WO2020162508A1 - 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子 - Google Patents

液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子 Download PDF

Info

Publication number
WO2020162508A1
WO2020162508A1 PCT/JP2020/004416 JP2020004416W WO2020162508A1 WO 2020162508 A1 WO2020162508 A1 WO 2020162508A1 JP 2020004416 W JP2020004416 W JP 2020004416W WO 2020162508 A1 WO2020162508 A1 WO 2020162508A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
formula
liquid crystal
diamine
Prior art date
Application number
PCT/JP2020/004416
Other languages
English (en)
French (fr)
Inventor
政太郎 大田
亮一 芦澤
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN202080013164.1A priority Critical patent/CN113412449A/zh
Priority to KR1020217024385A priority patent/KR20210125486A/ko
Priority to JP2020571242A priority patent/JP7472799B2/ja
Publication of WO2020162508A1 publication Critical patent/WO2020162508A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display device using the same.
  • the liquid crystal alignment film plays a role of aligning the liquid crystal in a certain direction.
  • a polyimide-based liquid crystal alignment film obtained by applying a liquid crystal aligning agent containing a polyimide precursor such as polyamic acid or a solution of soluble polyimide as a main component to a glass substrate and baking the liquid crystal is mainly used. ..
  • the liquid crystal alignment film exhibits excellent liquid crystal alignment and a stable pretilt angle, a high voltage holding ratio, a small residual charge when a direct current voltage is applied, and/ Alternatively, characteristics such as quick relaxation of accumulated residual charge due to DC voltage are required.
  • Patent Document 1 proposes a liquid crystal aligning agent composed of an imidized polymer that satisfies the following formula (1).
  • liquid crystal display devices are being used for large-screen, high-definition liquid crystal televisions and in-vehicle applications such as car navigation systems and meter panels.
  • liquid crystal display devices are being used for large-screen, high-definition liquid crystal televisions and in-vehicle applications such as car navigation systems and meter panels.
  • the voltage holding ratio does not easily decrease even after being exposed to high temperature and high humidity for a long time.
  • Patent Document 1 does not disclose the voltage holding ratio after being exposed to high temperature and high humidity. Further, the examples of Patent Document 1 only disclose the case where a liquid crystal aligning agent having a high imidization ratio is used.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a liquid crystal aligning agent that can obtain a liquid crystal aligning film that maintains a voltage holding ratio even after being exposed to high temperature and high humidity. Another object of the present invention is to provide a liquid crystal aligning agent that can obtain a liquid crystal aligning film that maintains a voltage holding ratio even when the imidization ratio is low.
  • a liquid crystal aligning agent containing a specific polymer satisfies the above problems.
  • the present invention is selected from the group consisting of a polyimide precursor obtained by polymerizing a tetracarboxylic acid component with any one of the following diamine component (1) and diamine component (2), and a polyimide obtained by imidizing the polyimide precursor.
  • a liquid crystal aligning agent comprising at least one polymer.
  • Diamine component (1) A diamine component containing a diamine having a protective group that replaces a hydrogen atom by heat and a diamine having a siloxane skeleton.
  • Diamine component (2) A diamine component containing a diamine having a siloxane skeleton and a protective group that is replaced by a hydrogen atom by heat.
  • the liquid crystal aligning agent of the present invention it is possible to obtain a liquid crystal aligning film that maintains a voltage holding ratio even after being exposed to high temperature and high humidity. Further, according to the liquid crystal aligning agent of the present invention, it is possible to obtain a liquid crystal aligning film that maintains the voltage holding ratio even when the imidization ratio is low. In addition to this, the liquid crystal aligning agent of the present invention is also excellent in terms of solubility and seal adhesion.
  • the liquid crystal aligning agent of the present invention is obtained by polymerizing any one of the following diamine component (1) and diamine component (2) with a tetracarboxylic acid component, and by imidizing the polyimide precursor. At least one polymer selected from the group consisting of polyimides (hereinafter, also referred to as a specific polymer) is contained.
  • Diamine component (1) A diamine component containing a diamine having a protective group that replaces a hydrogen atom by heat and a diamine having a siloxane skeleton.
  • Diamine component (2) A diamine component containing a diamine having a siloxane skeleton and a protective group that is replaced by a hydrogen atom by heat.
  • the diamine having a protective group that replaces a hydrogen atom by heat in the diamine component (1) is, for example, a diamine represented by the following formula [1].
  • the diamine having a siloxane skeleton in the diamine component (1) is, for example, a diamine represented by the following formula [2].
  • the diamine having a protective group that replaces a hydrogen atom by heat is a diamine represented by the following formula [1]
  • the diamine having a siloxane skeleton is a diamine represented by the following formula [2].
  • the diamine represented by the formula [1] is as follows.
  • X D represents an organic group having 1 to 50 carbon atoms having at least one structure selected from the group consisting of the following formula [1a], formula [1b] and formula [1c], and A 1 and A 2 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • X a represents a hydrogen atom or an organic group having 1 to 20 carbon atoms.
  • X d represents a single bond or an organic group having 1 to 20 carbon atoms.
  • X e represents hydrogen.
  • An atom or an organic group having 1 to 20 carbon atoms is shown, D is a protective group which is replaced with a hydrogen atom by heat, and * is a bond.
  • the term “protecting group which is replaced by a hydrogen atom by heat” means a protecting group which is eliminated by a heat and replaced by a hydrogen atom.
  • the temperature at which the protective group is desorbed by heat and replaced with a hydrogen atom is a baking temperature for producing a liquid crystal alignment film, preferably 150 to 300° C., and more preferably 200 to 270° C.
  • the protective group (D) a protective group represented by the following formula [P] is preferable.
  • X A represents a structure selected from the group consisting of the following formulas [a-1] to [a-6], and R 1 represents an alkylene group having 1 to 5 carbon atoms.
  • X 1 is a single bond, an alkylene group having 1 to 10 carbon atoms, —O—, —N(R 1 )—, —CON(R 2 )—, —N(R 3 )CO. At least one selected from -, -CH 2 O-, -COO- and OCO- is shown.
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • a single bond, -O-, -CONH-, -NHCO-, -COO- or OCO- is preferable.
  • X 2 represents a single bond or an alkylene group having 1 to 10 carbon atoms. Of these, a single bond or an alkylene group having 1 to 5 carbon atoms is preferable.
  • X a represents a hydrogen atom or an organic group having 1 to 20 carbon atoms, and more preferably a hydrogen atom or an organic group having 1 to 10 carbon atoms.
  • X b represents a structure selected from the group consisting of the above formulas [a-1] to [a-6].
  • m represents an integer of 1 or 2, and when m is 2, there is no substituent for X a .
  • p represents an integer of 1 to 4. Of these, 1 to 3 are preferable from the viewpoint of availability of raw materials and ease of synthesis. More preferably, it is 1-2.
  • q represents an integer of 1 to 4. Of these, 1 to 3 are preferable from the viewpoint of availability of raw materials and ease of synthesis. More preferably, it is 1-2.
  • X 3 and X 7 are each independently a single bond, an alkylene group having 1 to 10 carbon atoms, —O—, —N(R 1 )—, —CON(R 2 )— , -N(R 3 )CO-, -CH 2 O-, -COO-, and OCO- are represented by at least one organic group.
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • a single bond, —O—, —CONH—, —NHCO—, —COO— or OCO— is preferred.
  • X 4 and X 6 each independently represent a single bond or an alkylene group having 1 to 10 carbon atoms. Particularly, a single bond or an alkyl group having 1 to 5 carbon atoms is preferable.
  • X 5 represents a single bond or an alkylene group having 1 to 10 carbon atoms. Of these, a single bond or an alkylene group having 1 to 5 carbon atoms is preferable.
  • X c represents a structure selected from the group consisting of the above formulas [a-1] to [a-6].
  • r represents an integer of 1 to 4. Of these, 1 to 3 are preferable from the viewpoint of availability of raw materials and ease of synthesis. More preferably, it is 1-2.
  • X 8 is a single bond, an alkylene group having 1 to 10 carbon atoms, —O—, —N(R 1 )—, —CON(R 2 )—, —N(R 3 )CO. At least one organic group selected from the group consisting of —, —CH 2 O—, —COO—, and OCO—.
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • a single bond, -O-, -CONH-, -NHCO-, -COO- or OCO- is preferable.
  • X 9 represents a single bond or an alkylene group having 1 to 10 carbon atoms, preferably a single bond or an alkylene group having 1 to 5 carbon atoms.
  • X d represents a single bond or an organic group having 1 to 20 carbon atoms. Of these, a single bond or an organic group having 1 to 10 carbon atoms is preferable. More preferably, it represents a single bond or a carbon atom (>CH-).
  • X e represents a hydrogen atom or an organic group having 1 to 20 carbon atoms. At that time, when X d is a single bond, there is no X e .
  • a hydrogen atom or NH-COO-tBu (tBu represents a tert-butyl group) is preferable.
  • X f represents a structure selected from the group consisting of the above formulas [a-1] to [a-6].
  • n represents an integer of 1 to 4.
  • s represents an integer of 1 to 4, and is preferably 1 to 3 and more preferably 1 to 2 from the viewpoint of availability of raw materials and ease of synthesis.
  • t represents an integer of 1 to 4, and is preferably 1 to 3 and more preferably 1 to 2 from the viewpoint of availability of raw materials and ease of synthesis.
  • a 1 to A 6 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • examples of the diamine represented by the formula [1] include diamines represented by the following formulas [1d-1] to [1d-11].
  • R 1 to R 7 are each independently at least one selected from the group consisting of the following formulas [a-1] to [a-6]: The structure of each species, and in formulas [1d-1] to [1d-5], A 1 to A 10 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • R1 represents an alkylene group having 1 to 5 carbon atoms.
  • R 8 to R 14 are each independently selected from the group consisting of the structures represented by the above formulas [a-1] to [a-6]. At least one kind of structure is shown, and in the formulas [1d-6] to [1d-9], A 11 to A 18 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms).
  • the diamine represented by the formula [1] it is preferable to use the diamine represented by the formula [1d-1] to the formula [1d-5].
  • diamines represented by the following formulas [1d-10] and [1d-11] can also be used.
  • R 15 to R 18 are each independently selected from the group consisting of the structures represented by the above formulas [a-1] to [a-6].
  • a 19 and A 20 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • the content of the diamine represented by the formula [1] is preferably 5 to 70 mol% in 100 mol% of all the diamine components. Among them, 5 to 30 mol% is preferable. More preferred is 5 to 20 mol %.
  • the diamine represented by the formula [1] depends on the solubility of the specific polymer in the solvent, the coating property of the liquid crystal aligning agent, the liquid crystal aligning property in the case of a liquid crystal aligning film, the voltage holding ratio, the accumulated charge and the like. Thus, one kind or a mixture of two or more kinds can be used.
  • the diamine represented by the formula [2] is as follows. (In the formula [2], R 1 , R 2 , R 3 , and R 4 each independently represent a methyl group or an ethyl group. X 1 and X 2 are each independently a single bond, —NHCO Represents ——, —CONH—, —COO—, or —OCO—, and P 1 and P 2 each independently represent —NH 2 or a structure represented by the following formulas [Pa] to [Pb]. N1 and n2 each independently represent an integer of 0 to 6.
  • n represents an integer of 1 to 5, provided that phenyl in the formulas [Pa] to [Pb] may be substituted with halogen. .)
  • X D2 is an organic compound having 1 to 50 carbon atoms and having at least one structure selected from the group consisting of the following formulas [2a], [2b] and [2c]: Represents a group, p represents an integer of 0 to 1, and * represents a bond.
  • X a represents a hydrogen atom or an organic group having 1 to 20 carbon atoms.
  • X d represents a single bond or an organic group having 1 to 20 carbon atoms.
  • X e represents hydrogen. An atom or an organic group having 1 to 20 carbon atoms is shown, D is a protective group which is replaced with a hydrogen atom by heat, and * is a bond.
  • R 1 , R 2 , R 3 and R 4 are preferably methyl groups.
  • X 1 and X 2 are preferably a single bond, —CONH— or —COO—.
  • P 1 and P 2 are preferably —NH 2 or the formula [2a]. 3 or 4 is preferable for n1 and n2.
  • m is preferably 1 or 2, and more preferably 1.
  • X D2 preferably represents a structure selected from the following formulas [2a-1] and [2b-1].
  • X 1 is a single bond, an alkylene group having 1 to 10 carbon atoms, —O—, —N(R 1 )—, —CON(R 2 )—, —N(R 3 ).
  • X 2 represents a single bond, an alkylene group having a carbon number of 1 to 10
  • X a represents a hydrogen atom or an organic group having a carbon number of 1 to 20
  • X b represents the above formula.
  • X 8 is a single bond, an alkylene group having 1 to 10 carbon atoms, —O—, —N(R 1 )—, —CON(R 2 )—, —N(R 3 )CO.
  • At least one selected from the group consisting of —, —CH 2 O—, —COO— and OCO— is shown.
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • X 9 represents a single bond or an alkylene group having 1 to 10 carbon atoms
  • X d represents a single bond or an organic group having 1 to 20 carbon atoms
  • X e represents a hydrogen atom or an organic group having 1 to 20 carbon atoms.
  • X f are defined by the above formula [1a-3].
  • n represents an integer of 1 to 4
  • s represents an integer of 1 to 4
  • t represents an integer of 1 to 4.
  • X D2 more preferably represents a group represented by the following formula (tB), and further preferably represents a —N-Boc group.
  • A represents a single bond or a divalent group consisting of a hydrocarbon group having 1 to 4 carbon atoms.
  • the content of the diamine represented by the formula [2] is preferably 1 to 50 mol% in 100 mol% of all the diamine components. Among them, 5 to 30 mol% is preferable. More preferred is 5 to 20 mol %.
  • the diamine represented by the formula [2] depends on the solubility of the specific polymer in the solvent, the coating property of the liquid crystal aligning agent, the liquid crystal aligning property in the case of a liquid crystal aligning film, the voltage holding ratio, the accumulated charge and the like. Thus, one kind or a mixture of two or more kinds can be used.
  • the diamine having a siloxane skeleton and a protective group that is replaced by a hydrogen atom by heat is, for example, a diamine represented by the following formula [3].
  • the diamine represented by the formula [3] is as follows.
  • R 1 , R 2 , R 3 and R 4 each independently represent a methyl group or an ethyl group.
  • X represents —NHCO—, —CONH—, —COO— or —OCO.
  • X D2 is defined by the above formulas [Pa] and [Pb], n is an integer of 0 to 6, m is an integer of 1 to 5, and p is 0.
  • X is preferably —CONH— or —COO—.
  • m is preferably 1 or 2, and more preferably 1.
  • R 1 to R 4 are preferably methyl groups.
  • n is preferably 1 to 4.
  • the content of the diamine represented by the formula [3] is preferably 1 to 50 mol% in 100 mol% of all the diamine components. Among them, 5 to 30 mol% is preferable. More preferred is 5 to 20 mol %.
  • the diamine represented by the formula [3] depends on the solubility of the specific polymer in the solvent, the coating property of the liquid crystal aligning agent, the liquid crystal aligning property in the case of a liquid crystal aligning film, the voltage holding ratio, the accumulated charge and the like. Thus, one kind or a mixture of two or more kinds can be used.
  • the diamine component (1) and the diamine component (2) for obtaining the specific polymer contain a diamine other than the diamines represented by the above formulas [1] to [3] (hereinafter, also referred to as other diamine). Is also good.
  • diamines firstly, diamines having the following side chain structures are listed.
  • the diamine having a specific side chain structure that exhibits vertical alignment has at least one side chain structure selected from the group represented by the following formulas [S1] to [S3].
  • the diamines represented by the formulas [S1] to [S3], which are examples of the diamine having the specific side chain structure, will be described in order.
  • X 1 and X 2 are each independently a single bond, —(CH 2 ) a — (a represents an integer of 1 to 15), —CONH—, —NHCO—, It represents —CON(CH 3 )—, —NH—, —O—, —COO—, —OCO— or —((CH 2 ) a1 —A 1 ) m1 —.
  • plural a1's each independently represent an integer of 1 to 15.
  • a plurality of A 1's each independently represent an oxygen atom or —COO—.
  • m1 represents 1 to 2.
  • X 1 and X 2 each independently represent a single bond or —(CH 2 ) a — (a is an integer of 1 to 15) in view of availability of raw materials and ease of synthesis. ), —O—, —CH 2 O— or —COO—, preferably a single bond, —(CH 2 ) a — (a represents an integer of 1 to 10), —O—, —CH 2 O—. Alternatively, —COO— is more preferable.
