the j-th synchronization signal block is located, and the identity of the j-th synchronization signal block. , The identifier of the time slot where the j-th synchronization signal block is located, or the CP type corresponding to the time slot where the j-th synchronization signal block is located.
  • the initial value of the DMRS sequence can be determined based on the identity of the group where the j-th synchronization signal block is located; or, the initial value of the DMRS sequence can be determined based on the identity of the group where the j-th synchronization signal block is located and the group where the j-th synchronization signal block is located.
  • the initial value of the DMRS sequence can be based on the identity of the group where the j-th synchronization signal block is located, the identity of the j-th synchronization signal block in the group where it is located, the identity of the j-th synchronization signal block, and the j-th synchronization signal.
  • C init f(i team ).
  • i team represents the identity of the group where the S-SSB is located
  • C init represents the initial value of the DMRS sequence.
  • f(i team ) is expressed as a function of i team.
  • C init 2 m+3 (i team +1)(N SLSSID +1)+2 m (i team +1)+2N SLSSID +N CP .
  • N SLSSID represents the identification SLSSID of the synchronization source
  • N CP represents the type of CP, and the value is 0 or 1.
  • m is an integer greater than or equal to 0. This formula is based on the example that the initial value of the DMRS sequence is determined according to the identification of the synchronization source, the CP type, and the identification of the group where the S-SSB is located.
  • C init f(is -ssb ).
  • i s-ssb represents the identity of the S-SSB in the group, and C init represents the initial value of the DMRS sequence.
  • f(i team ) is expressed as a function of i team.
  • C init 2 m+3 (i s-ssb +1)(N SLSSID +1)+2 m (is -ssb +1)+2N SLSSID +N CP .
  • This formula is based on the example that the initial value of the DMRS sequence is determined according to the identification of the synchronization source, the CP type, and the identification of the S-SSB in the group.
  • the corresponding relationship between C init and the time domain position of the synchronization signal block can be set in advance.
  • the corresponding relationship can be stipulated by agreement, or set by network equipment, and notified to the first terminal device and the second terminal device, or it can be determined by the first terminal device and the second terminal device.
  • a terminal device and a second terminal device negotiate and determine, etc.
  • the first terminal device wants to indicate the time domain position of the j-th synchronization signal block, it can select the C init corresponding to the time domain position of the j-th synchronization signal block according to the corresponding relationship, and use the C init as the initial DMRS sequence value.
  • the second terminal device can determine the time domain position of the j-th synchronization signal block according to the C init.
  • the time domain position of the j-th synchronization signal block includes the identity of the group where the j-th synchronization signal block is located, then the correspondence relationship between C init and the group identity can be set in advance, and the correspondence relationship can be stipulated by agreement or by network equipment Set and notify the first terminal device and the second terminal device, or the first terminal device and the second terminal device may negotiate and determine. Then, if the first terminal device wants to indicate the identity of the group in which the j-th synchronization signal block is located, it can select C init corresponding to the identity of the group according to the correspondence relationship, and use the C init as the initial value of the DMRS sequence. After receiving the first synchronization signal block, the second terminal device can determine the identity of the corresponding group according to the C init.
  • Manner 2 The initial position of the DMRS sequence is used to indicate the time domain position of the j-th synchronization signal block.
  • the initial sequence c(n) can be used to generate a DMRS sequence.
  • different positions of the sequence c(n) can be used as the initial positions of the DMRS sequence, so that different DMRS sequences can be obtained.
  • one DMRS sequence uses the position where the second element of the sequence c(n) starts as the initial position
  • another DMRS sequence uses the position where the fifth element of the sequence c(n) starts as the initial position.
  • the initial position of the DMRS sequence can be determined by the identity of the group where the j-th synchronization signal block is located, or by the identity of the group where the j-th synchronization signal block is located, or by the identity of the group where the j-th synchronization signal block is located and The identity of the j-th sync signal block in the group is determined.
  • the initial position of the DMRS sequence is determined by the identity of the group where the j-th synchronization signal block is located.
  • N represents the length of the DMRS sequence
  • si represents the generated DMRS sequence.
  • the corresponding relationship between the different starting positions of c(n) and the time domain position of the synchronization signal block can be set in advance.
  • the corresponding relationship can be stipulated by agreement or set by network equipment, and inform the first terminal device and the second terminal device.
  • the terminal device or it may be negotiated and determined by the first terminal device and the second terminal device.
  • the first terminal device wants to indicate the time-domain position of the j-th synchronization signal block, it can select the starting position of c(n) corresponding to the time-domain position of the j-th synchronization signal block according to the corresponding relationship to obtain the corresponding DMRS sequence.
  • the second terminal device can determine the time domain position of the j-th synchronization signal block according to the start position of the DMRS sequence.
  • the correspondence relationship between the different starting positions of c(n) and the group identity can be set in advance, and the correspondence relationship It may be stipulated by a protocol, or set by a network device and notified to the first terminal device and the second terminal device, or it may be determined by the first terminal device and the second terminal device through negotiation, etc.
  • the first terminal device wants to indicate the identity of the group where the j-th synchronization signal block is located, it can select the starting position of c(n) corresponding to the identity of the group according to the correspondence relationship to obtain the corresponding DMRS sequence.
  • the second terminal device can determine the identity of the corresponding group according to the starting position of the DMRS sequence.
  • the DMRS carried by the broadcast channel included in the j-th synchronization signal block may occupy at least two adjacent symbols in the time domain. At least two symbols, for example, includes two symbols, three symbols or more symbols. If the number of symbols occupied by the DMRS carried by the broadcast channel included in the j-th synchronization signal block is greater than or equal to 4, the symbols occupied by the DMRS can be divided into at least two symbol groups, each of the at least two symbol groups The symbol group can be used to indicate the time domain position of the j-th synchronization signal block. The contents indicated by different symbol groups in at least two symbol groups may be the same or different.
  • each symbol group in at least two symbol groups may indicate the identity of the group where the j-th synchronization signal block is located, or each symbol group in the at least two symbol groups may indicate where the j-th synchronization signal block is located.
  • one of the at least two symbol groups may indicate the identifier of the group where the j-th synchronization signal block is located, and the other symbol group may indicate the identifier of the group where the j-th synchronization signal block is located.
  • two symbol groups can be mutually verified to ensure the reliability of the indicated content.
  • different symbol groups are used to indicate different contents, which can make the indicated contents richer and improve the utilization rate of DMRS.
  • FIG. 14A is a schematic diagram of a DMRS sequence carried in one slot of the extended CP, where one slot of the extended CP includes 12 symbols.
  • P represents the OFDM symbol that carries the side-line PSS
  • S represents the symbol that carries the side-line SSS
  • the symbol represented by the slashed B and the symbol represented by GAP are not used to carry the DMRS sequence
  • the symbols represented by the remaining B Both can be used to carry DMRS sequences.
  • the 6 symbols can be divided into two groups, each group includes 3 consecutive symbols, one of which can indicate the identity of the group where the S-SSB is located, and the other group can indicate the S-SSB Logo.
  • FIG. 14B is a schematic diagram of a DMRS sequence carried in one time slot of a normal CP, where one time slot of an extended CP includes 14 symbols.
  • P represents the symbol that bears the side-line PSS
  • S represents the symbol that bears the side-line SSS
  • the symbol represented by the slashed B and the symbol represented by GAP are not used to carry the DMRS sequence
  • the symbols represented by the remaining B are all Can be used to carry DMRS sequences.
  • the 6 symbols can be divided into two groups, each group includes 3 consecutive symbols, one of which can indicate the identity of the group where the S-SSB is located, and the other group can indicate the S-SSB Logo.
  • FIG. 14C is a schematic diagram of a DMRS sequence carried in a time slot of a normal CP.
  • P represents the symbol that bears the side-line PSS
  • S represents the symbol that bears the side-line SSS
  • the symbol represented by the slashed B and the symbol represented by GAP are not used to carry the DMRS sequence
  • the symbols represented by the remaining B are all Can be used to carry DMRS sequences.
  • the 6 symbols can be divided into two groups, each group includes 3 consecutive symbols, one of which can indicate the identity of the group where the S-SSB is located, and the other group can indicate the S-SSB Logo.
  • the third way is to indicate the time domain position of the j-th synchronization signal block through a reference signal used to scramble the signaling carried by the broadcast channel included in the j-th synchronization signal block.
  • the signaling carried by the broadcast channel included in the j-th synchronization signal block is, for example, sidelink-MIB (SL-MIB).
  • the third way is to indicate the time domain position of the S-SSB through a reference signal used to scramble the SL-MIB.
  • the reference signal used to scramble the SL-MIB is, for example, a reference signal sequence used to scramble the SL-MIB.
  • the initial value of the reference signal sequence may be determined by one or more of the following parameters: the identity of the group where the j-th synchronization signal block is located, the identity of the group where the j-th synchronization signal block is located, and the identity of the j-th synchronization signal block. Identification, the identification of the time slot where the j-th synchronization signal block is located, or the CP type corresponding to the time slot where the j-th synchronization signal block is located.
  • the initial value of the reference signal sequence may be determined according to the identity of the group where the j-th synchronization signal block is located; or, the initial value of the reference signal sequence may be determined based on the identity of the group where the j-th synchronization signal block is located and where the j-th synchronization signal block is located. Or, the initial value of the reference signal sequence may be based on the identity of the group where the j-th synchronization signal block is located, the identity of the j-th synchronization signal block in the group where it is located, the identity of the j-th synchronization signal block, and the identity of the j-th synchronization signal block.
  • v 0,1,...,7.
  • s i c(j+v M ).
  • b i (a i +h i )mod 2.
  • b i represents the SL-MIB after scrambling
  • a i represents the SL-MIB to be scrambled, or in other words, the bits before or after encoding.
  • h i represents the reference signal sequence used to scramble the SL-MIB.
  • c(n) represents an initial sequence.
  • the sequence c(n) can be generated based on a pseudo-random sequence, such as a small m sequence or a Gold sequence.
  • the sequence value of the sequence c(n) can be determined by the initial value C init of the sequence.
  • M represents the sequence length when the SL-MIB is scrambled.
  • v is an intermediate variable.
  • the initial value of the reference signal sequence is determined according to the identifier of the time slot where the j-th synchronization signal block is located and the CP type corresponding to the time slot where the j-th synchronization signal block is located.
  • C init 2 11 (n s +1)(N SLSSID +1)+2N SLSSID +N CP
  • n s represents the time slot number of the time slot where the j-th synchronization signal block is located
  • N SLSSID represents the identification SLSSID of the synchronization source
  • N CP represents the type of CP, and the value is 0 or 1.
  • H can have a corresponding maximum value, for example:
  • the maximum value of H can be 1; or, when the subcarrier spacing is 30KHz, the maximum value of H can be 2; or, when the subcarrier spacing is 60KHz, the maximum value of H can be 4.
  • the maximum value of H can be 2; or, when the subcarrier spacing is 30KHz, the maximum value of H can be 4; or, when the subcarrier spacing is 60KHz, the maximum value of H Can be 8.
  • the maximum value of H can be 32; or, when the subcarrier spacing is 120KHz, the maximum value of H can be 64.
  • the number H of S-SSBs that need to be repeatedly sent is less than R, then one subgroup can be used to achieve repeated transmission of S-SSB, or multiple subgroups can be used to achieve repeated transmission of S-SSB . Or, if the number H of S-SSBs that need to be repeatedly transmitted is greater than R, then two or more subgroups can be used to implement the repeated transmission of S-SSBs.
  • the number H of S-SSBs that need to be repeatedly sent is less than X, then one group can be used to realize the repeated transmission of S-SSB, or multiple groups can also be used to realize the repeated transmission of S-SSB. Or, if the number H of S-SSBs that need to be repeatedly sent is greater than X, then two or more groups can be used to implement the repeated transmission of S-SSBs.
  • the corresponding relationship between C init and the time domain position of the synchronization signal block can be set in advance.
  • the corresponding relationship can be stipulated by agreement, or set by network equipment, and notified to the first terminal device and the second terminal device, or it can be determined by the first terminal device and the second terminal device.
  • a terminal device and a second terminal device negotiate and determine, etc.
  • the first terminal device wants to indicate the time-domain position of the j-th synchronization signal block, it can select the C init corresponding to the time-domain position of the j-th synchronization signal block according to the corresponding relationship, and use the C init as the reference signal sequence Initial value.
  • the second terminal device After receiving the j-th synchronization signal block, the second terminal device can determine the time domain position of the j-th synchronization signal block according to the C init.
  • the time domain position of the j-th synchronization signal block includes the identity of the group where the j-th synchronization signal block is located, then the correspondence relationship between C init and the group identity can be set in advance, and the correspondence relationship can be stipulated by agreement or by network equipment Set and notify the first terminal device and the second terminal device, or the first terminal device and the second terminal device may negotiate and determine. Then, if the first terminal device wants to indicate the identity of the group in which the j-th synchronization signal block is located, it can select C init corresponding to the identity of the group according to the correspondence relationship, and use the C init as the initial value of the reference signal sequence. After receiving the j-th synchronization signal block, the second terminal device can determine the identity of the corresponding group according to the C init.
  • Manner 2 The initial position of the reference signal sequence is used to indicate the time domain position of the j-th synchronization signal block.
  • the initial sequence c(n) can be used to generate the reference signal sequence.
  • different positions of the sequence c(n) can be used as the initial positions of the reference signal sequence, so that different reference signal sequences can be obtained.
  • one reference signal sequence uses the position where the third element of the sequence c(n) starts as the initial position
  • another reference signal sequence uses the position where the fourth element of the sequence c(n) starts as the initial position.
  • the initial position of the reference signal sequence can be determined by the identity of the group where the j-th synchronization signal block is located, or by the identity of the group where the j-th synchronization signal block is located, or by the identity of the group where the j-th synchronization signal block is located. And the identification of the j-th sync signal block in the group is determined.
  • the initial position of the reference signal sequence is determined by the identity of the group where the j-th synchronization signal block is located.
  • N represents the length of the reference signal sequence
  • si represents the generated reference signal sequence.
  • the corresponding relationship between the different starting positions of c(n) and the time domain position of the synchronization signal block can be set in advance.
  • the corresponding relationship can be stipulated by agreement or set by network equipment, and inform the first terminal device and the second terminal device.
  • the terminal device or it may be negotiated and determined by the first terminal device and the second terminal device.
  • the first terminal device wants to indicate the time-domain position of the j-th synchronization signal block, it can select the starting position of c(n) corresponding to the time-domain position of the j-th synchronization signal block according to the corresponding relationship to obtain the corresponding reference Signal sequence.
  • the second terminal device After receiving the j-th synchronization signal block, the second terminal device can determine the time-domain position of the j-th synchronization signal block according to the starting position of the reference signal sequence.
  • the correspondence relationship between the different starting positions of c(n) and the group identity can be set in advance, and the correspondence relationship It may be stipulated by a protocol, or set by a network device and notified to the first terminal device and the second terminal device, or it may be determined by the first terminal device and the second terminal device through negotiation, etc.
  • the first terminal device wants to indicate the identity of the group where the j-th synchronization signal block is located, it can select the starting position of c(n) corresponding to the identity of the group according to the corresponding relationship to obtain the corresponding reference signal sequence.
  • the second terminal device After receiving the j-th synchronization signal block, the second terminal device can determine the identity of the corresponding group according to the starting position of the reference signal sequence.
  • which method is used to indicate the time domain position of the j-th synchronization signal block can be specified by agreement, or configured by the network equipment to the first terminal device, or by the first terminal device and the second terminal device Negotiate to determine, and so on.
  • the time domain position of the j-th synchronization signal block includes the identifier of the group where the j-th synchronization signal block is located, and includes the identifier of the group where the j-th synchronization signal block is located, then the j-th synchronization signal block indicates the j-th synchronization signal
  • the time domain position of the block can be indicated in multiple ways.
  • an indication method is to indicate the identity of the group in which the j-th synchronization signal block is located through signaling carried by the broadcast channel included in the j-th synchronization signal block, and to indicate the identity of the group in which the j-th synchronization signal block is located.
  • the initial value or initial position of the reference signal sequence scrambled by the signaling indicates the identity of the j-th synchronization signal block in the group in which it is located; or another indication method is carried by the broadcast channel included in the j-th synchronization signal block
  • the signaling indicates the identity of the group where the j-th synchronization signal block is located, and the initial value or initial position of the demodulation reference signal sequence carried by the broadcast channel included in the j-th synchronization signal block, and indicates the group where the j-th synchronization signal block is located.
  • Another indication method is to indicate the location of the j-th synchronization signal block through the initial value or initial position of the reference signal sequence used to scramble the signaling carried by the broadcast channel included in the j-th synchronization signal block
  • the method is to indicate the identity of the j-th synchronization signal block in the group where the j-th synchronization signal block is located through the initial value or initial position of the reference signal sequence used to scramble the signaling carried by the broadcast channel included in the j-th synchronization signal block, and,
  • the initial value or initial position of the demodulation reference signal sequence carried by the broadcast channel included in the j-th synchronization signal block is used to indicate the identity of the group in which the j-th synchronization signal block
  • the time domain position of the j-th synchronization signal block includes the identity of the group where the j-th synchronization signal block is located.
  • the j-th synchronization signal block may indicate the status of the group where the j-th synchronization signal block is located through 3 bits. ID, or 1 bit can also be used to indicate the ID of the group in which the j-th synchronization signal block is located.
  • M when the frequency of the carrier where the first resource set is located is high frequency, M can be 8, so 3 bits can be used to indicate the identity of the group where the j-th synchronization signal is located; or, when the frequency of the carrier where the first resource set is located When it is low frequency, M can take 2, so 1 bit can be used to indicate the identity of the group where the j-th synchronization signal is located; or, when the frequency of the carrier where the first resource set is located is low frequency, 2 types of selections corresponding to 3 bits can be used The value indicates the identity of the group where the j-th synchronization signal is located.
  • the number of identification bits used to indicate the group in which the j-th synchronization signal block is located may be related to the value of M, so as to satisfy the indication of the identification of the group in which the j-th synchronization signal block is located, and to save the number of bits as much as possible.
  • the time domain position of the j-th synchronization signal block includes the identifier of the j-th synchronization signal block in the group where the j-th synchronization signal block is located.
  • the j-th synchronization signal block may indicate the location of the j-th synchronization signal block through 3 bits.
  • the identifier of the group in which it is located may also use 2 bits to indicate the identifier of the j-th synchronization signal block in the group, or may also use 1 bit to indicate the identifier of the j-th synchronization signal block in the group.
  • X when the frequency of the carrier where the first resource set is located is high frequency, and the subcarrier interval of the carrier where the first resource set is located is 120kHz, X can be 8, and 3 bits can be used to indicate the group where the j-th synchronization signal is located. Within the logo. Or, when the frequency of the carrier where the first resource set is located is high frequency, and the sub-carrier interval of the carrier where the first resource set is located is 60kHz, X can be 4, and 2 bits can be used to indicate that the j-th synchronization signal is located in the group. Or use 4 values corresponding to 3 bits to indicate the identity of the j-th synchronization signal in the group.
  • X can be 2, and 1 bit can be used to indicate that the j-th synchronization signal is in the group. Or use 2 values corresponding to 3 bits to indicate the identity of the j-th synchronization signal in the group, or X can be 4, and 2 bits can be used to indicate the j-th synchronization signal in the group. ID, or use 4 values corresponding to 3 bits to indicate the ID of the j-th synchronization signal in the group.
  • X can be 1 or 2
  • 1 bit can be used to indicate the jth
  • the identification of the synchronization signal in the group or one value or two values corresponding to 3 bits are used to indicate the identification of the j-th synchronization signal in the group.
  • the number of identification bits used to indicate that the j-th synchronization signal block is in the group can be related to the value of X, so that it can meet the indication of the identification of the j-th synchronization signal block in the group and save bits as much as possible number.
  • the first resource set can also be divided into a first part and a second part.
  • the first part can include the first M/2 groups in the time domain among the M groups, and the second part can include M groups.
  • the time domain position of the j-th synchronization signal block may also include the identifier of the part where the j-th synchronization signal block is located, for example, the identifier of the first part or the identifier of the second part, and the time-domain position of the j-th synchronization signal block. It may also include the identifier of the group to which the j-th synchronization signal block belongs in the part. For example, if the j-th synchronization signal block belongs to the first group of the first part, the time domain position of the j-th synchronization signal block may include the identifier of the first part and the identifier of the first group.
  • the first part is located in the first half of the first wireless frame
  • the second part is located in the second half of the first wireless frame.
  • the time domain position of the j-th synchronization signal block may also include the identifier of the half-frame where the j-th synchronization signal block is located and the identifier of the group where the j-th synchronization signal block is located.
  • the time domain position of the j-th synchronization signal block may include the identifier of the first half of the first radio frame and the identifier of the first group.
  • the time domain position of the j-th synchronization signal block may also include the repetition factor H, and the value of the repetition factor H may also be indicated through the broadcast channel included in the j-th synchronization signal block.
  • the j-th synchronization signal block is S-SSB, and the value of H can be indicated through PSBCH. For low frequencies, at most 3 bits are used to indicate the value of H, and for high frequencies, at most 3 bits are used to indicate the value of H.
  • the value of H can be indicated by 1 bit; or, if the subcarrier interval is 30KHz, the value of H can be indicated by 2 bits; or, if the subcarrier interval is 60KHz , The value of H can be indicated by 3 bits.
  • the period of the synchronization signal block may include the first resource set, the first resource set includes M groups, and the X candidate resources included in the first group of the M groups can be used to carry X synchronizations.
  • the signal block is equivalent to specifying the resources used to send the synchronization signal block.
  • the synchronization signal block needs to be sent, only resources need to be selected from these resources, which simplifies the way of selecting resources.
  • one synchronization signal block can occupy Y symbols, so that the technical solution provided in the embodiments of the present application can be applied to the NR-V2X system, or can be applied to other communication systems that specify that the synchronization signal block occupies Y symbols.
  • the time domain position of the jth synchronization signal block can be indicated by the jth synchronization signal block, so that the second terminal device can receive the jth synchronization signal block at the correct time domain position, and the second terminal device detects the synchronization signal block. Power consumption.
  • FIG. 13 can be applied alone or in combination with the embodiment shown in FIG. 6.
  • S131 for details of the implementation of S131, please refer to the introduction of S61 in the embodiment shown in FIG. 6.
  • an embodiment of the present application provides a third communication method.
  • FIG. 15, is a flowchart of this method.
  • the application of this method to the network architecture shown in FIG. 5 is taken as an example.
  • the method can be executed by two communication devices, for example, the first communication device and the second communication device.
  • the first communication device or the second communication device may be a network device or a communication device capable of supporting the network device to implement the functions required by the method, or may be a terminal device or a terminal device capable of supporting the functions required by the terminal device to implement the method.
  • the communication device may of course also be other communication devices, such as a chip system.
  • the two communication devices can be implemented in the same form, for example, both can be implemented in the form of equipment, or the two communication devices can also be implemented as Different forms, for example, the first communication device is implemented in the form of a device, the second communication device is implemented in the form of a chip system, and so on.
  • the network device is, for example, a base station.
  • the method is executed by the terminal device and the terminal device as an example, that is, the first communication device is a terminal device (for example, referred to as the first terminal device), and the second communication device is also a terminal device (for example, (Referred to as the second terminal device) as an example.
  • the first terminal device described below can implement the functions of the terminal device 1 in the network architecture shown in FIG. 5, as described below
  • the second terminal device may implement the function of the terminal device 2 in the network architecture shown in FIG. 5.
  • network devices may also be involved in the following, and the network devices described in the following can implement the functions of the network devices in the network architecture shown in FIG. 5.
  • the synchronization signal block is an S-SSB as an example. In fact, it is not limited to this. As long as it is a signal used for synchronization, it can be included in the synchronization signal block described in the embodiment of the present application. Within the range, for example, the side line synchronization signal block may be included, or may also include the synchronization signal block used for the Uu port.
  • the first terminal device determines a first synchronization signal block.
  • the first synchronization signal block includes a primary synchronization signal, a secondary synchronization signal, and a physical broadcast channel
  • the physical broadcast channel may include DMRS.
  • the primary synchronization signal can occupy the second symbol and the third symbol of Y symbols
  • the secondary synchronization signal can occupy the fourth symbol and the fifth symbol of the Y symbols, or it can occupy the fourth symbol and the fifth symbol of the Y symbols.
  • the physical broadcast channel can occupy Y symbols except the symbols occupied by the primary synchronization signal and the secondary synchronization signal.
  • the physical broadcast channel may occupy all or part of the Y symbols except the symbols occupied by the primary synchronization signal and the secondary synchronization signal.
  • Y symbols are located in a time slot
  • a time slot can include 12 symbols or 14 symbols
  • the primary synchronization signal can occupy the second symbol and the third symbol in the time slot
  • the secondary synchronization signal can occupy the time slot.
  • the 4th symbol and the 5th symbol in the slot, or the 5th symbol and the 6th symbol in the slot can be occupied
  • the physical broadcast channel can occupy the symbols occupied by the slot except the primary synchronization signal and the secondary synchronization signal. Outside the symbol.
  • the physical broadcast channel includes DMRS, and the symbols occupied by the DMRS are the symbols of the physical broadcast channel.
  • the physical broadcast channel can occupy all or part of the Y symbols except the symbols occupied by the primary synchronization signal and the secondary synchronization signal. Then it can be considered that the DMRS can occupy the Y symbols except the primary synchronization signal and the secondary synchronization signal. All symbols or part of symbols except symbols.
  • the coverage of the DMRS can be increased, or if the DMRS occupies the Y symbols except the primary synchronization signal and the secondary synchronization signal For some symbols other than the symbols, some symbols can be reserved for sending other information, which improves the utilization rate of resources.
  • the DMRS is independent of the first synchronization signal block, that is, it is considered that the DMRS does not belong to the first synchronization signal block, but the DMRS is related to the physical broadcast channel included in the first synchronization signal block, and the DMRS can occupy Symbols occupied by the physical broadcast channel.
  • the primary synchronization signal and the secondary synchronization signal can be located at the front end of the time slot, so that the primary synchronization signal and the secondary synchronization signal can be sent as soon as possible, and the second terminal device as the receiving end can perform operations such as synchronization based on the primary synchronization signal and the secondary synchronization signal.
  • DMRS only occupies the symbols of the physical broadcast channel, but does not occupy the symbols of the primary synchronization signal and the secondary synchronization signal, so that the reliability of the symbols occupied by the primary synchronization signal and the secondary synchronization signal can be guaranteed, and the DMRS can also be normal send.
  • the first synchronization signal block may occupy all symbols of one time slot in the time domain, that is, Y symbols are all symbols of one time slot.
  • one synchronization signal block can occupy the entire time slot.
  • the first synchronization signal block may occupy the remaining symbols in a slot except the last symbol in the time domain, that is, the Y symbols are symbols other than the last symbol in a slot, for example
  • the Y symbols can be all symbols remaining in a slot except the last symbol.
  • GAP will be included. GAP is carried on the last symbol of the time slot.
  • the synchronization signal block cannot occupy the last symbol of the time slot, but can occupy the rest of the time slot except the last symbol. symbol.
  • the DMRS can occupy 3 or 4 subcarriers at equal intervals, or in other words, the DMRS can use 3 or 4 as the interval. , Occupy sub-carriers at equal intervals.
  • the broadcast information carried by the physical broadcast channel may occupy the remaining sub-carriers in the PRB except for the sub-carriers occupied by the DMRS.
  • a time slot includes 12 symbols, which are symbol 0 to symbol 11.
  • the primary synchronization signal occupies symbol 1 and symbol 2, and the secondary synchronization signal occupies symbol 3 and symbol 4.
  • the symbols occupied by the physical broadcast channel include symbol 5, and DMRS occupies Symbol 5, of course, DMRS can also occupy other symbols of the physical broadcast signal, here only symbol 5 is taken as an example.
  • symbol 5 occupies 1 PRB in the frequency domain, and 1 PRB may include 12 subcarriers, which are subcarrier 0 to subcarrier 11. If DMRS occupies 3 sub-carriers at equal intervals, then the interval of these 3 sub-carriers is 4.
  • DMRS occupies sub-carrier 0, sub-carrier 4, and sub-carrier 8, then the broadcast information carried by the physical broadcast channel can occupy the remaining sub-carrier 1.
  • DMRS ⁇ One or more subcarriers among subcarrier 3, subcarrier 5 to subcarrier 7, or subcarrier 9 to subcarrier 11. If the DMRS only occupies part of the subcarriers in the frequency domain, the transmission of the DMRS can be guaranteed, and a part of the subcarriers can be reserved for other information to occupy, which can improve the utilization rate of frequency domain resources.
  • the pattern of the synchronization signal block may be related to the subcarrier interval corresponding to the synchronization signal block.
  • the pattern of the first synchronization signal block may also be different.
  • the so-called pattern of the synchronization signal block can be understood as the distribution of DMRS in the synchronization signal block.
  • the synchronization signal blocks corresponding to different patterns have different numbers of symbols occupied by the DMRS, or the positions of the symbols included in the synchronization signal blocks corresponding to different patterns are different, or the synchronization signal blocks corresponding to different patterns are different.
  • the number of symbols occupied by the included DMRS is different, and the positions of the symbols are different.
  • the number of symbols occupied by the DMRS included in the first synchronization signal block is the first value.
  • the first synchronization signal block corresponds to the second subcarrier interval corresponds to the second subcarrier interval.
  • the number of symbols occupied by the DMRS included in the synchronization signal block is the second value
  • the first subcarrier interval is smaller than the second subcarrier interval
  • the first value is greater than or equal to the second value.
  • the pattern of the synchronization signal block may also be related to factors such as the moving speed of the terminal device. For example, for a terminal device with a faster moving speed, the number of symbols occupied by the DMRS included in the synchronization signal block can be more to meet the estimation of the rapidly changing channel conditions, while for a terminal device with a slower moving speed, the synchronization The number of symbols occupied by the DMRS included in the signal block can be less, which can not only meet the requirements of channel estimation, but also can leave more symbols to carry more information.
  • the position of the DMRS in the PSBCH may also be determined using the manner shown in FIG. 16A or FIG. 16B.
  • FIG. 16A shows the patterns of several DMRSs corresponding to the time slots of the normal CP
  • FIG. 16B shows the patterns of several DMRSs corresponding to the time slots of the extended CP.
  • the boxes with horizontal lines represent the symbols occupied by the DMRS.
  • P represents a symbol occupied by SPSS
  • S represents a symbol occupied by SSSS
  • B represents a symbol occupied by PSBCH.
  • 15kHz can use pattern 1 in Figure 16A; 30kHz can use pattern 2 in Figure 16A; 60kHz can use pattern 1, pattern 2 or pattern 3 in Figure 16A; for 120kHz, pattern 1 can be used.
  • Drawing 3 in 16A for normal CP: 15kHz can use pattern 1 in Figure 16A; 30kHz can use pattern 2 in Figure 16A; 60kHz can use pattern 1, pattern 2 or pattern 3 in Figure 16A; for 120kHz, pattern 1 can be used.
  • Drawing 3 in 16A for normal CP: 15kHz can use pattern 1 in Figure 16A; 30kHz can use pattern 2 in Figure 16A; 60kHz can use pattern 1, pattern 2 or pattern 3 in Figure 16A; for 120kHz, pattern 1 can be used. Drawing 3 in 16A.
  • 15kHz can use pattern 1a in Figure 16B; 30kHz can use pattern 1a or pattern 2a in Figure 16B; 60kHz can use pattern 1a, pattern 2a or pattern 3a in Figure 16B; for 120kHz, The pattern 3a in Fig. 16B can be used.
  • the pattern with adjacent DMRS in the time domain it can be further used to improve the estimation of the Doppler frequency offset in the high-speed scene, so as to improve the demodulation performance.
  • the difference between the symbol positions of the normal CP and the extended CP is the difference in the number of PSBCH symbols in the synchronization signal block after the SSSS symbol.
  • placing the DMRS as evenly as possible can improve the performance of channel estimation and demodulation.
  • the symbols occupied by the physical broadcast channel located after the secondary synchronization signal may include at least 4 symbols occupied by the DMRS.
  • FIG. 17A is a schematic diagram of the first synchronization signal block.
  • B represents the symbols occupied by the physical broadcast channel
  • P represents the symbols occupied by the primary synchronization signal
  • S represents the symbols occupied by the secondary synchronization signal.
  • symbols drawn with horizontal lines indicate symbols occupied by the DMRS
  • symbols drawn with diagonal lines indicate symbols that cannot be occupied by the primary synchronization signal, secondary synchronization signal, and physical broadcast channel.
  • the first synchronization signal block includes 5 DMRS-occupied symbols, and the DMRS occupies the first symbol. Therefore, after the secondary synchronization signal, 4 DMRS-occupied symbols are included.
  • FIG. 17B is a schematic diagram of the first synchronization signal block.
  • B represents the symbols occupied by the physical broadcast channel
  • P represents the symbols occupied by the primary synchronization signal
  • S represents the symbols occupied by the secondary synchronization signal.
  • symbols drawn with horizontal lines indicate symbols occupied by DMRS.
  • other symbols occupied by physical broadcast signals can be used to carry other information, such as broadcast information.
  • the first synchronization signal block includes 5 DMRS-occupied symbols, and the DMRS occupies the first symbol. Therefore, after the secondary synchronization signal, 4 DMRS-occupied symbols are included.
  • Figures 17A and 17B take the time slot corresponding to the normal CP as an example.
  • FIG. 17C is a schematic diagram of the first synchronization signal block.
  • B represents the symbols occupied by the physical broadcast channel
  • P represents the symbols occupied by the primary synchronization signal
  • S represents the symbols occupied by the secondary synchronization signal.
  • symbols drawn with horizontal lines indicate symbols occupied by the DMRS
  • symbols drawn with diagonal lines indicate symbols that cannot be occupied by the primary synchronization signal, secondary synchronization signal, and physical broadcast channel.
  • the first synchronization signal block includes 5 DMRS-occupied symbols, and the DMRS occupies the first symbol. Therefore, after the secondary synchronization signal, 4 DMRS-occupied symbols are included.
  • FIG. 17D is a schematic diagram of the first synchronization signal block.
  • B represents the symbols occupied by the physical broadcast channel
  • P represents the symbols occupied by the primary synchronization signal
  • S represents the symbols occupied by the secondary synchronization signal.
  • symbols drawn with horizontal lines indicate symbols occupied by the DMRS
  • symbols drawn with diagonal lines indicate symbols that cannot be occupied by the primary synchronization signal, secondary synchronization signal, and physical broadcast channel.
  • the first synchronization signal block includes 5 DMRS-occupied symbols, and the DMRS occupies the first symbol. Therefore, after the secondary synchronization signal, 4 DMRS-occupied symbols are included.
  • Fig. 17C and Fig. 17D take the time slot corresponding to the extended CP as an example.
  • the symbols occupied by the physical broadcast channel located after the secondary synchronization signal may include at least 6 symbols occupied by the DMRS.
  • FIG. 18A is a schematic diagram of the first synchronization signal block.
  • B represents the symbols occupied by the physical broadcast channel
  • P represents the symbols occupied by the primary synchronization signal
  • S represents the symbols occupied by the secondary synchronization signal.
  • symbols drawn with horizontal lines indicate symbols occupied by the DMRS
  • symbols drawn with diagonal lines indicate symbols that cannot be occupied by the primary synchronization signal, secondary synchronization signal, and physical broadcast channel.
  • the first synchronization signal block includes 7 DMRS-occupied symbols, and the DMRS occupies the first symbol. Therefore, after the secondary synchronization signal, there are 6 DMRS-occupied symbols.
  • FIG. 18B is a schematic diagram of the first synchronization signal block.
  • B represents the symbols occupied by the physical broadcast channel
  • P represents the symbols occupied by the primary synchronization signal
  • S represents the symbols occupied by the secondary synchronization signal.
  • symbols drawn with horizontal lines indicate symbols occupied by the DMRS
  • symbols drawn with diagonal lines indicate symbols that cannot be occupied by the primary synchronization signal, secondary synchronization signal, and physical broadcast channel.
  • the first synchronization signal block includes 7 DMRS-occupied symbols, and the DMRS occupies the first symbol. Therefore, after the secondary synchronization signal, there are 6 DMRS-occupied symbols.
  • FIG. 18A and Fig. 18B take the time slot corresponding to the normal CP as an example.
  • FIG. 18C is a schematic diagram of the first synchronization signal block.
  • B represents the symbols occupied by the physical broadcast channel
  • P represents the symbols occupied by the primary synchronization signal
  • S represents the symbols occupied by the secondary synchronization signal.
  • the symbols drawn with horizontal lines indicate the symbols occupied by the DMRS, and the DMRS occupies all the symbols occupied by the physical broadcast channel.
  • the first synchronization signal block includes 7 DMRS-occupied symbols, and the DMRS occupies the first symbol. Therefore, after the secondary synchronization signal, there are 6 DMRS-occupied symbols.
  • Fig. 14C takes the time slot corresponding to the extended CP as an example.
  • each symbol group in the at least two symbol groups may include one or more symbols, for example, including 1 symbol, 2 symbols, 3 symbols or more symbols, etc., and each symbol group includes The symbols can be continuous in the time domain.
  • the secondary synchronization signal 4 symbols are occupied by the DMRS. These 4 symbols belong to 2 symbol groups, for example, the first symbol group includes the first 2 symbols in the time domain, and the second symbol group includes the first two symbols in the time domain. Each symbol group includes the last two symbols in the time domain, the two symbols included in each symbol group in the two symbol groups are continuous in the time domain, and the two symbol groups are not continuous in the time domain.
  • 6 symbols are occupied by the DMRS. For example, these 6 symbols belong to 2 symbol groups. The first symbol group includes the first 3 symbols in the time domain, and the first symbol group includes the first 3 symbols in the time domain.
  • the 2 symbol groups include the last 3 symbols in the time domain.
  • the 3 symbols included in each symbol group in the two symbol groups are continuous in the time domain, and the two symbol groups are not continuous in the time domain.
  • 6 symbols are occupied by the DMRS.
  • these 6 symbols belong to 2 symbol groups.
  • the first symbol group includes the first 3 symbols in the time domain, and the first symbol group includes the first 3 symbols in the time domain.
  • the two symbol groups include the last three symbols in the time domain, the three symbols included in each symbol group in the two symbol groups are continuous in the time domain, and the two symbol groups are continuous in the time domain.
  • the information carried by different symbol groups can be the same. For example, they can indicate the identity of the group where the first synchronization signal block is located. This can increase the coverage of the information and improve the information. Reliability of transmission.
  • the information carried by different symbol groups may also be different.
  • at least two symbol groups are specifically two symbol groups, one of which can indicate the identity of the group where the first synchronization signal block is located, and the other symbol group
  • the identifier of the first synchronization signal block in the group can be indicated, and different symbol groups can carry different information, which can make the information carried by the first synchronization signal block richer and improve resource utilization.
  • the symbols occupied by the physical broadcast channel after the symbols occupied by the secondary synchronization signal include at least 3 or at least 4 equally spaced symbols, which are at least 3 One or at least 4 equally spaced symbols are the symbols occupied by the DMRS.
  • FIG. 19A is a schematic diagram of the first synchronization signal block.
  • B represents the symbols occupied by the physical broadcast channel
  • P represents the symbols occupied by the primary synchronization signal
  • S represents the symbols occupied by the secondary synchronization signal.
  • symbols drawn with horizontal lines indicate symbols occupied by DMRS.
  • other symbols occupied by physical broadcast channels can be used to carry other information, such as broadcast information.
  • the first synchronization signal block includes 5 symbols occupied by DMRS, and DMRS occupies the first symbol. Therefore, after the secondary synchronization signal, there are 4 symbols occupied by DMRS, and these 4 symbols are equally spaced. .
  • FIG. 19B is a schematic diagram of the first synchronization signal block.
  • B represents the symbols occupied by the physical broadcast channel
  • P represents the symbols occupied by the primary synchronization signal
  • S represents the symbols occupied by the secondary synchronization signal.
  • symbols drawn with horizontal lines indicate symbols occupied by DMRS.
  • other symbols occupied by physical broadcast channels can be used to carry other information, such as broadcast information.
  • the first synchronization signal block includes 4 symbols occupied by DMRS, and DMRS occupies the first symbol. Therefore, after the secondary synchronization signal, there are 3 symbols occupied by DMRS, and these 3 symbols are equally spaced. .
  • FIG. 19C is a schematic diagram of the first synchronization signal block.
  • B represents the symbols occupied by the physical broadcast channel
  • P represents the symbols occupied by the primary synchronization signal
  • S represents the symbols occupied by the secondary synchronization signal.
  • symbols drawn with horizontal lines indicate symbols occupied by the DMRS
  • symbols drawn with diagonal lines indicate symbols that cannot be occupied by the primary synchronization signal, secondary synchronization signal, and physical broadcast channel.
  • the first synchronization signal block includes 4 symbols occupied by DMRS, and DMRS occupies the first symbol. Therefore, after the secondary synchronization signal, there are 3 symbols occupied by DMRS, and these 3 symbols are equally spaced. .
  • FIG. 19D is a schematic diagram of the first synchronization signal block.
  • B represents the symbols occupied by the physical broadcast channel
  • P represents the symbols occupied by the primary synchronization signal
  • S represents the symbols occupied by the secondary synchronization signal.
  • symbols drawn with horizontal lines indicate symbols occupied by DMRS.
  • other symbols occupied by physical broadcast channels can be used to carry other information, such as broadcast information.
  • the first synchronization signal block includes 4 symbols occupied by DMRS, and DMRS occupies the first symbol. Therefore, after the secondary synchronization signal, there are 3 symbols occupied by DMRS, and these 3 symbols are equally spaced. .
  • FIG. 19E is a schematic diagram of the first synchronization signal block.
  • B represents the symbols occupied by the physical broadcast channel
  • P represents the symbols occupied by the primary synchronization signal
  • S represents the symbols occupied by the secondary synchronization signal.
  • symbols drawn with horizontal lines indicate symbols occupied by the DMRS
  • symbols drawn with diagonal lines indicate symbols that cannot be occupied by the primary synchronization signal, secondary synchronization signal, and physical broadcast channel.
  • the first synchronization signal block includes 4 symbols occupied by DMRS, and DMRS occupies the first symbol. Therefore, after the secondary synchronization signal, there are 3 symbols occupied by DMRS, and these 3 symbols are equally spaced. .
  • Fig. 19D and Fig. 19E take the time slot corresponding to the extended CP as an example.
  • the symbols occupied by the physical broadcast channel after the symbols occupied by the secondary synchronization signal include one or two symbols occupied by the DMRS.
  • FIG. 20A is a schematic diagram of the first synchronization signal block.
  • B represents the symbols occupied by the physical broadcast channel
  • P represents the symbols occupied by the primary synchronization signal
  • S represents the symbols occupied by the secondary synchronization signal.
  • symbols drawn with horizontal lines indicate symbols occupied by the DMRS
  • symbols drawn with diagonal lines indicate symbols that cannot be occupied by the primary synchronization signal, secondary synchronization signal, and physical broadcast channel.
  • the first synchronization signal block includes 3 DMRS-occupied symbols, and DMRS occupies the first symbol. Therefore, after the secondary synchronization signal, it includes 2 DMRS-occupied symbols, which are equally spaced. .
  • FIG. 20A is an example of a time slot corresponding to a normal CP.
  • FIG. 20B is a schematic diagram of the first synchronization signal block.
  • B represents the symbols occupied by the physical broadcast channel
  • P represents the symbols occupied by the primary synchronization signal
  • S represents the symbols occupied by the secondary synchronization signal.
  • symbols drawn with horizontal lines indicate symbols occupied by DMRS, and other symbols occupied by physical broadcast channels can be used to carry other information, such as broadcast information.
  • the first synchronization signal block includes 3 DMRS-occupied symbols, and DMRS occupies the first symbol. Therefore, after the secondary synchronization signal, it includes 2 DMRS-occupied symbols, which are equally spaced. .
  • FIG. 20C is a schematic diagram of the first synchronization signal block.
  • B represents the symbols occupied by the physical broadcast channel
  • P represents the symbols occupied by the primary synchronization signal
  • S represents the symbols occupied by the secondary synchronization signal.
  • symbols drawn with horizontal lines indicate symbols occupied by DMRS, and other symbols occupied by physical broadcast channels can be used to carry other information, such as broadcast information.
  • the first synchronization signal block includes 3 symbols occupied by DMRS, and DMRS occupies the first symbol. Therefore, after the secondary synchronization signal, there are 2 symbols occupied by DMRS, which are equally spaced. .
  • FIG. 20D is a schematic diagram of the first synchronization signal block.
  • B represents the symbols occupied by the physical broadcast channel
  • P represents the symbols occupied by the primary synchronization signal
  • S represents the symbols occupied by the secondary synchronization signal.
  • symbols drawn with horizontal lines indicate symbols occupied by the DMRS
  • symbols drawn with diagonal lines indicate symbols that cannot be occupied by the primary synchronization signal, secondary synchronization signal, and physical broadcast channel.
  • the first synchronization signal block includes 3 DMRS-occupied symbols, and DMRS occupies the first symbol. Therefore, after the secondary synchronization signal, it includes 2 DMRS-occupied symbols, which are equally spaced. .
  • the DMRS may be located at the 7th symbol, the 8th symbol, the 11th symbol, and the 12th symbol of the first synchronization signal block. For example, refer to FIG. 17A. Or, for the time slot corresponding to the normal CP, the DMRS may be located at the 8th symbol and the 11th symbol of the first synchronization signal block, for example, refer to FIG. 20A.
  • the DMRS may be located at the 7th symbol and the 12th symbol of the first synchronization signal block, for example, refer to FIG. 21A.
  • B represents the symbols occupied by the physical broadcast channel
  • P represents the symbols occupied by the primary synchronization signal
  • S represents the symbols occupied by the secondary synchronization signal.
  • symbols drawn with horizontal lines indicate symbols occupied by DMRS. It can be seen that in the first synchronization signal block, the DMRS occupies the 7th symbol and the 12th symbol.
  • the DMRS may be located at the 7th symbol and the 13th symbol in the first synchronization signal block, for example, refer to FIG. 21B.
  • B represents the symbols occupied by the physical broadcast channel
  • P represents the symbols occupied by the primary synchronization signal
  • S represents the symbols occupied by the secondary synchronization signal.
  • symbols drawn with horizontal lines indicate symbols occupied by DMRS. It can be seen that in the first synchronization signal block, the DMRS occupies the 7th symbol and the 13th symbol.
  • the DMRS may be located at the 9th symbol or the 10th symbol in the first synchronization signal block.
  • B represents the symbols occupied by the physical broadcast channel
  • P represents the symbols occupied by the primary synchronization signal
  • S represents the symbols occupied by the secondary synchronization signal.
  • symbols drawn with horizontal lines indicate symbols occupied by DMRS. It can be seen that in the first synchronization signal block, the DMRS occupies the 9th symbol.
  • Figure 21D In FIG.
  • B represents the symbols occupied by the physical broadcast channel
  • P represents the symbols occupied by the primary synchronization signal
  • S represents the symbols occupied by the secondary synchronization signal.
  • symbols drawn with horizontal lines indicate symbols occupied by DMRS. It can be seen that in the first synchronization signal block, the DMRS occupies the 10th symbol.
  • the MRS may be located at the seventh symbol, the eighth symbol, the tenth symbol, and the eleventh symbol in the first synchronization signal block.
  • B represents the symbols occupied by the physical broadcast channel
  • P represents the symbols occupied by the primary synchronization signal
  • S represents the symbols occupied by the secondary synchronization signal.
  • symbols drawn with horizontal lines indicate symbols occupied by DMRS. It can be seen that in the first synchronization signal block, the DMRS occupies the 7th symbol, the 8th symbol, the 10th symbol, and the 11th symbol.
  • the MRS may be located at the seventh symbol, the ninth symbol, and the eleventh symbol in the first synchronization signal block. For example, refer to FIG. 19D.
  • the MRS may be located at the 7th symbol and the 10th symbol in the first synchronization signal block, for example, refer to FIG. 20C.
  • the MRS may be located at the 8th symbol or the 9th symbol in the first synchronization signal block.
  • B represents the symbols occupied by the physical broadcast channel
  • P represents the symbols occupied by the primary synchronization signal
  • S represents the symbols occupied by the secondary synchronization signal.
  • symbols drawn with horizontal lines indicate symbols occupied by DMRS. It can be seen that in the first synchronization signal block, the DMRS occupies the 8th symbol.
  • Figure 22C In Fig.
  • B represents the symbols occupied by the physical broadcast channel
  • P represents the symbols occupied by the primary synchronization signal
  • S represents the symbols occupied by the secondary synchronization signal.
  • symbols drawn with horizontal lines indicate symbols occupied by DMRS. It can be seen that in the first synchronization signal block, the DMRS occupies the 9th symbol.
  • the first terminal device sends the first synchronization signal block to the second terminal device, and the second terminal device receives the first synchronization signal block from the first terminal device.
  • the first terminal device may send N synchronization signal blocks to the second terminal device, and the first synchronization signal block may be one of the N synchronization signal blocks.
  • the second terminal device demodulates the physical broadcast channel according to the first synchronization signal block.
  • the second terminal device may demodulate the physical broadcast channel according to the first synchronization signal block to obtain the broadcast information carried by the physical broadcast channel and the like.
  • the first synchronization signal may have other functions, which are not specifically limited to this, and S213 is only an optional step, and it is not necessary to be performed.
  • the primary synchronization signal and the secondary synchronization signal can be located at the front end of the time slot, so that the primary synchronization signal and the secondary synchronization signal can be sent as soon as possible, and the second terminal device as the receiving end can be based on the primary synchronization signal and the secondary synchronization signal.
  • DMRS only occupies the symbols of the physical broadcast channel, but does not occupy the symbols of the primary synchronization signal and the secondary synchronization signal, so that the reliability of the symbols occupied by the primary synchronization signal and the secondary synchronization signal can be guaranteed, and the DMRS can also be normal send.
  • the embodiment shown in FIG. 15 can be applied alone; or, the embodiment shown in FIG. 6, the embodiment shown in FIG. 13, and the embodiment shown in FIG. 15, any two of the three embodiments can be applied in combination
  • the embodiment shown in FIG. 6 can be used in combination with the embodiment shown in FIG. 15, or the ID embodiment shown in FIG. 13 can be used in combination with the embodiment shown in FIG. 15; or, the embodiment shown in FIG. 6 Embodiments, the embodiment shown in FIG. 13 and the embodiment shown in FIG. 15, these three embodiments can be combined and applied.
  • the first synchronization signal block described in the embodiment shown in FIG. 15 can also be replaced with the jth synchronization signal block. Signal block.
  • FIG. 23 is a schematic block diagram of a communication device 2300 according to an embodiment of the application.
  • the communication device 2300 is, for example, the first terminal device 2300.
  • the first terminal device 2300 includes a processing module 2310.
  • a transceiver module 2320 may also be included.
  • the first terminal device 2300 may be a terminal device, or may be a chip applied to the terminal device or other combination devices, components, etc. having the above-mentioned terminal device functions.
  • the transceiver module 2320 may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module 2310 may be a processor, such as a baseband processor.
  • the baseband processor may include one or more Central processing unit (central processing unit, CPU).
  • the transceiver module 2320 may be a radio frequency unit, and the processing module 2310 may be a processor, such as a baseband processor.
  • the transceiver module 2320 may be a communication interface (such as an input/output interface) of the chip system (such as a baseband chip), and the processing module may be a processor of the chip system, which may include one or more Central processing unit.
  • the processing module 2310 may be used to perform all the operations performed by the first terminal device in the embodiment shown in FIG. 6 except for the transceiving operation, such as S601, and/or other operations used to support the technology described herein. process.
  • the transceiving module 2320 may be used to perform all the transceiving operations performed by the first terminal device in the embodiment shown in FIG. 6, such as S63, and/or other processes used to support the technology described herein.
  • the transceiver module 2320 may be a functional module that can perform both sending operations and receiving operations.
  • the transceiver module 2320 may be used to perform all the operations performed by the first terminal device in the embodiment shown in FIG. 6 Sending operation and receiving operation.
  • the transceiver module 2320 when performing a sending operation, can be considered as a sending module, and when performing a receiving operation, the transceiver module 2320 can be considered as a receiving module; or, the transceiver module 2320 can also have two functions. The collective name of the modules.
  • These two functional modules are the sending module and the receiving module.
  • the sending module is used to complete the sending operation.
  • the sending module can be used to perform all the sending performed by the first terminal device in the embodiment shown in FIG. 6 Operation, the receiving module is used to complete the receiving operation.
  • the receiving module may be used to perform all the receiving operations performed by the first terminal device in the embodiment shown in FIG. 6.
  • the processing module 2310 is configured to determine a first resource for transmitting N synchronization signal blocks from a first resource set, the first resource set is located in a synchronization signal block period, and the first resource set includes M groups ,
  • the i-th group of the M groups includes X candidate resources, the first resource set includes M ⁇ X candidate resources, and each candidate resource in the M ⁇ X candidate resources can be used to transmit synchronization signals Block, each of the N synchronization signal blocks occupies Y symbols in the time domain, M, i, and X are all integers greater than or equal to 1, and Y is an integer greater than or equal to 5.
  • the first resource includes N candidate resources, and the N candidate resources belong to one or more of the M groups;
  • the transceiver module 2320 is configured to send the j-th synchronization signal block of the N synchronization signal blocks on the j-th candidate resource among the N candidate resources, where j is an integer greater than or equal to 1 and less than or equal to N.
  • the jth synchronization signal block occupies Y symbols in the time domain, including:
  • the Y symbols are all symbols of a time slot; or,
  • the Y symbols are all symbols except the last symbol in a slot.
  • the N synchronization signal blocks are transmitted in a repetitive manner, or every H synchronization signal blocks in the N synchronization signal blocks are transmitted in a repetitive manner, and H is less than or equal to The positive integer of N.
  • the duration of time domain resources occupied by the synchronization signal block carried by the first resource set is less than or equal to 2 milliseconds; or,
  • the duration of time domain resources occupied by the synchronization signal block carried by the first resource set is less than or equal to 8 milliseconds.
  • the time length occupied by the synchronization signal block carried by the i-th group in the time domain is 1 ms.
  • the processing module 2310 is further configured to determine the time domain position of the first resource set within the synchronization signal block period according to pre-configured information; or,
  • the transceiver module 2320 is further configured to receive first signaling from a network device, where the first signaling is used to indicate the time domain position of the first resource set within the synchronization signal block period.
  • the number of groups to which the N candidate resources belong is less than or equal to 2, wherein the groups to which the N candidate resources belong are located in the same radio frame, or They are located in different half frames of the same radio frame.
  • the i-th group includes K subgroups
  • the X candidate resources belong to the K subgroups
  • one of the K subgroups includes R candidate resources
  • the The R candidate resources can be used to transmit R synchronization signal blocks, and the R synchronization signal blocks are repeatedly transmitted.
  • the first resource set includes a first part and a second part, the first part includes the first M/2 groups in the time domain among the M groups, and the second The part includes the last M/2 groups in the time domain among the M groups.
  • processing module 2310 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component
  • transceiver module 2320 may be implemented by a transceiver or a transceiver-related circuit component.
  • an embodiment of the present application also provides a communication device 2400.
  • the communication device 2400 is, for example, the first terminal device 2400.
  • the first terminal device 2400 may be a communication device, such as a terminal device, or may also be a chip system or the like.
  • the first terminal device 2400 includes a processor 2410, a transceiver 2430, and a memory 2420.
  • the memory 2420 stores instructions or programs, and the processor 2410 is configured to execute the instructions or programs stored in the memory 2420.
  • the processor 2410 When the instructions or programs stored in the memory 2420 are executed, the processor 2410 is used to perform the operations performed by the processing module 2310 in the foregoing embodiment, and the transceiver 2430 is used to perform the operations performed by the transceiver module 2320 in the foregoing embodiment.
  • the first terminal device 2400 may not include the memory 2420.
  • the memory is located outside the first terminal device 2400.
  • the processor 2410 When the computer instructions or programs stored in the external memory are executed, the processor 2410 is used to execute the processing in the foregoing embodiments.
  • the operation performed by the module 2310, and the transceiver 2430 is configured to perform the operation performed by the transceiver module 2320 in the foregoing embodiment.
  • the transceiver 2430 may be a functional unit that can perform both sending and receiving operations.
  • the transceiver 2430 may be used to perform all the operations performed by the first terminal device in the embodiment shown in FIG. 6 Sending operation and receiving operation.
  • the transceiver 2430 when performing a sending operation, can be considered as a transmitter, and when performing a receiving operation, the transceiver 2430 can be considered as a receiver; or, the transceiver 2430 can also have two functions. The general name of the units. These two functional units are the transmitter and the receiver respectively.
  • the transmitter is used to complete the transmission operation.
  • the transmitter can be used to perform all the transmission operations performed by the first terminal device in the embodiment shown in FIG. 6
  • the receiver is used to complete the receiving operation.
  • the receiver may be used to perform all the receiving operations performed by the first terminal device in the embodiment shown in FIG. 6.
  • the transceiver 2430 can also be implemented through a communication interface of the chip system, which is connected to a radio frequency transceiver component in a communication device to realize information transmission and reception through the radio frequency transceiver component.
  • the communication interface can be a functional unit that can complete both sending and receiving operations.
  • the communication interface can be used to perform all the sending and receiving operations performed by the first terminal device in the embodiment shown in FIG. 6 Operation, for example, when performing a sending operation, the communication interface can be considered as a sending interface, and when performing a receiving operation, the communication interface can be considered as a receiving interface; or, the communication interface can also be a collective term for two functional units.
  • the functional units are respectively a sending interface and a receiving interface.
  • the sending interface is used to complete the sending operation.
  • the sending interface can be used to perform all the sending operations performed by the first terminal device in the embodiment shown in FIG. 6, and the receiving interface is used to complete
  • the receiving operation for example, the receiving interface may be used to perform all the receiving operations performed by the first terminal device in the embodiment shown in FIG. 6.
  • first terminal device 2300 or the first terminal device 2400 can implement the function of the first terminal device in the embodiment shown in FIG. 3, and the first terminal device 2300 or the first terminal device 2400
  • the operations and/or functions of the various modules in are respectively intended to implement the corresponding process in the embodiment shown in FIG. 6, and for the sake of brevity, they will not be repeated here.
  • FIG. 25 is a schematic block diagram of a communication device 2500 according to an embodiment of the application.
  • the communication device 2500 is, for example, the second terminal device 2500.
  • the second terminal device 2500 includes a processing module 2510.
  • a transceiver module 2520 may also be included.
  • the second terminal device 2500 may be a terminal device, or may be a chip applied in the terminal device or other combination devices, components, etc. having the above-mentioned terminal device functions.
  • the transceiver module 2520 may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module 2510 may be a processor, such as a baseband processor.
  • the baseband processor may include one or more central Processing unit (central processing unit, CPU).
  • the transceiver module 2520 may be a radio frequency unit, and the processing module 2510 may be a processor, such as a baseband processor.
  • the transceiver module 2520 may be a communication interface (such as an input/output interface) of the chip system (such as a baseband chip), and the processing module may be a processor of the chip system, which may include one or more Central processing unit.
  • the processing module 2510 may be used to perform all the operations performed by the second terminal device in the embodiment shown in FIG. 6 except for the transceiving operation, such as S62, and/or other operations used to support the technology described herein. process.
  • the transceiving module 2520 may be used to perform all the transceiving operations performed by the second terminal device in the embodiment shown in FIG. 6, such as S63, and/or other processes used to support the technology described herein.
  • the transceiver module 2520 may be a functional module that can perform both sending operations and receiving operations.
  • the transceiver module 2520 may be used to perform all the operations performed by the second terminal device in the embodiment shown in FIG. 6 Sending operation and receiving operation.
  • the transceiver module 2520 when performing a sending operation, can be considered as a sending module, and when performing a receiving operation, the transceiver module 2520 can be considered as a receiving module; alternatively, the transceiver module 2520 can also have two functions. The collective name of the modules. These two functional modules are the sending module and the receiving module.
  • the sending module is used to complete the sending operation.
  • the sending module can be used to perform all the sending performed by the second terminal device in the embodiment shown in FIG. 6 Operation, the receiving module is used to complete receiving operations. For example, the receiving module may be used to perform all receiving operations performed by the second terminal device in the embodiment shown in FIG. 6.
  • the processing module 2510 is configured to determine a first resource for transmitting N synchronization signal blocks from a first resource set, the first resource set is located in a synchronization signal block period, and the first resource set includes M groups ,
  • the i-th group of the M groups includes X candidate resources, the first resource set includes M ⁇ X candidate resources, and each candidate resource in the M ⁇ X candidate resources can be used to transmit synchronization signals Block, each of the N synchronization signal blocks occupies Y symbols in the time domain, M, i, and X are all integers greater than or equal to 1, and Y is an integer greater than or equal to 5.
  • the first resource includes N candidate resources, and the N candidate resources belong to one or more of the M groups;
  • the transceiver module 2520 is configured to receive the j-th synchronization signal block in the N synchronization signal blocks on the j-th candidate resource among the N candidate resources, where j is an integer greater than or equal to 1 and less than or equal to N.
  • the processing module 2510 is further configured to obtain timing and/or the j-th synchronization signal block according to the j-th synchronization signal block after the transceiver module 2520 receives the j-th synchronization signal block Frequency information.
  • the jth synchronization signal block occupies Y symbols in the time domain, including:
  • the Y symbols are all symbols of a time slot; or,
  • the Y symbols are all symbols except the last symbol in a slot.
  • the N synchronization signal blocks are transmitted in a repetitive manner, or every H synchronization signal blocks in the N synchronization signal blocks are transmitted in a repetitive manner, and H is less than or equal to The positive integer of N.
  • the duration of time domain resources occupied by the synchronization signal block carried by the first resource set is less than or equal to 2 milliseconds; or,
  • the duration of time domain resources occupied by the synchronization signal block carried by the first resource set is less than or equal to 8 milliseconds.
  • the time length occupied by the synchronization signal block carried by the i-th group in the time domain is 1 ms.
  • the number of groups to which the N candidate resources belong is less than or equal to 2, wherein the groups to which the N candidate resources belong are located in the same radio frame, or They are located in different half frames of the same radio frame.
  • the i-th group includes K subgroups
  • the X candidate resources belong to the K subgroups
  • one of the K subgroups includes R candidate resources
  • the The R candidate resources can be used to transmit R synchronization signal blocks, and the R synchronization signal blocks are repeatedly transmitted.
  • the first resource set includes a first part and a second part, the first part includes the first M/2 groups in the time domain among the M groups, and the second The part includes the last M/2 groups in the time domain among the M groups.
  • processing module 2510 in the embodiments of the present application may be implemented by a processor or processor-related circuit components
  • transceiver module 2520 may be implemented by a transceiver or transceiver-related circuit components.
  • an embodiment of the present application also provides a communication device 2600.
  • the communication device 2600 is, for example, the second terminal device 2600.
  • the second terminal device 2600 may be a communication device, such as a terminal device, or may also be a chip system or the like.
  • the second terminal device 2600 includes a processor 2610.
  • a memory 2620 may also be included.
  • a transceiver 2630 may also be included.
  • the memory 2620 stores computer instructions or programs, and the processor 2610 can execute the computer instructions or programs stored in the memory 2620.
  • the processor 2610 When the computer instructions or programs stored in the memory 2620 are executed, the processor 2610 is used to perform the operations performed by the processing module 2510 in the foregoing embodiment, and the transceiver 2630 is used to perform the operations performed by the transceiver module 2520 in the foregoing embodiment.
  • the second terminal device 2600 may not include the memory 2620.
  • the memory is located outside the second terminal device 2600.
  • the processor 2610 When the computer instructions or programs stored in the external memory are executed, the processor 2610 is used to execute the processing in the foregoing embodiments.
  • the operation performed by the module 2510, and the transceiver 2630 is used to perform the operation performed by the transceiver module 2520 in the foregoing embodiment.
  • the transceiver 2630 may be a functional unit that can perform both sending and receiving operations.
  • the transceiver 2630 may be used to perform all the operations performed by the second terminal device in the embodiment shown in FIG. 6
  • Sending operation and receiving operation for example, when performing a sending operation, the transceiver 2630 can be considered as a transmitter, and when performing a receiving operation, the transceiver 2630 can be considered as a receiver; alternatively, the transceiver 2630 can also have two functions A general term for the units.
  • These two functional units are respectively a transmitter and a receiver.
  • the transmitter is used to complete the transmission operation.
  • the transmitter can be used to perform all the transmission operations performed by the second terminal device in the embodiment shown in FIG. 6
  • the receiver is used to complete the receiving operation.
  • the receiver can be used to perform all the receiving operations performed by the second terminal device in the embodiment shown in FIG. 6.
  • the transceiver 2630 can also be realized through the communication interface of the chip system, which is connected to the radio frequency transceiver component in the communication device to realize the transmission and reception of information through the radio frequency transceiver component.
  • the communication interface can be a functional unit that can complete both sending and receiving operations.
  • the communication interface can be used to perform all the sending and receiving operations performed by the second terminal device in the embodiment shown in FIG. 6 Operation, for example, when performing a sending operation, the communication interface can be considered as a sending interface, and when performing a receiving operation, the communication interface can be considered as a receiving interface; or, the communication interface can also be a collective term for two functional units.
  • the functional units are respectively a sending interface and a receiving interface.
  • the sending interface is used to complete the sending operation.
  • the sending interface can be used to perform all the sending operations performed by the second terminal device in the embodiment shown in FIG. 6, and the receiving interface is used to complete
  • the receiving operation for example, the receiving interface may be used to perform all the receiving operations performed by the second terminal device in the embodiment shown in FIG. 6.
  • the second terminal device 2500 or the second terminal device 2600 of the embodiment of the present application can implement the function of the second terminal device in the embodiment shown in FIG. 6, and the second terminal device 2500 or the second terminal device 2600 The operation and/or function of each module is to realize the corresponding process in the embodiment shown in FIG. 6, and for the sake of brevity, it will not be repeated here.
  • FIG. 27 is a schematic block diagram of a communication device 2700 according to an embodiment of the application.
  • the communication device 2700 is, for example, the first terminal device 2700.
  • the first terminal device 2700 includes a processing module 2710.
  • a transceiver module 2720 may also be included.
  • the first terminal device 2700 may be a terminal device, or may be a chip applied to the terminal device, or other combination devices, components, etc. having the above-mentioned terminal device functions.
  • the transceiver module 2720 may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module 2710 may be a processor, such as a baseband processor.
  • the baseband processor may include one or more CPU.
  • the transceiver module 2720 may be a radio frequency unit, and the processing module 2710 may be a processor, such as a baseband processor.
  • the transceiver module 2720 may be a communication interface (such as an input/output interface) of the chip system (such as a baseband chip), and the processing module may be a processor of the chip system, which may include one or more Central processing unit.
  • the processing module 2710 may be used to perform all operations other than the transceiving operation performed by the first terminal device in the embodiment shown in FIG. 13, such as S131, and/or other operations used to support the technology described herein. process.
  • the transceiving module 2720 may be used to perform all the transceiving operations performed by the first terminal device in the embodiment shown in FIG. 13, such as S132, and/or other processes used to support the technology described herein.
  • the transceiver module 2720 may be a functional module that can perform both sending operations and receiving operations.
  • the transceiver module 2720 may be used to perform all the operations performed by the first terminal device in the embodiment shown in FIG. 13 Sending operation and receiving operation.
  • the transceiver module 2720 when performing a sending operation, can be considered as a sending module, and when performing a receiving operation, the transceiver module 2720 can be considered as a receiving module; alternatively, the transceiver module 2720 can also have two functions. The collective name of the modules. These two functional modules are the sending module and the receiving module.
  • the sending module is used to complete the sending operation.
  • the sending module can be used to perform all the sending performed by the first terminal device in the embodiment shown in FIG. 13 Operation, the receiving module is used to complete the receiving operation.
  • the receiving module may be used to perform all the receiving operations performed by the first terminal device in the embodiment shown in FIG. 13.
  • the processing module 2710 is configured to determine a first resource for transmitting N synchronization signal blocks from a first resource set, the first resource set is located in a synchronization signal block period, and the first resource set includes M groups ,
  • the i-th group of the M groups includes X candidate resources, the first resource set includes M ⁇ X candidate resources, and each candidate resource in the M ⁇ X candidate resources can be used to transmit synchronization signals Block, each of the N synchronization signal blocks occupies Y symbols in the time domain, M, i, and X are all integers greater than or equal to 1, and Y is an integer greater than or equal to 5.
  • the first resource includes N candidate resources, and the N candidate resources belong to one or more of the M groups;
  • the transceiver module 2720 is configured to send the j-th synchronization signal block of the N synchronization signal blocks on the j-th candidate resource among the N candidate resources, where the j-th synchronization signal block indicates the j-th synchronization signal The time domain position of the block.
  • the time domain position of the j-th synchronization signal block includes an identifier of the group where the j-th synchronization signal block is located, and/or, the j-th synchronization signal block is in the group where the j-th synchronization signal block is located Logo.
  • the jth synchronization signal block indicating the time domain position of the jth synchronization signal block includes:
  • the signaling carried by the broadcast channel included in the j-th synchronization signal block indicates the time domain position of the j-th synchronization signal block; or,
  • the demodulation reference signal carried by the broadcast channel included in the jth synchronization signal block indicates the time domain position of the jth synchronization signal block;
  • a reference signal used for scrambling the signaling carried by the broadcast channel included in the j-th synchronization signal block indicates the time domain position of the j-th synchronization signal block.
  • the demodulation reference signal carried by the broadcast channel included in the jth synchronization signal block indicating the time domain position of the jth synchronization signal block includes:
  • the initial value or initial position of the demodulation reference signal sequence indicates the time domain position of the j-th synchronization signal block.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种通信方法及装置,可应用于车联网,例如V2X、LTE-V、V2V等,或用于智能驾驶,智能网联车等领域。从第一资源集中确定第一资源,在N个候选资源中的第j候选资源上发送N个同步信号块中的第j同步信号块。第一资源集包括M个组,M个组中的第i组包括X个候选资源。第一资源集包括的M×X个候选资源可用于传输同步信号块。N个同步信号块中的每个同步信号块在时域上占用Y个符号,Y为大于等于5的整数。第一资源包括N个候选资源,N个候选资源属于M个组中的一组或多组。一个同步信号块占用Y个符号,使得本申请实施例能够应用于NR-V2X系统,或者可以应用于其他的规定了同步信号块占用Y个符号的通信系统。

