WO2023029976A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023029976A1
WO2023029976A1 PCT/CN2022/112602 CN2022112602W WO2023029976A1 WO 2023029976 A1 WO2023029976 A1 WO 2023029976A1 CN 2022112602 W CN2022112602 W CN 2022112602W WO 2023029976 A1 WO2023029976 A1 WO 2023029976A1
Authority
WO
WIPO (PCT)
Prior art keywords
harq
harq codebook
indication information
resource
sending
Prior art date
Application number
PCT/CN2022/112602
Other languages
English (en)
French (fr)
Inventor
焦春旭
苏宏家
郭文婷
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023029976A1 publication Critical patent/WO2023029976A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method and device.
  • hybrid automatic repeat request hybrid automatic repeat request
  • the sending end sends the transport block (TB) to the receiving end for the first time
  • the receiving end feeds back HARQ feedback information such as positive acknowledgment (ACK) or negative acknowledgment (NACK) to the sending end
  • HARQ feedback information such as positive acknowledgment (ACK) or negative acknowledgment (NACK)
  • ACK positive acknowledgment
  • NACK negative acknowledgment
  • the sending end It is determined whether to retransmit the TB to the receiving end according to the HARQ feedback information, and at the same time, the transmission reliability of the data information is improved based on the forward error correction (forward error correction, FEC) code.
  • FEC forward error correction
  • HARQ is also used as one of the important methods to improve transmission reliability.
  • the sending end can transmit TB through the physical sidelink shared channel (PSSCH), and the receiving end can transmit the TB through the physical sidelink feedback channel (physical sidelink feedback channel) after receiving the TB.
  • PSFCH physical sidelink feedback channel
  • the time slots containing PSFCH resources may be periodic in the time domain, for example, there may be one time slot containing PSFCH resources in every L time slots (slots), where the value range of L may be ⁇ 0, 1 , 2, 4 ⁇ . When the value of L is 0, it may indicate that there is no PSFCH in the current SL communication, that is, the receiving end does not need to send HARQ feedback information to the sending end.
  • the current SL feedback mechanism may not be able to meet the needs of increasing reliability and communication efficiency.
  • the present application provides a communication method and device, which can improve communication reliability.
  • the present application provides a communication method.
  • the execution body of the method may be a terminal device, or a combined device or component with the function of a terminal device, or a chip or a circuit system (such as Processor, baseband chip, module, telematics BOX (TBOX), or chip system, etc.).
  • the method includes: receiving at least one transport block from the first device, and sending second-level sidelink control information (sidelink control information, SCI) to the first device in the sidelink data channel, the second-level SCI carrying A first HARQ codebook, wherein the first HARQ codebook includes at least one piece of HARQ feedback information corresponding to the at least one transport block.
  • second-level sidelink control information sidelink control information, SCI
  • sending the HARQ codebook in the second-level SCI can reduce the decoding complexity of the first-level SCI and ensure the transmission efficiency of the control channel.
  • carrying the HARQ codebook in the second-level SCI can improve decoding reliability.
  • the second-level SCI is modulated by quadrature phase-shift keying (quaternary PSK, QPSK), and the sidelink data is modulated by a higher-order modulation method, and the HARQ codebook carried in the second-level SCI can The sidelink data is modulated in a low-order manner, so that the reliability of decoding the HARQ codebook at the receiving end is higher.
  • quadrature phase-shift keying quadrature PSK, QPSK
  • the format of the second-level SCI includes at least a first format and a second format, wherein the first format includes a field for carrying a HARQ codebook, and the second field does not include a field for carrying a HARQ codebook. field.
  • the HARQ codebook can be sent in the second-level SCI.
  • the method further includes: receiving first indication information from the first device, where the first indication information is used to indicate to send the first HARQ codebook.
  • the receiving end that is, the device that executes the method
  • the sending end that is, the first device
  • the method further includes: receiving second indication information from the first device, where the second indication information is used to indicate identities of one or more SL HARQ processes corresponding to one or more transport blocks.
  • the method further includes: receiving third indication information from the first device, where the third indication information is used to indicate the number of one or more SL HARQ processes corresponding to one or more transport blocks.
  • the sending end i.e. the first device
  • the receiving end is beneficial to the receiving end to correctly generate the HARQ codebook by indicating the number of specific SL HARQ processes to the receiving end (i.e. the device performing the method), which is beneficial to the receiving end
  • the communication performance can be further improved by maintaining a consensus with the sending end on the multiple bits included in the HARQ codebook.
  • the method further includes: sending fourth indication information in a sidelink control channel, where the fourth indication information is used to indicate that the second-level SCI is in the first format, wherein the sidelink control channel In the same time slot as the sidelink data channel.
  • the number of coded modulation symbols Q SCI2 of the second-level SCI satisfies:
  • the L 1 is the index of the first orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbol occupied by the second-level SCI
  • the L 2 is the last symbol occupied by the second-level SCI.
  • An index of an OFDM symbol; M SCI2 (l) represents the number of coded modulation symbols of the second level SCI on the OFDM symbol with an index of 1.
  • the method further includes: sending a second HARQ codebook to the second device in the sidelink data channel, the second HARQ codebook includes the HARQ code for one or more transport blocks from the second device Feedback information; wherein, the first HARQ codebook and the second HARQ codebook are time-division multiplexed or frequency-division multiplexed in the sidelink data channel.
  • the device on the data receiving side that is, the device that executes the method
  • the transmitting side device further improves the efficiency of SL HARQ feedback.
  • the first HARQ codebook is carried on the first resource in the sidelink data channel
  • the second HARQ codebook is carried on the second resource in the sidelink data channel
  • the first resource includes at least A resource block group
  • the second resource includes at least one resource block group
  • the first resource and the second resource do not overlap
  • the resource block group is composed of multiple resource blocks at equal intervals.
  • the first HARQ codebook and the second HARQ codebook are carried by different second-level SCIs.
  • the second-level SCI occupies the first time-frequency resource in the sidelink data channel, and the first time-frequency resource is the remaining time-frequency resource in the sidelink data channel except the second time-frequency resource resource, the second time-frequency resource is used to send a reference signal.
  • the first HARQ codebook can still be sent to the transmitting end through the PSSCH with a reasonable frame structure.
  • the present application provides a communication method.
  • the execution body of the method may be a terminal device, or a combined device or component with the function of a terminal device, or a chip or a circuit system (such as processor, baseband chip, or chip system, etc.).
  • the method includes: sending at least one transport block to a communication device; and receiving a second level SCI from the communication device in a sidelink data channel, the second level SCI carrying a first HARQ codebook, wherein the first HARQ codebook It is used to determine at least one piece of HARQ feedback information corresponding to the at least one transmission block.
  • sending the HARQ codebook in the second-level SCI can reduce the decoding complexity of the first-level SCI and ensure the transmission efficiency of the control channel.
  • carrying the HARQ codebook in the second-level SCI can improve decoding reliability.
  • the second-level SCI is modulated by QPSK
  • the sidelink data is modulated by a higher-order modulation method
  • the HARQ codebook carried in the second-level SCI can be modulated by a lower-order method than the sidelink data , so that the reliability of decoding the HARQ codebook at the receiving end is higher.
  • the format of the second-level SCI includes at least a first format and a second format, wherein the first format includes a field for carrying a HARQ codebook, and the second field does not include a field for carrying a HARQ codebook. field.
  • the HARQ codebook can be sent in the second-level SCI.
  • the method further includes: sending first indication information to the communication device, where the first indication information is used to instruct sending the first HARQ codebook.
  • the receiving end that is, the communication device
  • the transmitting end that is, the device that executes the method
  • the method further includes: sending second indication information to the communication device, where the second indication information is used to indicate identities of one or more SL HARQ processes corresponding to one or more transport blocks.
  • the method further includes: sending third indication information to the communication device, where the third indication information is used to indicate the number of one or more SL HARQ processes corresponding to one or more transport blocks.
  • the sending end i.e. the device performing the method
  • the receiving end will help the receiving end to correctly generate the HARQ codebook by indicating the number of specific SL HARQ processes to the receiving end (i.e. the communication device), which will help the receiving end
  • the communication performance can be further improved by maintaining a consensus with the sending end on the multiple bits included in the HARQ codebook.
  • the method further includes: receiving fourth indication information in a sidelink control channel, and the fourth indication information is used to indicate that the second-level SCI is in the first format, where the sidelink control channel is located in the same time slot as the sidelink data channel.
  • the number of coded modulation symbols Q SCI2 of the second-level SCI satisfies:
  • L 1 is the index of the first OFDM symbol occupied by the second-level SCI
  • L 2 is the index of the last OFDM symbol occupied by the second-level SCI
  • M SCI2 (l) represents the second The number of coded modulation symbols for the class SCI.
  • the second-level SCI occupies the first time-frequency resource in the sidelink data channel, and the first time-frequency resource is the remaining time-frequency resource in the sidelink data channel except the second time-frequency resource resource, the second time-frequency resource is used to send a reference signal.
  • the first HARQ codebook can still be sent to the transmitting end through the PSSCH with a reasonable frame structure.
  • the present application provides a communication method.
  • the execution body of the method may be a terminal device, or a combined device or component with the function of a terminal device, or a chip or a circuit system (such as Processor, baseband chip, module, TBOX, or chip system, etc.).
  • the method includes: receiving at least one transport block from the first device; and sending a first HARQ codebook to the first device in a sidelink control channel, wherein the time slot in which the sidelink control channel is located does not include a sidelink control channel.
  • An uplink data channel, the first HARQ codebook includes at least one HARQ feedback information for the at least one transport block.
  • the embodiment of the present application it is possible to implement HARQ feedback through the HARQ codebook in the sidelink communication system, improve the efficiency of SL HARQ feedback, and further improve communication reliability.
  • an independent (standalone) physical sidelink control channel (physical sidelink control channel, PSCCH) not associated with the PSSCH to the first device that is, the time slot for sending the PSCCH may not include the PSSCH , the speed at which the first device receives the HARQ feedback information can be accelerated.
  • PSCCH physical sidelink control channel
  • the frequency domain bandwidth of the sidelink control channel is equal to the frequency domain bandwidth of the channel occupancy time (channel occupancy time, COT).
  • first indication information from the first device may be received, where the first indication information is used to instruct sending the first HARQ codebook.
  • the first device and the second device align their understanding of the first HARQ codebook, thereby further improving communication performance.
  • second indication information from the first device may be received, where the second indication information is used to indicate one or more SL HARQ processes corresponding to one or more transport blocks logo.
  • the first device can enable the second device to perform HARQ feedback in a targeted manner without continuously sending the HARQ feedback information of all SL HARQ processes to the first device, thereby reducing transmission resource overhead and improving resource utilization Rate.
  • third indication information from the first device may be received, where the third indication information is used to indicate one or more SL HARQ processes corresponding to one or more transport blocks quantity.
  • the first device will help the second device to correctly generate the HARQ codebook by indicating the number of specific SL HARQ processes to the second device, and it will be beneficial for the first device and the second device to include in the HARQ codebook. Consensus is maintained for multiple bits, which can further improve communication performance.
  • the present application provides a communication method.
  • the execution body of the method may be a terminal device, or a combined device or component with the function of a terminal device, or a chip or a circuit system (such as Processor, baseband chip, module, TBOX, or chip system, etc.).
  • the method includes: sending at least one transport block to a second device; and receiving a first HARQ codebook from the second device in a sidelink control channel, wherein the time slot in which the sidelink control channel is located does not include a sidelink control channel.
  • An uplink data channel, the first HARQ codebook includes at least one HARQ feedback information for the at least one transport block.
  • the embodiment of the present application it is possible to implement HARQ feedback through the HARQ codebook in the sidelink communication system, improve the efficiency of SL HARQ feedback, and further improve communication reliability. Moreover, in this embodiment of the present application, by sending an independent PSCCH not associated with the PSSCH to the first device, that is, the time slot for sending the PSCCH may not include the PSSCH, so that the speed at which the first device receives HARQ feedback information can be accelerated.
  • the frequency domain bandwidth of the sidelink control channel is equal to the frequency domain bandwidth of the COT.
  • first indication information may be sent to the second device, where the first indication information is used to instruct sending the first HARQ codebook.
  • the first device and the second device align their understanding of the first HARQ codebook, thereby further improving communication performance.
  • second indication information may be sent to the second device, where the second indication information is used to indicate the number of one or more SL HARQ processes corresponding to one or more transport blocks logo.
  • the second device can perform targeted HARQ feedback without continuously sending the HARQ feedback information of all SL HARQ processes to the first device, thereby reducing transmission resource overhead and improving resource utilization.
  • third indication information may be sent to the second device, where the third indication information is used to indicate the number of one or more SL HARQ processes corresponding to one or more transport blocks quantity.
  • the second device by indicating the number of specific SL HARQ processes to the second device, it is beneficial for the second device to correctly generate the HARQ codebook, and it is beneficial for the first device and the second device to compare the number of HARQ codebooks included in the HARQ codebook. Bits maintain consensus, which can further improve communication performance.
  • the present application provides a communication method.
  • the subject of execution of the method may be a terminal device, or a combined device or component with the function of a terminal device, or a chip or a circuit system (such as Processor, baseband chip, module, TBOX, or chip system, etc.).
  • the method includes: receiving at least one transport block from a first device; and sending a first HARQ codebook to the first device in a sidelink feedback channel, wherein the first HARQ codebook includes at least One piece of HARQ feedback information; sending the source identifier and destination identifier corresponding to the sidelink feedback channel in the sidelink control channel, wherein the sidelink feedback channel and the sidelink control channel are located in the same time slot.
  • the indication information related to the first HARQ codebook such as the source identifier and the destination identifier, can be indicated by the PSCCH, so that the transmitting end (that is, the first device) can According to the PSCCH, it is judged whether the HARQ codebook is from the receiving end (i.e., the device performing the method), and whether it is the HARQ codebook sent to itself, and if the HARQ codebook is sent to itself, then the PSFCH is obtained from the receiving end. The first HARQ codebook, and then determine whether the sent TB is correctly received by the receiving end based on the first HARQ codebook.
  • the time slot where the sidelink feedback channel is located does not include the sidelink data channel.
  • the sidelink feedback channel is time-multiplexed with the sidelink control channel.
  • the frequency domain bandwidth of the sidelink feedback channel is equal to the corresponding frequency domain bandwidth of the COT.
  • the sidelink feedback channel and the sidelink control channel are frequency division multiplexed.
  • the frequency domain resource corresponding to the sidelink feedback channel and the frequency domain resource corresponding to the sidelink control channel do not overlap and are adjacent to each other.
  • the frequency domain resource corresponding to the sidelink feedback channel includes at least one resource block group
  • the frequency domain resource corresponding to the sidelink control channel includes at least one resource block group
  • the sidelink feedback channel The corresponding frequency domain resource does not overlap with the frequency domain resource corresponding to the sidelink control channel, wherein a resource block group includes multiple resource blocks at equal intervals, or a resource block group consists of multiple equally spaced resource blocks .
  • first indication information from the first device may be received, where the first indication information is used to instruct sending the first HARQ codebook.
  • the sending end and the receiving end align their understanding of the first HARQ codebook, so that the communication can be further improved performance.
  • second indication information from the first device may be received, where the second indication information is used to indicate one or more SL HARQ processes corresponding to one or more transport blocks logo.
  • the transmitting end i.e. the first device
  • the receiving end i.e. the device executing the method
  • perform HARQ feedback in a targeted manner without continuously sending the HARQ feedback information of all SL HARQ processes to the transmitting end end, which can reduce transmission resource overhead and improve resource utilization.
  • third indication information from the first device may be received, where the third indication information is used to indicate one or more SL HARQ processes corresponding to one or more transport blocks quantity.
  • the sending end i.e. the first device
  • the receiving end i.e. the device performing the method
  • the terminal and the receiving terminal maintain a consensus on the multiple bits included in the HARQ codebook, so that the communication performance can be further improved.
  • the method further includes: sending a second HARQ codebook in the sidelink feedback channel, where the second HARQ codebook includes HARQ feedback information for one or more transport blocks from the second device; wherein , the first HARQ codebook and the second HARQ codebook are time-division multiplexed or frequency-division multiplexed in the sidelink feedback channel.
  • the receiving end that is, the device performing the method
  • the first HARQ codebook is carried on the first resource of the sidelink feedback channel
  • the second HARQ codebook is carried on the second resource of the sidelink feedback channel
  • the first resource includes at least one resource Block group
  • the second resource includes at least one resource block group
  • the first resource and the second resource do not overlap, wherein the resource block group includes multiple resource blocks at equal intervals, or consists of multiple resource blocks at equal intervals.
  • the present application provides a communication method.
  • the execution body of the method may be a terminal device, or a combined device or component with the function of a terminal device, or a chip or a circuit system (such as processor, baseband chip, or chip system, etc.).
  • the method includes: sending at least one transport block to the communication device; and receiving a first HARQ codebook in a sidelink feedback channel, wherein the first HARQ codebook includes at least one HARQ feedback information for the at least one transport block;
  • the source identifier and the destination identifier corresponding to the sidelink feedback channel are received in the sidelink control channel, wherein the sidelink feedback channel and the sidelink control channel are located in the same time slot.
  • the indication information related to the first HARQ codebook such as the source identifier and the destination identifier, can be indicated by the PSCCH, so that the sending end (that is, the device that executes the method) ) can judge whether the HARQ codebook is from the receiving end (that is, the communication device) according to the PSCCH, and whether it is a HARQ codebook sent to itself, and if the HARQ codebook is sent to itself, obtain the first codebook from the receiving end from the PSFCH A HARQ codebook, and then determine whether the sent TB is correctly received by the receiving end based on the first HARQ codebook.
  • the time slot where the sidelink feedback channel is located does not include the sidelink data channel.
  • the sidelink feedback channel is time-multiplexed with the sidelink control channel.
  • the frequency domain bandwidth of the sidelink feedback channel is equal to the corresponding frequency domain bandwidth of the COT.
  • the sidelink feedback channel and the sidelink control channel are frequency division multiplexed.
  • the frequency domain resource corresponding to the sidelink feedback channel and the frequency domain resource corresponding to the sidelink control channel do not overlap and are adjacent to each other.
  • the frequency domain resource corresponding to the sidelink feedback channel includes at least one resource block group
  • the frequency domain resource corresponding to the sidelink control channel includes at least one resource block group
  • the sidelink feedback channel The corresponding frequency domain resource does not overlap with the frequency domain resource corresponding to the sidelink control channel, wherein the resource block group includes multiple resource blocks at equal intervals, or consists of multiple resource blocks at equal intervals.
  • first indication information may be sent to the communication device, where the first indication information is used to instruct sending the first HARQ codebook.
  • the sending end ie, the device executing the method
  • the receiving end align their understanding of the first HARQ codebook, thereby further improving communication performance.
  • second indication information may be sent to the communication device, where the second indication information is used to indicate the identity of one or more SL HARQ processes corresponding to one or more transport blocks .
  • third indication information may be sent to the communication device, where the third indication information is used to indicate the number of one or more SL HARQ processes corresponding to one or more transport blocks .
  • the receiving end i.e., the communication device
  • the terminal maintains a consensus on the multiple bits included in the HARQ codebook, so that the communication performance can be further improved.
  • the embodiment of the present application provides a communications device that can implement the method described in any one of the first to sixth aspects or any possible design thereof.
  • the apparatus comprises corresponding units or components for performing the method described above.
  • the units included in the device may be implemented by software and/or hardware.
  • the apparatus may be, for example, a terminal device, or a component or a baseband chip, a chip system, or a processor that can support the terminal device to implement the foregoing method.
  • the communication device may include a processing unit (or called a processing module), and may also include modular components such as a transceiver unit (or called a communication module, a transceiver module), etc., and these modules may implement the first aspect to the sixth aspect above.
  • a processing unit or called a processing module
  • the transceiver unit may be a transmitter and a receiver, or a transceiver obtained by integrating a transmitter and a receiver.
  • the transceiver unit may include an antenna and a radio frequency circuit, etc.
  • the processing unit may be a processor, such as a baseband chip.
  • the transceiver unit may be a radio frequency unit, and the processing unit may be a processor.
  • the transceiver unit may be an input-output interface of the system-on-a-chip, and the processing unit may be a processor of the system-on-a-chip, such as a central processing unit (CPU).
  • CPU central processing unit
  • the transceiver unit may be used to perform receiving and/or sending actions in any one of the first aspect to the sixth aspect or any possible design thereof.
  • the processing unit may be used to perform actions other than receiving and sending in any one of the first aspect to the sixth aspect or any possible design thereof, such as determining a HARQ codebook.
  • a communication device including one or more processors, the one or more processors are coupled with a memory, and can be used to execute programs or instructions in the memory, so that the device performs the above-mentioned first aspect to Any aspect of the sixth aspect or a method in any possible design of this aspect.
  • the device further includes one or more memories.
  • the device further includes a communication interface, and the processor is coupled to the communication interface.
  • a computer-readable storage medium is provided, the computer-readable storage medium is used to store computer instructions, and when the computer instructions are run on a computer, the computer executes any one of the above-mentioned first to sixth aspects. Aspect or a method in any of its possible designs.
  • a computer program product containing instructions, the computer program product is used to store computer instructions, and when the computer instructions are run on a computer, the computer is made to execute any one of the above first to sixth aspects or a method in any of its possible designs.
  • a processing device is provided, the processing device is coupled with a memory, and the processing device invokes a program in the memory to execute any one of the above-mentioned first to sixth aspects or any possible design thereof method in .
  • the processing means may comprise, for example, a system-on-a-chip.
  • the chip system in the above aspect can be a system on chip (system on chip, SOC), and can also be a baseband chip, etc., wherein the baseband chip can include a processor, a channel encoder, a digital signal processor, a modem, and an interface module.
  • SOC system on chip
  • baseband chip can include a processor, a channel encoder, a digital signal processor, a modem, and an interface module.
  • FIG. 1 is a schematic diagram of V2X communication according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a mapping relationship between a PSSCH and a PSFCH according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a network system architecture according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another network system according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another network system according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another communication device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication method according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a PSCCH and PSSCH according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of resource mapping of PSCCH and PSSCH in the frequency domain according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of time division multiplexing of K HARQ codebooks according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of frequency division multiplexing of K HARQ codebooks according to an embodiment of the present application.
  • FIG. 13 is another schematic diagram of frequency division multiplexing of K HARQ codebooks according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a PSCCH according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of resource mapping of a PSCCH in the frequency domain according to an embodiment of the present application.
  • FIG. 16 is a schematic diagram of time division multiplexing of PSFCH and PSCCH according to an embodiment of the present application.