  • G 1 and G 2 are each independently composed of a divalent aromatic group having 6 to 12 carbon atoms and a divalent alicyclic group having 3 to 8 carbon atoms. It represents a divalent cyclic group selected from the group. Any hydrogen atom on the cyclic group may be an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Alternatively, it may be substituted with a fluorine atom.
  • m and n each independently represent an integer of 0 to 3, and the sum of m and n is 1 to 4.
  • R 1 represents alkyl having 1 to 20 carbons, alkoxy having 1 to 20 carbons or alkoxyalkyl having 2 to 20 carbons. Any hydrogen forming R 1 may be replaced by fluorine.
  • examples of the divalent aromatic group having 6 to 12 carbon atoms include phenylene, biphenylene, naphthalene and the like.
  • examples of the divalent alicyclic group having 3 to 8 carbon atoms include cyclopropylene and cyclohexylene.
  • R 1 is the same as in the case of the above formula [S1].
  • X p is —(CH 2 ) a — (a is an integer of 1 to 15), —CONH—, —NHCO—, —CON(CH 3 )—, —NH—, —O—, —CH. 2 represents O-, -COO- or -OCO-.
  • a 1 represents an oxygen atom or —COO-* (the bond marked with “*” bonds to (CH 2 ) a2 ).
  • a 2 represents an oxygen atom or *—COO— (the bond with “*” is bonded to (CH 2 ) a2 ).
  • a 1 represents an integer of 0 or 1
  • a 2 represents an integer of 2 to 10.
  • Cy represents a 1,4-cyclohexylene group or a 1,4-phenylene group.
  • X 3 is a single bond, —CONH—, —NHCO—, —CON(CH 3 )—, —NH—, —O—, —CH 2 O—, —COO— or —OCO—.
  • X 3 is preferably —CONH—, —NHCO—, —O—, —CH 2 O—, —COO— or —OCO— from the viewpoint of the liquid crystal aligning property of the liquid crystal aligning agent.
  • R 2 represents alkyl having 1 to 20 carbons or alkoxyalkyl having 2 to 20 carbons. Any hydrogen forming R 2 may be replaced by fluorine. Among them, R 2 is preferably alkyl having 3 to 20 carbon atoms or alkoxyalkyl having 2 to 20 carbon atoms from the viewpoint of the liquid crystal aligning property of the liquid crystal aligning agent.
  • [C] a diamine having a specific side chain structure represented by the following formula [S3]
  • X 4 represents —CONH—, —NHCO—, —O—, —COO— or —OCO—.
  • R 3 represents a structure having a steroid skeleton.
  • the steroid skeleton here has a skeleton represented by the following formula (st) in which three 6-membered rings and one 5-membered ring are bonded.
  • X represents the above formula [X1] or [X2].
  • Col represents at least one kind selected from the group consisting of the above formulas [Col1] to [Col3]
  • G represents at least one kind selected from the group consisting of the above formulas [G1] to [G4]. * Represents a site that binds to another group.
  • Examples of preferable combinations of X, Col and G in the above formula [S3-x] include the following combinations. That is, [X1] and [Col1] and [G1], [X1] and [Col1] and [G2], [X1] and [Col2] and [G1], [X1] and [Col2] and [G2], [X1] and [Col3] and [G2], [X1] and [Col3] and [G1], [X2] and [Col1] and [G2], [X2] and [Col2] and [G2], and [X2] ], [Col2] and [G1], [X2] and [Col3] and [G2], and [X2] and [Col1] and [G1].
  • a typical example of the steroid skeleton is cholesterol (a combination of [Col1] and [G2] in the above formula [S3-x]), but a steroid skeleton containing no cholesterol can also be used.
  • examples of the diamine having a steroid skeleton include cholestanyl 3,5-diaminobenzoate and the like, but a diamine component containing no such diamine having a cholesterol skeleton is also possible.
  • a diamine having a specific side chain structure a diamine that does not contain an amide at the connecting position between the diamine and the side chain can be used.
  • a liquid crystal alignment film or a liquid crystal display device that can secure a high voltage holding ratio for a long period of time It is possible to provide a liquid crystal aligning agent capable of obtaining
  • the diamine having a side chain structure represented by the above formulas [S1] to [S3] is represented by the structure of the following formula [1-S1]-[1-S3].
  • X 1 , X 2 , G 1 , G 2 , R 1 , m and n are the same as in the above formula [S1].
  • X 3 and R 2 are the same as in the above formula [S2].
  • X 4 and R 3 are the same as in the above formula [S3].
  • a diamine having a two side chain type characteristic side chain structure that exhibits vertical orientation The diamine having a two side chain type characteristic side chain structure that exhibits vertical alignment is represented by the following formula [N1].
  • X is a single bond, —O—, —C(CH 3 ) 2 —, —NH—, —CO—, —NHCO—, —COO—, —(CH 2 ) m —, It represents a divalent organic group consisting of —SO 2 — or any combination thereof.
  • X preferably represents a single bond, —O—, —NH—, or —O—(CH 2 ) m —O—.
  • Examples of “arbitrary combination thereof” include —O—(CH 2 ) m —O—, —O—C(CH 3 ) 2 —, —CO—(CH 2 ) m —, —NH—(CH 2) m -, - SO 2 - (CH 2) m -, - CONH- (CH 2) m -, - CONH- (CH 2) m -NHCO -, - COO- (CH 2) m -OCO- , etc.
  • m represents an integer of 1 to 8.
  • two Y's each independently represent the structure of the following formula [1-1].
  • Y 1 and Y 3 are each independently a single bond, —(CH 2 ) a — (a represents an integer of 1 to 15), —O—, —CH. 2 represents O-, -COO- or -OCO-.
  • Y 2 represents a single bond or —(CH 2 ) b — (b represents an integer of 1 to 15).
  • Y 1 or Y 3 represents a single bond or —(CH 2 ) a —
  • Y 2 represents a single bond.
  • Y 1 represents —O—, —CH 2 O—, —COO— or —OCO—
  • Y 3 represents —O—, —CH 2 O—, —COO— or —OCO—.
  • Y 2 represents a single bond or —(CH 2 ) b —.
  • Y 4 is at least one divalent cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocycle, or a divalent C 17-51 carbon atom having a steroid skeleton. Represents an organic group.
  • Any hydrogen atom forming the cyclic group may be an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxy group having 1 to 3 carbon atoms. It may be substituted with a group or a fluorine atom.
  • Y 5 represents at least one cyclic group selected from the group consisting of a benzene ring, a cyclohexane ring and a heterocycle.
  • Any hydrogen atom forming the cyclic group may be an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxy group having 1 to 3 carbon atoms. It may be substituted with a group or a fluorine atom.
  • Y 6 is an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, or an alkoxy group having 1 to 18 carbon atoms. Group and at least one selected from the group consisting of fluorine-containing alkoxy groups having 1 to 18 carbon atoms.
  • n represents an integer of 0 to 4.
  • Y may be in the meta position or the ortho position from the X position, but the ortho position is preferable. That is, the above formula [N1] is preferably the following formula [1′].
  • the positions of the two amino groups may be any positions on the benzene ring, but in the following formulas [1]-a1 to [1]-a3, The position represented is preferable, and the following formula [1]-a1 is more preferable.
  • X is the same as in the above formula [N1].
  • the following formulas [1]-a1 to [1]-a3 explain the positions of two amino groups, and the notation of Y represented in the above formula [N1] is omitted.
  • the above formula [N1] is composed of the following formulas [1]-a1-1 to [1]-a3-2. It is preferably any structure selected from the group, and more preferably a structure represented by the following formula [1]-a1-1.
  • X and Y are the same as in formula [N1].
  • examples of the above formula [1-1] include the following formulas [1-1]-1 to [1-1]-22.
  • the following formulas [1-1]-1 to [1-1]-4, [1-1]-8 or [1-1]-10 are preferable. ..
  • * represents the bonding position with the phenyl group in the above formulas [1], [1′] and [1]-a1 to [1]-a3.
  • the diamine component contains a two-sided chain diamine having a predetermined structure, whereby a liquid crystal alignment film in which the ability to vertically align the liquid crystal is less likely to deteriorate even when exposed to excessive heating. Further, when the diamine component contains the two-side chain diamine, even if some foreign matter comes into contact with the film and is scratched, the liquid crystal alignment film in which the ability to align the liquid crystal vertically becomes less likely to fall. That is, when the diamine component contains the two-sided chain diamine, it becomes possible to provide a liquid crystal aligning agent that can obtain various liquid crystal aligning films excellent in the above properties.
  • a 1 and A 2 are each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, an alkenyl group having 2 to 5 carbon atoms, or an alkynyl group having 2 to 5 carbon atoms. Indicates. From the viewpoint of liquid crystal alignment, A 1 and A 2 are preferably hydrogen atoms or methyl groups. Examples of the structure of Y 1 are as shown in the following formulas (Y-1) to (Y-68).
  • a diamine having a thiophene or furan structure described in International Publication WO2018/092759 preferably a diamine having a structure represented by the following formula (sf); (Y 1 represents a sulfur atom or an oxygen atom, R 2 independently represents a single bond or a group “*1-R 5 —Ph-*2”, R 5 represents a single bond, —O—, —COO.
  • -, -OCO-, -(CH 2 ) l -, -O(CH 2 ) m O-, -CONH-, and -NHCO- represent a divalent organic group (l and m are (Representing an integer of 1 to 5), *1 represents a site bonded to the benzene ring in the formula (pn), *2 represents a site bonded to the amino group in the formula (pn), and Ph represents a phenylene group.
  • N is 1 to 3.
  • diaminoorganosiloxanes such as tetramethyldisiloxane
  • aliphatic diamines such as metaxylenediamine
  • alicyclic diamines such as 4,4-methylenebis(cyclohexylamine).
  • Other diamines may be used alone or in combination of two or more.
  • tetracarboxylic acid component As the tetracarboxylic acid component for obtaining the specific polymer, a tetracarboxylic dianhydride represented by the following formula [4] or a derivative thereof (tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, or A tetracarboxylic acid dialkyl ester dihalide) (these are collectively referred to as a specific tetracarboxylic acid) can be used.
  • a tetracarboxylic dianhydride represented by the following formula [4] or a derivative thereof (tetracarboxylic acid, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, or A tetracarboxylic acid dialkyl ester dihalide) (these are collectively referred to as a specific tetracarboxylic acid)
  • Z represents at least one structure selected from the group consisting of the following formulas [4a] to [4q].
  • Z 1 to Z 4 each independently represent a hydrogen atom, a methyl group, an ethyl group, a propyl group, a chlorine atom or a benzene ring.
  • Z 5 and Z 6 each independently represent a hydrogen atom or a methyl group.
  • Z 1 in the formula [4] the formula [4a]
  • the formula [4c] to the formula [4g] the formula [4g] 4k] to the formula [4m] or the formula [4p]
  • the tetracarboxylic dianhydride and the tetracarboxylic acid derivative thereof are preferable.
  • tetracarboxylic dianhydride having a structure represented by [4a], formula [4e], formula [4f], formula [4l], formula [4m] or formula [4p], and a tetracarboxylic acid derivative thereof. Is.
  • the specific tetracarboxylic acid is preferably 50 to 100 mol% in 100 mol% of all tetracarboxylic acid components. Among them, 70 to 100 mol% is preferable. More preferably, it is 80 to 100 mol %.
  • the specific tetracarboxylic acid is selected from one type depending on the solubility of the specific polymer in the solvent, the coating property of the liquid crystal aligning agent, the orientation of the liquid crystal when used as a liquid crystal alignment film, the voltage holding ratio, the accumulated charge, and the like. Alternatively, two or more kinds may be mixed and used.
  • a tetracarboxylic acid other than the specific tetracarboxylic acid (hereinafter, also referred to as other tetracarboxylic acid) may be contained.
  • the other tetracarboxylic acid include a tetracarboxylic acid compound, a tetracarboxylic acid dianhydride, a tetracarboxylic acid dihalide compound, a tetracarboxylic acid dialkyl ester compound and a tetracarboxylic acid dialkyl ester dihalide compound shown below.
  • tetracarboxylic acids include 1,2,5,6-naphthalene tetracarboxylic acid, 1,4,5,8-naphthalene tetracarboxylic acid, 1,2,5,6-anthracene tetracarboxylic acid, and 3 ,3',4,4'-biphenyltetracarboxylic acid, 2,3,3',4-biphenyltetracarboxylic acid, bis(3,4-dicarboxyphenyl)ether, 3,3',4,4'- Benzophenone tetracarboxylic acid, bis(3,4-dicarboxyphenyl) sulfone, bis(3,4-dicarboxyphenyl)methane, 2,2-bis(3,4-dicarboxyphenyl)propane, 1,1,1 ,3,3,3-hexafluoro-2,2-bis(3,4-dicarboxyphenyl)propane, bis(3,4-dicar
  • tetracarboxylic acids may be selected according to their properties such as solubility of a specific polymer in a solvent, coating property of a liquid crystal aligning agent, liquid crystal aligning property in the case of a liquid crystal aligning film, voltage holding ratio and accumulated charge. Alternatively, two or more kinds may be mixed and used.
  • the specific polymer is at least one selected from the group consisting of a polyimide precursor obtained by polymerizing a diamine component and a tetracarboxylic acid component, and a polyimide obtained by imidizing the polyimide precursor.
  • the reaction between the diamine component and the tetracarboxylic acid component is usually performed in a solvent.
  • the solvent used at that time is not particularly limited as long as it can dissolve the generated polyimide precursor. Specific examples of the solvent used in the reaction are shown below, but the solvent is not limited to these examples.
  • methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone or ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, diethylene glycol monomethyl ether, Diethylene glycol monoethyl ether and propyl ether such as diethylene glycol can be used.
  • solvents may be used alone or as a mixture. Furthermore, even a solvent that does not dissolve the polyimide precursor may be used as a mixture with the solvent as long as the generated polyimide precursor does not precipitate. Further, since water in the solvent inhibits the polymerization reaction and causes hydrolysis of the generated polyimide precursor, it is preferable to use a dehydrated and dried solvent.
  • the solution in which the diamine component is dispersed or dissolved in the solvent is stirred, and the tetracarboxylic acid component is added as it is or in the solvent after being dispersed or dissolved.
  • Method conversely, a method of dispersing a tetracarboxylic acid component in a solvent, or a method of adding a diamine component to a dissolved solution, a method of alternately adding a diamine component and a tetracarboxylic acid component to the reaction system, and the like, Any of these methods may be used.
  • a plurality of diamine components or tetracarboxylic acid components when used for the reaction, they may be reacted in a premixed state, may be individually and sequentially reacted, or may be a separately reacted low molecular weight substance. May be mixed and reacted to form a polymer.
  • the temperature at which the diamine component and the tetracarboxylic acid component are polycondensed can be selected at any temperature from -20 to 150°C, but is preferably in the range from -5 to 100°C.
  • the reaction can be carried out at any concentration, but if the concentration is too low it will be difficult to obtain a high molecular weight polymer, and if the concentration is too high the viscosity of the reaction solution will be too high and uniform stirring will be difficult. .. Therefore, the concentration of the polymer is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the reaction can be performed at a high concentration in the initial stage, and then a solvent can be added.
  • the ratio of the total mole number of the tetracarboxylic acid component to the total mole number of the diamine component is preferably 0.8 to 1.2. Similar to the usual polycondensation reaction, the closer the molar ratio is to 1.0, the larger the molecular weight of the polyimide precursor produced.
  • An imidized polymer is a polyimide obtained by ring-closing a polyimide precursor, and in this polyimide, the ring-closing rate (also referred to as imidization rate) of an amic acid group (amide acid group) does not necessarily have to be 100%. However, it can be arbitrarily adjusted according to the application and purpose.
  • the method for imidizing the polyimide precursor include thermal imidization in which the solution of the polyimide precursor is heated as it is, and catalytic imidization in which a catalyst is added to the solution of the polyimide precursor.
  • the temperature is preferably 100 to 400° C., more preferably 120 to 250° C., and a method is preferably performed while removing water generated by the imidization reaction from the outside of the system. ..
  • Catalytic imidization of the polyimide precursor can be carried out by adding a basic catalyst and an acid anhydride to a solution of the polyimide precursor and stirring the mixture at -20 to 250°C, preferably 0 to 180°C.
  • the amount of the basic catalyst is preferably 0.5 to 30 mol times, more preferably 2 to 20 mol times the amic acid group, and the amount of acid anhydride is preferably 1 to 50 mol times the amic acid group. , And more preferably 3 to 30 times by mole.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity to allow the reaction to proceed.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Particularly, acetic anhydride is preferable because purification after the reaction is facilitated.
  • the imidation ratio by catalytic imidization can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the imidization ratio of the polyimide precursor or its imidized polymer of the present invention is preferably 1 to 95%, more preferably 20% or more and 80% or less, and further preferably 40% or more and 70% or less.
  • the reaction solution may be poured into a solvent to cause precipitation.
  • the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, water and the like.
  • the polymer precipitated by pouring it into a solvent can be collected by filtration, and then dried at normal temperature or under normal temperature or by heating.
  • the impurities in the polymer can be reduced by repeating the operation of re-dissolving the polymer recovered by precipitation and re-precipitating and recovering it in a solvent 2 to 10 times.