Description

一种通信方法及装置 技术领域
本申请涉及移动通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在现有的NR系统中,终端设备在Uu口可以通过接收SSB来实现与基站的同步,以及获取系统消息等。其中,主同步信号(primary synchronisation signal,PSS)、辅同步信号(secondary synchronisation signal,SSS)和物理广播信道(physical broadcast channel,PBCH)共同构成一个SSB。如图1所示,在时域上,1个SSB占用4个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号(symbol),为符号0~符号3,在频域上,1个SSB占用20个资源块(resource block,RB),也就是240个子载波,在这20个RB内,子载波编号为0~239。PSS位于符号0的中间的127个子载波上,SSS位于符号2的中间的127个子载波上。PBCH占用符号1和符号3的全部子载波,以及占用符号2的全部子载波中除了SSS所占用的子载波之外的剩余的子载波中的一部分子载波。
可以看到,目前在Uu口传输的1个SSB占用4个OFDM符号。但在NR-V2X系统中,规定1个SSB占用一个时隙。那么显然,目前用在Uu口的SSB的结构无法适用于NR-V2X系统。
发明内容
本申请实施例提供一种通信方法及装置,用于提供可适用于NR-V2X系统的同步信号块。
第一方面,提供第一种通信方法,该方法包括:从第一资源集中确定用于发送N个同步信号块的第一资源,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;在所述N个候选资源中的第j候选资源上发送所述N个同步信号块中的第j同步信号块,j为大于或等于1、小于或等于N的整数。
该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。示例性地,所述第一通信装置为终端装置,例如称为第一终端装置。示例性地,所述第一终端装置为终端设备,或者为设置在终端设备中的用于实现终端设备的功能的芯片系统,或者为用于实现终端设备的功能的其他部件。
在本申请实施例中,同步信号块的周期内可以包括第一资源集,第一资源集包括M个组,M个组中的第一组所包括的X个候选资源可用于承载X个同步信号块,相当于规定 了用于发送同步信号块的资源,在需要发送同步信号块时只需从这些资源中选择资源即可,简化了选择资源的方式。而且一个同步信号块可以占用Y个符号,从而使得本申请实施例所提供的技术方案能够应用于NR-V2X系统,或者可以应用于其他的规定了同步信号块占用Y个符号的通信系统。
例如,M个组可以通过M个波束来发送,不同的波束对应的方向不同,也就是说,M个组可以对应M个发送方向,或者说,M个组承载的S-SSB对应于M个发送方向。不同的组指向不同的发送方向。如果第一终端装置需要切换天线的发送方向,则只需在两个组之间进行切换即可,无需在组内进行切换,减少了终端装置切换的次数,相应减小了切换时延。另外,如果将本申请实施例提供的方案应用于低频,那么M个组中的不同的子组所承载的S-SSB可以通过安装在不同位置的天线单元发送出去,例如可以通过安装在车上的不同位置的天线单元发送出去,以实现对车辆周围不同位置的覆盖。
在一种可选的实施方式中,所述第j同步信号块在时域上占用Y个符号,包括:
所述Y个符号为一个时隙的全部符号;或,
所述Y个符号为一个时隙中除了最后一个符号之外的所有符号。
一个同步信号块可以占用一个时隙的全部符号,例如有些时隙内不包括间隔,或不包括不做数据收发的空符号,则同步信号块可以占满该时隙,这样可以提高对时隙的利用率,且可以提高同步信号块的覆盖。或者,一个同步信号块也可以不占用一个时隙内的最后一个符号,例如有些时隙包括间隔,或包括不做数据收发的空符号,间隔或空符号一般占用时隙的最后一个符号,因此同步信号块不占用间隔或不做数据收发的空符号所占用的符号,这样可以为间隔或不做数据收发的空符号留出所需的符号,而且也能实现同步信号块的发送。
在一种可选的实施方式中,对于正常循环前缀,Y=13,或者,对于扩展循环前缀,Y=11。
如果Y个符号为一个时隙中除了最后一个符号之外的所有符号,也就是说,一个同步信号块占用一个时隙中除了最后一个符号之外的所有符号,那么对于正常循环前缀的时隙,所包括的符号的总数为14,则同步信号块可以占用其中的13个符号,而对于扩展循环前缀的时隙,所包括的符号的总数为12,则同步信号块可以占用其中的11个符号。如果还有其他格式的时隙,例如一个时隙包括的符号的总数为D,那么同步信号块可以占用该时隙内的D-1个符号,对于D的取值不做限制。
在一种可选的实施方式中,所述N个同步信号块是以重复方式传输的,或者所述N个同步信号块中的每H个同步信号块是重复方式传输的,H为小于或等于所述N的正整数。
其中,H可以理解为重复因子。所谓的以重复方式发送,也可以描述为重复发送,或者说,是以准共址方式发送,也就是将同一个同步信号块发送多次,以提高同步信号块的覆盖。本申请实施例的方式较为灵活,例如N个同步信号块可以都是以重复方式发送,相当于H=N,这N个同步信号块可以属于M个组中的一个组,相当于实现组内重复,或者这N个同步信号块也可以属于M个组中的不同的组,相当于在组之间也可以实现重复发送。或者,N个同步信号块中可以每H个同步信号块进行重复发送,例如N=4,H=2,相当于4个同步信号块中,每两个同步信号块是以重复方式发送的。例如,每H个同步信号块可以属于M个组中的一个组,而不同的H个同步信号块可以属于M个组中的不同的组,例如N=4,H=2,有2个重复发送的同步信号块属于M个组中的一个组,另外2个同步发 送的同步信号块属于M个组中的另一个组,从而不同的组可以发送不同的同步信号块,例如不同的组所发送的同步信号块可以对应不同的方向,从而实现对多方向的覆盖。或者,每H个同步信号块也可以属于M个组中的多个组,例如N=4,H=2,有2个重复发送的同步信号块属于M个组中的两个组,另外2个同步发送的同步信号块属于M个组中的另外两个组,从而不同的组可以发送不同的同步信号块,而且可以实现组之间的重复发送。
在一种可选的实施方式中,
当所述第一资源集所在的载波的频率为低频,所述第一资源集承载的同步信号块占用的时域资源的时长小于或等于2毫秒;或,
当所述第一资源集所在的载波的频率为高频,所述第一资源集承载的同步信号块占用的时域资源的时长小于或等于8毫秒。
如果第一资源集所在的载波的频率为低频,那么第一资源集所承载的所有的同步信号块占用的时长可以小于或等于2ms,或者说,第一资源集所包括的所有候选资源占用的时长可以小于或等于2ms。例如,第一资源集对应的子载波间隔为15KHz,第一资源集可以包括2个候选资源,每个候选资源占用的时长可以是1ms,则第一资源集所承载的所有的同步信号块占用的时长可以等于2ms。需要注意的是,如果一个同步信号块不占用1个时隙的最后一个符号,那么实际上,该同步信号块所占用的时长可以小于1ms,则第一资源集所承载的所有的同步信号块占用的时长实际可能小于2ms。但本申请实施例可以忽略该差异,认为一个同步信号块所占用的时长为1ms,则第一资源集所承载的所有的同步信号块占用的时长为2ms。
或者,如果第一资源集所在的载波的频率为高频,那么第一资源集所承载的所有的同步信号块占用的时长可以小于或等于8ms,或者说,第一资源集所包括的所有候选资源占用的时长可以小于或等于8ms。例如,第一资源集对应的子载波间隔为120KHz,第一资源集可以包括8个候选资源,每个候选资源占用的时长可以是1ms,则第一资源集所承载的所有的同步信号块占用的时长可以等于8ms。同理,需要注意的是,如果一个同步信号块不占用1个时隙的最后一个符号,那么实际上,该同步信号块所占用的时长可以小于1ms,则第一资源集所承载的所有的同步信号块占用的时长实际可能小于8ms。但本申请实施例可以忽略该差异,认为一个同步信号块所占用的时长为1ms,则第一资源集所承载的所有的同步信号块占用的时长为8ms。
在一种可选的实施方式中,所述第i组承载的同步信号块在时域占用的时长为1ms。
M个组中的第i组承载的同步信号块所占用的时长可以为1ms,或者,M个组中的每组承载的同步信号块所占用的时长可以为1ms。或者描述为,M个组中的第i组包括的X个候选资源所占用的时长为1ms,或者,M个组中的每组包括的所有的候选资源所占用的时长为1ms。例如,M=8,第一资源集共包括8个组,其中的一组包括的所有的候选资源所占用的时长为1ms,或者,其中的每组包括的所有的候选资源所占用的时长为1ms。如果其中的每组包括的所有的候选资源所占用的时长为1ms,那么第一资源集所承载的所有的同步信号块占用的时长可以为8ms。例如,X的取值可以与第一资源集所在的载波的子载波间隔有关,如果第一资源集所在的载波的子载波间隔越大,则X的取值越小,反之,如果第一资源集所在的载波的子载波间隔越小,则X的取值越大。
在一种可选的实施方式中,
根据预配置的信息确定所述第一资源集在所述同步信号块周期内的时域位置;或,
接收来自网络设备的第一信令,所述第一信令用于指示所述第一资源集在所述同步信号块周期内的时域位置。
关于S-SSB周期内包括的资源集的位置,可以通过协议规定;或者,可以预配置在第一终端装置中,第一终端装置可以根据预配置的信息确定资源集在同步信号块的周期内的位置;或者,也可以由网络设备配置给终端装置。例如,网络设备可以向第一终端装置发送第一信令,第一信令可以指示第一资源集在同步信号块的周期内的时域位置。第一终端装置接收第一信令后,就可以确定第一资源集在同步信号块的周期内的时域位置。而且,第一资源集在同步信号块的周期内的时域位置是可变的,在不同的情况下,第一资源集可以位于同步信号块的周期内的不同的位置,例如网络设备可以根据不同的情况配置第一资源集位于同步信号块的周期内的不同位置,或者协议可以规定第一资源集在同步信号块的周期内的多种可能的位置等,使得本申请实施例的技术方案更为灵活。
在一种可选的实施方式中,当所述第一资源集所在的载波的频率为低频,所述N个候选资源所属的组的个数小于或等于2,其中所述N个候选资源所属的组位于同一个无线帧内,或者分别位于同一个无线帧的不同的半帧内。
如果第一资源集的频率为低频,那么N个候选资源所占用的组的个数可以小于或等于2。且,N个候选资源所占用的组可以位于同一个无线帧内。例如N个候选资源所占用的组可以位于一个无线帧的同一个半帧内,例如都位于该无线帧的前半帧或后半帧;或者,如果N个候选资源所占用的组的个数为2,则这2个组可以有一个组位于该无线帧的前半帧,另一个组位于该无线帧的后半帧。例如,第一资源集对应的子载波间隔为15KHz,则第一资源集可以包括2组用于发送S-SSB的候选资源,N个候选资源可以属于这2组,或者属于这2组中的其中一组。如果N个候选资源属于这2组,则这2组位于同一个无线帧内,且,这2组可以均位于该无线帧的前半帧或后半帧,或者,这2组中的1组位于该无线帧的前半帧,另1组位于该无线帧的后半帧。可见,N个候选资源所属的组可以较为灵活,理论上来说,N个候选资源可以属于第一资源集所包括的任意一个或多个组。
在一种可选的实施方式中,所述第i组包括K个子组,所述X个候选资源属于所述K个子组,所述K个子组中的一个子组包括R个候选资源,所述R个候选资源可用于传输R个同步信号块,所述R个同步信号块是重复传输的。
为了覆盖更细的粒度,在本申请实施例中,还可以将M个组中的全部组或部分组中的每个组再分为多个子组。如果是将多个组中的每个组再分为多个子组,那么不同的组所包括的子组的个数可以相同,也可以不同。例如,可以将M个组中的第一组分为K个子组,那么第一组所包括的X个候选资源就属于K个子组。例如,M个组中的每个组都可以包括K个子组,或者,M个组中的第二组所包括的子组的个数可以不等于K。K可以是正整数,例如,K可以等于1,或者可以等于2,或者也可以等于更大的数值。K个子组中的不同的子组所包括的候选资源的个数可以相同,也可以不同。例如,K个子组中的一个子组包括R个候选资源,R个候选资源可以承载R个S-SSB,这R个S-SSB可以是重复传输的,或者说是以QCL方式传输的。例如,K个子组中的每个子组都可以包括R个候选资源,或者,K个子组中的第二子组所包括的候选资源也可以不等于R。R可以是正整数,例如,R可以等于1,或者可以等于2,或者也可以等于更大的数值。
将X个S-SSB进一步分成K个子组,是考虑到,对于高频的场景,当波束的波瓣宽度更小,或者传输时需要将部分波瓣做部分的空间重叠时,可能需要将S-SSB分为更多的 组。例如,K个子组可以通过K个波束来发送,不同的波束对应的方向不同,也就是说,K个子组可以对应K个发送方向,或者说,K个子组承载的S-SSB对应于K个发送方向。不同的子组指向不同的发送方向。如果第一终端装置需要切换天线的发送方向,则只需在两个子组之间进行切换即可,无需在子组内进行切换,减少了终端装置切换的次数,相应减小了切换时延。另外,如果将本申请实施例提供的方案应用于低频,那么K个子组中的不同的子组所承载的S-SSB可以通过安装在不同位置的天线单元发送出去,例如可以通过安装在车上的不同位置的天线单元发送出去,以实现对车辆周围不同位置的覆盖。相对于只将L个S-SSB分为M个组的方案来说,再将M个组中的全部组或部分组中的每个组分为多个子组,可以使得所发送的S-SSB覆盖的粒度更细。
例如,H可以小于或等于R,相当于每H个同步信号块可以以重复方式发送,这H个同步信号块可以属于K个子组中的一个子组,相当于实现子组内重复,或者这H个同步信号块也可以属于K个子组中的不同的子组,相当于在组之间也可以实现重复发送。或者,H也可以大于R,这H个同步信号块可以属于K个子组中的不同的子组,相当于在组之间也可以实现重复发送。
在一种可选的实施方式中,所述第一资源集包括第一部分和第二部分,所述第一部分包括所述M个组中在时域上的前M/2个组,所述第二部分包括所述M个组中在时域上的后M/2个组。
还可以将第一资源集分为两部分。例如,第一资源集包括第一部分和第二部分,第一部分可以包括M/2个组,第二部分也可以包括M/2个组。例如第一部分包括M个组中在时域上的前M/2个组,第二部分包括M个组中在时域上的后M/2个组,在时域上,第一部分位于第二部分之前。如果M个组中的每个组都包括X个S-SSB,那么第一部分可以包括L max/2个S-SSB,第二部分也可以包括L max/2个S-SSB。如果M个组位于一个无线帧内,那么第一部分可以位于该无线帧的前半帧内,第二部分位于该无线帧的后半帧内。例如,第一部分的结构和第二部分的结构可以相同,或者也可以不同。所谓的结构相同,是指第一部分所包括的候选资源在第一部分内的相对位置与第二部分所包括的候选资源在第二部分内的相对位置相同。将第一资源集再划分为两部分,从而可以将第一资源集在每个半帧内来看待,进一步细化了第一资源集的粒度。
在一种可选的实施方式中,
从第一资源集中确定用于发送N个同步信号块的第一资源,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;
在所述N个候选资源中的第j候选资源上发送所述N个同步信号块中的第j同步信号块,所述第j同步信号块指示所述第j同步信号块的时域位置。
在本申请实施例中,同步信号块的周期内可以包括第一资源集,第一资源集包括M个组,M个组中的第一组所包括的X个候选资源可用于承载X个同步信号块,相当于规定了用于发送同步信号块的资源,在需要发送同步信号块时只需从这些资源中选择资源即可,简化了选择资源的方式。而且一个同步信号块可以占用Y个符号,从而使得本申请实施例 所提供的技术方案能够应用于NR-V2X系统,或者可以应用于其他的规定了同步信号块占用Y个符号的通信系统。而且通过第j同步信号块就可以指示第j同步信号块的时域位置,使得第二终端装置能够在正确的时域位置接收第j同步信号块,减小了第二终端装置检测同步信号块的功耗。
在一种可选的实施方式中,确定第一同步信号块,其中所述第一同步信号块包括主同步信号、辅同步信号和物理广播信道,所述物理广播信道包括解调参考信号,所述第一同步信号块在时域上占用Y个符号,Y为大于或等于6的整数,所述主同步信号占用所述Y个符号中的第2个符号和第3个符号,所述辅同步信号占用所述Y个符号中的第4个符号和第5个符号,或者第5个符号和第6个符号,所述物理广播信道占用所述Y个符号中除所述主同步信号和辅同步信号占用的符号之外的符号;发送所述第一同步信号块。
在本申请实施例中,主同步信号和辅同步信号可以位于该时隙的前端,使得主同步信号和辅同步信号得以尽早发送,作为接收端的第二终端装置可以根据主同步信号和辅同步信号进行同步等操作。另外,解调参考信号只占用物理广播信道的符号,而不会占用主同步信号和辅同步信号的符号,从而可以保证主同步信号和辅同步信号所占用的符号的可靠性,而且也能使得解调参考信号得到正常发送。
第二方面,提供第二种通信方法,该方法包括:从第一资源集中确定用于传输N个同步信号块的第一资源,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;在所述N个候选资源中的第j候选资源上接收所述N个同步信号块中的第j同步信号块,j为大于或等于1、小于或等于N的整数。
该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。示例性地,所述第二通信装置为终端装置,例如称为第二终端装置。示例性地,所述第二终端装置为终端设备,或者为设置在终端设备中的用于实现终端设备的功能的芯片系统,或者为用于实现终端设备的功能的其他部件。
在一种可选的实施方式中,在接收所述第j同步信号块之后,根据所述第j同步信号块获取定时和/或所述第j同步信号块的频率的信息。
在一种可选的实施方式中,所述第j同步信号块在时域上占用Y个符号,包括:
所述Y个符号为一个时隙的全部符号;或,
所述Y个符号为一个时隙中除了最后一个符号之外的所有符号。
在一种可选的实施方式中,
对于正常循环前缀,Y=13,或者,
对于扩展循环前缀,Y=11。
在一种可选的实施方式中,所述N个同步信号块是以重复方式传输的,或者所述N个同步信号块中的每H个同步信号块是重复方式传输的,H为小于或等于所述N的正整数。
在一种可选的实施方式中,
当所述第一资源集所在的载波的频率为低频,所述第一资源集承载的同步信号块占用 的时域资源的时长小于或等于2毫秒;或,
当所述第一资源集所在的载波的频率为高频,所述第一资源集承载的同步信号块占用的时域资源的时长小于或等于8毫秒。
在一种可选的实施方式中,所述第i组承载的同步信号块在时域占用的时长为1ms。
在一种可选的实施方式中,当所述第一资源集所在的载波的频率为低频,所述N个候选资源所属的组的个数小于或等于2,其中所述N个候选资源所属的组位于同一个无线帧内,或者分别位于同一个无线帧的不同的半帧内。
在一种可选的实施方式中,所述第i组包括K个子组,所述X个候选资源属于所述K个子组,所述K个子组中的一个子组包括R个候选资源,所述R个候选资源可用于传输R个同步信号块,所述R个同步信号块是重复传输的。
在一种可选的实施方式中,所述第一资源集包括第一部分和第二部分,所述第一部分包括所述M个组中在时域上的前M/2个组,所述第二部分包括所述M个组中在时域上的后M/2个组。
在一种可选的实施方式中,在N个候选资源中的第j候选资源上接收N个同步信号块中的第j同步信号块,所述N个候选资源属于第一资源集,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述N个候选资源属于所述M个组中的一组或多组;根据所述第j同步信号块,确定所述第j同步信号块的时域位置。
在一种可选的实施方式中,接收第一同步信号块,其中所述第一同步信号块包括主同步信号、辅同步信号和物理广播信道,所述物理广播信道包括解调参考信号,所述第一同步信号块在时域上占用Y个符号,Y为大于或等于6的整数,所述主同步信号占用所述Y个符号中的第2个符号和第3个符号,所述辅同步信号占用所述Y个符号中的第4个符号和第5个符号,或者第5个符号和第6个符号,所述物理广播信道占用所述Y个符号中除所述主同步信号和辅同步信号占用的符号之外的符号。根据所述第一同步信号块解调所述物理广播信道。
关于第二方面或各种可选的实施方式的技术效果,可以参考对于第一方面或相应的可选的实施方式的技术效果的介绍。
第三方面,提供第三种通信方法,该方法包括:从第一资源集中确定用于发送N个同步信号块的第一资源,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;在所述N个候选资源中的第j候选资源上发送所述N个同步信号块中的第j同步信号块,所述第j同步信号块指示所述第j同步信号块的时域位置。
该方法可由第三通信装置执行,第三通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。示例性地,所述第三通信装置为终端装置,例如称为第一终端装置。示例性地,所述第一终端装置为终端设备,或者为设置在终 端设备中的用于实现终端设备的功能的芯片系统,或者为用于实现终端设备的功能的其他部件。
在本申请实施例中,同步信号块的周期内可以包括第一资源集,第一资源集包括M个组,M个组中的第一组所包括的X个候选资源可用于承载X个同步信号块,相当于规定了用于发送同步信号块的资源,在需要发送同步信号块时只需从这些资源中选择资源即可,简化了选择资源的方式。而且一个同步信号块可以占用Y个符号,从而使得本申请实施例所提供的技术方案能够应用于NR-V2X系统,或者可以应用于其他的规定了同步信号块占用Y个符号的通信系统。而且通过第j同步信号块就可以指示第j同步信号块的时域位置,使得第二终端装置能够在正确的时域位置接收第j同步信号块,减小了第二终端装置检测同步信号块的功耗。
在一种可选的实施方式中,所述第j同步信号块的时域位置包括所述第j同步信号块所在的组的标识,和/或,所述第j同步信号块在所在的组内的标识。
第一资源集的时域位置,第二终端装置可以事先确定,例如可以由网络设备配置给第二终端装置,或者由第一终端装置告知第二终端装置,或者通过协议规定,或者也可以预配置在第二终端装置中。在知道了第一资源集的时域位置后,第二终端装置只要可以确定第j同步信号块所在的组的标识,或者确定第j同步信号块在所在的组内的标识,或者确定第j同步信号块所在的组的标识和第j同步信号块在所在的组内的标识,就可以确定第j同步信号块的时域位置,从而能够在正确的时域位置接收第j同步信号块。当然,第j同步信号块的时域位置还可以包括其他的信息,具体的不做限制。
在一种可选的实施方式中,所述第j同步信号块指示所述第j同步信号块的时域位置,包括:
所述第j同步信号块包括的广播信道承载的信令,指示所述第j同步信号块的时域位置;或,
所述第j同步信号块包括的广播信道承载的解调参考信号,指示所述第j同步信号块的时域位置;或,
用于对所述第j同步信号块包括的广播信道承载的信令进行加扰的参考信号,指示所述第j同步信号块的时域位置。
以第j同步信号块是S-SSB为例,第j同步信号块所包括的广播信道,例如为物理侧行广播信道,物理侧行广播信道承载的信令,例如为侧行主信息块。本申请实施例中,可以通过第j同步信号块所对应的多种不同的信息来指示第j同步信号块的时域位置,方式较为灵活。而且,第j同步信号块的时域位置可以包括多种信息,也可以通过第j同步信号块所对应的不同的信息来分别指示第j同步信号块的时域信息所包括的不同的信息,从而使得指示的信息更多,能够使得第二终端装置得到更多的信息。
在一种可选的实施方式中,所述第j同步信号块包括的广播信道承载的解调参考信号,指示所述第j同步信号块的时域位置,包括:
所述解调参考信号序列的初始值或初始位置指示所述第j同步信号块的时域位置。
如果通过广播信道承载的解调参考信号来指示第j同步信号块的时域位置,那么可以通过解调参考信号序列的初始值来指示第j同步信号块的时域位置,如果解调参考信号序列的初始值不同,则第j同步信号块的时域位置就不同。解调参考信号序列的初始值可以有多种取值,从而可以指示的内容也更为丰富。或者,也可以通过解调参考信号序列的初 始位置来指示第j同步信号块的时域位置,如果解调参考信号序列的初始位置不同,则第j同步信号块的时域位置就不同。解调参考信号序列的初始位置可以有多种,从而可以指示的内容也更为丰富。
在一种可选的实施方式中,用于对所述第j同步信号块包括的广播信道承载的信令进行加扰的参考信号,指示所述所述第j同步信号块的时域位置,包括:
所述用于对所述第j同步信号块包括的广播信道承载的信令进行加扰的参考信号序列的初始值或初始位置,指示所述第j同步信号块的时域位置。
如果通过用于对第j同步信号块包括的广播信道承载的信令进行加扰的参考信号序列来指示第j同步信号块的时域位置,那么可以通过该参考信号序列的初始值来指示第j同步信号块的时域位置,如果该参考信号序列的初始值不同,则第j同步信号块的时域位置就不同。该参考信号序列的初始值可以有多种取值,从而可以指示的内容也更为丰富。或者,也可以通过该参考信号序列的初始位置来指示第j同步信号块的时域位置,如果该参考信号序列的初始位置不同,则第j同步信号块的时域位置就不同。该参考信号序列的初始位置可以有多种,从而可以指示的内容也更为丰富。
在一种可选的实施方式中,所述解调参考信号序列的初始值由以下的一种或多种参数确定:
所述第j同步信号块所在的组的标识;
所述第j同步信号块在所在的组内的标识;
同步信号源的标识;
所述第j同步信号块所在的时隙的标识;或,
所述第j同步信号块所在的时隙对应的CP类型。
例如,解调参考信号序列的初始值可以根据第j同步信号块所在的组的标识确定;或者,解调参考信号序列的初始值可以根据第j同步信号块所在的组的标识和第j同步信号块在所在的组内的标识确定;或者,解调参考信号序列的初始值可以根据第j同步信号块所在的组的标识,第j同步信号块在所在的组内的标识,同步信号源的标识,第j同步信号块所在的时隙的标识,以及第j同步信号块所在的时隙对应的CP类型确定,等等。当然,解调参考信号序列的初始值还可以根据除了如上的信息之外的其他信息确定,或者,解调参考信号序列的初始值也可以不根据如上的信息确定,而是根据其他的信息确定,具体的不做限制。
在一种可选的实施方式中,所述参考信号序列的初始值由以下的一种或多种参数确定:
所述第j同步信号块所在的组的标识;
所述第j同步信号块在所在的组内的标识;
同步信号源的标识;
所述第j同步信号块所在的时隙的标识;或,
所述第j同步信号块所在的时隙对应的CP类型。
例如,参考信号序列的初始值可以根据第j同步信号块所在的组的标识确定;或者,参考信号序列的初始值可以根据第j同步信号块所在的组的标识和第j同步信号块在所在的组内的标识确定;或者,参考信号序列的初始值可以根据第j同步信号块所在的组的标识,第j同步信号块在所在的组内的标识,同步信号源的标识,第j同步信号块所在的时隙的标识,以及第j同步信号块所在的时隙对应的CP类型确定,等等。当然,参考信号 序列的初始值还可以根据除了如上的信息之外的其他信息确定,或者,参考信号序列的初始值也可以不根据如上的信息确定,而是根据其他的信息确定,具体的不做限制。
在一种可选的实施方式中,从第一资源集中确定用于发送N个同步信号块的第一资源,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;在所述N个候选资源中的第j候选资源上发送所述N个同步信号块中的第j同步信号块,j为大于或等于1、小于或等于N的整数。
在本申请实施例中,同步信号块的周期内可以包括第一资源集,第一资源集包括M个组,M个组中的第一组所包括的X个候选资源可用于承载X个同步信号块,相当于规定了用于发送同步信号块的资源,在需要发送同步信号块时只需从这些资源中选择资源即可,简化了选择资源的方式。而且一个同步信号块可以占用Y个符号,从而使得本申请实施例所提供的技术方案能够应用于NR-V2X系统,或者可以应用于其他的规定了同步信号块占用Y个符号的通信系统。
在一种可选的实施方式中,确定第一同步信号块,其中所述第一同步信号块包括主同步信号、辅同步信号和物理广播信道,所述物理广播信道包括解调参考信号,所述第一同步信号块在时域上占用Y个符号,Y为大于或等于6的整数,所述主同步信号占用所述Y个符号中的第2个符号和第3个符号,所述辅同步信号占用所述Y个符号中的第4个符号和第5个符号,或者第5个符号和第6个符号,所述物理广播信道占用所述Y个符号中除所述主同步信号和辅同步信号占用的符号之外的符号;发送所述第一同步信号块。
在本申请实施例中,主同步信号和辅同步信号可以位于该时隙的前端,使得主同步信号和辅同步信号得以尽早发送,作为接收端的第二终端装置可以根据主同步信号和辅同步信号进行同步等操作。另外,解调参考信号只占用物理广播信道的符号,而不会占用主同步信号和辅同步信号的符号,从而可以保证主同步信号和辅同步信号所占用的符号的可靠性,而且也能使得解调参考信号得到正常发送。
第四方面,提供第四种通信方法,该方法包括:在N个候选资源中的第j候选资源上接收N个同步信号块中的第j同步信号块,所述N个候选资源属于第一资源集,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述N个候选资源属于所述M个组中的一组或多组;根据所述第j同步信号块,确定所述第j同步信号块的时域位置。
该方法可由第四通信装置执行,第四通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。示例性地,所述第四通信装置为终端装置,例如称为第二终端装置。示例性地,所述第二终端装置为终端设备,或者为设置在终端设备中的用于实现终端设备的功能的芯片系统,或者为用于实现终端设备的功能的其他部件。
在一种可选的实施方式中,所述第j同步信号块的时域位置包括所述第j同步信号块所在的组的标识,和/或,所述第j同步信号块在所在的组内的标识。
在一种可选的实施方式中,根据所述第j同步信号块,确定所述第j同步信号块的时域位置,包括:
根据所述第j同步信号块包括的广播信道承载的信令,确定所述第j同步信号块的时域位置;或,
根据所述第j同步信号块包括的广播信道承载的解调参考信号,确定所述第j同步信号块的时域位置;或,
根据用于对所述第j同步信号块包括的广播信道承载的信令进行加扰的参考信号,确定所述第j同步信号块的时域位置。
在一种可选的实施方式中,根据所述第j同步信号块包括的广播信道承载的解调参考信号,确定所述第j同步信号块的时域位置,包括:
根据所述解调参考信号序列的初始值或初始位置,确定所述第j同步信号块的时域位置。
在一种可选的实施方式中,根据用于对所述第j同步信号块包括的广播信道承载的信令进行加扰的参考信号,确定所述第j同步信号块的时域位置,包括:
根据所述用于对所述第j同步信号块包括的广播信道承载的信令进行加扰的参考信号序列的初始值或初始位置,确定所述第j同步信号块的时域位置。
在一种可选的实施方式中,所述序列的初始值由以下的一种或多种参数确定:
所述第j同步信号块所在的组的标识;
所述第j同步信号块在所在的组内的标识;
同步信号源的标识;
所述第j同步信号块所在的时隙的标识;或,
所述第j同步信号块所在的时隙对应的CP类型。
在一种可选的实施方式中,从第一资源集中确定用于传输N个同步信号块的第一资源,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;在所述N个候选资源中的第j候选资源上接收所述N个同步信号块中的第j同步信号块,j为大于或等于1、小于或等于N的整数。
在一种可选的实施方式中,接收第一同步信号块,其中所述第一同步信号块包括主同步信号、辅同步信号和物理广播信道,所述物理广播信道包括解调参考信号,所述第一同步信号块在时域上占用Y个符号,Y为大于或等于6的整数,所述主同步信号占用所述Y个符号中的第2个符号和第3个符号,所述辅同步信号占用所述Y个符号中的第4个符号和第5个符号,或者第5个符号和第6个符号,所述物理广播信道占用所述Y个符号中除所述主同步信号和辅同步信号占用的符号之外的符号。根据所述第一同步信号块解调所述物理广播信道。
关于第四方面或各种可能的实施方式的技术效果,可参考对于第三方面或相应的可能 的实施方式的技术效果的介绍。
第五方面,提供第五种通信方法,该方法包括:确定第一同步信号块,其中所述第一同步信号块包括主同步信号、辅同步信号和物理广播信道,所述物理广播信道包括解调参考信号,所述第一同步信号块在时域上占用Y个符号,Y为大于或等于6的整数,所述主同步信号占用所述Y个符号中的第2个符号和第3个符号,所述辅同步信号占用所述Y个符号中的第4个符号和第5个符号,或者第5个符号和第6个符号,所述物理广播信道占用所述Y个符号中除所述主同步信号和辅同步信号占用的符号之外的符号;发送所述第一同步信号块。
该方法可由第五通信装置执行,第五通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。示例性地,所述第五通信装置为终端装置,例如称为第一终端装置。示例性地,所述第一终端装置为终端设备,或者为设置在终端设备中的用于实现终端设备的功能的芯片系统,或者为用于实现终端设备的功能的其他部件。
在本申请实施例中,主同步信号和辅同步信号可以位于该时隙的前端,使得主同步信号和辅同步信号得以尽早发送,作为接收端的第二终端装置可以根据主同步信号和辅同步信号进行同步等操作。另外,解调参考信号只占用物理广播信道的符号,而不会占用主同步信号和辅同步信号的符号,从而可以保证主同步信号和辅同步信号所占用的符号的可靠性,而且也能使得解调参考信号得到正常发送。
在一种可选的实施方式中,所述第一同步信号块在时域上占用Y个符号,包括:
所述Y个符号为一个时隙的全部符号;或,
所述Y个符号为一个时隙中除了最后一个符号之外的所有符号。
一个同步信号块可以占用一个时隙的全部符号,例如有些时隙内不包括间隔,则同步信号块可以占满该时隙,这样可以提高对时隙的利用率。或者,一个同步信号块也可以不占用一个时隙内的最后一个符号,例如有些时隙包括间隔,间隔一般占用时隙的最后一个符号,因此同步信号块不占用间隔所占用的符号,这样可以为间隔留出所需的符号,而且也能实现同步信号块的发送。
在一种可选的实施方式中,对于正常循环前缀,Y=13,或者,对于扩展循环前缀,Y=11。
如果Y个符号为一个时隙中除了最后一个符号之外的所有符号,也就是说,一个同步信号块占用一个时隙中除了最后一个符号之外的所有符号,那么对于正常循环前缀的时隙,所包括的符号的总数为14,则同步信号块可以占用其中的13个符号,而对于扩展循环前缀的时隙,所包括的符号的总数为12,则同步信号块可以占用其中的11个符号。如果还有其他格式的时隙,例如包括的符号的总数为D,那么同步信号块可以占用该时隙内的D-1个符号,对于D的取值不做限制。
在一种可选的实施方式中,所述解调参考信号占用所述Y个符号中除所述主同步信号和辅同步信号占用的符号之外的全部符号或部分符号。
解调参考信号只占用物理广播信道的符号,而不会占用主同步信号和辅同步信号的符号,从而可以保证主同步信号和辅同步信号所占用的符号的可靠性,而且也能使得解调参考信号得到正常发送。解调参考信号可以占用Y个符号中除了主同步信号和辅同步信号之外的部分符号,而剩余的部分符号可以由物理广播信道占用,例如可以用于发送广播信息 等,使得同步信号块所包括的内容更为丰富。或者,解调参考信号也可以占用Y个符号中除了主同步信号和辅同步信号之外的全部符号,从而提高解调参考信号的覆盖。
在一种可选的实施方式中,在包括了所述解调参考信号的物理广播信道的符号对应的物理资源块内,所述解调参考信号占用等间隔的3个或4个子载波,所述物理广播信号承载的广播信息占用所述物理资源块内除了所述解调参考信号占用的子载波外其余的子载波。
在包括了解调参考信号的物理广播信道的符号对应的物理资源块内,解调参考信号可以占用等间隔的3个或4个子载波,或者说,解调参考信号可以以3或4作为间隔,等间隔占用子载波。物理广播信道承载的广播信息可以占用该物理资源块内除了解调参考信号占用的子载波外其余的子载波。例如一个时隙包括12个符号,分别为符号0~符号11,主同步信号占用符号1和符号2,辅同步信号占用符号3和符号4,物理广播信道占用的符号包括符号5,解调参考信号占用了符号5,当然解调参考信号还可以占用物理广播信号的其他符号,这里只以符号5为例。例如符号5在频域上占用1个物理资源块,1个物理资源块可以包括12个子载波,分别为子载波0~子载波11。如果解调参考信号占用等间隔的3个子载波,那么这3个子载波的间隔为4,例如解调参考信号占用了子载波0、子载波4和子载波8,那么物理广播信道承载的广播信息可以占用剩余的子载波1~子载波3、子载波5~子载波7、或子载波9~子载波11中的一个或多个子载波。令解调参考信号在频域上只占用部分子载波,既可以保证解调参考信号的发送,又可以留出一部分子载波供其他信息占用,可以提高频域资源的利用率。
在一种可选的实施方式中,对于正常循环前缀,所述解调参考信号位于所述第一同步信号块中的以下符号位置:
所述解调参考信号位于同步信号块中的第7个符号,第8个符号,第11个符号,第12个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第10个符号,第13个符号;或者,
所述解调参考信号位于同步信号块中的第8个符号,第11个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第12个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第13个符号;或者,
所述解调参考信号位于同步信号块中的第9个符号或第10个符号。
这里给出了在正常循环前缀的时隙中,解调参考信号可能占用的一些符号的位置,从而更利于本领域技术人员实现本申请实施例的技术方案。当然,如上的几种只是示例,在正常循环前缀的时隙中,解调参考信号可能占用的符号位置不限于这里所介绍的几种。
在一种可选的实施方式中,对于扩展循环前缀,所述解调参考信号位于所述第一同步信号块中的以下符号位置:
所述解调参考信号位于同步信号块中的第7个符号,第8个符号,第10个符号,第11个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第9个符号,第11个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第10个符号;或者,
所述解调参考信号位于同步信号块中的第8个符号或第9个符号。
这里给出了在扩展循环前缀的时隙中,解调参考信号可能占用的一些符号的位置,从 而更利于本领域技术人员实现本申请实施例的技术方案。当然,如上的几种只是示例,在扩展循环前缀的时隙中,解调参考信号可能占用的符号位置不限于这里所介绍的几种。
在一种可选的实施方式中,从第一资源集中确定用于发送N个同步信号块的第一资源,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;在所述N个候选资源中的第j候选资源上发送所述N个同步信号块中的第j同步信号块,j为大于或等于1、小于或等于N的整数。
在本申请实施例中,同步信号块的周期内可以包括第一资源集,第一资源集包括M个组,M个组中的第一组所包括的X个候选资源可用于承载X个同步信号块,相当于规定了用于发送同步信号块的资源,在需要发送同步信号块时只需从这些资源中选择资源即可,简化了选择资源的方式。而且一个同步信号块可以占用Y个符号,从而使得本申请实施例所提供的技术方案能够应用于NR-V2X系统,或者可以应用于其他的规定了同步信号块占用Y个符号的通信系统。
在一种可选的实施方式中,从第一资源集中确定用于发送N个同步信号块的第一资源,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;在所述N个候选资源中的第j候选资源上发送所述N个同步信号块中的第j同步信号块,所述第j同步信号块指示所述第j同步信号块的时域位置。
在本申请实施例中,同步信号块的周期内可以包括第一资源集,第一资源集包括M个组,M个组中的第一组所包括的X个候选资源可用于承载X个同步信号块,相当于规定了用于发送同步信号块的资源,在需要发送同步信号块时只需从这些资源中选择资源即可,简化了选择资源的方式。而且一个同步信号块可以占用Y个符号,从而使得本申请实施例所提供的技术方案能够应用于NR-V2X系统,或者可以应用于其他的规定了同步信号块占用Y个符号的通信系统。而且通过第j同步信号块就可以指示第j同步信号块的时域位置,使得第二终端装置能够在正确的时域位置接收第j同步信号块,减小了第二终端装置检测同步信号块的功耗。
第六方面,提供第六种通信方法,该方法包括:接收第一同步信号块,其中所述第一同步信号块包括主同步信号、辅同步信号和物理广播信道,所述物理广播信道包括解调参考信号,所述第一同步信号块在时域上占用Y个符号,Y为大于或等于6的整数,所述主同步信号占用所述Y个符号中的第2个符号和第3个符号,所述辅同步信号占用所述Y个符号中的第4个符号和第5个符号,或者第5个符号和第6个符号,所述物理广播信道占用所述Y个符号中除所述主同步信号和辅同步信号占用的符号之外的符号。根据所述第一同步信号块解调所述物理广播信道。
该方法可由第六通信装置执行,第六通信装置可以是通信设备或能够支持通信设备实 现该方法所需的功能的通信装置,例如芯片系统。示例性地,所述第六通信装置为终端装置,例如称为第二终端装置。示例性地,所述第二终端装置为终端设备,或者为设置在终端设备中的用于实现终端设备的功能的芯片系统,或者为用于实现终端设备的功能的其他部件。
在一种可能的实施方式中,所述第一同步信号块在时域上占用Y个符号,包括:
所述Y个符号为一个时隙的全部符号;或,
所述Y个符号为一个时隙中除了最后一个符号之外的所有符号。
在一种可能的实施方式中,
对于正常循环前缀,Y=13,或者,
对于扩展循环前缀,Y=11。
在一种可能的实施方式中,所述解调参考信号占用所述Y个符号中除所述主同步信号和辅同步信号占用的符号之外的全部符号或部分符号。
在一种可能的实施方式中,在包括了所述解调参考信号的物理广播信道的符号对应的物理资源块内,所述解调参考信号占用等间隔的3个或4个子载波,所述物理广播信号承载的广播信息占用所述物理资源块内除了所述解调参考信号占用的子载波外其余的子载波。
在一种可能的实施方式中,对于正常循环前缀,所述解调参考信号位于所述第一同步信号块中的以下符号位置:
所述解调参考信号位于同步信号块中的第7个符号,第8个符号,第11个符号,第12个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第10个符号,第13个符号;或者,
所述解调参考信号位于同步信号块中的第8个符号,第11个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第12个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第13个符号;或者,
所述解调参考信号位于同步信号块中的第9个符号或第10个符号。
在一种可能的实施方式中,对于扩展循环前缀,所述解调参考信号位于所述第一同步信号块中的以下符号位置:
所述解调参考信号位于同步信号块中的第7个符号,第8个符号,第10个符号,第11个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第9个符号,第11个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第10个符号;或者,
所述解调参考信号位于同步信号块中的第8个符号或第9个符号。
在一种可选的实施方式中,从第一资源集中确定用于传输N个同步信号块的第一资源,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;在所述N个候选资源中的第j候选资源上接收所述N个同步信号块中的第j同步信号块,j 为大于或等于1、小于或等于N的整数。
在一种可选的实施方式中,在N个候选资源中的第j候选资源上接收N个同步信号块中的第j同步信号块,所述N个候选资源属于第一资源集,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述N个候选资源属于所述M个组中的一组或多组;根据所述第j同步信号块,确定所述第j同步信号块的时域位置。
关于第六方面或各种可能的实施方式的技术效果,可以参考对于第五方面或相应的实施方式的技术效果的介绍。
第七方面,提供一种通信装置,例如该通信装置为如前所述的第一通信装置。所述第一通信装置用于执行上述第一方面或任一可能的实施方式中的方法。具体地,所述第一通信装置可以包括用于执行第一方面或任一可能的实施方式中的方法的模块,例如包括处理模块和收发模块。示例性地,所述第一通信装置为第一终端装置。示例性地,所述第一终端装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为终端设备。例如,所述收发模块也可以通过收发器实现,所述处理模块也可以通过处理器实现。如果第一终端装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第一终端装置为设置在通信设备中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第七方面的介绍过程中,继续以所述处理模块和所述收发模块为例进行介绍。其中,
所述处理模块,用于从第一资源集中确定用于发送N个同步信号块的第一资源,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;
所述收发模块,用于在所述N个候选资源中的第j候选资源上发送所述N个同步信号块中的第j同步信号块,j为大于或等于1、小于或等于N的整数。
在一种可选的实施方式中,所述第j同步信号块在时域上占用Y个符号,包括:
所述Y个符号为一个时隙的全部符号;或,
所述Y个符号为一个时隙中除了最后一个符号之外的所有符号。
在一种可选的实施方式中,
对于正常循环前缀,Y=13,或者,
对于扩展循环前缀,Y=11。
在一种可选的实施方式中,所述N个同步信号块是以重复方式传输的,或者所述N个同步信号块中的每H个同步信号块是重复方式传输的,H为小于或等于所述N的正整数。
在一种可选的实施方式中,
当所述第一资源集所在的载波的频率为低频,所述第一资源集承载的同步信号块占用的时域资源的时长小于或等于2毫秒;或,
当所述第一资源集所在的载波的频率为高频,所述第一资源集承载的同步信号块占用的时域资源的时长小于或等于8毫秒。
在一种可选的实施方式中,所述第i组承载的同步信号块在时域占用的时长为1ms。
在一种可选的实施方式中,
所述处理模块,还用于根据预配置的信息确定所述第一资源集在所述同步信号块周期内的时域位置;或,
所述收发模块,还用于接收来自网络设备的第一信令,所述第一信令用于指示所述第一资源集在所述同步信号块周期内的时域位置。
在一种可选的实施方式中,
当所述第一资源集所在的载波的频率为低频,所述N个候选资源所属的组的个数小于或等于2,其中所述N个候选资源所属的组位于同一个无线帧内,或者分别位于同一个无线帧的不同的半帧内。
在一种可选的实施方式中,所述第i组包括K个子组,所述X个候选资源属于所述K个子组,所述K个子组中的一个子组包括R个候选资源,所述R个候选资源可用于传输R个同步信号块,所述R个同步信号块是重复传输的。
在一种可选的实施方式中,所述第一资源集包括第一部分和第二部分,所述第一部分包括所述M个组中在时域上的前M/2个组,所述第二部分包括所述M个组中在时域上的后M/2个组。
在一种可选的实施方式中,
所述处理模块,还用于从第一资源集中确定用于发送N个同步信号块的第一资源,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;
所述收发模块,还用于在所述N个候选资源中的第j候选资源上发送所述N个同步信号块中的第j同步信号块,所述第j同步信号块指示所述第j同步信号块的时域位置。
在一种可选的实施方式中,
所述处理模块,还用于确定第一同步信号块,其中所述第一同步信号块包括主同步信号、辅同步信号和物理广播信道,所述物理广播信道包括解调参考信号,所述第一同步信号块在时域上占用Y个符号,Y为大于或等于6的整数,所述主同步信号占用所述Y个符号中的第2个符号和第3个符号,所述辅同步信号占用所述Y个符号中的第4个符号和第5个符号,或者第5个符号和第6个符号,所述物理广播信道占用所述Y个符号中除所述主同步信号和辅同步信号占用的符号之外的符号;
所述收发模块,还用于发送所述第一同步信号块。
关于第七方面或各种可能的实施方式的技术效果,可以参考对于第一方面或相应的实施方式的技术效果的介绍。
第八方面,提供一种通信装置,例如该通信装置为如前所述的第二通信装置。所述第二通信装置用于执行上述第二方面或任一可能的实施方式中的方法。具体地,所述第二通信装置可以包括用于执行第二方面或任一可能的实施方式中的方法的模块,例如包括处理 模块和收发模块。示例性地,所述第二通信装置为第二终端装置。示例性地,所述第二终端装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为终端设备。例如,所述收发模块也可以通过收发器实现,所述处理模块也可以通过处理器实现。如果第二终端装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第二终端装置为设置在通信设备中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第八方面的介绍过程中,继续以所述处理模块和所述收发模块为例进行介绍。其中,
所述处理模块,用于从第一资源集中确定用于传输N个同步信号块的第一资源,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;
所述收发模块,用于在所述N个候选资源中的第j候选资源上接收所述N个同步信号块中的第j同步信号块,j为大于或等于1、小于或等于N的整数。
作为一种可选的实施方式,所述处理模块,还用于在所述收发模块接收所述第j同步信号块之后,根据所述第j同步信号块获取定时和/或所述第j同步信号块的频率的信息。
作为一种可选的实施方式,所述第j同步信号块在时域上占用Y个符号,包括:
所述Y个符号为一个时隙的全部符号;或,
所述Y个符号为一个时隙中除了最后一个符号之外的所有符号。
作为一种可选的实施方式,
对于正常循环前缀,Y=13,或者,
对于扩展循环前缀,Y=11。
作为一种可选的实施方式,所述N个同步信号块是以重复方式传输的,或者所述N个同步信号块中的每H个同步信号块是重复方式传输的,H为小于或等于所述N的正整数。
作为一种可选的实施方式,
当所述第一资源集所在的载波的频率为低频,所述第一资源集承载的同步信号块占用的时域资源的时长小于或等于2毫秒;或,
当所述第一资源集所在的载波的频率为高频,所述第一资源集承载的同步信号块占用的时域资源的时长小于或等于8毫秒。
作为一种可选的实施方式,所述第i组承载的同步信号块在时域占用的时长为1ms。
作为一种可选的实施方式,
当所述第一资源集所在的载波的频率为低频,所述N个候选资源所属的组的个数小于或等于2,其中所述N个候选资源所属的组位于同一个无线帧内,或者分别位于同一个无线帧的不同的半帧内。
作为一种可选的实施方式,所述第i组包括K个子组,所述X个候选资源属于所述K个子组,所述K个子组中的一个子组包括R个候选资源,所述R个候选资源可用于传输R个同步信号块,所述R个同步信号块是重复传输的。
作为一种可选的实施方式,所述第一资源集包括第一部分和第二部分,所述第一部分 包括所述M个组中在时域上的前M/2个组,所述第二部分包括所述M个组中在时域上的后M/2个组。
在一种可选的实施方式中,
所述收发模块,还用于在N个候选资源中的第j候选资源上接收N个同步信号块中的第j同步信号块,所述N个候选资源属于第一资源集,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述N个候选资源属于所述M个组中的一组或多组;
所述处理模块,还用于根据所述第j同步信号块,确定所述第j同步信号块的时域位置。
在一种可选的实施方式中,
所述收发模块,还用于接收第一同步信号块,其中所述第一同步信号块包括主同步信号、辅同步信号和物理广播信道,所述物理广播信道包括解调参考信号,所述第一同步信号块在时域上占用Y个符号,Y为大于或等于6的整数,所述主同步信号占用所述Y个符号中的第2个符号和第3个符号,所述辅同步信号占用所述Y个符号中的第4个符号和第5个符号,或者第5个符号和第6个符号,所述物理广播信道占用所述Y个符号中除所述主同步信号和辅同步信号占用的符号之外的符号;
所述处理模块,还用于根据所述第一同步信号块解调所述物理广播信道。
关于第八方面或各种可能的实施方式的技术效果,可以参考对于第二方面或相应的实施方式的技术效果的介绍。
第九方面,提供一种通信装置,例如该通信装置为如前所述的第三通信装置。所述第三通信装置用于执行上述第三方面或任一可能的实施方式中的方法。具体地,所述第三通信装置可以包括用于执行第三方面或任一可能的实施方式中的方法的模块,例如包括处理模块和收发模块。示例性地,所述第三通信装置为第一终端装置。示例性地,所述第一终端装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为终端设备。例如,所述收发模块也可以通过收发器实现,所述处理模块也可以通过处理器实现。如果第一终端装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第一终端装置为设置在通信设备中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第九方面的介绍过程中,继续以所述处理模块和所述收发模块为例进行介绍。其中,
所述处理模块,用于从第一资源集中确定用于发送N个同步信号块的第一资源,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;
所述收发模块,用于在所述N个候选资源中的第j候选资源上发送所述N个同步信号 块中的第j同步信号块,所述第j同步信号块指示所述第j同步信号块的时域位置。
作为一种可选的实施方式,所述第j同步信号块的时域位置包括所述第j同步信号块所在的组的标识,和/或,所述第j同步信号块在所在的组内的标识。
作为一种可选的实施方式,所述第j同步信号块指示所述第j同步信号块的时域位置,包括:
所述第j同步信号块包括的广播信道承载的信令,指示所述第j同步信号块的时域位置;或,
所述第j同步信号块包括的广播信道承载的解调参考信号,指示所述第j同步信号块的时域位置;或,
用于对所述第j同步信号块包括的广播信道承载的信令进行加扰的参考信号,指示所述第j同步信号块的时域位置。
作为一种可选的实施方式,所述第j同步信号块包括的广播信道承载的解调参考信号,指示所述第j同步信号块的时域位置,包括:
所述解调参考信号序列的初始值或初始位置指示所述第j同步信号块的时域位置。
作为一种可选的实施方式,用于对所述第j同步信号块包括的广播信道承载的信令进行加扰的参考信号,指示所述所述第j同步信号块的时域位置,包括:
所述用于对所述第j同步信号块包括的广播信道承载的信令进行加扰的参考信号序列的初始值或初始位置,指示所述第j同步信号块的时域位置。
作为一种可选的实施方式,所述序列的初始值由以下的一种或多种参数确定:
所述第j同步信号块所在的组的标识;
所述第j同步信号块在所在的组内的标识;
同步信号源的标识;
所述第j同步信号块所在的时隙的标识;或,
所述第j同步信号块所在的时隙对应的CP类型。
在一种可选的实施方式中,
所述处理模块,还用于从第一资源集中确定用于发送N个同步信号块的第一资源,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;
所述收发模块,还用于在所述N个候选资源中的第j候选资源上发送所述N个同步信号块中的第j同步信号块,j为大于或等于1、小于或等于N的整数。
在一种可选的实施方式中,
所述处理模块,还用于确定第一同步信号块,其中所述第一同步信号块包括主同步信号、辅同步信号和物理广播信道,所述物理广播信道包括解调参考信号,所述第一同步信号块在时域上占用Y个符号,Y为大于或等于6的整数,所述主同步信号占用所述Y个符号中的第2个符号和第3个符号,所述辅同步信号占用所述Y个符号中的第4个符号和第5个符号,或者第5个符号和第6个符号,所述物理广播信道占用所述Y个符号中除所述主同步信号和辅同步信号占用的符号之外的符号;
所述收发模块,还用于发送所述第一同步信号块。
关于第九方面或各种可能的实施方式的技术效果,可以参考对于第三方面或相应的实施方式的技术效果的介绍。