  • FIG. 17 is a schematic diagram of resource mapping of a PSFCH in the frequency domain according to an embodiment of the present application.
  • FIG. 18 is a schematic diagram of frequency division multiplexing between PSFCH and PSCCH according to an embodiment of the present application.
  • FIG. 19 is a schematic diagram of frequency division multiplexing of another PSFCH and PSCCH according to an embodiment of the present application.
  • FIG. 20 is a schematic diagram of resource mapping of a PSFCH in the frequency domain according to an embodiment of the present application.
  • FIG. 21 is a schematic diagram of time division multiplexing of K HARQ codebooks according to an embodiment of the present application.
  • FIG. 22 is another schematic diagram of frequency division multiplexing of K HARQ codebooks according to an embodiment of the present application.
  • FIG. 23 is another schematic diagram of frequency division multiplexing of K HARQ codebooks according to an embodiment of the present application.
  • FIG. 24 is a schematic diagram of frequency division multiplexing of another K HARQ codebook according to an embodiment of the present application.
  • FIG. 25 is a schematic diagram of frequency division multiplexing of another K HARQ codebook according to an embodiment of the present application.
  • FIG. 26 is a schematic diagram of another frequency division multiplexing of K HARQ codebooks according to an embodiment of the present application.
  • Terminal equipment including equipment that provides voice and/or data connectivity to users, specifically, equipment that provides voice to users, or equipment that provides data connectivity to users, or equipment that provides voice and data connectivity to users sexual equipment. Examples may include a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (radio access network, RAN), exchange voice or data with the RAN, or exchange voice and data with the RAN.
  • radio access network radio access network
  • the terminal equipment may include user equipment, wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, vehicle-to-everything (V2X) terminal equipment, machine-to-machine/machine Class communication (machine-to-machine/machine-type communications, M2M/MTC) terminal equipment, Internet of things (internet of things, IoT) terminal equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station ( mobile station), remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), Or user equipment (user device), etc.
  • IoT Internet of things
  • IoT Internet of things
  • IoT Internet of things
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • remote station remote station
  • access point access point
  • AP remote terminal
  • remote terminal remote terminal
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket, hand-held, computer built-in mobile devices, and the like.
  • personal communication service personal communication service, PCS
  • PCS personal communication service
  • cordless telephone session initiation protocol (session initiation protocol, SIP) telephone
  • wireless local loop wireless local loop
  • WLL wireless local loop
  • PDA personal digital assistant
  • constrained devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities, etc.
  • it includes barcodes, radio frequency identification (radio frequency identification, RFID), sensors, global positioning system (global positioning system, GPS), laser scanners and other information sensing devices.
  • the terminal equipment in the V2X technology can be a roadside unit (roadside unit, RSU), and the RSU can be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • RSU roadside unit
  • the roadside unit can pass PC5
  • the interface exchanges messages with other entities supporting V2X applications.
  • the terminal device in the V2X technology can also be a complete vehicle, a communication module (such as a communication chip, a chip system, etc.), a TBOX, etc. in the complete vehicle.
  • a communication module such as a communication chip, a chip system, etc.
  • TBOX etc. in the complete vehicle.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc., which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes wait.
  • the wearable device may be a virtual reality (virtual reality, VR) device or an augmented reality (augmented reality, AR) device.
  • VR virtual reality
  • AR augmented reality
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminal devices described above if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be considered as vehicle-mounted terminal devices. ).
  • the terminal device may further include a relay (relay).
  • a relay relay
  • all devices capable of performing data communication with the base station can be regarded as terminal devices.
  • the device used to realize the function of the terminal device may be a terminal device, or a device applied to the terminal device that can support the terminal device to realize the function, such as a component or component with a communication function, or a chip system , the device can be installed in the terminal equipment.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • Network equipment for example including access network (access network, AN) equipment, such as base stations (for example, access points), can refer to equipment in the access network that communicates with wireless terminal equipment through one or more cells through the air interface , or for example, a network device in a V2X technology is a base station type RSU.
  • the base station is operable to convert received over-the-air frames to and from Internet Protocol (IP) packets, acting as a router between the terminal device and the rest of the access network, which may include an IP network.
  • IP Internet Protocol
  • the base station type RSU can be a fixed infrastructure entity supporting V2X applications, and can exchange messages with other entities supporting V2X applications.
  • the base station type RSU can exchange messages with other entities supporting V2X applications through the Uu interface.
  • the network device can also coordinate the attribute management of the air interface.
  • the network equipment may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in the LTE system or long term evolution-advanced (LTE-A), or may also include the fifth generation mobile
  • the next generation node B (next generation node B, gNB) in the communication technology (the 5th generation, 5G) NR system (also referred to as NR system) may also include the cloud access network (cloud radio access network, Cloud RAN) system
  • the centralized unit (centralized unit, CU) and distributed unit (distributed unit, DU) in the present application are not limited.
  • the network device can be a CU in the Cloud RAN system, or a DU, or a whole of CU and DU.
  • the network device may also include a core network device, and the core network device includes, for example, an access and mobility management function (access and mobility management function, AMF) and the like. Since the embodiment of the present application mainly relates to the access network, unless otherwise specified in the following text, the network equipment mentioned refers to the access network equipment.
  • AMF access and mobility management function
  • the device for realizing the function of the network device may be a network device, or a device capable of supporting the network device to realize the function, such as a chip system, and the device may be installed in the network device.
  • the technical solution provided by the embodiment of the present application the technical solution provided by the embodiment of the present application is described by taking the network device as an example for realizing the function of the network device.
  • V2X is the interconnection between the car and the outside world, which is the foundation and key technology of future smart cars, autonomous driving, and intelligent transportation systems. V2X will optimize the specific application requirements of V2X on the basis of the existing D2D technology. It is necessary to further reduce the access delay of V2X devices and solve the problem of resource conflicts.
  • V2X specifically includes direct communication between vehicles (vehicle-to-vehicle, V2V), vehicles and roadside infrastructure (vehicle-to-infrastructure, V2I), vehicles and pedestrians (vehicle-to-pedestrian, V2P), and Several application requirements such as vehicle-to-network (V2N) communication interaction.
  • V2V refers to the communication between vehicles
  • V2P refers to the communication between vehicles and people (including pedestrians, cyclists, drivers, or passengers)
  • V2I refers to the communication between vehicles and network equipment, such as RSU, in addition
  • V2N refers to the communication between the vehicle and the base station/network.
  • the resource block group involved in the embodiment of the present application may include a plurality of equally spaced resource blocks (resource block, RB), or in other words, consist of a plurality of equally spaced resource blocks.
  • the resource block group may be interlaced resource blocks (interlaced resource blocks) defined in NR. Interleaving of multiple resource blocks is defined in NR. Taking the interleaving value of m as an example, a resource block group (or a group of interleaved resource blocks) can include indexes ⁇ m, M+m, 2M+m, 3M+ m,... ⁇ resource blocks, where m ⁇ 0,1,...,M-1 ⁇ . M is an integer greater than 0. For example, M can be the value given in Table 1.
  • can be configured by the sub-carrier spacing (sub-carrier spacing, SCS) corresponding to the SL part bandwidth (bandwidth part, BWP), for example, ⁇ can be defined by Table 2.
  • SCS sub-carrier spacing
  • BWP bandwidth part
  • the existing protocol defines two kinds of staggered resource blocks: 1For a subcarrier spacing of 15kHz, a resource block group includes RBs whose indices are ⁇ m,m+10,m+20,... ⁇ , where the value range of m is ⁇ 0,1,...,9 ⁇ . Therefore, there are 10 resource block groups in the frequency domain bandwidth of N ⁇ 20MHz; 2For a subcarrier spacing of 30kHz, a resource block group includes RBs whose indices are ⁇ m,m+5,m+10,... ⁇ , where m The value range of is ⁇ 0,1,...,4 ⁇ . Therefore, there are 5 resource block groups in the frequency domain bandwidth of N ⁇ 20 MHz. It should be understood that M and m corresponding to resource block groups described in this application may have different values, and are not limited to the above examples.
  • LBT Listen before talk
  • G is an integer ranging from 1 to q, where q is the contention window length of the extended CCA time, which is greater than or equal to 4 and less than or equal to 32.
  • LBT is also divided into many types, including: one type of LBT (Category 1 LBT), which is sent immediately after a short switching gap; two types of LBT (Category 2 LBT), without random back-off (random back-off) ) LBT; three types of LBT (Category 3 LBT), which are random backoff LBTs with fixed contention windows; four types of LBTs (Category 4 LBT), which are random backoff LBTs with variable size contention windows .
  • LBT when a network device or terminal device needs to send data, four types of LBT are used; when a network device or terminal device needs to send important control information or synchronization information, a second type of LBT is used, so that the aforementioned control information or synchronization information Send it out quickly.
  • Second-level SCI The SCI in the sidelink communication is divided into two levels for transmission, the first-level SCI is carried in the PSCCH, and the second-level SCI is carried in the PSSCH.
  • the first-level SCI may include one or more of the following control information: priority (priority) information, resource allocation (resource assignment) information, resource reservation period (resource reservation period) information, second-level SCI format information, Modulation and coding scheme information, etc.
  • the first level SCI can be decoded using a demodulation reference signal (demodulation reference signal, DMRS) in the PSCCH.
  • demodulation reference signal demodulation reference signal
  • the second-level SCI may include one or more of the following control information HARQ process number (HARQ process number) information, new data indicator (new data indicator, NDI) information, redundancy version (redundancy version) information, source identification information, Target identification information, etc.
  • HARQ process number new data indicator
  • NDI new data indicator
  • redundancy version redundancy version
  • “at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b, or c can represent: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.
  • first and second mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the size, content, order, and timing of multiple objects , priority or importance, etc.
  • first HARQ codebook and the second HARQ codebook are only used to distinguish different sets, and do not indicate the difference in priority or importance of the two HARQ codebooks.
  • the sender will transmit 1 TB through the PSSCH on 1 time-frequency resource, and this TB corresponds to a HARQ process of 1 sidelink communication.
  • the sending end indicates information such as the HARQ process number and NDI corresponding to the HARQ process at the receiving end through the SCI.
  • the receiving end After receiving the SCI and the associated TB, the receiving end feeds back ACK or NACK through PSFCH, or only feeds back NACK when receiving an error, and informs the sending end whether the TB corresponding to the HARQ process is received correctly.
  • a single PSFCH occupies 1 OFDM symbol in the time domain and 1 RB in the frequency domain, and only carries 1 bit of HARQ feedback information.
  • a terminal device needs to feed back HARQ feedback information of multiple HARQ processes, it needs to send multiple PSFCHs, thus occupying more communication resources, which will reduce PSSCH resources and reduce transmission efficiency.
  • the time slots containing PSFCH resources may be periodic in the time domain, for example, there may be one time slot containing PSFCH resources in every L time slots (slots), where the value range of L may be ⁇ 0 , 1, 2, 4 ⁇ .
  • the value of L is 0, it may indicate that there is no PSFCH in the current SL communication, that is, the receiving end does not need to send HARQ feedback information to the sending end.
  • the value of L is 4, and the figure shows a total of 12 time slots, wherein the PSFCH may exist in the 4th, 8th, and 12th time slots.
  • the receiver can send the PSFCH corresponding to the PSSCH on the 1st and 2nd time slots on the 4th time slot, and can send the 3rd, 4th, 5th, and 6th time slots on the 8th time slot.
  • the PSFCHs corresponding to the PSSCHs on the 12th time slot can be sent on the 12th time slot and the PSFCHs corresponding to the PSSCHs on the 7th, 8th, 9th, and 10th time slots.
  • the transmitting end sends PSSCHs corresponding to different HARQ process numbers to the receiving end on the 2nd, 4th, 6th, 7th, and 8th time slots respectively.
  • the receiving end will feed back the PSFCH corresponding to the PSSCH corresponding to HARQ process number 0 in the second time slot to the sending end in the fourth time slot; the receiving end will feed back to the sending end in the eighth time slot
  • the receiving end will feed back the 12th time slot to the sending end
  • sidelink communication can be applied to unlicensed spectrum, but the above HARQ feedback method cannot be directly applied to unlicensed spectrum.
  • the communication resources in the unlicensed spectrum are limited by the COT in the time domain, and after the sending end initiates the COT, the sending end and the receiving end can only communicate using the communication resources within the COT. This may result in that the PSSCHs transmitted in several time slots at the end of the COT do not have corresponding PSFCHs in the COT, so that the sending end cannot obtain the HARQ feedback information corresponding to these PSSCHs.
  • a possible solution is that the receiving end actively initiates a COT to transmit PSFCH, then due to the time randomness generated by the random back-off mechanism in LBT, the mapping relationship between PSSCH and PSFCH in the time domain in sidelink communication (or the periodicity of PSFCH) will be broken. As a result, the sending end cannot know whether the PSFCH is transmitted to itself, and therefore cannot know whether the receiving end has successfully received the TB in the corresponding PSSCH.
  • the current PSFCH only provides TB-level feedback. If the terminal equipment feeds back finer-grained HARQ feedback information for a TB, since the current PSFCH can only carry 1-bit HARQ feedback information, the current HARQ feedback method cannot support the terminal equipment. Feedback finer-grained HARQ feedback information for one TB.
  • embodiments of the present application provide a communication method and device, which can improve communication reliability.
  • the method and the device are based on the same inventive concept, and since the principles of the method and the device to solve problems are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the technical solution provided by the embodiment of this application can be applied to the scene of D2D communication in the unlicensed spectrum, for example, it can be applied to the communication between mobile phones and wearable devices such as AR devices, XR devices, and watches, and can also be applied to vehicles and RSUs. , other vehicles, handheld devices carried by people and other terminal devices, such as LTE-V, NR V2X, intelligent driving, intelligent networked vehicles and other fields.
  • D2D communication can be NR D2D communication or LTE D2D communication.
  • the embodiment of this application can also be applied to the licensed spectrum, which is not specifically limited here.
  • the technical solutions provided by the embodiments of the present application may be applicable to a mode in which users independently select resources in communication scenarios with or without network coverage.
  • the network architecture applied in the embodiment of the present application is introduced below. Please refer to FIG. 3-FIG. 5, which are a network architecture applied in the embodiment of the present application.
  • 3-5 include a network device and two terminal devices, which are terminal device 1 and terminal device 2 respectively. Both of the two terminal devices can be within the coverage of the network device, as shown in Figure 3; or among the two terminal devices, only terminal device 1 is within the coverage of the network device, and terminal device 2 is not in the network within the coverage of the network device, as shown in FIG. 4 ; or neither of the two terminal devices is within the coverage of the network device, as shown in FIG. 5 . Communication between the two end devices is possible via a sidelink.
  • the numbers of terminal devices in FIGS. 3-5 are just examples. In practical applications, a network device may provide services for multiple terminal devices.
  • the network devices in FIGS. 3-5 are, for example, access network devices, such as base stations.
  • the access network equipment corresponds to different equipment in different systems, for example, in the fourth generation mobile communication technology (the 4th generation, 4G) system, it can correspond to eNB, and in the 5G system, it can correspond to the access network equipment in 5G, for example gNB, or an access network device in a subsequent evolved communication system.
  • the network devices in FIGS. 3-5 may be optional network elements.
  • the terminal device among the network devices in FIGS. 3-5 is a mobile phone as an example, but the terminal device in the embodiment of the present application is not limited thereto.
  • Fig. 6 shows a possible structural schematic diagram of the device.
  • the device shown in FIG. 6 may be a terminal device, or a chip, a communication module, a TBOX, or other combined devices, components (or components) that have the functions of the terminal device shown in this application, etc. applied in the terminal device.
  • the device may include a processing module 610 and may further include a transceiver module 620 .
  • the transceiver module 620 can be a functional module, which can complete both the sending operation and the receiving operation.
  • the transceiver module 620 is a sending module, and when performing a receiving operation, it can be considered that the transceiver module 620 is a receiving module; perhaps, the transceiver module 620 can also be two functional modules, and the transceiver module 620 can be regarded as the two functional modules.
  • the general term for functional modules, these two functional modules are the sending module and the receiving module, the sending module is used to complete the sending operation, for example, the sending module can be used to perform the sending operation performed by the terminal device, and the receiving module is used to complete the receiving operation,
  • the receiving module can be used to perform the receiving operation performed by the terminal device.
  • the transceiver module 620 may include a transceiver and/or a communication interface.
  • Transceivers may include antennas and radio frequency circuits, among others.
  • the communication interface is such as an optical fiber interface.
  • the processing module 610 may be a processor, such as a baseband processor, and the baseband processor may include one or more central processing units CPU.
  • the transceiver module 620 may be a radio frequency unit, and the processing module 610 may be a processor, such as a baseband processor.
  • the transceiver module 620 may be an input-output interface of a chip (such as a baseband chip), and the processing module 610 may be a processor of the system-on-a-chip, and may include one or more central processing units.
  • processing module 610 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component
  • transceiver module 620 may be implemented by a transceiver or a transceiver-related circuit component.
  • the processing module 610 may be used to perform operations performed by the terminal device in the embodiment of the present application other than the transceiving operation, such as processing operations, and/or other processes for supporting the technologies described herein , to process the message, information and/or signaling received by the transceiver module 620 .
  • the transceiver module 620 may be used to perform receiving and/or sending operations performed by the terminal device in the embodiment of the present application, and/or to support other processes of the technologies described herein.
  • the processing module 610 may control the transceiving module 620 to perform receiving and/or sending operations.
  • Fig. 7 shows another possible structural diagram of a terminal device.
  • the terminal device includes a processor, and may also include structures such as a memory, a radio frequency unit (or radio frequency circuit), an antenna, or an input and output device.
  • the processor is mainly used to process communication protocols and communication data, control devices, execute software programs, process data of software programs, and the like.
  • Memory is primarily used to store software programs and data.
  • the radio frequency unit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 7 only one memory and processor are shown in FIG. 7 . In an actual terminal device product, there may be one or more processors and one or more memories.
  • a memory may also be called a storage medium or a storage device. The memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit with the transceiver function can be regarded as the transceiver unit of the terminal equipment (the transceiver unit can be a functional unit, and the functional unit can realize the sending function and the receiving function; or, the transceiver unit can also be It includes two functional units, namely a receiving unit capable of receiving functions and a sending unit capable of transmitting functions), and the processor with processing functions is regarded as the processing unit of the terminal device.
  • the terminal device includes a processing unit 720 and may further include a transceiver unit 710 .
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • a processing unit may also be called a processor, a processing board, a processing module, a processing device, and the like.
  • the device in the transceiver unit 710 for realizing the receiving function can be regarded as a receiving unit
  • the device in the transceiver unit 710 for realizing the sending function can be regarded as a sending unit, that is, the transceiver unit 710 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes also be referred to as a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit, etc.
  • the sending unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the transceiver unit 710 may correspond to the transceiver module 620 , or in other words, the transceiver module 620 may be implemented by the transceiver unit 710 .
  • the transceiver unit 710 is configured to perform the sending operation and the receiving operation of the terminal device in the embodiments shown in this application, and/or other processes for supporting the technology described herein.
  • the processing unit 720 may correspond to the processing module 610 , or in other words, the processing module 610 may be realized by the processing unit 720 .
  • the processing unit 720 is configured to perform other operations on the terminal device in the embodiment shown in the present application except the transceiving operation, for example, to perform receiving and/or sending operations performed by the terminal device in the embodiment shown in the present application, and and/or other processes used to support the techniques described herein.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application. With the evolution of architecture and the emergence of new business scenarios, the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • time units are used as time units for illustration, and in specific embodiments, time units can also be replaced by other time units such as frame, subframe, half frame, mini-slot or symbol, etc. , the time unit is not limited here.
  • the terminal device For a terminal device, it is possible to receive data sent by other terminal devices (such as TB, PSSCH).
  • the terminal device sending data is called the sending side terminal device
  • the terminal device receiving data is called the receiving side terminal device.
  • the sending-side terminal device and the receiving-side terminal device are relative terms, the sending-side terminal device may also have a receiving function, and the receiving-side terminal device may also have a sending function.
  • FIG. 8 it is a schematic flowchart of a communication method provided by the present application. The method includes:
  • the first device sends at least one TB to the second device.
  • the second device receives at least one TB from the first device.
  • the first device may be a sending-side terminal device, or a chip or a circuit system (such as a processor, a baseband chip, a module, a TBOX, or a chip system, etc.) applied to a sending-side terminal device.
  • the second apparatus may be a terminal device at the receiving side, or a chip or a circuit system (such as a processor, a baseband chip, a module, a TBOX, or a chip system, etc.) applied to the terminal device at the receiving side.
  • TB can be transmitted through PSSCH.
  • 1 TB can correspond to one or more code block groups (CBG).
  • CBG code block groups
  • the second device can perform HARQ feedback in units of code block groups. For example, the first device sends a TB containing 4 code block groups to the second device, and the second device successfully receives the first, second, and fourth code block groups, but fails to receive the third code block group. group of code blocks.
  • the second device may send ACK, ACK, NACK, and ACK in sequence, so as to notify the first device that the third code block group needs to be retransmitted.
  • step S801 "sending at least one TB to the second device” may be performed by the transceiver module 620 of the first device, or may also be performed by the processing module 610 of the first device by controlling the transceiver module 620 .
  • "Receiving at least one TB from the first device” may be performed by the transceiver module 620 of the second device, or may also be performed by the processing module 610 of the second device by controlling the transceiver module 620 .
  • the second device sends the first HARQ codebook in the first sidelink channel.
  • the first device receives the first HARQ codebook.
  • step S802 "receiving the first HARQ codebook” may be performed by the transceiver module 620 of the first device, or may also be performed by the processing module 610 of the first device by controlling the transceiver module 620 .
  • “Sending the first HARQ codebook” may be performed by the transceiver module 620 of the second device, or may also be performed by the processing module 610 of the second device by controlling the transceiver module 620 .
  • the sending manner of the first HARQ codebook may be determined by the processing module 610 of the second device.
  • the receiving mode of the first HARQ codebook may be determined by the processing module 610 of the first device.
  • the first HARQ codebook is used to determine at least one HARQ feedback information for the at least one transport block, where one transport block corresponds to at least one HARQ feedback information.
  • the first HARQ codebook may include at least one HARQ feedback information for the at least one transport block, or may also include indication information for indicating the at least one HARQ feedback information for the at least one transport block.
  • At least one HARQ feedback information for the at least one transport block may also be described as at least one HARQ feedback information corresponding to the at least one transport block, or associated with the at least one HARQ feedback information for the at least one transport block.