  • the solvent at this time include alcohols, ketones, hydrocarbons and the like. It is preferable to use three or more kinds of solvents selected from these, because the efficiency of purification is further improved.
  • the polyimide precursor is a polyamic acid alkyl ester
  • specific methods for producing it include, for example, the methods described in paragraphs [0054] to [0062] of International Publication WO 2011-115077. Can be mentioned.
  • the content of the specific polymer in the liquid crystal aligning agent of the present invention is preferably 2 to 10% by mass, and more preferably 3 to 8% by mass in the liquid crystal aligning agent.
  • the liquid crystal aligning agent of the present invention may contain a polymer other than the specific polymer.
  • examples of other polymers include cellulosic polymers, acrylic polymers, methacrylic polymers, polystyrene, polyamides, polysiloxanes and the like.
  • the content of the other polymers other than that is preferably 0.5 to 15 parts by mass, and more preferably 1 to 10 parts by mass, relative to 100 parts by mass of the specific polymer.
  • the liquid crystal aligning agent is usually contained in an organic solvent, and the content of the organic solvent is preferably 70 to 99.9 mass% with respect to the liquid crystal aligning agent. This content can be appropriately changed depending on the application method of the liquid crystal aligning agent and the target film thickness of the liquid crystal aligning film.
  • the organic solvent used for the liquid crystal aligning agent is preferably a solvent capable of dissolving the specific polymer (also referred to as a good solvent).
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide or ⁇ -butyrolactone can be used. preferable.
  • the good solvent in the liquid crystal aligning agent of the present invention is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass based on the whole solvent contained in the liquid crystal aligning agent. Is.
  • a solvent also referred to as a poor solvent
  • ethylene glycol dimethyl ether ethylene glycol diethyl ether, ethylene glycol dibutyl ether, 1,2-butoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether , 4-hydroxy-4-methyl-2-pentanone, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, ethylene Gly
  • preferred solvent combinations are N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone and ⁇ -butyrolactone and ethylene glycol monobutyl ether, and N-methyl-2-pyrrolidone and ⁇ -.
  • the amount of the poor solvent is preferably 1 to 80% by mass, more preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass, based on the whole solvent contained in the liquid crystal aligning agent.
  • the type and content of such a solvent are appropriately selected according to the liquid crystal alignment agent coating device, coating conditions, coating environment, and the like.
  • the liquid crystal aligning agent of the present invention includes a dielectric for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film, a silane coupling agent for improving the adhesion between the liquid crystal aligning film and the substrate, and a liquid crystal.
  • Examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include a functional silane-containing compound and an epoxy group-containing compound. Examples thereof include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, and 3-aminopropyltriethoxysilane.
  • additives (CL-1) to (CL-15) may be added to the liquid crystal aligning agent of the present invention in order to increase the mechanical strength of the liquid crystal aligning film.
  • the above-mentioned additive is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. More preferably, it is 0.5 to 20 parts by mass.
  • the liquid crystal alignment film is obtained by coating the above liquid crystal aligning agent on a substrate to form a film, preferably drying, and then baking.
  • a substrate having high transparency is preferable, and as the material thereof, glass, ceramics such as silicon nitride, plastic such as acrylic or polycarbonate, and the like can be used. It is preferable to use a substrate on which an ITO (Indium Tin Oxide) electrode for driving the liquid crystal is formed as the substrate from the viewpoint of simplifying the process.
  • an opaque material such as a silicon wafer can be used for the substrate on one side, and a material that reflects light such as aluminum can be used for the electrode.
  • the film is preferably heated at 30 to 120° C., more preferably at 50 to 120° C. by a heating means such as a hot plate, a heat circulation type oven, an IR (infrared) type oven. It is preferable to evaporate the solvent by drying treatment for 1 minute to 10 minutes, more preferably 1 minute to 5 minutes.
  • the coating film obtained from the liquid crystal aligning agent is then preferably heated at 120 to 250° C., more preferably 150° C., by the same heating means as in the above drying treatment. It is baked at ⁇ 230°C.
  • the firing time varies depending on the firing temperature, but is preferably 5 minutes to 1 hour, more preferably 5 minutes to 40 minutes.
  • the thickness of the coating film after the baking treatment is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may decrease, and if it is too thick, the electric resistance of the obtained liquid crystal alignment film increases, so that it is 5 to 300 nm. Is preferable, and 10 to 200 nm is more preferable.
  • the obtained coating film is oriented.
  • the alignment treatment method include a rubbing treatment method and a photo-alignment treatment method.
  • the surface of the coating film is irradiated with radiation polarized in a certain direction.
  • the radiation ultraviolet rays or visible rays having a wavelength of 100 to 800 nm can be used. Among them, ultraviolet rays having a wavelength of 100 to 400 nm are preferable, and ultraviolet rays having a wavelength of 200 to 400 nm are more preferable.
  • the substrate coated with the liquid crystal alignment film may be irradiated with ultraviolet rays while being heated at 50 to 250° C.
  • the irradiation dose of the radiation is preferably 1 to 10,000 mJ/cm 2 .
  • the liquid crystal alignment film thus produced can stably align liquid crystal molecules in a certain direction.
  • the extinction ratio of linearly polarized ultraviolet rays is preferably 10:1 or more, more preferably 20:1 or more.
  • At least one treatment selected from the group consisting of heat treatment and contact treatment with a solvent may be further applied to the coating film subjected to the above-mentioned orientation treatment.
  • the heat treatment after the orientation treatment can be performed by the same heating means as the above-mentioned drying treatment and firing treatment, and is preferably performed at 180 to 250°C, more preferably 180 to 230°C.
  • the heat treatment temperature is within the above range, the contrast of the liquid crystal display device obtained by the obtained liquid crystal alignment film can be increased.
  • the time of the heat treatment varies depending on the heating temperature, but is preferably 5 minutes to 1 hour, more preferably 5 to 40 minutes.
  • the solvent used for the contact treatment with the above solvent is not particularly limited as long as it is a solvent capable of dissolving impurities and the like attached to the liquid crystal alignment film.
  • Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- Methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate and the like can be mentioned.
  • water, 2-propanol, 1-methoxy-2-propanol or ethyl lactate is preferable from the viewpoint of versatility and solvent safety. More preferred is water, 1-methoxy-2-propanol or ethyl lactate.
  • These solvents may be one kind or two or more kinds.
  • the contact treatment includes dipping treatment and spraying treatment (also referred to as spraying treatment).
  • the treatment time in these treatments is preferably 10 seconds to 1 hour, and particularly, an embodiment in which the immersion treatment is performed for 1 to 30 minutes can be mentioned.
  • the temperature at the time of contact treatment may be room temperature or may be warmed, but it is preferably 10 to 80° C., and 20 to 50° C. may be mentioned.
  • ultrasonic treatment or the like may be further performed, if necessary.
  • rinsing also called rinsing
  • drying with a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone or methyl ethyl ketone
  • the drying temperature is preferably 50 to 150°C, and may be 80 to 120°C.
  • the drying time is preferably 10 seconds to 30 minutes, more preferably 1 to 10 minutes.
  • the heat treatment after the orientation treatment may be performed. With such a mode, a liquid crystal alignment film having excellent liquid crystal alignment can be obtained.
  • the liquid crystal alignment film of the present invention can be applied to various driving modes such as a TN method, an STN method, an IPS method, an FFS method, a VA method, an MVA method and a PSA method. It is suitable as a liquid crystal alignment film for an electric field type liquid crystal display element, and is particularly useful for an FFS type liquid crystal display element.
  • the liquid crystal display device of the present invention is a device in which a liquid crystal cell is prepared by a known method after a substrate having a liquid crystal alignment film obtained from the above liquid crystal alignment agent is obtained.
  • a liquid crystal display element having a passive matrix structure will be described as an example.
  • a liquid crystal display element having an active matrix structure in which a switching element such as a TFT is provided in each pixel portion forming an image display may be used.
  • a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes can be, for example, ITO electrodes and are patterned so that a desired image can be displayed.
  • an insulating film is provided on each substrate so as to cover the common electrodes and the segment electrodes.
  • the insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
  • a liquid crystal alignment film is formed on each substrate, and one substrate is overlaid with the other substrate so that the liquid crystal alignment film surfaces face each other. Glue with.
  • a spacer In order to control the gap between the substrates, it is usually preferable to incorporate a spacer into the sealant. Further, it is preferable that spacers for controlling the substrate gap are also scattered on the in-plane portion where the sealant is not provided. It is preferable that a part of the sealant is provided with an opening that can be filled with liquid crystal from the outside.
  • a liquid crystal material is injected into a space surrounded by the two substrates and the sealant through an opening provided in the sealant. Next, this opening is sealed with an adhesive.
  • the liquid crystal material may have either positive or negative dielectric anisotropy.
  • a liquid crystal having a negative dielectric anisotropy is preferable from the viewpoint of liquid crystal orientation, but it can be used properly according to the application.
  • the polarizing plate is installed. Specifically, it is preferable to attach a pair of polarizing plates to the surfaces of the two substrates opposite to the liquid crystal layer.
  • the molecular weight of the polyimide was measured using a room temperature gel permeation chromatography (GPC) device (SSC-7200) manufactured by Senshu Scientific Co., Ltd., and a column (KD-803, KD-805) manufactured by Shodex Co., Ltd. as follows.
  • GPC room temperature gel permeation chromatography
  • the imidization ratio is determined by using the proton derived from the structure that does not change before and after imidization as the reference proton, and the integrated value of the peak of this proton and the proton peak derived from the NH group of the amic acid that appears near 9.5 to 10.0 ppm. It calculated
  • required by the following calculation formula using integrated value. Imidization rate (%) (1- ⁇ x/y) ⁇ 100
  • NMP (103.85 g) was added to this polyamic acid solution (50.0 g) and diluted to 6.5% by mass, and acetic anhydride (20.84 g) and pyridine (3.23 g) were added as imidization catalysts, The reaction was carried out at 80°C for 5 hours. This reaction solution was put into methanol (622.70 g), and the obtained precipitate was filtered off. Methanol wash
  • the polyamic acid solution (G) had Mn of 10,600 and Mw of 35,700.
  • Example 1 NMP (44.0 g) was added to the polyimide powder (A) (6.0 g) obtained in Synthesis Example 1, and the mixture was stirred at 70° C. for 40 hours to be dissolved. BCS (50.0 g) was added to this solution, and the mixture was stirred for 5 hours to obtain a liquid crystal aligning agent [1] of Example 1. No abnormality such as turbidity or precipitation was observed in this liquid crystal aligning agent, and it was confirmed that the resin component was uniformly dissolved.
  • Example 1 the liquid crystal alignment agents [2] to [4] of Examples 2 to 4 and the liquid crystal alignment of Comparative Examples 1 and 2 were used in the same manner as in Example 1 except that the polyimide material was changed as shown in Table 3. Agents [5] and [6] were obtained. No abnormality such as turbidity or precipitation was observed in these liquid crystal aligning agents, and it was confirmed that the resin component was uniformly dissolved.
  • NMP 29.0 g
  • NMP was added to the polyamic acid solution (G) (21.0 g) obtained in Synthesis Example 5 and the mixture was stirred for 30 minutes, BCS (35.0 g) was added, and the mixture was further stirred for 30 minutes.
  • Liquid crystal aligning agents of Examples 1 to 5 and Comparative Examples 1 and 2 were applied to the ITO surface of a glass substrate with ITO (length 30 mm, width 40 mm, thickness 0.7 mm) washed with pure water and IPA (isopropyl alcohol), respectively. After spin coating and baking at 70° C. for 90 seconds on a hot plate, baking was performed at 230° C. for 20 minutes in an infrared heating furnace to prepare a polyimide-coated substrate having a film thickness of 100 nm.
  • thermosetting sealant (XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.) was placed on the spacers. Printed. Next, the surface of the other substrate on which the liquid crystal alignment film was formed was placed inside, and after bonding with the previous substrate, the sealing material was cured to prepare an empty cell. Liquid crystal MLC-3023 containing a polymerizable compound for PSA (trade name, manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method to prepare a liquid crystal cell. The voltage holding ratio of this liquid crystal cell was measured.
  • UV was passed through the 325 nm cut filter from the outside of this liquid crystal cell and irradiated with 10 J/cm 2 of UV (also called primary PSA treatment).
  • the UV illuminance was measured using UV-MO3A manufactured by ORC.
  • UV UV lamp: FLR40SUV32/ A-1
  • secondary PSA treatment UV lamp: FLR40SUV32/ A-1
  • VHR after the second PSA treatment is lower than 86%, but in Examples 1 to 5, it is 86% or higher. Further, in Comparative Examples 1 and 2, the VHR change amount is significantly changed to 65% or more by placing the liquid crystal cell under high temperature and high humidity, but in Examples 1 to 5, the VHR change amount is 50% or less. It was confirmed that the change amount can be reduced.
  • the ITO electrode substrate on which this ITO electrode pattern is formed is divided into four in a checkered (checkered) pattern so that the four areas can be driven separately.
  • thermosetting sealing material (XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.) was printed on the substrate.
  • the surface of the other substrate on which the liquid crystal alignment film was formed was placed inside, and after bonding with the previous substrate, the sealing material was cured to prepare an empty cell.
  • Liquid crystal MLC-3023 containing a polymerizable compound for PSA (trade name, manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method to prepare a liquid crystal cell. The voltage holding ratio of this liquid crystal cell was measured.
  • UV was passed through the 325 nm cut filter from the outside of this liquid crystal cell and irradiated with 10 J/cm 2 of UV (also called primary PSA treatment).
  • the UV illuminance was measured using UV-MO3A manufactured by ORC.
  • UV UV lamp: FLR40SUV32/ A-1
  • secondary PSA treatment UV lamp: FLR40SUV32/ A-1
  • pretilt angle evaluation liquid crystal cell produced above was measured using an LCD analyzer (LCA-LUV42A manufactured by Meiryo Technica). The value obtained by subtracting the pretilt angle using the polyimide coated substrate fired for 60 minutes from the pretilt angle using the polyimide coated substrate fired for 20 minutes in the infrared heating furnace at 230° C., was taken as the pretilt angle difference.
  • Table 4 The evaluation results are shown in Table 4.
  • the pretilt angle difference is 2.0°, but in Examples 1 to 5, the pretilt angle difference can be 0.4° or less. Was confirmed.
  • Liquid crystal aligning agents of Examples 1 to 5 and Comparative Examples 1 and 2 were applied to the ITO surface of a glass substrate with ITO (length 30 mm, width 40 mm, thickness 0.7 mm) washed with pure water and IPA (isopropyl alcohol), respectively. After spin coating and baking at 70° C. for 90 seconds on a hot plate, baking was performed at 230° C. for 20 minutes in an infrared heating furnace to prepare a polyimide-coated substrate having a film thickness of 100 nm.
  • Two polyimide coated substrates were prepared by the above method, a 4 ⁇ m bead spacer was coated on the liquid crystal alignment film surface of one substrate, and then a sealant (XN-1500T, manufactured by Kyoritsu Chemical Co., Ltd.) was dropped. Then, the liquid crystal alignment film surface of the other substrate was placed inside, and the substrates were laminated so that the overlapping width of the substrates was 1 cm and the diameter of the sealing agent was a circle close to 3 mm. After fixing the two laminated polyimide-coated substrates, baking was performed in a hot air circulation oven at 150° C. for 1 hour to prepare an adhesion evaluation sample.
  • a sealant XN-1500T, manufactured by Kyoritsu Chemical Co., Ltd.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