第十方面,提供一种通信装置,例如该通信装置为如前所述的第四通信装置。所述第四通信装置用于执行上述第四方面或任一可能的实施方式中的方法。具体地,所述第四通信装置可以包括用于执行第四方面或任一可能的实施方式中的方法的模块,例如包括处理模块和收发模块。示例性地,所述第四通信装置为第二终端装置。示例性地,所述第二终端装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为终端设备。例如,所述收发模块也可以通过收发器实现,所述处理模块也可以通过处理器实现。如果第二终端装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第二终端装置为设置在通信设备中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第十方面的介绍过程中,继续以所述处理模块和所述收发模块为例进行介绍。其中,
所述收发模块,用于在N个候选资源中的第j候选资源上接收N个同步信号块中的第j同步信号块,所述N个候选资源属于第一资源集,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述N个候选资源属于所述M个组中的一组或多组;
所述处理模块,用于根据所述第j同步信号块,确定所述第j同步信号块的时域位置。
在一种可选的实施方式中,所述第j同步信号块的时域位置包括所述第j同步信号块所在的组的标识,和/或,所述第j同步信号块在所在的组内的标识。
在一种可选的实施方式中,所述处理模块用于通过如下方式根据所述第j同步信号块,确定所述第j同步信号块的时域位置:
根据所述第j同步信号块包括的广播信道承载的信令,确定所述第j同步信号块的时域位置;或,
根据所述第j同步信号块包括的广播信道承载的解调参考信号,确定所述第j同步信号块的时域位置;或,
根据用于对所述第j同步信号块包括的广播信道承载的信令进行加扰的参考信号,确定所述第j同步信号块的时域位置。
在一种可选的实施方式中,所述处理模块用于通过如下方式根据所述第j同步信号块包括的广播信道承载的解调参考信号,确定所述第j同步信号块的时域位置:
根据所述解调参考信号序列的初始值或初始位置,确定所述第j同步信号块的时域位置。
在一种可选的实施方式中,所述处理模块用于通过如下方式根据用于对所述第j同步信号块包括的广播信道承载的信令进行加扰的参考信号,确定所述第j同步信号块的时域位置:
根据所述用于对所述第j同步信号块包括的广播信道承载的信令进行加扰的参考信号 序列的初始值或初始位置,确定所述第j同步信号块的时域位置。
在一种可选的实施方式中,所述序列的初始值由以下的一种或多种参数确定:
所述第j同步信号块所在的组的标识;
所述第j同步信号块在所在的组内的标识;
同步信号源的标识;
所述第j同步信号块所在的时隙的标识;或,
所述第j同步信号块所在的时隙对应的CP类型。
在一种可选的实施方式中,
所述处理模块,还用于从第一资源集中确定用于传输N个同步信号块的第一资源,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;
所述收发模块,还用于在所述N个候选资源中的第j候选资源上接收所述N个同步信号块中的第j同步信号块,j为大于或等于1、小于或等于N的整数。
在一种可选的实施方式中,
所述收发模块,还用于接收第一同步信号块,其中所述第一同步信号块包括主同步信号、辅同步信号和物理广播信道,所述物理广播信道包括解调参考信号,所述第一同步信号块在时域上占用Y个符号,Y为大于或等于6的整数,所述主同步信号占用所述Y个符号中的第2个符号和第3个符号,所述辅同步信号占用所述Y个符号中的第4个符号和第5个符号,或者第5个符号和第6个符号,所述物理广播信道占用所述Y个符号中除所述主同步信号和辅同步信号占用的符号之外的符号;
所述处理模块,还用于根据所述第一同步信号块解调所述物理广播信道。
关于第十方面或各种可能的实施方式的技术效果,可以参考对于第四方面或相应的实施方式的技术效果的介绍。
第十一方面,提供一种通信装置,例如该通信装置为如前所述的第五通信装置。所述第五通信装置用于执行上述第五方面或任一可能的实施方式中的方法。具体地,所述第五通信装置可以包括用于执行第五方面或任一可能的实施方式中的方法的模块,例如包括处理模块和收发模块。示例性地,所述第五通信装置为第一终端装置。示例性地,所述第一终端装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为终端设备。例如,所述收发模块也可以通过收发器实现,所述处理模块也可以通过处理器实现。如果第一终端装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第一终端装置为设置在通信设备中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第十一方面的介绍过程中,继续以所述处理模块和所述收发模块为例进行介绍。其中,
所述处理模块,用于确定第一同步信号块,其中所述第一同步信号块包括主同步信号、辅同步信号和物理广播信道,所述物理广播信道包括解调参考信号,所述第一同步信号块在时域上占用Y个符号,Y为大于或等于6的整数,所述主同步信号占用所述Y个符号中 的第2个符号和第3个符号,所述辅同步信号占用所述Y个符号中的第4个符号和第5个符号,或者第5个符号和第6个符号,所述物理广播信道占用所述Y个符号中除所述主同步信号和辅同步信号占用的符号之外的符号;
所述收发模块,用于发送所述第一同步信号块。
在一种可选的实施方式中,所述第一同步信号块在时域上占用Y个符号,包括:
所述Y个符号为一个时隙的全部符号;或,
所述Y个符号为一个时隙中除了最后一个符号之外的所有符号。
在一种可选的实施方式中,
对于正常循环前缀,Y=13,或者,
对于扩展循环前缀,Y=11。
在一种可选的实施方式中,所述解调参考信号占用所述Y个符号中除所述主同步信号和辅同步信号占用的符号之外的全部符号或部分符号。
在一种可选的实施方式中,在包括了所述解调参考信号的物理广播信道的符号对应的物理资源块内,所述解调参考信号占用等间隔的3个或4个子载波,所述物理广播信号承载的广播信息占用所述物理资源块内除了所述解调参考信号占用的子载波外其余的子载波。
在一种可选的实施方式中,对于正常循环前缀,所述解调参考信号位于所述第一同步信号块中的以下符号位置:
所述解调参考信号位于同步信号块中的第7个符号,第8个符号,第11个符号,第12个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第10个符号,第13个符号;或者,
所述解调参考信号位于同步信号块中的第8个符号,第11个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第12个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第13个符号;或者,
所述解调参考信号位于同步信号块中的第9个符号或第10个符号。
在一种可选的实施方式中,对于扩展循环前缀,所述解调参考信号位于所述第一同步信号块中的以下符号位置:
所述解调参考信号位于同步信号块中的第7个符号,第8个符号,第10个符号,第11个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第9个符号,第11个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第10个符号;或者,
所述解调参考信号位于同步信号块中的第8个符号或第9个符号。
在一种可选的实施方式中,
所述处理模块,还用于从第一资源集中确定用于发送N个同步信号块的第一资源,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;
所述收发模块,还用于在所述N个候选资源中的第j候选资源上发送所述N个同步信号块中的第j同步信号块,j为大于或等于1、小于或等于N的整数。
在一种可选的实施方式中,
所述处理模块,还用于从第一资源集中确定用于发送N个同步信号块的第一资源,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;
所述收发模块,还用于在所述N个候选资源中的第j候选资源上发送所述N个同步信号块中的第j同步信号块,所述第j同步信号块指示所述第j同步信号块的时域位置。
关于第十一方面或各种可能的实施方式的技术效果,可以参考对于第五方面或相应的实施方式的技术效果的介绍。
第十二方面,提供一种通信装置,例如该通信装置为如前所述的第六通信装置。所述第六通信装置用于执行上述第六方面或任一可能的实施方式中的方法。具体地,所述第六通信装置可以包括用于执行第六方面或任一可能的实施方式中的方法的模块,例如包括处理模块和收发模块。示例性地,所述第六通信装置为第二终端装置。示例性地,所述第二终端装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性地,所述通信设备为终端设备。例如,所述收发模块也可以通过收发器实现,所述处理模块也可以通过处理器实现。如果第二终端装置为通信设备,收发器例如通过通信设备中的天线、馈线和编解码器等实现。或者,如果第二终端装置为设置在通信设备中的芯片,那么收发器例如为芯片中的通信接口,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。在第十二方面的介绍过程中,继续以所述处理模块和所述收发模块为例进行介绍。其中,
所述收发模块,用于接收第一同步信号块,其中所述第一同步信号块包括主同步信号、辅同步信号和物理广播信道,所述物理广播信道包括解调参考信号,所述第一同步信号块在时域上占用Y个符号,Y为大于或等于6的整数,所述主同步信号占用所述Y个符号中的第2个符号和第3个符号,所述辅同步信号占用所述Y个符号中的第4个符号和第5个符号,或者第5个符号和第6个符号,所述物理广播信道占用所述Y个符号中除所述主同步信号和辅同步信号占用的符号之外的符号。所述处理模块,用于根据所述第一同步信号块解调所述物理广播信道。
在一种可选的实施方式中,所述第一同步信号块在时域上占用Y个符号,包括:
所述Y个符号为一个时隙的全部符号;或,
所述Y个符号为一个时隙中除了最后一个符号之外的所有符号。
在一种可选的实施方式中,
对于正常循环前缀,Y=13,或者,
对于扩展循环前缀,Y=11。
在一种可选的实施方式中,所述解调参考信号占用所述Y个符号中除所述主同步信号和辅同步信号占用的符号之外的全部符号或部分符号。
在一种可选的实施方式中,在包括了所述解调参考信号的物理广播信道的符号对应的 物理资源块内,所述解调参考信号占用等间隔的3个或4个子载波,所述物理广播信号承载的广播信息占用所述物理资源块内除了所述解调参考信号占用的子载波外其余的子载波。
在一种可选的实施方式中,对于正常循环前缀,所述解调参考信号位于所述第一同步信号块中的以下符号位置:
所述解调参考信号位于同步信号块中的第7个符号,第8个符号,第11个符号,第12个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第10个符号,第13个符号;或者,
所述解调参考信号位于同步信号块中的第8个符号,第11个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第12个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第13个符号;或者,
所述解调参考信号位于同步信号块中的第9个符号或第10个符号。
在一种可选的实施方式中,对于扩展循环前缀,所述解调参考信号位于所述第一同步信号块中的以下符号位置:
所述解调参考信号位于同步信号块中的第7个符号,第8个符号,第10个符号,第11个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第9个符号,第11个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第10个符号;或者,
所述解调参考信号位于同步信号块中的第8个符号或第9个符号。
在一种可选的实施方式中,
所述处理模块,还用于从第一资源集中确定用于传输N个同步信号块的第一资源,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;
所述收发模块,还用于在所述N个候选资源中的第j候选资源上接收所述N个同步信号块中的第j同步信号块,j为大于或等于1、小于或等于N的整数。
在一种可选的实施方式中,
所述收发模块,还用于在N个候选资源中的第j候选资源上接收N个同步信号块中的第j同步信号块,所述N个候选资源属于第一资源集,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述N个候选资源属于所述M个组中的一组或多组;
所述处理模块,还用于根据所述第j同步信号块,确定所述第j同步信号块的时域位置。
关于第十二方面或各种可能的实施方式的技术效果,可以参考对于第六方面或相应的 实施方式的技术效果的介绍。
第十三方面,提供一种通信装置,该通信装置例如为如前所述的第一通信装置。该通信装置包括处理器。可选的,还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第一方面或任一可能的实施方式所描述的方法。或者,第一通信装置也可以不包括存储器,存储器可以位于第一通信装置外部。在第十三方面的介绍过程中,以第一通信装置包括存储器为例。可选的,第一通信装置还可以包括通信接口,用于与其他装置或设备进行通信。处理器、存储器和通信接口相互耦合,用于实现上述第一方面或任一可能的实施方式所描述的方法。例如,当处理器执行所述存储器存储的计算机指令时,使第一通信装置执行上述第一方面或任一可能的实施方式中的方法。示例性地,所述第一通信装置为第一终端装置。示例性地,所述第一终端装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性的,所述通信设备为终端设备。其中,如果第一终端装置为通信设备,通信接口例如通过所述通信设备中的收发器实现,例如所述收发器通过所述通信设备中的天线、馈线和编解码器等实现。或者,如果第一终端装置为设置在通信设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,
所述存储器,用于存储计算机指令;
所述处理器,用于从第一资源集中确定用于发送N个同步信号块的第一资源,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;
所述通信接口,用于在所述N个候选资源中的第j候选资源上发送所述N个同步信号块中的第j同步信号块,j为大于或等于1、小于或等于N的整数。
在一种可选的实施方式中,所述第j同步信号块在时域上占用Y个符号,包括:
所述Y个符号为一个时隙的全部符号;或,
所述Y个符号为一个时隙中除了最后一个符号之外的所有符号。
在一种可选的实施方式中,
对于正常循环前缀,Y=13,或者,
对于扩展循环前缀,Y=11。
在一种可选的实施方式中,所述N个同步信号块是以重复方式传输的,或者所述N个同步信号块中的每H个同步信号块是重复方式传输的,H为小于或等于所述N的正整数。
在一种可选的实施方式中,
当所述第一资源集所在的载波的频率为低频,所述第一资源集承载的同步信号块占用的时域资源的时长小于或等于2毫秒;或,
当所述第一资源集所在的载波的频率为高频,所述第一资源集承载的同步信号块占用的时域资源的时长小于或等于8毫秒。
在一种可选的实施方式中,所述第i组承载的同步信号块在时域占用的时长为1ms。
在一种可选的实施方式中,
所述处理器,还用于根据预配置的信息确定所述第一资源集在所述同步信号块周期内的时域位置;或,
所述通信接口,还用于接收来自网络设备的第一信令,所述第一信令用于指示所述第一资源集在所述同步信号块周期内的时域位置。
在一种可选的实施方式中,
当所述第一资源集所在的载波的频率为低频,所述N个候选资源所属的组的个数小于或等于2,其中所述N个候选资源所属的组位于同一个无线帧内,或者分别位于同一个无线帧的不同的半帧内。
在一种可选的实施方式中,所述第i组包括K个子组,所述X个候选资源属于所述K个子组,所述K个子组中的一个子组包括R个候选资源,所述R个候选资源可用于传输R个同步信号块,所述R个同步信号块是重复传输的。
在一种可选的实施方式中,所述第一资源集包括第一部分和第二部分,所述第一部分包括所述M个组中在时域上的前M/2个组,所述第二部分包括所述M个组中在时域上的后M/2个组。
关于第十三方面或各种可能的实施方式的技术效果,可以参考对于第一方面或相应的实施方式的技术效果的介绍。
第十四方面,提供一种通信装置,该通信装置例如为如前所述的第二通信装置。该通信装置包括处理器。可选的,还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第二方面或任一可能的实施方式所描述的方法。或者,第二通信装置也可以不包括存储器,存储器可以位于第二通信装置外部。在第十四方面的介绍过程中,以第二通信装置包括存储器为例。可选的,第二通信装置还可以包括通信接口,用于与其他装置或设备进行通信。处理器、存储器和通信接口相互耦合,用于实现上述第二方面或任一可能的实施方式所描述的方法。例如,当处理器执行所述存储器存储的计算机指令时,使第二通信装置执行上述第二方面或任一可能的实施方式中的方法。示例性地,所述第二通信装置为第二终端装置。示例性地,所述第二终端装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性的,所述通信设备为终端设备。其中,如果第二终端装置为通信设备,通信接口例如通过所述通信设备中的收发器实现,例如所述收发器通过所述通信设备中的天线、馈线和编解码器等实现。或者,如果第二终端装置为设置在通信设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,
所述存储器,用于存储计算机指令;
所述处理器,用于从第一资源集中确定用于传输N个同步信号块的第一资源,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;
所述收发器,用于在所述N个候选资源中的第j候选资源上接收所述N个同步信号块中的第j同步信号块,j为大于或等于1、小于或等于N的整数。
作为一种可选的实施方式,所述处理器,还用于在所述收发器接收所述第j同步信号块之后,根据所述第j同步信号块获取定时和/或所述第j同步信号块的频率的信息。
作为一种可选的实施方式,所述第j同步信号块在时域上占用Y个符号,包括:
所述Y个符号为一个时隙的全部符号;或,
所述Y个符号为一个时隙中除了最后一个符号之外的所有符号。
作为一种可选的实施方式,
对于正常循环前缀,Y=13,或者,
对于扩展循环前缀,Y=11。
作为一种可选的实施方式,所述N个同步信号块是以重复方式传输的,或者所述N个同步信号块中的每H个同步信号块是重复方式传输的,H为小于或等于所述N的正整数。
作为一种可选的实施方式,
当所述第一资源集所在的载波的频率为低频,所述第一资源集承载的同步信号块占用的时域资源的时长小于或等于2毫秒;或,
当所述第一资源集所在的载波的频率为高频,所述第一资源集承载的同步信号块占用的时域资源的时长小于或等于8毫秒。
作为一种可选的实施方式,所述第i组承载的同步信号块在时域占用的时长为1ms。
作为一种可选的实施方式,
当所述第一资源集所在的载波的频率为低频,所述N个候选资源所属的组的个数小于或等于2,其中所述N个候选资源所属的组位于同一个无线帧内,或者分别位于同一个无线帧的不同的半帧内。
作为一种可选的实施方式,所述第i组包括K个子组,所述X个候选资源属于所述K个子组,所述K个子组中的一个子组包括R个候选资源,所述R个候选资源可用于传输R个同步信号块,所述R个同步信号块是重复传输的。
作为一种可选的实施方式,所述第一资源集包括第一部分和第二部分,所述第一部分包括所述M个组中在时域上的前M/2个组,所述第二部分包括所述M个组中在时域上的后M/2个组。
关于第十四方面或各种可能的实施方式的技术效果,可以参考对于第二方面或相应的实施方式的技术效果的介绍。
第十五方面,提供一种通信装置,该通信装置例如为如前所述的第三通信装置。该通信装置包括处理器。可选的,还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第三方面或任一可能的实施方式所描述的方法。或者,第三通信装置也可以不包括存储器,存储器可以位于第三通信装置外部。在第十五方面的介绍过程中,以第三通信装置包括存储器为例。可选的,第三通信装置还可以包括通信接口,用于与其他装置或设备进行通信。处理器、存储器和通信接口相互耦合,用于实现上述第三方面或任一可能的实施方式所描述的方法。例如,当处理器执行所述存储器存储的计算机指令时,使第三通信装置执行上述第三方面或任一可能的实施方式中的方法。示例性地,所述第三通信装置为第一终端装置。示例性地,所述第一终端装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性的,所述通信设备为终端设备。其中,如果第一终端装置为通信设备,通信接口例如通过所述通信设备中的收发器实现,例如所述收发器通过所述通信设备中的天线、馈线和编解码器等实现。或者,如果第一终端装置为设置在 通信设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,
所述存储器,用于存储计算机指令;
所述处理器,用于从第一资源集中确定用于发送N个同步信号块的第一资源,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;
所述通信接口,用于在所述N个候选资源中的第j候选资源上发送所述N个同步信号块中的第j同步信号块,所述第j同步信号块指示所述第j同步信号块的时域位置。
作为一种可选的实施方式,所述第j同步信号块的时域位置包括所述第j同步信号块所在的组的标识,和/或,所述第j同步信号块在所在的组内的标识。
作为一种可选的实施方式,所述第j同步信号块指示所述第j同步信号块的时域位置,包括:
所述第j同步信号块包括的广播信道承载的信令,指示所述第j同步信号块的时域位置;或,
所述第j同步信号块包括的广播信道承载的解调参考信号,指示所述第j同步信号块的时域位置;或,
用于对所述第j同步信号块包括的广播信道承载的信令进行加扰的参考信号,指示所述第j同步信号块的时域位置。
作为一种可选的实施方式,所述第j同步信号块包括的广播信道承载的解调参考信号,指示所述第j同步信号块的时域位置,包括:
所述解调参考信号序列的初始值或初始位置指示所述第j同步信号块的时域位置。
作为一种可选的实施方式,用于对所述第j同步信号块包括的广播信道承载的信令进行加扰的参考信号,指示所述所述第j同步信号块的时域位置,包括:
所述用于对所述第j同步信号块包括的广播信道承载的信令进行加扰的参考信号序列的初始值或初始位置,指示所述第j同步信号块的时域位置。
作为一种可选的实施方式,所述序列的初始值由以下的一种或多种参数确定:
所述第j同步信号块所在的组的标识;
所述第j同步信号块在所在的组内的标识;
同步信号源的标识;
所述第j同步信号块所在的时隙的标识;或,
所述第j同步信号块所在的时隙对应的CP类型。
关于第十五方面或各种可能的实施方式的技术效果,可以参考对于第三方面或相应的实施方式的技术效果的介绍。
第十六方面,提供一种通信装置,该通信装置例如为如前所述的第四通信装置。该通信装置包括处理器。可选的,还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第四方面或任一可能的实施方式所描述的方法。或者,第四通信 装置也可以不包括存储器,存储器可以位于第四通信装置外部。在第十六方面的介绍过程中,以第四通信装置包括存储器为例。可选的,第四通信装置还可以包括通信接口,用于与其他装置或设备进行通信。处理器、存储器和通信接口相互耦合,用于实现上述第四方面或任一可能的实施方式所描述的方法。例如,当处理器执行所述存储器存储的计算机指令时,使第四通信装置执行上述第四方面或任一可能的实施方式中的方法。示例性地,所述第四通信装置为第二终端装置。示例性地,所述第二终端装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性的,所述通信设备为终端设备。其中,如果第二终端装置为通信设备,通信接口例如通过所述通信设备中的收发器实现,例如所述收发器通过所述通信设备中的天线、馈线和编解码器等实现。或者,如果第二终端装置为设置在通信设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,
所述存储器,用于存储计算机指令;
所述通信接口,用于在N个候选资源中的第j候选资源上接收N个同步信号块中的第j同步信号块,所述N个候选资源属于第一资源集,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述N个候选资源属于所述M个组中的一组或多组;
所述处理器,用于根据所述第j同步信号块,确定所述第j同步信号块的时域位置。
在一种可选的实施方式中,所述第j同步信号块的时域位置包括所述第j同步信号块所在的组的标识,和/或,所述第j同步信号块在所在的组内的标识。
在一种可选的实施方式中,所述处理器用于通过如下方式根据所述第j同步信号块,确定所述第j同步信号块的时域位置:
根据所述第j同步信号块包括的广播信道承载的信令,确定所述第j同步信号块的时域位置;或,
根据所述第j同步信号块包括的广播信道承载的解调参考信号,确定所述第j同步信号块的时域位置;或,
根据用于对所述第j同步信号块包括的广播信道承载的信令进行加扰的参考信号,确定所述第j同步信号块的时域位置。
在一种可选的实施方式中,所述处理器用于通过如下方式根据所述第j同步信号块包括的广播信道承载的解调参考信号,确定所述第j同步信号块的时域位置:
根据所述解调参考信号序列的初始值或初始位置,确定所述第j同步信号块的时域位置。
在一种可选的实施方式中,所述处理器用于通过如下方式根据用于对所述第j同步信号块包括的广播信道承载的信令进行加扰的参考信号,确定所述第j同步信号块的时域位置:
根据所述用于对所述第j同步信号块包括的广播信道承载的信令进行加扰的参考信号序列的初始值或初始位置,确定所述第j同步信号块的时域位置。
在一种可选的实施方式中,所述序列的初始值由以下的一种或多种参数确定:
所述第j同步信号块所在的组的标识;
所述第j同步信号块在所在的组内的标识;
同步信号源的标识;
所述第j同步信号块所在的时隙的标识;或,
所述第j同步信号块所在的时隙对应的CP类型。
关于第十六方面或各种可能的实施方式的技术效果,可以参考对于第四方面或相应的实施方式的技术效果的介绍。
第十七方面,提供一种通信装置,该通信装置例如为如前所述的第五通信装置。该通信装置包括处理器。可选的,还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第五方面或任一可能的实施方式所描述的方法。或者,第五通信装置也可以不包括存储器,存储器可以位于第五通信装置外部。在第十六方面的介绍过程中,以第五通信装置包括存储器为例。可选的,第五通信装置还可以包括通信接口,用于与其他装置或设备进行通信。处理器、存储器和通信接口相互耦合,用于实现上述第五方面或任一可能的实施方式所描述的方法。例如,当处理器执行所述存储器存储的计算机指令时,使第五通信装置执行上述第五方面或任一可能的实施方式中的方法。示例性地,所述第五通信装置为第一终端装置。示例性地,所述第一终端装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性的,所述通信设备为终端设备。其中,如果第一终端装置为通信设备,通信接口例如通过所述通信设备中的收发器实现,例如所述收发器通过所述通信设备中的天线、馈线和编解码器等实现。或者,如果第一终端装置为设置在通信设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,
所述存储器,用于存储计算机指令;
所述处理器,用于确定第一同步信号块,其中所述第一同步信号块包括主同步信号、辅同步信号和物理广播信道,所述物理广播信道包括解调参考信号,所述第一同步信号块在时域上占用Y个符号,Y为大于或等于6的整数,所述主同步信号占用所述Y个符号中的第2个符号和第3个符号,所述辅同步信号占用所述Y个符号中的第4个符号和第5个符号,或者第5个符号和第6个符号,所述物理广播信道占用所述Y个符号中除所述主同步信号和辅同步信号占用的符号之外的符号;
所述通信接口,用于发送所述第一同步信号块。
在一种可选的实施方式中,所述第一同步信号块在时域上占用Y个符号,包括:
所述Y个符号为一个时隙的全部符号;或,
所述Y个符号为一个时隙中除了最后一个符号之外的所有符号。
在一种可选的实施方式中,
对于正常循环前缀,Y=13,或者,
对于扩展循环前缀,Y=11。
在一种可选的实施方式中,所述解调参考信号占用所述Y个符号中除所述主同步信号和辅同步信号占用的符号之外的全部符号或部分符号。
在一种可选的实施方式中,在包括了所述解调参考信号的物理广播信道的符号对应的 物理资源块内,所述解调参考信号占用等间隔的3个或4个子载波,所述物理广播信号承载的广播信息占用所述物理资源块内除了所述解调参考信号占用的子载波外其余的子载波。
在一种可选的实施方式中,对于正常循环前缀,所述解调参考信号位于所述第一同步信号块中的以下符号位置:
所述解调参考信号位于同步信号块中的第7个符号,第8个符号,第11个符号,第12个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第10个符号,第13个符号;或者,
所述解调参考信号位于同步信号块中的第8个符号,第11个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第12个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第13个符号;或者,
所述解调参考信号位于同步信号块中的第9个符号或第10个符号。
在一种可选的实施方式中,对于扩展循环前缀,所述解调参考信号位于所述第一同步信号块中的以下符号位置:
所述解调参考信号位于同步信号块中的第7个符号,第8个符号,第10个符号,第11个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第9个符号,第11个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第10个符号;或者,
所述解调参考信号位于同步信号块中的第8个符号或第9个符号。
关于第十七方面或各种可能的实施方式的技术效果,可以参考对于第五方面或相应的实施方式的技术效果的介绍。
第十八方面,提供一种通信装置,该通信装置例如为如前所述的第六通信装置。该通信装置包括处理器。可选的,还可以包括存储器,用于存储计算机指令。处理器和存储器相互耦合,用于实现上述第六方面或任一可能的实施方式所描述的方法。或者,第六通信装置也可以不包括存储器,存储器可以位于第六通信装置外部。在第十八方面的介绍过程中,以第六通信装置包括存储器为例。可选的,第六通信装置还可以包括通信接口,用于与其他装置或设备进行通信。处理器、存储器和通信接口相互耦合,用于实现上述第六方面或任一可能的实施方式所描述的方法。例如,当处理器执行所述存储器存储的计算机指令时,使第六通信装置执行上述第六方面或任一可能的实施方式中的方法。示例性地,所述第六通信装置为第二终端装置。示例性地,所述第二终端装置为通信设备,或者为设置在通信设备中的芯片或其他部件。示例性的,所述通信设备为终端设备。其中,如果第二终端装置为通信设备,通信接口例如通过所述通信设备中的收发器实现,例如所述收发器通过所述通信设备中的天线、馈线和编解码器等实现。或者,如果第二终端装置为设置在通信设备中的芯片,那么通信接口例如为芯片的输入/输出接口,例如输入/输出管脚等,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。其中,
所述存储器,用于存储计算机指令;
所述通信接口,用于接收第一同步信号块,其中所述第一同步信号块包括主同步信号、辅同步信号和物理广播信道,所述物理广播信道包括解调参考信号,所述第一同步信号块 在时域上占用Y个符号,Y为大于或等于6的整数,所述主同步信号占用所述Y个符号中的第2个符号和第3个符号,所述辅同步信号占用所述Y个符号中的第4个符号和第5个符号,或者第5个符号和第6个符号,所述物理广播信道占用所述Y个符号中除所述主同步信号和辅同步信号占用的符号之外的符号;
所述处理器,用于根据所述第一同步信号块解调所述物理广播信道。
在一种可选的实施方式中,所述第一同步信号块在时域上占用Y个符号,包括:
所述Y个符号为一个时隙的全部符号;或,
所述Y个符号为一个时隙中除了最后一个符号之外的所有符号。
在一种可选的实施方式中,
对于正常循环前缀,Y=13,或者,
对于扩展循环前缀,Y=11。
在一种可选的实施方式中,所述解调参考信号占用所述Y个符号中除所述主同步信号和辅同步信号占用的符号之外的全部符号或部分符号。
在一种可选的实施方式中,在包括了所述解调参考信号的物理广播信道的符号对应的物理资源块内,所述解调参考信号占用等间隔的3个或4个子载波,所述物理广播信号承载的广播信息占用所述物理资源块内除了所述解调参考信号占用的子载波外其余的子载波。
在一种可选的实施方式中,对于正常循环前缀,所述解调参考信号位于所述第一同步信号块中的以下符号位置:
所述解调参考信号位于同步信号块中的第7个符号,第8个符号,第11个符号,第12个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第10个符号,第13个符号;或者,
所述解调参考信号位于同步信号块中的第8个符号,第11个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第12个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第13个符号;或者,
所述解调参考信号位于同步信号块中的第9个符号或第10个符号。
在一种可选的实施方式中,对于扩展循环前缀,所述解调参考信号位于所述第一同步信号块中的以下符号位置:
所述解调参考信号位于同步信号块中的第7个符号,第8个符号,第10个符号,第11个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第9个符号,第11个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第10个符号;或者,
所述解调参考信号位于同步信号块中的第8个符号或第9个符号。
关于第十八方面或各种可能的实施方式的技术效果,可以参考对于第六方面或相应的实施方式的技术效果的介绍。
第十九方面,提供第一通信系统,该通信系统包括第七方面所述的通信装置或第十三方面所述的通信装置,以及,包括第八方面所述的通信装置或第十四方面所述的通信装置。
第二十方面,提供第二通信系统,该通信系统包括第九方面所述的通信装置或第十五方面所述的通信装置,以及,包括第十方面所述的通信装置或第十六方面所述的通信装置。
第二十一方面,提供第三通信系统,该通信系统包括第十一方面所述的通信装置或第十七方面所述的通信装置,以及,包括第十二方面所述的通信装置或第十八方面所述的通信装置。
第十九方面提供的第一通信系统、第二十方面提供的第二通信系统、以及第二十一方面提供的第三通信系统,可以是同一个通信系统,或者也可以分别是不同的通信系统,或者也可能其中的任意两个是同一个通信系统,而另一个是不同的通信系统。
第二十二方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第一方面或任意一种可能的实施方式中所述的方法。
第二十三方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第二方面或任意一种可能的实施方式中所述的方法。
第二十四方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第三方面或任意一种可能的实施方式中所述的方法。
第二十五方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第四方面或任意一种可能的实施方式中所述的方法。
第二十六方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第五方面或任意一种可能的实施方式中所述的方法。
第二十七方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第六方面或任意一种可能的实施方式中所述的方法。
第二十八方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第一方面或任意一种可能的实施方式中所述的方法。
第二十九方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第二方面或任意一种可能的实施方式中所述的方法。
第三十方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第三方面或任意一种可能的实施方式中所述的方法。
第三十一方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第四方面或任意一种可能的实施方式中所述的方法。
第三十二方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第五方面或任意一种可能的实施方式中所述的方法。
第三十三方面,提供一种包含指令的计算机程序产品,所述计算机程序产品用于存储 计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行上述第六方面或任意一种可能的实施方式中所述的方法。
在本申请实施例中,一个同步信号块可以占用Y个符号,从而使得本申请实施例所提供的技术方案能够应用于NR-V2X系统,或者可以应用于其他的规定了同步信号块占用Y个符号的通信系统。
附图说明
图1为SSB的示意图;
图2为V2X的几种示意图;
图3为SS burst set的示意图;
图4A~图4E为在Uu口传输的SSB的几种分布方式;
图5为本申请实施例的一种应用场景的示意图;
图6为本申请实施例提供的第一种通信方法的流程图;
图7A为本申请实施例中实际调度的S-SSB占用M个组中的一个组的一种示意图;
图7B为本申请实施例中第一资源集在S-SSB周期内的时域位置的一种示意图;
图7C~图7D为本申请实施例中的S-SSB的两种结构示意图;
图8为本申请实施例中第一资源集和第二资源集的一种示意图;
图9A为本申请实施例中第一资源集和第二资源集的一种示意图;
图9B为本申请实施例中实际调度的S-SSB占用M个组中的一个组的一种示意图;
图10为本申请实施例中第一资源集和第二资源集的一种示意图;
图11为本申请实施例中X个候选资源在时域上等间隔分布的一种示意图;
图12A为本申请实施例中X个候选资源在时域上不等间隔分布的一种示意图;
图12B为本申请实施例中X个候选资源在时域上不等间隔分布的另一种示意图;
图13为本申请实施例提供的第二种通信方法的流程图;
图14A~图14C为本申请实施例提供的第j同步信号块的几种示意图;
图15为本申请实施例提供的第三种通信方法的流程图;
图16A为本申请实施例中正常CP的时隙中DMRS所在的位置的几种图样;
图16B为本申请实施例中扩展CP的时隙中DMRS所在的位置的几种图样;
图17A~图17D为本申请实施例提供的第j同步信号块的几种示意图;
图18A~图18C为本申请实施例提供的第j同步信号块的几种示意图;
图19A~图19E为本申请实施例提供的第j同步信号块的几种示意图;
图20A~图20D为本申请实施例提供的第j同步信号块的几种示意图;
图21A~图21D为本申请实施例提供的第j同步信号块的几种示意图;
图22A~图22C为本申请实施例提供的第j同步信号块的几种示意图;
图23为本申请实施例提供的第一种第一终端装置的示意性框图;
图24为本申请实施例提供的第一种第一终端装置的另一示意性框图;
图25为本申请实施例提供的第一种第二终端装置的示意性框图;
图26为本申请实施例提供的第一种第二终端装置的另一示意性框图;
图27为本申请实施例提供的第二种第一终端装置的示意性框图;
图28为本申请实施例提供的第二种第一终端装置的另一示意性框图;
图29为本申请实施例提供的第二种第二终端装置的示意性框图;
图30为本申请实施例提供的第二种第二终端装置的另一示意性框图;
图31为本申请实施例提供的第三种第一终端装置的示意性框图;
图32为本申请实施例提供的第三种第一终端装置的另一示意性框图;
图33为本申请实施例提供的第三种第二终端装置的示意性框图;
图34为本申请实施例提供的第三种第二终端装置的另一示意性框图;
图35为本申请实施例提供的通信装置的另一示意性框图;
图36为本申请实施例提供的通信装置的再一示意性框图;
图37为本申请实施例提供的通信装置的又一示意性框图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端装置,例如为终端设备,或者为设置在终端设备中的能够实现终端设备的功能的芯片或其他部件。终端设备包括向用户提供语音和/或数据连通性的设备,具体的,包括向用户提供语音的设备,或包括向用户提供数据连通性的设备,或包括向用户提供语音和数据连通性的设备。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音或数据,或与RAN交互语音和数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle to everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅 是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
本申请实施例中,能够与基站进行数据通信的都可以看作终端设备。
2)网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种V2X技术中的网络设备为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与IP分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括LTE系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括5G新无线(new radio,NR)系统(也简称为NR系统)中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
网络设备还可以包括核心网设备,但因本申请实施例主要涉及的是接入网设备,因此在后文中,如无特殊说明,则所提及的网络设备均可以指接入网设备。
2)车到一切(vehicle to everything,V2X),就是车与外界进行互联互通,这是未来智能汽车、自动驾驶、智能交通运输系统的基础和关键技术。V2X将在已有的D2D技术的基础上对V2X的具体应用需求进行优化,需要进一步减少V2X设备的接入时延,解决资源冲突问题。
V2X具体又包括车与车(vehicle-to-vehicle,V2V)、车与路侧基础设施(vehicle-to-infrastructure,V2I)、车与行人(vehicle-to-pedestrian,V2P)的直接通信,以及车与网络(vehicle-to-network,V2N)的通信交互等几种应用需求。如图2所示。V2V指的是车辆间的通信;V2P指的是车辆与人(包括行人、骑自行车的人、司机、或乘客)的通信;V2I指的是车辆与网络设备的通信,网络设备例如RSU,另外还有一种V2N可以包括在V2I中,V2N指的是车辆与基站/网络的通信。
其中,V2P可以用做给道路上行人或非机动车安全警告。通过V2I,车辆可以与道路甚至其他基础设施,例如交通灯、路障等,进行通信,获取交通灯信号时序等道路管理信息。V2V可以用做车辆间信息交互和提醒,最典型的应用是用于车辆间防碰撞安全系统。V2N是目前应用最为广泛的车联网形式,其主要功能是使车辆通过移动网络,连接到云服务器,使用云服务器提供的导航、娱乐、或防盗等应用功能。
在V2X中,主要是终端设备和终端设备之间的通信。对于终端设备和终端设备之间的传输模式,当前标准协议支持的有广播方式,组播方式,和单播方式。
广播方式:广播方式是指作为发送端的终端设备采用广播的模式进行数据发送,多个终端设备端均能接收来自发送端的侧行链路控制信息(sidelink control information,SCI)或侧行链路共享信道(sidelink shared channel,SSCH)。
组播方式:组播方式和广播发送相似,作为发送端的终端设备采用广播的模式进行数据发送,一组终端设备均能解析SCI或SSCH。
单播方式:单播方式是一个终端设备向另外一个终端设备发送数据,其它终端设备不需要或者不能够解析该数据。
3)时间单元,例如为时隙(slot)或子帧(subframe),或者也可以是其他的时间单元。
4)时隙,在正常循环前缀下,NR系统中一个时隙包括14个OFDM符号;在扩展循环前缀下,NR系统中一个时隙包括12个OFDM符号。例如15kHz子载波间隔对应的时隙长度为1ms,30kHz子载波间隔对应的时隙长度为0.5ms,60kHz子载波间隔对应的时隙长度为0.25ms,120kHz子载波间隔对应的时隙长度为0.125ms。
5)本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一值和第二值,只是为了区分不同的取值,而并不是表示这两个取值的内容、优先级或者重要程度等的不同。
前文介绍了本申请实施例所涉及到的一些名词概念,下面介绍本申请实施例涉及的技术特征。
设备到设备(device to device,D2D)通信或V2X通信,是终端设备之间直接进行通信的技术。
NR-V2X在定义系统设计的需求时,明确了要求,部分业务需要满足99.99%或99.999%的通信可靠性的要求。然而V2X中的一个关键的技术是支持无网络时的终端设备自主选择资源的传输模式。要达到如此高的可靠性,针对数据信道,NR-V2X同意了针对数据信道的重传和混合自动重传请求(hybrid automatic repeat request,HARQ)反馈机制。从而可以提升数据传输的可靠性。
例如,目前NR-V2X为了提升侧行链路(sidelink,S)-同步信号和物理广播信道块(synchronization signal and physical broadcast channel block,SSB)的可靠性,提出了支持S-SSB的重复传输,并给出了一个时隙(slot)上的S-SSB的传输结构。但是究竟如何实现S-SSB的重复传输,目前并未确定。
另外,在现有的NR系统中,终端设备在Uu口可以通过接收SSB来实现与基站的同步,以及获取系统消息等。其中,PSS、SSS和PBCH共同构成一个SSB。如图1所示,在时域上,1个SSB占用4个OFDM符号,为符号0~符号3,在频域上,1个SSB占用20个RB,也就是240个子载波,在这20个RB内,子载波编号为0~239。PSS位于符号0的中间的127个子载波上,SSS位于符号2的中间的127个子载波上。PBCH占用符号1和符号3的全部子载波,以及占用符号2的全部子载波中除了SSS所占用的子载波之外的剩余的子载波中的一部分子载波。
一个同步突发集(synchronization signal burst set,SS burst set)指的是一次波束扫描(beam sweep)内包含的SSB的集合。SS burst set的周期,相当于一个特定波束对应的SSB的周期,可以被配置为5ms(毫秒)、10ms、20ms、40ms、80ms或160ms等。其中,20ms是默认周期,即终端设备进行初始小区搜索时假设的周期。目前,一个SS burst set周期内最多有4个、8个或64个SSB。当载频小于等于3GHz时,一个SS burst set周期内最多有4个SSB。其中,每个SS burst set总是位于5ms的时间间隔内。对于SS burst set的示意可参考图3,图3以SS burst set的周期是20ms、且以一个SS burst set包括P个SSB为例。
可再参考图4A、图4B、图4C、图4D和图4E,这几个图分别表示了在Uu口传输的SSB的分布方式。图4A表示子载波间隔为15KHz时,一个时隙内包括的SSB的一种分布方式,可以看到,一个时隙包括2个SSB,图4A中画斜线的方框表示SSB占用的OFDM符号。
图4B表示子载波间隔为30KHz时,一个时隙内包括的SSB的一种分布方式,可以看到,一个时隙包括2个SSB,图4B中画斜线的方框表示SSB占用的OFDM符号。
图4C表示子载波间隔为30KHz时,一个时隙内包括的SSB的另一种分布方式,可以看到,一个时隙包括2个SSB,图4C中画斜线的方框表示SSB占用的OFDM符号。
图4D表示子载波间隔为60KHz时,一个时隙内包括的SSB的一种分布方式,可以看到,一个时隙包括4个SSB,图4D中画斜线的方框表示SSB占用的OFDM符号。
图4E表示子载波间隔为120KHz时,一个时隙内包括的SSB的一种分布方式,可以看到,一个时隙包括8个SSB,图4E中画斜线的方框表示SSB占用的OFDM符号。
可以看到,目前在Uu口传输的1个SSB占用4个OFDM符号。但在NR-V2X系统中,规定1个SSB占用的OFDM符号数大于4。那么显然,目前用在Uu口的SSB的结构无法适用于NR-V2X系统。
鉴于此,提供本申请实施例的技术方案。在本申请实施例中,同步信号块的周期内可以包括第一资源集,第一资源集包括M个组,M个组中的第i组所包括的X个候选资源可用于承载X个同步信号块,相当于规定了用于发送同步信号块的资源,在需要发送同步信号块时只需从这些资源中选择资源即可,简化了选择资源的方式。而且一个同步信号块可以占用Y个符号,从而使得本申请实施例所提供的技术方案能够应用于NR-V2X系统,或者可以应用于其他的规定了同步信号块占用Y个符号的通信系统。
本申请实施例提供的技术方案可以应用于D2D场景,可以是NR D2D场景也可以是LTE D2D场景等,或者可以应用于V2X场景,可以是NR V2X场景也可以是LTE V2X场景等,或者还可以应用于其他的场景或其他的通信系统,例如还可以用于LTE系统或NR系统的通过Uu接口通信的场景,用于多个飞行器(如无人机、飞机、热气球)之间的通信场景,还可以用于基站与基站之间进行通信的场景(如宏站之间、宏站与小站之间、小站与小站之间相互通信的场景),具体的不做限制。当用于飞行器或基站与基站之间通信的场景时,本申请实施例的实施主体可以是终端装置,也可以是网络设备。也就是说,本申请实施例的方法并不仅限于终端装置实现。
下面介绍本申请实施例所应用的网络架构。请参考图5,为本申请实施例所应用的一种网络架构。
图5中包括网络设备和两个终端设备,分别为终端设备1和终端设备2,这两个终端设备均可以与网络设备连接,或者这两个终端设备可以只有终端设备1与网络设备连接,终端设备2不与网络设备连接,这两个终端设备之间也可以通过sidelink进行通信,也就 是终端设备1是有网络覆盖的终端设备,终端设备2是部分网络覆盖的终端设备。图5以只有终端设备1与网络设备连接为例。当然图5中的终端设备的数量只是举例,在实际应用中,网络设备可以为多个终端设备提供服务。
图5中的网络设备例如为接入网设备,例如基站。其中,接入网设备在不同的系统对应不同的设备,例如在第四代移动通信技术(the 4 th generation,4G)系统中可以对应eNB,在5G系统中对应5G中的接入网设备,例如gNB,或为后续演进的通信系统中的接入网设备。
其中,图5中的终端设备是以车载终端设备或车为例,但本申请实施例中的终端设备不限于此。
接下来结合附图介绍本申请实施例提供的技术方案。在本申请实施例中,也将承载调制数据与信号的时域符号简称为“符号”。这些符号可以是基于OFDM波形生成的符号,也可以是基于DFT-S-OFDM符号生成的符号,还可以是基于单载波调制(如码分多址(code division multiple access,CDMA)或时分多址(time division multiple access,TDMA)等)等方式生成生的符号。本申请实施例对此不做限制。
本申请实施例提供第一种通信方法,请参见图6,为该方法的流程图。在下文的介绍过程中,以该方法应用于图5所示的网络架构为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装置。其中,第一通信装置或第二通信装置,可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。且对于第一通信装置或第二通信装置的实现方式均不做限制,例如这两个通信装置可以实现为相同的形式,例如均通过设备的形式实现,或者这两个通信装置也可以实现为不同的形式,例如第一通信装置通过设备的形式实现,第二通信装置通过芯片系统的方式实现,等等。其中,网络设备例如为基站。
为了便于介绍,在下文中,以该方法由终端装置和终端装置执行为例,也就是,以第一通信装置是终端装置(例如称为第一终端装置)、第二通信装置也是终端装置(例如称为第二终端装置)为例。因为本实施例是以应用在图5所示的网络架构为例,因此,下文中所述的第一终端装置可以实现图5所示的网络架构中的终端设备1的功能,下文中所述的第二终端装置可以实现图5所示的网络架构中的终端设备2的功能。另外在下文中可能还涉及到网络设备,下文中所述的网络设备可以实现图5所示的网络架构中的网络设备的功能。在本申请实施例的描述过程中,以同步信号块是S-SSB为例,实际上不限于此,只要是用于进行同步的信号均可包括在本申请实施例所述的同步信号块的范围内,例如可以包括侧行同步信号块,或者也可以包括用于Uu口的同步信号块。
S61、第一终端装置从第一资源集中确定用于发送N个同步信号块的第一资源。N为正整数。
其中,第一资源集可以位于同步信号块的周期内,第一资源包含于第一资源集,或者说第一资源属于第一资源集,或者说第一资源是第一资源集的子集。第一资源集可以包括M个组,M个组中的第i组可以包括X个候选资源,X个候选资源可以用于承载X个同步信号块,或者说,X个候选资源可用于传输X个同步信号块,其中一个候选资源可用于传输一个同步信号块。第一资源集就可以包括M×X个候选资源,M×X个候选资源中的每个候选资源可用于传输同步信号块。所述的N个同步信号块中的每个同步信号块在时域上可 以占用Y个符号。其中,Y为大于或等于5的整数,M、i和X均为正整数。另外,第一资源既然可以用于发送N个同步信号块,那么第一资源可以包括N个候选资源,N个候选资源属于M个组中的一组或多组。也就是说,N个候选资源可以位于M个组中的一组内,或者,也可以位于M个组中的多个组内。N可以大于或等于X,当然也可以小于X。需要说明的是,N个候选资源可以是以同步信号块的周期为间隔,周期性地出现,那么N个同步信号块可以以同步信号块的周期为间隔,周期性地发送。
请参考图7A,为第一资源集内包括的M个组的示意图。图7A以M=8为例,图7A中从左至右的第三个组表示实际发送的S-SSB所在的组,各个小方框中的S表示该组中实际发送的S-SSB的个数。
例如,N个同步信号块中包括第j同步信号块,第j同步信号块在时域上可以占用一个时隙的全部符号,也就是说,Y个符号为一个时隙的全部符号。例如对于有些时隙,不包括间隔(GAP),或不包括不做数据收发的空符号,那么一个同步信号块就可以占满整个时隙。或者,第j同步信号块在时域上可以占用一个时隙中除了最后一个符号之外的剩余的符号,也就是说,Y个符号为一个时隙中除了最后一个符号之外的符号,例如Y个符号可以为一个时隙中除了最后一个符号之外剩余的全部符号。例如对于有些时隙,会包括GAP,或包括不做数据收发的空符号,GAP承载在该时隙的最后一个符号,则同步信号块不能占用该时隙的最后一个符号,但可以占用该时隙中除了最后一个符号之外的剩余的符号。j为大于或等于1、且小于或等于N的整数。第j同步信号块可以是N个同步信号块中的任一个同步信号块。另外,本申请实施例所述的,同步信号块占用Y个符号,可以等价于,候选资源占用Y个符号。可选的,当发送完第一同步信号块的时域后还继续发送其他同步信号块的时隙或数据时隙时,同步信号块的最后一个符号可以为PSBCH的符号,即此时最后一个符号不是GAP。可选的,当发送完第一同步信号块的时域后,需要去接收后续时隙上的数据或信号时同步信号块的最后一个符号可以为GAP符号,即此时最后一个符号上不做发送或接收。例如,当N大于1且N个同步信号块在时隙上连续发送时,则前面的N-1个同步信号块所在的时隙上,每个同步信号块的最后一个符号为PSBCH,而第N个同步信号块的最后一个符号上为GAP符号。