  • the first sidelink channel is at least one of the following: a sidelink data channel, a sidelink control channel, and a sidelink feedback channel.
  • the sidelink data channel may be PSSCH.
  • the sidelink control channel may be PSCCH.
  • the sidelink feedback channel may be PSFCH.
  • step S802 will be described in detail below with reference to a specific example of the first sidelink channel.
  • the second device when the second device sends the first HARQ codebook to the first device through the first sidelink channel, the second device may preempt the COT through the second type of LBT, and the first sidelink channel is in within the COT.
  • the second device when the second device does not need to send sidelink data but only needs to send HARQ feedback information to the first device, the second device can access the channel faster through the second type of LBT without random backoff, so that the second device A device acquires HARQ feedback information as early as possible, thereby reducing communication delay and improving communication performance.
  • a method for generating a HARQ codebook and performing HARQ feedback to the transmitting side device through the sidelink channel is provided, which can perform HARQ feedback for multiple SL HARQ processes at one time in the sidelink communication system, Thereby, the efficiency of SL HARQ feedback can be improved.
  • the second device may send the first HARQ codebook under the trigger of the first indication information of the first device, and the first indication information is used to instruct the second device to feed back HARQ information, that is, instruct the second device to send The first HARQ codebook.
  • the second device may receive the first indication information from the first device before sending the first HARQ codebook.
  • the first indication information may be carried by 1 bit in the SCI, and the SCI is sent by the first device to the second device, wherein the SCI may be a first-level SCI (1st stage SCI), or the first stage SCI. Secondary SCI (2nd stage SCI).
  • the first device and the second device align their understanding of the first HARQ codebook, thereby further improving communication performance.
  • the second device may send the first HARQ codebook under the trigger of the second indication information of the first device, and the second indication information is used to indicate the one or more SLs corresponding to the above one or more TBs The identifier of the HARQ process.
  • the second device may receive the second indication information from the first device before sending the first HARQ codebook.
  • the second indication information is a media access control (media access control, MAC) control element (control element, CE), or a radio resource control (radio resource control, RRC) signaling parameter.
  • the second indication information may be implemented in the form of a bitmap, and the i-th bit of the bitmap is used to indicate whether the first device needs the HARQ feedback of the SL HARQ process whose SL HARQ process number is i information.
  • the first device sends SL data to the second device through a total of 8 SL HARQ processes whose SL HARQ process numbers are ⁇ 0,1,2,3,...,7 ⁇ , when the first device only needs the feedback from the second device
  • the first device may send a bitmap of 11000111 to the second device through the MAC CE, that is, the second indication information.
  • the second device will only generate a HARQ codebook according to five SL HARQ processes whose SL HARQ process numbers are 0, 1, 5, 6, and 7 and feed it back to the first device.
  • the first device can enable the second device to perform HARQ feedback in a targeted manner without continuously sending the HARQ feedback information of all SL HARQ processes to the first device, thereby reducing transmission resource overhead and improving resource utilization Rate.
  • the second indication information may also implicitly indicate the first indication information. For example, if the second device receives the second indication information, it may be considered that the first device instructs it to feed back HARQ information, that is, it may be considered that the first device sends The second device sends the first indication information. If the second device does not receive the second indication information, it may be considered that the first device has not instructed it to feed back HARQ information, that is, it may be considered that the first device has not sent the first indication information to the second terminal.
  • the second device may send the first HARQ codebook under the trigger of the third indication information of the first device, and the third indication information is used to indicate one or more SLs corresponding to one or more transport blocks The number of HARQ processes.
  • the second device may receive third indication information from the first device before sending the first HARQ codebook.
  • the third indication information is MAC CE, or an RRC signaling parameter.
  • the maximum value may be 8 or 16.
  • the second device When the second device generates the HARQ codebook, it can determine the size of the HARQ codebook according to the number of SL HARQ processes.
  • the first device will help the second device to correctly generate the HARQ codebook by indicating the number of specific SL HARQ processes to the second device, and it will be beneficial for the first device and the second device to include in the HARQ codebook. Consensus is maintained for multiple bits, which can further improve communication performance.
  • the third indication information may also implicitly indicate the first indication information. For example, if the second device receives the third indication information, it may be considered that the first device instructs it to feed back HARQ information, that is, it may be considered that the first device sends The second device sends the first indication information. If the second device does not receive the third indication information, it may be considered that the first device has not instructed it to feed back HARQ information, that is, it may be considered that the first device has not sent the first indication information to the second terminal.
  • the first device and the second device may maintain consensus on the multiple bits included in the HARQ codebook.
  • FIG. 8 introduces the method for the scenario where the second device feeds back the HARQ codebook to a single transmitting device (ie, the first device).
  • the second apparatus may actually need to feed back the HARQ codebook to multiple sending-side terminal devices.
  • the second apparatus may send the HARQ codebook to multiple sending-side terminal devices through the first side link channel.
  • the manner in which the second apparatus feeds back the HARQ codebook to multiple terminal devices will be introduced together when the implementation of step S802 is described below in conjunction with a specific example of the first sidelink channel.
  • the process of sending the first indication information, the second indication information, and the third indication information by multiple sending-side terminal devices can refer to the first device sending the first indication information, the second indication information, and the third indication information, the overlapping process will not be repeated.
  • the following three examples of the first sidelink channel are combined, namely, that the first sidelink channel is PSSCH (i.e. example 1), the first sidelink channel is PSCCH (i.e. example 2), and the first sidelink channel is PSSCH (i.e. example 2).
  • the link channel is PSFCH (i.e. Example 3), and the solution provided by the embodiment of this application is aimed at the scenario where the second device feeds back the HARQ codebook to a single transmitting terminal device and the scenario where the second device feeds back the HARQ codebook to multiple terminal devices Make an introduction.
  • Example 1 the second device sends the first HARQ codebook to the first device in the PSSCH.
  • the following describes a scenario where the second apparatus feeds back the HARQ codebook to a single transmitting-side terminal device.
  • the second device may send the first HARQ codebook in the second-level SCI of the PSSCH.
  • the first, the second The device sends the first HARQ codebook in the first-level SCI of the PSCCH; the second type, the second device sends the first HARQ codebook in the second-level SCI of the PSSCH; the third type, the second device transmits the first HARQ codebook in the side row of the PSSCH
  • the first HARQ codebook is sent in the link data.
  • the embodiment of the present application adopts the second implementation manner for the following two reasons.
  • the second implementation manner can reduce the decoding complexity of the first-level SCI.
  • the second-level SCI is modulated by QPSK, and the sidelink data is usually modulated by QPSK or higher order to achieve high-speed transmission. transmission. Therefore, compared with the third implementation manner, the second implementation manner can improve the decoding reliability of the HARQ codebook at the first device through low-order modulation.
  • the second-level SCI carrying the first HARQ codebook may use a new type of second-level SCI format (format), hereinafter referred to as the first format.
  • the first format may include a first field for carrying a HARQ codebook.
  • the format of the second-level SCI includes at least the above-mentioned first format and the second format, wherein the second format does not include a field for carrying the HARQ codebook.
  • the first format may include the following three fields: a first field for carrying a HARQ codebook, a second field for carrying a source identity (source identity, source ID), and a second field for carrying a destination identity ( destination ID) in the third field. Therefore, the first field of the second-level SCI may carry the first HARQ codebook, the second field may carry the identifier of the second device, and the third field may carry the identifier of the first device.
  • the first device when the first device receives the second-level SCI, it can judge whether the HARQ codebook is from the second device through the source identifier, and can also judge whether the HARQ codebook is sent to itself through the destination identifier, and then It is determined whether the transmitted TB is correctly received by the second device based on the HARQ codebook.
  • the second device may indicate that the format of the second-level SCI is the first format through the fourth indication information.
  • the fourth indication information may be carried in the first-level SCI.
  • the second device may send the first-level SCI in the PSCCH, where the PSCCH is located in the same time slot as the PSSCH carrying the first HARQ codebook, and the first-level SCI indicates that the second-level SCI is in the first format.
  • the PSSCH may only be used to transmit the second-level SCI and the reference signal.
  • the second-level SCI and reference signal can only be used as part of the content of the PSSCH, and cannot be used as the entire content, that is, the PSSCH must include the sidelink data sent from the sender to the receiver. , such as application layer business class information.
  • the existing protocol technology cannot provide a reasonable frame structure to transmit the PSCCH, the second-level SCI and the reference signal.
  • the existing protocol stipulates that the first OFDM symbol mapped by the second-level SCI in the time domain is the first OFDM symbol containing DMRS in the PSSCH, so when the first OFDM symbol in the PSSCH does not have a DMRS, the PSSCH Not including the sidelink data will cause the transmitting terminal device not to transmit any signal on the OFDM symbol, which will potentially cause the problem that the channel of the transmitting terminal device is occupied by other terminal devices in the communication of the unlicensed spectrum.
  • the first OFDM symbol mapped by the second-level SCI in the time domain is the first OFDM symbol in the PSSCH. OFDM symbols.
  • the second-level SCI can be mapped to any RE in the PSSCH except the resource element (resource element, RE) occupied by the reference signal.
  • the second-level SCI can be mapped on all REs in the PSSCH except the REs occupied by the reference signal.
  • the first-level SCI may not indicate the number of REs occupied by the second-level SCI.
  • the second device can still send the first HARQ codebook to the first device through the PSSCH with a reasonable frame structure.
  • the second device can transmit PSCCH and PSSCH in the same time slot, wherein, PSCCH is used to transmit first-level SCI; PSSCH is used to transmit second-level SCI and reference signals, and the second-level SCI carries The first HARQ codebook.
  • the first-level SCI may indicate that the second-level SCI is in the first format, and the second-level SCI in the first format carries the first HARQ codebook through the first field, carries the source identifier through the second field, and carries the destination identifier through the third field .
  • the second-level SCI can be mapped on all REs in the PSSCH except the REs occupied by the reference signal.
  • time slots for transmitting PSCCH and PSSCH may include automatic gain control (automatic gain control, AGC) symbols and/or interval (GAP) symbols, where the AGC symbols are used to adjust hardware parameters such as amplifiers of the receiving module to enhance the received signal The quality; the GAP symbol does not transmit signals, and is used for the transceiver conversion of the receiving module.
  • AGC automatic gain control
  • GAP interval
  • PSCCH and PSSCH can be mapped to discrete frequency domain resources, for example, mapped to multiple RBs, as shown in Figure 10, or can be mapped to continuous frequency domain resources, which are not specifically limited here . It can be understood that, in FIG. 10 , only the mapping on resource block groups is taken as an example, but it is not limited to resource block groups.
  • the second device may determine the number Q SCI2 of coded modulation symbols (coded modulation symbols) of the second-level SCI according to the following formula, or, It can be understood that the number of coded modulation symbols of the second-level SCI satisfies the following formula:
  • L 1 is the index of the first OFDM symbol occupied by the second-level SCI in the current time slot
  • L 2 is the index of the last OFDM symbol occupied by the second-level SCI in the current time slot
  • the above process of determining the number of coded modulation symbols may also be called rate matching (rate matching). It should be understood that for SCI resource mapping, one coded modulation symbol will be mapped to one RE, that is, one coded modulation symbol is transmitted through one RE, so the number of coded modulation symbols of the second-level SCI can be compared with that of the second-level SCI The number of occupied REs is the same.
  • the above describes how the second device feeds back the HARQ codebook to a single transmitting terminal device through the PSSCH.
  • the second device sends multiple terminal devices the The way the device feeds back the HARQ codebook is similar to the way the second device feeds back the HARQ codebook to a single transmitting terminal device through the PSSCH, the difference is that in the scenario where the second device feeds back the HARQ codebook to a single transmitting terminal device, the second The device sends one HARQ codebook in the PSSCH, and in the scenario where the second device feeds back the HARQ codebook to multiple transmitting-side terminal devices, the second device sends multiple HARQ codebooks in the PSSCH, and the multiple HARQ codebooks are the HARQ codebooks corresponding to each of the multiple sending-side terminal devices.
  • One HARQ codebook includes HARQ feedback information for one or more TBs from the corresponding transmitting-side terminal equipment. For the repetition, please
  • TDM between multiple HARQ codebooks means that multiple channels carrying multiple HARQ codebooks are TDM, or multiple time-frequency resources carrying multiple HARQ codebooks It is TDM;
  • FDM between multiple HARQ codebooks means that multiple channels carrying multiple HARQ codebooks are FDM, or multiple time-frequency resources carrying multiple HARQ codebooks are FDM.
  • each HARQ codebook in the K HARQ codebooks can occupy at least one continuous time slot, and the time slots occupied by the K HARQ codebooks are different from each other. overlapping.
  • different HARQ codebooks may be carried in different second-level SCIs, therefore, K HARQ codebooks may be carried in K second-level SCIs on K consecutive time slots respectively.
  • the K HARQ codebooks share one time slot.
  • L k-1 represents the index of the first OFDM symbol occupied by the kth second-level SCI in the current slot
  • L k -1 represents the index of the last OFDM symbol occupied by the k-th second-level SCI in the current slot.
  • the index of the OFDM symbol; M SCI2 (l) represents the number of coded modulation symbols of the second-level SCI on the OFDM symbol with index 1.
  • L k -L k-1 is the number of OFDM symbols occupied by the kth second-level SCI.
  • the value of L k corresponding to each second-level SCI can be configured through RRC signaling.
  • the network device may configure the index of the last OFDM symbol occupied by each second-level SCI through RRC signaling, that is, the value of each L k -1.
  • the network device may directly configure the value of each L k through RRC signaling.
  • the network device may configure the number of OFDM symbols occupied by each second-level SCI through RRC signaling, that is, the value of each L k -L k-1 .
  • the second device indicates the value of L k corresponding to each second-level SCI through the first-level SCI carried in the PSCCH.
  • the first-level SCI indicates the index of the last OFDM symbol occupied by each second-level SCI, that is, the value of each L k ⁇ 1.
  • the first-level SCI directly indicates the value of each L k .
  • the first-level SCI indicates the number of OFDM symbols occupied by each second-level SCI, that is, the value of each L k -L k-1 .
  • the second second-level SCI is transmitted on the symbol
  • each of the K HARQ codebooks can occupy a continuous frequency domain resource, and the frequency domain resources occupied by the K HARQ codebooks are different from each other. overlapping and adjacent, as shown in Figure 12.
  • the K HARQ codebooks respectively occupy at least one resource block group, and the resource blocks occupied by the K HARQ codebooks do not overlap each other, as shown in FIG. 13 .
  • the K HARQ codebooks are carried in one second-level SCI, or may be carried in K second-level SCIs respectively.
  • the second device may also send an SCI including K destination identifiers to the K sending-side terminal devices, where the K There is a one-to-one correspondence between the target identifiers and the K HARQ codebooks. That is, the above-mentioned second-level SCI may carry K destination identifiers, for example, the third field of the above-mentioned second-level SCI may carry K destination identifiers.
  • the terminal device in the sidelink communication system has a 16-bit destination identifier at the physical layer, and the terminal device can judge whether the control information and/or data information and/or feedback information is transmitted to itself according to the destination identifier. It should also be understood that, in the prior art, the SCI used for a single sidelink transmission may only include one destination identifier.
  • the second device needs to feed back the HARQ codebooks to K sending-side terminal devices
  • the SCIs of K destination identities are included in the first sidelink channel used to transmit K HARQ codebooks, Therefore, the HARQ codebook is simultaneously fed back to the K transmitting-side terminal devices through the first side uplink channel, and the efficiency of the HARQ feedback performed by the second device can be improved.
  • Example 2 the second device sends the first HARQ codebook to the first device in the PSCCH.
  • the following describes a scenario where the second apparatus feeds back the HARQ codebook to a single transmitting-side terminal device.
  • the second device may send an independent (standalone) PSCCH not associated with the PSSCH to the first device, that is, the time slot for sending the PSCCH may not include the PSSCH. In this manner, the speed at which the first device receives the HARQ feedback information can be accelerated.
  • the frequency domain bandwidth of the PSCCH may be equal to the frequency domain bandwidth of the COT.
  • the frequency domain bandwidth of the PSCCH is N ⁇ L MHz, where N is a positive integer and L is a positive integer. For example, if L is 20, then the frequency domain bandwidth of the PSCCH is N ⁇ 20 MHz.
  • the frequency domain bandwidth of a terminal device working on an unlicensed spectrum needs to be a positive integer multiple of 20MHz when accessing a channel, such as 20MHz, 40MHz, 60MHz and 80MHz, etc., by setting the frequency domain bandwidth of the PSCCH to N ⁇ 20MHz , which can prevent other terminal devices working in the unlicensed spectrum from accessing the channel and causing interference because the channel is idle.
  • the frequency domain bandwidth of the PSCCH is N ⁇ 20MHz, which does not mean that the PSCCH occupies all the frequency domain resources in N ⁇ 20MHz, and the PSCCH may only occupy part of the frequency domain resources in N ⁇ 20MHz.
  • the interval between the start frequency and the end frequency of the PSCCH can reach 80% or more than N ⁇ 20MHz.
  • the time domain length of PSCCH can be M OFDM symbols, M is equal to P-p, where P is the number of OFDM symbols in a time slot, and p is the number of symbols occupied by ACG and GAP in the time slot
  • the second device sends a PSCCH to the first device
  • the PSCCH is used to transmit the SCI
  • the coded bits of the first HARQ codebook and the coded bits of the first HARQ codebook, the SCI may include a first-level SCI and a second-level SCI.
  • the frequency domain resources occupied by the PSCCH in FIG. 14 are shown as continuous frequency domain resources, it does not mean that the PSCCH of the second device is mapped to continuous frequency domain resources during resource mapping.
  • the PSCCH may be mapped to discrete frequency domain resources in the frequency domain, for example, multiple RBs, as shown in FIG. 15 , or may be mapped to continuous frequency domain resources, which is not specifically limited here. It can be understood that, in FIG. 15 , mapping on interleaved resource blocks is taken as an example, but it is not limited to interleaved resource blocks.
  • Example 3 the second device sends the first HARQ codebook to the first device in PSFCH.
  • the following describes a scenario where the second apparatus feeds back the HARQ codebook to a single transmitting-side terminal device.
  • the second device may transmit the first HARQ codebook in the PSFCH, and transmit the source identifier and destination identifier corresponding to the PSFCH in the PSCCH, wherein the sidelink feedback channel and the sidelink control channel are located in the same time slot.
  • the time slot may not include the PSSCH.
  • the indication information related to the first HARQ codebook such as the source identifier and the destination identifier, can be indicated through the PSCCH, so that the first device can judge whether the HARQ codebook is based on the PSCCH.
  • the second device From the second device, and whether it is a HARQ codebook sent to itself, if the HARQ codebook is sent to itself by the second device, obtain the first HARQ codebook from the second device from the PSFCH, and then based on the first
  • the HARQ codebook determines whether a TB that has been transmitted is correctly received by the second device.
  • PSFCH and PSCCH can be time-division multiplexed or frequency-division multiplexed.
  • the PSFCH may occupy Q1 symbols
  • the PSCCH may occupy Q2 symbols
  • the symbols occupied by the PSFCH and the symbols occupied by the PSCCH do not overlap.
  • Q1+Q2 P-p, where P is the number of OFDM symbols in a time slot, and p is the number of symbols occupied by ACG and GAP in a time slot.
  • PSCCH can occupy 2 or 3 OFDM symbols, that is, the value range of Q2 is ⁇ 2,3 ⁇
  • PSFCH can occupy 7 or 8 or 9 or 10 symbols, that is, the value of Q1
  • the range is ⁇ 7,8,9,10 ⁇ .
  • ACG occupies 1 symbol
  • GAP occupies 1 symbol
  • PSCCH occupies 2 OFDM symbols
  • PSFCH occupies 10 symbols
  • PSCCH occupies 3 OFDM symbols
  • PSFCH occupies 9 symbols.
  • a time slot includes 12 symbols, ACG occupies 1 symbol, GAP occupies 1 symbol, PSCCH occupies 2 OFDM symbols, then PSFCH occupies 8 symbols, PSCCH occupies 3 OFDM symbols, then PSFCH occupies 7 symbols.
  • the frequency domain bandwidths of the PSFCH and the PSCCH can be the same, both being N ⁇ L MHz, where N is a positive integer and L is a positive integer. For example, if L is 20, then the frequency domain bandwidth of the PSFCH or the PSCCH is N ⁇ 20 MHz.
  • the second device can continue to send the PSFCH with the same frequency domain bandwidth after sending the PSCCH.
  • the second device when the frequency domain bandwidth of the PSCCH is smaller than the frequency domain bandwidth of the PSFCH, for example, the frequency domain bandwidth of the PSCCH is N1 ⁇ 20 MHz, and the frequency domain bandwidth of the PSFCH is N2 ⁇ 20 MHz, where N1 ⁇ N2, then the second device is When sending PSCCH, there is no guarantee that the channel will also be occupied on the bandwidth of (N2-N1) ⁇ 20MHz, which may potentially cause terminal equipment working on unlicensed spectrum to fail because the channel with the bandwidth of (N2-N1) ⁇ 20MHz is in an idle state. The channel is accessed, thereby causing interference to the subsequent PSFCH with a frequency domain bandwidth of N2 ⁇ 20 MHz.
  • the frequency domain bandwidth of the aforementioned PSFCH or the aforementioned PSCCH is N ⁇ 20MHz, it is possible to prevent other terminal devices working on unlicensed spectrum from accessing the channel and causing interference due to sensing that the channel is idle.
  • the frequency domain bandwidth of PSCCH is N ⁇ L MHz, which does not mean that PSCCH (or PSFCH) occupies all frequency domain resources in N ⁇ L MHz, and PSCCH (or PSFCH) can only occupy
  • the interval between the start frequency and end frequency of PSCCH (or PSFCH) can reach 80% or more compared to N ⁇ L MHz.
  • time division multiplexing of PSFCH and PSCCH is described here as an example.
  • a time slot includes 14 OFDM symbols, ACG occupies 1 symbol, GAP occupies 1 symbol, PSCCH occupies 3 symbols, and PSFCH occupies 9 symbols.
  • ACG occupies 1 symbol
  • GAP occupies 1 symbol
  • PSCCH occupies 3 symbols
  • PSFCH occupies 9 symbols.
  • the frequency domain resources occupied by the PSFCH (or PSCCH) in FIG. 16 are shown as continuous frequency domain resources, it does not mean that the PSFCH (or PSCCH) of the second device is mapped to continuous frequency domain resources during resource mapping.
  • the PSFCH (or PSCCH) can be mapped to discrete frequency domain resources in the frequency domain, for example, mapped to multiple RBs, as shown in Figure 17, or can be mapped to continuous frequency domain resources.