高温高湿にさらされた後でも電圧保持率を維持した液晶配向膜が得られる液晶配向剤を提供する。 下記ジアミン成分(1)及びジアミン成分(2)のいずれかとテトラカルボン酸成分とを重合反応させることにより得られるポリイミド前駆体、及び該ポリイミド前駆体をイミド化して得られるポリイミドからなる群から選ばれる少なくとも一種の重合体を含有することを特徴とする液晶配向剤。 ジアミン成分(1):熱により水素原子に置き換わる保護基を有するジアミン及びシロキサン骨格を有するジアミンを含有するジアミン成分。 ジアミン成分(2):熱により水素原子に置き換わる保護基及びシロキサン骨格を有するジアミンを含有するジアミン成分。

Description

液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
 本発明は、液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子に関する。
 液晶表示素子において、液晶配向膜は液晶を一定の方向に配向させるという役割を担っている。液晶配向膜としては、これまで、ポリアミック酸などのポリイミド前駆体や可溶性ポリイミドの溶液を主成分とする液晶配向剤をガラス基板等に塗布し焼成したポリイミド系の液晶配向膜が主として用いられている。
 液晶表示素子の高機能化に伴い、液晶配向膜においては、優れた液晶配向性や安定したプレチルト角の発現に加えて、高い電圧保持率、直流電圧を印加した際の少ない残留電荷、及び/又は直流電圧による蓄積した残留電荷の早い緩和といった特性が要求される。
 上記の要求にこたえるために、種々の提案がなされてきている。例えば、特許文献1には、下記式(1)を満足するイミド化重合体からなる液晶配向剤が提案されている。
Figure JPOXMLDOC01-appb-C000022
日本特開2005-179429号公報
 近年の液晶表示素子の高性能化に伴い、大画面で高精細の液晶テレビや、車載用途、例えば、カーナビゲーションシステムやメーターパネルなどの用途に液晶表示素子が用いられている。こうした用途では、初期特性が良好なことに加え、長時間、高温高湿に曝された後であっても、電圧保持率が低下しにくいことが求められている。
 また、一般に、イミド化率が高い液晶配向剤を用いた場合には、高い電圧保持率が得られやすいが、溶媒への溶解性の低下および基板上に印刷するなどの場合、吸湿によりポリイミドが析出し、ワニスが白化する現象が起こりやすいという問題があった。このため、イミド化率が低い液晶配向剤を用いた場合であっても、液晶配向膜の電圧保持率が低下しにくいことも求められている。
 しかしながら、特許文献1には、高温高湿に曝された後の電圧保持率について、開示されていない。また、特許文献1の実施例は、イミド化率が高い液晶配向剤を用いた場合を開示しているに過ぎない。
 本発明は、上記の事情を鑑みてなされたものであり、高温高湿にさらされた後でも電圧保持率を維持した液晶配向膜が得られる液晶配向剤を提供することを目的とする。また、本発明は、イミド化率が低い場合であっても電圧保持率を維持した液晶配向膜が得られる液晶配向剤を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、特定の重合体を含有する液晶配向剤が、上記の課題を満たすことを見出した。
 本発明は、かかる知見に基づくものであり、下記を要旨とするものである。
 下記ジアミン成分(1)及びジアミン成分(2)のいずれかとテトラカルボン酸成分とを重合反応させることにより得られるポリイミド前駆体、及び該ポリイミド前駆体をイミド化して得られるポリイミドからなる群から選ばれる少なくとも一種の重合体を含有することを特徴とする液晶配向剤。
 ジアミン成分(1):熱により水素原子に置き換わる保護基を有するジアミン及びシロキサン骨格を有するジアミンを含有するジアミン成分。
 ジアミン成分(2):熱により水素原子に置き換わる保護基及びシロキサン骨格を有するジアミンを含有するジアミン成分。
 本発明の液晶配向剤によれば、高温高湿にさらされた後でも電圧保持率を維持した液晶配向膜を得ることができる。また、本発明の液晶配向剤によれば、イミド化率が低い場合であっても電圧保持率を維持した液晶配向膜を得ることができる。これに加えて、本発明の液晶配向剤は、溶解性およびシール密着性の点においても優れたものである。
<特定重合体>
 本発明の液晶配向剤は、下記ジアミン成分(1)及びジアミン成分(2)のいずれかとテトラカルボン酸成分とを重合反応させることにより得られるポリイミド前駆体、及び該ポリイミド前駆体をイミド化して得られるポリイミドからなる群から選ばれる少なくとも一種の重合体(以下、特定重合体とも言う。)を含有する。
 ジアミン成分(1):熱により水素原子に置き換わる保護基を有するジアミン及びシロキサン骨格を有するジアミンを含有するジアミン成分。
 ジアミン成分(2):熱により水素原子に置き換わる保護基及びシロキサン骨格を有するジアミンを含有するジアミン成分。
<ジアミン成分(1)>
 ジアミン成分(1)における熱により水素原子に置き換わる保護基を有するジアミンは、例えば、下記式[1]で表されるジアミンである。ジアミン成分(1)におけるシロキサン骨格を有するジアミンは、例えば、下記式[2]で表されるジアミンである。ジアミン成分(1)において、熱により水素原子に置き換わる保護基を有するジアミンは、下記式[1]で表されるジアミンであり、シロキサン骨格を有するジアミンは、下記式[2]で表されるジアミンであってもよい。
(式[1]で表されるジアミン)
 式[1]で表されるジアミンは、以下のものである。
Figure JPOXMLDOC01-appb-C000023
(式[1]中、Xは下記式[1a]、式[1b]及び式[1c]からなる群から選ばれる少なくとも1種の構造を有する炭素数1~50の有機基を示し、A及びAはそれぞれ独立して、水素原子又は炭素数1~5のアルキル基を示す。)
Figure JPOXMLDOC01-appb-C000024
(式[1a]~式[1c]中、Xは水素原子又は炭素数1~20の有機基を示す。Xは単結合又は炭素数1~20の有機基を示す。Xは水素原子又は炭素数1~20の有機基を示す。Dは熱により水素原子に置き換わる保護基を示す。*は結合手を示す。)
 ここで、本発明において、「熱により水素原子に置き換わる保護基」とは、熱により脱離して水素原子に置き換わる保護基を言う。かかる保護基が熱により脱離して水素原子に置き換わる温度は、液晶配向膜を作製する際の焼成温度である、好ましくは150~300℃、より好ましくは200~270℃である。かかる保護基(D)としては、下記式[P]で表される保護基が好ましい。
Figure JPOXMLDOC01-appb-C000025
(式中、Xは下記の式[a-1]~式[a-6]からなる群から選ばれる構造を示し、Rは炭素数1~5のアルキレン基を示す。)
Figure JPOXMLDOC01-appb-C000026
 具体的には、式[1]で表されるジアミンは、下記の式[1a-1]~式[1c-1]で示されるジアミンを用いることが好ましい。
Figure JPOXMLDOC01-appb-C000027
 式[1a-1]中、Xは単結合、炭素数1~10のアルキレン基、-O-、-N(R)-、-CON(R)-、-N(R)CO-、-CHO-、-COO-及びOCO-から選ばれる少なくとも1種を示す。但し、R、R及びRはそれぞれ独立して、水素原子又は炭素数1~3のアルキル基を示す。特に、単結合、-O-、-CONH-、-NHCO-、-COO-又はOCO-が好ましい。
 式[1a-1]中、Xは単結合、炭素数1~10のアルキレン基を示す。なかでも、単結合又は炭素数1~5のアルキレン基が好ましい。Xは水素原子又は炭素数1~20の有機基を示し、より好ましくは水素原子又は炭素数1~10の有機基を示す。炭素数1~10の有機基としては、-(CH-COO-tBu(n=1~5の整数を示し、tBuはtert-ブチル基を示す。)であることが好ましい。
 式[1a-1]中、Xは、上記の式[a-1]~式[a-6]からなる群から選ばれる構造を示す。
 式[1a-1]中、mは1又は2の整数を示し、その際、mが2の場合はXの置換基は無い。pは1~4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、1~3が好ましい。より好ましいのは、1~2である。qは1~4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、1~3が好ましい。より好ましいのは、1~2である。
 式[1b-1]中、X及びXはそれぞれ独立して、単結合、炭素数1~10のアルキレン基、-O-、-N(R)-、-CON(R)-、-N(R)CO-、-CHO-、-COO-、およびOCO-からなる群から選ばれる少なくとも1種の有機基を示す。但し、R、R及びRはそれぞれ独立して、水素原子又は炭素数1~3のアルキル基を示す。なかでも、単結合、-O-、-CONH-、-NHCO-、-COO-又はOCO-が好ましい。
 式[1b-1]中、X及びXはそれぞれ独立して、単結合又は炭素数1~10のアルキレン基を示す。特に、単結合又は炭素数1~5のアルキル基が好ましい。
 Xは単結合又は炭素数1~10のアルキレン基を示す。なかでも、単結合又は炭素数1~5のアルキレン基が好ましい。Xは、上記の式[a-1]~式[a-6]からなる群から選ばれる構造を示す。
 式[1b-1]中、rは1~4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、1~3が好ましい。より好ましいのは、1~2である。
 式[1c-1]中、Xは単結合、炭素数1~10のアルキレン基、-O-、-N(R)-、-CON(R)-、-N(R)CO-、-CHO-、-COO-、およびOCO-からなる群から選ばれる少なくとも1種の有機基を示す。但し、R、R及びRはそれぞれ独立して、水素原子又は炭素数1~3のアルキル基を示す。特に、単結合、-O-、-CONH-、-NHCO-、-COO-又はOCO-が好ましい。
 式[1c-1]中、Xは単結合、炭素数1~10のアルキレン基を示し、好ましくは、単結合又は炭素数1~5のアルキレン基を示す。Xは単結合又は炭素数1~20の有機基を示す。なかでも、単結合又は炭素数1~10の有機基が好ましい。より好ましくは、単結合又は炭素原子(>CH-)を示す。Xは水素原子又は炭素数1~20の有機基を示す。その際、Xが単結合の場合にはXは無い。なかでも、水素原子又はNH-COO-tBu(tBuはtert-ブチル基を示す。)が好ましい。
 式[1c-1]中、Xは、上記の式[a-1]~式[a-6]からなる群から選ばれる構造を示す。nは1~4の整数を示す。なかでも、原料の入手性や合成の容易さの点から、1~3が好ましく,より好ましくは、1~2である。sは1~4の整数を示し、なかでも、原料の入手性や合成の容易さの点から、1~3が好ましく、より好ましくは、1~2である。tは1~4の整数を示し、なかでも、原料の入手性や合成の容易さの点から、1~3が好ましく、より好ましくは、1~2である。
 式[1a-1]~式[1c-1]中、A~Aは、それぞれ独立して、水素原子又は炭素数1~5のアルキル基を示す。
 より具体的には、式[1]で表されるジアミンとしては、下記の式[1d-1]~式[1d-11]で示されるジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000028
(式[1d-1]~式[1d-5]中、R~Rはそれぞれ独立して、下記の式[a-1]~式[a-6]からなる群から選ばれる少なくとも1種の構造を示し、式[1d-1]~式[1d-5]中、A~A10はそれぞれ独立して、水素原子又は炭素数1~5のアルキル基を示す。)
Figure JPOXMLDOC01-appb-C000029
(式[a-2]中、R1は炭素数1~5のアルキレン基を示す。)
Figure JPOXMLDOC01-appb-C000030
(式[1d-6]~式[1d-9]中、R~R14はそれぞれ独立して、前記式[a-1]~式[a-6]で示される構造からなる群から選ばれる少なくとも1種の構造を示し、式[1d-6]~式[1d-9]中、A11~A18はそれぞれ独立して、水素原子又は炭素数1~5のアルキル基を示す)。
 なかでも、式[1]で表されるジアミンとしては、前記式[1d-1]~式[1d-5]で示されるジアミンを用いることが好ましい。
 更に、式[1]で表されるジアミンとしては、下記の式[1d-10]及び式[1d-11]で示されるジアミンを用いることもできる。
Figure JPOXMLDOC01-appb-C000031
(式[1d-10]及び式[1d-11]中、R15~R18はそれぞれ独立して、前記式[a-1]~式[a-6]で示される構造からなる群から選ばれる少なくとも1種の構造を示し、式[1d-11]中、A19及びA20はそれぞれ独立して、水素原子又は炭素数1~5のアルキル基を示す。)
 式[1]で表されるジアミンの含有量は、全ジアミン成分100モル%中、5~70モル%であることが好ましい。なかでも、5~30モル%が好ましい。より好ましいのは、5~20モル%である。
 式[1]で表されるジアミンは、特定重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶配向性、電圧保持率、蓄積電荷などの特性に応じて、1種又は2種以上を混合して使用することもできる。
(式[2]で表されるジアミン)
 式[2]で表されるジアミンは、以下のものである。
Figure JPOXMLDOC01-appb-C000032
(式[2]中、R,R,R,Rは、それぞれ独立して、メチル基又はエチル基を示す。X及びXは、それぞれ独立して、単結合、-NHCO-、-CONH-、-COO-又は-OCO-を示す。P及びPは、それぞれ独立して、-NH、又は以下の式[Pa]~式[Pb]で示される構造を示す。n1及びn2は、それぞれ独立して0~6の整数を示す。mは1~5の整数を示す。但し、式[Pa]~式[Pb]のフェニルはハロゲンで置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000033
(式[Pa]~式[Pb]中、XD2は下記式[2a]、式[2b]及び式[2c]からなる群から選ばれる少なくとも1種の構造を有する炭素数1~50の有機基を示す。pは、0~1の整数を示す。*は、結合手を示す。)
Figure JPOXMLDOC01-appb-C000034
(式[2a]~式[2c]中、Xは水素原子又は炭素数1~20の有機基を示す。Xは単結合又は炭素数1~20の有機基を示す。Xは水素原子又は炭素数1~20の有機基を示す。Dは熱により水素原子に置き換わる保護基を示す。*は結合手を示す。)
 なかでも、上記式[2]中、R,R,R,Rは、メチル基が好ましい。X及びXは、単結合、-CONH-又は-COO-が好ましい。P及びPは、-NH又は式[2a]が好ましい。n1及びn2は、3又は4が好ましい。mは、1又は2が好ましく、1がより好ましい。
 上記式[2]で表されるジアミンにおいて、XD2は、好ましくは、下記式[2a-1]および[2b-1]から選択される構造を示す。
Figure JPOXMLDOC01-appb-C000035
(式[2a-1]中、Xは単結合、炭素数1~10のアルキレン基、-O-、-N(R)-、-CON(R)-、-N(R)CO-、-CHO-、-COO-及びOCO-からなる群から選ばれる少なくとも1種の有機基を示す。但し、R、R、Rはそれぞれ独立して、水素原子又は炭素数1~3のアルキル基を示す。Xは単結合、炭素数1~10のアルキレン基を示し、Xは水素原子又は炭素数1~20の有機基を示し、Xは上記の式[1a-1]で定義されたものである。mは1又は2の整数を示し、その際、mが2の場合はXは水素原子を示す。pは1~4の整数を示し、qは1~4の整数を示す。
 式[2b-1]中、Xは単結合、炭素数1~10のアルキレン基、-O-、-N(R)-、-CON(R)-、-N(R)CO-、-CHO-、-COO-及びOCO-からなる群から選ばれる少なくとも1種を示す。但し、R、R、Rはそれぞれ独立して、水素原子又は炭素数1~3のアルキル基を示す。Xは単結合、炭素数1~10のアルキレン基を示し、Xは単結合又は炭素数1~20の有機基を示し、Xは水素原子又は炭素数1~20の有機基を示し、Xは上記の式[1a-3]で定義されたものである。nは1~4の整数を示し、sは1~4の整数を示し、tは1~4の整数を示す。)
 式[2]中、XD2は、下記式(tB)で表される基を示すことがより好ましく、-N-Boc基を示すことがさらに好ましい。
Figure JPOXMLDOC01-appb-C000036
(Aは、単結合又は炭素数1~4の炭化水素基からなる2価の基を示す。)
 式[2]で表されるジアミンの好ましい例としては、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 式[2]で表されるジアミンの含有量は、全ジアミン成分100モル%中、1~50モル%であることが好ましい。なかでも、5~30モル%が好ましい。より好ましいのは、5~20モル%である。
 式[2]で表されるジアミンは、特定重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶配向性、電圧保持率、蓄積電荷などの特性に応じて、1種又は2種以上を混合して使用することもできる。
<ジアミン成分(2)>
 ジアミン成分(2)における、熱により水素原子に置き換わる保護基及びシロキサン骨格を有するジアミンは、例えば、下記式[3]で表されるジアミンである。
(式[3]で表されるジアミン)
 式[3]で表されるジアミンは、以下のものである。
Figure JPOXMLDOC01-appb-C000039
(式[3]中、R,R,R,Rは、それぞれ独立して、メチル基又はエチル基を示す。Xは、-NHCO-、-CONH-、-COO-又は-OCO-を示す。XD2は、上記の式[Pa]及び[Pb]で定義されたものである。nは0~6の整数を示し、mは1~5の整数を示す。pは、0~1の整数を示し、qは0~1の整数を示す。但し、pおよびqの少なくとも1つは1を示す。)
 上記式[3]中、Xは、-CONH-又は-COO-が好ましい。mは1又は2が好ましく、1がより好ましい。R~Rはメチル基が好ましい。nは1~4が好ましい。
 式[3]で表されるジアミンの含有量は、全ジアミン成分100モル%中、1~50モル%であることが好ましい。なかでも、5~30モル%が好ましい。より好ましいのは、5~20モル%である。
 式[3]で表されるジアミンは、特定重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶配向性、電圧保持率、蓄積電荷などの特性に応じて、1種又は2種以上を混合して使用することもできる。
(その他のジアミン)
 特定重合体を得るためのジアミン成分(1)およびジアミン成分(2)は、上記式[1]~[3]で表されるジアミン以外のジアミン(以下、その他のジアミンとも言う)を含有しても良い。その他のジアミンとして、第一には、以下の側鎖構造を有するジアミンが挙げられる。
(垂直配向性を発現する特定側鎖構造を有するジアミン)
 垂直配向性を発現する特定側鎖構造を有するジアミンは、下記式[S1]~[S3]で表される群から選ばれる少なくとも1種の側鎖構造を有する。以下、かかる特定側鎖構造を有するジアミンの例である、式[S1]~[S3]で表されるジアミンについて順に説明する。
 [A]:下記式[S1]で表される特定側鎖構造を有するジアミン
Figure JPOXMLDOC01-appb-C000040
 上記式[S1]中、X及びXは、それぞれ独立して、単結合、-(CH-(aは1~15の整数を示す。)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-COO-、-OCO-又は-((CHa1-Am1-を表す。このうち、複数のa1はそれぞれ独立して1~15の整数を示す。複数のAはそれぞれ独立して酸素原子又は-COO-を示す。m1は1~2を示す。
 なかでも、原料の入手性や合成の容易さの点からは、X及びXは、それぞれ独立して、単結合、-(CH-(aは1~15の整数を示す。)、-O-、-CHO-又は-COO-が好ましく、単結合、-(CH-(aは1~10の整数を示す。)、-O-、-CHO-又は-COO-がより好ましい。
 また、上記式[S1]中、G及びGは、それぞれ独立して、炭素数6~12の2価の芳香族基、及び炭素数3~8の2価の脂環式基からなる群から選ばれる2価の環状基を表す。該環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。m及びnは、それぞれ独立して、0~3の整数を示し、m及びnの合計は1~4である。
 また、上記式[S1]中、Rは、炭素数1~20のアルキル、炭素数1~20のアルコキシ又は炭素数2~20のアルコキシアルキルを表す。Rを形成する任意の水素はフッ素で置換されていてもよい。このうち、炭素数6~12の2価の芳香族基の例としては、フェニレン、ビフェニレン、ナフタレン等が挙げられる。また、炭素数3~8の2価の脂環式基の例としては、シクロプロピレン、シクロヘキシレン等が挙げられる。
 従って、上記式[S1]の好ましい具体例として、下記式[S1-x1]~[S1-x7]があげられる。
Figure JPOXMLDOC01-appb-C000041
 上記式[S1-x1]~[S1-x7]中、Rは、上記式[S1]の場合と同様である。Xは、-(CH-(aは1~15の整数を示す。)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-COO-又は-OCO-を表す。Aは、酸素原子又は-COO-*(「*」を付した結合手が(CHa2と結合する)を表す。Aは、酸素原子又は*-COO-(「*」を付した結合手が(CHa2と結合する)を表す。aは0又は1の整数を示し、aは2~10の整数を示す。Cyは1,4-シクロへキシレン基又は1,4-フェニレン基を表す。
 [B]:下記式[S2]で表される特定側鎖構造を有するジアミン
Figure JPOXMLDOC01-appb-C000042