在本申请实施例中,同步信号块所占用的符号数大于4,相当于,本申请实施例为新的(相对于NR系统中的Uu口的SSB来说是新的)同步信号块提供了传输方式,从而使得本申请实施例所提供的技术方案能够应用于NR-V2X系统,或者可以应用于其他的规定了同步信号块占用Y个符号的通信系统。
以同步信号块是S-SSB为例,则同步信号块的周期就是S-SSB的周期。S-SSB周期可以由网络设备通过信令配置给第一终端装置,例如,网络设备向第一终端装置发送第三信令,第三信令指示S-SSB的周期,第一终端装置接收第三信令后,就可以确定S-SSB的周期。或者,S-SSB的周期也可以预配置在第一终端装置中,或者,S-SSB的周期也可以通过协议规定,例如,协议规定S-SSB周期为160ms。一个S-SSB周期内例如包括一个或多个资源集,例如一个S-SSB周期内可以包括一个资源集、两个资源集或更多个资源集。作为一种可选的方式,一个S-SSB周期内可以包括至少两个资源集,也就是说,一个S-SSB周期内可以包括两个资源集、三个资源集或更多个资源集。以一个S-SSB周期内包括两个资源集为例,这两个资源集中的一个资源集可以包括用于发送同步信号块的候选资源,剩余的一个资源集可以包括用于接收同步信号块的候选资源。例如,一个S-SSB包括两个资 源集,这两个资源集分别为第一资源集和第二资源集,第一资源集包括用于发送同步信号块的候选资源,第二资源集包括用于接收同步信号块的候选资源。可选的,不同的资源集中,各自包括的N个同步信号块的数量,在各个资源集内的位置对应相同。或者也有可能,一个S-SSB所包括的所有的资源集或部分资源集中的每个资源集,都包括用于发送同步信号块的候选资源和用于接收同步信号块的候选资源,也就是说,通过一个资源集,可以发送同步信号块,也可以接收同步信号块。
资源集,也可以称为同步信号集或候选资源集等,一个资源集可以包括一个或多个候选资源,候选资源也是资源的概念,也可以理解为资源,例如也可以将候选资源称为候选资源,每个候选资源可以用于承载一个S-SSB。一个S-SSB周期内所包括的不同的资源集的结构可以是相同的,或者也可以不同。例如,一个S-SSB周期包括第一资源集和第二资源集,第一资源集的结构和第二资源集的结构可以相同,或者也可以不同。所谓的资源集的结构,可以是指资源集包括的候选资源的个数,以及候选资源在时域上的位置等。
关于S-SSB周期内包括的资源集的位置,可以通过协议规定,或者也可以由网络设备配置给终端装置。例如,第一资源集在S-SSB周期内的时域位置可参考图7B所示。图7A以第一资源集的时域长度是10ms,S-SSB周期为160ms为例。图7A中的偏移量1,是指第一资源集的时域起始时间和S-SSB周期的时域起始时间之间的时间差。例如,网络设备可以向第一终端装置发送第一信令,第一信令可以指示第一资源集在同步信号块的周期内的时域位置。第一终端装置接收第一信令后,就可以确定第一资源集在同步信号块的周期内的时域位置。对于第一信令,第二终端装置也有可能接收到,如果第二终端装置也可以接收,那么第二终端装置也可以确定第一资源集在同步信号块的周期内的位置。但是对于第二终端装置来说,可能无法确定此时确定的第一资源集,是否是用于接收的同步信号块的资源集。或者,第二终端装置能够确定第一资源集是用于接收同步信号块的资源集,则第二终端装置在接收同步信号块时,可以在第一资源集进行盲检测。或者,对于第二终端装置来说,其中接收到同步信号块之前,也无从得知目前进行通信时的定时信息和同步信号块准确的频率位置。这些需要通过检测同步信号块来获取。
另外,第一终端装置还可以获取第一配置信息,第一配置信息可以指示如下信息中的一种或多种:N的取值,在第一资源上以重复方式发送的同步信号块的数量,在第一资源上发送的同步信号块在同步信号块的周期内所在的时隙位置,第一资源的起始位置在同步信号块的周期内的时域偏移值,或,第一资源在第一资源集内的时域位置。例如,第一配置信息可以指示N的取值;或者,第一配置信息可以指示在第一资源上以重复方式发送的同步信号块的数量,以及在第一资源上发送的同步信号块在同步信号块的周期内所在的时隙位置;或者,第一配置信息可以指示N的取值,在第一资源上发送的同步信号块在同步信号块的周期内所在的时隙位置,以及第一资源的起始位置在同步信号块的周期内的时域偏移值;或者,第一配置信息可以指示N的取值,在第一资源上以重复方式发送的同步信号块的数量,在第一资源上发送的同步信号块在同步信号块的周期内所在的时隙位置,第一资源的起始位置在同步信号块的周期内的时域偏移值,以及第一资源在第一资源集内的时域位置,等等。第一配置信息可以是预配置在第一终端装置中的,第一终端装置可以直接获取,或者,第一配置信息也可以是网络设备发送给第一终端装置的,第一终端装置接收来自网络设备的第一配置信息,就是获取了第一配置信息。
其中,在第一资源上以重复方式发送的同步信号块的数量,可以称为重复因子,例如 以R表示。第一资源可以用于发送N个同步信号块,重复因子H可以小于或等于N。如果重复因子H等于N,也就是说,N个同步信号块是以重复方式发送的,如果重复因子H小于N,则N个同步信号块中的部分同步信号块是以重复方式发送的,可以认为N个同步信号块中的每H个同步信号块是以重复方式发送的。例如N=4,重复因子H为2,则4个同步信号块中,可以只有2个同步信号块是以重复方式发送,可以认为这2个同步信号的内容相同或发送方向相同;或者,也可能4个同步信号块中,同步信号块1和同步信号块2是以重复方式发送,另外的同步信号块3和同步信号块4也是以重复方式发送,同步信号块1和同步信号块2的内容相同,同步信号块3和同步信号块4的内容相同,但同步信号块1和同步信号块3的内容或发送方向可能不同。可选的,H的值可以大于、等于或小于X。例如,当X为4时,H可以配置成1,2,4,8。当R配置成1,2,4时,H个同步信号块可以在同一个组内以重复方式发送,H为8时,可以在连续的两个组内以重复方式发送。可选的,可以通过信令配置或预配置N个同步信号块是连续的出现在同一个或多个组内,还是以分布式的方式出现在多个组内。例如,N=4,M=8,X=4,当使用一个字段来指示“N个同步信号块是连续的出现”,则N个同步信号块被配置在某一个组上进行传输。当使用一个字段来指示“N个同步信号块是以分布式的方式出现”,则N个同步信号块可以被配置在4个组上上进行传输,每个组上在相同的位置上出现一个同步信号块。进一步可选地,当N个同步信号块以分布式的方式出现在多个组内时,在每个组内出现的同步信号块的数量也是可配置的。
第一配置信息还可以指示第一资源的时域位置。例如第一配置信息可以通过指示在第一资源上发送的同步信号块在同步信号块所在的周期内的时隙位置,来指示第一资源的时域位置。在第一资源上发送的同步信号块在同步信号块所在的周期内的时隙位置,也可以理解为,第一资源所包括的N个候选资源在同步信号块所在的周期内所处的时隙的位置,或者是,第一资源所包括的N个候选资源中的第一个候选资源在同步信号块所在的周期内所处的时隙的位置,以及N个候选资源中的其余候选资源相对于第一个候选资源的时隙偏移。这里所述的N个候选资源中的第一个候选资源,是指在时域上位于最前的候选资源。例如,第一配置信息可以指示N个候选资源中的每个候选资源所在的时隙的位置,则第一终端装置可以直接确定N个候选资源所在的时隙的位置;或者,第一配置信息也可以指示N个候选资源中的第一个候选资源在同步信号块所在的周期内所在的时隙的位置,以及指示N个候选资源中除了第一个候选资源之外的其余的候选资源相对于第一个候选资源的时隙偏移。例如,N=4,第一配置信息可以指示这4个候选资源中的第一个候选资源在同步信号块所在的周期内所处的时隙的位置,例如第一个候选资源在同步信号块所在的周期内所处的时隙的位置为时隙2,另外,第一配置信息还指示这4个候选资源中的第二个候选资源相对于第一个候选资源的时隙偏移为1,第三个候选资源相对于第一个候选资源的时隙偏移为3,第四个候选资源相对于第一个候选资源的时隙偏移为5,那么,第一终端装置可以确定第一个候选资源在同步信号块所在的周期内所处的时隙的位置为时隙2,第二个候选资源在同步信号块所在的周期内所处的时隙的位置为时隙3,第三个候选资源在同步信号块所在的周期内所处的时隙的位置为时隙5,第四个候选资源在同步信号块所在的周期内所处的时隙的位置为时隙7。
或者,第一配置信息也可以通过指示第一资源在同步信号块的周期内的时域偏移值,来指示第一资源的时域位置。例如,一个候选资源在同步信号块的周期内的时域偏移值, 可以是指该候选资源的起始位置相对于同步信号块的周期的起始位置的时域偏移值。例如,第一配置信息可以指示N个候选资源中的每个候选资源在同步信号块的周期内的时域偏移值,则第一终端装置根据同步信号块的周期的起始位置,以及N个候选资源中的每个候选资源在同步信号块的周期内的时域偏移值,就可以确定N个候选资源的时域位置。
或者,第一配置信息也可以通过指示第一资源在第一资源集内的时域位置,来指示第一资源的时域位置。例如,第一资源集的位置可以通过协议规定,或者由网络设备配置,例如也可以通过第一配置信息来指示。第一配置信息指示第一资源在第一资源集内的时域位置,例如可以实现为,第一配置信息指示N个候选资源中的每个候选资源在第一资源集内的时域位置,例如可以指示N个候选资源中的每个候选资源在第一资源集内所在的组的标识,还可以指示所述的每个候选资源在所在的组内的标识等,或者也可以指示所述的每个候选资源在第一资源集内所在的时隙的标识。或者,第一配置信息指示第一资源在第一资源集内的时域位置,也可以实现为,第一配置信息指示N个候选资源中的第一个候选资源在第一资源集内的时域位置,例如可以指示第一个候选资源在第一资源集内所在的组的标识,还可以指示所述的第一个候选资源在所在的组内的标识等,或者也可以指示所述的第一个候选资源在第一资源集内所在的时隙的标识。另外,第一配置信息还可以指示N个候选资源中除了第一个候选资源之外的其余候选资源中的每个候选资源相对于第一个候选资源的偏移值,从而第一终端装置根据第一个候选资源在第一资源集内的时域位置,以及其余的候选资源相对于第一个候选资源的偏移值,就可以确定N个候选资源在第一资源集内的时域位置。可选的,发送所述第一资源的组的标识可以是在第一资源集内通过位图(bitmap)的方式来指示的。例如,M=8,可以使用{10101010}来指示第2,4,6,8个组上发送N个同步信号块。
另外,第一资源集在同步信号块的周期内的位置是可配置的,即,第一资源集在同步信号块的周期内的位置不是固定的,例如可以由网络设备来配置第一资源集在同步信号块的周期内的位置。第一资源集在同步信号块的周期可以要占用有限的时长,例如第一资源集占用的时长可以小于或等于10ms,并且可选地,第一资源集位于同一个无线帧中,这样就可以使得接收端能够将通过第一资源集接收的同步信号进行合并,得到合并增益,且减小接收时延,相应减少接收端的缓存。可选的,第一资源集在同步信号块的周期内的位置是以无线帧为单位的偏移值来指示的。可选地,第一资源集的大小应该是一个要远小于同步信号块的周期的值,如不超过10ms,这样才可以减少同步信号块的接收机的缓存大小和检测复杂度。
关于M,M可以等于1,或者也可以大于1。如果M=1,则第一资源集就包括一组,这一组包括X个候选位置,X=L max。此时,对于第一资源集所包括的一个候选资源来说,该候选资源所在的组的标识就是第一资源集的标识,而该候选资源在所在的组内的标识,就是该候选资源在第一资源集内的标识。那么如果第一配置信息要指示N个候选资源的时域位置,则可以直接指示N个候选资源的时域位置;或者,可以指示N个候选资源中的第一个候选资源在同步信号块的周期内的时域位置,以及指示N个候选资源中除了第一个候选资源之外其余的候选资源相对于第一个候选资源的偏移。或者,如果M>1,那么如果第一配置信息要指示N个候选资源的时域位置,则可以直接指示N个候选资源的时域位置;或者可以指示N个候选资源中的第一个候选资源在同步信号块的周期内的时域位置,以及指示N个候选资源中除了第一个候选资源之外其余的候选资源相对于第一个候选资源的偏 移;或者,可以指示N个候选资源中的第一个候选资源在第一资源集内的时域位置,以及指示N个候选资源中除了第一个候选资源之外其余的候选资源相对于第一个候选资源的偏移。
以一个同步信号块占用1个时隙中除了最后一个符号之外的剩余的全部符号为例。那么,如果第j同步信号块所占用的时隙对应于正常(normal)循环前缀(cyclic prefix,CP),正常CP的时隙共包括14个符号,则第j同步信号块在该时隙中占用的符号数为13,或者,如果第j同步信号块所占用的时隙对应于扩展(extended)CP,扩展CP的时隙共包括12个符号,则第j同步信号块在该时隙中占用的符号数为11。
一个同步信号块可以包括主同步信号、辅同步信号和广播信道,在一个时隙中,主同步信号可以占用2个符号,辅同步信号占用2个符号,广播信道可以占用至少6个符号,或者描述为,主同步信号占用Y个符号中的2个符号,辅同步信号占用Y个符号中的2个符号,广播信道占用Y个符号中的至少6个符号,当然此时,Y可以为大于或等于10的整数。这里所述的至少6个符号,可以包括6个符号、7个符号或更多个符号。以侧行链路上的同步信号块S-SSB为例,S-SSB可以包括侧行主同步信号(sidelink primary synchronisation signal,SPSS)、侧行辅同步信号(sidelink secondary synchronisation signal,SSSS)和物理侧行广播信道(physical sidelink broadcast channel,PSBCH)。其中的广播信道为物理侧行广播信道PSBCH。在一个时隙中,SPSS可以占用2个符号,SSSS可以占用2个符号,PBSCH可以占用至少6个符号。
作为一种示例,一个同步信号块可以占用一个时隙里的连续的多个符号,如果该时隙对应于正常CP,则这连续的多个符号例如为{B-P-P-S-S-B-B-B-B-B-B-B-B},或者,如果该时隙对应于扩展CP,则这连续的多个符号例如为{B-P-P-S-S-B-B-B-B-B-B}。其中,“-”表示在“-”前后的两个符号在时域上相邻,B表示广播信道占用的符号,P表示第一同步序列(如主同步信号序列)占用的符号,S表示第二同步序列(如辅同步信号序列)占用的符号。
可参考图7C,为一个S-SSB占用的符号为{B-P-P-S-S-B-B-B-B-B-B-B-B}的示意。还可参考图7D,为一个S-SSB占用的符号为{B-P-P-S-S-B-B-B-B-B-B}的示意。可以看到,S-SSB未占用时隙里的最后一个符号。图7C和图7D,都以时隙的最后一个符号被GAP占用为例。
作为一种可选的实施方式,X个候选资源所承载的X个同步信号块中的部分同步信号块或全部同步信号块是重复传输的。其中,重复传输,也可以描述为,以准共址(quasi-co-located,QCL)方式传输或以相同方向传输。这里的传输,可以包括发送或接收。相当于,本申请实施例提供了一种同步信号块重复传输的结构,使得重复传输机制得以实现。通过重复传输同步信号,能够提高传输的可靠性。这里QCL的准共址是指信号从同一个设备与同一个位置向同一个方向发送;或者是多个不同的设备发送,但是从接收机来看,来自多个设备上的传输可以在时延、多谱勒扩展、传输方向、功率等中的一种或多种参数可以看作是来自于同一个设备上的传输。
如果第一资源集的频率为低频(FR1),那么第一资源集所承载的所有的同步信号块占用的时长可以小于或等于2毫秒(ms),或者说,第一资源集所包括的所有候选资源占用的时长可以小于或等于2ms。例如,第一资源集对应的子载波间隔为15KHz,第一资源集可以包括2个候选资源,每个候选资源占用的时长可以是1ms,则第一资源集所承载的所 有的同步信号块占用的时长可以等于2ms。需要注意的是,如果一个同步信号块不占用1个时隙的最后一个符号,那么实际上,该同步信号块所占用的时长可以小于1ms,则第一资源集所承载的所有的同步信号块占用的时长实际可能小于2ms。但本申请实施例的描述上并未一一列举出该差异,在描述上使用一个同步信号块所占用的时长为1ms,则第一资源集所承载的所有的同步信号块占用的时长为2ms。但本申请实施例的上述描述同时包括了一个同步信号块占用的时域资源小于一个时隙对应的时隙和等于一个时隙占用的时长的场景。
或者,如果第一资源集的频率为高频(FR2),那么第一资源集所承载的所有的同步信号块占用的时长可以小于或等于8ms,或者说,第一资源集所包括的所有候选资源占用的时长可以小于或等于8ms。例如,第一资源集对应的子载波间隔为120KHz,第一资源集可以包括8个候选资源,每个候选资源占用的时长可以是1ms,则第一资源集所承载的所有的同步信号块占用的时长可以等于8ms。同理,需要注意的是,如果一个同步信号块不占用1个时隙的最后一个符号,那么实际上,该同步信号块所占用的时长可以小于1ms,则第一资源集所承载的所有的同步信号块占用的时长实际可能小于8ms。但本申请实施例可以忽略该差异,认为一个同步信号块所占用的时长为1ms,则第一资源集所承载的所有的同步信号块占用的时长为8ms。
例如,M个组中的第i组承载的同步信号块所占用的时长可以为1ms,或者,M个组中的每组承载的同步信号块所占用的时长可以为1ms。或者描述为,M个组中的第i组包括的X个候选资源所占用的时长为1ms,或者,M个组中的每组包括的所有的候选资源所占用的时长为1ms。例如,M=8,第一资源集共包括8个组,其中的一组包括的所有的候选资源所占用的时长为1ms,或者,其中的每组包括的所有的候选资源所占用的时长为1ms。如果其中的每组包括的所有的候选资源所占用的时长为1ms,那么第一资源集所承载的所有的同步信号块占用的时长可以为8ms。例如,X的取值可以与第一资源集所在的载波的子载波间隔有关,如果第一资源集所在的载波的子载波间隔越大,则X的取值越小,反之,如果第一资源集所在的载波的子载波间隔越小,则X的取值越大。
在本申请的各个实施例中,例如将大于第一阈值的频率称为高频,将小于或等于第一阈值的频率称为低频;或者,将大于或等于第一阈值的频率称为高频,将小于第一阈值的频率称为低频。第一阈值可以通过协议规定,或者也可以预配置在终端装置中,或者也可以由网络设备配置,或者也可能并不存在第一阈值,只是为了区分高频和低频而引入的中间概念。其中,第一阈值例如为6GHz,或者为7GHz,或者7.125GHz,或者也可以是其他取值,本申请实施例对此不做限定。
例如,第一资源集可以最多包括L max个候选资源,L max个候选资源可以被划分到M个组中,也就是说,第一资源集包括M个组,M个组共包括L max个候选资源。M个组可以包括第i组,第i组包括X个候选资源,X个候选资源属于L max个候选资源,X小于或等于L max。M个组中的每个组所包括的候选资源的数量可以相同,也可以不同。以M个组中的每个组所包括的候选资源的数量相同为例,例如,M个组中的每个组都包括X个候选资源。其中,L max可以表示第一资源集最大支持的候选资源的个数。如果一个S-SSB周期内包括多个资源集,那么每个资源集所最大支持的候选资源的个数可以相同,或者也可以不同。例如,一个S-SSB周期包括第一资源集和第二资源集,第一资源集最大支持的候选资源的个数和第一资源集最大支持的候选资源的个数可以相同,或者,第一资源集最大支 持的候选资源的个数和第一资源集最大支持的候选资源的个数也可以不同,且对二者的大小关系不做限制。可选的,当M为1时,X即为L max
将L max个S-SSB分成M组的原因是,如果第一资源集的频率属于高频,则可以将M个组中的候选资源所承载的S-SSB承载在指向不同空间方向上的波束(beam)上发送,不同的组承载的S-SSB对应的波束不同,则不同的组对应的发送方向不同。也就是说,M个组对应于M个发送方向,或者说,M个组承载的S-SSB对应于M个发送方向。不同的组指向不同的发送方向,如果第一终端装置需要切换天线的发送方向,则只需在两个组之间进行切换即可,无需在组内进行切换,减少了终端装置切换的次数,相应减小了切换时延。另外,如果将本申请实施例提供的方案应用于低频,也就是说第一资源集的频率属于低频,那么M个组中的不同的组所承载的S-SSB可以通过安装在不同位置的天线单元发送出去,例如可以通过安装在车上的不同位置的天线单元发送出去,以实现对车辆周围不同位置的覆盖。
例如,可以考虑将每个波束方向上的天线阵元的波瓣宽度作为一个确定M的取值的因素。例如,假设天线阵元的波瓣宽度为45°,可以将M设置为8,使用8个相互不重叠的波束发送S-SSB,可以实现对360°的全方向的空间进行全方位的覆盖。
可选的,也可以将S-SSB对应的子载波间隔作为一个确定M的取值的因素。例如,S-SSB对应的子载波间隔越小,M的取值可以越小,而S-SSB对应的子载波间隔越大,M的取值可以越大。本文所述的,S-SSB对应的子载波间隔,第一资源集所在的载波的子载波间隔,或第一资源集对应的子载波间隔等,可以是指同一个子载波间隔。
例如,当第一资源集所在的载波的频率为高频时,M的取值可以是8。或者,当第一资源集所在的载波的频率为低频时,M的取值可以是2、4或8。
作为一种可选的实施方式,不同组承载的S-SSB还可以用于不同的天线面板(panel),或者说,不同组承载的S-SSB可以通过不同的天线面板发送;或者,多个组承载的S-SSB可以用于同一个天线面板,或者说,多个组承载的S-SSB可以通过同一个天线面板发送。本申请实施例对此不做限制。在实际应用或部署中,一个天线面板往往并不能完全覆盖整个空域的所有方向。因此,实际应用时,可以根据覆盖的需要,不同的天线面板可以安排在设备的不同方向和位置,以实现对不同方向上的信号的有效覆盖。例如对于V2X,可以在汽车的不同位置上安装不同的。
对于M个组来说,在时域上可以是连续分布的,这样可以实现对S-SSB的连续发送,减小接收端的解调复杂度。或者,M个组在时域上也可以等间隔分布,例如两个相邻的组之间可以间隔一个或多个OFDM符号,或间隔一个或多个时隙。或者,M个组在时域上也可以不等间隔分布,例如两个相邻的组之间可以间隔一个或多个OFDM符号,或间隔一个或多个时隙。无论是等间隔分布还是不等间隔分布,在M个组之间都可以留出一定的候选资源,或者说留出一定的资源,这些资源可以用于传输其他的信息,例如可以传输数据,从而可以提高资源的利用率,而且也可以减小数据的传输时延。
例如,第一资源集所在的载波的子载波间隔为120KHz,且M个组在时域上等间隔分布,那么M个组中的任意两个组之间的间隔可以是1个时隙或2个时隙。或者,第一资源集所在的载波的子载波间隔为60KHz(这里的60KHz按照高频对待),且M个组在时域上等间隔分布,那么M个组中的任意两个组之间的间隔可以是1个时隙。或者,第一资源集所在的载波的频率为低频,且M个组在时域上等间隔分布,那么M个组中的任意两个组 之间的间隔可以是0个时隙,或者说M个组中的任意两个组在时域上无间隔的时隙,或者理解为,M个组在时域上连续分布。
如果第一资源集的频率为低频,那么第一资源集所包括的用于发送同步信号块的候选资源(或者说候选资源)所占用的组的个数可以小于或等于2。且,用于发送通过信号块的候选资源所占用的组可以位于同一个无线帧内,例如这些组可以位于一个无线帧的同一个半帧内,例如都位于该无线帧的前半帧或后半帧,或者,如果用于发送同步信号块的候选资源所占用的组的个数为2,则这2个组可以有一个组位于该无线帧的前半帧,另一个组位于该无线帧的后半帧。例如,第一资源集对应的子载波间隔为15KHz,则第一资源集可以包括2组用于发送S-SSB的候选资源。这2组位于同一个无线帧内,且,这2组可以均位于该无线帧的前半帧或后半帧,或者,这2组中的1组位于该无线帧的前半帧,另1组位于该无线帧的后半帧。
例如,可以令M个组位于同一个无线帧中,例如M个组可以位于同一个无线帧的不同的子帧中,即M个组不跨越无线帧。其中,每个无线帧占用的时长为10ms。因为对于M个组中的一个组来说,可以用于重复传输S-SSB,而对于重复传输的S-SSB,接收端可以进行合并,以得到合并增益。而接收端要对接收的S-SSB进行合并,就要求这些S-SSB对应的参数相同,例如,这些S-SSB对应的无线帧的帧号需要相同,否则接收端就无法进行合并。那么本申请实施例中,令M个组都位于同一个无线帧中,显然这M个组对应的无线帧的帧号都相同,因此接收端能够对重复发送的S-SSB(或者说,以QCL方式发送的S-SSB)进行合并,得到合并增益。
可选的,还可以令M个组中的每个组都位于一个子帧中,也就是说,使得每个组都不跨越子帧。例如,一个子帧占用的时长为1ms,那么可以令每个组占用的时长为1ms。例如,M个组所占用的总时长可以小于或等于8ms。以M=8为例,则8个组中的每个组例如占用的时长为1ms,则8个组所占用的总时长可以为8ms。同样的,接收端要对接收的S-SSB进行合并,就要求这些S-SSB对应的参数相同,例如,这些S-SSB对应的子帧的帧号需要相同,否则接收端就无法进行合并。那么本申请实施例中,令M个组中的每个组都位于同一个子帧中,显然这M个组中的一个组所包括的S-SSB对应的子帧的帧号都相同,因此接收端能够对一个组内重复发送的S-SSB(或者说,以QCL方式发送的S-SSB)进行合并,得到合并增益。
例如请参考图8,为第一资源集和第二资源集的一种示意图。以一个S-SSB周期包括第一资源集和第二资源集为例。图8中,以M=8、M个组中的每个组都包括X个候选资源为例,且,以第一资源集的时域长度为10ms为例。另外在图8中,以M个组在时域上等间隔分布为例。图8中的偏移量1是指,第一资源集的起始位置与该S-SSB周期的起始位置之间的时间差,偏移量2是指,第二资源集的起始位置与该S-SSB周期的起始位置之间的时间差。
在图8中,将L max个S-SSB分成了8个组(M=8),每个组包括X个S-SSB。那么,L max可以满足如下公式:
L max=X×M      (公式1)
例如,X表示一个组包括的候选资源的个数,L表示第一资源集包括的候选资源的个数。其中,一个资源集所包括的候选资源的个数,大于或等于通过该资源集实际发送(或接收)的S-SSB的个数,同理,一个组所包括的候选资源的个数,大于或等于通过该组实 际发送(或接收)的S-SSB的个数。如果将通过第一资源集实际发送的S-SSB的个数表示为L,那么L的取值可以小于或等于相应频率或子载波间隔(sub-carrier space,SCS)下,一个资源集最大支持的S-SSB的个数,也就是说,L≤L max
在本申请实施例中,L max可以满足如下的一项或多项:
第一资源集所在的载波的频率为低频,如果第一资源集所在的载波的子载波间隔为15KHz,则第一资源集所对应的L max可以等于2;或者,第一资源集的频率为低频,如果第一资源集所在的载波的子载波间隔为30KHz,则第一资源集所对应的L max可以等于4;或者,第一资源集的频率为低频,如果第一资源集所在的载波的子载波间隔为60KHz,则第一资源集所对应的L max可以等于8;
或者,第一资源集所在的载波的频率为低频,如果第一资源集所在的载波的子载波间隔为15KHz,则第一资源集所对应的L max可以等于1;或者,第一资源集的频率为低频,如果第一资源集所在的载波的子载波间隔为30KHz,则第一资源集所对应的L max可以等于2;或者,第一资源集的频率为低频,如果第一资源集所在的载波的子载波间隔为60KHz,则第一资源集所对应的L max可以等于4;
或者,第一资源集所在的载波的频率为高频,如果第一资源集所在的载波的子载波间隔为60KHz,则第一资源集所对应的L max可以等于32;或者,第一资源集的频率为高频,如果第一资源集所在的载波的子载波间隔为120KHz,则第一资源集所对应的L max可以等于64。
例如,当第一资源集所在的载波的频率为低频时,L max可以满足:如果第一资源集所在的载波的子载波间隔为15KHz,则第一资源集所对应的L max可以等于2;如果第一资源集所在的载波的子载波间隔为30KHz,则第一资源集所对应的L max可以等于4;如果第一资源集所在的载波的子载波间隔为60KHz,则第一资源集所对应的L max可以等于8。
或者,当第一资源集所在的载波的频率为低频时,L max可以满足:如果第一资源集所在的载波的子载波间隔为15KHz,则第一资源集所对应的L max可以等于1;如果第一资源集所在的载波的子载波间隔为30KHz,则第一资源集所对应的L max可以等于2;如果第一资源集所在的载波的子载波间隔为60KHz,则第一资源集所对应的L max可以等于4。
或者,当第一资源集所在的载波的频率为高频时,L max可以满足:如果第一资源集所在的载波的子载波间隔为60KHz,则第一资源集所对应的L max可以等于32;如果第一资源集所在的载波的子载波间隔为120KHz,则第一资源集所对应的L max可以等于64。
当然,这里对于L max的取值的介绍只是一些示例,本申请实施例并不限制L max的取值。
在前文的描述中,将L个候选资源分为了M个组。为了覆盖更细的粒度,在本申请实施例中,还可以将M个组中的全部组或部分组中的每个组再分为多个子组。如果是将多个组中的每个组再分为多个子组,那么不同的组所包括的子组的个数可以相同,也可以不同。例如,可以将M个组中的第一组分为K个子组,那么第一组所包括的X个候选资源就属于K个子组。例如,M个组中的每个组都可以包括K个子组,或者,M个组中的第二组所包括的子组的个数可以不等于K。K可以是正整数,例如,K可以等于1,或者可以等于2,或者也可以等于更大的数值。
K个子组中的不同的子组所包括的候选资源的个数可以相同,也可以不同。例如,K个子组中的第一子组包括R个候选资源,R个候选资源可以承载R个S-SSB,这R个S-SSB可以是重复传输的,或者说是以QCL方式传输的。例如,K个子组中的每个子组都可以包 括R个候选资源,或者,K个子组中的第二子组所包括的候选资源也可以不等于R。R可以是正整数,例如,R可以等于1,或者可以等于2,或者也可以等于更大的数值。
例如,K个子组中的每个子组都包括R个候选资源,且R个候选资源可以承载重复传输的R个S-SSB。那么,不同的子组所承载的S-SSB可以是不同的,相当于,一个S-SSB只在一个子组内进行重复传输。或者,有可能K个子组中的全部子组或部分子组所承载的S-SSB是相同的,或者,第一资源集所包括的全部子组或部分子组所承载的S-SSB是相同的,相当于,一个S-SSB可以在多个子组内进行重复传输。例如,网络设备配置第一终端装置发送S-SSB1,且网络设备为S-SSB1配置了重复因子H,如果该重复因子H小于或等于R,则可以将S-SSB1在一个子组内进行重复传输,而如果该重复因子H大于R,则可以将S-SSB1在多个子组内重复传输。
将X个S-SSB进一步分成K个子组,是考虑到,对于高频的场景,当波束的波瓣宽度更小,或者传输时需要将部分波瓣做部分的空间重叠时,可能需要将S-SSB分为更多的组。例如,K个子组可以通过K个波束来发送,不同的波束对应的方向不同,也就是说,K个子组可以对应K个发送方向,或者说,K个子组承载的S-SSB对应于K个发送方向。不同的子组指向不同的发送方向。如果第一终端装置需要切换天线的发送方向,则只需在两个子组之间进行切换即可,无需在子组内进行切换,减少了终端装置切换的次数,相应减小了切换时延。另外,如果将本申请实施例提供的方案应用于低频,那么K个子组中的不同的子组所承载的S-SSB可以通过安装在不同位置的天线单元发送出去,例如可以通过安装在车上的不同位置的天线单元发送出去,以实现对车辆周围不同位置的覆盖。相对于只将L个S-SSB分为M个组的方案来说,再将M个组中的全部组或部分组中的每个组分为多个子组,可以使得所发送的S-SSB覆盖的粒度更细。
对于K个子组中的第一子组来说,所包括的R个候选资源在时域上可以是连续分布的,这样可以实现对S-SSB的连续发送,减小接收端的解调复杂度。或者,R个候选资源在时域上也可以等间隔分布,或者,R个候选资源在时域上也可以不等间隔分布。无论是等间隔分布还是不等间隔分布,在R个候选资源之间都可以留出一定的候选资源,或者说留出一定的资源,这些资源可以用于传输其他的信息,例如可以传输数据,从而可以提高资源的利用率,而且也可以减小数据的传输时延。
作为一种可选的实施方式,还可以将第一资源集分为两部分。例如,第一资源集包括第一部分和第二部分,第一部分可以包括M/2个组,第二部分也可以包括M/2个组。例如第一部分包括M个组中在时域上的前M/2个组,第二部分包括M个组中在时域上的后M/2个组,在时域上,第一部分位于第二部分之前。如果M个组中的每个组都包括X个S-SSB,那么第一部分可以包括L max/2个S-SSB,第二部分也可以包括L max/2个S-SSB。如果M个组位于一个无线帧内,那么第一部分可以位于该无线帧的前半帧内,第二部分位于该无线帧的后半帧内。例如,第一部分的结构和第二部分的结构可以相同,或者也可以不同。所谓的结构相同,是指第一部分所包括的候选资源在第一部分内的相对位置与第二部分所包括的候选资源在第二部分内的相对位置相同。
例如请参考图9A,为第一资源集和第二资源集的一种示意图。以一个S-SSB周期包括第一资源集和第二资源集为例。图9A中,以M=8、M个组中的每个组都包括X个候选资源为例,且,以第一资源集的时域长度为10ms为例。另外在图9A中,以M个组在时域上等间隔分布为例。图9A中的偏移量1是指,第一资源集的起始位置与该S-SSB周期 的起始位置之间的时间差,偏移量2是指,第二资源集的起始位置与该S-SSB周期的起始位置之间的时间差。在图9A中,将L个S-SSB分成了8个组(M=8),每个组包括X个S-SSB。另外,通过第二条竖直的虚线表示将第一资源集分为了第一部分和第二部分,第一部分包括前4个组,第二部分包括后4个组。
请参考图9B,为第一资源集内包括的M个组的示意图。图9B以M=8为例,图9B中从左至右的第三个组表示实际发送的S-SSB所在的组,各个小方框中的S表示该组中实际发送的S-SSB的个数。
图9A是以M个组等间隔分布为例。或者还有一种情况,M个组中的第2×i个组和第(2×i+1)个组在时域上相邻,且第(2×i+1)个组和第2×(i+1)个组在时域不相邻,i为0,1,…,M/2中的任一个。例如取i=0,则表示,M个组中的第0个组和第1个组在时域上相邻,且第1个组和第2个组在时域上不相邻。或者取i=1,则表示,M个组中的第2个组和第3个组在时域上相邻,且第3个组和第4个组在时域上不相邻。以此类推。也就是说,M个组两两相邻,而在相邻的两个组之间,有一定的间隔,例如间隔一个或多个OFDM符号,或者间隔一个或多个时隙。且相邻的两个组,可以是等间隔的。
例如请参考图10,为第一资源集和第二资源集的一种示意图。以一个S-SSB周期包括第一资源集和第二资源集为例。图10中,以M=8、M个组中的每个组都包括X个候选资源为例,且,以第一资源集的时域长度为10ms为例。另外在图10中,以M个组在时域上等间隔分布为例。图10中的偏移量1是指,第一资源集的起始位置与该S-SSB周期的起始位置之间的时间差,偏移量2是指,第二资源集的起始位置与该S-SSB周期的起始位置之间的时间差。在图10中,将L个S-SSB分成了8个组(M=8),每个组包括X个S-SSB。另外,通过竖直的虚线表示将第一资源集分为了第一部分和第二部分,第一部分包括前4个组,第二部分包括后4个组。在图10中可以看到,8个组两两相邻,而相邻的两个组之间又有一定的间隔。例如,第0个组和第1个组相邻,第1个组和第2个组不相邻,第2个组和第3个组相邻,第3个组和第4个组不相邻,等等。第1个组和第2个组之间的间隔,第3个组和第4个组之间的间隔,以及第5个组和第6个组之间的间隔,这三个间隔可以相等,也可以不相等,图10以这三个间隔相等为例。
下面以不将第一资源集分为第一部分和第二部分的结构为例,针对不同的子载波间隔来举例介绍第一资源集的结构。
例如子载波间隔为120kHz,可继续参考图8。则可以将L个S-SSB分为8个组,每个组包括X=8个候选资源,每个组所包括的8个候选资源占用的时长为1ms。这8个组可以等间隔分布,每两个组之间的间隔例如为120kHz下的1个时隙。这8个组中在时域上的第一个组的起始时间可以与第一资源集所在的无线帧的起始边界对齐,这8个组中除了第一个组之外的剩余的组中的每个组的起始时间,与第一资源集所在的无线帧的起始边界具有相应的偏移值,每个组与第一资源集所在的无线帧的起始边界之间的偏移值可以是固定的,例如可以通过协议规定,或者,这些偏移值也可以是可变的,例如可以由网络设备配置给第一终端装置。如果这8个组中在时域上的第一个组的起始时间与第一资源集所在的无线帧的起始边界对齐,那么这8个组中在时域上的最后一个组的结束时间与第一资源集所在的无线帧的结束边界之间可以有一定的间隔,例如该间隔为1.125ms。
或者例如,8个组中的每个组可以包括X=8个候选资源,这8个候选资源占用的时长为1ms,8个组中相邻的两个组之间的间隔例如为120kHz下的2个时隙。这8个组中在时 域上的第一个组的起始时间可以与第一资源集所在的无线帧的起始边界对齐,这8个组中除了第一个组之外的剩余的组中的每个组的起始时间,与第一资源集所在的无线帧的起始边界具有相应的偏移值,每个组与第一资源集所在的无线帧的起始边界之间的偏移值可以是固定的,例如可以通过协议规定,或者,这些偏移值也可以是可变的,例如可以由网络设备配置给第一终端装置。如果这8个组中在时域上的第一个组的起始时间与第一资源集所在的无线帧的起始边界对齐,那么这8个组中在时域上的最后一个组的结束时间与第一资源集所在的无线帧的结束边界之间可以有一定的间隔,例如该间隔为0.25ms。
需要说明的是,X=8,可以是在将L配置为L max时的数量。当子载波间隔为120kHz,L取L max时,L可以等于64,如果将L分为8个组,则每个组可以包括8个候选资源。例如在子载波间隔为120kHz时,X的取值可以小于或等于8,例如X可以等于1,2,或4等。当L小于8时,实际发送的S-SSB可以只出现部分候选资源上。
如果子载波间隔为60kHz,也可继续参考图8。与子载波间隔为120KHz是类似的,只不过在子载波间隔为60KHz时,可以将L个S-SSB分为8个组,每个组可以包括X=4个候选资源。可选的,在子载波间隔为60kHz时,M个组如果为等间隔分布,则M个组中相邻的两个组之间的间隔可以为60kHz下的一个时隙。
需要说明的是,X=4,可以是在将L配置为L max时的数量。当子载波间隔为60kHz,L取L max时,L可以等于32,如果将L分为8个组,则每个组可以包括4个候选资源。例如在子载波间隔为60kHz时,X的取值可以小于或等于4,例如X可以等于1或2等。当L小于4时,实际发送的S-SSB可以只出现部分候选资源上。
下面以将第一资源集分为第一部分和第二部分的结构为例,例如是以图10所示的结构为例,针对不同的子载波间隔来举例介绍第一资源集的结构。
例如,M个组位于一个无线帧内。当子载波间隔为120kHz时,以M=8为例,则第一部分包括4个组,第二部分也包括4个组。其中,这8个组可以等间隔分布,例如每两个相邻的组之间的间隔为120KHz下的2个时隙。例如,8个组中的第0个组和第1个组之间的间隔为120KHz下的2个时隙,第1个组和第2个组之间的间隔也为120KHz下的2个时隙,等等。或者,这8个组也可以不等间隔分布。例如,第一部分包括的第0个组和第1个组之间的间隔为120KHz下的1个时隙,第1个组和第2个组之间的间隔为120KHz下的1个时隙,第2个组和第3个组之间的间隔为120KHz下的1个时隙,第3个组和第4个组之间的间隔为120KHz下的5个时隙;同理,第二部分包括的第4个组和第5个组之间的间隔为120KHz下的1个时隙,第5个组和第6个组之间的间隔为120KHz下的1个时隙,第6个组和第7个组之间的间隔为120KHz下的1个时隙,第7个组和该无线帧的结束边界之间的间隔为120KHz下的5个时隙。
又例如,M个组位于一个无线帧内。当子载波间隔为60kHz时,以M=8为例,则第一部分包括4个组,第二部分也包括4个组。其中,这8个组可以等间隔分布,例如每两个相邻的组之间的间隔为60KHz下的1个时隙。例如,8个组中的第0个组和第1个组之间的间隔为60KHz下的1个时隙,第1个组和第2个组之间的间隔也为60KHz下的1个时隙,等等。或者,这8个组也可以不等间隔分布,具体的不作限制。
再例如,对于低频,L max可以取2,4,或8,或者可以取1,2,或4。相应的,L max个候选资源占用的总时长可以是1ms,或者是2ms。
对于低频,也可以直接采用如前所述的第一资源集的结构来发送S-SSB,可以从如前 所述的第一资源集中选择相应的候选资源来发送S-SSB。例如,一个S-SSB周期内包括第一资源集和第二资源集,第一资源集所包括的候选资源可以用于发送S-SSB,第二资源集所包括的候选资源可以用于接收S-SSB。或者,如果L max可以取2,4,或8,则可以将L个候选资源分为4个组,其中的2个组所包括的候选资源可以用于发送S-SSB,其中剩余的2个组所包括的候选资源可以用于接收S-SSB。
可选地,对于低频,组数M可以与高频的相同,实际发送的同步信号块可以仅位于同一个组内。可选地,对于低频,组数M可以与高频的不相同。例如,M固定为2,N个同步信号块可以位于这两个组内。可选地,这两个组可以分别位于一个无线帧中的前半帧或后半帧。可选地,对于低频,组数M还可以固定为1,N个同步信号块配置在第一资源集中的N个位置上。此时第一资源集的大小不超过10ms。
例如,当子载波间隔为15KHz时,L max=1或2。例如,L max个候选资源被分为M个组,M个组中的每个组被分为K个子组,K个子组中的每个组包括R个候选资源,R个候选资源所承载的S-SSB可以是重复发送的。一种方式为,R小于或等于2。例如R=2,L max=1,那么L max个候选资源就只被分为1个子组,这1个子组包括的R个候选资源所承载的S-SSB可以是重复发送的,或者说,第一资源集只包括一个以R倍重复发送S-SSB的组。或者,另一种方式为,R小于或等于1。例如R=1,那么L max个候选资源就最多被分为2个子组,这2个子组中的每个子组包括的R个候选资源所承载的S-SSB可以是重复发送的,或者说,第一资源集最多包括两个以R倍重复发送S-SSB的组。考虑到收发资源的不同,第一资源集最多包括两个以R倍重复发送S-SSB的组,以及两个以R倍重复接收S-SSB的组。上述的两种情况,各个实际发送的S-SSB的资源的时频位置都可以由网络设备通过信令配置。
又例如,当子载波间隔为30KHz时,L max=2或4。例如,L max个候选资源被分为M个组,M个组中的每个组被分为K个子组,K个子组中的每个组包括R个候选资源,R个候选资源所承载的S-SSB可以是重复发送的。一种方式为,R小于或等于4。例如R=4,L max=4,那么L max个候选资源就只被分为1个子组,这1个子组包括的R个候选资源所承载的S-SSB可以是重复发送的,或者说,第一资源集只包括一个以R倍重复发送S-SSB的组。或者,另一种方式为,R小于或等于2。例如R=2,那么L max个候选资源就最多被分为2个子组,这2个子组中的每个子组包括的R个候选资源所承载的S-SSB可以是重复发送的,或者说,第一资源集最多包括两个以R倍重复发送S-SSB的组。考虑到收发资源的不同,第一资源集最多包括两个以R倍重复发送S-SSB的组,以及两个以R倍重复接收S-SSB的组。则上述的两种情况,各个实际发送的S-SSB的资源的时频位置都可以由网络设备通过信令配置。
再例如,当子载波间隔为60KHz时,L max=4或8。例如,L max个候选资源被分为M个组,M个组中的每个组被分为K个子组,K个子组中的每个组包括R个候选资源,R个候选资源所承载的S-SSB可以是重复发送的。一种方式为,R小于或等于8。例如R=8,L max=8,那么L max个候选资源就只被分为1个子组,这1个子组包括的R个候选资源所承载的S-SSB可以是重复发送的,或者说,第一资源集只包括一个以R倍重复发送S-SSB的组。或者,另一种方式为,R小于或等于4。例如R=4,那么L max个候选资源就最多被分为2个子组,这2个子组中的每个子组包括的R个候选资源所承载的S-SSB可以是重复发送的,或者说,第一资源集最多包括两个以R倍重复发送S-SSB的组。考虑到收发资源的不同,第一资源集最多包括两个以R倍重复发送S-SSB的组,以及两个以R倍重复接 收S-SSB的组。上述的两种情况,各个实际发送的S-SSB的资源的时频位置都可以由网络设备通过信令配置。
另外,M个组中的一个组可以包括X个候选资源,X个候选资源在时域上可以是连续的,或者,X个候选资源在时域上可以等间隔分布,或者,X个候选资源在时域上可以不等间隔分布。如果X个候选资源在时域上不等间隔分布,那么一种方式为,X个候选资源中,每两个相邻的候选资源之间的间隔可以为一个或多个时隙,且,不同的间隔的时长不同。例如,X=4,则第0个候选资源和第1个候选资源之间具有间隔1,第1个候选资源和第2个候选资源之间具有间隔2,第2个候选资源和第3个候选资源之间具有间隔3。则间隔1可以是一个或多个时隙,间隔2可以是一个或多个时隙,间隔3可以是一个或多个时隙,且间隔1、间隔2和间隔3两两均不相等。
例如请参考图11,为X个候选资源在时域上等间隔分布的一种示意图。图11以一个S-SSB周期包括第一资源集和第二资源集为例。图11中,以第一资源集中包括的3个候选资源以及第二资源集包括的3个候选资源为例。可以看到,第一资源集包括的3个候选资源是等间隔分布的,例如间隔为U个时隙。第二资源集包括的3个候选资源也是等间隔分布的,例如间隔也为U个时隙。U的取值可以大于0。图11中的偏移量1是指,第一资源集的起始位置与该S-SSB周期的起始位置之间的时间差,偏移量2是指,第二资源集的起始位置与该S-SSB周期的起始位置之间的时间差。
请再参考图12A,为X个候选资源在时域上不等间隔分布的一种示意图。图12A以一个S-SSB周期包括第一资源集和第二资源集为例。图12A中,以第一资源集中包括的4个候选资源以及第二资源集包括的4个候选资源为例。可以看到,第一资源集包括的4个候选资源是不等间隔分布的,例如第0个候选资源和第1个候选资源之间的间隔为U1个时隙,第1个候选资源和第2个候选资源之间的间隔为U2个时隙,第2个候选资源和第3个候选资源之间的间隔为U3个时隙。第二资源集包括的4个候选资源也是不等间隔分布的,例如第0个候选资源和第1个候选资源之间的间隔为U1个时隙,第1个候选资源和第2个候选资源之间的间隔为U2个时隙,第2个候选资源和第3个候选资源之间的间隔为U3个时隙。U1可大于或等于0,U2和U3的取值均可以大于0。图12A中的偏移量1是指,第一资源集的时域起始位置与该S-SSB周期的时域起始位置之间的时间差,偏移量2是指,第二资源集的时域起始位置与该S-SSB周期的时域起始位置之间的时间差。
请参考图12B,为X个候选资源在时域上不等间隔分布的另一种示意图。图12B以一个S-SSB周期包括第一资源集和第二资源集为例。图12B中,以第一资源集中包括的4个候选资源以及第二资源集包括的4个候选资源为例。可以看到,第一资源集包括的4个候选资源是不等间隔分布的,例如第0个候选资源和第1个候选资源之间的间隔为U1个时隙,第1个候选资源和第2个候选资源之间的间隔为U2个时隙,第2个候选资源和第3个候选资源之间的间隔为U3个时隙。第二资源集包括的3个候选资源也是不等间隔分布的,例如第0个候选资源和第1个候选资源之间的间隔为U1个时隙,第1个候选资源和第2个候选资源之间的间隔为U2个时隙,第2个候选资源和第3个候选资源之间的间隔为U3个时隙。U1等于0,U2和U3的取值均可以大于0,例如U2=2U,U3=3U。图12B中的偏移量1是指,第一资源集的时域起始位置与该S-SSB周期的时域起始位置之间的时间差,偏移量2是指,第二资源集的时域起始位置与该S-SSB周期的时域起始位置之间的时间差。
其中,还可以将X个候选资源分为K个子组,每个子组可以包括R个候选资源,U1、U2、U3等的取值可以与R相关。
例如,R=4时,X个候选资源之间的间隔的取值属于{0,1,2},单位例如为符号或时隙。也就是说在一个子组中,第0个候选资源和第1个候选资源之间的间隔U1为0个符号或0个时隙,第1个候选资源和第2个候选资源之间的间隔U2为1个符号或1个时隙,第1个候选资源和第2个候选资源之间的间隔U3为2个符号或2个时隙。
又例如,R=8时,X个候选资源之间的间隔的取值属于{0,1,2,3,4,5,6},单位例如为符号或时隙。也就是说在一个子组中,第0个候选资源和第1个候选资源之间的间隔U1为0个符号或0个时隙,第1个候选资源和第2个候选资源之间的间隔U2为1个符号或1个时隙,第1个候选资源和第2个候选资源之间的间隔U3为1个符号或1个时隙,第2个候选资源和第3个候选资源之间的间隔U4为3个符号或3个时隙,等等,以此类推。
再例如,R=16时,X个候选资源之间的间隔的取值属于{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14},单位例如为符号或时隙。也就是说在一个子组中,第0个候选资源和第1个候选资源之间的间隔U1为0个符号或0个时隙,第1个候选资源和第2个候选资源之间的间隔U2为1个符号或1个时隙,第1个候选资源和第2个候选资源之间的间隔U3为1个符号或1个时隙,第2个候选资源和第3个候选资源之间的间隔U4为3个符号或3个时隙,等等,以此类推。
如上所介绍的,X个候选资源之间的间隔取值方式至少可以用于低频。例如在低频时,将L个候选资源分为M个组,将M个组中的每个组又分为K个子组,每个子组包括R个候选资源,也就是说,可以配置R个重复传输的S-SSB,那么R个候选资源之间的间隔可以取{0,1,2,3,4,……,R-2}。也就是说在一个子组中,第0个候选资源和第1个候选资源之间的间隔U1为0个OFDM符号或0个时隙,第1个候选资源和第2个候选资源之间的间隔U2为1个OFDM符号或1个时隙,第1个候选资源和第2个候选资源之间的间隔U3为1个OFDM符号或1个时隙,第2个候选资源和第3个候选资源之间的间隔U4为3个OFDM符号或3个时隙,第R-2个候选资源和第R-1个候选资源之间的间隔UR为R-2个OFDM符号或R-2个时隙,等等,以此类推。
通过这种方式,可以规定具体的候选资源,则S-SSB的发送端和接收端对于承载S-SSB的候选资源的理解是一致的,两者可以对齐。接收端在接收S-SSB时如果采用互相关的方式,则可以产生R倍的主峰,从而提高接收性能。或接收端侧的定时与发送侧的定时未对齐,如相差一个或多个时隙时,则接收端最多只产生1倍的主峰的检测能量。从而此处的方法可以大幅度地提高对时对齐时的检测性能。
如果使得X个候选资源在时域上连续,那么对于接收端来说解调复杂度较低,且接收时延较小。或者,如果使得X个候选资源在时域上等间隔分布或不等间隔分布,也就是使得X个候选资源之间有一定的间隔,那么如果第一终端装置需要在两个候选资源之前切换天线阵列,则通过两个候选资源之间的间隔,可以为第一终端装置预留出切换时间。而且,通过在X个候选资源之间预留一定的间隔,也相当于为其他的信息预留出资源,例如可以通过X个候选资源之间的间隔来发送数据或反馈信息等,可以尽量避免S-SSB占用较长的时间,减小其他业务的处理时延。
在前文介绍了,第一终端装置可以根据第一配置信息确定N个候选资源的时域位置, 例如第一配置信息可以指示在第一资源上发送的同步信号块在同步信号块的周期内所在的时隙位置,第一资源的起始位置在同步信号块的周期内的时域偏移值,或,第一资源在第一资源集内的时域位置中的一种或多种。另外,第一终端装置还可以根据来自网络设备的信令来确定用于发送同步信号块的候选资源的个数等信息。
例如,网络设备可以向第一终端装置发送第二信令,第一终端装置接收来自网络设备的第二信令,第二信令用于指示X1、L、R1或K1中的一项或多项。例如,第二信令可以指示L和X1,则第一终端装置根据L和X1可以确定M1;或者,第二信令可以指示L和M1,则第一终端装置根据L和M1可以确定X1;或者,第二信令可以指示X1和M1,则第一终端装置根据X1和M1可以确定L。其中,X1表示M组中的第i组实际用于发送的同步信号块的个数,或者表示M组中的每组实际用于发送的同步信号块的个数,X1可以小于或等于X。M1表示第一资源集实际用于发送的组的个数,M1可以小于或等于M。L表示第一资源集实际用于发送的同步信号块的个数,或者说,表示第一资源集中实际调用的候选资源的个数,L小于或等于L max。其中,L=M1×X1,该公式包括三个参数,只要知道其中的任意两个参数,就可以计算出另一个参数。该公式是以M1组中的每组用于发送的候选资源的个数相同为例。
或者,第一终端装置也可以根据预配置的信息确定用于发送同步信号块的候选资源的个数,预配置的信息可以是预先配置给第一终端装置的信息。例如,预配置的信息可以指示X1、L、R1或K1中的一项或多项。例如,预配置的信息可以指示L和X1,则第一终端装置根据L和X1可以确定M1;或者,预配置的信息可以指示L和M1,则第一终端装置根据L和M1可以确定X1;或者,预配置的信息可以指示X1和M1,则第一终端装置根据X1和M1可以确定L。
或者,如果还将M个组中的一个或多个组中的每个组分为了多个子组,那么第二信令可以指示L、X1、M1、R1或K1中的一项或多项。例如,第二信令可以指示L、R1和X1,则第一终端装置根据L和X1可以确定M1,根据L、R1和M1可以确定K1;或者,第二信令可以指示X1、M1和K1,则第一终端装置根据X1和M1可以确定L,根据X1和K1可以确定R1,等等。其中,R1表示M1组中的第i组包括的第一子组实际用于发送的同步信号块的个数,或者表示M1组中的第i组包括的每个子组实际用于发送的同步信号块的个数,或者表示M1组中每个子组实际用于发送的同步信号块的个数,R1小于等于R。K1表示M1组中的第i组实际用于发送的子组的个数,或者表示M1组中的每组实际用于发送的子组的个数,K1小于等于K。其中,X1=R1×K1,L=M1×X1。这两个公式是以M1组中的每组用于发送的候选资源的个数相同,且M1组中的每组包括的每个子组所用于发送的候选资源的个数相同为例。
或者,如果还将M个组中的一个或多个组中的每个组分为了多个子组,那么第一终端装置也可以根据预配置的信息确定用于发送同步信号块的候选资源的个数。例如,可以指示L、X1、M1、R1或K1中的一项或多项。例如,预配置的信息可以指示L、R1和X1,则第一终端装置根据L和X1可以确定M1,根据L、R1和M1可以确定K1;或者,预配置的信息可以指示X1、M1和K1,则第一终端装置根据X1和M1可以确定L,根据X1和K1可以确定R1,等等。
网络设备向第一终端装置发送第二信令,也就相当于为第一终端装置指示了用于发送同步信号块的N个候选资源的个数。例如,N=1,则第一资源就用于发送一个同步信号块, 或者,N>1,则第一资源就用于发送多个同步信号块。
在本申请实施例中,第一资源集对应的时域资源可以占用上行资源,或者可以占用侧行资源。例如,当第一子资源与以下资源中的一种或多种重叠时,丢弃N个同步信号块中与以下资源重叠的同步信号块:下行符号或下行时隙,灵活符号或符号时隙,或,上行符号或上行时隙。例如,第一资源所包括的第j候选资源是用于发送第j同步信号块的资源,第j候选资源是第一资源的子集。例如,第j候选资源与下行符号重叠,则丢弃第j同步信号块;或者例如,第j候选资源与灵活符号重叠,则丢弃第j同步信号块,等等。例如,第j候选资源占用一个时隙中除了最后一个符号之外剩余的全部符号,而该时隙中的第2个符号为下行符号,那么在该时隙中的第二个符号上,第j候选资源和下行符号重叠,因此,可以丢弃第j同步信号块。
例如,如果第一资源集位于授权(licensed)载波上,则候选资源可以配置在上行(UL)时隙上,即,在配置候选资源时,需要跳过下行(DL)时隙、F符号所在的时隙,或X符号所在的时隙,不将这些时隙配置为候选资源。其中,F符号是指灵活OFDM符号,X符号是指可被配置为上行符号或下行符号的OFDM符号。
或者,如果第一资源集位于licensed载波上,依然可以正常配置候选资源。在配置了候选资源后,第一资源集可以按周期重复地出现。当有候选资源上没有配置的用于侧行传输的资源时,则实际发送或接收S-SSB时不能选择该候选资源。例如,第一资源集所在的无线帧中,有个符号是一个候选资源所在的符号,但是该符号并没有被配置为可以发送侧行信息,那么实际发送或接收S-SSB时不能使用该符号。
如果第一资源集位于智能交通系统(intelligent transport system,ITS)载波上,那么,一个S-SSB周期例如包括第一资源集和第二资源集,第一资源集可以用于发送S-SSB,第二资源集可以用于接收S-SSB。资源集占用的时长可以是预定义的,例如通过协议规定,例如第一资源集占用的时长为5ms,第二资源集占用的时长为5ms;或者,第一资源集占用的时长为10ms,第二资源集占用的时长为10ms。另外,第一资源集在S-SSB周期内的具体位置,可以由网络设备通过信令配置给第一终端装置。