  • domain resources there is no specific limitation here. It can be understood that, in FIG. 17 , mapping on interleaved resource blocks is taken as an example, but it is not limited to interleaved resource blocks.
  • the PSFCH and the PSCCH can respectively occupy a continuous frequency domain resource, and the frequency domain resources occupied by the PSFCH and the PSCCH do not overlap and are adjacent to each other, as shown in Figure 18 Show.
  • the PSFCH and the PSCCH respectively occupy at least one resource block group, and the resource blocks occupied by the PSFCH and the PSCCH do not overlap each other.
  • a resource block group includes RBs whose indices are ⁇ m, m+5, m+10,... ⁇ , where m ranges from ⁇ 0, 1,...,4 ⁇ . Therefore, there are 5 resource block groups in the frequency domain bandwidth of N ⁇ 20MHz.
  • the second device may use the resource block group including the RB with the index ⁇ 0, 5, 10,... ⁇ to send the PSCCH, use the resource block group including the index ⁇ 1,6,11,... ⁇ and the resource block group including The two resource block groups whose indices are ⁇ 2, 7, 12, ... ⁇ transmit the PSFCH.
  • the time domain lengths of the above-mentioned PSFCH and the above-mentioned PSCCH can be M OFDM symbols, and M is equal to P-p, where P is the number of OFDM symbols in a time slot, and p is occupied by ACG and GAP in the time slot
  • P is the number of OFDM symbols in a time slot
  • p is occupied by ACG and GAP in the time slot
  • the frequency domain resources occupied by the PSFCH (or PSCCH) in FIG. 18 are shown as continuous frequency domain resources, it does not mean that the PSFCH (or PSCCH) of the second device is mapped to continuous frequency domain resources during resource mapping.
  • the PSFCH (or PSCCH) can be mapped to discrete frequency domain resources in the frequency domain, for example, mapped to multiple RBs, as shown in Figures 19 and 20, or can be mapped to On continuous frequency domain resources, there is no specific limitation here.
  • the PSCCH occupies 1 resource block group
  • the PSFCH occupies 2 resource block groups.
  • the PSCCH and the PSFCH jointly occupy 2 resource block groups.
  • FIG. 19 and FIG. 20 only take mapping on interleaved resource blocks as an example, but are not limited to interleaved resource blocks.
  • the frequency-domain bandwidth sum of the PSFCH and the PSCCH is N ⁇ L MHz, for example, if L is 20, then the frequency-domain bandwidth sum of the PSFCH and the PSCCH is N ⁇ 20 MHz.
  • the frequency-domain bandwidth sum of the above-mentioned PSFCH and the above-mentioned PSCCH is N ⁇ L MHz, which does not mean that the above-mentioned PSFCH and the above-mentioned PSCCH occupy all the frequency domain resources in N ⁇ L MHz.
  • the above-mentioned PSFCH and the above-mentioned PSCCH can only Part of the frequency domain resources in N ⁇ L MHz is occupied, wherein the interval between the start frequency and the end frequency of the resources occupied by the above PSFCH and the above PSCCH can reach 80% or more compared to N ⁇ L MHz.
  • the frequency division multiplexing of the PSCCH and PSFCH by using interleaved resource blocks can ensure that the terminal equipment occupies more than 80% of the allocated frequency band, which meets the regulatory requirements of the unlicensed spectrum.
  • the detection process of the first device can be simplified, making it easier to detect the RB where the second device transmits the PSCCH and PSFCH, thereby improving the transmission reliability of the control information and the HARQ codebook.
  • the above describes how the second device feeds back the HARQ codebook to a single transmitting terminal device through PSFCH.
  • the second device sends
  • the manner in which the HARQ codebook is fed back by the terminal equipment on the transmission side is similar to the manner in which the second device feeds back the HARQ codebook to a single terminal equipment on the transmitting side through the PSFCH.
  • the second device sends a HARQ codebook in the PSFCH, and in the scenario where the second device feeds back the HARQ codebook to multiple sending-side terminal devices, the second device sends multiple HARQ codebooks in the PSFCH, and the multiple HARQ codebooks is the HARQ codebook corresponding to each of the plurality of sending-side terminal devices.
  • the repetition please refer to the previous description, and will not go into details here.
  • K is an integer greater than 1
  • the second device when the second device transmits K HARQ codebooks in PSFCH, it can specifically transmit K HARQ codebooks in PSFCH by means of time division multiplexing or frequency division multiplexing. codebook.
  • each HARQ codebook in the K HARQ codebooks can occupy at least one continuous time slot, and the time slots occupied by the K HARQ codebooks are different from each other. overlapping.
  • the value of K is 3, that is, the second device needs to feed back the HARQ codebook to 3 sending-side terminal devices.
  • the initial COT of the second device includes 3 time slots. The second device can use the first time slot to feed back the HARQ codebook to the sending terminal device numbered 1, use the second time slot to feed back the HARQ codebook to the sending side terminal device numbered 2, and use the third time slot Feedback the HARQ codebook to the sending terminal device numbered 3.
  • K time-frequency resources in the PSFCH can be used to carry K HARQ codebooks, the K time-frequency resources are the same in the time domain, and in the frequency domain do not overlap each other, wherein one frequency domain resource bears one HARQ codebook, it can be understood that it is not limited here that the resource sizes of the K frequency domain resources are the same.
  • any frequency domain resource among the aforementioned K frequency domain resources includes at least one resource block group in the frequency domain, as shown in FIG. 24 or FIG. 25 or FIG. 26 .
  • the value of K is 3, that is, the second device needs to feed back the HARQ codebook to 3 transmitting-side terminal devices, and it is assumed that a resource block group includes an index ⁇ m, RBs of m+5, m+10,... ⁇ , where the range of m is ⁇ 0,1,...,4 ⁇ .
  • PSCCH and PSFCH are frequency division multiplexed and occupy 4 resource block groups.
  • the second apparatus may use one resource block group including RBs with indices ⁇ 0, 5, 10, ... ⁇ to send the PSCCH.
  • the second apparatus may use one resource block group including RBs with indices ⁇ 1, 6, 11,... ⁇ to send the HARQ codebook, that is, the first HARQ codebook, to the sending-side terminal device numbered 1.
  • the second apparatus may use one resource block group including RBs with indices ⁇ 2, 7, 12,... ⁇ to send the HARQ codebook, that is, the second HARQ codebook, to the sending-side terminal device numbered 2.
  • the second apparatus may use one resource block group including RBs with indices ⁇ 3, 8, 13,... ⁇ to send the HARQ codebook, that is, the third HARQ codebook, to the sending-side terminal device numbered 3.
  • PSCCH and PSFCH are frequency division multiplexed and occupy 3 resource block groups.
  • the second device may use some RBs in the 3 resource block groups including RBs with indices ⁇ 0,5,10,... ⁇ , ⁇ 1,6,11,... ⁇ , ⁇ 2,7,12,... ⁇
  • the PSCCH is sent, and the six RBs with indices ⁇ 0, 1, 2, 5, 6, 7 ⁇ used in the figure are only examples, and are not specifically limited here.
  • the second device may use the remaining part of RBs in one resource block group including RBs with indexes ⁇ 0, 5, 10, ... ⁇ except the RBs occupied by the PSCCH to send HARQ to the sending terminal device numbered 1
  • the codebook is the first HARQ codebook.
  • the second device may use the remaining part of RBs in one resource block group including RBs with indexes ⁇ 1, 6, 11,... ⁇ except the RBs occupied by the PSCCH to send HARQ to the sending terminal device numbered 2
  • the codebook is the second HARQ codebook.
  • the second device may use the remaining part of RBs in a resource block group including RBs with indexes ⁇ 2, 7, 12,... ⁇ except the RBs occupied by the PSCCH to send HARQ
  • the codebook is the third HARQ codebook.
  • PSCCH and PSFCH are time-division multiplexed and occupy 3 resource block groups.
  • the second device may use some of the 3 resource block groups including RBs with indices ⁇ 0, 5, 10, ... ⁇ , ⁇ 1, 6, 11, ... ⁇ , ⁇ 2, 7, 12, ... ⁇ Domain resources, such as 3 OFDM symbols, are used to transmit PSCCH.
  • the second device may use the remaining part of the time domain resources in one resource block group including the RB with the index ⁇ 0, 5, 10,... ⁇ except the time domain resources occupied by the PSCCH to transmit the data to the sending side numbered 1
  • the terminal device sends the HARQ codebook, that is, the first HARQ codebook.
  • the second device may use the remaining part of the time domain resources in one resource block group including the RBs with indexes ⁇ 1, 6, 11, ... ⁇ except the time domain resources occupied by the PSCCH to transmit the data to the sending side numbered 2
  • the terminal device sends the HARQ codebook, that is, the second HARQ codebook.
  • the second device may use the remaining part of the time domain resources in one resource block group including the RBs with indexes ⁇ 2,7,12,... ⁇ except the time domain resources occupied by the PSCCH to transmit the data to the sending side numbered 3
  • the terminal device sends the HARQ codebook, that is, the third HARQ codebook.
  • the method of time division multiplexing and frequency division multiplexing of K time-frequency resources carrying K HARQ codebooks can refer to the method of time-division multiplexing and frequency division multiplexing of K time-frequency resources carrying K HARQ codebooks in the first example above. , which will not be repeated here.
  • one shared PSCCH can be used to provide physical layer control information for K time-frequency resources, and the K time-frequency resources can be independently coded and carry HARQ codebooks for different sending-side terminal devices,
  • the second apparatus can simultaneously feed back the HARQ codebook to multiple transmitting terminal devices on a single time domain resource, which can reduce the time delay of HARQ feedback, reduce the overhead of HARQ feedback, and improve the resource utilization efficiency of unlicensed spectrum.
  • the second device when the second device sends K HARQ codebooks to K sending-side terminal devices through the first sidelink channel, the second device may also send to the K sending-side terminal devices including K For the SCI of the destination identifier, there is a one-to-one correspondence between the K destination identifiers and the K HARQ codebooks. That is, the above PSCCH may carry K destination identities.
  • the terminal device in the sidelink communication system has a 16-bit destination identifier at the physical layer, and the terminal device can judge whether the control information and/or data information and/or feedback information is transmitted to itself according to the destination identifier. It should also be understood that, in the prior art, the SCI used for a single sidelink transmission may only include one destination identifier.
  • the second device needs to feed back the HARQ codebooks to K sending-side terminal devices
  • the SCIs of K destination identities are included in the first sidelink channel used to transmit K HARQ codebooks, Therefore, the HARQ codebook is simultaneously fed back to the K transmitting-side terminal devices through the first side uplink channel, and the efficiency of the HARQ feedback performed by the second device can be improved.
  • the second device can only initialize one COT and use K time domain resources in the COT to send K sending-side terminal devices respectively feed back corresponding HARQ codebooks, which can reduce the time delay of HARQ feedback, and can also reduce the overhead of HARQ feedback.
  • the terminal device can determine the position of the corresponding PSFCH according to the position of the PSSCH, so as to obtain the HARQ information of the PSSCH.