 上記式[S2]中、Xは単結合、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-COO-又は-OCO-を表す。なかでも、液晶配向剤の液晶配向性の点から、Xは-CONH-、-NHCO-、-O-、-CHO-、-COO-又は-OCO-が好ましい。
 また、上記式[S2]中、Rは、炭素数1~20のアルキル又は炭素数2~20のアルコキシアルキルを表す。Rを形成する任意の水素はフッ素で置換されていてもよい。なかでも、液晶配向剤の液晶配向性の点から、Rは炭素数3~20のアルキル又は炭素数2~20のアルコキシアルキルが好ましい。
 [C]:下記式[S3]で表される特定側鎖構造を有するジアミン
Figure JPOXMLDOC01-appb-C000043
 上記式[S3]中、Xは-CONH-、-NHCO-、-O-、-COO-又は-OCO-を表す。Rはステロイド骨格を有する構造を表す。ここでのステロイド骨格は、3つの六員環及び1つの五員環が結合した下記式(st)で表される骨格を有する。
Figure JPOXMLDOC01-appb-C000044
 上記式[S3]の例として下記式[S3-x]が挙げられる。
Figure JPOXMLDOC01-appb-C000045
 上記式[S3-x]中、Xは、上記式[X1]又は[X2]を表す。また、Colは、上記式[Col1]~[Col3]からなる群から選ばれる少なくとも1種を表し、Gは、上記式[G1]~[G4]からなる群から選ばれる少なくとも1種を表す。*は他の基に結合する部位を表す。
 上記式[S3-x]における、X、Col及びGの好ましい組合せの例としては、例えば、下記の組合せが挙げられる。すなわち、[X1]と[Col1]と[G1]、[X1]と[Col1]と[G2]、[X1]と[Col2]と[G1]、[X1]と[Col2]と[G2]、[X1]と[Col3]と[G2]、[X1]と[Col3]と[G1]、[X2]と[Col1]と[G2]、[X2]と[Col2]と[G2]、[X2]と[Col2]と[G1]、[X2]と[Col3]と[G2]、[X2]と[Col1]と[G1]である。
 また、上記式[S3]の具体的としては、日本特開平4-281427号公報の段落[0024]に記載のステロイド化合物から水酸基(ヒドロキシ基)を除いた構造、同公報の段落[0030]に記載のステロイド化合物から酸クロライド基を除いた構造、同公報の段落[0038]に記載のステロイド化合物からアミノ基を除いた構造、同公報の段落[0042]にステロイド化合物からハロゲン基を除いた構造、及び日本特開平8-146421の段落[0018]~[0022]に記載の構造等が挙げられる。
 なお、ステロイド骨格の代表例としては、コレステロール(上記式[S3-x]における[Col1]及び[G2]の組み合わせ)が挙げられるが、該コレステロールを含まないステロイド骨格を利用することもできる。すなわち、ステロイド骨格を有するジアミンとして、例えば3,5-ジアミノ安息香酸コレスタニル等が挙げられるが、かかるコレステロール骨格を有するジアミンを含まないジアミン成分とすることも可能である。また、特定側鎖構造を有するジアミンとして、ジアミンと側鎖との連結位置にアミドを含まないものを利用することもできる。このようなジアミンを利用しても、本実施形態においては、コレステロール骨格を有するジアミンを含まないジアミン成分を利用しても、長期に渡って高い電圧保持率を確保できる液晶配向膜や液晶表示素子を得ることができる液晶配向剤を提供できる。
 なお、上記式[S1]~[S3]で表される側鎖構造を有するジアミンは、それぞれ、下記式[1-S1]-[1-S3]の構造で表される。
Figure JPOXMLDOC01-appb-C000046
 上記式[1-S1]中、X、X、G、G、R、m及びnは、上記式[S1]における場合と同様である。上記式[1-S2]中、X及びRは、上記式[S2]における場合と同様である。上記式[1-S3]中、X及びRは、上記式[S3]における場合と同様である。
(垂直配向性を発現する二側鎖型の特性側鎖構造を有するジアミン)
 垂直配向性を発現する二側鎖型の特性側鎖構造を有するジアミンは、例えば下記式[N1]で表される。
Figure JPOXMLDOC01-appb-C000047
 上記式[N1]中、Xは、単結合、-O-、-C(CH-、-NH-、-CO-、-NHCO-、-COO-、-(CH-、-SO-又はそれらの任意の組み合わせからなる2価の有機基を表す。なかでも、Xは、単結合、-O-、-NH-、-O-(CH-O-を示すのが好ましい。「それらの任意の組み合わせ」の例としては、-O-(CH-O-、-O-C(CH-、-CO-(CH-、-NH-(CH-、-SO-(CH-、-CONH-(CH-、-CONH-(CH-NHCO-、-COO-(CH-OCO-等が挙げられる。mは1~8の整数を示す。
 また、上記式[N1]中、2つのYは、それぞれ独立して、下記式[1-1]の構造を表す。
Figure JPOXMLDOC01-appb-C000048
 上記式[1-1]中、Y及びYは、それぞれ独立して、単結合、-(CH-(aは1~15の整数を示す。)、-O-、-CHO-、-COO-又は-OCO-を表す。Yは単結合又は-(CH-(bは1~15の整数を示す。)を表す。ただし、Y又はYが単結合又は-(CH-を示す場合、Yは単結合を示す。また、Yが-O-、-CHO-、-COO-又は-OCO-を示すか、及び/又はYが-O-、-CHO-、-COO-又は-OCO-を示す場合、Yは単結合又は-(CH-を示す。
 また、式[1-1]中、Yは、ベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の2価の環状基又はステロイド骨格を有する炭素数17~51の2価の有機基を表す。該環状基を形成する任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。
 また、上記式[1-1]中、Yは、ベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を表す。該環状基を形成する任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。
 また、上記式[1-1]中、Yは炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシ基及び炭素数1~18のフッ素含有アルコキシ基からなる群から選ばれる少なくとも1種を表す。nは0~4の整数を示す。
 また、上記式[N1]中、Yは、Xの位置からメタ位であってもオルト位であってもよいが、好ましくはオルト位がよい。すなわち、上記式[N1]は、下記式[1’]であるのが好ましい。
Figure JPOXMLDOC01-appb-C000049
 また、上記式[N1]中、2つのアミノ基(-NH)の位置は、ベンゼン環上のいずれの位置であってもよいが、下記式[1]-a1~[1]-a3で表される位置が好ましく、下記式[1]-a1であるのがより好ましい。下記式中、Xは、上記式[N1]における場合と同様である。なお、下記式[1]-a1~[1]-a3は、2つのアミノ基の位置を説明するものであり、上記式[N1]中で表されていたYの表記が省略されている。
Figure JPOXMLDOC01-appb-C000050
 従って、上記式[1’]及び[1]-a1~[1]-a3に基づけば、上記式[N1]は、下記式[1]-a1-1~[1]-a3-2からなる群から選ばれるいずれかの構造であるのが好ましく、下記式[1]-a1-1で表される構造がより好ましい。下記式中、X及びYは、それぞれ式[N1]における場合と同様である。
Figure JPOXMLDOC01-appb-C000051
 また、上記式[1-1]の例として、下記式[1-1]-1~[1-1]-22が挙げられる。このうち、上記式[1-1]の例としては、下記式[1-1]-1~[1-1]-4、[1-1]-8又は[1-1]-10が好ましい。なお、下記式中、*は、上記式[1]、[1’]及び[1]-a1~[1]-a3におけるフェニル基との結合位置を表す。
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
 ジアミン成分が、所定構造を有する二側鎖ジアミンを含有することで、過度の加熱にさらされた場合でも、液晶を垂直に配向させる能力が低下し難くなる液晶配向膜となる。また、ジアミン成分が該二側鎖ジアミンを含有することで、膜に何らかの異物が接触し、傷ついた際も、液晶を垂直に配向させる能力が低下し難くなる液晶配向膜となる。すなわち、ジアミン成分が該二側鎖ジアミンを含有することで、各種の上記特性に優れた液晶配向膜が得られる液晶配向剤を提供できるようになる。
 また、その他のジアミンとして、第二には、以下の一般式(Y)で表されるジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000054
 上記式(Y)中、A及びAは、それぞれ独立して、水素原子又は、炭素数1~5のアルキル基、炭素数2~5のアルケニル基、又は炭素数2~5のアルキニル基を示す。液晶配向性の観点から、A及びAは水素原子、又はメチル基が好ましい。Yの構造を例示すると、以下の式(Y-1)~式(Y-68)のとおりである。
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
(式中のBocは、tert-ブトキシカルボニル基を表す。*は結合手を表す。)
 また、その他のジアミンとして、第三には、国際公開公報WO2018/092759号に記載のチオフェン又はフラン構造を有するジアミン、好ましくは下式(sf)で表される構造を有するジアミン;
Figure JPOXMLDOC01-appb-C000059
(Yは硫黄原子又は酸素原子を表し、Rはそれぞれ独立して単結合又は基「*1-R-Ph-*2」を表し、Rは単結合、-O-、-COO-、-OCO-、-(CH-、-O(CHO-、-CONH-、及び-NHCO-からなる群から選ばれる2価の有機基を表し(l、mは1~5の整数を表す)、*1は式(pn)中のベンゼン環と結合する部位を表し、*2は式(pn)中のアミノ基と結合する部位を表す。Phはフェニレン基を表す。nは1~3を表す。)、2,3-ジアミノピリジン、2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサン等のジアミノオルガノシロキサン、メタキシレンジアミン等の脂肪族ジアミン、4,4-メチレンビス(シクロヘキシルアミン)等の脂環式ジアミン等を挙げることができる。
 その他のジアミンは1種又は2種以上を併用することもできる。
(テトラカルボン酸成分)
 特定重合体を得るためのテトラカルボン酸成分としては、下記式[4]で表されるテトラカルボン酸二無水物、又はその誘導体(テトラカルボン酸、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライド)(これらを総称して、特定テトラカルボン酸という。)を用いることができる。
Figure JPOXMLDOC01-appb-C000060
(式[4]中、Zは下記の式[4a]~式[4q]からなる群から選ばれる少なくとも1種の構造を示す。)
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
 式[4a]中、Z~Zは、それぞれ独立して、水素原子、メチル基、エチル基、プロピル基、塩素原子又はベンゼン環を示す。Z及びZはそれぞれ独立して、水素原子又はメチル基を示す。
 式[4]中のZのなかで、合成の容易さやポリマーを製造する際の重合反応性のし易さの点から、式[4a]、式[4c]~式[4g]、式[4k]~式[4m]又は式[4p]で示される構造のテトラカルボン酸二無水物及びそのテトラカルボン酸誘導体が好ましい。より好ましいのは、式[4a]、式[4e]~式[4g]、式[4l]、式[4m]又は式[4p]で示される構造のものである。特に好ましいのは、[4a]、式[4e]、式[4f]、式[4l]、式[4m]又は式[4p]で示される構造のテトラカルボン酸二無水物及びそのテトラカルボン酸誘導体である。
 より具体的には、下記の式[4a-1]又は式[4a-2]を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000063
 特定テトラカルボン酸は、すべてのテトラカルボン酸成分100モル%中、50~100モル%であることが好ましい。なかでも、70~100モル%が好ましい。より好ましいのは、80~100モル%である。
 特定テトラカルボン酸は、特定重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種又は2種以上を混合して使用することもできる。
 特定重合体を得るためのテトラカルボン酸成分としては、上記特定テトラカルボン酸以外のテトラカルボン酸(以下、その他のテトラカルボン酸とも言う)を含有しても良い。
 その他のテトラカルボン酸としては、以下に示すテトラカルボン酸化合物、テトラカルボン酸二無水物、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物又はテトラカルボン酸ジアルキルエステルジハライド化合物が挙げられる。
 すなわち、その他のテトラカルボン酸としては、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸又は1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸などが挙げられる。
 その他のテトラカルボン酸は、特定重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶配向性、電圧保持率、蓄積電荷などの特性に応じて、1種又は2種以上を混合して使用することもできる。
<特定重合体の製造方法>
 特定重合体は、ジアミン成分とテトラカルボン酸成分とを重合反応させることにより得られるポリイミド前駆体、及び該ポリイミド前駆体をイミド化して得られるポリイミドからなる群から選ばれる少なくとも一種である。
 ジアミン成分とテトラカルボン酸成分との反応は、通常、溶媒中で行う。その際に用いる溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。下記に、反応に用いる溶媒の具体例を挙げるが、これらの例に限定されない。
 例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、ジメチルスルホキシド、又は1,3-ジメチル-イミダゾリジノンが挙げられる。また、ポリイミド前駆体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン又はエチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールものプロピルエーテル等を用いることができる。
 これらの溶媒は単独で使用しても、混合して使用してもよい。更に、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、前記溶媒に混合して使用してもよい。また、溶媒中の水分は、重合反応を阻害し、更には、生成したポリイミド前駆体を加水分解させる原因となるので、溶媒は脱水乾燥させたものを用いることが好ましい。
 ジアミン成分とテトラカルボン酸成分とを溶媒中で反応させる際には、ジアミン成分を溶媒に分散或いは溶解させた溶液を攪拌させ、テトラカルボン酸成分をそのまま、又は溶媒に分散或いは溶解させて添加する方法、逆にテトラカルボン酸成分を溶媒に分散、或いは溶解させた溶液にジアミン成分を添加する方法、ジアミン成分とテトラカルボン酸成分とを反応系に対して交互に添加する方法等が挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分又はテトラカルボン酸成分を、それぞれ複数種用いて反応させる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、更に個別に反応させた低分子量体を混合して反応させ重合体としてもよい。
 ジアミン成分とテトラカルボン酸成分とを重縮合せしめる温度は、-20~150℃の任意の温度を選択することができるが、好ましくは-5~100℃の範囲である。反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。そのため、重合体の濃度は、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加できる。
 ポリイミド前駆体を得る重合反応においては、ジアミン成分の合計モル数に対するテトラカルボン酸成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応と同様に、このモル比が1.0に近いほど生成するポリイミド前駆体の分子量は大きくなる。
 イミド化重合体は、ポリイミド前駆体を閉環させて得られるポリイミドであり、このポリイミドにおいては、アミック酸基(アミド酸基)の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化、又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、好ましくは100~400℃、より好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行う方法が好ましい。ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。
 塩基性触媒の量は、アミック酸基の好ましくは0.5~30モル倍、より好ましくは2~20モル倍であり、酸無水物の量は、アミック酸基の好ましくは1~50モル倍、より好ましくは3~30モル倍である。
 塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。なかでも、ピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。
 酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができる。特に、無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量、反応温度、反応時間を調節して制御できる。
 本発明のポリイミド前駆体又はそのイミド化重合体のイミド化率は、1~95%が好ましく、20%以上80%以下がより好ましく、40%以上70%以下がさらに好ましい。
 反応溶液から生成したポリイミド前駆体又はそのイミド化重合体を回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としては、メタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水等を挙げることができる。溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧或いは減圧下で、常温或いは加熱して乾燥することができる。また、沈殿回収した重合体を、溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられる。これら中から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。
 本発明においてポリイミド前駆体がポリアミック酸アルキルエステルである場合、それを製造するための具体的な方法としては、例えば国際公開公報WO2011-115077号の段落[0054]~[0062]に記載の手法が挙げられる。
<液晶配向剤>
 本発明の液晶配向剤における特定重合体の含有量は、液晶配向剤中、2~10質量%が好ましく、3~8質量%がより好ましい。
 本発明の液晶配向剤は、特定重合体以外の他の重合体を含有していても良い。それ以外の重合体としては、セルロース系重合体、アクリルポリマー、メタクリルポリマー、ポリスチレン、ポリアミド、ポリシロキサン等も挙げられる。それ以外の他の重合体の含有量は、特定重合体の100質量部に対して、0.5~15質量部が好ましく、1~10質量部がより好ましい。
 また、液晶配向剤は、通常、有機溶媒が含有するが、有機溶媒の含有量は、液晶配向剤に対して、70~99.9質量%であることが好ましい。この含有量は、液晶配向剤の塗布方法や目的とする液晶配向膜の膜厚によって、適宜変更することができる。
 液晶配向剤に用いる有機溶媒は、特定重合体を溶解させる溶媒(良溶媒ともいう)が好ましい。例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、等を挙げられる。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド又はγ-ブチロラクトンを用いることが好ましい。
 本発明の液晶配向剤における良溶媒は、液晶配向剤に含まれる溶媒全体の20~99質量%であることが好ましく、20~90質量%がより好ましく、特に好ましいのは、30~80質量%である。
 本発明の液晶配向剤は、液晶配向剤を塗布した際の液晶配向膜の塗膜性や表面平滑性を向上させる溶媒(貧溶媒ともいう)を使用できる。下記にその具体例を挙げる。
 例えば、ジイソプロピルエーテル、ジイソブチルエーテル、ジイソブチルカルビノール(2,6-ジメチル-4-ヘプタノール)、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、プロピレングリコールモノブチルエーテル、1-(2-ブトキシエトキシ)-2-プロパノール、2-(2-ブトキシエトキシ)-1-プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、プロピレングリコールジアセテート、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸n-ブチルエステル、乳酸イソアミルエステル、ジエチレングリコールモノエチルエーテル、ジイソブチルケトン(2,6-ジメチル-4-ヘプタノン)等を挙げることができる。