在本申请实施例中,如果S-SSB的候选资源配置在物理时隙上,则物理侧行反馈信道(physical sidelink feedback channel,PSFCH)配置在逻辑时隙上,需要去除S-SSB占用的资源后再配置PSFCH的资源。例如在配置PSFCH的资源时,先去掉S-SSB占用的物理资源,在去掉这些资源后,剩下的资源可能就是不连续的资源,那么对剩下的资源可以重新进行编号,使得这些资源的编号得以连续,重新编号后的资源就视为逻辑资源,可以在这些逻辑资源上配置PSFCH的资源。
或者,如果S-SSB的候选资源配置在逻辑时隙上,而PSFCH配置在物理时隙上,则需要去掉PSFCH占用的资源后再配置S-SSB的候选资源。
另外,第一资源集可以位于同步信号块的周期内,该同步信号块的周期内还可以包括同步信号块的第二资源。第二资源可以包括第一终端装置用于接收同步信号块的候选资源,或者说,包括第三终端装置用于发送同步信号块的候选资源。可选的,第一资源集与第二资源集在时域上是占用不同的时隙或占用不同的无线帧。
那么,为了使得第一终端装置除了可以使用第一资源发送同步信号块,还能使用第二资源接收同步信号块,使用第一资源的第一终端装置的网络覆盖状态与使用第二资源的第三终端装置的网络覆盖状态可以是不同的。所谓的终端装置的网络覆盖状态,可以是指该 终端装置是位于网络的覆盖范围内,还是位于网络的覆盖范围外(或者说,未被网络覆盖)。终端装置是位于网络的覆盖范围内是指终端装置能够在特定的频率上检测到网络设备发送的信号,或者检测到的网络设备发送的信号的质量超过预设或配置的门限值。反之,当终端装置是不能在特定的频率上检测到网络设备发送的信号,或者检测到的网络设备发送的信号的质量低于预设或配置的门限值,则终端装置是位于网络的覆盖范围之外。
或者,为了使得第一终端装置除了可以使用第一资源发送同步信号块,还能使用第二资源接收同步信号块,也可以满足如下的一项或两项:
使用第一资源的第一终端装置的网络覆盖状态与使用第二资源的第三终端装置的网络覆盖状态相同,且第一资源的同步信号标识与第二资源的同步信号标识不同;或,使用第一资源的第一终端装置的网络覆盖状态与使用第二资源的第三终端装置的网络覆盖状态相同,第一终端装置的同步参考源与第三终端装置同步参考源不同。例如,可以满足,使用第一资源的第一终端装置的网络覆盖状态与使用第二资源的第三终端装置的网络覆盖状态相同,且第一资源的同步信号标识与第二资源的同步信号标识不同;或者,可以满足,使用第一资源的第一终端装置的网络覆盖状态与使用第二资源的第三终端装置的网络覆盖状态相同,第一终端装置的同步参考源与第三终端装置同步参考源不同;或者,可以满足,使用第一资源的第一终端装置的网络覆盖状态与使用第二资源的第三终端装置的网络覆盖状态相同,且第一资源的同步信号标识与第二资源的同步信号标识不同,以及,使用第一资源的第一终端装置的网络覆盖状态与使用第二资源的第三终端装置的网络覆盖状态相同,第一终端装置的同步参考源与第三终端装置同步参考源不同。满足这些条件,都可以使得第一终端装置除了可以使用第一资源发送同步信号块,还能使用第二资源接收同步信号块。
或者,可选地,当发送同步信号块的两个设备,在作为同步源时的同步源类型、优先级或跳数不相同时,需要让这两个设备至少要使用两个不同的同步资源,以便这两个设备在发送各自的同步信号块时还能检测到另一设备在另一资源上发送的同步信号块。
例如,第一资源集位于同步信号块的周期内,在同步信号块的周期内还可以包括同步信号块的第二资源和第三资源。那么,使用第一资源的第一终端装置可以位于网络内,并且同步到卫星或网络设备;或者,使用第一资源的第一终端装置位于网络外,并且未同步到网络内的第五终端装置。使用第二资源的第三终端装置可以位于网络外,并且同步到网络内的第五终端装置。使用第三资源的第四终端装置可以位于网络外,并且同步到卫星。
例如,第一资源属于第一资源集,第二资源可以属于同步信号块的周期内的第二资源集,例如第二资源集可以是用于第一终端装置接收同步信号块的资源集。如果还有第三资源,那么第三资源可以属于同步信号块的周期内的第三资源集。
S62、第二终端装置从第一资源集中确定用于传输N个同步信号块的第一资源。N为正整数。或者,第二终端装置从第一资源集中确定用于接收N个同步信号块的第一资源。
网络设备可以向第二终端装置配置第一资源,或者,第一资源也可以通过协议配置。如果由网络设备向第二终端装置配置第一资源,例如在S61中介绍了,网络设备可以向第一终端装置发送第一配置信息,那么,网络设备也可以将第一配置信息发送给第二终端装置,这样就相当于配置了第一资源。
其中,S61可以在S62之前执行,或者S61可以在S62之后执行,或者S61和S62可以同时执行。
S63、第一终端装置在N个候选资源中的第j候选资源上发送N个同步信号块中的第j同步信号块,第二终端装置在N个候选资源中的第j候选资源上接收来自第一终端装置的第j同步信号块。
第一终端装置可以利用第一资源向第二终端装置发送N个同步信号块,例如第j同步信号块可以是这N个同步信号块中的一个,第j候选资源是第一资源的子集。例如,第一资源包括N个候选资源,第j候选资源可以是N个候选资源中的一个。第一终端装置在发送N个同步信号块中的每个同步信号块时,处理方式都是类似的,因此S62以其中的第j同步信号块进行举例介绍。
第二终端装置确定了第一资源,可以在第一资源进行检测,以接收N个同步信号块。或者,第二终端装置为了避免漏掉同步信号块,也可以在第一资源集上进行检测,以接收N个同步信号块。
第二终端装置在接收第j同步信号块之后,可以根据第j同步信号块获取定时的信息,或者,根据第j同步信号块获取第j同步信号块的频率的信息,或者,根据第j同步信号块获取定时的信息,以及获取第j同步信号块的频率的信息。
在本申请实施例中,同步信号块的周期内可以包括第一资源集,第一资源集包括M个组,M个组中的第一组所包括的X个候选资源可用于承载X个同步信号块,相当于规定了用于发送同步信号块的资源,在需要发送同步信号块时只需从这些资源中选择资源即可,简化了选择资源的方式。而且一个同步信号块可以占用Y个符号,从而使得本申请实施例所提供的技术方案能够应用于NR-V2X系统,或者可以应用于其他的规定了同步信号块占用Y个符号的通信系统。
在本申请实施例中,同步信号块的周期内可以包括第一资源集,第一资源集包括M个组,M个组中的第一组所包括的X个候选资源可用于承载X个同步信号块,相当于规定了用于发送同步信号块的资源,在需要发送同步信号块时只需从这些资源中选择资源即可,简化了选择资源的方式。而且一个同步信号块可以占用Y个符号,从而使得本申请实施例所提供的技术方案能够应用于NR-V2X系统,或者可以应用于其他的规定了同步信号块占用Y个符号的通信系统。
为了解决相同的技术问题,本申请实施例提供第二种通信方法,请参见图13,为该方法的流程图。在下文的介绍过程中,以该方法应用于图5所示的网络架构为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装置。其中,第一通信装置或第二通信装置,可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。且对于第一通信装置或第二通信装置的实现方式均不做限制,例如这两个通信装置可以实现为相同的形式,例如均通过设备的形式实现,或者这两个通信装置也可以实现为不同的形式,例如第一通信装置通过设备的形式实现,第二通信装置通过芯片系统的方式实现,等等。其中,网络设备例如为基站。
为了便于介绍,在下文中,以该方法由终端装置和终端装置执行为例,也就是,以第一通信装置是终端装置(例如称为第一终端装置)、第二通信装置也是终端装置(例如称为第二终端装置)为例。因为本实施例是以应用在图5所示的网络架构为例,因此,下文中所述的第一终端装置可以实现图5所示的网络架构中的终端设备1的功能,下文中所述的第二终端装置可以实现图5所示的网络架构中的终端设备2的功能。另外在下文中可能 还涉及到网络设备,下文中所述的网络设备可以实现图5所示的网络架构中的网络设备的功能。在本申请实施例的描述过程中,以同步信号块是S-SSB为例,实际上不限于此,只要是用于进行同步的信号均可包括在本申请实施例所述的同步信号块的范围内,例如可以包括侧行同步信号块,或者也可以包括用于Uu口的同步信号块。
S131、第一终端装置从第一资源集中确定用于发送N个同步信号块的第一资源。N为正整数。
其中,第一资源集可以位于同步信号块的周期内,第一资源包含于第一资源集,或者说第一资源属于第一资源集,或者说第一资源是第一资源集的子集。第一资源集可以包括M个组,M个组中的第i组可以包括X个候选资源,X个候选资源可以用于承载X个同步信号块,或者说,X个候选资源可用于传输X个同步信号块,其中一个候选资源可用于传输一个同步信号块。第一资源集就可以包括M×X个候选资源,M×X个候选资源中的每个候选资源可用于传输同步信号块。所述的N个同步信号块中的每个同步信号块在时域上可以占用Y个符号。其中,Y为大于或等于5的整数,M、i和X均为正整数。另外,第一资源既然可以用于发送N个同步信号块,那么第一资源可以包括N个候选资源,N个候选资源属于M个组中的一组或多组。也就是说,N个候选资源可以位于M个组中的一组内,或者,也可以位于M个组中的多个组内。N可以大于或等于X,当然也可以小于X。
S132、第一终端装置在N个候选资源中的第j候选资源上发送N个同步信号块中的第j同步信号块,第二终端装置在N个候选资源中的第j候选资源上接收来自第一终端装置的第j同步信号块。
S133、第二终端装置根据所述第j同步信号块,确定所述第j同步信号块的时域位置。
其中,第j同步信号块可以指示第j同步信号块的时域位置,第二终端装置根据第j同步信号块就可以确定第j同步信号块的时域位置,从而接收第j同步信号块。
为了减小第二终端装置检测S-SSB的功耗,第一终端装置可以将实际发送的S-SSB的位置告知第二终端装置。例如,第j同步信号块可以指示第j同步信号块的时域位置,第二终端装置根据第j同步信号块就可以确定第j同步信号块的时域位置,从而接收第j同步信号块。例如,第j同步信号块的时域位置,可以包括第j同步信号块在第一资源集内的相对位置,或者包括第j同步信号块实际所在的时隙的位置。如果第j同步信号块的时域位置包括第j同步信号块在第一资源集内的相对位置,那么第j同步信号块的时域位置,可以包括第j同步信号块所在的组的标识;或者,包括第j同步信号块在所在的组内的标识;或者,包括第j同步信号块所在的组的标识,以及第j同步信号块在所在的组内的标识;或者,包括第j同步信号块所在的时隙的位置。
作为一种可选的实施方式,第j同步信号块的时域位置还可以包括如下的一项或多项:第j同步信号块所在的无线帧的帧号,第j同步信号块在无线帧中所在的半帧的帧号,或,在第一资源上重复发送的同步信号块的个数,也就是重复因子H。例如,第j同步信号块的时域位置包括第j同步信号块所在的无线帧的帧号;或者,第j同步信号块的时域位置包括第j同步信号块在无线帧中所在的半帧的帧号和在第一资源上重复发送的同步信号块的个数;或者,第j同步信号块的时域位置包括第j同步信号块所在的无线帧的帧号,第j同步信号块在无线帧中所在的半帧的帧号,以及,在第一资源上重复发送的同步信号块的个数,等等。
例如,可以通过第一同步信号块所包括的广播信道指示第一同步信号块的时域位置, 或者说,可以通过第j同步信号块所包括的广播信道指示第j同步信号块的时域位置。以第j同步信号块是S-SSB为例,则第j同步信号块所包括的广播信道就是侧行广播信道,例如为S-SSB所包括的物理侧行广播信道(physical sidelink broadcast channel,PSBCH)。
通过第j同步信号块包括的广播信道指示第j同步信号块的时域位置,可以有多种实现方式,下面举例介绍。
1、第一种方式,通过第j同步信号块包括的广播信道承载的信令,指示第j同步信号块的时域位置。
第j同步信号块包括的广播信道可以承载信令,通过该信令指示第j同步信号块的时域位置。例如第j同步信号块为S-SSB,S-SSB的广播信道承载的信令例如为SL-主信息块(master information block,MIB),或者也可以是其他信令。
例如,当M1=8时,SL-MIB可以通过3比特(bit)来指示S-SSB所在的组的标识。
2、第二种方式,通过第j同步信号块包括的广播信道承载的解调参考信号(demodulation reference signal,DMRS),指示第j同步信号块的时域位置。
例如,可以通过第j同步信号块包括的广播信道承载的DMRS序列来指示第j同步信号块的时域位置。
在采用DMRS序列指示第j同步信号块的时域位置时,可以使用DMRS序列的初始值来指示,或者也可以使用DMRS序列的初始位置来指示。
方式一、使用DMRS序列的初始值指示第j同步信号块的时域位置。
例如,DMRS序列的初始值可以由以下的一种或多种参数确定:第j同步信号块所在的组的标识,第j同步信号块在所在的组内的标识,第j同步信号块的标识,第j同步信号块所在的时隙的标识,或,第j同步信号块所在的时隙对应的CP类型。例如,DMRS序列的初始值可以根据第j同步信号块所在的组的标识确定;或者,DMRS序列的初始值可以根据第j同步信号块所在的组的标识和第j同步信号块在所在的组内的标识确定;或者,DMRS序列的初始值可以根据第j同步信号块所在的组的标识,第j同步信号块在所在的组内的标识,第j同步信号块的标识,第j同步信号块所在的时隙的标识,以及第j同步信号块所在的时隙对应的CP类型确定,等等。
以DMRS序列的初始值根据第j同步信号块所在的组的标识确定为例,C init=f(i team)。i team表示S-SSB所在的组的标识,C init表示DMRS序列的初始值。f(i team)表示为i team的函数。
例如,C init=2 m+3(i team+1)(N SLSSID+1)+2 m(i team+1)+2N SLSSID+N CP。其中,N SLSSID表示同步源的标识SLSSID,N CP表示CP的类型,取值为0或1。m为大于或等于0的整数。该公式是以,DMRS序列的初始值根据同步源的标识、CP类型以及S-SSB所在的组的标识确定为例。
或者,以DMRS序列的初始值根据第j同步信号块在所在的组内的标识确定为例,C init=f(i s-ssb)。i s-ssb表示S-SSB在所在的组内的标识,C init表示DMRS序列的初始值。f(i team)表示为i team的函数。
例如,C init=2 m+3(i s-ssb+1)(N SLSSID+1)+2 m(i s-ssb+1)+2N SLSSID+N CP。该公式是以,DMRS序列的初始值根据同步源的标识、CP类型以及S-SSB在所在的组内的标识确定为例。
可以事先设置C init和同步信号块的时域位置之间的对应关系,该对应关系可以通过协 议规定,或者由网络设备设置,并告知第一终端装置和第二终端装置,或者也可以由第一终端装置和第二终端装置协商确定等。那么,第一终端装置如果要指示第j同步信号块的时域位置,就可以根据该对应关系选择该第j同步信号块的时域位置对应的C init,使用该C init作为DMRS序列的初始值。第二终端装置接收第j同步信号块后,根据该C init就可以确定第j同步信号块的时域位置。
例如第j同步信号块的时域位置包括第j同步信号块所在的组的标识,那么可以事先设置C init和组的标识之间的对应关系,该对应关系可以通过协议规定,或者由网络设备设置,并告知第一终端装置和第二终端装置,或者也可以由第一终端装置和第二终端装置协商确定等。那么,第一终端装置如果要指示第j同步信号块所在的组的标识,就可以根据该对应关系选择该组的标识对应的C init,使用该C init作为DMRS序列的初始值。第二终端装置接收第一同步信号块后,根据该C init就可以确定对应的组的标识。
方式二、使用DMRS序列的初始位置的方式来指示第j同步信号块的时域位置。
例如,可以用初始序列c(n)生成DMRS序列。在生成DMRS序列时,可以将序列c(n)的不同位置作为DMRS序列的初始位置,从而就可以得到不同的DMRS序列。例如一个DMRS序列是将序列c(n)的第2个元素开始的位置作为初始位置,而另一个DMRS序列是将序列c(n)的第5个元素开始的位置作为初始位置。
例如,DMRS序列的初始位置可以由第j同步信号块所在的组的标识确定,或者由第j同步信号块在所在的组内的标识确定,或者由第j同步信号块所在的组的标识和第j同步信号块在所在的组内的标识确定。
以DMRS序列的初始位置由第j同步信号块所在的组的标识确定为例。例如,i team=0,1,……。s i=c(j+i team×N)。其中,N表示DMRS序列的长度,s i表示生成的DMRS序列。
或者,以DMRS序列的初始位置由第j同步信号块在所在的组内的标识确定为例。例如,i s-ssb=0,1,……。s i=c(j+i s-ssb×N)。其中,N表示DMRS序列的长度,s i表示生成的DMRS序列。
可以事先设置c(n)的不同的起始位置和同步信号块的时域位置之间的对应关系,该对应关系可以通过协议规定,或者由网络设备设置,并告知第一终端装置和第二终端装置,或者也可以由第一终端装置和第二终端装置协商确定等。那么,第一终端装置如果要指示第j同步信号块的时域位置,就可以根据该对应关系选择第j同步信号块的时域位置对应的c(n)的起始位置,得到对应的DMRS序列。第二终端装置接收第j同步信号块后,根据该DMRS序列的起始位置就可以确定第j同步信号块的时域位置。
例如,第j同步信号块的时域位置包括第j同步信号块所在的组的标识,那么可以事先设置c(n)的不同的起始位置和组的标识之间的对应关系,该对应关系可以通过协议规定,或者由网络设备设置,并告知第一终端装置和第二终端装置,或者也可以由第一终端装置和第二终端装置协商确定等。那么,第一终端装置如果要指示第j同步信号块所在的组的标识,就可以根据该对应关系选择该组的标识对应的c(n)的起始位置,得到对应的DMRS序列。第二终端装置接收第一同步信号块后,根据该DMRS序列的起始位置就可以确定对应的组的标识。
例如,第j同步信号块包括的广播信道承载的DMRS,可以占用时域上相邻的至少两个符号。至少两个符号,例如包括两个符号、三个符号或更多个符号。如果第j同步信号 块包括的广播信道承载的DMRS所占用的符号的个数大于或等于4,那么可以将DMRS所占用的符号分为至少两个符号组,至少两个符号组中的每个符号组都可以用于指示第j同步信号块的时域位置。至少两个符号组中的不同的符号组所指示的内容可以相同,或者也可以不同。例如,至少两个符号组中的每个符号组都可以指示第j同步信号块所在的组的标识,或者,至少两个符号组中的每个符号组都可以指示第j同步信号块在所在的组内的标识,或者,至少两个符号组中的一个符号组可以指示第j同步信号块所在的组的标识,另一个符号组可以指示第j同步信号块在所在的组内的标识。通过不同的符号组指示相同的内容,两个符号组之间可以相互验证,以确保所指示的内容的可靠性。或者,通过不同的符号组分别指示不同的内容,可以使得所指示的内容更为丰富,提高对于DMRS的利用率。
例如可参考图14A,为扩展(extended)CP的一个时隙内承载DMRS序列的示意图,其中,扩展CP的一个时隙包括12个符号。其中的P表示承载侧行PSS的OFDM符号,S表示承载侧行SSS的符号,画斜线的B所代表的符号以及GAP所代表的符号都不用于承载DMRS序列,剩余的B所代表的符号均可用于承载DMRS序列。可以看到,图14A中有6个符号可以承载DMRS序列。那么可选的,可以将这6个符号划分为两组,每组包括连续的3个符号,其中的一组可以指示S-SSB所在的组的标识,其中的另一组可以指示S-SSB的标识。
又例如,可参考图14B,为正常(normal)CP的一个时隙内承载DMRS序列的示意图,其中,扩展CP的一个时隙包括14个符号。其中的P表示承载侧行PSS的符号,S表示承载侧行SSS的符号,画斜线的B所代表的符号以及GAP所代表的符号都不用于承载DMRS序列,剩余的B所代表的符号均可用于承载DMRS序列。可以看到,图14B中有6个符号可以承载序列。那么可选的,可以将这6个符号划分为两组,每组包括连续的3个符号,其中的一组可以指示S-SSB所在的组的标识,其中的另一组可以指示S-SSB的标识。
再例如,可再参考图14C,为正常CP的一个时隙内承载DMRS序列的示意图。其中的P表示承载侧行PSS的符号,S表示承载侧行SSS的符号,画斜线的B所代表的符号以及GAP所代表的符号都不用于承载DMRS序列,剩余的B所代表的符号均可用于承载DMRS序列。可以看到,图14C中也有6个符号可以承载DMRS序列。那么可选的,可以将这6个符号划分为两组,每组包括连续的3个符号,其中的一组可以指示S-SSB所在的组的标识,其中的另一组可以指示S-SSB的标识。
3、第三种方式,通过用于对第j同步信号块包括的广播信道承载的信令进行加扰的参考信号,指示第j同步信号块的时域位置。
以第j同步信号块是S-SSB为例,第j同步信号块包括的广播信道承载的信令,例如为侧行广播信息(sidelink-MIB,SL-MIB)。第三种方式是指,通过用于对SL-MIB进行加扰的参考信号,来指示S-SSB的时域位置。用于对SL-MIB加扰的参考信号,例如为用于对SL-MIB进行加扰的参考信号序列。
例如,参考信号序列的初始值可以由以下的一种或多种参数确定:第j同步信号块所在的组的标识,第j同步信号块在所在的组内的标识,第j同步信号块的标识,第j同步信号块所在的时隙的标识,或,第j同步信号块所在的时隙对应的CP类型。例如,参考信号序列的初始值可以根据第j同步信号块所在的组的标识确定;或者,参考信号序列的初 始值可以根据第j同步信号块所在的组的标识和第j同步信号块在所在的组内的标识确定;或者,参考信号序列的初始值可以根据第j同步信号块所在的组的标识,第j同步信号块在所在的组内的标识,第j同步信号块的标识,第j同步信号块所在的时隙的标识,以及第j同步信号块所在的时隙对应的CP类型确定,等等。
例如,v=0,1,….,7。s i=c(j+v M)。b i=(a i+h i)mod 2。
其中,b i表示加扰后的SL-MIB,a i表示待加扰的SL-MIB,或者说,表示编码前或编码后的比特。h i表示用来对SL-MIB进行加扰的参考信号序列。c(n)表示一个初始序列,序列c(n)可以是基于伪随机序列,例如小m序列或Gold序列生成的,序列c(n)的序列值可以由序列的初始值C init来确定。M表示对SL-MIB做加扰时的序列长度。v是中间变量。
以参考信号序列的初始值根据第j同步信号块所在的时隙的标识和第j同步信号块所在的时隙对应的CP类型确定为例。
例如,C init=2 11(n s+1)(N SLSSID+1)+2N SLSSID+N CP
其中,n s表示第j同步信号块所在的时隙的时隙号,N SLSSID表示同步源的标识SLSSID,N CP表示CP的类型,取值为0或1。
可选的,对应的v的最大值可以是重复因子H的最大值减1,即,v=0,1,…,R-1。
在不同的子载波间隔下,H可以相应有所对应的最大值,例如:
对于低频,子载波间隔为15KHz时,H的最大值可以为1;或者,子载波间隔为30KHz时,H的最大值可以为2;或者,子载波间隔为60KHz时,H的最大值可以为4。
或者,对于低频,子载波间隔为15KHz时,H的最大值可以为2;或者,子载波间隔为30KHz时,H的最大值可以为4;或者,子载波间隔为60KHz时,H的最大值可以为8。
对于高频,子载波间隔为60KHz时,H的最大值可以为32;或者,子载波间隔为120KHz时,H的最大值可以为64。
另外对于高频,如果需要重复发送的S-SSB的个数H小于R,那么可以通过一个子组来实现S-SSB的重复传输,或者也可以通过多个子组来实现S-SSB的重复传输。或者,如果需要重复发送的S-SSB的个数H大于R,那么可以通过两个或更多个子组来实现S-SSB的重复传输。
或者,如果需要重复发送的S-SSB的个数H小于X,那么可以通过一个组来实现S-SSB的重复传输,或者也可以通过多个组来实现S-SSB的重复传输。或者,如果需要重复发送的S-SSB的个数H大于X,那么可以通过两个或更多个组来实现S-SSB的重复传输。
可以事先设置C init和同步信号块的时域位置之间的对应关系,该对应关系可以通过协议规定,或者由网络设备设置,并告知第一终端装置和第二终端装置,或者也可以由第一终端装置和第二终端装置协商确定等。那么,第一终端装置如果要指示第j同步信号块的时域位置,就可以根据该对应关系选择该第j同步信号块的时域位置对应的C init,使用该C init作为参考信号序列的初始值。第二终端装置接收第j同步信号块后,根据该C init就可以确定第j同步信号块的时域位置。
例如第j同步信号块的时域位置包括第j同步信号块所在的组的标识,那么可以事先设置C init和组的标识之间的对应关系,该对应关系可以通过协议规定,或者由网络设备设置,并告知第一终端装置和第二终端装置,或者也可以由第一终端装置和第二终端装置协商确定等。那么,第一终端装置如果要指示第j同步信号块所在的组的标识,就可以根据该对应关系选择该组的标识对应的C init,使用该C init作为参考信号序列的初始值。第二终 端装置接收第j同步信号块后,根据该C init就可以确定对应的组的标识。
方式二、使用参考信号序列的初始位置的方式来指示第j同步信号块的时域位置。
例如,可以用初始序列c(n)生成参考信号序列。在生成参考信号序列时,可以将序列c(n)的不同位置作为参考信号序列的初始位置,从而就可以得到不同的参考信号序列。例如一个参考信号序列是将序列c(n)的第3个元素开始的位置作为初始位置,而另一个参考信号序列是将序列c(n)的第4个元素开始的位置作为初始位置。
例如,参考信号序列的初始位置可以由第j同步信号块所在的组的标识确定,或者由第j同步信号块在所在的组内的标识确定,或者由第j同步信号块所在的组的标识和第j同步信号块在所在的组内的标识确定。
以参考信号序列的初始位置由第j同步信号块所在的组的标识确定为例。例如,i team=0,1,……。s i=c(j+i team×N)。其中,N表示参考信号序列的长度,s i表示生成的参考信号序列。
或者,以参考信号序列的初始位置由第j同步信号块在所在的组内的标识确定为例。例如,i s-ssb=0,1,……。s i=c(j+i s-ssb×N)。其中,N表示参考信号序列的长度,s i表示生成的参考信号序列。
可以事先设置c(n)的不同的起始位置和同步信号块的时域位置之间的对应关系,该对应关系可以通过协议规定,或者由网络设备设置,并告知第一终端装置和第二终端装置,或者也可以由第一终端装置和第二终端装置协商确定等。那么,第一终端装置如果要指示第j同步信号块的时域位置,就可以根据该对应关系选择第j同步信号块的时域位置对应的c(n)的起始位置,得到对应的参考信号序列。第二终端装置接收第j同步信号块后,根据该参考信号序列的起始位置就可以确定第j同步信号块的时域位置。
例如,第j同步信号块的时域位置包括第j同步信号块所在的组的标识,那么可以事先设置c(n)的不同的起始位置和组的标识之间的对应关系,该对应关系可以通过协议规定,或者由网络设备设置,并告知第一终端装置和第二终端装置,或者也可以由第一终端装置和第二终端装置协商确定等。那么,第一终端装置如果要指示第j同步信号块所在的组的标识,就可以根据该对应关系选择该组的标识对应的c(n)的起始位置,得到对应的参考信号序列。第二终端装置接收第j同步信号块后,根据该参考信号序列的起始位置就可以确定对应的组的标识。
如上的三种方式,究竟采用哪种方式来指示第j同步信号块的时域位置,可以通过协议规定,或者由网络设备配置给第一终端装置,或者由第一终端装置和第二终端装置协商确定,等等。
例如,第j同步信号块的时域位置包括第j同步信号块所在的组的标识,以及包括第j同步信号块在所在的组内的标识,那么,第j同步信号块指示第j同步信号块的时域位置,指示方式可以包括多种。例如一种指示方式为,通过第j同步信号块包括的广播信道承载的信令指示第j同步信号块所在的组的标识,以及,通过用于对第j同步信号块包括的广播信道承载的信令进行加扰的参考信号序列的初始值或初始位置,指示第j同步信号块在所在的组内的标识;或者另一种指示方式为,通过第j同步信号块包括的广播信道承载的信令指示第j同步信号块所在的组的标识,以及,通过第j同步信号块包括的广播信道承载的解调参考信号序列的初始值或初始位置,指示第j同步信号块在所在的组内的标识;或者又一种指示方式为,通过用于对第j同步信号块包括的广播信道承载的信令进行加扰 的参考信号序列的初始值或初始位置,指示第j同步信号块所在的组的标识,以及,通过第j同步信号块包括的广播信道承载的解调参考信号序列的初始值或初始位置,指示第j同步信号块在所在的组内的标识;或者再一种指示方式为,通过用于对第j同步信号块包括的广播信道承载的信令进行加扰的参考信号序列的初始值或初始位置,指示第j同步信号块在所在的组内的标识,以及,通过第j同步信号块包括的广播信道承载的解调参考信号序列的初始值或初始位置,指示第j同步信号块所在的组的标识。当然,指示方式不限于这几种。
例如,第j同步信号块的时域位置包括第j同步信号块所在的组的标识,那么作为一种实施方式,第j同步信号块可以通过3比特来指示第j同步信号块所在的组的标识,或者也可以通过1比特来指示第j同步信号块所在的组的标识。
例如,当第一资源集所在的载波的频率为高频时,M可以取8,因此可以使用3比特指示第j同步信号所在的组的标识;或,当第一资源集所在的载波的频率为低频时,M可以取2,因此可以使用1比特指示第j同步信号所在的组的标识;或,当第一资源集所在的载波的频率为低频时,可以使用3比特对应的2种取值指示第j同步信号所在的组的标识。用于指示第j同步信号块所在的组的标识比特数可以与M的取值相关,这样既能够满足对于第j同步信号块所在的组的标识的指示,又能尽量节省比特数。
又例如,第j同步信号块的时域位置包括第j同步信号块在所在的组内的标识,那么作为一种实施方式,第j同步信号块可以通过3比特来指示第j同步信号块在所在的组内的标识,或者也可以通过2比特来指示第j同步信号块在所在的组内的标识,或者还可以通过1比特来指示第j同步信号块在所在的组内的标识。
例如,当第一资源集所在的载波的频率为高频,且第一资源集所在的载波的子载波间隔为120kHz时,X可以取8,可以使用3比特指示第j同步信号在所在的组内的标识。或者,当第一资源集所在的载波的频率为高频,且第一资源集所在的载波的子载波间隔为60kHz时,X可以取4,可以使用2比特指示第j同步信号在所在的组内的标识,或者使用3比特对应的4种取值来指示第j同步信号在所在的组内的标识。或者,当第一资源集所在的载波的频率为低频,且第一资源集所在的载波的子载波间隔为60kHz时,X可以取2,可以使用1比特指示第j同步信号在所在的组内的标识,或者使用3比特对应的2种取值来指示所述第j同步信号在所在的组内的标识,或者X可以取4,可以使用2比特指示第j同步信号在所在的组内的标识,或者使用3比特对应的4种取值来指示所述第j同步信号在所在的组内的标识。或者,当所述第一资源集所在的载波的频率为高频,且第一资源集所在的载波的子载波间隔为15kHz或30kHz时,X可以取1或2,可以使用1比特指示第j同步信号在所在的组内的标识,或者使用3比特对应的1种取值或2种取值来指示第j同步信号在所在的组内的标识。用于指示第j同步信号块在所在的组内的标识比特数可以与X的取值相关,这样既能够满足对于第j同步信号块在所在的组内的标识的指示,又能尽量节省比特数。
另外,在前文介绍了,还可以将第一资源集分为第一部分和第二部分,第一部分可以包括M个组中在时域上的前M/2个组,第二部分可以包括M个组中在时域上的后M/2个组。那么,第j同步信号块的时域位置还可以包括,第j同步信号块所在的部分的标识,例如指示第一部分的标识或第二部分的标识,以及,第j同步信号块的时域位置还可以包括第j同步信号块在所在的部分中所属的组的标识。例如,第j同步信号块属于第一部分 的第1个组,则第j同步信号块的时域位置可以包括第一部分的标识,以及包括第1个组的标识。
例如,第一部分位于第一无线帧的前半帧,第二部分位于第一无线帧的后半帧。那么第j同步信号块的时域位置还可以包括,第j同步信号块所在的部分所在的半帧的标识,和第j同步信号块在所在的部分内所在的组的标识。例如,第j同步信号块属于第一部分的第1个组,则第j同步信号块的时域位置可以包括第一无线帧的前半帧的标识,以及包括第1个组的标识。
另外在前文介绍了,第j同步信号块的时域位置还可以包括重复因子H,那么还可以通过第j同步信号块包括的广播信道指示重复因子H的取值。例如第j同步信号块为S-SSB,可以通过PSBCH指示H的取值。对于低频,最多通过3比特来指示H的取值,对于高频,最多通过3比特来指示H的取值。例如对于低频,如果子载波间隔为15KHz,则可以通过1比特指示H的取值;或者,如果子载波间隔为30KHz,则可以通过2比特指示H的取值;或者,如果子载波间隔为60KHz,则可以通过3比特指示H的取值。
在本申请实施例中,同步信号块的周期内可以包括第一资源集,第一资源集包括M个组,M个组中的第一组所包括的X个候选资源可用于承载X个同步信号块,相当于规定了用于发送同步信号块的资源,在需要发送同步信号块时只需从这些资源中选择资源即可,简化了选择资源的方式。而且一个同步信号块可以占用Y个符号,从而使得本申请实施例所提供的技术方案能够应用于NR-V2X系统,或者可以应用于其他的规定了同步信号块占用Y个符号的通信系统。而且通过第j同步信号块就可以指示第j同步信号块的时域位置,使得第二终端装置能够在正确的时域位置接收第j同步信号块,减小了第二终端装置检测同步信号块的功耗。
图13所示的实施例可以单独应用,或者也可以与图6所示的实施例结合应用,例如,S131的实施细节,完全可参考图6所示的实施例中对于S61的介绍。
为了解决相同的技术问题,本申请实施例提供第三种通信方法,请参见图15,为该方法的流程图。在下文的介绍过程中,以该方法应用于图5所示的网络架构为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装置。其中,第一通信装置或第二通信装置,可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,或者可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。且对于第一通信装置或第二通信装置的实现方式均不做限制,例如这两个通信装置可以实现为相同的形式,例如均通过设备的形式实现,或者这两个通信装置也可以实现为不同的形式,例如第一通信装置通过设备的形式实现,第二通信装置通过芯片系统的方式实现,等等。其中,网络设备例如为基站。
为了便于介绍,在下文中,以该方法由终端装置和终端装置执行为例,也就是,以第一通信装置是终端装置(例如称为第一终端装置)、第二通信装置也是终端装置(例如称为第二终端装置)为例。因为本实施例是以应用在图5所示的网络架构为例,因此,下文中所述的第一终端装置可以实现图5所示的网络架构中的终端设备1的功能,下文中所述的第二终端装置可以实现图5所示的网络架构中的终端设备2的功能。另外在下文中可能还涉及到网络设备,下文中所述的网络设备可以实现图5所示的网络架构中的网络设备的功能。在本申请实施例的描述过程中,以同步信号块是S-SSB为例,实际上不限于此,只要是用于进行同步的信号均可包括在本申请实施例所述的同步信号块的范围内,例如可以 包括侧行同步信号块,或者也可以包括用于Uu口的同步信号块。
S151、第一终端装置确定第一同步信号块。
作为一种可选的方式,Y可以是大于或等于6的整数。例如,第一同步信号块包括主同步信号、辅同步信号和物理广播信道,物理广播信道可以包括DMRS。其中,主同步信号可以占用Y个符号中的第2个符号和第3个符号,辅同步信号可以占用Y个符号中的第4个符号和第5个符号,或者可以占用Y个符号中的第5个符号和第6个符号,物理广播信道可以占用Y个符号中除主同步信号和辅同步信号占用的符号之外的符号。例如,物理广播信道可以占用Y个符号中除主同步信号和辅同步信号占用的符号之外的全部符号或部分符号。例如Y个符号位于一个时隙,一个时隙可以包括12个符号或14个符号,主同步信号可以占用该时隙中的第2个符号和第3个符号,辅同步信号可以占用该时隙中的第4个符号和第5个符号,或者可以占用该时隙中的第5个符号和第6个符号,物理广播信道可以占用该时隙中除主同步信号和辅同步信号占用的符号之外的符号。
物理广播信道包括DMRS,那么DMRS所占用的符号就是物理广播信道的符号。物理广播信道可以占用Y个符号中除主同步信号和辅同步信号占用的符号之外的全部符号或部分符号,那么可以认为,DMRS可以占用Y个符号中除主同步信号和辅同步信号占用的符号之外的全部符号或部分符号。如果DMRS占用Y个符号中除主同步信号和辅同步信号占用的符号之外的全部符号,则可以提高DMRS的覆盖,或者,如果DMRS占用Y个符号中除主同步信号和辅同步信号占用的符号之外的部分符号,那么还可以留出部分符号供其他信息的发送,提高资源的利用率。
或者,也可以认为DMRS是独立于第一同步信号块之外的,即,认为DMRS不属于第一同步信号块,但DMRS与第一同步信号块所包括的物理广播信道有关,且DMRS可以占用物理广播信道所占用的符号。
主同步信号和辅同步信号可以位于该时隙的前端,使得主同步信号和辅同步信号得以尽早发送,作为接收端的第二终端装置可以根据主同步信号和辅同步信号进行同步等操作。另外,DMRS只占用物理广播信道的符号,而不会占用主同步信号和辅同步信号的符号,从而可以保证主同步信号和辅同步信号所占用的符号的可靠性,而且也能使得DMRS得到正常发送。
例如,第一同步信号块在时域上可以占用一个时隙的全部符号,也就是说,Y个符号为一个时隙的全部符号。例如对于有些时隙,不包括GAP,那么一个同步信号块就可以占满整个时隙。或者,第一同步信号块在时域上可以占用一个时隙中除了最后一个符号之外的剩余的符号,也就是说,Y个符号为一个时隙中除了最后一个符号之外的符号,例如Y个符号可以为一个时隙中除了最后一个符号之外剩余的全部符号。例如对于有些时隙,会包括GAP,GAP承载在该时隙的最后一个符号,则同步信号块不能占用该时隙的最后一个符号,但可以占用该时隙中除了最后一个符号之外的剩余的符号。
另外,在包括了DMRS的物理广播信道的符号对应的物理资源块(physical resource block,PRB)内,DMRS可以占用等间隔的3个或4个子载波,或者说,DMRS可以以3或4作为间隔,等间隔占用子载波。物理广播信道承载的广播信息可以占用该PRB内除了DMRS占用的子载波外其余的子载波。例如一个时隙包括12个符号,分别为符号0~符号11,主同步信号占用符号1和符号2,辅同步信号占用符号3和符号4,物理广播信道占用的符号包括符号5,DMRS占用了符号5,当然DMRS还可以占用物理广播信号的其他符 号,这里只以符号5为例。例如符号5在频域上占用1个PRB,1个PRB可以包括12个子载波,分别为子载波0~子载波11。如果DMRS占用等间隔的3个子载波,那么这3个子载波的间隔为4,例如DMRS占用了子载波0、子载波4和子载波8,那么物理广播信道承载的广播信息可以占用剩余的子载波1~子载波3、子载波5~子载波7、或子载波9~子载波11中的一个或多个子载波。令DMRS在频域上只占用部分子载波,既可以保证DMRS的发送,又可以留出一部分子载波供其他信息占用,可以提高频域资源的利用率。
在本申请实施例中,同步信号块的图样可以与同步信号块对应子载波间隔有关,当第一同步信号块对应的子载波间隔不同时,第一同步信号块的图样(pattern)也可以不同。所谓的同步信号块的图样,可以理解为,DMRS在同步信号块中的分布情况。例如,不同的图样对应的同步信号块所包括的DMRS占用的符号的个数不同,或者,不同的图样对应的同步信号块所包括的符号的位置不同,或者,不同的图样对应的同步信号块所包括的DMRS占用的符号的个数不同,以及符号的位置不同。
例如,同步信号块对应的子载波间隔越大,则该同步信号块所包括的DMRS的个数越小。当第一同步信号块对应第一子载波间隔时,第一同步信号块所包括的DMRS占用的符号的个数为第一值,当第一同步信号块对应第二子载波间隔时,第一同步信号块所包括的DMRS占用的符号的个数为第二值,第一子载波间隔小于第二子载波间隔,第一值大于或等于第二值。
或者,同步信号块的图样也可以与终端装置的移动速度等因素有关。例如,对于移动速度较快的终端装置,则同步信号块所包括的DMRS占用的符号数可以较多,以满足对于变化较快的信道条件的估计,而对于移动速度较慢的终端装置,同步信号块所包括的DMRS占用的符号数可以较少,既能满足信道估计的需求,也可以留出更多的符号来承载更多的信息。
可选的,还可以使用图16A或图16B的方式确定PSBCH中的DMRS的位置。其中,图16A为正常CP的时隙对应的几种DMRS的图样,图16B为扩展CP的时隙对应的几种DMRS的图样。图16A和图16B中,画横线的方框都代表DMRS所占用的符号。P表示SPSS占用的符号,S表示SSSS占用的符号,B表示PSBCH占用的符号。
可选的,对于正常CP:15kHz可以使用图16A中的图样1;30kHz可以使用图16A中的图样2;60kHz可以使用图16A中的图样1,图样2或图样3;对于120kHz,可以使用图16A中的图样3。
可选的,对于扩展CP:15kHz可以使用图16B中的图样1a;30kHz可以使用图16B中的图样1a或图样2a;60kHz可以使用图16B中的图样1a,图样2a或图样3a;对于120kHz,可以使用图16B中的图样3a。
总的来说,对于子载波间隔越小,需要的DMRS的符号数越多,速度越快要的DMRS的符号数越多,此时更多的DMRS符号能够提供更好的解调性能。例如,SSSS符号之后,有4个DMRS的图样,用于较低的子载波间隔。因为较低的子载波间隔对应的相干时间更长,所以需要更多的DMRS的符号。SSSS符号之后,有3个DMRS的图样用于中等子载波间隔,或者速度较快的场景。SSSS符号之后,有2个或1个DMRS的图样,用于较高的子载波间隔或速度较低的场景,以提供最佳的解调性能。
进一步地,对于在时域有相邻DMRS的图样,可以进一步用于提升在高速度场景下对多普勒频偏的估计,以提高解调性能。
另外,正常CP和扩展CP符号位置的差异是SSSS符号之后的同步信号块中PSBCH的符号数量不同。而在各种DMRS的图样中,尽可能地均匀地放置DMRS,可以提升信道估计与解调时的性能。
作为一种可选的实施方式,在第一同步信号块中,位于辅同步信号之后的物理广播信道所占用的符号中,可以包括至少4个被DMRS占用的符号。
例如可参考图17A,为第一同步信号块的一种示意图。图17A中,B表示物理广播信道所占用的符号,P表示主同步信号占用的符号,S表示辅同步信号占用的符号。另外,画横线的符号表示DMRS占用的符号,画斜线的符号表示主同步信号、辅同步信号和物理广播信道都不能占用的符号。可以看到,在第一同步信号块中包括5个DMRS占用的符号,DMRS占用了第1个符号,因此在辅同步信号之后,包括4个DMRS占用的符号。
另外可参考图17B,为第一同步信号块的一种示意图。图17B中,B表示物理广播信道所占用的符号,P表示主同步信号占用的符号,S表示辅同步信号占用的符号。另外,画横线的符号表示DMRS占用的符号,除了DMRS占用的符号之外,物理广播信号所占用的其他符号可以用于承载其他信息,例如广播信息等。可以看到,在第一同步信号块中包括5个DMRS占用的符号,DMRS占用了第1个符号,因此在辅同步信号之后,包括4个DMRS占用的符号。
图17A和图17B是以正常CP对应的时隙为例。请再参考图17C,为第一同步信号块的一种示意图。图17C中,B表示物理广播信道所占用的符号,P表示主同步信号占用的符号,S表示辅同步信号占用的符号。另外,画横线的符号表示DMRS占用的符号,画斜线的符号表示主同步信号、辅同步信号和物理广播信道都不能占用的符号。可以看到,在第一同步信号块中包括5个DMRS占用的符号,DMRS占用了第1个符号,因此在辅同步信号之后,包括4个DMRS占用的符号。
请再参考图17D,为第一同步信号块的一种示意图。图17D中,B表示物理广播信道所占用的符号,P表示主同步信号占用的符号,S表示辅同步信号占用的符号。另外,画横线的符号表示DMRS占用的符号,画斜线的符号表示主同步信号、辅同步信号和物理广播信道都不能占用的符号。可以看到,在第一同步信号块中包括5个DMRS占用的符号,DMRS占用了第1个符号,因此在辅同步信号之后,包括4个DMRS占用的符号。
图17C和图17D是以扩展CP对应的时隙为例的。
或者,在第一同步信号块中,位于辅同步信号之后的物理广播信道所占用的符号中,可以包括至少6个被DMRS占用的符号。
请参考图18A,为第一同步信号块的一种示意图。图18A中,B表示物理广播信道所占用的符号,P表示主同步信号占用的符号,S表示辅同步信号占用的符号。另外,画横线的符号表示DMRS占用的符号,画斜线的符号表示主同步信号、辅同步信号和物理广播信道都不能占用的符号。可以看到,在第一同步信号块中包括7个DMRS占用的符号,DMRS占用了第1个符号,因此在辅同步信号之后,包括6个DMRS占用的符号。
请再参考图18B,为第一同步信号块的一种示意图。图18B中,B表示物理广播信道所占用的符号,P表示主同步信号占用的符号,S表示辅同步信号占用的符号。另外,画横线的符号表示DMRS占用的符号,画斜线的符号表示主同步信号、辅同步信号和物理广播信道都不能占用的符号。可以看到,在第一同步信号块中包括7个DMRS占用的符号,DMRS占用了第1个符号,因此在辅同步信号之后,包括6个DMRS占用的符号。
图18A和图18B是以正常CP对应的时隙为例。请再参考图18C,为第一同步信号块的一种示意图。图18C中,B表示物理广播信道所占用的符号,P表示主同步信号占用的符号,S表示辅同步信号占用的符号。另外,画横线的符号表示DMRS占用的符号,DMRS占用了物理广播信道所占用的全部符号。可以看到,在第一同步信号块中包括7个DMRS占用的符号,DMRS占用了第1个符号,因此在辅同步信号之后,包括6个DMRS占用的符号。图14C是以扩展CP对应的时隙为例的。
在第j同步信号块中,位于辅同步信号之后的被物理广播信道占用的符号中,被DMRS占用的符号如果有多个,那么这些符号可以属于至少两个符号组,例如至少两个符号组在时域上可以不连续,或者也可以连续。至少两个符号组中的每个符号组可以包括一个或多个符号,例如包括1个符号、2个符号、3个符号或更多个符号等,且所述的每个符号组所包括的符号在时域上可以是连续的。
例如图17A中,辅同步信号之后被DMRS占用了4个符号,这4个符号例如属于2个符号组,其中的第1个符号组包括时域上靠前的2个符号,其中的第2个符号组包括时域上靠后的2个符号,这两个符号组中的每个符号组所包括的2个符号在时域上连续,且这两个符号组在时域上不连续。再例如图18A中,辅同步信号之后被DMRS占用了6个符号,这6个符号例如属于2个符号组,其中的第1个符号组包括时域上靠前的3个符号,其中的第2个符号组包括时域上靠后的3个符号,这两个符号组中的每个符号组所包括的3个符号在时域上连续,且这两个符号组在时域上不连续。又例如图18C中,辅同步信号之后被DMRS占用了6个符号,这6个符号例如属于2个符号组,其中的第1个符号组包括时域上靠前的3个符号,其中的第2个符号组包括时域上靠后的3个符号,这两个符号组中的每个符号组所包括的3个符号在时域上连续,且这两个符号组在时域上连续。
将DMRS占用的符号分为至少两个符号组,不同的符号组承载的信息可以相同,例如都可以指示第一同步信号块所在的组的标识,这样可以提高该信息的覆盖,以提高该信息传输的可靠性。或者,不同的符号组承载的信息也可以不同,例如至少两个符号组具体为2个符号组,其中的一个符号组可以指示第一同步信号块所在的组的标识,其中的另一个符号组可以指示第一同步信号块在所在的组内的标识,通过不同的符号组承载不同的信息,可以使得第一同步信号块所承载的信息更为丰富,提高资源的利用率。
作为一种可选的实施方式,在第一同步信号块中,位于辅同步信号占用的符号之后的物理广播信道占用的符号中,包括至少3个或至少4个等间隔的符号,这至少3个或至少4个等间隔的符号是被DMRS占用的符号。
请参考图19A,为第一同步信号块的一种示意图。图19A中,B表示物理广播信道所占用的符号,P表示主同步信号占用的符号,S表示辅同步信号占用的符号。另外,画横线的符号表示DMRS占用的符号,除了DMRS占用的符号之外,物理广播信道所占用的其他的符号可以用于承载其他的信息,例如广播信息等。可以看到,在第一同步信号块中包括5个DMRS占用的符号,DMRS占用了第1个符号,因此在辅同步信号之后,包括4个DMRS占用的符号,这4个符号是等间隔的。
请再参考图19B,为第一同步信号块的一种示意图。图19B中,B表示物理广播信道所占用的符号,P表示主同步信号占用的符号,S表示辅同步信号占用的符号。另外,画横线的符号表示DMRS占用的符号,除了DMRS占用的符号之外,物理广播信道所占用的其他的符号可以用于承载其他的信息,例如广播信息等。可以看到,在第一同步信号块 中包括4个DMRS占用的符号,DMRS占用了第1个符号,因此在辅同步信号之后,包括3个DMRS占用的符号,这3个符号是等间隔的。
请再参考图19C,为第一同步信号块的一种示意图。图19C中,B表示物理广播信道所占用的符号,P表示主同步信号占用的符号,S表示辅同步信号占用的符号。另外,画横线的符号表示DMRS占用的符号,画斜线的符号表示主同步信号、辅同步信号和物理广播信道都不能占用的符号。可以看到,在第一同步信号块中包括4个DMRS占用的符号,DMRS占用了第1个符号,因此在辅同步信号之后,包括3个DMRS占用的符号,这3个符号是等间隔的。
图19A、图19B和图19C是以正常CP对应的时隙为例。请再参考图19D,为第一同步信号块的一种示意图。图19D中,B表示物理广播信道所占用的符号,P表示主同步信号占用的符号,S表示辅同步信号占用的符号。另外,画横线的符号表示DMRS占用的符号,除了DMRS占用的符号之外,物理广播信道所占用的其他的符号可以用于承载其他的信息,例如广播信息等。可以看到,在第一同步信号块中包括4个DMRS占用的符号,DMRS占用了第1个符号,因此在辅同步信号之后,包括3个DMRS占用的符号,这3个符号是等间隔的。
请再参考图19E,为第一同步信号块的一种示意图。图19E中,B表示物理广播信道所占用的符号,P表示主同步信号占用的符号,S表示辅同步信号占用的符号。另外,画横线的符号表示DMRS占用的符号,画斜线的符号表示主同步信号、辅同步信号和物理广播信道都不能占用的符号。可以看到,在第一同步信号块中包括4个DMRS占用的符号,DMRS占用了第1个符号,因此在辅同步信号之后,包括3个DMRS占用的符号,这3个符号是等间隔的。
图19D和图19E是以扩展CP对应的时隙为例的。
作为一种可选的实施方式,在第一同步信号块中,位于辅同步信号占用的符号之后的物理广播信道占用的符号中,包括1个或2个被DMRS占用的符号。
请参考图20A,为第一同步信号块的一种示意图。图20A中,B表示物理广播信道所占用的符号,P表示主同步信号占用的符号,S表示辅同步信号占用的符号。另外,画横线的符号表示DMRS占用的符号,画斜线的符号表示主同步信号、辅同步信号和物理广播信道都不能占用的符号。可以看到,在第一同步信号块中包括3个DMRS占用的符号,DMRS占用了第1个符号,因此在辅同步信号之后,包括2个DMRS占用的符号,这2个符号是等间隔的。
图20A是以正常CP对应的时隙为例。请再参考图20B,为第一同步信号块的一种示意图。图20B中,B表示物理广播信道所占用的符号,P表示主同步信号占用的符号,S表示辅同步信号占用的符号。另外,画横线的符号表示DMRS占用的符号,物理广播信道所占用的其他的符号可以用于承载其他的信息,例如广播信息等。可以看到,在第一同步信号块中包括3个DMRS占用的符号,DMRS占用了第1个符号,因此在辅同步信号之后,包括2个DMRS占用的符号,这2个符号是等间隔的。
请再参考图20C,为第一同步信号块的一种示意图。图20C中,B表示物理广播信道所占用的符号,P表示主同步信号占用的符号,S表示辅同步信号占用的符号。另外,画横线的符号表示DMRS占用的符号,物理广播信道所占用的其他的符号可以用于承载其他的信息,例如广播信息等。可以看到,在第一同步信号块中包括3个DMRS占用的符号, DMRS占用了第1个符号,因此在辅同步信号之后,包括2个DMRS占用的符号,这2个符号是等间隔的。
请再参考图20D,为第一同步信号块的一种示意图。图20D中,B表示物理广播信道所占用的符号,P表示主同步信号占用的符号,S表示辅同步信号占用的符号。另外,画横线的符号表示DMRS占用的符号,画斜线的符号表示主同步信号、辅同步信号和物理广播信道都不能占用的符号。可以看到,在第一同步信号块中包括3个DMRS占用的符号,DMRS占用了第1个符号,因此在辅同步信号之后,包括2个DMRS占用的符号,这2个符号是等间隔的。
例如,对于正常CP对应的时隙,DMRS可以位于第一同步信号块的第7个符号,第8个符号,第11个符号,以及第12个符号,例如可参考图17A。或者,对于正常CP对应的时隙,DMRS可以位于第一同步信号块的第8个符号和第11个符号,例如可参考图20A。
或者,对于正常CP对应的时隙,DMRS可以位于第一同步信号块的第7个符号和第12个符号,例如可参考图21A。图21A中,B表示物理广播信道所占用的符号,P表示主同步信号占用的符号,S表示辅同步信号占用的符号。另外,画横线的符号表示DMRS占用的符号。可以看到,在第一同步信号块中,DMRS占用第7个符号和第12个符号。
或者,对于正常CP对应的时隙,DMRS可以位于第一同步信号块中的第7个符号和第13个符号,例如可参考图21B。图21B中,B表示物理广播信道所占用的符号,P表示主同步信号占用的符号,S表示辅同步信号占用的符号。另外,画横线的符号表示DMRS占用的符号。可以看到,在第一同步信号块中,DMRS占用第7个符号和第13个符号。
或者,对于正常CP对应的时隙,DMRS可以位于第一同步信号块中的第9个符号或第10个符号。例如可参考图21C。图21C中,B表示物理广播信道所占用的符号,P表示主同步信号占用的符号,S表示辅同步信号占用的符号。另外,画横线的符号表示DMRS占用的符号。可以看到,在第一同步信号块中,DMRS占用第9个符号。或者,可参考图21D。图21D中,B表示物理广播信道所占用的符号,P表示主同步信号占用的符号,S表示辅同步信号占用的符号。另外,画横线的符号表示DMRS占用的符号。可以看到,在第一同步信号块中,DMRS占用第10个符号。
例如,对于扩展CP对应的时隙,MRS可以位于第一同步信号块中的第7个符号,第8个符号,第10个符号,以及第11个符号。例如可参考图22A。图22A中,B表示物理广播信道所占用的符号,P表示主同步信号占用的符号,S表示辅同步信号占用的符号。另外,画横线的符号表示DMRS占用的符号。可以看到,在第一同步信号块中,DMRS占用第7个符号,第8个符号,第10个符号,以及第11个符号。
或者,对于扩展CP对应的时隙,MRS可以位于第一同步信号块中的第7个符号,第9个符号,以及第11个符号,例如可参考图19D。
或者,对于扩展CP对应的时隙,MRS可以位于第一同步信号块中的第7个符号和第10个符号,例如可参考图20C。
或者,对于扩展CP对应的时隙,MRS可以位于第一同步信号块中的第8个符号或第9个符号。例如可参考图22B。图22B中,B表示物理广播信道所占用的符号,P表示主同步信号占用的符号,S表示辅同步信号占用的符号。另外,画横线的符号表示DMRS占用的符号。可以看到,在第一同步信号块中,DMRS占用第8个符号。或者,可参考图22C。图22C中,B表示物理广播信道所占用的符号,P表示主同步信号占用的符号,S表示辅 同步信号占用的符号。另外,画横线的符号表示DMRS占用的符号。可以看到,在第一同步信号块中,DMRS占用第9个符号。
S152、第一终端装置向第二终端装置发送第一同步信号块,第二终端装置接收来自第一终端装置的第一同步信号块。
第一终端装置可能会向第二终端装置发送N个同步信号块,第一同步信号块可以是这N个同步信号块中的一个。
S153、第二终端装置根据所述第一同步信号块解调所述物理广播信道。
例如,第二终端装置可以根据第一同步信号块解调物理广播信道,以获得物理广播信道承载的广播信息等。当然,第一同步信号可能还有其他作用,具体的不限于此,且S213也只是可选的步骤,不是必须执行的。
在本申请实施例中,主同步信号和辅同步信号可以位于该时隙的前端,使得主同步信号和辅同步信号得以尽早发送,作为接收端的第二终端装置可以根据主同步信号和辅同步信号进行同步等操作。另外,DMRS只占用物理广播信道的符号,而不会占用主同步信号和辅同步信号的符号,从而可以保证主同步信号和辅同步信号所占用的符号的可靠性,而且也能使得DMRS得到正常发送。
图15所示的实施例可以单独应用;或者,图6所示的实施例、图13所示的实施例和图15所示的实施例,这三个实施例中的任意两个可以结合应用,例如,图6所示的实施例可以与图15所示的实施例结合应用,或者,图13所示ID实施例可以与图15所示的实施例结合应用;或者,图6所示的实施例、图13所示的实施例和图15所示的实施例,这三个实施例可以结合应用。其中,图15所示的实施例如果要与前述的任意一个或两个实施例结合应用,那么图15所示的实施例中所述的第一同步信号块,也可以替换为,第j同步信号块。