  • the regulations require that the channel needs to be continuously occupied or the channel needs to be re-accessed through an additional LBT process, which potentially destroys the mapping relationship between PSSCH and PSFCH in the time domain and frequency domain, causing the transmission side
  • the terminal device cannot correctly obtain the HARQ feedback information from the receiving terminal device.
  • the terminal equipment on the receiving side when the terminal equipment on the receiving side needs the initial COT and uses the COT to send the HARQ codebook, it transmits the HARQ codebook together with indication information such as the source identifier and the destination identifier, or transmits the HARQ codebook together with the information carrying the HARQ codebook.
  • the SCI of the source identifier and the destination identifier are jointly transmitted, so that the terminal device on the sending side can effectively obtain the HARQ codebook from the terminal device on the receiving side, and then determine whether the sent TB is correctly received by the terminal device on the receiving side based on the HARQ codebook.
  • the terminal equipment on the receiving side needs the initial COT and uses the COT to send the HARQ codebook, it transmits the HARQ codebook together with indication information such as the source identifier and the destination identifier, or transmits the HARQ codebook together with the information carrying the HARQ codebook.
  • the SCI of the source identifier and the destination identifier are jointly
  • the receiving terminal device can be enabled to transmit the HARQ feedback information of multiple SL HARQ processes corresponding to a single transmitting terminal device to the transmitting terminal device at one time, thereby improving the SL HARQ feedback s efficiency.
  • the receiving-side terminal device is further enabled to transmit multiple HARQ codebooks corresponding to multiple transmitting-side terminal devices to multiple transmitting-side terminal devices at one time, which further improves the SL HARQ feedback s efficiency.
  • the communication device can be used to realize the functions of the terminal equipment involved in the above embodiments.
  • the communication device can be the terminal equipment itself, such as an integral terminal equipment such as a vehicle-mounted terminal device or a roadside unit, or the communication device can also be It can be a device capable of supporting the terminal device to realize this function, such as a chip, module, TBOX applied to the terminal device, or other combined devices, components (or components) with the functions of the terminal device shown in this application.
  • the communication device may be a chip, a module or a component in equipment such as a vehicle-mounted terminal equipment or a roadside unit.
  • the communication device may include the structure shown in FIG. 6 and/or FIG. 7 .
  • An embodiment of the present application also provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium.
  • the computer program When the computer program is executed by a computer, the computer can implement the processes related to the terminal device in the foregoing embodiments.
  • An embodiment of the present application further provides a computer program product, where the computer program product is used to store a computer program.
  • the computer program product is used to store a computer program.
  • An embodiment of the present application also provides a chip or a chip system, where the chip may include a processor, and the processor may be used to call a program or an instruction in a memory to execute the processes related to the terminal device in the foregoing embodiments.
  • the system-on-a-chip may include the chip, and other components such as a memory or a transceiver.
  • the embodiment of the present application further provides a circuit, which can be coupled with a memory, and can be used to execute the processes related to the terminal device in the foregoing embodiments.
  • the system-on-a-chip may include the chip, and other components such as a memory or a transceiver.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Abstract

本申请提供一种通信方法及装置,可以应用于侧行链路通信,或车联网,例如V2X,或可以应用于智能驾驶等领域。该方法包括:接收来自第一装置的至少一个传输块,并在侧行链路数据信道中向第一装置发送第二级侧行链路控制信息(SCI),第二级SCI承载第一混合自动重传请求(HARQ)码本,其中,第一HARQ码本用于确定对应于至少一个传输块的至少一个HARQ反馈信息。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2021年08月30日提交中国专利局、申请号为202111007047.7、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在无线通信系统的演变过程中,传输的可靠性一直是无线通信中的重要技术方向之一。在用户设备(user equipment,UE)与基站间的Uu接口中,混合自动重传请求(hybrid automatic repeat request,HARQ)是一种提升传输的可靠性的有效方法。基于HARQ,发送端向接收端初次发送传输块(transport block,TB)后,接收端向发送端反馈如肯定应答(acknowledgement,ACK)或否定应答(negative acknowledgement,NACK)的HARQ反馈信息,发送端根据HARQ反馈信息确定是否向接收端重新传输TB,同时基于前向纠错(forward error correction,FEC)码提升数据信息的传输可靠性。
类似的,在UE与UE之间的侧行链路(sidelink,SL)通信中也将HARQ作为提升传输可靠性的重要方法之一。SL通信中,发送端可以通过物理层侧行链路共享信道(physical sidelink shared channel,PSSCH)传输TB,接收端在接收到TB后,可以通过物理层侧行链路反馈信道(physical sidelink feedback channel,PSFCH)反馈ACK或NACK。包含PSFCH资源的时隙在时域上可以是周期性的,例如,可以每L个时隙(slot)中有1个包含PSFCH资源的时隙,其中L的取值范围可以为{0,1,2,4}。当L的取值为0时,可以表示当前SL通信中不存在PSFCH,也即接收端不需要向发送端发送HARQ反馈信息。
随着SL通信的不断发展,当前的SL反馈机制可能无法满足日益提升的可靠性和通信效率的需求。
发明内容
本申请提供一种通信方法及装置,可以提高通信可靠性。
第一方面,本申请提供一种通信方法,该方法的执行主体可以是终端设备,也可以是具备终端设备功能的组合器件或部件,也可以是应用于终端设备中的芯片或电路系统(例如处理器、基带芯片、模组、远程信息处理器(telematics BOX,TBOX)、或芯片系统等)。方法包括:接收来自第一装置的至少一个传输块,并在侧行链路数据信道中向第一装置发送第二级侧行链路控制信息(sidelink control information,SCI),第二级SCI承载第一HARQ码本,其中,第一HARQ码本包括对应于上述至少一个传输块的至少一个HARQ反馈信息。
本申请实施例中,可以实现在侧行链路通信系统中通过HARQ码本进行HARQ反馈, 提升SL HARQ反馈的效率,进而提高通信可靠性。并且,相比于将HARQ码本承载于第一级SCI,在第二级SCI中发送HARQ码本可以降低第一级SCI的译码复杂度,保障控制信道的传输效率。同时,相比于将HARQ码本承载于侧行链路数据中,在第二级SCI中承载HARQ码本可以提升译码可靠性。一般的,第二级SCI通过四相移相键控(quaternary PSK,QPSK)进行调制,侧行链路数据通过更高阶的调制方式,承载在第二级SCI中的HARQ码本可以通过较侧行链路数据低阶的方式进行调制,使得接收端译码HARQ码本的可靠性更高。
一种可能的设计中,第二级SCI的格式至少包括第一格式和第二格式,其中,第一格式包括用于承载HARQ码本的字段,第二字段不包括用于承载HARQ码本的字段。上述设计通过增加第一格式,可以实现在第二级SCI中发送HARQ码本。
一种可能的设计中,该方法还包括:可以接收来自第一装置的第一指示信息,第一指示信息用于指示发送第一HARQ码本。通过发送第一指示信息的方式,使得接收端(即执行该方法的装置)和发送端(即第一装置)对齐对第一HARQ码本的理解,从而可以进一步提升通信性能。
一种可能的设计中,该方法还包括:可以接收来自第一装置的第二指示信息,第二指示信息用于指示一个或多个传输块对应的一个或多个SL HARQ进程的标识。通过上述方式,可以有针对性地进行HARQ反馈,而不需要持续地将所有SL HARQ进程的HARQ反馈信息发送给发送端(即第一装置),从而可以降低传输资源开销,提升资源利用率。
一种可能的设计中,该方法还包括:可以接收来自第一装置的第三指示信息,第三指示信息用于指示一个或多个传输块对应的一个或多个SL HARQ进程的数量。通过上述方式,发送端(即第一装置)通过将具体的SL HARQ进程的个数指示给接收端(即执行该方法的装置),有利于接收端正确地生成HARQ码本,有利于接收端和发送端对于HARQ码本所包括的多个比特保持共识,从而可以进一步提升通信性能。
一种可能的设计中,该方法还包括:在侧行链路控制信道中发送第四指示信息,第四指示信息用于指示第二级SCI为第一格式,其中,侧行链路控制信道与侧行链路数据信道位于同一个时隙。
一种可能的设计中,第二级SCI的编码调制符号的数量Q SCI2满足:
Figure PCTCN2022112602-appb-000001
其中,所述L 1为所述第二级SCI占用的第一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号的索引,所述L 2为所述第二级SCI占用的最后一个OFDM符号的索引;M SCI2(l)表示索引为l的OFDM符号上所述第二级SCI的编码调制符号的数目。
一种可能的设计中,方法还包括:在侧行链路数据信道中向第二装置发送第二HARQ码本,第二HARQ码本包括针对来自第二装置的一个或多个传输块的HARQ反馈信息;其中,第一HARQ码本和第二HARQ码本在侧行链路数据信道中时分复用或者频分复用。通过上述设计,数据接收侧装置(即执行该方法的装置)可以将对应于多个数据发送侧装置(如第一装置、第二装置)的多个HARQ码本一次性地传输给多个数据发送侧装置,进一步提升了SL HARQ反馈的效率。
一种可能的设计中,第一HARQ码本承载于侧行链路数据信道中的第一资源,第二 HARQ码本承载于侧行链路数据信道中的第二资源,第一资源包括至少一个资源块组,第二资源包括至少一个资源块组,且第一资源与第二资源不重叠,其中,资源块组由等间隔的多个资源块组成。通过上述设计,可以降低第一HARQ码本和第二HARQ码本之间的干扰。
一种可能的设计中,第一HARQ码本和第二HARQ码本承载于不同的第二级SCI。
一种可能的设计中,第二级SCI占用侧行链路数据信道中的第一时频资源,第一时频资源为侧行链路数据信道中除第二时频资源外的剩余时频资源,第二时频资源用于发送参考信号。
通过上述方式,即使接收端(即执行该方法的装置)没有数据向发送端(即第一装置)进行传输,仍然可以通过PSSCH以合理的帧结构向发送端发送第一HARQ码本。
第二方面,本申请提供一种通信方法,该方法的执行主体可以是终端设备,也可以是具备终端设备功能的组合器件或部件,也可以是应用于终端设备中的芯片或电路系统(例如处理器、基带芯片、或芯片系统等)。方法包括:向通信装置发送至少一个传输块;并在侧行链路数据信道中接收来自该通信装置的第二级SCI,第二级SCI承载第一HARQ码本,其中,第一HARQ码本用于确定对应于上述至少一个传输块的至少一个HARQ反馈信息。
本申请实施例中,可以实现在侧行链路通信系统中通过HARQ码本进行HARQ反馈,提升SL HARQ反馈的效率,进而提高通信可靠性。并且,相比于将HARQ码本承载于第一级SCI,在第二级SCI中发送HARQ码本可以降低第一级SCI的译码复杂度,保障控制信道的传输效率。同时,相比于将HARQ码本承载于侧行链路数据中,在第二级SCI中承载HARQ码本可以提升译码可靠性。一般的,第二级SCI通过QPSK进行调制,侧行链路数据通过更高阶的调制方式,承载在第二级SCI中的HARQ码本可以通过较侧行链路数据低阶的方式进行调制,使得接收端译码HARQ码本的可靠性更高。
一种可能的设计中,第二级SCI的格式至少包括第一格式和第二格式,其中,第一格式包括用于承载HARQ码本的字段,第二字段不包括用于承载HARQ码本的字段。上述设计通过增加第一格式,可以实现在第二级SCI中发送HARQ码本。
一种可能的设计中,该方法还包括:可以向通信装置发送第一指示信息,第一指示信息用于指示发送第一HARQ码本。通过发送第一指示信息的方式,使得接收端(即该通信装置)和发送端(即执行该方法的装置)对齐对第一HARQ码本的理解,从而可以进一步提升通信性能。
一种可能的设计中,该方法还包括:可以向通信装置发送第二指示信息,第二指示信息用于指示一个或多个传输块对应的一个或多个SL HARQ进程的标识。通过上述方式,可以有针对性地进行HARQ反馈,而不需要持续地将所有SL HARQ进程的HARQ反馈信息发送给发送端(即执行该方法的装置),从而可以降低传输资源开销,提升资源利用率。
一种可能的设计中,该方法还包括:可以向通信装置发送第三指示信息,第三指示信息用于指示一个或多个传输块对应的一个或多个SL HARQ进程的数量。通过上述方式,发送端(即执行该方法的装置)通过将具体的SL HARQ进程的个数指示给接收端(即该通信装置),有利于接收端正确地生成HARQ码本,有利于接收端和发送端对于HARQ码本所包括的多个比特保持共识,从而可以进一步提升通信性能。
一种可能的设计中,该方法还包括:在侧行链路控制信道中接收第四指示信息,且第 四指示信息用于指示第二级SCI为第一格式,其中,侧行链路控制信道与侧行链路数据信道位于同一个时隙。
一种可能的设计中,第二级SCI的编码调制符号的数量Q SCI2满足:
Figure PCTCN2022112602-appb-000002
其中,L 1为第二级SCI占用的第一个OFDM符号的索引,L 2为第二级SCI占用的最后一个OFDM符号的索引;M SCI2(l)表示索引为l的OFDM符号上第二级SCI的编码调制符号的数目。
一种可能的设计中,第二级SCI占用侧行链路数据信道中的第一时频资源,第一时频资源为侧行链路数据信道中除第二时频资源外的剩余时频资源,第二时频资源用于发送参考信号。
通过上述方式,即使接收端(即通信装置)没有数据向发送端(即执行该方法的装置)进行传输,仍然可以通过PSSCH以合理的帧结构向发送端发送第一HARQ码本。
第三方面,本申请提供一种通信方法,该方法的执行主体可以是终端设备,也可以是具备终端设备功能的组合器件或部件,也可以是应用于终端设备中的芯片或电路系统(例如处理器、基带芯片、模组、TBOX、或芯片系统等)。方法包括:接收来自第一装置的至少一个传输块;并在侧行链路控制信道中向第一装置发送第一HARQ码本,其中,侧行链路控制信道所在的时隙中不包括侧行链路数据信道,第一HARQ码本包括针对该至少一个传输块的至少一个HARQ反馈信息。
本申请实施例中,可以实现在侧行链路通信系统中通过HARQ码本进行HARQ反馈,提升SL HARQ反馈的效率,进而提高通信可靠性。并且,本申请实施例中通过向第一装置发送未关联PSSCH的独立(standalone)物理侧行链路控制信道(physical sidelink control channel,PSCCH),即在发送该PSCCH的时隙中可以不包括PSSCH,可以加快第一装置接收到HARQ反馈信息的速度。
一种可能的设计中,侧行链路控制信道的频域带宽等于信道占用时间(channel occupancy time,COT)的频域带宽。通过上述设计,可以避免其他工作于非授权频谱的终端设备因侦听到信道空闲而接入信道并产生干扰。
一种可能的设计中,在发送第一HARQ码本之前,可以接收来自第一装置的第一指示信息,第一指示信息用于指示发送第一HARQ码本。通过第一装置向第二装置发送第一指示信息的方式,使得第一装置和第二装置对齐对第一HARQ码本的理解,从而可以进一步提升通信性能。
一种可能的设计中,在发送第一HARQ码本之前,可以接收来自第一装置的第二指示信息,第二指示信息用于指示一个或多个传输块对应的一个或多个SL HARQ进程的标识。通过上述方式,第一装置可以令第二装置有针对性地进行HARQ反馈,而不需要持续地将所有SL HARQ进程的HARQ反馈信息发送给第一装置,从而可以降低传输资源开销,提升资源利用率。
一种可能的设计中,在发送第一HARQ码本之前,可以接收来自第一装置的第三指示信息,第三指示信息用于指示一个或多个传输块对应的一个或多个SL HARQ进程的数量。通过上述方式,第一装置通过将具体的SL HARQ进程的个数指示给第二装置,有利于第二装置正确地生成HARQ码本,有利于第一装置和第二装置对于HARQ码本所包括的多 个比特保持共识,从而可以进一步提升通信性能。
第四方面,本申请提供一种通信方法,该方法的执行主体可以是终端设备,也可以是具备终端设备功能的组合器件或部件,也可以是应用于终端设备中的芯片或电路系统(例如处理器、基带芯片、模组、TBOX、或芯片系统等)。方法包括:向第二装置发送至少一个传输块;并在侧行链路控制信道中接收来自第二装置的第一HARQ码本,其中,侧行链路控制信道所在的时隙中不包括侧行链路数据信道,第一HARQ码本包括针对该至少一个传输块的至少一个HARQ反馈信息。
本申请实施例中,可以实现在侧行链路通信系统中通过HARQ码本进行HARQ反馈,提升SL HARQ反馈的效率,进而提高通信可靠性。并且,本申请实施例中通过向第一装置发送未关联PSSCH的独立PSCCH,即在发送该PSCCH的时隙中可以不包括PSSCH,可以加快第一装置接收到HARQ反馈信息的速度。
一种可能的设计中,侧行链路控制信道的频域带宽等于COT的频域带宽。通过上述设计,可以避免其他工作于非授权频谱的终端设备因侦听到信道空闲而接入信道并产生干扰。
一种可能的设计中,在接收第一HARQ码本之前,可以向第二装置发送第一指示信息,第一指示信息用于指示发送第一HARQ码本。通过向第二装置发送第一指示信息的方式,使得第一装置和第二装置对齐对第一HARQ码本的理解,从而可以进一步提升通信性能。
一种可能的设计中,在接收第一HARQ码本之前,可以向第二装置发送第二指示信息,第二指示信息用于指示一个或多个传输块对应的一个或多个SL HARQ进程的标识。通过上述方式,可以令第二装置有针对性地进行HARQ反馈,而不需要持续地将所有SL HARQ进程的HARQ反馈信息发送给第一装置,从而可以降低传输资源开销,提升资源利用率。
一种可能的设计中,在接收第一HARQ码本之前,可以向第二装置发送第三指示信息,第三指示信息用于指示一个或多个传输块对应的一个或多个SL HARQ进程的数量。通过上述方式,通过将具体的SL HARQ进程的个数指示给第二装置,有利于第二装置正确地生成HARQ码本,有利于第一装置和第二装置对于HARQ码本所包括的多个比特保持共识,从而可以进一步提升通信性能。
第五方面,本申请提供一种通信方法,该方法的执行主体可以是终端设备,也可以是具备终端设备功能的组合器件或部件,也可以是应用于终端设备中的芯片或电路系统(例如处理器、基带芯片、模组、TBOX、或芯片系统等)。方法包括:接收来自第一装置的至少一个传输块;并在侧行链路反馈信道中向第一装置发送第一HARQ码本,其中,第一HARQ码本包括针对该至少一个传输块的至少一个HARQ反馈信息;在侧行链路控制信道中发送侧行链路反馈信道对应的源标识和目的标识,其中,侧行链路反馈信道与侧行链路控制信道位于同一个时隙。
本申请实施例中,可以实现在侧行链路通信系统中通过HARQ码本进行HARQ反馈,提升SL HARQ反馈的效率,进而提高通信可靠性。并且,本申请实施例中通过在同一个时隙中发送PSFCH与PSCCH,可以通过PSCCH指示源标识、目的标识等与第一HARQ码本相关的指示信息,使发送端(即第一装置)可以根据PSCCH判断该HARQ码本是否来自接收端(即该执行该方法的装置),以及是否为发给自身的HARQ码本,若该HARQ码本是发送给自身的,则从PSFCH获取来自接收端的第一HARQ码本,进而基于该第一HARQ码本确定已经发送的TB是否被接收端正确地接收。
一种可能的设计中,侧行链路反馈信道所在的时隙不包括侧行链路数据信道。通过上述方式,即使接收端(即该执行该方法的装置)没有数据向发送端(即第一装置)进行传输,仍然可以通过PSCCH发送侧行链路反馈信道对应的源标识和目的标识。
一种可能的设计中,侧行链路反馈信道与侧行链路控制信道时分复用。
一种可能的设计中,侧行链路反馈信道的频域带宽等于COT对应的频域带宽。通过上述设计,可以避免其他工作于非授权频谱的终端设备因侦听到信道空闲而接入信道并产生干扰。
一种可能的设计中,侧行链路反馈信道与侧行链路控制信道频分复用。
一种可能的设计中,侧行链路反馈信道对应的频域资源与侧行链路控制信道对应的频域资源不重叠且相邻。
一种可能的设计中,侧行链路反馈信道对应的频域资源包括至少一个资源块组,侧行链路控制信道对应的频域资源包括至少一个资源块组,且侧行链路反馈信道对应的频域资源与侧行链路控制信道对应的频域资源不重叠,其中,一个资源块组包括等间隔的多个资源块,或者说一个资源块组由多个等间隔的资源块组成。通过上述设计,可以降低侧行链路反馈信道与侧行链路控制信道之间的干扰。
一种可能的设计中,在发送第一HARQ码本之前,可以接收来自第一装置的第一指示信息,第一指示信息用于指示发送第一HARQ码本。通过发送端(即该第一装置)向接收端(即执行该方法的装置)发送第一指示信息的方式,使得发送端和接收端对齐对第一HARQ码本的理解,从而可以进一步提升通信性能。
一种可能的设计中,在发送第一HARQ码本之前,可以接收来自第一装置的第二指示信息,第二指示信息用于指示一个或多个传输块对应的一个或多个SL HARQ进程的标识。通过上述方式,发送端(即该第一装置)可以令接收端(即执行该方法的装置)有针对性地进行HARQ反馈,而不需要持续地将所有SL HARQ进程的HARQ反馈信息发送给发送端,从而可以降低传输资源开销,提升资源利用率。