 なかでも、好ましい溶媒の組み合わせとしては、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジエチレングリコールジエチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルと2,6-ジメチル-4-ヘプタノン、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソプロピルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルと2,6-ジメチル-4-ヘプタノール、N-メチル-2-ピロリドンとγ-ブチロラクトンとジプロピレングリコールジメチルエーテル、などを挙げることができる。これら貧溶媒は、液晶配向剤に含まれる溶媒全体の1~80質量%が好ましく、10~80質量%がより好ましく、20~70質量%が特に好ましい。このような溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。
 本発明の液晶配向剤には、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、更には塗膜を焼成する際にポリイミド前駆体の加熱によるイミド化を効率よく進行させる目的のイミド化促進剤等を含有せしめてもよい。
 液晶配向膜と基板との密着性を向上させる化合物としては、官能性シラン含有化合物やエポキシ基含有化合物が挙げられ、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、又はN,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどが挙げられる。
 また、本発明の液晶配向剤には、液晶配向膜の機械的強度を上げるために以下のような添加剤(CL-1)~(CL-15)を添加してもよい。
Figure JPOXMLDOC01-appb-C000064
 上記の添加剤は、液晶配向剤に含有される重合体成分の100質量部に対して0.1~30質量部であることが好ましい。より好ましくは、0.5~20質量部である。
<液晶配向膜の製造方法>
 液晶配向膜は、上記液晶配向剤を基板上に塗布などにより被膜を形成し、好ましくは乾燥し、次いで、焼成して得られる。基板としては、透明性の高い基板が好ましく、その材質として、ガラス、窒化珪素などのセラミクス、アクリルやポリカーボネート等のプラスチック等が使用できる。基板として、液晶を駆動させるためのITO(Indium Tin Oxide)電極等が形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板には、シリコンウエハー等の不透明のものも使用でき、その電極にはアルミニウム等の光を反射する材料も使用できる。
 液晶配向剤から基板上に被膜を形成する方法は、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法等が使用でき、また、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法等も目的に応じて使用できる。
 基板上に液晶配向剤の被膜を形成した後、被膜は、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブン等の加熱手段により、好ましくは30~120℃、より好ましくは50~120℃にて、好ましくは1分~10分、より好ましくは1分~5分乾燥処理することにより溶媒を蒸発させることが好ましい。
 重合体中のイミド前駆体の熱イミド化を行う場合には、次いで、液晶配向剤から得られる被膜は、上記の乾燥処理と同様の加熱手段により、好ましくは120~250℃、より好ましくは150~230℃にて焼成処理される。焼成処理の時間は、焼成温度によっても異なるが、好ましくは5分~1時間、より好ましくは5分~40分である。
 上記焼成処理後の被膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があり、厚すぎると得られる液晶配向膜の電気抵抗が大きくなるので、5~300nmが好ましく、10~200nmがより好ましい。
 上記焼成処理後に、得られた被膜は配向処理される。配向処理する方法としては、ラビング処理法、光配向処理法等が挙げられる。
 光配向処理の具体例としては、前記被膜の表面に、一定方向に偏向された放射線を照射する。放射線としては、100~800nmの波長を有する紫外線又は可視光線を用いることができる。なかでも、100~400nmの波長を有する紫外線が好ましく、より好ましくは、200~400nmの波長を有する紫外線である。液晶配向性を改善するために、液晶配向膜が塗膜された基板を50~250℃で加熱しながら、紫外線を照射してもよい。また、前記放射線の照射量は、1~10,000mJ/cmが好ましい。なかでも、100~5,000mJ/cmが好ましい。このようにして作製した液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
 偏光された紫外線の消光比が高いほど、より高い異方性が付与できるため、好ましい。具体的には、直線に偏光された紫外線の消光比は、10:1以上が好ましく、20:1以上がより好ましい。
 上記配向処理を施した被膜に、さらに、加熱処理及び溶媒による接触処理からなる群から選ばれる少なくとも1つの処理を施してもよい。
 配向処理後の加熱処理は、上記の乾燥処理や焼成処理と同様の加熱手段により行うことができ、好ましくは180~250℃、より好ましくは180~230℃にて行われる。加熱処理の温度が、上記の範囲で行われる場合、得られる液晶配向膜によって得られる液晶表示素子のコントラストを高めることができる。
 加熱処理の時間は、加熱温度によっても異なるが、好ましくは5分~1時間、より好ましくは5~40分である。
 上記溶媒による接触処理に使用する溶媒としては、液晶配向膜に付着していた不純物などを溶解する溶媒であれば、特に限定されない。
 具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、酢酸シクロヘキシル等が挙げられる。なかでも、汎用性や溶媒の安全性の点から、水、2-プロパンール、1-メトキシ-2-プロパノール又は乳酸エチルが好ましい。より好ましいのは、水、1-メトキシ-2-プロパノール又は乳酸エチルである。これらの溶媒は、1種でも2種以上であってもよい。
 上記接触処理としては、浸漬処理や噴霧処理(スプレー処理ともいう)が挙げられる。これらの処理における処理時間は、10秒~1時間が好ましく、特に、1~30分間浸漬処理をする態様が挙げられる。また、接触処理時の温度は、常温でも加温してもよいが、好ましくは、10~80℃であり、20~50℃が挙げられる。接触処理時に、必要に応じて、超音波処理等を、更に行ってもよい。
 前記接触処理の後に、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン等の低沸点溶媒によるすすぎ(リンスともいう)や乾燥を行ってもよい。その際、リンスと乾燥のどちらか一方を行っても、両方を行ってもよい。乾燥温度は、50~150℃が好ましく、80~120℃が挙げられる。また、乾燥時間は10秒~30分が好ましく、1~10分が好ましい。
 上記溶媒による接触処理を行った後、前記配向処理後の加熱処理を施してもよい。このような態様とすることで、液晶配向性に優れた液晶配向膜が得られる。
<液晶表示素子>
 本発明の液晶配向膜は、TN方式、STN方式、IPS方式、FFS方式、VA方式、MVA方式、PSA方式などの種々の駆動モードに適用することができるが、IPS方式やFFS方式等の横電界方式の液晶表示素子の液晶配向膜として好適であり、特に、FFS方式の液晶表示素子に有用である。本発明の液晶表示素子は、上記液晶配向剤から得られる液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セルを使用して素子としたものである。
 液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。なお、画像表示を構成する各画素部分にTFT等のスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。
 具体的には、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えば、ITO電極とすることができ、所望の画像表示ができるようパターニングされている。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOからなる膜とすることができる。次に、前記のような条件で、各基板の上に液晶配向膜を形成し、一方の基板に他方の基板を、互いの液晶配向膜面が対向するようにして重ね合わせ、周辺をシール剤で接着する。シール剤には、基板間隙を制御するために、通常、スペーサーを混入しておくことが好ましい。また、シール剤を設けない面内部分にも、基板間隙制御用のスペーサーを散布しておくことが好ましい。シール剤の一部には、外部から液晶を充填可能な開口部を設けておくことが好ましい。
 その後、シール剤に設けた開口部を通じて、2枚の基板とシール剤で包囲された空間内に液晶材料を注入する。次いで、この開口部を接着剤で封止する。注入には、真空注入法や大気中で毛細管現象を利用した方法が挙げられ、ODF(One Drop Fill)法を用いてもよい。液晶材料としては、誘電異方性が正負いずれのものを用いてもよい。本発明では液晶配向性の観点から負の誘電異方性を有する液晶の方が好ましいが、用途に応じて使い分けることができる。
 液晶セルに液晶材料が注入されたのち、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に、一対の偏光板を貼り付けることが好ましい。
 以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明は、これらに限定して解釈されるものではない。使用した化合物等の略号は、以下の通りである。
(ジアミン成分)
Figure JPOXMLDOC01-appb-C000065
(テトラカルボン酸成分)
Figure JPOXMLDOC01-appb-C000066
(溶媒)
 NMP:N-メチル-2-ピロリドン
 BCS:エチレングリコールモノブチルエーテル
<ポリイミドの分子量測定>
 ポリイミドの分子量は、センシュー科学社製 常温ゲル浸透クロマトグラフィー(GPC)装置(SSC-7200)、Shodex社製カラム(KD-803、KD-805)を用い以下のようにして測定した。
カラム温度:50℃
溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・H2O)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量 約9000,000、150,000、100,000、30,000)、および、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、1,000)。
<イミド化率の測定>
 ポリイミド粉末20mgをNMRサンプル管(草野科学製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d、0.05%TMS混合品)0.53mlを添加し、超音波をかけて完全に溶解させた。
 この溶液を日本電子データム社製NMR測定器(JNW-ECA500)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い、以下の計算式によって求めた。
イミド化率(%)=(1-α・x/y)×100
<ポリイミド系重合体の合成>
<合成例1>
 D1(9.14g)、DA-1(4.68g,全ジアミン成分に対してモル比0.3)、DA-2(3.25g,全ジアミン成分に対してモル比0.4)、DA-3(1.95g,全ジアミン成分に対してモル比0.2)、DA-4(1.02g,全ジアミン成分に対してモル比0.1)を、NMP溶媒(80.17g)中で混合し、60℃で12時間反応させポリアミド酸溶液を得た。
 このポリアミド酸溶液(50.0g)にNMP(103.85g)を加え、6.5質量%に希釈した後、イミド化触媒として無水酢酸(20.84g)、ピリジン(3.23g)を加え、80℃で5時間反応させた。この反応溶液をメタノール(622.70g)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥し、ポリイミド粉末(A)を得た。このポリイミドのイミド化率は72%であり、Mnは11,800、Mwは41,800であった。
<合成例2~4、比較合成例1、2>
 合成例1において、材料や割合を表1及び2の通りに変更した以外は、合成例1と同様に、合成例2~4のポリイミド粉末(B~D)および比較合成例1、2のポリイミド粉末(E、F)を得た。
<合成例5>
 D2(5.12g)、DA-7(3.26g,全ジアミン成分に対してモル比0.4)、DA-8(3.97g,全ジアミン成分に対してモル比0.4)、DA-9(3.24g,全ジアミン成分に対してモル比0.2)、NMP溶媒(62.43g)中で混合し、60℃で3時間反応させた後、室温まで冷却し、D3(3.86g)、NMP溶媒(15.44g)を添加、40℃で12時間反応させポリアミド酸溶液(G)を得た。このポリアミド酸溶液(G)のMnは10,600、Mwは35,700であった。
Figure JPOXMLDOC01-appb-T000067
 表1において、ジアミン成分の名称の後の括弧内右側は、反応に用いた全ジアミン成分に対する各ジアミンのモル比を表す。
Figure JPOXMLDOC01-appb-T000068
<実施例1>
 合成例1で得たポリイミド粉末(A)(6.0g)にNMP(44.0g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にBCS(50.0g)を加え、5時間攪拌することで、実施例1の液晶配向剤[1]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
<実施例2~4、比較例1、2>
 実施例1において、ポリイミド材料を表3の通りに変更した以外は、実施例1と同様に、実施例2~4の液晶配向剤[2]~[4]および比較例1、2の液晶配向剤 [5]、[6]を得た。これらの液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
<実施例5>
 合成例5で得たポリアミド酸溶液(G)(21.0g)にNMP(29.0g)を加え30分攪拌、BCS(35.0g)を加えさらに30分攪拌した後、液晶配向剤[1](30.0g)を加え5時間攪拌することで、実施例5の液晶配向剤[7]を得た。この液晶配向剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
<液晶セルの作製>
 実施例1~5および比較例1、2の液晶配向剤を、それぞれ、純水及びIPA(イソプロピルアルコール)で洗浄したITO付きガラス基板(縦30mm、横40mm、厚み0.7mm)のITO面にスピンコートし、70℃で90秒間ホットプレートにて焼成した後、230℃の赤外線加熱炉で20分間焼成を行い、膜厚100nmのポリイミド塗布基板を作製した。
 上記方法でポリイミド塗布基板を二枚作製し、一方の基板の液晶配向膜面上に4μmのビーズスペーサーを散布した後、その上から熱硬化性シール材(協立化学社製 XN-1500T)を印刷した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と貼り合せた後、シール材を硬化させて空セルを作製した。この空セルにPSA用重合性化合物含有液晶MLC-3023(メルク社製商品名)を減圧注入法によって注入し、液晶セルを作製した。この液晶セルの電圧保持率を測定した。
 次に、この液晶セルに15VのDC電圧を印加した状態で、この液晶セルの外側から325nmカットフィルターを通したUVを10J/cm照射(1次PSA処理とも称する)した。なお、UVの照度は、ORC社製UV-MO3Aを用いて測定した。
 その後、液晶セル中に残存している未反応の重合性化合物を失活させる目的で、電圧を印加していない状態で東芝ライテック社製UV-FL照射装置を用いてUV(UVランプ:FLR40SUV32/A-1)を30分間照射(2次PSA処理と称する)した。その後、電圧保持率の測定を行った。
<電圧保持率の評価>
 上記で作製した液晶セルを用い、60℃の熱風循環オーブン中で1Vの電圧を60μs間印加し、その後1667msec後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率として計算した。電圧保持率の測定には、東陽テクニカ社製のVHR-1を使用した。
<高温高湿耐性の評価>
 上記で作製した液晶セルを温度85℃、湿度85%の状態にした恒温恒湿器(エスペック社製PR-2KP)内に7日間静置した後、電圧保持率の測定を行った。ここで測定した電圧保持率と2次PSA処理後の電圧保持率の差分をVHR変化量とした。
Figure JPOXMLDOC01-appb-T000069
 表3に示されるように、比較例1、2では2次PSA処理後のVHRは86%より低いが、実施例1~5では86%以上である。さらに、比較例1、2では、高温・高湿下に液晶セルを置くことにより、VHR変化量が65%以上と大幅に変化しているが、実施例1~5ではVHR変化量50%以下と少ない変化量にすることができることが確認された。
<チルト角評価用液晶セルの作製>
 実施例1~5および比較例1、2の液晶配向剤を、純水及びIPA(イソプロピルアルコール)で洗浄した、画素サイズが200μm×600μmでライン/スペースがそれぞれ3μmのITO電極パターンが形成されている3.5×3mmITO電極基板(縦35mm、横30mm、厚さ0.5mm)と、高さ3.2μmのフォトスペーサーがパターニングされているITO電極付きガラス基板(縦35mm、横30mm、厚さ0.7mm)のITO面上にそれぞれスピンコートした。次いで、70℃で90秒間ホットプレートにて焼成した後、230℃の赤外線加熱炉で20分間または60分間焼成を行い、膜厚100nmのポリイミド塗布基板を作製した。
 なお、このITO電極パターンが形成されているITO電極基板は、クロスチェッカー(市松)模様に4分割されており4つのエリアごとで別々に駆動ができるようになっている。
 上記方法でポリイミド塗布基板を二枚作製し、その上から熱硬化性シール材(協立化学社製 XN-1500T)を印刷した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と貼り合せた後、シール材を硬化させて空セルを作製した。この空セルにPSA用重合性化合物含有液晶MLC-3023(メルク社製商品名)を減圧注入法によって注入し、液晶セルを作製した。この液晶セルの電圧保持率を測定した。
 次に、この液晶セルに15VのDC電圧を印加した状態で、この液晶セルの外側から325nmカットフィルターを通したUVを10J/cm照射(1次PSA処理とも称する)した。なお、UVの照度は、ORC社製UV-MO3Aを用いて測定した。
 その後、液晶セル中に残存している未反応の重合性化合物を失活させる目的で、電圧を印加していない状態で東芝ライテック社製UV-FL照射装置を用いてUV(UVランプ:FLR40SUV32/A-1)を30分間照射(2次PSA処理と称する)した。その後、プレチルト角の測定を行った。
<プレチルト角の評価>
 LCDアナライザー(名菱テクニカ社製LCA-LUV42A)を使用して、上記で作製したプレチルト角評価液晶セルのプレチルト角測定を行った。ここで測定した230℃の赤外線加熱炉で20分間焼成したポリイミド塗布基板を用いたプレチルト角から60分間焼成したポリイミド塗布基板を用いたプレチルト角を引いた値をプレチルト角差とした。評価結果を、表4に示す。
Figure JPOXMLDOC01-appb-T000070
 表4に示されるように、シロキサン骨格を導入していない比較例1ではプレチルト角差が2.0°あるが、実施例1~5ではプレチルト角差が0.4°以下にすることができることが確認された。
<溶解性の評価>
 実施例1~5および比較例1、2の液晶配向剤10g攪拌している中にそれぞれBCSを滴下し、白濁する重量から、下記式で溶解性を算出した。評価結果を、表5に示す。
溶解性(%)=(液晶配向剤中のBCS量+滴下BCS量)/
        (液晶配向剤量+滴下BCS量)×100
<シール密着性測定基板の作製>
 実施例1~5および比較例1、2の液晶配向剤を、それぞれ、純水及びIPA(イソプロピルアルコール)で洗浄したITO付きガラス基板(縦30mm、横40mm、厚み0.7mm)のITO面にスピンコートし、70℃で90秒間ホットプレートにて焼成した後、230℃の赤外線加熱炉で20分間焼成を行い、膜厚100nmのポリイミド塗布基板を作製した。
 上記方法でポリイミド塗布基板を二枚作製し、一方の基板の液晶配向膜面上に4μmbビーズスペーサーを塗布した後、シール剤(協立化学社製、XN-1500T)を滴下した。次いで、もう一方の基板の液晶配向膜面を内側にし、基板の重なり幅が1cm、シール剤の直径が3mmに近い円形になるように、貼り合わせた。貼り合わせた2枚のポリイミド塗布基板を固定した後、150℃の熱風循環オーブンにて1時間焼成を行い、密着性評価用サンプルを作製した。
<シール密着性の評価>
 上記密着性評価用サンプルを卓上形精密万能試験機(島津製作所社製、AGS-X 500N)の三点曲げ治具の下部(間隔64cm)に密着性評価用基板を固定した後、基板中央部の上部から5mm/分の速度で押し込みを行い、剥離する際の力(N)を測定した。上記方法で測定した剥離する際の力(N)をシール剤の直径で割った値をシール密着性として評価した。シール評価結果を、表5に示す。
Figure JPOXMLDOC01-appb-T000071
 表5に示されるように、比較例1、2では溶解性60%より低いが、実施例1~5では、60%以上であることが確認された。シール密着性も比較例1、2では2N/mmより低いが、実施例1~5では2.5N/mm以上であることが確認された。
 なお、2019年2月8日に出願された日本特許出願2019-021819号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (16)