下面结合附图介绍本申请实施例中用来实现上述方法的装置。因此,上文中的内容均可以用于后续实施例中,重复的内容不再赘述。
图23为本申请实施例提供的通信装置2300的示意性框图。示例性地,通信装置2300例如为第一终端装置2300。
第一终端装置2300包括处理模块2310。可选的,还可以包括收发模块2320。示例性地,第一终端装置2300可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当第一终端装置2300是终端设备时,收发模块2320可以是收发器,可以包括天线和射频电路等,处理模块2310可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个中央处理单元(central processing unit,CPU)。当第一终端装置2300是具有上述终端功能的部件时,收发模块2320可以是射频单元,处理模块2310可以是处理器,例如基带处理器。当第一终端装置2300是芯片系统时,收发模块2320可以是芯片系统(例如基带芯片)的通信接口(例如输入/输出接口)、处理模块可以是芯片系统的处理器,可以包括一个或多个中央处理单元。
其中,处理模块2310可以用于执行图6所示的实施例中由第一终端装置所执行的除了收发操作之外的全部操作,例如S601,和/或用于支持本文所描述的技术的其它过程。收发模块2320可以用于执行图6所示的实施例中由第一终端装置所执行的全部收发操作,例如S63,和/或用于支持本文所描述的技术的其它过程。
另外,收发模块2320可以是一个功能模块,该功能模块既能完成发送操作也能完成 接收操作,例如收发模块2320可以用于执行图6所示的实施例中由第一终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块2320是发送模块,而在执行接收操作时,可以认为收发模块2320是接收模块;或者,收发模块2320也可以是两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行图6所示的实施例中由第一终端装置所执行的全部发送操作,接收模块用于完成接收操作,例如接收模块可以用于执行图6所示的实施例中由第一终端装置所执行的全部接收操作。
例如,处理模块2310,用于从第一资源集中确定用于发送N个同步信号块的第一资源,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;
收发模块2320,用于在所述N个候选资源中的第j候选资源上发送所述N个同步信号块中的第j同步信号块,j为大于或等于1、小于或等于N的整数。
作为一种可选的实施方式,所述第j同步信号块在时域上占用Y个符号,包括:
所述Y个符号为一个时隙的全部符号;或,
所述Y个符号为一个时隙中除了最后一个符号之外的所有符号。
作为一种可选的实施方式,
对于正常循环前缀,Y=13,或者,
对于扩展循环前缀,Y=11。
作为一种可选的实施方式,所述N个同步信号块是以重复方式传输的,或者所述N个同步信号块中的每H个同步信号块是重复方式传输的,H为小于或等于所述N的正整数。
作为一种可选的实施方式,
当所述第一资源集所在的载波的频率为低频,所述第一资源集承载的同步信号块占用的时域资源的时长小于或等于2毫秒;或,
当所述第一资源集所在的载波的频率为高频,所述第一资源集承载的同步信号块占用的时域资源的时长小于或等于8毫秒。
作为一种可选的实施方式,所述第i组承载的同步信号块在时域占用的时长为1ms。
作为一种可选的实施方式,
处理模块2310,还用于根据预配置的信息确定所述第一资源集在所述同步信号块周期内的时域位置;或,
收发模块2320,还用于接收来自网络设备的第一信令,所述第一信令用于指示所述第一资源集在所述同步信号块周期内的时域位置。
作为一种可选的实施方式,
当所述第一资源集所在的载波的频率为低频,所述N个候选资源所属的组的个数小于或等于2,其中所述N个候选资源所属的组位于同一个无线帧内,或者分别位于同一个无线帧的不同的半帧内。
作为一种可选的实施方式,所述第i组包括K个子组,所述X个候选资源属于所述K个子组,所述K个子组中的一个子组包括R个候选资源,所述R个候选资源可用于传输R 个同步信号块,所述R个同步信号块是重复传输的。
作为一种可选的实施方式,所述第一资源集包括第一部分和第二部分,所述第一部分包括所述M个组中在时域上的前M/2个组,所述第二部分包括所述M个组中在时域上的后M/2个组。
应理解,本申请实施例中的处理模块2310可以由处理器或处理器相关电路组件实现,收发模块2320可以由收发器或收发器相关电路组件实现。
如图24所示,本申请实施例还提供一种通信装置2400。示例性地,通信装置2400例如为第一终端装置2400。示例性地,第一终端装置2400可以是通信设备,例如为终端设备,或者也可以是芯片系统等。第一终端装置2400包括处理器2410,收发器2430与存储器2420,其中,存储器2420中存储指令或程序,处理器2410用于执行存储器2420中存储的指令或程序。存储器2420中存储的指令或程序被执行时,该处理器2410用于执行上述实施例中处理模块2310执行的操作,收发器2430用于执行上述实施例中收发模块2320执行的操作。或者,第一终端装置2400也可以不包括存储器2420,例如存储器位于第一终端装置2400外部,在外部存储器所存储的计算机指令或程序被执行时,该处理器2410用于执行上述实施例中处理模块2310执行的操作,收发器2430用于执行上述实施例中收发模块2320执行的操作。
其中,收发器2430可以是一个功能单元,该功能单元既能完成发送操作也能完成接收操作,例如收发器2430可以用于执行图6所示的实施例中由第一终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发器2430是发送器,而在执行接收操作时,可以认为收发器2430是接收器;或者,收发器2430也可以是两个功能单元的统称,这两个功能单元分别为发送器和接收器,发送器用于完成发送操作,例如发送器可以用于执行图6所示的实施例中由第一终端装置所执行的全部发送操作,接收器用于完成接收操作,例如接收器可以用于执行图6所示的实施例中由第一终端装置所执行的全部接收操作。
另外,如果通信装置2400是芯片系统,则收发器2430也可以通过该芯片系统的通信接口实现,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。通信接口可以是一个功能单元,该功能单元既能完成发送操作也能完成接收操作,例如通信接口可以用于执行图6所示的实施例中由第一终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为通信接口是发送接口,而在执行接收操作时,可以认为通信接口是接收接口;或者,通信接口也可以是两个功能单元的统称,这两个功能单元分别为发送接口和接收接口,发送接口用于完成发送操作,例如发送接口可以用于执行图6所示的实施例中由第一终端装置所执行的全部发送操作,接收接口用于完成接收操作,例如接收接口可以用于执行图6所示的实施例中由第一终端装置所执行的全部接收操作。
应理解,根据本申请实施例的第一终端装置2300或第一终端装置2400可实现图3所示的实施例中的第一终端装置的功能,并且第一终端装置2300或第一终端装置2400中的各个模块的操作和/或功能分别为了实现图6所示的实施例中的相应流程,为了简洁,在此不再赘述。
图25为本申请实施例提供的通信装置2500的示意性框图。示例性地,通信装置2500例如为第二终端装置2500。
第二终端装置2500包括处理模块2510。可选的,还可以包括收发模块2520。示例性地,第二终端装置2500可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当第二终端装置2500是终端设备时收发模块2520可以是收发器,可以包括天线和射频电路等,处理模块2510可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个中央处理单元(central processing unit,CPU)。当第二终端装置2500是具有上述终端功能的部件时,收发模块2520可以是射频单元,处理模块2510可以是处理器,例如基带处理器。当第二终端装置2500是芯片系统时,收发模块2520可以是芯片系统(例如基带芯片)的通信接口(例如输入/输出接口)、处理模块可以是芯片系统的处理器,可以包括一个或多个中央处理单元。
其中,处理模块2510可以用于执行图6所示的实施例中由第二终端装置所执行的除了收发操作之外的全部操作,例如S62,和/或用于支持本文所描述的技术的其它过程。收发模块2520可以用于执行图6所示的实施例中由第二终端装置所执行的全部收发操作,例如S63,和/或用于支持本文所描述的技术的其它过程。
另外,收发模块2520可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块2520可以用于执行图6所示的实施例中由第二终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块2520是发送模块,而在执行接收操作时,可以认为收发模块2520是接收模块;或者,收发模块2520也可以是两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行图6所示的实施例中由第二终端装置所执行的全部发送操作,接收模块用于完成接收操作,例如接收模块可以用于执行图6所示的实施例中由第二终端装置所执行的全部接收操作。
例如,处理模块2510,用于从第一资源集中确定用于传输N个同步信号块的第一资源,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;
收发模块2520,用于在所述N个候选资源中的第j候选资源上接收所述N个同步信号块中的第j同步信号块,j为大于或等于1、小于或等于N的整数。
作为一种可选的实施方式,处理模块2510,还用于在收发模块2520接收所述第j同步信号块之后,根据所述第j同步信号块获取定时和/或所述第j同步信号块的频率的信息。
作为一种可选的实施方式,所述第j同步信号块在时域上占用Y个符号,包括:
所述Y个符号为一个时隙的全部符号;或,
所述Y个符号为一个时隙中除了最后一个符号之外的所有符号。
作为一种可选的实施方式,
对于正常循环前缀,Y=13,或者,
对于扩展循环前缀,Y=11。
作为一种可选的实施方式,所述N个同步信号块是以重复方式传输的,或者所述N个同步信号块中的每H个同步信号块是重复方式传输的,H为小于或等于所述N的正整数。
作为一种可选的实施方式,
当所述第一资源集所在的载波的频率为低频,所述第一资源集承载的同步信号块占用的时域资源的时长小于或等于2毫秒;或,
当所述第一资源集所在的载波的频率为高频,所述第一资源集承载的同步信号块占用的时域资源的时长小于或等于8毫秒。
作为一种可选的实施方式,所述第i组承载的同步信号块在时域占用的时长为1ms。
作为一种可选的实施方式,
当所述第一资源集所在的载波的频率为低频,所述N个候选资源所属的组的个数小于或等于2,其中所述N个候选资源所属的组位于同一个无线帧内,或者分别位于同一个无线帧的不同的半帧内。
作为一种可选的实施方式,所述第i组包括K个子组,所述X个候选资源属于所述K个子组,所述K个子组中的一个子组包括R个候选资源,所述R个候选资源可用于传输R个同步信号块,所述R个同步信号块是重复传输的。
作为一种可选的实施方式,所述第一资源集包括第一部分和第二部分,所述第一部分包括所述M个组中在时域上的前M/2个组,所述第二部分包括所述M个组中在时域上的后M/2个组。
应理解,本申请实施例中的处理模块2510可以由处理器或处理器相关电路组件实现,收发模块2520可以由收发器或收发器相关电路组件实现。
如图26所示,本申请实施例还提供一种通信装置2600。示例性地,通信装置2600例如为第二终端装置2600。示例性地,第二终端装置2600可以是通信设备,例如为终端设备,或者也可以是芯片系统等。第二终端装置2600包括处理器2610。可选的,还可以包括存储器2620。可选的,还可以包括收发器2630。其中,存储器2620中存储计算机指令或程序,处理器2610可以执行存储器2620中存储的计算机指令或程序。存储器2620中存储的计算机指令或程序被执行时,该处理器2610用于执行上述实施例中处理模块2510执行的操作,收发器2630用于执行上述实施例中收发模块2520执行的操作。或者,第二终端装置2600也可以不包括存储器2620,例如存储器位于第二终端装置2600外部,在外部存储器所存储的计算机指令或程序被执行时,该处理器2610用于执行上述实施例中处理模块2510执行的操作,收发器2630用于执行上述实施例中收发模块2520执行的操作。
其中,收发器2630可以是一个功能单元,该功能单元既能完成发送操作也能完成接收操作,例如收发器2630可以用于执行图6所示的实施例中由第二终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发器2630是发送器,而在执行接收操作时,可以认为收发器2630是接收器;或者,收发器2630也可以是两个功能单元的统称,这两个功能单元分别为发送器和接收器,发送器用于完成发送操作,例如发送器可以用于执行图6所示的实施例中由第二终端装置所执行的全部发送操作,接收器用于完成接收操作,例如接收器可以用于执行图6所示的实施例中由第二终端装置所执行的全部接收操作。
另外,如果通信装置2600是芯片系统,则收发器2630也可以通过该芯片系统的通信接口实现,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。通信接口可以是一个功能单元,该功能单元既能完成发送操作也能完成接收操作,例如通信接口可以用于执行图6所示的实施例中由第二终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为通信接口是发送接口,而在执行接收操作 时,可以认为通信接口是接收接口;或者,通信接口也可以是两个功能单元的统称,这两个功能单元分别为发送接口和接收接口,发送接口用于完成发送操作,例如发送接口可以用于执行图6所示的实施例中由第二终端装置所执行的全部发送操作,接收接口用于完成接收操作,例如接收接口可以用于执行图6所示的实施例中由第二终端装置所执行的全部接收操作。
应理解,本申请实施例的第二终端装置2500或第二终端装置2600可实现图6所示的实施例中的第二终端装置的功能,并且第二终端装置2500或第二终端装置2600中的各个模块的操作和/或功能分别为了实现图6所示的实施例中的相应流程,为了简洁,在此不再赘述。
图27为本申请实施例提供的通信装置2700的示意性框图。示例性地,通信装置2700例如为第一终端装置2700。
第一终端装置2700包括处理模块2710。可选的,还可以包括收发模块2720。示例性地,第一终端装置2700可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当第一终端装置2700是终端设备时,收发模块2720可以是收发器,可以包括天线和射频电路等,处理模块2710可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个CPU。当第一终端装置2700是具有上述终端功能的部件时,收发模块2720可以是射频单元,处理模块2710可以是处理器,例如基带处理器。当第一终端装置2700是芯片系统时,收发模块2720可以是芯片系统(例如基带芯片)的通信接口(例如输入/输出接口)、处理模块可以是芯片系统的处理器,可以包括一个或多个中央处理单元。
其中,处理模块2710可以用于执行图13所示的实施例中由第一终端装置所执行的除了收发操作之外的全部操作,例如S131,和/或用于支持本文所描述的技术的其它过程。收发模块2720可以用于执行图13所示的实施例中由第一终端装置所执行的全部收发操作,例如S132,和/或用于支持本文所描述的技术的其它过程。
另外,收发模块2720可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块2720可以用于执行图13所示的实施例中由第一终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块2720是发送模块,而在执行接收操作时,可以认为收发模块2720是接收模块;或者,收发模块2720也可以是两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行图13所示的实施例中由第一终端装置所执行的全部发送操作,接收模块用于完成接收操作,例如接收模块可以用于执行图13所示的实施例中由第一终端装置所执行的全部接收操作。
例如,处理模块2710,用于从第一资源集中确定用于发送N个同步信号块的第一资源,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;
收发模块2720,用于在所述N个候选资源中的第j候选资源上发送所述N个同步信号块中的第j同步信号块,所述第j同步信号块指示所述第j同步信号块的时域位置。
作为一种可选的实施方式,所述第j同步信号块的时域位置包括所述第j同步信号块所在的组的标识,和/或,所述第j同步信号块在所在的组内的标识。
作为一种可选的实施方式,所述第j同步信号块指示所述第j同步信号块的时域位置,包括:
所述第j同步信号块包括的广播信道承载的信令,指示所述第j同步信号块的时域位置;或,
所述第j同步信号块包括的广播信道承载的解调参考信号,指示所述第j同步信号块的时域位置;或,
用于对所述第j同步信号块包括的广播信道承载的信令进行加扰的参考信号,指示所述第j同步信号块的时域位置。
作为一种可选的实施方式,所述第j同步信号块包括的广播信道承载的解调参考信号,指示所述第j同步信号块的时域位置,包括:
所述解调参考信号序列的初始值或初始位置指示所述第j同步信号块的时域位置。
作为一种可选的实施方式,用于对所述第j同步信号块包括的广播信道承载的信令进行加扰的参考信号,指示所述第j同步信号块的时域位置,包括:
所述用于对所述第j同步信号块包括的广播信道承载的信令进行加扰的参考信号序列的初始值或初始位置,指示所述第j同步信号块的时域位置。
作为一种可选的实施方式,所述序列的初始值由以下的一种或多种参数确定:
所述第j同步信号块所在的组的标识;
所述第j同步信号块在所在的组内的标识;
同步信号源的标识;
所述第j同步信号块所在的时隙的标识;或,
所述第j同步信号块所在的时隙对应的CP类型。
应理解,本申请实施例中的处理模块2710可以由处理器或处理器相关电路组件实现,收发模块2720可以由收发器或收发器相关电路组件实现。
如图28所示,本申请实施例还提供一种通信装置2800。示例性地,通信装置2800例如为第一终端装置2800。示例性地,第一终端装置2800可以是通信设备,例如为终端设备,或者也可以是芯片系统等。第一终端装置2800包括处理器2810。可选的,还可以包括存储器2820。可选的,还可以包括收发器2830。其中,存储器2820中存储计算机指令或程序,处理器2810可以执行存储器2820中存储的计算机指令或程序。存储器2820中存储的计算机指令或程序被执行时,该处理器2810用于执行上述实施例中处理模块2710执行的操作,收发器2830用于执行上述实施例中收发模块2720执行的操作。或者,第一终端装置2800也可以不包括存储器2820,例如存储器位于第一终端装置2800外部,在外部存储器所存储的计算机指令或程序被执行时,该处理器2810用于执行上述实施例中处理模块2710执行的操作,收发器2830用于执行上述实施例中收发模块2720执行的操作。
其中,收发器2830可以是一个功能单元,该功能单元既能完成发送操作也能完成接收操作,例如收发器2830可以用于执行图13所示的实施例中由第一终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发器2830是发送器,而在执行接收操作时,可以认为收发器2830是接收器;或者,收发器2830也可以是两个功能单元的统称,这两个功能单元分别为发送器和接收器,发送器用于完成发送操作,例如 发送器可以用于执行图13所示的实施例中由第一终端装置所执行的全部发送操作,接收器用于完成接收操作,例如接收器可以用于执行图13所示的实施例中由第一终端装置所执行的全部接收操作。
另外,如果通信装置2800是芯片系统,则收发器2830也可以通过该芯片系统的通信接口实现,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。通信接口可以是一个功能单元,该功能单元既能完成发送操作也能完成接收操作,例如通信接口可以用于执行图13所示的实施例中由第一终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为通信接口是发送接口,而在执行接收操作时,可以认为通信接口是接收接口;或者,通信接口也可以是两个功能单元的统称,这两个功能单元分别为发送接口和接收接口,发送接口用于完成发送操作,例如发送接口可以用于执行图13所示的实施例中由第一终端装置所执行的全部发送操作,接收接口用于完成接收操作,例如接收接口可以用于执行图13所示的实施例中由第一终端装置所执行的全部接收操作。
应理解,根据本申请实施例的第一终端装置2700或第一终端装置2800可实现图13所示的实施例中的第一终端装置的功能,并且第一终端装置2700或第一终端装置2800中的各个模块的操作和/或功能分别为了实现图13所示的实施例中的相应流程,为了简洁,在此不再赘述。
图29为本申请实施例提供的通信装置2900的示意性框图。示例性地,通信装置2900例如为第二终端装置2900。
第二终端装置2900包括处理模块2910。可选的,还可以包括收发模块2920。示例性地,第二终端装置2900可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当第二终端装置2900是终端设备时收发模块2920可以是收发器,可以包括天线和射频电路等,处理模块2910可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个CPU。当第二终端装置2900是具有上述终端功能的部件时,收发模块2920可以是射频单元,处理模块2910可以是处理器,例如基带处理器。当第二终端装置2900是芯片系统时,收发模块2920可以是芯片系统(例如基带芯片)的通信接口(例如输入/输出接口)、处理模块可以是芯片系统的处理器,可以包括一个或多个中央处理单元。
其中,处理模块2910可以用于执行图13所示的实施例中由第二终端装置所执行的除了收发操作之外的全部操作,例如S133,和/或用于支持本文所描述的技术的其它过程。收发模块2920可以用于执行图13所示的实施例中由第二终端装置所执行的全部收发操作,例如S132,和/或用于支持本文所描述的技术的其它过程。
另外,收发模块2920可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块2920可以用于执行图13所示的实施例中由第二终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块2920是发送模块,而在执行接收操作时,可以认为收发模块2920是接收模块;或者,收发模块2920也可以是两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行图13所示的实施例中由第二终端装置所执行的全部发送操作,接收模块用于完成接收操作,例如接收模块可以用于执行图13所示的实施例中由第二终端装置所执行的全部接收操作。
例如,处理模块2910,用于在N个候选资源中的第j候选资源上接收N个同步信号块中的第j同步信号块,所述N个候选资源属于第一资源集,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述N个候选资源属于所述M个组中的一组或多组;
收发模块2920,用于根据所述第j同步信号块,确定所述第j同步信号块的时域位置。
作为一种可选的实施方式,所述第j同步信号块的时域位置包括所述第j同步信号块所在的组的标识,和/或,所述第j同步信号块在所在的组内的标识。
作为一种可选的实施方式,处理模块2910用于通过如下方式根据所述第j同步信号块,确定所述第j同步信号块的时域位置:
根据所述第j同步信号块包括的广播信道承载的信令,确定所述第j同步信号块的时域位置;或,
根据所述第j同步信号块包括的广播信道承载的解调参考信号,确定所述第j同步信号块的时域位置;或,
根据用于对所述第j同步信号块包括的广播信道承载的信令进行加扰的参考信号,确定所述第j同步信号块的时域位置。
作为一种可选的实施方式,处理模块2910用于通过如下方式根据所述第j同步信号块包括的广播信道承载的解调参考信号,确定所述第j同步信号块的时域位置:
根据所述解调参考信号序列的初始值或初始位置,确定所述第j同步信号块的时域位置。
作为一种可选的实施方式,处理模块2910用于通过如下方式根据用于对所述第j同步信号块包括的广播信道承载的信令进行加扰的参考信号,确定所述第j同步信号块的时域位置:
根据所述用于对所述第j同步信号块包括的广播信道承载的信令进行加扰的参考信号序列的初始值或初始位置,确定所述第j同步信号块的时域位置。
作为一种可选的实施方式,所述序列的初始值由以下的一种或多种参数确定:
所述第j同步信号块所在的组的标识;
所述第j同步信号块在所在的组内的标识;
同步信号源的标识;
所述第j同步信号块所在的时隙的标识;或,
所述第j同步信号块所在的时隙对应的CP类型。
应理解,本申请实施例中的处理模块2910可以由处理器或处理器相关电路组件实现,收发模块2920可以由收发器或收发器相关电路组件实现。
如图30所示,本申请实施例还提供一种通信装置3000。示例性地,通信装置3000例如为第二终端装置3000。示例性地,第二终端装置3000可以是通信设备,例如为终端设备,或者也可以是芯片系统等。第二终端装置3000包括处理器3010。可选的,还可以包括存储器3020。可选的,还可以包括收发器3030。其中,存储器3020中存储计算机指令或程序,处理器3010可以执行存储器3020中存储的计算机指令或程序。存储器3020中 存储的计算机指令或程序被执行时,该处理器3010用于执行上述实施例中处理模块2910执行的操作,收发器3030用于执行上述实施例中收发模块2920执行的操作。或者,第二终端装置3000也可以不包括存储器3020,例如存储器位于第二终端装置3000外部,在外部存储器所存储的计算机指令或程序被执行时,该处理器3010用于执行上述实施例中处理模块2910执行的操作,收发器3030用于执行上述实施例中收发模块2920执行的操作。
其中,收发器3030可以是一个功能单元,该功能单元既能完成发送操作也能完成接收操作,例如收发器3030可以用于执行图13所示的实施例中由第二终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发器3030是发送器,而在执行接收操作时,可以认为收发器3030是接收器;或者,收发器3030也可以是两个功能单元的统称,这两个功能单元分别为发送器和接收器,发送器用于完成发送操作,例如发送器可以用于执行图3所示的实施例中由第二终端装置所执行的全部发送操作,接收器用于完成接收操作,例如接收器可以用于执行图13所示的实施例中由第二终端装置所执行的全部接收操作。
另外,如果通信装置3000是芯片系统,则收发器3030也可以通过该芯片系统的通信接口实现,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。通信接口可以是一个功能单元,该功能单元既能完成发送操作也能完成接收操作,例如通信接口可以用于执行图13所示的实施例中由第二终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为通信接口是发送接口,而在执行接收操作时,可以认为通信接口是接收接口;或者,通信接口也可以是两个功能单元的统称,这两个功能单元分别为发送接口和接收接口,发送接口用于完成发送操作,例如发送接口可以用于执行图13所示的实施例中由第二终端装置所执行的全部发送操作,接收接口用于完成接收操作,例如接收接口可以用于执行图13所示的实施例中由第二终端装置所执行的全部接收操作。
应理解,根据本申请实施例的第二终端装置2900或第二终端装置3000可实现图13所示的实施例中的第二终端装置的功能,并且第二终端装置2900或第二终端装置3000中的各个模块的操作和/或功能分别为了实现图13所示的实施例中的相应流程,为了简洁,在此不再赘述。
图31为本申请实施例提供的通信装置3100的示意性框图。示例性地,通信装置3100例如为第一终端装置3100。
第一终端装置3100包括处理模块3110。可选的,还可以包括收发模块3120。示例性地,第一终端装置3100可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当第一终端装置3100是终端设备时收发模块3120可以是收发器,可以包括天线和射频电路等,处理模块3110可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个中央处理单元(central processing unit,CPU)。当第一终端装置3100是具有上述终端功能的部件时,收发模块3120可以是射频单元,处理模块3110可以是处理器,例如基带处理器。当第一终端装置3100是芯片系统时,收发模块3120可以是芯片系统(例如基带芯片)的通信接口(例如输入/输出接口)、处理模块可以是芯片系统的处理器,可以包括一个或多个中央处理单元。
其中,处理模块3110可以用于执行图15所示的实施例中由第一终端装置所执行的除了收发操作之外的全部操作,例如S151,和/或用于支持本文所描述的技术的其它过程。 收发模块3120可以用于执行图15所示的实施例中由第一终端装置所执行的全部收发操作,例如S152,和/或用于支持本文所描述的技术的其它过程。
另外,收发模块3120可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块3120可以用于执行图15所示的实施例中由第一终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块3120是发送模块,而在执行接收操作时,可以认为收发模块3120是接收模块;或者,收发模块3120也可以是两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行图15所示的实施例中由第一终端装置所执行的全部发送操作,接收模块用于完成接收操作,例如接收模块可以用于执行图15所示的实施例中由第一终端装置所执行的全部接收操作。
例如,处理模块3110,用于确定第一同步信号块,其中所述第一同步信号块包括主同步信号、辅同步信号和物理广播信道,所述物理广播信道包括解调参考信号,所述第一同步信号块在时域上占用Y个符号,Y为大于或等于6的整数,所述主同步信号占用所述Y个符号中的第2个符号和第3个符号,所述辅同步信号占用所述Y个符号中的第4个符号和第5个符号,或者第5个符号和第6个符号,所述物理广播信道占用所述Y个符号中除所述主同步信号和辅同步信号占用的符号之外的符号;
收发模块3120,用于发送所述第一同步信号块。
作为一种可选的实施方式,所述第一同步信号块在时域上占用Y个符号,包括:
所述Y个符号为一个时隙的全部符号;或,
所述Y个符号为一个时隙中除了最后一个符号之外的所有符号。
作为一种可选的实施方式,
对于正常循环前缀,Y=13,或者,
对于扩展循环前缀,Y=11。
作为一种可选的实施方式,所述解调参考信号占用所述Y个符号中除所述主同步信号和辅同步信号占用的符号之外的全部符号或部分符号。
作为一种可选的实施方式,在包括了所述解调参考信号的物理广播信道的符号对应的物理资源块内,所述解调参考信号占用等间隔的3个或4个子载波,所述物理广播信号承载的广播信息占用所述物理资源块内除了所述解调参考信号占用的子载波外其余的子载波。
作为一种可选的实施方式,对于正常循环前缀,所述解调参考信号位于所述第一同步信号块中的以下符号位置:
所述解调参考信号位于同步信号块中的第7个符号,第8个符号,第11个符号,第12个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第10个符号,第13个符号;或者,
所述解调参考信号位于同步信号块中的第8个符号,第11个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第12个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第13个符号;或者,
所述解调参考信号位于同步信号块中的第9个符号或第10个符号。
作为一种可选的实施方式,对于扩展循环前缀,所述解调参考信号位于所述第一同步 信号块中的以下符号位置:
所述解调参考信号位于同步信号块中的第7个符号,第8个符号,第10个符号,第11个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第9个符号,第11个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第10个符号;或者,
所述解调参考信号位于同步信号块中的第8个符号或第9个符号。
应理解,本申请实施例中的处理模块3110可以由处理器或处理器相关电路组件实现,收发模块3120可以由收发器或收发器相关电路组件实现。
如图32所示,本申请实施例还提供一种通信装置3200。示例性地,通信装置3200例如为第一终端装置3200。示例性地,第一终端装置3200可以是通信设备,例如为终端设备,或者也可以是芯片系统等。第一终端装置3200包括处理器3210。可选的,还可以包括存储器3220。可选的,还可以包括收发器3230。其中,存储器3220中存储计算机指令或程序,处理器3210可以执行存储器3220中存储的计算机指令或程序。存储器3220中存储的计算机指令或程序被执行时,该处理器3210用于执行上述实施例中处理模块3110执行的操作,收发器3230用于执行上述实施例中收发模块3120执行的操作。或者,第一终端装置3200也可以不包括存储器3220,例如存储器位于第一终端装置3200外部,在外部存储器所存储的计算机指令或程序被执行时,该处理器3210用于执行上述实施例中处理模块3110执行的操作,收发器3230用于执行上述实施例中收发模块3120执行的操作。
其中,收发器3230可以是一个功能单元,该功能单元既能完成发送操作也能完成接收操作,例如收发器3230可以用于执行图15所示的实施例中由第一终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发器3230是发送器,而在执行接收操作时,可以认为收发器3230是接收器;或者,收发器3230也可以是两个功能单元的统称,这两个功能单元分别为发送器和接收器,发送器用于完成发送操作,例如发送器可以用于执行图15所示的实施例中由第一终端装置所执行的全部发送操作,接收器用于完成接收操作,例如接收器可以用于执行图15所示的实施例中由第一终端装置所执行的全部接收操作。
另外,如果通信装置3200是芯片系统,则收发器3230也可以通过该芯片系统的通信接口实现,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。通信接口可以是一个功能单元,该功能单元既能完成发送操作也能完成接收操作,例如通信接口可以用于执行图15所示的实施例中由第一终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为通信接口是发送接口,而在执行接收操作时,可以认为通信接口是接收接口;或者,通信接口也可以是两个功能单元的统称,这两个功能单元分别为发送接口和接收接口,发送接口用于完成发送操作,例如发送接口可以用于执行图15所示的实施例中由第一终端装置所执行的全部发送操作,接收接口用于完成接收操作,例如接收接口可以用于执行图15所示的实施例中由第一终端装置所执行的全部接收操作。
应理解,根据本申请实施例的第一终端装置3100或第一终端装置3200可实现图15所示的实施例中的第一终端装置的功能,并且第一终端装置3100或第一终端装置3200中的各个模块的操作和/或功能分别为了实现图15所示的实施例中的相应流程,为了简洁,在此不再赘述。
图33为本申请实施例提供的通信装置3300的示意性框图。示例性地,通信装置3300例如为第二终端装置3300。
第二终端装置3300包括处理模块3310。可选的,还可以包括收发模块3320。示例性地,第二终端装置3300可以是终端设备,也可以是应用于终端设备中的芯片或者其他具有上述终端设备功能的组合器件、部件等。当第二终端装置3300是终端设备时收发模块3320可以是收发器,可以包括天线和射频电路等,处理模块3310可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个CPU。当第二终端装置3300是具有上述终端功能的部件时,收发模块3320可以是射频单元,处理模块3310可以是处理器,例如基带处理器。当第二终端装置3300是芯片系统时,收发模块3320可以是芯片系统(例如基带芯片)的通信接口(例如输入/输出接口)、处理模块可以是芯片系统的处理器,可以包括一个或多个中央处理单元。
其中,处理模块3310可以用于执行图15所示的实施例中由第二终端装置所执行的除了收发操作之外的全部操作,例如S153,和/或用于支持本文所描述的技术的其它过程。收发模块3320可以用于执行图15所示的实施例中由第二终端装置所执行的全部收发操作,例如S152,和/或用于支持本文所描述的技术的其它过程。
另外,收发模块3320可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块3320可以用于执行图15所示的实施例中由第二终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块3320是发送模块,而在执行接收操作时,可以认为收发模块3320是接收模块;或者,收发模块3320也可以是两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行图15所示的实施例中由第二终端装置所执行的全部发送操作,接收模块用于完成接收操作,例如接收模块可以用于执行图15所示的实施例中由第二终端装置所执行的全部接收操作。
例如,收发模块3320,用于接收第一同步信号块,其中所述第一同步信号块包括主同步信号、辅同步信号和物理广播信道,所述物理广播信道包括解调参考信号,所述第一同步信号块在时域上占用Y个符号,Y为大于或等于6的整数,所述主同步信号占用所述Y个符号中的第2个符号和第3个符号,所述辅同步信号占用所述Y个符号中的第4个符号和第5个符号,或者第5个符号和第6个符号,所述物理广播信道占用所述Y个符号中除所述主同步信号和辅同步信号占用的符号之外的符号;
处理模块3310,用于根据所述第一同步信号块解调所述物理广播信道。
其中,处理模块3310通过解调所述物理广播信道,可以获得所述物理广播信道承载的广播信息等。
作为一种可选的实施方式,所述第一同步信号块在时域上占用Y个符号,包括:
所述Y个符号为一个时隙的全部符号;或,
所述Y个符号为一个时隙中除了最后一个符号之外的所有符号。
作为一种可选的实施方式,
对于正常循环前缀,Y=13,或者,
对于扩展循环前缀,Y=11。
作为一种可选的实施方式,所述解调参考信号占用所述Y个符号中除所述主同步信号和辅同步信号占用的符号之外的全部符号或部分符号。
作为一种可选的实施方式,在包括了所述解调参考信号的物理广播信道的符号对应的物理资源块内,所述解调参考信号占用等间隔的3个或4个子载波,所述物理广播信号承载的广播信息占用所述物理资源块内除了所述解调参考信号占用的子载波外其余的子载波。
作为一种可选的实施方式,对于正常循环前缀,所述解调参考信号位于所述第一同步信号块中的以下符号位置:
所述解调参考信号位于同步信号块中的第7个符号,第8个符号,第11个符号,第12个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第10个符号,第13个符号;或者,
所述解调参考信号位于同步信号块中的第8个符号,第11个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第12个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第13个符号;或者,
所述解调参考信号位于同步信号块中的第9个符号或第10个符号。
作为一种可选的实施方式,对于扩展循环前缀,所述解调参考信号位于所述第一同步信号块中的以下符号位置:
所述解调参考信号位于同步信号块中的第7个符号,第8个符号,第10个符号,第11个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第9个符号,第11个符号;或者,
所述解调参考信号位于同步信号块中的第7个符号,第10个符号;或者,
所述解调参考信号位于同步信号块中的第8个符号或第9个符号。
应理解,本申请实施例中的处理模块3310可以由处理器或处理器相关电路组件实现,收发模块3320可以由收发器或收发器相关电路组件实现。
如图34所示,本申请实施例还提供一种通信装置3400。示例性地,通信装置3400例如为第二终端装置3400。示例性地,第二终端装置3400可以是通信设备,例如为终端设备,或者也可以是芯片系统等。第二终端装置3400包括处理器3410。可选的,还可以包括存储器3420。可选的,还可以包括收发器3430。其中,存储器3420中存储计算机指令或程序,处理器3410可以执行存储器3420中存储的计算机指令或程序。存储器3420中存储的计算机指令或程序被执行时,该处理器3410用于执行上述实施例中处理模块3310执行的操作,收发器3430用于执行上述实施例中收发模块3320执行的操作。或者,第二终端装置3400也可以不包括存储器3420,例如存储器位于第二终端装置3400外部,在外部存储器所存储的计算机指令或程序被执行时,该处理器3410用于执行上述实施例中处理模块3310执行的操作,收发器3430用于执行上述实施例中收发模块3320执行的操作。
其中,收发器3430可以是一个功能单元,该功能单元既能完成发送操作也能完成接收操作,例如收发器3430可以用于执行图15所示的实施例中由第二终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为收发器3430是发送器,而在执行接收操作时,可以认为收发器3430是接收器;或者,收发器3430也可以是两个功能单元的统称,这两个功能单元分别为发送器和接收器,发送器用于完成发送操作,例如发送器可以用于执行图15所示的实施例中由第二终端装置所执行的全部发送操作,接收器用于完成接收操作,例如接收器可以用于执行图15所示的实施例中由第二终端装置所 执行的全部接收操作。
另外,如果通信装置3400是芯片系统,则收发器3430也可以通过该芯片系统的通信接口实现,该通信接口与通信设备中的射频收发组件连接,以通过射频收发组件实现信息的收发。通信接口可以是一个功能单元,该功能单元既能完成发送操作也能完成接收操作,例如通信接口可以用于执行图15所示的实施例中由第二终端装置所执行的全部发送操作和接收操作,例如,在执行发送操作时,可以认为通信接口是发送接口,而在执行接收操作时,可以认为通信接口是接收接口;或者,通信接口也可以是两个功能单元的统称,这两个功能单元分别为发送接口和接收接口,发送接口用于完成发送操作,例如发送接口可以用于执行图15所示的实施例中由第二终端装置所执行的全部发送操作,接收接口用于完成接收操作,例如接收接口可以用于执行图15所示的实施例中由第二终端装置所执行的全部接收操作。
应理解,根据本申请实施例的第二终端装置3300或第二终端装置3400可实现图15所示的实施例中的第二终端装置的功能,并且第二终端装置3200或第二终端装置3400中的各个模块的操作和/或功能分别为了实现图15所示的实施例中的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供一种通信装置,该通信装置可以是终端设备也可以是电路。该通信装置可以用于执行上述方法实施例中由第一终端装置或第二终端装置所执行的动作。
当该通信装置为终端设备时,图35示出了一种简化的终端设备的结构示意图。便于理解和图示方便,图35中,终端设备以手机作为例子。如图35所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图35中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图35所示,终端设备包括收发单元3510和处理单元3520。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元3510中用于实现接收功能的器件视为接收单元,将收发单元3510中用于实现发送功能的器件视为发送单元,即收发单元3510包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。 发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元3510用于执行上述方法实施例中第一终端装置侧的发送操作和接收操作,处理单元3520用于执行上述方法实施例中第一终端装置上除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元3510用于执行图6所示的实施例中第一终端装置的全部发送操作和接收操作,例如S63,和/或收发单元3510还用于执行支持本文所描述的技术的其它过程。处理单元3520,用于执行图6所示的实施例中由第一终端装置所执行的除了收发操作之外的全部操作,例如S61,和/或处理单元3520还用于执行支持本文所描述的技术的其它过程。
又例如,在一种实现方式中,收发单元3510用于执行图13所示的实施例中第一终端装置的全部发送操作和接收操作,例如S131,和/或收发单元3510还用于执行支持本文所描述的技术的其它过程。处理单元3520,用于执行图13所示的实施例中由第一终端装置所执行的除了收发操作之外的全部操作,例如S132,和/或处理单元3520还用于执行支持本文所描述的技术的其它过程。
又例如,在一种实现方式中,收发单元3510用于执行图15所示的实施例中第一终端装置的全部发送操作和接收操作,例如S151,和/或收发单元3510还用于执行支持本文所描述的技术的其它过程。处理单元3520,用于执行图15所示的实施例中由第一终端装置所执行的除了收发操作之外的全部操作,例如S152,和/或处理单元3520还用于执行支持本文所描述的技术的其它过程。
或者,收发单元3510用于执行上述方法实施例中第二终端装置侧的发送操作和接收操作,处理单元3520用于执行上述方法实施例中第二终端装置上除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元3510用于执行图6所示的实施例中第二终端装置的全部发送操作和接收操作,例如S62,和/或收发单元3510还用于执行支持本文所描述的技术的其它过程。处理单元3520,用于执行图6所示的实施例中由第二终端装置所执行的除了收发操作之外的全部操作,例如S63,和/或处理单元3520还用于执行支持本文所描述的技术的其它过程。
又例如,在一种实现方式中,收发单元3510用于执行图13所示的实施例中第二终端装置的全部发送操作和接收操作,例如S133,和/或收发单元3510还用于执行支持本文所描述的技术的其它过程。处理单元3520,用于执行图13所示的实施例中由第二终端装置所执行的除了收发操作之外的全部操作,例如S132,和/或处理单元3520还用于执行支持本文所描述的技术的其它过程。
又例如,在一种实现方式中,收发单元3510用于执行图15所示的实施例中第二终端装置的全部发送操作和接收操作,例如S153,和/或收发单元3510还用于执行支持本文所描述的技术的其它过程。处理单元3520,用于执行图15所示的实施例中由第二终端装置所执行的除了收发操作之外的全部操作,例如S152,和/或处理单元3520还用于执行支持本文所描述的技术的其它过程。
当该通信装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
本实施例中的通信装置为终端设备时,可以参照图36所示的设备。作为一个例子,该设备可以完成类似于图24中处理器2410的功能。或者,作为一个例子,该设备可以完成类似于图26中处理器2610的功能。或者,作为一个例子,该设备可以完成类似于图28中处理器2810的功能。或者,作为一个例子,该设备可以完成类似于图30中处理器3010的功能。或者,作为一个例子,该设备可以完成类似于图32中处理器3210的功能。或者,作为一个例子,该设备可以完成类似于图34中处理器3410的功能。在图36中,该设备包括处理器3610,发送数据处理器3620,接收数据处理器3630。上述实施例中的处理模块2310可以是图36中的该处理器3610,并完成相应的功能;上述实施例中的收发模块2320可以是图36中的发送数据处理器3620,和/或接收数据处理器3630。或者,上述实施例中的处理模块2510可以是图36中的该处理器2410,并完成相应的功能;上述实施例中的收发模块2520可以是图36中的发送数据处理器3620,和/或接收数据处理器3630。或者,上述实施例中的处理模块2710可以是图36中的该处理器3610,并完成相应的功能;上述实施例中的收发模块2720可以是图36中的发送数据处理器3620,和/或接收数据处理器3630。或者,上述实施例中的处理模块2910可以是图36中的该处理器2410,并完成相应的功能;上述实施例中的收发模块2920可以是图36中的发送数据处理器3620,和/或接收数据处理器3630。或者,上述实施例中的处理模块3110可以是图36中的该处理器3610,并完成相应的功能;上述实施例中的收发模块3120可以是图36中的发送数据处理器3620,和/或接收数据处理器3630。或者,上述实施例中的处理模块3310可以是图36中的该处理器3610,并完成相应的功能;上述实施例中的收发模块3320可以是图36中的发送数据处理器3620,和/或接收数据处理器3630。虽然图36中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图37示出本实施例的另一种形式。处理装置3700中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信装置可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器3703,接口3704。其中,处理器3703完成上述处理模块2310的功能,接口3704完成上述收发模块2320的功能。或者,处理器3703完成上述处理模块2510的功能,接口3704完成上述收发模块2520的功能。或者,处理器3703完成上述处理模块2710的功能,接口3704完成上述收发模块2720的功能。或者,处理器3703完成上述处理模块2910的功能,接口3704完成上述收发模块2920的功能。或者,处理器3703完成上述处理模块3110的功能,接口3704完成上述收发模块3120的功能。或者,处理器3703完成上述处理模块3310的功能,接口3704完成上述收发模块3320的功能。作为另一种变形,该调制子系统包括存储器3706、处理器3703及存储在存储器3706上并可在处理器上运行的程序,该处理器3703执行该程序时实现上述方法实施例中终端设备侧的方法。需要注意的是,所述存储器3706可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置3700中,只要该存储器3706可以连接到所述处理器3703即可。
本申请实施例提供第一通信系统。第一通信系统可以包括至少一个上述的图6所示的实施例所涉及的第一终端装置,以及包括至少一个上述的图6所示的实施例所涉及的第二终端装置。第一终端装置例如为图23中的通信装置2300或图24中的通信装置2400。第二终端装置例如为图25中的通信装置2500或图26中的通信装置2600。
本申请实施例提供第二通信系统。第二通信系统可以包括至少一个上述的图13所示 的实施例所涉及的第一终端装置,以及包括至少一个上述的图13所示的实施例所涉及的第二终端装置。第一终端装置例如为图27中的通信装置2700或图28中的通信装置2800。第二终端装置例如为图29中的通信装置2900或图30中的通信装置3000。
本申请实施例提供第三通信系统。第三通信系统可以包括至少一个上述的图15所示的实施例所涉及的第一终端装置,以及包括至少一个上述的图15所示的实施例所涉及的第二终端装置。第一终端装置例如为图31中的通信装置3100或图32中的通信装置3200。第二终端装置例如为图33中的通信装置3300或图34中的通信装置3400。
如上的三个通信系统可以是同一通信系统,或者也可以分别是不同的通信系统。或者,也可能其中的任意两个通信系统是同一个通信系统,而另一个通信系统是不同的通信系统。例如,如上的第一通信系统和第二通信系统是同一通信系统,而第三通信系统是不同的通信系统,或者例如,第二通信系统和第三通信系统是同一通信系统,而第一通信系统是不同的通信系统,等等。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图6所示的实施例中与第一终端装置相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图6所示的实施例中与第二终端装置相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图13所示的实施例中与第一终端装置相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图13所示的实施例中与第二终端装置相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图15所示的实施例中与第一终端装置相关的流程。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图15所示的实施例中与第二终端装置相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图6所示的实施例中与第一终端装置相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图6所示的实施例中与第二终端装置相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图13所示的实施例中与第一终端装置相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序, 该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图13所示的实施例中与第二终端装置相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图15所示的实施例中与第一终端装置相关的流程。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,所述计算机可以实现上述方法实施例提供的图15所示的实施例中与第二终端装置相关的流程。
应理解,本申请实施例中提及的处理器可以是CPU,还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组 件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请实施例的保护范围之内。因此,本申请实施例的保护范围应所述以权利要求的保护范围为准。

Claims (42)

  1. 一种通信方法,其特征在于,包括:
    从第一资源集中确定用于发送N个同步信号块的第一资源,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;
    在所述N个候选资源中的第j候选资源上发送所述N个同步信号块中的第j同步信号块,j为大于或等于1、小于或等于N的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述第j同步信号块在时域上占用Y个符号,包括:
    所述Y个符号为一个时隙的全部符号;或,
    所述Y个符号为一个时隙中除了最后一个符号之外的所有符号。
  3. 根据权利要求1或2所述的方法,其特征在于,
    对于正常循环前缀,Y=13,或者,
    对于扩展循环前缀,Y=11。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,所述N个同步信号块是以重复方式传输的,或者所述N个同步信号块中的每H个同步信号块是重复方式传输的,H为小于或等于所述N的正整数。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,
    当所述第一资源集所在的载波的频率为低频,所述第一资源集承载的同步信号块占用的时域资源的时长小于或等于2毫秒;或,
    当所述第一资源集所在的载波的频率为高频,所述第一资源集承载的同步信号块占用的时域资源的时长小于或等于8毫秒。
  6. 根据权利要求1~5任一项所述的方法,其特征在于,所述第i组承载的同步信号块在时域占用的时长为1ms。
  7. 根据权利要求1~6任一项所述的方法,其特征在于,
    根据预配置的信息确定所述第一资源集在所述同步信号块周期内的时域位置;或,接收来自网络设备的第一信令,所述第一信令用于指示所述第一资源集在所述同步信号块周期内的时域位置。
  8. 根据权利要求1~7任一项所述的方法,其特征在于,
    当所述第一资源集所在的载波的频率为低频,所述N个候选资源所属的组的个数小于或等于2,其中所述N个候选资源所属的组位于同一个无线帧内,或者分别位于同一个无线帧的不同的半帧内。
  9. 根据权利要求1~8任一项所述的方法,其特征在于,所述第i组包括K个子组,所述X个候选资源属于所述K个子组,所述K个子组中的一个子组包括R个候选资源,所述R个候选资源可用于传输R个同步信号块,所述R个同步信号块是重复传输的。
  10. 根据权利要求1~9任一项所述的方法,其特征在于,所述第一资源集包括第一部分和第二部分,所述第一部分包括所述M个组中在时域上的前M/2个组,所述第二部分 包括所述M个组中在时域上的后M/2个组。
  11. 一种通信方法,其特征在于,包括:
    从第一资源集中确定用于传输N个同步信号块的第一资源,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;
    在所述N个候选资源中的第j候选资源上接收所述N个同步信号块中的第j同步信号块,j为大于或等于1、小于或等于N的整数。
  12. 根据权利要求11所述的方法,其特征在于,所述第j同步信号块在时域上占用Y个符号,包括:
    所述Y个符号为一个时隙的全部符号;或,
    所述Y个符号为一个时隙中除了最后一个符号之外的所有符号。
  13. 根据权利要求11或12所述的方法,其特征在于,
    对于正常循环前缀,Y=13,或者,
    对于扩展循环前缀,Y=11。
  14. 根据权利要求11~13任一项所述的方法,其特征在于,所述N个同步信号块是以重复方式传输的,或者所述N个同步信号块中的每H个同步信号块是重复方式传输的,H为小于或等于所述N的正整数。
  15. 根据权利要求11~14任一项所述的方法,其特征在于,
    当所述第一资源集所在的载波的频率为低频,所述第一资源集承载的同步信号块占用的时域资源的时长小于或等于2毫秒;或,
    当所述第一资源集所在的载波的频率为高频,所述第一资源集承载的同步信号块占用的时域资源的时长小于或等于8毫秒。
  16. 根据权利要求11~15任一项所述的方法,其特征在于,所述第i组承载的同步信号块在时域占用的时长为1ms。
  17. 根据权利要求11~16任一项所述的方法,其特征在于,
    当所述第一资源集所在的载波的频率为低频,所述N个候选资源所属的组的个数小于或等于2,其中所述N个候选资源所属的组位于同一个无线帧内,或者分别位于同一个无线帧的不同的半帧内。
  18. 根据权利要求11~17任一项所述的方法,其特征在于,所述第i组包括K个子组,所述X个候选资源属于所述K个子组,所述K个子组中的一个子组包括R个候选资源,所述R个候选资源可用于传输R个同步信号块,所述R个同步信号块是重复传输的。
  19. 根据权利要求11~18任一项所述的方法,其特征在于,所述第一资源集包括第一部分和第二部分,所述第一部分包括所述M个组中在时域上的前M/2个组,所述第二部分包括所述M个组中在时域上的后M/2个组。
  20. 一种通信装置,其特征在于,包括:
    处理模块,用于从第一资源集中确定用于发送N个同步信号块的第一资源,所述第一资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包 括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;
    收发模块,用于在所述N个候选资源中的第j候选资源上发送所述N个同步信号块中的第j同步信号块,j为大于或等于1、小于或等于N的整数。
  21. 根据权利要求20所述的通信装置,其特征在于,所述第j同步信号块在时域上占用Y个符号,包括:
    所述Y个符号为一个时隙的全部符号;或,
    所述Y个符号为一个时隙中除了最后一个符号之外的所有符号。
  22. 根据权利要求20或21所述的通信装置,其特征在于,
    对于正常循环前缀,Y=13,或者,
    对于扩展循环前缀,Y=11。
  23. 根据权利要求20~22任一项所述的通信装置,其特征在于,所述N个同步信号块是以重复方式传输的,或者所述N个同步信号块中的每H个同步信号块是重复方式传输的,P为小于或等于所述N的正整数。
  24. 根据权利要求20~23任一项所述的通信装置,其特征在于,
    当所述第一资源集所在的载波的频率为低频,所述第一资源集承载的同步信号块占用的时域资源的时长小于或等于2毫秒;或,
    当所述第一资源集所在的载波的频率为高频,所述第一资源集承载的同步信号块占用的时域资源的时长小于或等于8毫秒。
  25. 根据权利要求20~24任一项所述的通信装置,其特征在于,所述第i组承载的同步信号块在时域占用的时长为1ms。
  26. 根据权利要求20~25任一项所述的通信装置,其特征在于,
    根据预配置的信息确定所述第一资源集在所述同步信号块周期内的时域位置;或,
    接收来自网络设备的第一信令,所述第一信令用于指示所述第一资源集在所述同步信号块周期内的时域位置。
  27. 根据权利要求20~26任一项所述的通信装置,其特征在于,
    当所述第一资源集所在的载波的频率为低频,所述N个候选资源所属的组的个数小于或等于2,其中所述N个候选资源所属的组位于同一个无线帧内,或者分别位于同一个无线帧的不同的半帧内。
  28. 根据权利要求20~27任一项所述的通信装置,其特征在于,所述第i组包括K个子组,所述X个候选资源属于所述K个子组,所述K个子组中的一个子组包括R个候选资源,所述R个候选资源可用于传输R个同步信号块,所述R个同步信号块是重复传输的。
  29. 根据权利要求20~28任一项所述的通信装置,其特征在于,所述第一资源集包括第一部分和第二部分,所述第一部分包括所述M个组中在时域上的前M/2个组,所述第二部分包括所述M个组中在时域上的后M/2个组。
  30. 一种通信装置,其特征在于,包括:
    处理模块,用于从第一资源集中确定用于传输N个同步信号块的第一资源,所述第一 资源集位于同步信号块周期内,所述第一资源集包括M个组,所述M个组中的第i组包括X个候选资源,所述第一资源集包括M×X个候选资源,所述M×X个候选资源中的每个候选资源可用于传输同步信号块,所述N个同步信号块中的每个同步信号块在时域上占用Y个符号,M、i和X均为大于或等于1的整数,Y为大于或等于5的整数,所述第一资源包括N个候选资源,所述N个候选资源属于所述M个组中的一组或多组;
    收发模块,用于在所述N个候选资源中的第j候选资源上接收所述N个同步信号块中的第j同步信号块,j为大于或等于1、小于或等于N的整数。
  31. 根据权利要求30所述的通信装置,其特征在于,所述第j同步信号块在时域上占用Y个符号,包括:
    所述Y个符号为一个时隙的全部符号;或,
    所述Y个符号为一个时隙中除了最后一个符号之外的所有符号。
  32. 根据权利要求30或31所述的通信装置,其特征在于,
    对于正常循环前缀,Y=13,或者,
    对于扩展循环前缀,Y=11。
  33. 根据权利要求30~32任一项所述的通信装置,其特征在于,所述N个同步信号块是以重复方式传输的,或者所述N个同步信号块中的每H个同步信号块是重复方式传输的,P为小于或等于所述N的正整数。
  34. 根据权利要求30~33任一项所述的通信装置,其特征在于,
    当所述第一资源集所在的载波的频率为低频,所述第一资源集承载的同步信号块占用的时域资源的时长小于或等于2毫秒;或,
    当所述第一资源集所在的载波的频率为高频,所述第一资源集承载的同步信号块占用的时域资源的时长小于或等于8毫秒。
  35. 根据权利要求30~34任一项所述的通信装置,其特征在于,所述第i组承载的同步信号块在时域占用的时长为1ms。
  36. 根据权利要求30~35任一项所述的通信装置,其特征在于,
    当所述第一资源集所在的载波的频率为低频,所述N个候选资源所属的组的个数小于或等于2,其中所述N个候选资源所属的组位于同一个无线帧内,或者分别位于同一个无线帧的不同的半帧内。
  37. 根据权利要求30~36任一项所述的通信装置,其特征在于,所述第i组包括K个子组,所述X个候选资源属于所述K个子组,所述K个子组中的一个子组包括R个候选资源,所述R个候选资源可用于传输R个同步信号块,所述R个同步信号块是重复传输的。
  38. 根据权利要求30~37任一项所述的通信装置,其特征在于,所述第一资源集包括第一部分和第二部分,所述第一部分包括所述M个组中在时域上的前M/2个组,所述第二部分包括所述M个组中在时域上的后M/2个组。
  39. 一种通信系统,其特征在于,包括如权利要求20~29中任意一项所述的通信装置,以及如权利要求30~38中任意一项所述的通信装置。
  40. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~10中任意一项所述的方法,或使得所述计算机执行如权利要求11~19中任意一项所述的方法。
  41. 一种芯片,其特征在于,所述芯片包括:
    通信接口,用于与其他装置进行通信;
    处理器,用于使得安装有所述芯片系统的通信设备执行如权利要求1~10中任意一项所述的方法,或使得所述通信设备执行如权利要求11~19中任意一项所述的方法。
  42. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1~10中任意一项所述的方法,或使得所述计算机执行如权利要求11~19中任意一项所述的方法。
PCT/CN2019/109619 2019-09-30 2019-09-30 一种通信方法及装置 WO2021062716A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/109619 WO2021062716A1 (zh) 2019-09-30 2019-09-30 一种通信方法及装置
EP19947577.3A EP4044713A4 (en) 2019-09-30 2019-09-30 COMMUNICATION METHOD AND DEVICE
CN201980095974.3A CN113767682A (zh) 2019-09-30 2019-09-30 一种通信方法及装置
US17/657,071 US20220231898A1 (en) 2019-09-30 2022-03-29 Communication Method and Apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109619 WO2021062716A1 (zh) 2019-09-30 2019-09-30 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/657,071 Continuation US20220231898A1 (en) 2019-09-30 2022-03-29 Communication Method and Apparatus