一种可能的设计中,在发送第一HARQ码本之前,可以接收来自第一装置的第三指示信息,第三指示信息用于指示一个或多个传输块对应的一个或多个SL HARQ进程的数量。通过上述方式,发送端(即第一装置)通过将具体的SL HARQ进程的个数指示给接收端(即该执行该方法的装置),有利于接收端正确地生成HARQ码本,有利于发送端和接收端对于HARQ码本所包括的多个比特保持共识,从而可以进一步提升通信性能。
一种可能的设计中,方法还包括:在侧行链路反馈信道中发送第二HARQ码本,第二HARQ码本包括针对来自第二装置的一个或多个传输块的HARQ反馈信息;其中,第一HARQ码本和第二HARQ码本在侧行链路反馈信道中时分复用或频分复用。通过上述设计,接收端(即该执行该方法的装置)可以将对应于多个发送端的多个HARQ码本一次性地传输给多个发送端,进一步提升了SL HARQ反馈的效率。
一种可能的设计中,第一HARQ码本承载于侧行链路反馈信道的第一资源,第二HARQ码本承载于侧行链路反馈信道的第二资源,第一资源包括至少一个资源块组,第二资源包括至少一个资源块组,且第一资源与第二资源不重叠,其中,资源块组包括等间隔的多个资源块,或者说由多个等间隔的资源块组成。通过上述设计,可以降低第一HARQ码本和第二HARQ码本之间的干扰。
第六方面,本申请提供一种通信方法,该方法的执行主体可以是终端设备,也可以是 具备终端设备功能的组合器件或部件,也可以是应用于终端设备中的芯片或电路系统(例如处理器、基带芯片、或芯片系统等)。方法包括:向通信装置发送至少一个传输块;并在侧行链路反馈信道中接收第一HARQ码本,其中,第一HARQ码本包括针对该至少一个传输块的至少一个HARQ反馈信息;在侧行链路控制信道中接收侧行链路反馈信道对应的源标识和目的标识,其中,侧行链路反馈信道与侧行链路控制信道位于同一个时隙。
本申请实施例中,可以实现在侧行链路通信系统中通过HARQ码本进行HARQ反馈,提升SL HARQ反馈的效率,进而提高通信可靠性。并且,本申请实施例中通过在同一个时隙中发送PSFCH与PSCCH,可以通过PSCCH指示源标识、目的标识等与第一HARQ码本相关的指示信息,使发送端(即执行该方法的装置)可以根据PSCCH判断该HARQ码本是否来自接收端(即该通信装置),以及是否为发给自身的HARQ码本,若该HARQ码本是发送给自身的,则从PSFCH获取来自接收端的第一HARQ码本,进而基于该第一HARQ码本确定已经发送的TB是否被接收端正确地接收。
一种可能的设计中,侧行链路反馈信道所在的时隙不包括侧行链路数据信道。通过上述方式,即使接收端(即该通信装置)没有数据向发送端(即执行该方法的装置)进行传输,仍然可以通过PSCCH发送侧行链路反馈信道对应的源标识和目的标识。
一种可能的设计中,侧行链路反馈信道与侧行链路控制信道时分复用。
一种可能的设计中,侧行链路反馈信道的频域带宽等于COT对应的频域带宽。通过上述设计,可以避免其他工作于非授权频谱的终端设备因侦听到信道空闲而接入信道并产生干扰。
一种可能的设计中,侧行链路反馈信道与侧行链路控制信道频分复用。
一种可能的设计中,侧行链路反馈信道对应的频域资源与侧行链路控制信道对应的频域资源不重叠且相邻。
一种可能的设计中,侧行链路反馈信道对应的频域资源包括至少一个资源块组,侧行链路控制信道对应的频域资源包括至少一个资源块组,且侧行链路反馈信道对应的频域资源与侧行链路控制信道对应的频域资源不重叠,其中,资源块组包括等间隔的多个资源块,或者说由多个等间隔的资源块组成。通过上述设计,可以降低侧行链路反馈信道与侧行链路控制信道之间的干扰。
一种可能的设计中,在接收第一HARQ码本之前,可以向通信装置发送第一指示信息,第一指示信息用于指示发送第一HARQ码本。通过向接收端(即该通信装置)发送第一指示信息的方式,使得发送端(即执行该方法的装置)和接收端对齐对第一HARQ码本的理解,从而可以进一步提升通信性能。
一种可能的设计中,在接收第一HARQ码本之前,可以向通信装置发送第二指示信息,第二指示信息用于指示一个或多个传输块对应的一个或多个SL HARQ进程的标识。通过上述方式,可以令接收端(即该通信装置)有针对性地进行HARQ反馈,而不需要持续地将所有SL HARQ进程的HARQ反馈信息发送给发送端(即执行该方法的装置),从而可以降低传输资源开销,提升资源利用率。
一种可能的设计中,在接收第一HARQ码本之前,可以向通信装置发送第三指示信息,第三指示信息用于指示一个或多个传输块对应的一个或多个SL HARQ进程的数量。通过上述方式,通过将具体的SL HARQ进程的个数指示给接收端(即该通信装置),有利于接收端正确地生成HARQ码本,有利于发送端(即执行该方法的装置)和接收端对于HARQ 码本所包括的多个比特保持共识,从而可以进一步提升通信性能。
第七方面,本申请实施例提供一种通信装置,可以实现上述第一方面至第六方面中任一方面或其任一可能的设计中所述的方法。该装置包括用于执行上述方法的相应的单元或部件。该装置包括的单元可以通过软件和/或硬件方式实现。该装置例如可以为终端设备、或者为可支持终端设备实现上述方法的部件或基带芯片、芯片系统、或处理器等。
示例性的,该通信装置可包括处理单元(或称处理模块),还可以包括收发单元(或称通信模块、收发模块)等等模块化组件,这些模块可以执行上述第一方面至第六方面中任一方面或其任一可能的设计中所述的方法。当通信装置是终端设备时,收发单元可以是发送器和接收器,或发送器和接收器整合获得的收发器。收发单元可以包括天线和射频电路等,处理单元可以是处理器,例如基带芯片等。当通信装置是具有上述终端设备功能的部件时,收发单元可以是射频单元,处理单元可以是处理器。当通信装置是芯片系统时,收发单元可以是芯片系统的输入输出接口、处理单元可以是芯片系统的处理器,例如:中央处理单元(central processing unit,CPU)。
收发单元可用于执行第一方面至第六方面中任一方面或其任一可能的设计中的接收和/或发送的动作。处理单元可用于执行第一方面至第六方面中任一方面或其任一可能的设计中接收和发送以外的动作,如确定HARQ码本等。
第八方面,提供了一种通信装置,包括一个或多个处理器,该一个或多个处理器与存储器耦合,可用于执行存储器中的程序或指令,以使得该装置执行上述第一方面至第六方面中任一方面或该方面中任一种可能设计中的方法。可选地,该装置还包括一个或多个存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
第九方面,提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机指令,当该计算机指令在计算机上运行时,使得该计算机执行上述第一方面至第六方面中任一方面或其任意一种可能的设计中的方法。
第十方面,提供一种包含指令的计算机程序产品,该计算机程序产品用于存储计算机指令,当该计算机指令在计算机上运行时,使得该计算机执行上述第一方面至第六方面中任一方面或其任意一种可能的设计中的方法。
第十一方面,提供一种处理装置,该处理装置与存储器耦合,该处理装置调用所述存储器中的程序,执行上述第一方面至第六方面中任一方面或其任意一种可能的设计中的方法。该处理装置例如可以包括芯片系统。
上述方面中的芯片系统可以是片上系统(system on chip,SOC),也可以是基带芯片等,其中基带芯片可以包括处理器、信道编码器、数字信号处理器、调制解调器和接口模块等。
附图说明
图1为本申请实施例的一种V2X通信示意图;
图2为本申请实施例的一种PSSCH与PSFCH映射关系示意图;
图3为本申请实施例的一种网络系统的架构示意图;
图4为本申请实施例的另一种网络系统的架构示意图;
图5为本申请实施例的另一种网络系统的架构示意图;
图6为本申请实施例的一种通信装置的结构示意图;
图7为本申请实施例的另一种通信装置的结构示意图;
图8为本申请实施例的一种通信方法的结构示意图;
图9为本申请实施例的一种PSCCH和PSSCH示意图;
图10为本申请实施例的一种PSCCH和PSSCH在频域上的资源映射示意图;
图11为本申请实施例的一种K个HARQ码本时分复用示意图;
图12为本申请实施例的一种K个HARQ码本频分复用示意图;
图13为本申请实施例的另一种K个HARQ码本频分复用示意图;
图14为本申请实施例的一种PSCCH示意图;
图15为本申请实施例的一种PSCCH在频域上的资源映射示意图;
图16为本申请实施例的一种PSFCH与PSCCH时分复用示意图;
图17为本申请实施例的一种PSFCH在频域上的资源映射示意图;
图18为本申请实施例的一种PSFCH与PSCCH频分复用示意图;
图19为本申请实施例的另一种PSFCH与PSCCH频分复用示意图;
图20为本申请实施例的一种PSFCH在频域上的资源映射示意图;
图21为本申请实施例的一种K个HARQ码本时分复用示意图;
图22为本申请实施例的另一种K个HARQ码本频分复用示意图;
图23为本申请实施例的另一种K个HARQ码本频分复用示意图;
图24为本申请实施例的另一种K个HARQ码本频分复用示意图;
图25为本申请实施例的另一种K个HARQ码本频分复用示意图;
图26为本申请实施例的另一种K个HARQ码本频分复用示意图。
具体实施方式
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,具体的,包括向用户提供语音的设备,或包括向用户提供数据连通性的设备,或包括向用户提供语音和数据连通性的设备。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音或数据,或与RAN交互语音和数据。该终端设备可以包括用户设备、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle to everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感 设备。
V2X技术中的终端设备可以为路侧单元(road side unit,RSU),RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息,例如该路侧单元可以通过PC5口与支持V2X应用的其他实体交换消息。
V2X技术中的终端设备还可以为整车、整车中的通信模块(例如通信芯片、芯片系统等)、TBOX等等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。示例性地,可穿戴设备可以是虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。
本申请实施例中,终端设备还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端设备。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是应用于终端设备中能够支持终端设备实现该功能的装置,例如具备通信功能的部件或组件,或者芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
2)网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,或者例如,一种V2X技术中的网络设备为基站型RSU。基站可用于将收到的空中帧与互联网协议(internet protocol,IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站型RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息,例如该基站型路侧单元可以通过Uu口与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括LTE系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5th generation,5G)NR系统(也简称为NR系统)中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。例如网络设备可以为Cloud RAN系统中的CU,或为DU,或为CU和DU的整体。
网络设备还可以包括核心网设备,核心网设备例如包括访问和移动管理功能(access and mobility management function,AMF)等。本申请实施例由于主要涉及接入网,因此在 后文中如无特殊说明,则所述的网络设备均是指接入网设备。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
3)V2X,就是车与外界进行互联互通,这是未来智能汽车、自动驾驶、智能交通运输系统的基础和关键技术。V2X将在已有的D2D技术的基础上对V2X的具体应用需求进行优化,需要进一步减少V2X设备的接入时延,解决资源冲突问题。
V2X具体又包括车与车(vehicle-to-vehicle,V2V)、车与路侧基础设施(vehicle-to-infrastructure,V2I)、车与行人(vehicle-to-pedestrian,V2P)的直接通信,以及车与网络(vehicle-to-network,V2N)的通信交互等几种应用需求。如图1所示。V2V指的是车辆间的通信;V2P指的是车辆与人(包括行人、骑自行车的人、司机、或乘客)的通信;V2I指的是车辆与网络设备的通信,网络设备例如RSU,另外还有一种V2N可以包括在V2I中,V2N指的是车辆与基站/网络的通信。
4)本申请实施例涉及的资源块组可以包括多个等间隔的资源块(resource block,RB),或者说,由多个等间隔的资源块组成。举例说明,资源块组可以为NR中定义的交错资源块(interlaced resource blocks)。NR中定义了多个资源块的交错,以交错值为m为例,一个资源块组(或称为一组交错资源块)可以包括索引为{m、M+m、2M+m、3M+m、...}的资源块,其中,m∈{0,1,...,M-1}。M为大于0的整数。例如,M可以为表1给出的数值。
表1
μ M
0 10
1 5
其中,μ可以由SL部分带宽(bandwidth part,BWP)对应的子载波间隔(sub-carrier spacing,SCS)配置,例如,μ可以由表2定义。
表2
μ 子载波间隔(kHz)
0 15
1 30
2 60
3 120
…… ……
现有协议定义了两种交错资源块:①对于15kHz的子载波间隔,一个资源块组包括索引为{m,m+10,m+20,…}的RB,其中m的取值范围为{0,1,…,9}。因此,N×20MHz的频域带宽内存在10个资源块组;②对于30kHz的子载波间隔,一个资源块组包括索引为{m,m+5,m+10,…}的RB,其中m的取值范围为{0,1,…,4}。因此,N×20MHz的频域带宽内存在5个资源块组。应理解,本申请中描述的资源块组对应的M和m可以有不 同的取值,不限于上述示例。
5)先听后说(listen before talk,LBT):一种非授权频谱中的信道接入规则,指在发送数据之前,网络设备或终端设备立即在下一个可用的初始空闲信道评估(clear channel assessment,CCA)时间上监听信道是否空闲,如果信道空闲,则在随后的信道占用时间内发送数据,否则不发送数据;如果在初始CCA时间上监听信道为繁忙,或者在信道占用时间内数据未发送完,则开始扩展CCA时间,在每个扩展CCA时间间隔内检测信道是否空闲,扩展CCA时间间隔与初始CCA时间长度相同,若检测到信道空闲,记一次信道空闲,当记到G次信道空闲时在随后的信道占用时间内发送数据,否则不发送数据。其中G取值为1至q的整数,其中q为扩展CCA时间的竞争窗口长度,大于或等于4并且小于或等于32。当所在地的非授权频谱存在法规(Regulation)要求时,基于LBT的信道接入则为非授权频谱上的必选特性。LBT还分为多种类型,包括:一类LBT(Category 1 LBT),为在短暂的转换间隔(switching gap)后立即发送;二类LBT(Category 2 LBT),无随机退避(random back-off)的LBT;三类LBT(Category 3 LBT),为有固定大小竞争窗口(contention window)的随机退避的LBT;四类LBT(Category 4 LBT),为有可变大小竞争窗口的随机退避的LBT。
一般来说,当网络设备或终端设备需要发送数据时,使用四类LBT;当网络设备或终端设备需要发送重要的控制信息或同步信息时,使用二类LBT,从而使得前述控制信息或同步信息快速地发送出去。
6)第二级SCI:侧行链路通信中的SCI分为两级进行传输,第一级SCI承载于PSCCH中,第二级SCI承载于PSSCH中。其中,第一级SCI可以包括如下控制信息中的一个或者多个:优先级(priority)信息、资源分配(resource assignment)信息、资源预约周期(resource reservation period)信息、第二级SCI格式信息、调制编码方案信息等。可以使用PSCCH中的解调参考信号(demodulation reference signal,DMRS)译码第一级SCI。第二级SCI可以包括如下控制信息中的一个或者多个HARQ进程号(HARQ process number)信息、新数据指示(new data indicator,NDI)信息、冗余版本(redundancy version)信息、源标识信息、目的标识信息等。可以使用PSSCH中的DMRS译码第二级SCI。
本申请实施例中、“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一HARQ码本和第二HARQ码本,只是为了区分不同的集合,而并不是表示这两个HARQ码本的优先级或者重要程度等的不同。
前文介绍了本申请实施例所涉及到的一些名词概念,下面介绍本申请实施例涉及的技术特征。
目前,在侧行链路通信中,发送端将通过1个时频资源上的PSSCH传输1个TB,该 TB对应于1个侧形通信的HARQ进程。发送端通过SCI指示接收端该HARQ进程对应的HARQ进程号、NDI等信息。接收端在接收到SCI和关联的TB后,通过PSFCH反馈ACK或NACK,或仅在接收出错时反馈NACK,告知发送端对应于HARQ进程的TB是否正确接收。
单个PSFCH在时域上占用1个OFDM符号,在频域上占用1个RB,仅承载1比特的HARQ反馈信息。当终端设备需要反馈多个HARQ进程的HARQ反馈信息时,需要发送多个PSFCH,从而需要占用更多的通信资源,这将减少PSSCH的资源,降低传输效率。
目前,包含PSFCH资源的时隙在时域上可以是周期性的,例如,可以每L个时隙(slot)中有1个包含PSFCH资源的时隙,其中L的取值范围可以为{0,1,2,4}。当L的取值为0时,可以表示当前SL通信中不存在PSFCH,也即接收端不需要向发送端发送HARQ反馈信息。示例性的,在图2中,L的取值为4,图中示出了共12个时隙,其中第4、8、12个时隙上可以存在PSFCH。例如,接收端可以在第4个时隙上可以发送第1、2个时隙上的PSSCH各自对应的PSFCH,可以在第8个时隙上可以发送第3、4、5、6个时隙上的PSSCH各自对应的PSFCH,可以在第12个时隙上发送第7、8、9、10个时隙上的PSSCH各自对应的PSFCH。如图2所示,发送端在第2、4、6、7、8个时隙上向接收端分别发送了对应于不同HARQ进程号的PSSCH。基于上述映射关系,接收端将在第4个时隙上向发送端反馈第2个时隙上对应HARQ进程号0的PSSCH对应的PSFCH;接收端将在第8个时隙上向发送端反馈第4个时隙上对应HARQ进程号1的PSSCH对应的PSFCH,以及第6个时隙上对应HARQ进程号2的PSSCH对应的PSFCH;接收端将在第12个时隙上向发送端反馈第7个时隙上对应HARQ进程号3的PSSCH对应的PSFCH,以及第8个时隙上对应HARQ进程号4的PSSCH对应的PSFCH。
随着通信发展,侧行链路通信可以应用于非授权频谱,但是上述HARQ反馈方式无法直接应用于非授权频谱。这是因为非授权频谱中的通信资源在时域上受到COT的限制,发送端在初始(initiate)了COT之后,发送端和接收端仅能使用COT内的通信资源进行通信。这可能导致在COT尾部的若干个时隙进行传输的PSSCH在COT内不具有对应的PSFCH,使得发送端无法获取到对应于这些PSSCH的HARQ反馈信息。针对这个问题,一个可能的解决方法为,接收端主动初始一个COT来传输PSFCH,那么由于LBT中随机退避机制产生的时间随机性,侧行链路通信中PSSCH与PSFCH在时域上的映射关系(或者PSFCH的周期性)将被破坏。导致发送端无法知晓该PSFCH是否是传输给自己的,因此也无法知晓接收端是否成功接收对应的PSSCH中的TB。
此外,目前PSFCH仅提供TB级别的反馈,如果终端设备针对一个TB反馈更细粒度的HARQ反馈信息,由于目前PSFCH仅能承载1比特的HARQ反馈信息,因此,目前的HARQ反馈方法无法支持终端设备针对一个TB反馈更细粒度的HARQ反馈信息。
基于此,本申请实施例提供一种通信方法及装置,可以提高通信可靠性。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
本申请实施例提供的技术方案可以应用于在非授权频谱中进行D2D通信的场景,例如可应用于手机与AR设备、XR设备、手表等可穿戴设备间的通信,还可应用于车辆与RSU、其他车辆、人携带的手持式设备等终端设备间的V2X通信,例如LTE-V、NR V2X、智能驾驶、智能网联车等领域。D2D通信可以是NR D2D通信,也可以是LTE D2D通信。本 申请实施例也可以应用于授权频谱中,这里不做具体限定。
本申请实施例提供的技术方案可以适用于有网络覆盖或无网络覆盖的通信场景中的用户自主选择资源的模式。下面介绍本申请实施例所应用的网络架构。请参考图3-图5,为本申请实施例所应用的一种网络架构。
图3-图5包括网络设备和两个终端设备,分别为终端设备1和终端设备2。这两个终端设备均可以处于该网络设备的覆盖范围内,如图3所示;或者这两个终端设备可以只有终端设备1处于该网络设备的覆盖范围内,而终端设备2不处于该网络设备的覆盖范围内,如图4所示;或者这两个终端设备均不处于该网络设备的覆盖范围内,如图5所示。这两个终端设备之间可以通过侧行链路进行通信。当然图3-图5中的终端设备的数量只是举例,在实际应用中,网络设备可以为多个终端设备提供服务。
图3-图5中的网络设备例如为接入网设备,例如基站。其中,接入网设备在不同的系统对应不同的设备,例如在第四代移动通信技术(the 4th generation,4G)系统中可以对应eNB,在5G系统中对应5G中的接入网设备,例如gNB,或为后续演进的通信系统中的接入网设备。需要说明的是,图3-图5中的网络设备可以是可选的网元。
其中,图3-图5中的网络设备中的终端设备是以手机为例,但本申请实施例中的终端设备不限于此。
下面结合附图,对终端设备可能的结构进行介绍。
示例性的,图6示出了装置的一种可能的结构示意图。图6所示装置可以是终端设备,也可以是应用于终端设备中的芯片、通信模组、TBOX、或者其他具有本申请所示终端设备功能的组合器件、部件(或称组件)等。该装置可包括处理模块610,还可以包括收发模块620。其中,收发模块620可以是一个功能模块,该功能模块既能完成发送操作也能完成接收操作,例如收发模块620可以用于执行由终端设备所执行的发送操作和接收操作,例如,在执行发送操作时,可以认为收发模块620是发送模块,而在执行接收操作时,可以认为收发模块620是接收模块;或者,收发模块620也可以是两个功能模块,收发模块620可以视为这两个功能模块的统称,这两个功能模块分别为发送模块和接收模块,发送模块用于完成发送操作,例如发送模块可以用于执行由终端设备所执行的发送操作,接收模块用于完成接收操作,接收模块可以用于执行由终端设备所执行的接收操作。
示例性的,当该装置是终端设备时,收发模块620可包括收发器和/或通信接口。收发器可以包括天线和射频电路等。通信接口例如光纤接口。处理模块610可以是处理器,例如基带处理器,基带处理器中可以包括一个或多个中央处理单元CPU。
当该装置是具有本申请所示终端设备功能的部件时,收发模块620可以是射频单元,处理模块610可以是处理器,例如基带处理器。
当该装置是芯片系统时,收发模块620可以是芯片(例如基带芯片)的输入输出接口,处理模块610可以是芯片系统的处理器,可以包括一个或多个中央处理单元。
应理解,本申请实施例中的处理模块610可以由处理器或处理器相关电路组件实现,收发模块620可以由收发器或收发器相关电路组件实现。
一种实现方式中,处理模块610可以用于执行本申请实施例中由终端设备所执行的除了收发操作之外的操作,例如处理操作,和/或用于支持本文所描述的技术的其它过程,对由收发模块620接收的消息、信息和/或信令进行处理等。收发模块620可以用于执行本申请实施例中由终端设备所执行的接收和/或发送操作,和/或用于支持本文所描述的技术的 其它过程。可选的,处理模块610可以控制收发模块620执行接收和/或发送的操作。
图7示出了终端设备的另一种可能的结构示意图。如图7所示,该终端设备包括处理器,还可以包括存储器、射频单元(或射频电路)、天线或输入输出装置等结构。处理器主要用于对通信协议以及通信数据进行处理,以及对装置进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频单元主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏、键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图7中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元(收发单元可以是一个功能单元,该功能单元能够实现发送功能和接收功能;或者,收发单元也可以包括两个功能单元,分别为能够实现接收功能的接收单元和能够实现发送功能的发送单元),将具有处理功能的处理器视为终端设备的处理单元。如图7所示,终端设备包括处理单元720,还可以包括收发单元710。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元710中用于实现接收功能的器件视为接收单元,将收发单元710中用于实现发送功能的器件视为发送单元,即收发单元710包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元710可与收发模块620对应,或者说,收发模块620可由收发单元710实现。收发单元710用于执行本申请所示实施例中终端设备的发送操作和接收操作,和/或用于支持本文所描述的技术的其它过程。处理单元720可与处理模块610对应,或者说,处理模块610可由处理单元720实现。处理单元720用于执行本申请所示实施例中终端设备上除了收发操作之外的其他操作,例如用于执行本申请所示实施例中由终端设备所执行的接收和/或发送操作,和/或用于支持本文所描述的技术的其它过程。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题同样适用。
需要说明的是,本申请实施例中仅以时隙为时间单位进行举例说明,在具体实施例中时间单位也可以替换为其他时间单位如帧、子帧、半帧、迷你时隙或符号等,这里并不对时间单位进行限定。
对于一个终端设备而言,可能接收其他终端设备发送的数据(如TB、PSSCH),下面 将发送数据的终端设备称为发送侧终端设备,接收数据的终端设备称为接收侧终端设备。需要理解的是,发送侧终端设备和接收侧终端设备是相对而言的,发送侧终端设备也可以具有接收功能,接收侧终端设备也可以具有发送功能。
参见图8,为本申请提供的一种通信方法的流程示意图。该方法包括:
S801,第一装置向第二装置发送至少一个TB。相应的,第二装置接收来自第一装置的至少一个TB。
本申请实施例中,第一装置可以为发送侧终端设备,或者,应用于发送侧终端设备中的芯片或电路系统(例如处理器、基带芯片、模组、TBOX、或芯片系统等)。第二装置可以为接收侧终端设备,或者,应用于接收侧终端设备中的芯片或电路系统(例如处理器、基带芯片、模组、TBOX、或芯片系统等)。