  1.  下記ジアミン成分(1)及びジアミン成分(2)のいずれかとテトラカルボン酸成分とを重合反応させることにより得られるポリイミド前駆体、及び該ポリイミド前駆体をイミド化して得られるポリイミドからなる群から選ばれる少なくとも一種の重合体を含有することを特徴とする液晶配向剤。
     ジアミン成分(1):熱により水素原子に置き換わる保護基を有するジアミン及びシロキサン骨格を有するジアミンを含有するジアミン成分。
     ジアミン成分(2):熱により水素原子に置き換わる保護基及びシロキサン骨格を有するジアミンを含有するジアミン成分。
  2.  ジアミン成分(1)における熱により水素原子に置き換わる保護基を有するジアミンが、下記式[1]で表されるジアミンである、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (式[1]中、Xは下記式[1a]、式[1b]及び式[1c]からなる群から選ばれる少なくとも1種の構造を有する炭素数1~50の有機基を示し、A及びAはそれぞれ独立して、水素原子又は炭素数1~5のアルキル基を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (式[1a]~式[1c]中、Xは水素原子又は炭素数1~20の有機基を示す。Xは単結合又は炭素数1~20の有機基を示す。Xは水素原子又は炭素数1~20の有機基を示す。Dは熱により水素原子に置き換わる保護基を示す。*は結合手を示す。)
  3.  ジアミン成分(1)におけるシロキサン骨格を有するジアミンが、下記式[2]で表されるジアミンである、請求項1又は2に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
    (式[2]中、R,R,R,Rは、それぞれ独立して、メチル基又はエチル基を示す。X及びXは、それぞれ独立して、単結合、-NHCO-、-CONH-、-COO-又は-OCO-を示す。P及びPは、それぞれ独立して、-NH、又は以下の式[Pa]~式[Pb]で示される構造を示す。n1及びn2は、それぞれ独立して0~6の整数を示す。mは1~5の整数を示す。但し、式[Pa]~式[Pb]のフェニルはハロゲンで置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000004
    (式[Pa]~式[Pb]中、XD2は下記式[2a]、式[2b]及び式[2c]からなる群から選ばれる少なくとも1種の構造を有する炭素数1~50の有機基を示す。pは、0~1の整数を示す。*は、結合手を示す。)
    Figure JPOXMLDOC01-appb-C000005
    (式[2a]~式[2c]中、Xは水素原子又は炭素数1~20の有機基を示す。Xは単結合又は炭素数1~20の有機基を示す。Xは水素原子又は炭素数1~20の有機基を示す。Dは熱により水素原子に置き換わる保護基を示す。*は結合手を示す。)
  4.  前記式[1]で表されるジアミンが、下記の式[1a-1]~式[1c-1]からなる群から選ばれる少なくとも1種のジアミンである、請求項2又は3に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000006
    (式[1a-1]中、Xは単結合、炭素数1~10のアルキレン基、-O-、-N(R)-、-CON(R)-、-N(R)CO-、-CHO-、-COO-及びOCO-からなる群から選ばれる少なくとも1種の有機基を示す。但し、R、R、Rはそれぞれ独立して、水素原子又は炭素数1~3のアルキル基を示す。Xは単結合、炭素数1~10のアルキレン基を示し、Xは水素原子又は炭素数1~20の有機基を示す。Xは下記の式[a-1]~式[a-6]からなる群から選ばれる構造を示す。mは1又は2の整数を示し、その際、mが2の場合はXは水素原子を示す。pは1~4の整数を示し、qは1~4の整数を示す。
     式[1b-1]中、X及びXはそれぞれ独立して、単結合、炭素数1~10のアルキレン基、-O-、-N(R)-、-CON(R)-、-N(R)CO-、-CHO-、-COO-及びOCO-からなる群から選ばれる少なくとも1種を示す。但し、R、R、Rはそれぞれ独立して、水素原子又は炭素数1~3のアルキル基を示す。X及びXはそれぞれ独立して、単結合又は炭素数1~10のアルキレン基を示し、Xは単結合又は炭素数1~10のアルキレン基を示し、Xは下記の式[a-1]~式[a-6]からなる群から選ばれる構造を示す。rは1~4の整数を示す。
     式[1c-1]中、Xは単結合、炭素数1~10のアルキレン基、-O-、-N(R)-、-CON(R)-、-N(R)CO-、-CHO-、-COO-及びOCO-からなる群から選ばれる少なくとも1種を示す。但し、R、R、Rはそれぞれ独立して、水素原子又は炭素数1~3のアルキル基を示す。Xは単結合、炭素数1~10のアルキレン基を示し、Xは単結合又は炭素数1~20の有機基を示し、Xは水素原子又は炭素数1~20の有機基を示し、Xは下記の式[a-1]~式[a-6]からなる群から選ばれる構造を示す。nは1~4の整数を示し、sは1~4の整数を示し、tは1~4の整数を示す。
     式[1a-1]~式[1c-1]中、A~Aはそれぞれ独立して、水素原子又は炭素数1~5のアルキル基を示す。)
    Figure JPOXMLDOC01-appb-C000007
    (Rは炭素数1~5のアルキレン基を示す。)
  5.  前記式[1a-1]~式[1c-1]で表されるジアミンが、下記の式[1d-1]~式[1d-5]からなる群から選ばれる少なくとも1種のジアミンである、請求項4に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000008
    (式[1d-1]~式[1d-5]中、R~Rはそれぞれ独立して、下記の式[a-1]~式[a-6]からなる群から選ばれる少なくとも1種の構造を示し、式[1d-1]~式[1d-5]中、A~A10はそれぞれ独立して、水素原子又は炭素数1~5のアルキル基を示す。)
    Figure JPOXMLDOC01-appb-C000009
    (式[a-2]中、Rは炭素数1~5のアルキレン基を示す。)
  6.  前記式[2]で表されるジアミンにおいて、mが1を示す、請求項3~5のいずれか1項に記載の液晶配向剤。
  7.  前記式[2]で表されるジアミンにおいて、XD2が、下記式[2a-1]および[2b-1]から選択される構造を示す、請求項3~6のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000010
    (式[2a-1]中、Xは単結合、炭素数1~10のアルキレン基、-O-、-N(R)-、-CON(R)-、-N(R)CO-、-CHO-、-COO-及びOCO-からなる群から選ばれる少なくとも1種の有機基を示す。但し、R、R、Rはそれぞれ独立して、水素原子又は炭素数1~3のアルキル基を示す。Xは単結合、炭素数1~10のアルキレン基を示し、Xは水素原子又は炭素数1~20の有機基を示し、Xは上記の式[1a-1]で定義されたものである。mは1又は2の整数を示し、その際、mが2の場合はXは水素原子を示す。pは1~4の整数を示し、qは1~4の整数を示す。
     式[2b-1]中、Xは単結合、炭素数1~10のアルキレン基、-O-、-N(R)-、-CON(R)-、-N(R)CO-、-CHO-、-COO-及びOCO-からなる群から選ばれる少なくとも1種を示す。但し、R、R、Rはそれぞれ独立して、水素原子又は炭素数1~3のアルキル基を示す。Xは単結合、炭素数1~10のアルキレン基を示し、Xは単結合又は炭素数1~20の有機基を示し、Xは水素原子又は炭素数1~20の有機基を示し、Xは上記の式[1a-3]で定義されたものである。nは1~4の整数を示し、sは1~4の整数を示し、tは1~4の整数を示す。)
  8.  前記式[2]で表されるジアミンが、下記式で表される、請求項3~7のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
  9.  ジアミン成分(2)における、熱により水素原子に置き換わる保護基及びシロキサン骨格を有するジアミンが、下記式[3]で表されるジアミンである、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000013
    (式[3]中、R,R,R,Rは、それぞれ独立して、メチル基又はエチル基を示す。Xは、-NHCO-、-CONH-、-COO-又は-OCO-を示す。XD2は、上記の式[Pa]及び[Pb]で定義されたものである。nは0~6の整数を示し、mは1~5の整数を示す。pは、0~1の整数を示し、qは0~1の整数を示す。但し、pおよびqの少なくとも1つは1を示す。)
  10.  前記テトラカルボン酸成分が、下記の式[4]で示されるテトラカルボン酸化合物である、請求項1~9のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000014
    (Zは下記の式[4a]~式[4q]からなる群から選ばれる少なくとも1種の構造を示す。)
    Figure JPOXMLDOC01-appb-C000015
    Figure JPOXMLDOC01-appb-C000016
    (式[4a]中、Z~Zはそれぞれ独立に、水素原子、メチル基、エチル基、プロピル基、塩素原子又はベンゼン環を示し、式[4g]中、Z及びZはそれぞれ独立に、水素原子又はメチル基を示す。)
  11.  前記ジアミン成分(1)およびジアミン成分(2)が、下記式[S1]~[S3]で表される特定側鎖構造を有するジアミンおよび下記式[N1]で表される二側鎖ジアミンからなる群から選ばれる少なくとも一種のジアミンをさらに含有する、請求項1~10のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000017
    (上記式[S1]中、X及びXは、それぞれ独立して、単結合、-(CH-(aは1~15の整数を示す。)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-COO-、-OCO-又は-((CHa1-Am1-を表す。このうち、複数のa1はそれぞれ独立して1~15の整数を示す。複数のAはそれぞれ独立して酸素原子又は-COO-を示す。m1は1~2を示す。)
    Figure JPOXMLDOC01-appb-C000018
    (上記式[S2]中、Xは単結合、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-COO-又は-OCO-を表す。);
    Figure JPOXMLDOC01-appb-C000019
    (上記式[S3]中、Xは-CONH-、-NHCO-、-O-、-COO-又は-OCO-を表す。Rはステロイド骨格を有する構造を表す。)
    Figure JPOXMLDOC01-appb-C000020
    (上記式[N1]中、Xは、単結合、-O-、-C(CH-、-NH-、-CO-、-NHCO-、-COO-、-(CH-、-SO-又はそれらの任意の組み合わせからなる2価の有機基を表す。mは1~8の整数を示す。Yは、それぞれ独立して、下記式[1-1]の構造を表す。)
    Figure JPOXMLDOC01-appb-C000021
    (上記式[1-1]中、Y及びYは、それぞれ独立して、単結合、-(CH-(aは1~15の整数を示す。)、-O-、-CHO-、-COO-又は-OCO-を表す。Yは単結合又は-(CH-(bは1~15の整数を示す。)を表す。ただし、Y又はYが単結合又は-(CH-を示す場合、Yは単結合を示す。また、Yが-O-、-CHO-、-COO-又は-OCO-を示すか、及び/又はYが-O-、-CHO-、-COO-又は-OCO-を示す場合、Yは単結合又は-(CH-を示す。
     Yは、ベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の2価の環状基又はステロイド骨格を有する炭素数17~51の2価の有機基を表す。該環状基を形成する任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。
     Yは、ベンゼン環、シクロヘキサン環及び複素環からなる群から選ばれる少なくとも1種の環状基を表す。該環状基を形成する任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。
     Yは炭素数1~18のアルキル基、炭素数2~18のアルケニル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシ基及び炭素数1~18のフッ素含有アルコキシ基からなる群から選ばれる少なくとも1種を表す。nは0~4の整数を示す。)
  12.  前記式[1]で表されるジアミンの含有量が、全ジアミン成分100モル%中、5~70モル%である、請求項2~11のいずれか1項に記載の液晶配向剤。
  13.  前記式[2]で表されるジアミンの含有量が、全ジアミン成分100モル%中、1~50モル%である、請求項3~12のいずれか1項に記載の液晶配向剤。
  14.  前記重合体に含有されるポリイミドのイミド化率が1~95%である、請求項1~13のいずれか1項に記載の液晶配向剤。
  15.  請求項1~14のいずれか1項に記載の液晶配向剤から得られる液晶配向膜。
  16.  請求項15に記載の液晶配向膜を有する液晶表示素子。
PCT/JP2020/004416 2019-02-08 2020-02-05 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子 WO2020162508A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080013164.1A CN113412449A (zh) 2019-02-08 2020-02-05 液晶取向剂、液晶取向膜以及使用了该液晶取向膜的液晶显示元件
KR1020217024385A KR20210125486A (ko) 2019-02-08 2020-02-05 액정 배향제, 액정 배향막 및 그것을 사용한 액정 표시 소자
JP2020571242A JP7472799B2 (ja) 2019-02-08 2020-02-05 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-021819 2019-02-08
JP2019021819 2019-02-08

Publications (1)

Publication Number Publication Date
WO2020162508A1 true WO2020162508A1 (ja) 2020-08-13

Family

ID=71947223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004416 WO2020162508A1 (ja) 2019-02-08 2020-02-05 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子

Country Status (4)

Country Link
JP (1) JP7472799B2 (ja)
KR (1) KR20210125486A (ja)
CN (1) CN113412449A (ja)
WO (1) WO2020162508A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115228A1 (ja) * 2012-02-01 2013-08-08 日産化学工業株式会社 新規ジアミン、重合体、液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
JP2016048362A (ja) * 2014-08-25 2016-04-07 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
WO2018030489A1 (ja) * 2016-08-10 2018-02-15 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
WO2018135657A1 (ja) * 2017-01-23 2018-07-26 日産化学工業株式会社 液晶配向剤及び液晶配向膜の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4671015B2 (ja) 2003-12-17 2011-04-13 Jsr株式会社 液晶配向剤および液晶表示素子
JPWO2015060358A1 (ja) * 2013-10-23 2017-03-09 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
KR20220147158A (ko) * 2016-09-29 2022-11-02 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막, 및 액정 표시 소자

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115228A1 (ja) * 2012-02-01 2013-08-08 日産化学工業株式会社 新規ジアミン、重合体、液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
JP2016048362A (ja) * 2014-08-25 2016-04-07 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
WO2018030489A1 (ja) * 2016-08-10 2018-02-15 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
WO2018135657A1 (ja) * 2017-01-23 2018-07-26 日産化学工業株式会社 液晶配向剤及び液晶配向膜の製造方法

Also Published As

Publication number Publication date
JP7472799B2 (ja) 2024-04-23
JPWO2020162508A1 (ja) 2021-12-09
CN113412449A (zh) 2021-09-17
KR20210125486A (ko) 2021-10-18
TW202043333A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
JP5967391B2 (ja) 重合性化合物及び液晶表示素子並びに液晶表示素子の製造方法
JP5257548B2 (ja) 液晶表示素子および液晶配向剤
JP6172463B2 (ja) 液晶配向剤、液晶配向膜、液晶表示素子及び液晶表示素子の製造方法
JP5975227B2 (ja) 液晶配向剤、液晶配向膜、液晶表示素子及び液晶表示素子の製造方法
JP6233310B2 (ja) 液晶配向処理剤及びそれを用いた液晶表示素子
TWI821453B (zh) 液晶配向劑、液晶配向膜及使用其之液晶顯示元件
WO2020158818A1 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JP6052171B2 (ja) 組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子
JP5716674B2 (ja) 液晶配向処理剤及びそれを用いた液晶表示素子
JP5672762B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JPWO2018097155A1 (ja) 液晶表示素子の製造方法並びに液晶表示素子用基板及び液晶表示素子組立体
WO2022270287A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2022234820A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2014092170A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP7472799B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
TWI852985B (zh) 液晶配向劑、液晶配向膜及使用其之液晶顯示元件
WO2016125871A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JP3858808B2 (ja) 液晶配向処理剤
JP6260248B2 (ja) 液晶配向剤、液晶配向膜並びに液晶表示素子及びその製造方法
JPWO2018230617A1 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子並びに該液晶配向膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20753003

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571242

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20753003

Country of ref document: EP

Kind code of ref document: A1