Publications (1)

Publication Number Publication Date
WO2021062716A1 true WO2021062716A1 (zh) 2021-04-08

Family

ID=75337663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109619 WO2021062716A1 (zh) 2019-09-30 2019-09-30 一种通信方法及装置

Country Status (4)

Country Link
US (1) US20220231898A1 (zh)
EP (1) EP4044713A4 (zh)
CN (1) CN113767682A (zh)
WO (1) WO2021062716A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11863972B2 (en) * 2021-04-22 2024-01-02 Qualcomm Incorporated Resolving reservation ambiguity of sidelink control information repetition in sidelink communications
CN114710197B (zh) * 2022-03-24 2023-09-05 上海擎昆信息科技有限公司 融合低轨卫星移动通信系统的时间同步方法及装置
CN117322082A (zh) * 2022-04-28 2023-12-29 上海诺基亚贝尔股份有限公司 装置、方法和计算机程序

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109560904A (zh) * 2017-09-25 2019-04-02 中国移动通信有限公司研究院 一种传输方法、网络设备及移动通信终端
US20190150068A1 (en) * 2017-11-15 2019-05-16 Qualcomm Incorporated Transmission of physical broadcast channel for new radio
CN110166393A (zh) * 2018-02-13 2019-08-23 展讯通信(上海)有限公司 同步信号块的发送、接收方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109309955B (zh) * 2017-07-28 2021-02-09 华为技术有限公司 一种同步信号块的传输方法、接入网设备及终端设备
US11310771B2 (en) * 2018-02-15 2022-04-19 Ntt Docomo, Inc. User terminal and radio communication method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109560904A (zh) * 2017-09-25 2019-04-02 中国移动通信有限公司研究院 一种传输方法、网络设备及移动通信终端
US20190150068A1 (en) * 2017-11-15 2019-05-16 Qualcomm Incorporated Transmission of physical broadcast channel for new radio
CN110166393A (zh) * 2018-02-13 2019-08-23 展讯通信(上海)有限公司 同步信号块的发送、接收方法及装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Relation between SSB and SS-Burst", 3GPP DRAFT; R2-1814540 CR96 TO 38.300 ON RELATION BETWEEN SSB AND SS-BURST, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Chengdu, China; 20181020, 27 September 2018 (2018-09-27), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051523965 *
ERICSSON: "SMTC configurations for RRM tests", 3GPP DRAFT; R4-1811862 SMTC CONFIGURATION 38.133, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Gothenburg, Sweden; 20180820 - 20180824, 29 August 2018 (2018-08-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051580700 *
RAPPORTEUR (NOKIA): "SSB Clarifications", 3GPP DRAFT; R2-1806862 STAGE 2 SSB CLARIFICATIONS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Busan, South Korea; 20180521 - 20180525, 20 May 2018 (2018-05-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051443311 *
See also references of EP4044713A4 *

Also Published As

Publication number Publication date
US20220231898A1 (en) 2022-07-21
CN113767682A (zh) 2021-12-07
EP4044713A1 (en) 2022-08-17
EP4044713A4 (en) 2022-10-05

Similar Documents

Publication Publication Date Title
US20210329568A1 (en) Signal sending method, priority configuration method, and device
WO2021000679A1 (zh) 一种通信方法及设备
US20220167374A1 (en) Communication method and apparatus
WO2020186946A1 (zh) 一种通信方法及设备
WO2020248918A1 (zh) 一种通信方法和装置
WO2021062716A1 (zh) 一种通信方法及装置
WO2020147728A1 (zh) 一种通信方法及设备
WO2021031043A1 (zh) 一种通信方法及装置
TW201607283A (zh) 用於傳送及接收信標訊框之無線裝置、方法及電腦可讀媒體
WO2022194151A1 (zh) 一种通信方法及装置
WO2022011699A1 (zh) 一种通信方法及侧行设备
TWI810692B (zh) Ppdu的上行頻寬指示方法及相關裝置
WO2022027660A1 (zh) 一种侧行链路通信方法及装置
CN112118540B (zh) 一种通信方法及设备
JP2022544333A (ja) 通信方法及び装置
WO2018171757A1 (zh) 一种随机接入配置方法及装置
WO2024093972A1 (zh) 通信方法和装置
WO2023030205A1 (zh) 资源指示方法和通信装置
CN111526598B (zh) 一种通信方法及装置
WO2024061072A1 (zh) 通信方法和装置
WO2023092264A1 (zh) 无线通信方法、终端设备及网络设备
WO2023029976A1 (zh) 一种通信方法及装置
WO2024012129A1 (zh) 指示信息发送方法、装置及系统
WO2021063192A1 (zh) 通信方法及相关产品
EP4037400A1 (en) Communication method and communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19947577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019947577

Country of ref document: EP

Effective date: 20220413