其中,TB可以通过PSSCH进行传输。1个TB可以对应一个或多个码块组(code block group,CBG)。当1个TB对应一个或多个码块组时,第二装置能够以码块组为单位进行HARQ反馈。例如,第一装置向第二装置发送1个包含4个码块组的TB,第二装置成功接收了其中第一个、第二个、第四个码块组,但没有成功接收其中第三个码块组。此时,第二装置可以依次发送ACK、ACK、NACK、ACK,从而告知第一装置需要重新传输第三个码块组。
其中,步骤S801中,“向第二装置发送至少一个TB”可以由第一装置的收发模块620执行,或者,也可以由第一装置的处理模块610通过控制收发模块620执行的。“接收来自第一装置的至少一个TB”可以由第二装置的收发模块620执行,或者,也可以由第二装置的处理模块610通过控制收发模块620执行的。
S802,第二装置在第一侧行链路信道中发送第一HARQ码本。相应的,第一装置接收该第一HARQ码本。
其中,步骤S802中,“接收第一HARQ码本”可以由第一装置的收发模块620执行,或者,也可以由第一装置的处理模块610通过控制收发模块620执行的。“发送第一HARQ码本”可以由第二装置的收发模块620执行,或者,也可以由第二装置的处理模块610通过控制收发模块620执行的。
可选的,在步骤S802中,第一HARQ码本的发送方式可以由第二装置的处理模块610确定。相应的,第一HARQ码本的接收方式可以由第一装置的处理模块610确定。
其中,第一HARQ码本用于确定针对上述至少一个传输块的至少一个HARQ反馈信息,其中,一个传输块对应至少一个HARQ反馈信息。例如,第一HARQ码本可以包括针对上述至少一个传输块的至少一个HARQ反馈信息,或者,也可以包括用于指示针对上述至少一个传输块的至少一个HARQ反馈信息的指示信息等。
“针对上述至少一个传输块的至少一个HARQ反馈信息”也可以描述为,对应于上述至少一个传输块的至少一个HARQ反馈信息,或者关联与上述至少一个传输块的至少一个HARQ反馈信息。
示例性的,第一侧行链路信道为以下中的至少一个:侧行链路数据信道、侧行链路控制信道、侧行链路反馈信道。侧行链路数据信道可以为PSSCH。侧行链路控制信道可以为PSCCH。侧行链路反馈信道可以为PSFCH。
步骤S802的实施方式,将在下文结合第一侧行链路信道的具体示例进行详细说明。
一种可能的实施方式,当第二装置通过第一侧行链路信道向第一装置发送第一HARQ 码本时,第二装置可以通过二类LBT抢占COT,第一侧行链路信道处于该COT内。通过该方式,当第二装置不需要发送侧行链路数据而仅需要向第一装置发送HARQ反馈信息时,第二装置可以通过无随机退避的二类LBT更快地接入信道,使第一装置尽早获取到HARQ反馈信息,从而可以降低通信时延,提升通信性能。
本申请实施例中提供一种生成HARQ码本并通过侧行链路信道向发送侧装置进行HARQ反馈的方法,可以在侧行链路通信系统中一次性针对多个SL HARQ进程进行HARQ反馈,从而可以提升SL HARQ反馈的效率。
一种可能的实施方式,第二装置可以在第一装置的第一指示信息的触发下发送第一HARQ码本,第一指示信息用于指示第二装置反馈HARQ信息,即指示第二装置发送第一HARQ码本。例如,第二装置在发送第一HARQ码本之前,可以接收来自第一装置的第一指示信息。可选的,该第一指示信息可以通过SCI中的1比特携带,该SCI为第一装置向第二装置发送,其中,该SCI可以是第一级SCI(1st stage SCI),也可以是第二级SCI(2nd stage SCI)。
通过第一装置向第二装置发送第一指示信息的方式,使得第一装置和第二装置对齐对第一HARQ码本的理解,从而可以进一步提升通信性能。
一种可能的实施方式,第二装置可以在第一装置的第二指示信息的触发下发送第一HARQ码本,第二指示信息用于指示上述一个或多个TB对应的一个或多个SL HARQ进程的标识。例如,第二装置在发送第一HARQ码本之前,可以接收来自第一装置的第二指示信息。可选的,该第二指示信息为媒体接入控制(media access control,MAC)控制单元(control element,CE),或者,无线资源控制(radio resource control,RRC)信令参数。
一种实现方式中,该第二指示信息可以通过位图(bitmap)的方式实现,该位图的第i位用于指示第一装置是否需要SL HARQ进程号为i的SL HARQ进程的HARQ反馈信息。举例说明,第一装置通过SL HARQ进程号为{0,1,2,3,…,7}的共8个SL HARQ进程向第二装置发送SL数据,当第一装置仅需要第二装置反馈SL HARQ进程号为0、1、5、6、7共5个SL HARQ进程的HARQ反馈信息时,第一装置可以通过MAC CE向第二装置发送11000111的位图,也即第二指示信息。第二装置在接收到第二指示信息后,将仅根据SL HARQ进程号为0、1、5、6、7共5个SL HARQ进程生成HARQ码本并反馈给第一装置。
通过上述方式,第一装置可以令第二装置有针对性地进行HARQ反馈,而不需要持续地将所有SL HARQ进程的HARQ反馈信息发送给第一装置,从而可以降低传输资源开销,提升资源利用率。
需要说明的是,第二指示信息也可以隐式指示第一指示信息,例如,若第二装置接收到第二指示信息,可以认为第一装置指示其反馈HARQ信息,即可以认为第一装置向第二装置发送了第一指示信息。若第二装置未接收到第二指示信息,可以认为第一装置未指示其反馈HARQ信息,即可以认为第一装置未向第二终端发送第一指示信息。
一种可能的实施方式,第二装置可以在第一装置的第三指示信息的触发下发送第一HARQ码本,第三指示信息用于指示一个或多个传输块对应的一个或多个SL HARQ进程的数量。例如,第二装置在发送第一HARQ码本之前,可以接收来自第一装置的第三指示信息。可选的,该第三指示信息为MAC CE,或者,RRC信令参数。
应理解,第一装置在侧行链路传输中使用的SL HARQ进程的个数存在最大值,例如,该最大值可以为8或16。第二装置在生成HARQ码本时,可以确定根据SL HARQ进程的 个数确定HARQ码本的大小。
通过上述方式,第一装置通过将具体的SL HARQ进程的个数指示给第二装置,有利于第二装置正确地生成HARQ码本,有利于第一装置和第二装置对于HARQ码本所包括的多个比特保持共识,从而可以进一步提升通信性能。
需要说明的是,第三指示信息也可以隐式指示第一指示信息,例如,若第二装置接收到第三指示信息,可以认为第一装置指示其反馈HARQ信息,即可以认为第一装置向第二装置发送了第一指示信息。若第二装置未接收到第三指示信息,可以认为第一装置未指示其反馈HARQ信息,即可以认为第一装置未向第二终端发送第一指示信息。
通过上述第一指示信息或第二指示信息或第三指示信息,有利于第一装置和第二装置对于HARQ码本所包括的多个比特保持共识。
图8针对第二装置向单个发送侧装置(即第一装置)反馈HARQ码本的场景进行了方法介绍。在部分场景下,第二装置可能实际上需要向多个发送侧终端设备反馈HARQ码本。在该部分场景中,第二装置可以通过第一侧行链路信道向多个发送侧终端设备发送HARQ码本。为了便于对该方案的理解,下面将在结合第一侧行链路信道的具体示例对步骤S802的实施方式进行说明时,一并介绍第二装置向多个终端设备反馈HARQ码本的方式。
应理解,当多个发送侧终端设备向第二装置发送TB时,多个发送侧终端设备发送第一指示信息、第二指示信息、第三指示信息的过程可以参阅第一装置发送第一指示信息、第二指示信息、第三指示信息的过程,重复之处不再赘述。
下面结合第一侧行链路信道的三个示例,分别为第一侧行链路信道为PSSCH(即示例一)、第一侧行链路信道为PSCCH(即示例二)、第一侧行链路信道为PSFCH(即示例三),针对第二装置向单个发送侧终端设备反馈HARQ码本的场景、以及第二装置向多个终端设备反馈HARQ码本的场景对本申请实施例提供的方案进行介绍。
示例一:第二装置在PSSCH中向第一装置发送第一HARQ码本。
下面针对第二装置向单个发送侧终端设备反馈HARQ码本的场景进行介绍。
一种具体的实现方式中,第二装置可以在PSSCH的第二级SCI中发送第一HARQ码本。需要说明的是,在第二装置向第一装置的一次同时含有PSCCH和PSSCH的侧行链路传输中,共存在三种向第一装置发送HARQ码本的实现方式:第一种,第二装置在PSCCH的第一级SCI中发送第一HARQ码本;第二种,第二装置在PSSCH的第二级SCI中发送第一HARQ码本;第三种,第二装置在PSSCH的侧行链路数据中发送第一HARQ码本。本申请实施例采用第二种实现方式,其原因有如下两个方面。一方面,第二种实现方式相比于第一种实现方式,可以降低第一级SCI的译码复杂度。另一方面,现有协议技术中为了提升第二级SCI的译码性能,第二级SCI通过QPSK进行调制,而侧行链路数据一般通过QPSK及更高阶的调制方式以实现高速率的传输。因此,第二种实现方式相比于第三种实现方式,可以通过低阶调制提升HARQ码本在第一装置处的译码可靠性。
可选的,承载第一HARQ码本的第二级SCI可以使用一种新型的第二级SCI格式(format),下文称为第一格式。第一格式可以包括用于承载HARQ码本的第一字段。在该方式中,第二级SCI的格式至少包括上述第一格式和第二格式,其中,第二格式不包括用于承载HARQ码本的字段。
一种举例说明中,第一格式可以包括如下三个字段:用于承载HARQ码本的第一字段、用于承载源标识(source identity,source ID)的第二字段以及用于承载目的标识(destination  ID)的第三字段。从而,上述第二级SCI的第一字段可以承载第一HARQ码本,第二字段可以承载第二装置的标识,第三字段可以承载第一装置的标识。通过该方式,第一装置在接收到该第二级SCI时,可以通过源标识判断该HARQ码本是否来自第二装置,还可以通过目的标识判断该HARQ码本是否是发送给自己的,进而基于该HARQ码本确定已经发送的TB是否被第二装置正确地接收。
在该实现方式中,第二装置可以通过第四指示信息指示该第二级SCI的格式为第一格式。可选的,第四指示信息可以携带在第一级SCI中。例如,第二装置可以在PSCCH中发送第一级SCI,其中,PSCCH与承载第一HARQ码本的PSSCH位于同一个时隙,且该第一级SCI指示第二级SCI为第一格式。
可选的,在通过PSSCH中的第二级SCI发送第一HARQ码本的实施方式中,该PSSCH可以仅用于传输第二级SCI和参考信号。需要说明的是,目前侧行链路通信系统中第二级SCI和参考信号仅可以作为PSSCH的部分内容,无法作为全部内容,也即PSSCH一定包括发送端向接收端发送的侧行链路数据,如应用层业务类信息。当PSSCH中不包括前述侧行链路数据时,现有协议技术将无法提供合理的帧结构来传输PSCCH、第二级SCI和参考信号。例如,现有协议规定第二级SCI在时域上映射的第一个OFDM符号是PSSCH中第一个含有DMRS的OFDM符号,因此当PSSCH中的第一个OFDM符号不存在DMRS时,PSSCH中不包括侧行链路数据将导致发送侧终端设备在该OFDM符号上不发送任何信号,这在非授权频谱的通信中将潜在地造成发送侧终端设备的信道被其他终端设备占用的问题。针对这个问题,在本申请实施例中,当上述PSSCH仅用于传输第二级SCI和参考信号时,可以额外规定第二级SCI在时域上映射的第一个OFDM符号是PSSCH中第一个OFDM符号。
此外,由于PSSCH中不存在侧行链路数据,第二级SCI可以映射到PSSCH中除了被参考信号占用的资源单元(resource element,RE)外的任意RE上。一种举例说明中,第二级SCI可以映射在PSSCH中除了被参考信号占用的RE外的所有RE上。该举例说明中,第一级SCI可以不用指示第二级SCI所占用的RE数。
通过上述方式,即使第二装置没有侧行链路数据向第一装置进行传输,仍然可以通过PSSCH以合理的帧结构向第一装置发送第一HARQ码本。
为了便于理解,这里对第二装置通过第二级SCI发送第一HARQ码本进行举例说明。
如图9所示,第二装置可以在同一个时隙中发送PSCCH和PSSCH,其中,PSCCH用于传输第一级SCI;PSSCH用于传输第二级SCI和参考信号,第二级SCI中承载第一HARQ码本。该第一级SCI可以指示第二级SCI为第一格式,第一格式的第二级SCI通过第一字段承载第一HARQ码本,通过第二字段承载源标识,通过第三字段承载目的标识。第二级SCI可以映射在PSSCH中除了被参考信号占用的RE外的所有RE上。
此外,该发送PSCCH和PSSCH的时隙可以包括自动增益控制(automatic gain control,AGC)符号和/或间隔(GAP)符号,其中,AGC符号用于调整接收模块的放大器等硬件参数以提升接收信号的质量;GAP符号不传输信号,用于接收模块的收发转换。
需要说明的是,图9中PSCCH和PSSCH占用的频域资源虽然以连续的频域资源示出,但是并不意味着第二装置的PSCCH和PSSCH在资源映射时是映射到连续的频域资源的,在具体实施中,PSCCH和PSSCH可以映射到离散的频域资源上,例如映射在多个RB上,如图10所示,也可以映射在连续的频域资源上,这里不做具体限定。可以理解的,图10 仅以映射在资源块组上为例,但是并不限定为资源块组。
在上述实施方式中,第二装置向第一装置反馈第一HARQ码本时,第二装置可以根据如下公式确定第二级SCI的编码调制符号(coded modulation symbol)的数目Q SCI2,或者,也可以理解为第二级SCI的编码调制符号的数目满足如下公式:
Figure PCTCN2022112602-appb-000003
其中,L 1为第二级SCI在当前时隙中占用的第一个OFDM符号的索引,L 2为第二级SCI在当前时隙中占用的最后一个OFDM符号的索引;
Figure PCTCN2022112602-appb-000004
表示在索引为l的OFDM符号上,第二级SCI的编码调制符号的数目。应理解,L 2-L 1+1即为PSSCH在当前时隙中占用的OFDM符号数目。例如,对于包括14个OFDM符号的时隙,各个OFDM符号的索引为{0,1,……,13},L 1=1,L 2=12,此时PSSCH在当前时隙中占用的OFDM符号数目为L 2-L 1+1=12,也就是说承载于PSSCH中的第二级SCI在当前时隙中占用索引为{1,2,……,12}的12个OFDM符号。
需要说明的是,上述确定编码调制符号的数目的过程,也可以称为速率匹配(rate matching)。应理解,对于SCI的资源映射,一个编码调制符号将映射到一个RE上,也即,一个编码调制符号通过一个RE来传输,因此第二级SCI的编码调制符号的数目可以与第二级SCI占用的RE的数目相同。
上文介绍了第二装置通过PSSCH向单个发送侧终端设备反馈HARQ码本的方式,在第二装置向多个发送侧终端设备反馈HARQ码本的场景中,第二装置通过PSSCH向多个终端设备反馈HARQ码本的方式与第二装置通过PSSCH向单个发送侧终端设备反馈HARQ码本的方式类似,区别在于,在第二装置向单个发送侧终端设备反馈HARQ码本的场景中,第二装置在PSSCH中发送一个HARQ码本,在第二装置向多个发送侧终端设备反馈HARQ码本的场景中,第二装置在PSSCH中发送多个HARQ码本,该多个HARQ码本为该多个发送侧终端设备各自对应的HARQ码本。一个HARQ码本包括针对来自对应发送侧终端设备的一个或多个TB的HARQ反馈信息。重复之处可以参阅前文的描述,这里不再赘述。
以K个HARQ码本,K为大于1的整数为例,第二装置在PSSCH中发送K个HARQ码本时,具体可以采用时分复用(time division multiplexing,TDM)或者频分复用(frequency division multiplexing,FDM)的方式在PSSCH中发送K个HARQ码本。应理解,在本申请实施例中,多个HARQ码本间的TDM,其含义是承载多个HARQ码本的多个信道是TDM的,或者,承载多个HARQ码本的多个时频资源是TDM的;多个HARQ码本间的FDM,其含义是承载多个HARQ码本的多个信道是FDM的,或者,承载多个HARQ码本的多个时频资源是FDM的。
一种可能的实现方式,在时分复用的实施方式中,该K个HARQ码本中每个HARQ码本可以占用至少一个连续的时隙,且该K个HARQ码本占用的时隙互不重叠。在该实现方式中,不同的HARQ码本可以承载于不同的第二级SCI中,因此,K个HARQ码本可以分别承载在K个连续的时隙上的K个第二级SCI中。
另一种可能的实现方式,在时分复用的实施方式中,该K个HARQ码本共同占用一个时隙。在该实现方式中,第二装置在PSSCH中通过K个第二级SCI发送K个HARQ码本时,第二装置可以通过如下公式确定第k个第二级SCI的编码调制符号的数目,或者, 也可以理解为第k个第二级SCI的编码调制符号的数目满足如下公式,k={1,2,……,K}:
Figure PCTCN2022112602-appb-000005
其中,L k-1表示第k个第二级SCI在当前时隙中占用的第一个OFDM符号的索引,L k-1表示第k个第二级SCI在当前时隙中占用的最后一个OFDM符号的索引;M SCI2(l)表示在索引为l的OFDM符号上,第二级SCI的编码调制符号的数目。应理解,L k-L k-1即为第k个第二级SCI占用的OFDM符号数目。对于第1个第二级SCI在当前时隙中占用的第一个OFDM符号的索引,第二装置可以自行确定L 0的值,例如,L 0=1为协议给定的值。
可选的,对于L k,k={2,3,……,K}的情况,各个第二级SCI对应的L k的值可以通过RRC信令配置。例如,网络设备可以通过RRC信令配置各个第二级SCI占用的最后一个OFDM符号的索引,即各个L k-1的值。又例如,网络设备可以通过RRC信令直接配置各个L k的值。再例如,网络设备可以通过RRC信令配置各个第二级SCI占用的OFDM符号的数目,即各个L k-L k-1的值。
可选的,对于L k,k={2,3,……,K}的情况,第二装置通过承载于PSCCH中的第一级SCI,指示各个第二级SCI对应的L k的值。例如,第一级SCI指示各个第二级SCI占用的最后一个OFDM符号的索引,即各个L k-1的值。又例如,第一级SCI直接指示各个L k的值。再例如,第一级SCI指示各个第二级SCI占用的OFDM符号的数目,即各个L k-L k-1的值。
一种举例说明,在图11中,假设PSSCH占用的OFDM符号数目为12,PSCCH占用的OFDM符号数目为3,协议规定L 0=1(即第1个第二级SCI在当前时隙中占用的第一个OFDM符号的索引为1),来自网络设备的RRC信令配置各个L k-1的值为L 1-1=4(即第1个第二级SCI在当前时隙中占用的最后一个OFDM符号的索引为4,第2个第二级SCI在当前时隙中占用的第一个OFDM符号的索引为5),L 2-1=6(即第2个第二级SCI在当前时隙中占用的最后一个OFDM符号的索引为6,第3个第二级SCI在当前时隙中占用的第一个OFDM符号的索引为7),L 3-1=8(即第3个第二级SCI在当前时隙中占用的最后一个OFDM符号的索引为8,第4个第二级SCI在当前时隙中占用的第一个OFDM符号的索引为9),L 4-1=10(即第4个第二级SCI在当前时隙中占用的最后一个OFDM符号的索引为10,第5个第二级SCI在当前时隙中占用的第一个OFDM符号的索引为11)。根据该配置,第二装置可以在一次PSSCH的传输中向至多K=5个发送侧终端设备反馈HARQ码本,其中,第二装置在当前时隙中的14个OFDM符号中的编号为l={1,2,3,4}的L 1-L 0=4个OFDM符号上传输第1个第二级SCI,在编号为l={5,6}的L 2-L 1=2个OFDM符号上传输第2个第二级SCI,在编号为l={7,8}的L 3-L 2=2个OFDM符号上传输第3个第二级SCI,在编号为l={9,10}的L 4-L 3=2个OFDM符号上传输第4个第二级SCI,在编号为l={11,12}的L 5-L 4=2个OFDM符号上传输第5个第二级SCI。
一种可能的实现方式,在频分复用的实施方式中,K个HARQ码本中每个HARQ码本可以占用一块连续的频域资源,该K个HARQ码本占用的频域资源互不重叠且相邻,如图12所示。或者,该K个HARQ码本分别占用至少一个资源块组,且该K个HARQ码本占用的资源块互不重叠,如图13所示。在该实施方式中,该K个HARQ码本承载在 一个第二级SCI中,也可以分别承载在K个第二级SCI中。
第二装置通过第一侧行链路信道向K个发送侧终端设备发送K个HARQ码本时,第二装置还可以向K个发送侧终端设备发送包括了K个目的标识的SCI,该K个目的标识与K个HARQ码本间存在一一对应关系。即,上述第二级SCI中可以携带K个目的标识,例如,上述第二级SCI的第三字段可以承载K个目的标识。
应理解,侧行链路通信系统中的终端设备在物理层存在16比特的目的标识,终端设备可以根据该目的标识判断控制信息和/或数据信息和/或反馈信息是否是传输给自己的。还应理解,在现有技术中,单次侧行链路传输使用的SCI仅可以包括1个目的标识。利用本发明的方法,当第二装置需要向K个发送侧终端设备反馈HARQ码本时,在用于传输K个HARQ码本的第一侧行链路信道中包括K个目的标识的SCI,从而通过第一侧行链路信道同时向K个发送侧终端设备反馈HARQ码本,可以提高第二装置进行HARQ反馈的效率。
示例二:第二装置在PSCCH中向第一装置发送第一HARQ码本。
下面针对第二装置向单个发送侧终端设备反馈HARQ码本的场景进行介绍。
在本示例中,第二装置可以向第一装置发送未关联PSSCH的独立(standalone)PSCCH,即在发送该PSCCH的时隙中可以不包括PSSCH。通过该方式可以加快第一装置接收到HARQ反馈信息的速度。
一种可能的实现方式,PSCCH的频域带宽可以等于COT的频域带宽。例如,PSCCH的频域带宽为N×L MHz,其中,N为正整数,L为正整数。例如L为20,则PSCCH的频域带宽为N×20MHz。
应理解,工作于非授权频谱的终端设备在接入信道时的频域带宽需要为20MHz的正整数倍,诸如20MHz,40MHz,60MHz和80MHz等,则通过令PSCCH的频域带宽为N×20MHz,可以避免其他工作于非授权频谱的终端设备因侦听到信道空闲而接入信道并产生干扰。还应理解,在本示例中,PSCCH的频域带宽为N×20MHz,并不意味着PSCCH占满N×20MHz中的所有频域资源,PSCCH可以仅占用N×20MHz中的部分频域资源,其中,PSCCH的起始频率与结束频率之间的间隔相比于N×20MHz可以达到80%及以上。
一种可能的实现方式,PSCCH的时域长度可以为M个OFDM符号,M等于P-p,其中,P为一个时隙中OFDM符号的数量,p为时隙中被ACG、GAP占用的符号的数量,例如,一个时隙包括14个OFDM符号,其中,ACG占用1个符号,GAP占用1个符号,则M=12。又例如,一个时隙包括12个OFDM符号,其中,ACG占用1个符号,GAP占用1个符号,则M=10。
为了便于理解,这里对第二装置通过PSCCH发送第一HARQ码本进行举例说明。
以一个时隙包括14个OFDM符号为例,如图14所示,第二装置向第一装置发送PSCCH,该PSCCH的时域长度为14-2=12个OFDM符号,该PSCCH用于传输SCI的编码比特和第一HARQ码本的编码比特,该SCI可以包括第一级SCI和第二级SCI。在PSCCH前存在AGC符号,在PSCCH后存在GAP符号。需要说明的是,图14中PSCCH占用的频域资源虽然以连续的频域资源示出,但是并不意味着第二装置的PSCCH在资源映射时是映射到连续的频域资源的,在具体实施中,PSCCH可以映射到频域上离散的频域资源上,例如映射在多个RB上,如图15所示,也可以映射在连续的频域资源上,这里不做具体限定。可以理解的,图15仅以映射在交错资源块上为例,但是并不限定为交错资源块。
示例三:第二装置在PSFCH中向第一装置发送第一HARQ码本。
下面针对第二装置向单个发送侧终端设备反馈HARQ码本的场景进行介绍。
在示例中,第二装置可以在PSFCH中发送第一HARQ码本,并在PSCCH中发送PSFCH对应的源标识和目的标识,其中,侧行链路反馈信道与侧行链路控制信道位于同一个时隙。可选的,该时隙可以不包括PSSCH。
上述方式中,通过在同一个时隙中发送PSFCH与PSCCH,可以通过PSCCH指示源标识、目的标识等与第一HARQ码本相关的指示信息,使第一装置可以根据PSCCH判断该HARQ码本是否来自第二装置,以及是否为发给自身的HARQ码本,若该HARQ码本是第二装置发送给自身的,则从PSFCH获取来自第二装置的第一HARQ码本,进而基于该第一HARQ码本确定已经发送的TB是否被第二装置正确地接收。
在本示例中,PSFCH与PSCCH可以时分复用也可以频分复用。
一种可能的实现方式,在时分复用的实施方式中,PSFCH可以占用Q1个符号,PSCCH可以占用Q2个符号,且PSFCH占用的符号与PSCCH占用的符号均不重叠。其中,Q1+Q2=P-p,其中,P为一个时隙中OFDM符号的数量,p为时隙中被ACG、GAP占用的符号的数量。例如,一个时隙包括14个OFDM符号,其中,ACG占用1个符号,GAP占用1个符号,则Q1+Q2=12。又例如,一个时隙包括12个OFDM符号,其中,ACG占用1个符号,GAP占用1个符号,则Q1+Q2=10。
举例说明,假设PSCCH可以占用2个或者3个OFDM符号,即Q2的取值范围为{2,3},则PSFCH可以占用7个或8个或9个或10个符号,即Q1的取值范围为{7,8,9,10}。具体的,若1个时隙包括14个符号,ACG占用1个符号,GAP占用1个符号,PSCCH占用2个OFDM符号,则PSFCH占用10个符号,PSCCH占用3个OFDM符号,则PSFCH占用9个符号。若1个时隙包括12个符号,ACG占用1个符号,GAP占用1个符号,PSCCH占用2个OFDM符号,则PSFCH占用8个符号,PSCCH占用3个OFDM符号,则PSFCH占用7个符号。
在该实施方式中,PSFCH和PSCCH的频域带宽可以相同,均为N×L MHz,其中,N为正整数,L为正整数。例如L为20,则上述PSFCH或上述PSCCH的频域带宽为N×20MHz。通过令上述PSFCH或上述PSCCH的频域带宽为N×20MHz,可以使得第二装置在完成PSCCH的发送后,继续发送相同频域带宽的PSFCH。应理解,当PSCCH的频域带宽小于PSFCH的频域带宽时,例如上述PSCCH的频域带宽为N1×20MHz,上述PSFCH的频域带宽为N2×20MHz,其中N1<N2,则第二装置在发送PSCCH时无法保证在(N2-N1)×20MHz的带宽上也占用信道,潜在地使得工作于非授权频谱的终端设备因侦听到(N2-N1)×20MHz的带宽的信道处于空闲状态而接入信道,进而对后续频域带宽为N2×20MHz的PSFCH产生干扰。因此,通过令上述PSFCH或上述PSCCH的频域带宽为N×20MHz,可以避免其他工作于非授权频谱的终端设备因侦听到信道空闲而接入信道并产生干扰。
在本示例中,PSCCH(或者PSFCH)的频域带宽为N×L MHz,并不意味着PSCCH(或者PSFCH)占满N×L MHz中的所有频域资源,PSCCH(或者PSFCH)可以仅占用N×L MHz中的部分频域资源,其中,PSCCH(或者PSFCH)的起始频率与结束频率之间的间隔相比于N×L MHz可以达到80%及以上。
为了便于理解,这里对PSFCH和PSCCH时分复用进行举例说明。在该举例说明中,假设一个时隙包括14个OFDM符号,ACG占用1个符号,GAP占用1个符号,PSCCH 占用3个符号,PSFCH占用9个符号。如图16所示。
需要说明的是,图16中PSFCH(或者PSCCH)占用的频域资源虽然以连续的频域资源示出,但是并不意味着第二装置的PSFCH(或者PSCCH)在资源映射时是映射到连续的频域资源的,在具体实施中,PSFCH(或者PSCCH)可以映射到频域上离散的频域资源上,例如映射在多个RB上,如图17所示,也可以映射在连续的频域资源上,这里不做具体限定。可以理解的,图17仅以映射在交错资源块上为例,但是并不限定为交错资源块。
一种可能的实现方式,在频分复用的实施方式中,PSFCH与PSCCH可以分别占用一块连续的频域资源,该PSFCH与PSCCH占用的频域资源互不重叠且相邻,如图18所示。
或者,该PSFCH与PSCCH分别占用至少一个资源块组,且该PSFCH与PSCCH占用的资源块互不重叠。例如,如图19所示,以30kHz的子载波间隔为例,一个资源块组包括索引为{m,m+5,m+10,…}的RB,其中m的取值范围为{0,1,…,4}。因此,N×20MHz的频域带宽内存在5个资源块组。第二装置可以使用包括了索引为{0,5,10,…}的RB这1个资源块组发送PSCCH,使用包括了索引为{1,6,11,…}的资源块组以及包括了索引为{2,7,12,…}的资源块组这2个资源块组发送PSFCH。
在该实施方式中,上述PSFCH和上述PSCCH的时域长度可以均为M个OFDM符号,M等于P-p,其中,P为一个时隙中OFDM符号的数量,p为时隙中被ACG、GAP占用的符号的数量,例如,一个时隙包括14个OFDM符号,其中,ACG占用1个符号,GAP占用1个符号,则M=12。又例如,一个时隙包括12个OFDM符号,其中,ACG占用1个符号,GAP占用1个符号,则M=10。
需要说明的是,图18中PSFCH(或者PSCCH)占用的频域资源虽然以连续的频域资源示出,但是并不意味着第二装置的PSFCH(或者PSCCH)在资源映射时是映射到连续的频域资源的,在具体实施中,PSFCH(或者PSCCH)可以映射到频域上离散的频域资源上,例如映射在多个RB上,如图19和图20所示,也可以映射在连续的频域资源上,这里不做具体限定。可以理解的,在图19中,PSCCH占用1个资源块组,PSFCH占用2个资源块组。在图20中,PSCCH和PSFCH共同占用2个资源块组。图19和图20仅以映射在交错资源块上为例,但是并不限定为交错资源块。
在该实施方式中,上述PSFCH和上述PSCCH的频域带宽和为N×L MHz,例如L为20,则上述PSFCH和上述PSCCH的频域带宽和为N×20MHz。通过令上述PSFCH和上述PSCCH的频域带宽和为N×L MHz,可以避免其他工作于非授权频谱的终端设备因侦听到信道空闲而接入信道并产生干扰。
在本示例中,上述PSFCH和上述PSCCH的频域带宽和为N×L MHz,并不意味着上述PSFCH和上述PSCCH占满N×L MHz中的所有频域资源,上述PSFCH和上述PSCCH可以仅占用N×L MHz中的部分频域资源,其中,被上述PSFCH和上述PSCCH占用的资源的起始频率与结束频率之间的间隔相比于N×L MHz可以达到80%及以上。
进一步的,PSCCH和PSFCH通过使用交错资源块的方式频分复用,可以保证终端设备占用被分配的频带的80%以上的带宽,满足非授权频谱的法规要求。
通过上述方式,可以简化第一装置的检测过程,使其更容易地检测出第二装置传输PSCCH和PSFCH的RB,从而可以提高控制信息和HARQ码本的传输可靠性。
上文介绍了第二装置通过PSFCH向单个发送侧终端设备反馈HARQ码本的方式,在 第二装置向多个发送侧终端设备反馈HARQ码本的场景中,第二装置通过PSFCH向多个发送侧终端设备反馈HARQ码本的方式与第二装置通过PSFCH向单个发送侧终端设备反馈HARQ码本的方式类似,区别在于,在第二装置向单个发送侧终端设备反馈HARQ码本的场景中,第二装置在PSFCH中发送一个HARQ码本,在第二装置向多个发送侧终端设备反馈HARQ码本的场景中,第二装置在PSFCH中发送多个HARQ码本,该多个HARQ码本为该多个发送侧终端设备各自对应的HARQ码本。重复之处可以参阅前文的描述,这里不再赘述。
以K个HARQ码本,K为大于1的整数为例,第二装置在PSFCH中发送K个HARQ码本时,具体可以采用时分复用或者频分复用的方式在PSFCH中发送K个HARQ码本。
一种可能的实现方式,在时分复用的实施方式中,该K个HARQ码本中每个HARQ码本可以占用至少一个连续的时隙,且该K个HARQ码本占用的时隙互不重叠。示例性的,如图21所示,K的值为3,即第二装置需要向3个发送侧终端设备反馈HARQ码本。在本示例中,第二装置初始的COT包括3个时隙。第二装置可以使用第1个时隙向编号为1的发送侧终端设备反馈HARQ码本,使用第2个时隙向编号为2的发送侧终端设备反馈HARQ码本,使用第3个时隙向编号为3的发送侧终端设备反馈HARQ码本。
一种可能的实现方式,在频分复用的实施方式中,可以通过PSFCH中的K个时频资源承载K个HARQ码本,该K个时频资源在时域上相同,在频域上互不重叠,其中,一个频域资源承载一个HARQ码本,可以理解,这里不限定K个频域资源的资源大小相同。
可选的,上述K个频域资源在频域上可以是连续,如图22或图23所示。或者,上述K个频域资源中的任一频域资源在频域上包括至少一个资源块组,如图24或图25或图26所示。示例性的,在图24、图25、图26中,假设K的值为3,即第二装置需要向3个发送侧终端设备反馈HARQ码本,假设一个资源块组包括索引为{m,m+5,m+10,…}的RB,其中m的取值范围为{0,1,…,4}。
一种举例说明,在图24中,PSCCH和PSFCH频分复用且占用4个资源块组。第二装置可以使用包括了索引为{0,5,10,…}的RB的1个资源块组发送PSCCH。第二装置可以使用包括了索引为{1,6,11,…}的RB的1个资源块组向编号为1的发送侧终端设备发送HARQ码本,即第1个HARQ码本。第二装置可以使用包括了索引为{2,7,12,…}的RB的1个资源块组向编号为2的发送侧终端设备发送HARQ码本,即第2个HARQ码本。第二装置可以使用包括了索引为{3,8,13,…}的RB的1个资源块组向编号为3的发送侧终端设备发送HARQ码本,即第3个HARQ码本。
一种举例说明,在图25中,PSCCH和PSFCH频分复用且占用3个资源块组。第二装置可以使用包括了索引为{0,5,10,…}、{1,6,11,…}、{2,7,12,…}的RB的3个资源块组中的部分RB发送PSCCH,图中使用索引为{0,1,2,5,6,7}的6个RB仅为示例,这里不做具体限定。第二装置可以使用包括了索引为{0,5,10,…}的RB的1个资源块组中的除被PSCCH占用的RB外的剩余部分RB向编号为1的发送侧终端设备发送HARQ码本,即第1个HARQ码本。第二装置可以使用包括了索引为{1,6,11,…}的RB的1个资源块组中的除被PSCCH占用的RB外的剩余部分RB向编号为2的发送侧终端设备发送HARQ码本,即第2个HARQ码本。第二装置可以使用包括了索引为{2,7,12,…}的RB的1个资源块组中的除被PSCCH占用的RB外的剩余部分RB向编号为3的发送侧终端设备发送HARQ码本,即第3个HARQ码本。
一种举例说明,在图26中,PSCCH和PSFCH时分复用且占用3个资源块组。第二装置可以使用包括了索引为{0,5,10,…}、{1,6,11,…}、{2,7,12,…}的RB的3个资源块组中的部分时域资源,如3个OFDM符号,发送PSCCH。第二装置可以使用包括了索引为{0,5,10,…}的RB的1个资源块组中的除被PSCCH占用的时域资源外的剩余部分时域资源向编号为1的发送侧终端设备发送HARQ码本,即第1个HARQ码本。第二装置可以使用包括了索引为{1,6,11,…}的RB的1个资源块组中的除被PSCCH占用的时域资源外的剩余部分时域资源向编号为2的发送侧终端设备发送HARQ码本,即第2个HARQ码本。第二装置可以使用包括了索引为{2,7,12,…}的RB的1个资源块组中的除被PSCCH占用的时域资源外的剩余部分时域资源向编号为3的发送侧终端设备发送HARQ码本,即第3个HARQ码本。
承载K个HARQ码本的K个时频资源时分复用和频分复用的方式可以参阅上述示例一中承载K个HARQ码本的K个时频资源时分复用和频分复用的方式,这里不再重复赘述。
在该实施方式中,可以使用1个共享的PSCCH为K个时频资源提供物理层控制信息,而该K个时频资源可以分别独立地编码并承载针对不同发送侧终端设备的HARQ码本,使得第二装置可以在单个时域资源上同时向多个发送侧终端设备反馈HARQ码本,可以降低HARQ反馈的时延,还可以降低HARQ反馈的开销,提高非授权频谱的资源利用效率。
一种可能的实现方式,第二装置通过第一侧行链路信道向K个发送侧终端设备发送K个HARQ码本时,第二装置还可以向K个发送侧终端设备发送包括了K个目的标识的SCI,该K个目的标识与K个HARQ码本间存在一一对应关系。即,上述PSCCH中可以携带K个目的标识。
应理解,侧行链路通信系统中的终端设备在物理层存在16比特的目的标识,终端设备可以根据该目的标识判断控制信息和/或数据信息和/或反馈信息是否是传输给自己的。还应理解,在现有技术中,单次侧行链路传输使用的SCI仅可以包括1个目的标识。利用本发明的方法,当第二装置需要向K个发送侧终端设备反馈HARQ码本时,在用于传输K个HARQ码本的第一侧行链路信道中包括K个目的标识的SCI,从而通过第一侧行链路信道同时向K个发送侧终端设备反馈HARQ码本,可以提高第二装置进行HARQ反馈的效率。
针对第二装置向多个发送侧终端设备反馈HARQ码本的场景,通过本申请实施例提供的,第二装置可以仅初始1个COT并使用该COT内的K个时域资源一次性地向K个发送侧终端设备分别反馈对应的HARQ码本,可以降低HARQ反馈的时延,还可以降低HARQ反馈的开销。
目前,通过PSSCH与PSFCH在时域和频域上的映射关系,使得终端设备可以根据PSSCH的位置确定映射对应的PSFCH的位置,从而可以获取该PSSCH的HARQ信息。然而,在非授权频谱中,法规要求信道需要连续地占用否则就需要通过额外的LBT过程重新接入信道,这潜在地破坏了PSSCH与PSFCH在时域和频域上的映射关系,导致发送侧终端设备无法正确的获取到来自接收侧终端设备的HARQ反馈信息。本申请实施例中,令接收侧终端设备在需要初始COT并利用该COT发送HARQ码本时,将HARQ码本与源标识、目的标识等指示信息共同进行传输,或者将HARQ码本与携带有源标识、目的标识的SCI共同进行传输,使发送侧终端设备有效地获取来自接收侧终端设备的HARQ码本, 进而基于该HARQ码本确定已经发送的TB是否被接收侧终端设备正确地接收。同时,通过将基于1比特的HARQ反馈信息转变为指示多个TB的HARQ码本,可以有效降低重传的开销,提升非授权频谱的资源利用效率。
通过本申请实施例提供的方案,可以使能接收侧终端设备将对应于单个发送侧终端设备的多个SL HARQ进程的HARQ反馈信息一次性地传输给发送侧终端设备,从而可以提升SL HARQ反馈的效率。并且,在本申请实施例还进一步地使能了接收侧终端设备将对应于多个发送侧终端设备的多个HARQ码本一次性地传输给多个发送侧终端设备,进一步提升了SL HARQ反馈的效率。
本申请实施例提供一种通信装置。该通信装置可用于实现上述实施例所涉及的终端设备的功能,例如,该通信装置可以为终端设备本身,例如车载终端设备或者路边单元等等整体性的终端设备,或者,该通信装置也可以为能够支持终端设备实现该功能的装置,例如应用于终端设备中的芯片、模组、TBOX、或者其他具有本申请所示终端设备功能的组合器件、部件(或称组件),举例说明,该通信装置可以为车载终端设备或者路边单元等设备内的芯片、模组或者组件等。该通信装置可包括图6和/或图7所示结构。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被计算机执行时,该计算机可以实现上述实施例中与终端设备相关的流程。
本申请实施例还提供一种计算机程序产品,该计算机程序产品用于存储计算机程序,该计算机程序被计算机执行时,该计算机可以实现上述实施例中与终端设备相关的流程。
本申请实施例还提供一种芯片或芯片系统,该芯片可包括处理器,该处理器可用于调用存储器中的程序或指令,执行上述实施例中与终端设备相关的流程。该芯片系统可包括该芯片,还可存储器或收发器等其他组件。
本申请实施例还提供一种电路,该电路可与存储器耦合,可用于执行上述实施例中与终端设备相关的流程。该芯片系统可包括该芯片,还可存储器或收发器等其他组件。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (25)

  1. 一种通信方法,其特征在于,所述方法包括:
    接收来自第一装置的至少一个传输块;
    在侧行链路数据信道中向所述第一装置发送第二级侧行链路控制信息SCI,所述第二级SCI承载第一混合自动重传请求HARQ码本,其中,所述第一HARQ码本用于确定对应于所述至少一个传输块的至少一个HARQ反馈信息。
  2. 如权利要求1所述的方法,其特征在于,所述第二级SCI的格式至少包括第一格式和第二格式,其中,所述第一格式包括用于承载HARQ码本的字段,所述第二字段不包括用于承载HARQ码本的字段。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    接收来自所述第一装置的第一指示信息,所述第一指示信息用于指示发送所述第一HARQ码本;或者
    接收来自所述第一装置的第二指示信息,所述第二指示信息用于指示所述一个或多个传输块对应的一个或多个SL HARQ进程的标识;或者
    接收来自所述第一装置的第三指示信息,所述第三指示信息用于指示所述一个或多个传输块对应的一个或多个SL HARQ进程的数量。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述第二级SCI的编码调制符号的数量Q SCI2满足:
    Figure PCTCN2022112602-appb-100001
    其中,所述L 1为所述第二级SCI占用的第一个正交频分复用OFDM符号的索引,所述L 2为所述第二级SCI占用的最后一个OFDM符号的索引;M SCI2(l)表示索引为l的OFDM符号上所述第二级SCI的编码调制符号的数目。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述方法还包括:
    在所述侧行链路数据信道中向第二装置发送第二HARQ码本,所述第二HARQ码本包括针对来自第二装置的一个或多个传输块的HARQ反馈信息;
    其中,所述第一HARQ码本和所述第二HARQ码本在所述侧行链路数据信道中时分复用;或者
    所述第一HARQ码本和所述第二HARQ码本在所述侧行链路数据信道中频分复用。
  6. 如权利要求5所述的方法,其特征在于,所述第一HARQ码本承载于所述侧行链路数据信道中的第一资源,所述第二HARQ码本承载于所述侧行链路数据信道中的第二资源,所述第一资源包括至少一个资源块组,所述第二资源包括至少一个资源块组,且所述第一资源与所述第二资源不重叠,其中,所述资源块组由等间隔的多个资源块组成。
  7. 如权利要求5或6所述的方法,其特征在于,所述第一HARQ码本和所述第二HARQ码本承载于不同的第二级SCI。
  8. 一种通信方法,其特征在于,所述方法包括:
    向通信装置发送至少一个传输块;
    在侧行链路数据信道中接收来自所述通信装置的第二级侧行链路控制信息SCI,所述第二级SCI承载第一混合自动重传请求HARQ码本,其中,所述第一HARQ码本用于确定对应于所述至少一个传输块的至少一个HARQ反馈信息。
  9. 如权利要求8所述的方法,其特征在于,所述第二级SCI的格式至少包括第一格式 和第二格式,其中,所述第一格式包括用于承载HARQ码本的字段,所述第二字段不包括用于承载HARQ码本的字段。
  10. 如权利要求8或9所述的方法,其特征在于,所述方法还包括:
    向所述通信装置发送第一指示信息,所述第一指示信息用于指示发送所述第一HARQ码本;或者
    向所述通信装置发送第二指示信息,所述第二指示信息用于指示所述一个或多个传输块对应的一个或多个SL HARQ进程的标识;或者
    向所述通信装置发送第三指示信息,所述第三指示信息用于指示所述一个或多个传输块对应的一个或多个SL HARQ进程的数量。
  11. 如权利要求8-10任一项所述的方法,其特征在于,所述第二级SCI的编码调制符号的数量Q SCI2满足:
    Figure PCTCN2022112602-appb-100002
    其中,所述L 1为所述第二级SCI占用的第一个正交频分复用OFDM符号的索引,所述L 2为所述第二级SCI占用的最后一个OFDM符号的索引;M SCI2(l)表示索引为l的OFDM符号上所述第二级SCI的编码调制符号的数目。
  12. 一种通信装置,其特征在于,包括:
    处理模块,用于通过收发模块接收来自所述第一装置的一个或多个传输块;
    所述处理模块,还用于控制所述收发模块在侧行链路数据信道中向所述第一装置发送第二级侧行链路控制信息SCI,所述第二级SCI承载第一混合自动重传请求HARQ码本,其中,所述第一HARQ码本用于确定对应于所述至少一个传输块的至少一个HARQ反馈信息。
  13. 如权利要求12所述的装置,其特征在于,所述第二级SCI的格式至少包括第一格式和第二格式,其中,所述第一格式包括用于承载HARQ码本的字段,所述第二字段不包括用于承载HARQ码本的字段。
  14. 如权利要求12或13所述的装置,其特征在于,所述处理模块,还用于:
    通过所述收发模块接收来自所述第一装置的第一指示信息,所述第一指示信息用于指示发送所述第一HARQ码本;或者
    通过所述收发模块接收来自所述第一装置的第二指示信息,所述第二指示信息用于指示所述一个或多个传输块对应的一个或多个SL HARQ进程的标识;或者
    通过所述收发模块接收来自所述第一装置的第三指示信息,所述第三指示信息用于指示所述一个或多个传输块对应的一个或多个SL HARQ进程的数量。
  15. 如权利要求12-14任一项所述的装置,其特征在于,所述第二级SCI的编码调制符号的数量Q SCI2满足:
    Figure PCTCN2022112602-appb-100003
    其中,所述L 1为所述第二级SCI占用的第一个正交频分复用OFDM符号的索引,所述L 2为所述第二级SCI占用的最后一个OFDM符号的索引;M SCI2(l)表示索引为l的OFDM符号上所述第二级SCI的编码调制符号的数目。
  16. 如权利要求12-15任一项所述的装置,其特征在于,所述处理模块,还用于:
    在所述侧行链路数据信道中通过所述收发模块向第二装置发送第二HARQ码本,所述第二HARQ码本包括针对来自第二装置的一个或多个传输块的HARQ反馈信息;
    其中,所述第一HARQ码本和所述第二HARQ码本在所述侧行链路数据信道中时分 复用;或者
    所述第一HARQ码本和所述第二HARQ码本在所述侧行链路数据信道中频分复用。
  17. 如权利要求16所述的装置,其特征在于,所述第一HARQ码本承载于所述侧行链路数据信道中的第一资源,所述第二HARQ码本承载于所述侧行链路数据信道中的第二资源,所述第一资源包括至少一个资源块组,所述第二资源包括至少一个资源块组,且所述第一资源与所述第二资源不重叠,其中,所述资源块组由等间隔的多个资源块组成。
  18. 如权利要求16或17所述的装置,其特征在于,所述第一HARQ码本和所述第二HARQ码本承载于不同的第二级SCI。
  19. 一种通信装置,其特征在于,所述装置包括:
    处理模块,用于通过收发模块向通信装置发送至少一个传输块;
    所述处理模块,还用于控制所述收发模块在侧行链路数据信道中接收来自所述通信装置的第二级侧行链路控制信息SCI,所述第二级SCI承载第一混合自动重传请求HARQ码本,其中,所述第一HARQ码本用于确定对应于所述至少一个传输块的至少一个HARQ反馈信息。
  20. 如权利要求19所述的装置,其特征在于,所述第二级SCI的格式至少包括第一格式和第二格式,其中,所述第一格式包括用于承载HARQ码本的字段,所述第二字段不包括用于承载HARQ码本的字段。
  21. 如权利要求19或20所述的装置,其特征在于,所述处理模块,还用于:
    通过所述收发模块向所述通信装置发送第一指示信息,所述第一指示信息用于指示发送所述第一HARQ码本;或者
    通过所述收发模块向所述通信装置发送第二指示信息,所述第二指示信息用于指示所述一个或多个传输块对应的一个或多个SL HARQ进程的标识;或者
    通过所述收发模块向所述通信装置发送第三指示信息,所述第三指示信息用于指示所述一个或多个传输块对应的一个或多个SL HARQ进程的数量。
  22. 如权利要求19-21任一项所述的装置,其特征在于,所述第二级SCI的编码调制符号的数量Q SCI2满足:
    Figure PCTCN2022112602-appb-100004
    其中,所述L 1为所述第二级SCI占用的第一个正交频分复用OFDM符号的索引,所述L 2为所述第二级SCI占用的最后一个OFDM符号的索引;M SCI2(l)表示索引为l的OFDM符号上所述第二级SCI的编码调制符号的数目。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~7中任意一项所述的方法,或者,使得所述计算机执行如权利要求8~11中任意一项所述的方法。
  24. 一种计算机程序产品,其特征在于,包括计算机程序或指令,所述计算机程序或指令被处理器执行时实现权利要求1~7任一项所述的方法,或者,所述计算机程序或指令被处理器执行时实现权利要求8~11任一项所述的方法。
  25. 一种芯片,其特征在于,包括处理器和通信接口,所述处理器用于通过所述通信接口读取指令,所述指令被执行时实现如权利要求1~7中任意一项所述的方法,或者,所述指令被执行时实现如权利要求8~11中任意一项所述的方法。
PCT/CN2022/112602 2021-08-30 2022-08-15 一种通信方法及装置 WO2023029976A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111007047.7 2021-08-30
CN202111007047.7A CN115733592A (zh) 2021-08-30 2021-08-30 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2023029976A1 true WO2023029976A1 (zh) 2023-03-09

Family

ID=85291011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112602 WO2023029976A1 (zh) 2021-08-30 2022-08-15 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN115733592A (zh)
WO (1) WO2023029976A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112039639A (zh) * 2019-06-04 2020-12-04 华为技术有限公司 一种反馈指示方法及通信装置
CN112398631A (zh) * 2019-08-13 2021-02-23 北京三星通信技术研究有限公司 基于码本的反馈方法及设备
WO2021060953A1 (ko) * 2019-09-27 2021-04-01 엘지전자 주식회사 무선통신시스템에서 sci 전송 관련 ue의 동작 방법
WO2021091340A1 (en) * 2019-11-07 2021-05-14 Lg Electronics Inc. Method and apparatus for transmitting psfch in nr v2x
CN113079579A (zh) * 2020-01-03 2021-07-06 大唐移动通信设备有限公司 一种直通链路控制信令资源映射方法及终端
CN113260059A (zh) * 2020-02-12 2021-08-13 苹果公司 侧链路控制信息阶段2格式

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112039639A (zh) * 2019-06-04 2020-12-04 华为技术有限公司 一种反馈指示方法及通信装置
CN112398631A (zh) * 2019-08-13 2021-02-23 北京三星通信技术研究有限公司 基于码本的反馈方法及设备
WO2021060953A1 (ko) * 2019-09-27 2021-04-01 엘지전자 주식회사 무선통신시스템에서 sci 전송 관련 ue의 동작 방법
WO2021091340A1 (en) * 2019-11-07 2021-05-14 Lg Electronics Inc. Method and apparatus for transmitting psfch in nr v2x
CN113079579A (zh) * 2020-01-03 2021-07-06 大唐移动通信设备有限公司 一种直通链路控制信令资源映射方法及终端
CN113260059A (zh) * 2020-02-12 2021-08-13 苹果公司 侧链路控制信息阶段2格式

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "On Physical layer procedure for NR sidelink", 3GPP DRAFT; R1-2003877, vol. RAN WG1, 15 May 2020 (2020-05-15), pages 1 - 7, XP051885644 *

Also Published As

Publication number Publication date
CN115733592A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
US11330561B2 (en) Method and apparatus for determining data feedback resource
US11588581B2 (en) Method and apparatus for transmission and reception of sidelink control information in wireless communication system
US20210329568A1 (en) Signal sending method, priority configuration method, and device
WO2020088688A1 (zh) 资源配置方法及装置
WO2021000679A1 (zh) 一种通信方法及设备
US20220167374A1 (en) Communication method and apparatus
WO2021027815A1 (zh) 一种反馈信息传输方法及装置
CN116368884A (zh) 利用朝向多个trp的时隙内重复的pucch增强的系统和方法
WO2021017792A1 (zh) 一种反馈信息的传输方法及终端装置
WO2022011699A1 (zh) 一种通信方法及侧行设备
WO2023273743A1 (zh) 一种侧行通信方法及装置
WO2023029976A1 (zh) 一种通信方法及装置
CN112584430B (zh) 一种通信方法及装置
WO2021088081A1 (zh) 一种控制信息发送方法、接收方法和通信装置
WO2020156339A1 (zh) 一种通信方法及装置
WO2023093531A1 (zh) 一种通信方法及装置
WO2022267897A1 (zh) 通信方法及装置
WO2024093649A1 (zh) 一种侧行通信方法及装置
WO2022267898A1 (zh) 一种资源指示方法和装置
WO2021146968A1 (zh) 一种通信方法及装置
US20220248240A1 (en) Communication Method and Communication Apparatus
WO2022077506A1 (zh) 资源重选辅助的方法与装置和资源重选的方法与装置
CN109586875B (zh) 一种发送、接收上行控制信道的方法及装置
CN113543327A (zh) 一种数据发送、接收方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE