WO2020162362A1 - 覚醒度制御装置、覚醒度制御方法および記録媒体 - Google Patents

覚醒度制御装置、覚醒度制御方法および記録媒体 Download PDF

Info

Publication number
WO2020162362A1
WO2020162362A1 PCT/JP2020/003701 JP2020003701W WO2020162362A1 WO 2020162362 A1 WO2020162362 A1 WO 2020162362A1 JP 2020003701 W JP2020003701 W JP 2020003701W WO 2020162362 A1 WO2020162362 A1 WO 2020162362A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
physical quantity
prediction model
setting value
awakening degree
Prior art date
Application number
PCT/JP2020/003701
Other languages
English (en)
French (fr)
Inventor
卓磨 向後
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US17/427,234 priority Critical patent/US11826147B2/en
Priority to JP2020571168A priority patent/JPWO2020162362A1/ja
Publication of WO2020162362A1 publication Critical patent/WO2020162362A1/ja
Priority to US18/385,506 priority patent/US20240057915A1/en
Priority to US18/385,502 priority patent/US20240065601A1/en
Priority to US18/385,606 priority patent/US20240057916A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/18Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state for vehicle drivers or machine operators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0242Operational features adapted to measure environmental factors, e.g. temperature, pollution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • A61M2021/0005Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus
    • A61M2021/0022Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus by the tactile sense, e.g. vibrations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • A61M2021/0005Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus
    • A61M2021/0027Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus by the hearing sense
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • A61M2021/0005Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus
    • A61M2021/0044Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus by the sight sense
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • A61M2021/0005Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus
    • A61M2021/0066Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus with heating or cooling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • A61M2021/0005Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus
    • A61M2021/0083Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus especially for waking up
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3306Optical measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3368Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3576Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
    • A61M2205/3592Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using telemetric means, e.g. radio or optical transmission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/587Lighting arrangements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/06Head
    • A61M2210/0606Face
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/04Heartbeat characteristics, e.g. ECG, blood pressure modulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/50Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/63Motion, e.g. physical activity

Definitions

  • the present invention relates to an alertness control device, an alertness control method, and a recording medium.
  • a technology has been proposed in which biometric information of a user is acquired and the arousal level of the user is calculated from the acquired biometric information (for example, Patent Documents 1 and 2).
  • the awakening degree is an index indicating the degree of awakening. The lower the arousal value, the more sleepy the subject is.
  • the state where the awakening degree is low is not an appropriate state for performing work. For example, business efficiency decreases in office work, and distracted driving increases in car driving. As described above, a state of low arousal level tends to be an undesirable state for various tasks.
  • Patent Documents 3, 4, and 5 propose a system that improves the arousal level or controls the environment of the user so as to be in an appropriate range.
  • Patent Document 3 when the predicted value of the user's arousal level when the current environmental state continues falls below a predetermined threshold value, the setting of environmental control equipment such as air conditioning and lighting is changed to the predetermined setting.
  • a system for controlling the arousal level for a driver of a vehicle is disclosed.
  • Patent Document 4 discloses that, in two-axis coordinates composed of a drowsiness-wakefulness evaluation axis and a pleasure-discomfort evaluation axis, depending on where the current state of the user is located, in particular, how far away from a desired range, Disclosed is a system for a driver of a vehicle, which controls the arousal level, which determines and controls the combination and strength of devices that stimulate the five senses such as air conditioning and lighting based on predetermined settings.
  • Patent Document 5 when the awakening degree of the subject falls below a preset threshold value, the air conditioner is periodically switched to a predetermined operation mode (temperature, air volume setting), thereby allowing the user to perform heating/cooling due to a temperature change.
  • a predetermined operation mode temperature, air volume setting
  • the mood estimation system of Patent Document 6 indexes the mood based only on the heart rate of the target person, and when the index value deviates from a preset range, the plurality of biological information of the target person and the target The mood of the subject is indexed based on a plurality of environmental information of the surrounding environment of the subject.
  • the air conditioning management system described in Patent Document 7 calculates a predicted environmental value after a predetermined time based on the environmental value detected by the detection device, and sets a parameter of the air conditioning device based on the environmental value and the predicted environmental value. Calculate and send to the air conditioner.
  • the awakening degree maintaining method described in Patent Document 8 when the awakening degree is detected from the depth body temperature such as the eardrum temperature of the worker, and when a decrease in the awakening degree of the worker is found, the illuminance suitable for the work To a higher illuminance to give the worker the awakening effect of light stimulation.
  • the drowsiness estimation device described in Patent Document 9 includes a two-layered neural network including an image processing neural network and a drowsiness estimation neural network.
  • the image processing neural network estimates the age and sex of the user, and extracts a specific action and state of the user that represents a drowsiness state such as eyes closed.
  • the drowsiness estimation neural network obtains the drowsiness state of the user based on the extraction result of the specific action and state of the user representing the drowsiness state, the detection result of the indoor environment information sensor, and the age and sex of the user.
  • Patent Document 9 describes that the control unit of the air conditioner calculates the air conditioning control content so that the estimated drowsiness level becomes equal to or lower than the threshold value, and executes the calculated air conditioning control. Further, in Patent Document 9, when the desired change in the user's motion and state is not observed, the estimation operation of the drowsiness state may be deviated from the actual drowsiness state, so the estimation model is updated. Is described.
  • Japanese Patent No. 6043933 Japanese Patent Laid-Open No. 2018-134274 Japanese Patent Laid-Open No. 2017-148604 Japanese Patent Laid-Open No. 2018-025870 Japanese Patent Laid-Open No. 2013-012029 Japanese Patent Laid-Open No. 2018-088866 Japanese Patent Laid-Open No. 2006-349288 Japanese Unexamined Patent Publication No. 09-140799 Japanese Patent No. 6387173
  • the device or system controls the arousal level of the target person to control the arousal level
  • the influence of the surrounding environment on the arousal level is more accurately understood in order to perform the arousal level control with high accuracy. It is preferable to be able to.
  • One example of an object of the present invention is to provide a wakefulness control device, a wakefulness control method, and a recording medium that can solve the above problems.
  • the wakefulness control device comprises: A physical quantity prediction model which is an explicit function with the physical quantity of the surrounding environment that affects the arousal level of the target person and the setting value of the control device affecting the physical quantity as an explanatory variable, and the predicted value of the physical quantity being the explained variable.
  • a physical quantity prediction model which is an explicit function with the physical quantity of the surrounding environment that affects the arousal level of the target person and the setting value of the control device affecting the physical quantity as an explanatory variable, and the predicted value of the physical quantity being the explained variable.
  • An awakening degree prediction model that is an explicit function that includes the physical quantity and its time change amount as an explanatory variable, and the predicted value of the time change amount of the awakening degree as an explained variable, and the set value is included in a predetermined range.
  • a constraint condition including a set value range condition that there is, and one or more target persons including the target person, and a predetermined predictive value of the variation amount of the awakening degree with respect to the number of time steps of two or more sections.
  • a value of the objective function is maximized under the constraint condition by using an awakening degree optimization model including an objective function that represents the sum total value or the average value of the predicted values of the one or more subjects who satisfy
  • a set value calculating means for calculating the set value Setting means for setting the calculated setting value in the control device; Equipped with.
  • a wakefulness control method includes: A computer predicts a physical quantity that is an explicit function including the physical quantity of the surrounding environment that affects the arousal level of the subject and the setting value of the control device that affects the physical quantity as an explanatory variable, and the predicted value of the physical quantity as the explained variable.
  • a model including the physical quantity and its time change amount as an explanatory variable, an awakening degree prediction model that is an explicit function whose predicted value of the time change amount of the awakening degree is an explained variable, and the set value is within a predetermined range.
  • a constraint condition including a set value range condition that is included, and one or more target persons including the target person, and a predicted value of the change amount of the awakening degree for the number of time steps of two or more sections are Using a wakefulness optimization model including an objective function that represents the sum total value or the average value of the predicted values of the subject satisfying a predetermined condition, under the constraint condition, the value of the objective function is maximized. Calculate the set value, Setting the calculated setting value in the control device.
  • the recording medium is On the computer, A physical quantity prediction model which is an explicit function with the physical quantity of the surrounding environment that affects the arousal level of the target person and the setting value of the control device affecting the physical quantity as an explanatory variable, and the predicted value of the physical quantity being the explained variable.
  • An awakening degree prediction model that is an explicit function that includes the physical quantity and its time change amount as an explanatory variable, and the predicted value of the time change amount of the awakening degree as an explained variable, and the set value is included in a predetermined range.
  • a constraint condition including a set value range condition that there is, and one or more target persons including the target person, and a predetermined predictive value of the variation amount of the awakening degree with respect to the number of time steps of two or more sections.
  • a value of the objective function is maximized under the constraint condition by using an awakening degree optimization model including an objective function that represents the sum total value or the average value of the predicted values of the one or more subjects who satisfy Calculate the set value to Setting the calculated setting value in the control device, It is a recording medium in which a program for executing the above is stored.
  • FIG. 9 is a flowchart showing a second example of a procedure of a process in which the setting value calculation unit according to the embodiment calculates a device setting value and sets it in the environment control device.
  • 6 is a flowchart illustrating an example of a procedure of a process in which a physical quantity prediction model learning unit according to the embodiment calculates a parameter value of a physical quantity prediction model by machine learning.
  • 6 is a flowchart showing an example of a procedure of a process in which a wakefulness prediction model learning unit according to the embodiment calculates a parameter value of the wakefulness prediction model by machine learning. It is a figure which shows the 1st example of the processing procedure which the setting value determination part which concerns on embodiment determines and outputs a device setting value.
  • FIG. 1 is a schematic block diagram showing an example of a device configuration of a wakefulness control system 1 according to an embodiment.
  • the arousal level control system 1 includes an arousal level controller 100, one or more environment control devices 200, one or more environment measurement devices 300, and one or more arousal level estimation devices 400. Equipped with.
  • the wakefulness control device 100 is connected to each of the environment control devices 200, each of the environment measurement devices 300, and each of the wakefulness estimation devices 400 via a communication line 900, and can communicate with these devices.
  • the communication line 900 is not limited to a dedicated line, the Internet, a VPN (Virtual Private Network), a LAN (Local Area Network), and other occupied communication lines, and a wired line, a wireless line, and other physical forms such as a communication line. It may be composed of.
  • the arousal level control system 1 determines the arousal level of the target of the awakening level control, controls the physical quantity of the surrounding environment of the target of the awakening level control according to the determination result, and aims to maintain or improve the arousal level.
  • the arousal level is an index indicating the degree of awakening. The lower the value of the arousal level indicates that the target person of the arousal level control is in a sleepy state.
  • the target person of the arousal level control is also referred to as a user or simply a target person.
  • the physical quantity of the surrounding environment of the target person is a physical quantity that affects the target person (physical quantity), and here, in particular, is a physical quantity that affects the arousal level of the target person.
  • the physical quantity of the surrounding environment of the subject is also simply referred to as the physical quantity.
  • the physical quantity include, but are not limited to, air temperature such as room temperature and brightness such as illuminance by the lighting device.
  • the wakefulness control system 1 may apply a stimulus other than temperature and brightness, such as humidity (humidity), sound, or vibration, to the subject in addition to or instead of temperature and brightness.
  • the arousal level control system 1 may use the magnitude of humidity (humidity), sound, vibration, or the like as the physical quantity.
  • the air temperature is simply referred to as temperature.
  • the awakening degree control system 1 may control other temperatures in addition to or instead of the air temperature.
  • the wakefulness control system 1 may control the temperature of the object that comes into direct contact with the subject.
  • a heater may be provided on the seat surface of the subject's seat, and the alertness control system 1 may control the temperature of the heater.
  • the unit for controlling the physical quantity by the alertness control system 1 is not limited to a specific unit.
  • a spot type air conditioner (local air conditioner) and a lighting stand may be installed in an individual seat, and the awakening degree control system 1 may control the physical quantity for each seat.
  • the awakening degree control system 1 may control the physical quantity in units of rooms, or may control the physical quantity of the entire building.
  • the target person may not be all the people in the building, but may be some people in the building.
  • the number of subjects may be one or more. Only a specific person may be the target person, such as the wakefulness control system 1 accepting registration of the target person. Alternatively, an unspecified person located in the control target space of the awakening degree control system 1 may be the target person. When there are a plurality of subjects, the awakening degree control system 1 may control the physical amount for each subject, or may control the physical amount commonly to the plurality of subjects.
  • the wakefulness control system 1 determines the wakefulness of the target person of the wakefulness control, and controls the physical quantity according to the determination result, so that the wakefulness of the target person can be secured and comfort can be balanced. ..
  • the wakefulness control system 1 may control the physical quantity so as to improve the wakefulness only when the wakefulness of the subject is lowered.
  • the wakefulness control system 1 may reduce the wakefulness of the subject (lead to sleep).
  • the wakefulness control system 1 may switch between and execute the control for improving the wakefulness and the control for decreasing the wakefulness depending on the time of day.
  • the arousal level control system 1 controls so that the subject's arousal level does not decrease (that is, the subject does not drows). Good.
  • the arousal level control system 1 may control the arousal level of the subject not to improve (that is, the awakening level of the subject). Good.
  • the wakefulness control device 100 controls the environment control device 200 according to the wakefulness of the subject.
  • the alertness control device 100 controls the physical quantity of the surrounding environment of the subject by controlling the environment control device 200, and thereby controls the alertness of the subject.
  • the awakening degree control device 100 is configured by using a computer such as a personal computer (PC) or a work station.
  • the environment control device 200 is a device that adjusts a physical quantity.
  • the physical quantity includes, for example, air temperature and illuminance.
  • the temperature can be adjusted by the air conditioner and the illuminance can be adjusted by the lighting device.
  • examples of the environment control device 200 include, but are not limited to, air conditioners and lighting devices.
  • the environment control device 200 corresponds to an example of a control target device, and is controlled by the awakening degree control device 100 as described above.
  • a device other than the environment control device 200 can obtain information on the operating state such as a device setting value from the environment control device 200, and updates the device setting value for the environment control device 200.
  • the device setting value is a physical quantity set in the environment control device 200 as a control target value.
  • the device setting value is also referred to as a physical value setting value or simply a setting value.
  • the environment control device 200 is an air conditioner
  • the set temperature can be used as the device set value.
  • a lighting output for example, luminous intensity, illuminance, current value, power value, etc.
  • illuminance is used as the device setting value of the lighting device will be described as an example, but the present invention is not limited to this.
  • the environment measuring device 300 is a device that measures physical quantities such as temperature and illuminance and converts them into numerical data. Examples of the environment measuring device 300 include, but are not limited to, a temperature sensor and an illuminance sensor.
  • the arousal level estimation device 400 is a device that estimates the arousal level of a subject from biological information and converts it into numerical data.
  • the arousal level estimation device 400 may use any one of the body temperature, the moving image of the face, the pulse wave, or a combination thereof as the biological information, but the biological information is not limited thereto.
  • the arousal level estimation device 400 measures or calculates biometric information, and converts the obtained biometric information into a numerical value indicating the arousal level (awakening level).
  • the alertness estimation device 400 is not essential to the alertness control system 1. When the alertness control system 1 does not include the alertness estimation device 400, the alertness of the target is estimated based on the physical quantity.
  • FIG. 2 is a schematic block diagram showing an example of a functional configuration of the alertness control device 100.
  • the alertness control device 100 includes a communication unit 110, a storage unit 170, and a control unit 180.
  • the storage unit 170 includes (stores) a physical quantity prediction model 171 and an awakening level prediction model 172.
  • the control unit 180 includes a monitoring control unit 181, a first acquisition unit 182, a second acquisition unit 183, a set value calculation unit 184, a physical quantity prediction model calculation unit 185, an awakening level prediction model calculation unit 186, and a setting.
  • a value determination unit 187, a physical quantity prediction model learning unit 188, and an arousal level prediction model learning unit 189 are provided.
  • the communication unit 110 communicates with other devices under the control of the control unit 180.
  • the communication unit 110 receives various kinds of information from each of the environment control device 200, the environment measurement device 300, and the arousal level estimation device 400. Further, the communication unit 110 transmits the device setting value to the environment control device 200.
  • the storage unit 170 stores various information.
  • the storage unit 170 is configured using a storage device included in the alertness control device 100.
  • the physical quantity prediction model 171 is a mathematical model that calculates a predicted value of the physical quantity based on the set value of the physical quantity (device setting value). More specifically, the physical quantity prediction model 171 is based on the measured value of the physical quantity measured by the environment measurement device 300 and the set value of the physical quantity set in the environment control device 200, and when the predetermined time elapses. Calculate the predicted value of the physical quantity.
  • the time when the predetermined time has elapsed is the time after the predetermined time has elapsed from the time when the physical quantity given to the physical quantity prediction model 171 was measured. Instead of the measurement time of the physical quantity given to the physical quantity prediction model 171, the time when the awakening degree control device 100 (communication unit 110) receives the physical quantity can be used.
  • the above-mentioned predetermined time may be fixed to a fixed time or may be variable as a model parameter.
  • the model parameter here is a setting parameter of the physical quantity prediction model 171.
  • the value of the model parameter is called the model parameter value.
  • the arousal level prediction model 172 is a mathematical model that calculates the predicted level of the arousal level based on the predicted level of the physical quantity calculated by the physical level prediction model 171. Furthermore, the arousal level prediction model 172 calculates the predicted level of the arousal level based on the amount of change in the physical level in addition to the predicted value of the physical level. More specifically, the awakening degree prediction model 172 uses the history of the predicted value of the physical quantity calculated by the physical quantity prediction model 171, and based on the time average value and change amount of the physical quantity, A predicted value of the amount of change in the arousal level of the subject is calculated. The alertness prediction model 172 may calculate the predicted value of the alertness based on at least the temporal variation of the alertness.
  • the control unit 180 controls each unit of the awakening degree control device 100 to execute various processes.
  • the control unit 180 is realized by a CPU (Central Processing Unit) included in the awakening degree control device 100 reading a program from the storage unit 170 and executing the program.
  • the monitoring control unit 181 communicates with the environment control device 200 via the communication unit 110. Through communication with the environment control device 200, the monitoring controller 181 acquires the device setting value set in the environment control device 200. Further, the monitoring control unit 181 updates the device setting value of the environment control device 200 through communication with the environment control device 200. For example, the monitoring control unit 181 communicates with the environment control device 200 at regular intervals, and stores the device setting value acquired by communication together with the time stamp at the time of acquisition (at the time of reception). The saving here is, for example, storing in the storage unit 170. In this way, the monitoring controller 181 sets the device setting value in the control target device.
  • the monitoring control unit 181 corresponds to an example of a setting unit (setting unit).
  • the monitoring control unit 181 sets, as the device setting value, the device setting value calculated by the setting value calculation unit 184 or the device setting value determined by the setting value determination unit 187 in the environment control device 200.
  • the set value calculation unit 184 can calculate the device set value, and the calculated device set value satisfies a predetermined condition (the calculated device set value is equal to or more than the predetermined condition), that is, the calculated device set value is highly accurate. If it is determined that the value is “0”, the monitoring control unit 181 sets the device setting value calculated by the setting value calculation unit 184 in the environment control device 200.
  • the monitoring control unit 181 sets the device setting value determined by the setting value determining unit 187 in the environment control device 200.
  • the setting parameter value of the physical quantity prediction model 171 when the setting parameter value of the physical quantity prediction model 171 is not set, it is considered that the physical quantity prediction model 171 cannot calculate the predicted value of the physical quantity, and thus the setting value calculation unit 184 cannot calculate the device setting value.
  • the setting parameter value of the awakening degree prediction model 172 when the setting parameter value of the awakening degree prediction model 172 is not set, it is considered that the awakening degree prediction model 172 cannot calculate the predicted value of the awakening degree, and thus the setting value calculation unit 184 cannot calculate the device setting value.
  • the prediction accuracy of the physical quantity by the physical quantity prediction model 171 is lower than the predetermined condition, it is considered that the accuracy of the device setting value calculated by the setting value calculation unit 184 is decreased accordingly. Even when a predetermined time or more has elapsed from the setting of the setting parameter value of the physical quantity prediction model 171, the prediction accuracy of the physical quantity by the physical quantity prediction model 171 decreases, and thus the accuracy of the device setting value calculated by the setting value calculation unit 184 also decreases. It is possible that
  • the monitor control unit 181 may set the device setting value determined by the setting value determining unit 187 in the environment control device 200.
  • the first acquisition unit 182 communicates with the environment measuring device 300 via the communication unit 110, and acquires the measured value of the physical quantity measured by the environment measuring device 300.
  • the first acquisition unit 182 communicates with the environment measuring device 300 at regular intervals, and stores the measurement value of the physical quantity acquired by communication together with the time stamp at the time of acquisition (at the time of reception). This time stamp can be regarded as indicating the time when the physical quantity is measured by the environment measuring device 300.
  • the second acquisition unit 183 communicates with the arousal level estimation device 400 and acquires an estimated value of the arousal level of the subject.
  • the second acquisition unit 183 communicates with the arousal level estimation device 400 at regular intervals, and stores the estimated value of the arousal level acquired through communication together with the time stamp at the time of acquisition (at the time of reception). This time stamp can be regarded as indicating the estimated time of the awakening degree by the awakening degree estimation device 400.
  • the estimated value of the arousal level of the subject is also referred to as the arousal level estimated value.
  • the set value calculation unit 184 calculates a device set value of the environment control device 200 that improves the awakening degree of the user. For example, the set value calculation unit 184 calculates the device set value for each fixed cycle.
  • the setting value calculation unit 184 acquires the device setting value from the monitoring control unit 181, acquires the measured value of the physical quantity from the first acquisition unit 182, acquires the awakening degree estimated value from the second acquisition unit 183, and stores them in these values. Based on this, the device setting value is calculated.
  • the setting value calculation unit 184 outputs the calculated device setting value to the monitoring control unit 181.
  • the monitoring control unit 181 sets the device setting value in the environment control device 200 by transmitting the device setting value acquired from the setting value calculation unit 184 to the environment control device 200 via the communication unit 110.
  • the set value calculation unit 184 uses the physical quantity prediction model 171 and the awakening degree prediction model 172 to solve (or approximately solve) an optimization problem under a constraint condition related to the physical quantity, thereby determining the awakening degree of the subject.
  • the set value for controlling is calculated.
  • the set value calculation unit 184 calculates the device set value so that the arousal level becomes higher by solving (or approximately solving) the optimization problem.
  • the processing for the setting value calculation unit 184 to solve the optimization problem corresponds to an example of processing for making the objective function value such as the awakening degree higher (or lower, or closer to the target value).
  • the setting value calculation unit 184 may calculate the device setting value when the alertness is the highest by solving (or approximately solving) the optimization problem.
  • the physical quantity prediction model 171 is used as the first constraint condition
  • the awakening degree prediction model 172 is used as the second constraint condition
  • the device setting value of the environmental control device 200 is within a predetermined range.
  • the condition that there is is used as the third constraint condition.
  • the set value calculation unit 184 solves the optimization problem including these constraint conditions.
  • the predetermined range of the device setting value here is a settable range defined by the specifications of the environment control device 200.
  • the objective function of the optimization problem solved by the set value calculation unit 184 is, for example, one or more (or two or more) target persons, and prediction of the amount of change in arousal level in one or more sections of the time step. It is a function that calculates the sum or average of the values.
  • the set value calculation unit 184 solves the optimization problem so as to increase the value of this objective function, and calculates the device set value.
  • the set value calculation unit 184 may calculate the device set value when this objective function is maximum.
  • the total value of the predicted values of the variation of the arousal level may be the sum of the predicted values of the variation of the arousal level for each subject.
  • the average value of the predicted values of the variation of the arousal level may be a value obtained by dividing the sum of the predicted values of the variation of the arousal level of each subject by the number of the subjects.
  • the optimization problem solved by the set value calculation unit 184 is referred to as an awakening degree optimization model.
  • the arousal optimization problem is constructed as a mathematical model.
  • the set value calculation unit 184 calculates the set value so that the pruning average value of the predicted value of the change amount of the awakening degree in one or more target persons and one or more sections of the time step becomes larger. May be.
  • the set value calculation unit 184 By using the trimmed average by the set value calculation unit 184, for example, when there is a person whose change in the arousal degree is extremely small or a person whose change is extremely large with respect to the change of the physical quantity, these extreme values are detected. Since the subject will not be overestimated, the overall optimization can be achieved. Alternatively, this optimization may be performed for some subjects.
  • the setting value calculation unit 184 may solve the optimization problem including the constraint condition regarding the comfort score calculated for the device setting value and calculate the device setting value satisfying the constraint condition. For example, the setting value calculation unit 184 may calculate the plurality of types of device setting values so that the total sum of the comfort penalty scores calculated for each of the plurality of types of device setting values falls within a predetermined range. May be. In other words, the setting value calculation unit 184 may respectively calculate a plurality of types of device setting values when the condition that the comfort score is included in a certain range is satisfied. As described above, the setting value calculation unit 184 calculates the device setting values so as to satisfy the constraint condition relating to the comfort, and thus it is possible to prevent the comfort from being extremely lowered.
  • the physical quantity prediction model calculation unit 185 reads the physical quantity prediction model 171 from the storage unit 170 and executes it. Therefore, the physical quantity prediction model calculation unit 185 executes the physical quantity prediction using the physical quantity prediction model 171.
  • the awakening degree prediction model calculation unit 186 reads out and executes the awakening degree prediction model 172 from the storage unit 170. Therefore, the alertness prediction model calculation unit 186 executes the alertness prediction using the alertness prediction model 172.
  • the setting value determination unit 187 calculates the device setting value instead of the setting value calculation unit 184 and outputs it to the monitoring control unit 181. To do.
  • One of the purposes is to generate learning data such that the physical quantity prediction model learning unit 188 and the awakening degree prediction model learning unit 189 can efficiently perform learning, as described later.
  • the physical quantity prediction model learning unit 188 sets or updates the physical quantity prediction model 171 by acquiring the setting parameter value of the physical quantity prediction model 171 by machine learning or the like.
  • the physical quantity prediction model learning unit 188 determines whether the setting parameter value of the physical quantity prediction model 171 is not set, the prediction accuracy of the physical quantity prediction model 171 is lower than a predetermined condition, and the setting parameter value of the physical quantity prediction model 171.
  • Machine learning or the like is performed in at least one of the cases where a predetermined time or more has elapsed from the setting.
  • the physical quantity prediction model learning unit 188 acquires device setting values from the monitoring control unit 181 and learning values of physical quantities from the first acquisition unit 182 as learning data.
  • the physical quantity prediction model learning unit 188 acquires the setting parameter value of the physical quantity prediction model 171 by performing machine learning or the like based on the measured values of these physical quantities and the set values (device set values) of the physical quantities.
  • the physical quantity prediction model learning unit 188 outputs the parameter value of the physical quantity prediction model 171 obtained by machine learning or the like to the set value calculation unit 184 and the set value determination unit 187.
  • the wakefulness prediction model learning unit 189 sets or updates the wakefulness prediction model 172 by acquiring the setting parameter value of the wakefulness prediction model 172 by machine learning or the like.
  • the wakefulness prediction model learning unit 189 determines that the setting parameter value of the wakefulness prediction model 172 is not set, the prediction accuracy of the wakefulness prediction model 172 is lower than a predetermined condition, and the wakefulness prediction model 172 Machine learning or the like is performed in at least one of the cases where a predetermined time or more has elapsed since the setting of the setting parameter value.
  • the alertness prediction model learning unit 189 is not essential for the alertness control device 100.
  • the arousal level control system 1 does not include the arousal level estimating device 400
  • the arousal level controller 100 does not acquire the information of the arousal level from the outside, and thus obtains the correct answer data in the machine learning data of the arousal level. I can't.
  • the wakefulness control device 100 does not include the wakefulness prediction model learning unit 189.
  • the alertness prediction model learning unit 189 is not provided, the alertness control device 100 continues to use the alertness prediction model 172 as it is, and when the alertness prediction model 172 needs to be updated, It is conceivable that the system will be updated manually by an administrator.
  • the wakefulness control device 100 may automatically update the model parameter value by a method of acquiring the latest model parameter value via the Internet.
  • the awakening degree prediction model learning unit 189 acquires the measured value of the physical quantity from the first acquisition unit 182 and the estimated value of the arousal level from the second acquisition unit 183 as learning data.
  • the arousal level prediction model learning unit 189 acquires the setting parameter value of the arousal level prediction model 172 by performing machine learning based on the measured values of these physical quantities and the arousal level (estimated value).
  • the setting value calculation unit 184 calculates a device setting value by executing mathematical optimization calculation for this awakening degree optimization model.
  • This awakening degree optimization model uses the following constants, coefficients, variables and functions.
  • T t set Air conditioning temperature set value at time step t
  • L t set Illumination output set value at time step t
  • the decision variable is a variable for which the set value calculation unit 184 calculates a value by optimization calculation.
  • the set value calculation unit 184 solves the optimization problem regarding the temperature set in the environment control device 200 which is an air conditioner and the illuminance set in the environment control device 200 which is a lighting device. Calculate with.
  • a ⁇ Mean value A i ⁇ of predicted amount of change in arousal level in target person and time step A: Average value A i,t ⁇ of predicted amount of change in arousal level of target person i in time step: alertness variation predicted value of the subject i at time step t T t: temperature prediction value T t delta at time step t: at time step t, the predicted value of the time variation of temperature
  • the amount of change over time is the amount of change over time (the amount of change over time).
  • L t Predicted value of illuminance at time step t
  • L t ⁇ Predicted value of amount of temporal change of illuminance at time step t
  • T t pnlty Degree of deviation from comfortable value of air conditioning temperature set value at time step t
  • L t pnlty Deviance A i,t ⁇ of the illumination output set value from the comfort value at the time step t: the degree of variation in the time variation of the awakening degree of the target person i at the time step t.
  • T Time step index set N: Target person index set T min : Lower limit value of air conditioning temperature set value T max : Upper limit value of air conditioning temperature set value L min : Lower limit value of illumination output degree set value L max : Upper limit of lighting output setting
  • P max Upper limit of penalty score a i ( ⁇ ): Estimated value of arousal level of subject i at relative time ⁇ ⁇ : Time step width
  • a ⁇ (average value of predicted change amount of arousal level in target person and time step) is represented by Expression (2).
  • a i ⁇ (the average value of the predicted amount of change in the arousal level of the target person i at the time step) is represented by Expression (3).
  • Constraints of the physical quantity prediction model 171 related to temperature are expressed by equation (6).
  • Constraints of the physical quantity prediction model 171 relating to illuminance are expressed by equation (7).
  • the constraint conditions of the physical quantity prediction model 171 are physical constraint conditions related to the operation of the environment control device 200, such as a delay from setting the device set value to the environment control device 200 until the physical quantity actually reaches the device set value. Show.
  • the physical quantity prediction model 171 includes, as explanatory variables, a parameter indicating the physical quantity of the surrounding environment that affects the arousal level of the subject and a parameter indicating the set value of the control device that affects the physical quantity.
  • the explained variable of the physical quantity prediction model 171 is a parameter that represents the predicted value of the physical quantity.
  • the explicit function that the value of the explained variable is calculated by applying the predetermined processing shown by the physical quantity prediction model 171 to the value of the explanatory variable Is illustrated by.
  • the expressions (6) and (7) do not necessarily have to be represented by an explicit function.
  • the constraint condition of the awakening degree prediction model 172 is expressed as in Expression (8).
  • the arousal level prediction model 172 includes a parameter indicating a physical quantity and a parameter indicating a time change amount thereof as explanatory variables.
  • the explained variable of the arousal level prediction model 172 is a parameter that represents the predicted value of the time variation of the arousal level.
  • Expression (8) is exemplified by an explicit function in which the value of the explained variable is calculated by applying the predetermined processing shown by the awakening degree prediction model 172 to the value of the explanatory variable.
  • the expression (8) does not necessarily have to be represented by an explicit function.
  • the constraint condition of the awakening degree prediction model 172 indicates how to change the awakening degree of the subject with respect to the physical quantity and its change.
  • T t ⁇ (predicted value of the amount of change over time in temperature at time step t) is expressed by equation (9).
  • the set value calculation unit 184 predicts the awakening degree time change amount for all users and all time steps represented by the equations (1) to (3) under the constraint conditions represented by the equations (2) to (10). Solve a mathematical programming problem that finds the value of a decision variable that maximizes the objective function that represents the average value. As a result, the setting value calculation unit 184 calculates the device setting value (decision variable value).
  • the process executed by the set value calculation unit 184 is, for example, a process of calculating the set value such that the value of the objective function is maximized under the constraint condition by using the awakening degree optimization model as described above. You can also The process executed by the set value calculation unit 184 is not necessarily limited to the process when the value of the objective function is maximum, and for example, the process of calculating the set value when the value of the objective function is large is also possible. Good.
  • equations (6) and (7) are constraint conditions regarding the physical quantity prediction model 171.
  • Expressions (8) to (10) are constraint conditions regarding the arousal level prediction model 172.
  • Expressions (4) and (5) are constraint conditions that the device setting value of the environment control device 200 is within a predetermined range.
  • the options of the arousal level optimization model (optimization problem) used by the setting value calculation unit 184 will be described.
  • the pruning average value may be used as A ⁇ (average value of the predicted value of the change amount of the awakening degree in the target person and the time step).
  • equation (11) is used instead of equation (2).
  • the objective function may be a combination of Expressions (1), (3), and (11) instead of Expressions (1) to (3).
  • trimmed mean indicates the trimmed mean.
  • the pruned average is an arithmetic average obtained by discarding data by a determined ratio from both ends of the data arranged in order of size.
  • the cut-off ratio (the ratio of the both ends) in the trimmed average is preferably 10%.
  • Constraints regarding comfort may be included in the constraints so that the comfort of the target person does not decrease significantly.
  • the constraint condition of the comfort penalty score shown in Expression (12) may be included.
  • T t pnlty degree of deviation of the air-conditioning temperature set value from the comfortable value at the time step t
  • Formulas (12) to (14) show the constraint condition that the sum total of comfort penalty scores is within a predetermined range (less than a predetermined size). In other words, it is a constraint condition that the air conditioner and the lighting do not become device setting values that bother at the same time. This has an effect of avoiding a situation in which a plurality of environment control devices, for example, an air conditioning device and a lighting device, are simultaneously separated from their most comfortable device setting values.
  • FIG. 3 is a diagram illustrating an example of device setting values when the awakening degree optimization model used by the setting value calculation unit 184 does not include the constraint conditions of Expressions (12) to (14).
  • the horizontal axis of the graph in FIG. 3 indicates the air conditioning set value (air conditioning temperature set value (temperature)).
  • the vertical axis represents the illumination setting value (illumination output setting value (illuminance)).
  • the device setting value can be set arbitrarily.
  • Area A11 hatchched portion shows a range that satisfies the constraint condition. It is considered that the comfort of the subject is relatively low near both the upper limit value and the lower limit value of both the air conditioning set value and the illumination set value. Therefore, if both the air-conditioning set value and the lighting set value are set near either the upper limit value or the lower limit value, the comfort of the temperature and the comfort of the illuminance are reduced for the subject. Together, it is considered that the comfort is greatly reduced.
  • FIG. 4 is a diagram showing an example of device setting values when the constraint conditions of Expressions (12) to (14) are included in the awakening degree optimization model used by the setting value calculation unit 184.
  • the horizontal axis of the graph in FIG. 4 indicates the air conditioning set value (air conditioning temperature set value (temperature)).
  • the vertical axis represents the illumination setting value (illumination output setting value (illuminance)).
  • the total size of the deviation of the air conditioning setting value from the comfort value and the deviation of the lighting setting value from the comfort value is less than or equal to a predetermined value.
  • Area A12 (hatched portion) shows a range that satisfies the constraint condition.
  • the expression (15) may be used instead of the expression (8).
  • the constraint condition may include the equation (16).
  • a i,t ⁇ 1 ⁇ in the equation (16) can be calculated using the equation (15).
  • a i,t ⁇ (the degree of variation in the amount of change in the awakening degree of the subject i at the time step t) is expressed by Expression (17).
  • the awakening degree prediction model includes the time average value of the awakening degree, the time change amount, and the time variation as explanatory variables.
  • std represents the standard deviation
  • the time variation is the standard deviation. Further, it is assumed here that the future time variation is the same as the current value (Equation 17).
  • the input to the alertness prediction model 172 includes the variation degree of the awakening degree. It may be.
  • the degree of variation in the arousal level is large, it is considered that the subject is drowsy, and the arousal level of the subject is considered to be relatively low.
  • the input to the alertness prediction model 172 includes the degree of variation in alertness, it is expected that the current state of alertness can be grasped more accurately, and the accuracy of alertness prediction is expected to improve. It
  • the physical quantity prediction model 171 is a mathematical model capable of calculating the predicted value of the physical quantity when a predetermined time has elapsed, based on the device setting value corresponding to the measured value of the physical quantity.
  • the physical quantity prediction model 171 in the case where the physical quantity is temperature and the corresponding environment control equipment 200 is an air conditioning equipment is expressed by the equation (6) as described above.
  • the physical quantity prediction model 171 in the case where the physical quantity is the illuminance and the corresponding environment control equipment 200 is the lighting equipment is expressed by Expression (7) as described above.
  • the physical quantity prediction model 171 may be a linear regression model or a non-linear regression model.
  • the parameter value of the model can be identified by using the learning data in which the input/output data is paired.
  • non-linear regression models include decision trees, support vector regression of non-linear kernels, neural networks, etc.
  • the physical quantity prediction model learning unit 188 may update the parameters.
  • the parameter value identification algorithm may be executed by an appropriate method according to the function form of the model. For example, in the case of a linear regression model, the parameter can be identified by support vector regression.
  • the configuration of the physical quantity prediction model 171 is not limited to a specific configuration, and can be various configurations to which machine learning can be applied.
  • the awakening degree prediction model 172 is a mathematical model that can calculate a predicted value of the change amount of the user's awakening degree when a predetermined time has elapsed in the time average value of the physical quantity and the time change amount.
  • the awakening degree prediction model in the case where the physical quantities are temperature and illuminance and the corresponding environment control equipment 200 is an air conditioning equipment and a lighting equipment, respectively, is expressed by the equations (8) to (10) as described above.
  • the alertness prediction model 172 may be a linear regression model or a non-linear regression model.
  • the parameter value of the model can be identified using the learning data in which the input/output data is paired.
  • non-linear regression models include decision trees, support vector regression of non-linear kernels, neural networks, etc.
  • the awakening level prediction model learning unit 189 may update the parameters.
  • the parameter value identification algorithm may be executed by an appropriate method according to the functional form of the model.
  • the parameters can be identified by support vector regression.
  • the configuration of the awakening degree prediction model 172 is not limited to a specific configuration, and can be various configurations to which machine learning can be applied.
  • the arousal optimization model is a non-linear discrete optimization problem
  • a mathematical optimization calculation by a meta-heuristic algorithm such as a genetic algorithm or a discrete PSO (Particle Swarm Optimization) is executed to solve the problem.
  • a meta-heuristic algorithm such as a genetic algorithm or a discrete PSO (Particle Swarm Optimization)
  • a mathematical optimization calculation by a meta-heuristic algorithm such as a genetic algorithm or a discrete PSO (Particle Swarm Optimization)
  • conversion to an unconstrained optimization problem by the penalty function method or expansion by combination with the ⁇ constraint method or the like is performed.
  • the optimal solution can be calculated by using the performed metaheuristics.
  • the value of the time step width ⁇ is set to an appropriate value from the range of 15 to 30 minutes, for example.
  • the value of the time step width ⁇ is preferably 15 minutes from the viewpoint of the prediction accuracy of the awakening degree prediction model and the awakening effect.
  • the time step index set T corresponds to a prediction horizon.
  • the number of time steps needs to be two or more in order to take into consideration the stimulus of environmental change (temporal heat and cold stimulus, etc.) due to time change.
  • the number of time steps is preferably 3 or 4 in view of the balance with the amount of calculation.
  • the lower limit value T min , the upper limit value T max , and the comfort value T best of the air conditioning temperature set value may be set by the user by providing an input interface.
  • the user may be allowed to input each of the three values.
  • the lower limit value L min , the upper limit value L max , and the comfort value L best of the illumination output set value may be set by the user by providing an input interface.
  • the user may be allowed to input each of the three values.
  • the values of L min , L max , and L best are expressed as percentages. For example, the value of L min may be 0% and the value of L max may be 100%.
  • the index set N of the target person and the awakening degree estimated value a i ( ⁇ ) at the relative time ⁇ are constants determined by the information acquired from the second acquisition unit. Therefore, it can be understood from the above that all constants and coefficients related to the calculation of the device setting value do not require special adjustment.
  • FIG. 5 is a flowchart showing a first example of a procedure of a process in which the setting value calculation unit 184 calculates a device setting value and sets it in the environment control device 200.
  • FIG. 5 shows an example in which the setting value calculation unit 184 calculates the device setting value without using the awakening degree estimated value.
  • the setting value calculation unit 184 determines whether the execution timing of the process of calculating the device setting value has come (step S100). When it is determined that the execution timing has not come (step S100: No), the process returns to step S100. As a result, the setting value calculation unit 184 waits for the arrival of the execution timing of the process of calculating the device setting value. On the other hand, when it is determined that the execution timing of the process of calculating the device setting value has come (step S100: Yes), the setting value calculating unit 184 acquires the device setting value from the monitoring control unit 181 (step S110).
  • the setting value calculation unit 184 acquires the environmental measurement value (measurement value of the physical quantity measured by the environmental measurement device 300) from the first acquisition unit 182 (step S120). Then, the setting value calculation unit 184 calculates the device setting value (value for updating the device setting value) by solving the optimization problem as described above (step S130). In step S130, the setting value calculation unit 184 calculates the device setting value without using the awakening degree estimated value. The setting value calculation unit 184 outputs the obtained device setting value to the monitoring control unit 181 (step S140). The monitoring control unit 181 sets the device setting value in the environment control device 200 by transmitting the device setting value obtained from the setting value calculation unit 184 to the environment control device 200 via the communication unit 110. After step S140, the setting value calculation unit 184 ends the processing of FIG.
  • FIG. 6 is a flowchart showing a second example of a procedure of a process in which the setting value calculation unit 184 calculates a device setting value and sets it in the environment control device 200.
  • FIG. 6 shows an example in which the setting value calculation unit 184 calculates the device setting value using the awakening degree estimated value.
  • Steps S200 to 220 in FIG. 6 are the same as steps S100 to 120 in FIG.
  • the setting value calculation unit 184 acquires the awakening degree estimated value from the second acquisition unit 183 (step S230).
  • step S240 the setting value calculation unit 184 calculates the device setting value (value for updating the device setting value) by solving the optimization problem as described above (step S240).
  • step S240 the setting value calculation unit 184 calculates the device setting value using the awakening degree estimated value.
  • Step S250 is the same as step S140 of FIG. After step S250, the setting value calculation unit 184 ends the processing of FIG.
  • the calculation execution of the physical quantity prediction model learning unit 188 is performed by the procedure shown in FIG. 7. For example, the calculation is executed in a fixed cycle, and the cycle is in the range of 1 day to 2 weeks, and 1 day is preferable.
  • FIG. 7 is a flowchart showing an example of a procedure of a process in which the physical quantity prediction model learning unit 188 calculates the parameter value of the physical quantity prediction model 171 by machine learning.
  • the physical quantity prediction model learning unit 188 determines whether the execution timing of the process of calculating the parameter value has come (step S300). When it is determined that the execution timing has not come (step S300: No), the process returns to step S300. As a result, the physical quantity prediction model learning unit 188 waits for the arrival of the execution timing of the process of calculating the parameter value. On the other hand, when it is determined that the execution timing of the process of calculating the parameter value has arrived (step S300: Yes), the physical quantity prediction model learning unit 188 determines whether the physical quantity prediction model 171 is unlearned (step S310).
  • the physical quantity prediction model learning unit 188 attempts to acquire the parameters of the physical quantity prediction model 171 with respect to the setting value calculation unit 184. When the parameters can be acquired, the physical quantity prediction model learning unit 188 determines that the physical quantity prediction model 171 has been learned. On the other hand, when the parameter cannot be acquired, the physical quantity prediction model learning unit 188 determines that the physical quantity prediction model 171 has not been learned.
  • the physical quantity prediction model learning unit 188 determines whether a predetermined time has elapsed after learning (step S320). Specifically, the physical quantity prediction model learning unit 188 acquires the last update date and time of the parameters of the physical quantity prediction model 171, compares the last update date and time with the current time, and determines whether the difference exceeds a predetermined time.
  • the predetermined time is, for example, a time within a range of 1 day to 2 weeks, and preferably 1 week.
  • the physical quantity prediction model learning unit 188 acquires the device setting value from the monitoring control unit 181 (step S330). In addition, the physical quantity prediction model learning unit 188 acquires the measured value (environmental measured value) of the physical quantity from the first acquisition unit 182 (step S340). Then, the physical quantity prediction model learning unit 188 evaluates the prediction accuracy of the physical quantity prediction model 171 using the acquired data and the parameter value set in the physical quantity prediction model 171, and the prediction accuracy of the physical quantity prediction model 171. It is determined whether or not has decreased (step S350).
  • the physical quantity prediction model learning unit 188 determines whether or not the evaluation index is lower than a predetermined value by using the evaluation accuracy evaluation index as an average absolute error rate, a correlation coefficient, or the like. A plurality of evaluation indexes may be used in the determination. For example, the physical quantity prediction model learning unit 188 may use the average absolute error rate and the correlation coefficient to determine that the prediction accuracy has decreased when both of the two evaluation indexes are below a predetermined value.
  • step S350: No the physical quantity prediction model learning unit 188 ends the processing in FIG. 7.
  • step S350: Yes the physical quantity prediction model learning unit 188 uses the acquired device setting value and the measured value of the physical quantity as learning data for machine learning or the like.
  • the calculation of the model parameter value is executed (step S360).
  • the physical quantity prediction model learning unit 188 may execute machine learning or the like by an appropriate method according to the functional form of the physical quantity prediction model. For example, in the case of a linear regression model, the physical quantity prediction model learning unit 188 executes support vector regression.
  • the physical quantity prediction model learning unit 188 updates the parameter value of the physical quantity prediction model 171 by outputting the obtained parameter value to the setting value calculation unit 184 (step S370).
  • the physical quantity prediction model learning unit 188 evaluates the prediction accuracy using the parameters obtained by machine learning and the like, and when the prediction accuracy is improved as compared with that before learning, the parameters and the date and time when the learning calculation is executed are set values. You may make it output to the calculation part 184.
  • the prediction accuracy evaluation index may be an average absolute error rate, a correlation coefficient, or the like.
  • step S310 when it is determined in step S310 that the physical quantity prediction model 171 has not been learned (step S310: Yes), the physical quantity prediction model learning unit 188 acquires the device setting value from the monitoring control unit 181 (step S331). In addition, the physical quantity prediction model learning unit 188 acquires the measured value (environmental measured value) of the physical quantity from the first acquisition unit 182 (step S341). After step S341, the process proceeds to step S360. On the other hand, if it is determined in step S320 that the predetermined time has elapsed after learning (step S320: Yes), the process proceeds to step S331.
  • FIG. 8 is a flowchart showing an example of a procedure of a process in which the alertness prediction model learning unit 189 calculates the parameter value of the alertness prediction model 172 by machine learning.
  • the awakening degree prediction model learning unit 189 determines whether the execution timing of the process of calculating the parameter value has come (step S400). When it is determined that the execution timing has not come (step S400: No), the process returns to step S400. As a result, the arousal level prediction model learning unit 189 waits for the execution timing of the process of calculating the parameter value. On the other hand, when it is determined that the execution timing of the process of calculating the parameter value has arrived (step S400: Yes), the awakening degree prediction model learning unit 189 determines whether the awakening degree prediction model 172 is unlearned (step S410).
  • the awakening degree prediction model learning unit 189 attempts to acquire the parameters of the awakening degree prediction model 172 with respect to the setting value calculation unit 184. When the parameters can be acquired, the awakening degree prediction model learning unit 189 determines that the awakening degree prediction model 172 has been learned. On the other hand, when the parameter cannot be acquired, the awakening level prediction model learning unit 189 determines that the awakening level prediction model 172 is unlearned.
  • the awakening degree prediction model learning unit 189 determines whether a predetermined time has elapsed after learning (step S420). Specifically, the awakening degree prediction model learning unit 189 acquires the last update date and time of the parameters of the awakening degree prediction model 172, compares the last update date and time with the current time, and determines whether the difference exceeds a predetermined time. To do.
  • the predetermined time is, for example, a time within a range of 2 weeks to 6 months, and preferably 2 months.
  • the awakening degree prediction model learning unit 189 acquires the awakening degree estimated value from the second acquisition unit 183 (step S430). Further, the awakening degree prediction model learning unit 189 acquires the measured value (environmental measured value) of the physical quantity from the first acquisition unit 182 (step S440). Then, the awakening degree prediction model learning unit 189 evaluates the prediction accuracy of the awakening degree prediction model 172 by using the acquired data and the parameter value set in the awakening degree prediction model 172, and the awakening degree prediction model It is determined whether the prediction accuracy of 172 has decreased (step S450).
  • the arousal level prediction model learning unit 189 determines whether the evaluation index is below a predetermined value by using the evaluation accuracy evaluation index as the average absolute error rate, the correlation coefficient, or the like. A plurality of evaluation indexes may be used in the determination. For example, the arousal level prediction model learning unit 189 may use the average absolute error rate and the correlation coefficient to determine that the prediction accuracy has deteriorated when both of the two evaluation indexes are below predetermined values. ..
  • the awakening degree prediction model learning unit 189 ends the process of FIG.
  • the arousal level prediction model learning unit 189 causes the acquired arousal level estimation value and the measured value of the physical quantity (environmental measurement value). ) Is used as learning data to calculate model parameter values by machine learning (step S460).
  • the arousal level prediction model learning unit 189 may execute the machine learning by an appropriate method according to the functional form of the physical quantity prediction model. For example, in the case of a linear regression model, the arousal level prediction model learning unit 189 executes support vector regression.
  • the arousal level prediction model learning unit 189 updates the parameter value of the arousal level prediction model 172 by outputting the obtained parameter value to the set value calculation unit 184 (step S470).
  • the arousal level prediction model learning unit 189 evaluates the prediction accuracy with the parameters obtained by machine learning or the like, and sets the parameters and the date and time when the learning calculation is executed when the prediction accuracy is improved compared to before the learning. You may make it output to the value calculation part 184.
  • the prediction accuracy evaluation index may be an average absolute error rate, a correlation coefficient, or the like.
  • step S410 determines whether the awakening degree prediction model 172 is unlearned (step S410: Yes)
  • the awakening degree prediction model learning unit 189 acquires the awakening degree estimated value from the second acquisition unit 183 (Ste S431).
  • the awakening degree prediction model learning unit 189 acquires the measured value of physical quantity (environmental measured value) from the first acquisition unit 182 (step S441).
  • step S441 the process proceeds to step S460.
  • step S420 determines the predetermined time has elapsed after learning
  • the set value determination unit 187 performs processing in the procedure shown in FIGS. 9 to 12. For example, the calculation is executed at regular intervals, and the cycle is in the range of 1 day to 2 weeks. The cycle is preferably one day.
  • FIG. 9 is a diagram illustrating a first example of a processing procedure in which the setting value determination unit 187 determines and outputs a device setting value.
  • the set value determination unit 187 performs the process of FIG. 9 for each of the physical quantity prediction model 171 and the awakening level prediction model 172.
  • the setting value determination unit 187 applies the processing of FIG. 9 to the physical quantity prediction model 171 and the awakening degree prediction model 172 while synchronizing them, and in the conditional branching, comprehensively considers the determination results of both models.
  • the setting value determination unit 187 determines whether or not the execution timing of the process of determining the device setting value has come (step S500). When it is determined that the execution timing has not come (step S500: No), the process returns to step S500. As a result, the setting value determination unit 187 waits for the execution timing of the process of determining the device setting value.
  • the setting value determination unit 187 determines that one of the physical quantity prediction model 171 and the awakening level prediction model 172 is to be processed. It is determined whether it is not learned yet (step S510). Specifically, the set value determination unit 187 tries the acquisition of the parameter of the physical quantity prediction model 171 or the awakening level prediction model 172, whichever is the processing target, with respect to the set value calculation unit 184. The set value determination unit 187 determines that the model for which the parameter has been acquired has already been learned. On the other hand, the set value determination unit 187 determines that the model for which the parameter cannot be acquired is unlearned.
  • the setting value determination unit 187 acquires the device setting value from the monitoring control unit 181 (step S520).
  • the setting value determination unit 187 acquires the measured value (environmental measured value) of the physical quantity from the first acquisition unit 182 (step S530).
  • the model to be processed is the awakening level prediction model 172
  • the setting value determination unit 187 acquires the awakening level estimated value from the second acquisition unit 183 in step 530.
  • the setting value determination unit 187 evaluates the prediction accuracy of the processing target model using the acquired data and the parameter value of the processing target model, and determines whether the prediction accuracy has decreased (step S540).
  • the setting value determination unit 187 determines whether or not the evaluation index is below a predetermined value by using the evaluation index of the prediction accuracy as an average absolute error rate, a correlation coefficient, or the like.
  • a plurality of evaluation indexes may be used in the determination.
  • the set value determination unit 187 may use the average absolute error rate and the correlation coefficient to determine that the prediction accuracy has decreased when both of the two evaluation indexes are below the predetermined values.
  • the setting value determination unit 187 determines the device setting value (step S550). Specifically, the set value determination unit 187 determines a device set value in which the fluctuation is as large as possible within the upper and lower limit range of the device set value. The upper and lower limits of the device set value are shown in, for example, equations (4) and (5). For example, the set value determination unit 187 may periodically change the device set value within the range between the upper limit value and the lower limit value as shown in FIG.
  • FIG. 10 is a diagram showing a setting example of device setting values by the setting value determining unit 187 for the environment control device 200.
  • Part (A) of FIG. 10 shows a setting example of the device setting value by the setting value determination unit 187 when the environment control device 200 is an air conditioning device.
  • the horizontal axis of the graph in part (A) of FIG. 10 indicates time.
  • the vertical axis represents the device setting value (air conditioning setting value (air conditioning temperature setting value)).
  • the set value determination unit 187 largely changes the air conditioning set value within the range between the upper limit value and the lower limit value.
  • the set value determination unit 187 cyclically changes the air conditioning set value between the upper limit value and the lower limit value.
  • the set value determination unit 187 greatly changes the device set value for the environment control device 200 (the air conditioner in the example of FIG. 10), so that the explanatory variable value suitable for machine learning or the like has a relatively large change. Data is obtained.
  • Part (B) of FIG. 10 illustrates a setting example of the device setting value by the setting value determining unit 187 when the environment control device 200 is a lighting device.
  • the horizontal axis of the graph in part (B) of FIG. 10 indicates time.
  • the vertical axis represents the device setting value (illumination setting value (illumination output setting value)).
  • the setting value determination unit 187 largely changes the illumination setting value within the range between the upper limit value and the lower limit value thereof, as in the case of the portion (A) of FIG. ...
  • the setting value determination unit 187 changes the device setting values at different cycles for the air conditioner and the lighting device. There is. Specifically, the set value determination unit 187 changes the device set value of the lighting device at a half cycle of the case of the air conditioner.
  • the setting value determination unit 187 sets the upper limit value and the lower limit value of the device setting values of the plurality of types of environment control devices 200 by making the respective cycles different.
  • the device setting values are changed so that the combinations are exhaustive.
  • the setting value determination unit 187 may determine the device setting value so as to follow a predetermined variation pattern, or may simply determine the device setting value at random.
  • the setting value determination unit 187 sends the setting value calculation calculation prohibition information to the setting value calculation unit 184.
  • the execution prohibition information has an expiration date, and the setting value calculation unit 184 that has acquired the execution disapproval information does not execute a series of processes (steps S110 to S140 or S210 to S240) until the expiration date. For example, in step S100 or S200, the process branches to “No”.
  • step S550 the setting value determination unit 187 sets or updates the parameter value of the model to be processed by outputting the determined device setting value to the setting value calculation unit 184 (step S560). After step S560, the setting value determination unit 187 ends the processing of FIG. On the other hand, when it is determined in step S510 that the model to be processed has not been learned (step S510: Yes), the setting value determination unit 187 acquires the device setting value from the monitoring control unit 181 (step S521).
  • the setting value determination unit 187 acquires the measured value of the physical quantity from the first acquisition unit 182 (step S531).
  • the setting value determination unit 187 acquires the awakening degree estimated value from the second acquisition unit 183 in step 531. After step S531, the process proceeds to step S550.
  • FIG. 11 is a diagram showing a second example of a processing procedure in which the setting value determination unit 187 determines and outputs a device setting value.
  • FIG. 9 shows an example in which the model to be processed is the physical quantity prediction model 171
  • FIG. 11 shows an example in which the model to be processed is the awakening level prediction model 172. .. Therefore, in both steps S520 and S521 of FIG. 9, the setting value determination unit 187 acquires the device setting value, whereas in both steps S620 and S621 of FIG. 11, the setting value determination unit 187 determines the awakening degree. Get the value.
  • the process of FIG. 11 is the same as that of FIG.
  • the setting value calculation unit 184 transmits the setting value calculation calculation disapproval information.
  • the setting value determination unit 187 transmits the setting value calculation calculation prohibition information to the setting value calculation unit 184 in step S650.
  • FIG. 12 is a diagram showing a third example of a processing procedure in which the setting value determination unit 187 determines and outputs a device setting value.
  • FIG. 9 shows an example in which the model to be processed is the physical quantity prediction model 171
  • FIG. 11 shows an example in which the model to be processed is the awakening level prediction model 172.
  • FIG. 12 shows an example in which both the physical quantity prediction model 171 and the awakening degree prediction model 172 are processed.
  • the setting value determining unit 187 acquires the device setting value, and in the process of FIG. 11, the setting value determining unit 187 acquires the awakening degree estimated value, whereas in the process of FIG.
  • the setting value determination unit 187 acquires both the device setting value and the awakening degree estimated value. Specifically, the setting value determination unit 187 acquires the device setting value in steps S720 and S721 of FIG. 12, and acquires the awakening degree setting value in steps S730 and S731.
  • step S710 of FIG. 12 if the determination is Yes in any one of the physical quantity prediction model 171 and the awakening degree prediction model 172, the process may branch to Yes. Also in step S750, if the determination is Yes in any one of the steps, the process may branch to Yes. Also in step S700, if either of the determinations is Yes, the process may branch to Yes. In this way, the processing of the physical quantity prediction model 171 and the processing of the awakening degree prediction model 172 may be synchronized, and both models may be comprehensively taken into consideration for conditional branching. Alternatively, when the physical quantity prediction model 171 and the awakening level prediction model 172 have different branch destinations, the processing of FIG. 12 may be performed separately. In other respects, the processing of FIG. 12 is the same as the processing of FIG. 9 and the processing of FIG.
  • the setting value calculation unit 184 transmits the setting value calculation calculation disapproval information.
  • the setting value determination unit 187 transmits the execution prohibition information of the setting value calculation calculation to the setting value calculation unit 184 in step S760.
  • the physical quantity prediction model 171 calculates the predicted value of the physical quantity based on the set value of the physical quantity that affects the arousal level of the subject.
  • the awakening degree prediction model 172 calculates the predicted value of the awakening degree based on the predicted value of the physical quantity calculated by the physical quantity prediction model 171.
  • the setting value calculation unit 184 uses the physical quantity prediction model 171 and the awakening degree prediction model 172 to calculate a setting value (device setting value) for controlling the awakening degree of the target person under the constraint condition regarding the physical quantity. To do.
  • the monitoring controller 181 sets the calculated setting value in the environment control device 200.
  • the physical quantity prediction model 171 calculates the predicted value of the physical quantity
  • the awakening degree prediction model 172 predicts the awakening degree using the predicted value of the physical quantity, so that the change in the physical quantity is predicted in the prediction of the awakening degree.
  • the alertness control device 100 it is possible to more accurately grasp the influence of the action on the surrounding environment on the alertness when the alertness control is performed. Further, according to the wakefulness control device 100, it is possible to eliminate special adjustments for all constants and coefficients related to the calculation of the device setting value as described above.
  • the set value calculation unit 184 calculates the set value so that the awakening degree becomes higher. According to the arousal level control device 100, the arousal level of the target person can be improved, and, for example, when the target person is working, the work efficiency can be improved.
  • the physical quantity prediction model 171 is a mathematical model that can calculate the predicted value of the physical quantity when a predetermined time has elapsed, based on the measured value of the physical quantity and the set value of the control target device. Since the physical quantity prediction model 171 is configured as a mathematical model, it is possible to add meaning to the mathematical formulas and the like that form the physical quantity prediction model 171. By interpreting this meaning, the validity of the physical quantity prediction model 171 can be verified.
  • the awakening degree prediction model 172 is a mathematical model that can calculate a predicted value of the change amount of the awakening degree of the target person when a predetermined time has elapsed, based on the time average value of the physical quantity and the change amount. Since the arousal level prediction model 172 is configured as a mathematical model, it is possible to add meaning to the mathematical formulas and the like that configure the arousal level prediction model 172. By interpreting this meaning, the validity of the alertness prediction model 172 can be verified.
  • the set value calculation unit 184 calculates the set value so that the value of the objective function becomes larger in the awakening degree optimization model which is a mathematical model. Specifically, the set value calculation unit 184 solves the optimization problem indicated by this awakening degree optimization model.
  • the constraint conditions include a first constraint condition that is a physical quantity prediction model, a second constraint condition that is a wakefulness prediction model, and a third constraint that the setting value of the environmental control device is within a predetermined range. Including conditions.
  • the objective function of this arousal level optimization model is a function for calculating the sum total value or the average value of the predicted values of the change amount of the arousal level in one or more target persons and in one or more sections of the time step.
  • the setting value calculation unit 184 By using the arousal level optimization model, which is a mathematical model, by the setting value calculation unit 184, it is possible to add meaning to the mathematical formulas and the like that form the arousal level optimization model. By interpreting this meaning, the validity of the arousal level optimization model can be verified. By verifying the validity of the awakening degree optimization model, it is possible to verify the validity of the processing performed by the setting value calculation unit 184.
  • the set value calculation unit 184 calculates the set value such that the pruning average value of the predicted values of the change amount of the awakening degree in one or more target persons and in one or more sections of the time step becomes larger.
  • the set value calculation unit 184 calculates the set value such that the pruning average value of the predicted values of the change amount of the awakening degree in one or more target persons and in one or more sections of the time step becomes larger.
  • the set value calculation unit 184 calculates a set value that satisfies the constraint condition regarding the comfort score calculated for the set value. As a result, the set value calculation unit 184 can calculate the set value in which not only the arousal level but also comfort is taken into consideration. The alertness control device 100 can balance the alertness and the comfort in this respect.
  • the setting value calculation unit 184 calculates each of the plurality of types of setting values so that the sum of the comfort penalty scores calculated for each of the plurality of types of setting values falls within a predetermined range.
  • the setting value calculation unit 184 can ensure comfort in the plurality of types of environment control devices 200 as a whole. According to the awakening degree control device 100, in this respect, it is possible to ensure the comfort and to set the set value more than when the comfort is ensured by the control of only one type of the environmental control device 200. Greater freedom.
  • the awakening degree prediction model 172 calculates the predicted value of the awakening degree based on the change amount of the physical quantity in addition to the predicted value of the physical quantity. It is considered that the arousal level is sensitive to the magnitude of change in physical quantity. It is expected that the wakefulness prediction model 172 can predict the wakefulness with high accuracy by predicting the wakefulness based on the magnitude of the physical quantity.
  • the awakening degree prediction model 172 calculates the predicted value of the awakening degree based on at least the temporal variation of the awakening degree.
  • the temporal variation (variation degree) of the arousal level is large, it is considered that the subject is drowsy, and the arousal level of the subject is considered to be relatively low. It is expected that the arousal level prediction model 172 predicts the arousal level based on the temporal variation of the arousal level, so that the current state of the arousal level can be grasped more accurately, and the prediction accuracy of the arousal level is expected to improve. ..
  • the physical quantity prediction model learning unit 188 performs machine learning based on the measured value of the physical quantity and the set value of the physical quantity, and acquires the setting parameter value of the physical quantity prediction model 171. Accordingly, the physical quantity prediction model learning unit 188 can automatically acquire the setting parameter value of the physical quantity prediction model 171, and it is not necessary for the administrator of the awakening degree control device 100 to manually obtain the setting parameter value. According to the awakening degree control device 100, the labor for setting the physical quantity prediction model 171 can be reduced in this respect.
  • the physical quantity prediction model learning unit 188 determines that the setting parameter value of the physical quantity prediction model 171 is not set, the prediction accuracy of the physical quantity prediction model 171 is lower than a predetermined condition, and the setting parameter of the physical quantity prediction model 171. Machine learning or the like is performed in at least one of the cases where a predetermined time or more has elapsed from the setting of the value. Thereby, the physical quantity prediction model learning unit 188 can perform machine learning or the like as necessary. Therefore, for example, the processing load of the physical quantity prediction model learning unit 188 can be lighter than that in the case where machine learning or the like is regularly repeated.
  • the awakening degree prediction model learning unit 189 performs the machine learning based on the measured value of the physical quantity and the awakening degree, and acquires the setting parameter value of the awakening degree prediction model. Thereby, the awakening degree prediction model learning unit 189 can automatically acquire the setting parameter value of the awakening degree prediction model 172. Therefore, it is not necessary to manually obtain the setting parameter value by the administrator of the alertness control device 100. According to the awakening degree control device 100, the labor of setting the awakening degree prediction model 172 can be reduced in this respect.
  • the awakening degree prediction model learning unit 189 determines that the setting parameter value of the awakening degree prediction model 172 is not set, the prediction accuracy by the awakening degree prediction model 172 is lower than a predetermined condition, and the awakening degree prediction model.
  • Machine learning is performed in at least one of the cases where a predetermined time or more has elapsed from the setting of the setting parameter value of 172.
  • the awakening degree prediction model learning unit 189 can perform machine learning or the like as necessary. Therefore, for example, the processing load of the awakening degree prediction model learning unit 189 can be lighter than that in the case where machine learning or the like is regularly repeated.
  • the set value determination unit 187 determines the set value within a predetermined range of the set value.
  • the monitoring control unit 181 sets a predetermined time from the setting of the setting parameter value of the physical quantity prediction model 171.
  • the setting parameter value of the awakening degree prediction model 172 has not been set, when the prediction accuracy by the awakening degree prediction model 172 is lower than a predetermined condition, and of the setting parameter value of the awakening degree prediction model 172
  • the setting value determined by the setting value determination unit 187 is set in the environmental control device 200 instead of the setting value calculated by the setting value calculation unit 184. ..
  • a setting value other than the optimum solution in the awakening degree control by the setting value calculating unit 184 can be set in the environment control device 200, and wider learning data can be obtained. ..
  • At least one of the physical quantity prediction model learning unit 188 and the awakening level prediction model learning unit 189 performs machine learning or the like by using the learning data obtained based on the setting value determined by the setting value determining unit 187. , Machine learning can be performed with higher accuracy, and in this respect, the accuracy of the model can be improved.
  • FIG. 13 is a diagram illustrating an example of the configuration of the awakening degree control device 10 according to the embodiment.
  • the arousal level control device 10 shown in FIG. 13 includes a physical quantity prediction model (a storage section that stores the physical quantity prediction model) 11, an awakening level prediction model (a storage section that stores the awakening level prediction model) 12, and a set value calculation section 13 And a setting unit 14.
  • the physical quantity prediction model 11 calculates the predicted value of the physical quantity based on the set value of the physical quantity that affects the arousal level of the subject.
  • the arousal level prediction model 12 calculates the predicted level of the arousal level based on the predicted level.
  • the set value calculation unit 13 uses the physical quantity prediction model and the awakening degree prediction model to calculate the set value for controlling the awakening degree of the subject under a constraint condition regarding the physical quantity.
  • the setting unit 14 sets the calculated setting value to the control target device that affects the physical quantity.
  • the physical quantity prediction model 11 calculates the predicted value of the physical quantity
  • the awakening degree prediction model 12 predicts the awakening degree by using the predicted value of the physical quantity. Can be incorporated.
  • the alertness control device 10 in this respect, it is possible to more accurately grasp the influence of the action on the surrounding environment on the alertness when the alertness is controlled.
  • the configuration of the alertness control device 100 is not limited to the configuration using a computer.
  • the awakening degree control device 100 may be configured using dedicated hardware such as using an ASIC (Application Specific Integrated Circuit).
  • the embodiment of the present invention can also be realized by causing a CPU (Central Processing Unit) to execute a computer program for arbitrary processing.
  • the program can be stored using various types of non-transitory computer readable media and supplied to the computer.
  • Non-transitory computer readable media include various types of tangible storage media.
  • non-transitory computer readable media examples include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROMs (Read Only Memory), CD-Rs, CD-R/W, DVD (Digital Versatile Disc), BD (Blu-ray (registered trademark) Disc), semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM ( Random Access Memory)) is included.
  • magnetic recording media eg, flexible disks, magnetic tapes, hard disk drives
  • magneto-optical recording media eg, magneto-optical disks
  • CD-ROMs Read Only Memory
  • CD-Rs Compact Only Memory
  • CD-R/W Digital Versatile Disc
  • DVD Digital Versatile Disc
  • BD Blu-ray (registered trademark) Disc
  • semiconductor memory for example, mask ROM, PROM (Programmable ROM), EP
  • the present invention may be applied to an alertness control device, an alertness control method, and a recording medium.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Artificial Intelligence (AREA)
  • Acoustics & Sound (AREA)
  • Educational Technology (AREA)
  • Social Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Developmental Disabilities (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Traffic Control Systems (AREA)
  • Air Conditioning Control Device (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

覚醒度制御装置は、対象者の覚醒度に影響する周辺環境の物理量及び前記物理量に影響を及ぼす制御機器の設定値を説明変数として含み、前記物理量の予測値を被説明変数とする陽関数である物理量予測モデルと、前記物理量及びその時間変化量を説明変数として含み、前記覚醒度の時間変化量の予測値を被説明変数とする陽関数である覚醒度予測モデルと、前記設定値が所定の範囲に含まれているという設定値範囲条件とを含む制約条件、並びに、前記対象者を含む1人以上の対象者、及び、2区間以上の時間ステップ数についての前記覚醒度の変化量の予測値が所定の条件を満たす前記1人以上の対象者の予測値の総和値または平均値を表す目的関数を含む覚醒度最適化モデルを用いて、前記制約条件の下で、前記目的関数の値が最大となるように前記設定値を算出する設定値算出手段と、算出された前記設定値を、前記制御機器に設定する設定手段と、を備える。

Description

覚醒度制御装置、覚醒度制御方法および記録媒体
 本発明は、覚醒度制御装置、覚醒度制御方法および記録媒体に関する。
 ユーザの生体情報を取得し、取得した生体情報からユーザの覚醒度を算出する技術が提案されている(例えば、特許文献1、2)。ここで、覚醒度とは目が覚めている度合いを示す指標である。覚醒度の値が低いほど対象者が眠い状態であることを示す。
 覚醒度が低い状態においては、ユーザが作業を行う際に作業能率が低下していることが多い。このため、覚醒度が低い状態は、作業遂行には適切な状態ではない。例えば、オフィスでの業務においては業務効率が低下し、自動車運転においては注意散漫な運転が増加する。このように、覚醒度が低い状態が様々な作業に望ましくない状態である傾向がある。
 そのため、覚醒度を向上させる、または、適切な範囲となるようにユーザの環境を制御するシステムが提案されている(特許文献3、4、5)。
 特許文献3には、現在の環境状態が継続した場合におけるユーザの覚醒度の予測値が予め定めた閾値を下回ったときに、空調、照明などの環境制御機器の設定を予め定めた設定に変更する、車両の運転手向けとした、覚醒度を制御するシステムが開示されている。
 特許文献4には、眠気-覚醒の評価軸と快-不快の評価軸から成る2軸座標において、ユーザの現在状態がどこに位置するか、特に所望の範囲からどれだけ離れているかに応じて、空調、照明などの五感を刺激する機器の組み合わせと強さを予め定めた設定に基づいて決定して制御する、車両の運転手向けとした、覚醒度を制御するシステムが開示されている。
 特許文献5には、対象者の覚醒度が予め設定した閾値を下回ったときに、空調機器を周期的に予め定めた動作モード(温度、風量設定)を切替えることでユーザに温度変化による温冷刺激を与える、車両の運転手向けとした、覚醒度を制御するシステムが開示されている。
 また、ユーザの情報またはその周囲環境の情報を取得して処理を行う技術がある。
 例えば、特許文献6の気分推定システムは、対象者の心拍数のみに基づいて気分を指標化し、その指標値が予め設定された範囲を逸脱した場合、対象者の複数の生体情報、および、対象者の周囲環境の複数の環境情報に基づいて、対象者の気分を指標値化する。
 また、特許文献7に記載の空調管理システムは、検出装置が検出した環境値に基づいて、所定時間後の予測環境値を算出し、環境値と予測環境値とに基づいて空調装置のパラメータを算出して空調装置宛てに送信する。
 また、特許文献8に記載の覚醒度維持方法では、作業者の鼓膜温度のような深度体温から覚醒度を検出し、作業者の覚醒度の低下が見受けられた際に、作業に適した照度からより高い照度へと変更して光刺激による覚醒効果を作業者に与える。
 また、特許文献9に記載の眠気推定装置は、画像処理ニューラルネットワークと眠気推定ニューラルネットワークとの二層構造のニューラルネットワークを備える。画像処理ニューラルネットワークは、ユーザの年齢および性別を推定し、また、目を閉じているなど眠気状態を表すユーザの特定の動作および状態を抽出する。眠気推定ニューラルネットワークは、眠気状態を表すユーザの特定の動作および状態の抽出結果、室内環境情報センサの検知結果に基づき、また、ユーザの年齢および性別を加味して、ユーザの眠気状態を求める。
 この特許文献9には、空気調和装置の制御部が、推定された眠気レベルが閾値以下となるように空調制御内容を算出し、算出した空調制御を実行させることが記載されている。
さらに、特許文献9には、ユーザの動作及び状態に所望の変化が見られない場合は、眠気状態の推定動作が実際の眠気状態と乖離している可能性があるから、推定モデルを更新することが記載されている。
日本国特許第6043933号 日本国特開2018-134274号公報 日本国特開2017-148604号公報 日本国特開2018-025870号公報 日本国特開2013-012029号公報 日本国特開2018-088966号公報 日本国特開2006-349288号公報 日本国特開平09-140799号公報 日本国特許第6387173号
 装置またはシステムが、覚醒度制御対象者の周囲環境に働きかけて覚醒度制御を行う際、覚醒度制御を高精度に行うために、周囲環境への働きかけが覚醒度に及ぼす影響をより正確に把握できることが好ましい。
 本発明の目的の一例は、上述の課題を解決することのできる覚醒度制御装置、覚醒度制御方法および記録媒体を提供することである。
 本発明の第1の態様によれば、覚醒度制御装置は、
 対象者の覚醒度に影響する周辺環境の物理量及び前記物理量に影響を及ぼす制御機器の設定値を説明変数として含み、前記物理量の予測値を被説明変数とする陽関数である物理量予測モデルと、前記物理量及びその時間変化量を説明変数として含み、前記覚醒度の時間変化量の予測値を被説明変数とする陽関数である覚醒度予測モデルと、前記設定値が所定の範囲に含まれているという設定値範囲条件とを含む制約条件、並びに、前記対象者を含む1人以上の対象者、及び、2区間以上の時間ステップ数についての前記覚醒度の変化量の予測値が所定の条件を満たす前記1人以上の対象者の予測値の総和値または平均値を表す目的関数を含む覚醒度最適化モデルを用いて、前記制約条件の下で、前記目的関数の値が最大となるように前記設定値を算出する設定値算出手段と、
 算出された前記設定値を、前記制御機器に設定する設定手段と、
 を備える。
 本発明の第2の態様によれば、覚醒度制御方法は、
 コンピュータによって、対象者の覚醒度に影響する周辺環境の物理量及び前記物理量に影響を及ぼす制御機器の設定値を説明変数として含み、前記物理量の予測値を被説明変数とする陽関数である物理量予測モデルと、前記物理量及びその時間変化量を説明変数として含み、前記覚醒度の時間変化量の予測値を被説明変数とする陽関数である覚醒度予測モデルと、前記設定値が所定の範囲に含まれているという設定値範囲条件とを含む制約条件、並びに、前記対象者を含む1人以上の対象者、及び、2区間以上の時間ステップ数についての前記覚醒度の変化量の予測値が所定の条件を満たす前記対象者の予測値の総和値または平均値を表す目的関数を含む覚醒度最適化モデルを用いて、前記制約条件の下で、前記目的関数の値が最大となるように前記設定値を算出し、
 算出された前記設定値を、前記制御機器に設定することを含む。
 本発明の第3の態様によれば、記録媒体は、
 コンピュータに、
 対象者の覚醒度に影響する周辺環境の物理量及び前記物理量に影響を及ぼす制御機器の設定値を説明変数として含み、前記物理量の予測値を被説明変数とする陽関数である物理量予測モデルと、前記物理量及びその時間変化量を説明変数として含み、前記覚醒度の時間変化量の予測値を被説明変数とする陽関数である覚醒度予測モデルと、前記設定値が所定の範囲に含まれているという設定値範囲条件とを含む制約条件、並びに、前記対象者を含む1人以上の対象者、及び、2区間以上の時間ステップ数についての前記覚醒度の変化量の予測値が所定の条件を満たす前記1人以上の対象者の予測値の総和値または平均値を表す目的関数を含む覚醒度最適化モデルを用いて、前記制約条件の下で、前記目的関数の値が最大となるように前記設定値を算出し、
 算出された前記設定値を、前記制御機器に設定する、
 ことを実行させるためのプログラムを記憶した記録媒体である。
 この発明の実施形態によれば、覚醒度制御の際に、周囲環境への働きかけが覚醒度に及ぼす影響をより正確に把握することができる。
実施形態に係る覚醒度制御システムの装置構成の例を示す概略ブロック図である。 実施形態に係る覚醒度制御装置の機能構成の例を示す概略ブロック図である。 実施形態に係る設定値算出部が用いる覚醒度最適化モデルに、所定の制約条件を含めない場合の、機器設定値の例を示す図である。 実施形態に係る設定値算出部が用いる覚醒度最適化モデルに、所定の制約条件を含める場合の、機器設定値の例を示す図である。 実施形態に係る設定値算出部が機器設定値を算出して環境制御機器に設定する処理の手順の第1例を示すフローチャートである。 実施形態に係る設定値算出部が機器設定値を算出して環境制御機器に設定する処理の手順の第2例を示すフローチャートである。 実施形態に係る物理量予測モデル学習部が機械学習で物理量予測モデルのパラメータ値を算出する処理の手順の例を示すフローチャートである。 実施形態に係る覚醒度予測モデル学習部が機械学習で覚醒度予測モデルのパラメータ値を算出する処理の手順の例を示すフローチャートである。 実施形態に係る設定値決定部が機器設定値を決定して出力する処理手順の第1例を示す図である。 実施形態に係る環境制御機器に対する、設定値決定部による機器設定値の設定例を示す図である。 実施形態に係る設定値決定部が機器設定値を決定して出力する処理手順の第2例を示す図である。 実施形態に係る設定値決定部が機器設定値を決定して出力する処理手順の第3例を示す図である。 実施形態に係る覚醒度制御装置の構成の例を示す図である。
 以下、本発明の実施形態を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、実施形態に係る覚醒度制御システム1の装置構成の例を示す概略ブロック図である。図1に示す構成で、覚醒度制御システム1は覚醒度制御装置100と、1つ以上の環境制御機器200と、1つ以上の環境測定機器300と、1つ以上の覚醒度推定機器400とを備える。
 覚醒度制御装置100は、環境制御機器200各々、環境測定機器300各々、および、覚醒度推定機器400各々と、通信回線900を介して繋がり、これらの機器と通信可能になっている。通信回線900は、専用線、インターネット、VPN(Virtual Private Network)、LAN(Local Area Network)、などの通信回線の占有形態および有線回線、無線回線などの通信回線の物理形態など形態は問わずいずれで構成されていてもよい。
 覚醒度制御システム1は、覚醒度制御の対象者の覚醒度を判定し、判定結果に応じて覚醒度制御の対象者の周囲環境の物理量を制御して、覚醒度の維持または向上を図る。上述したように、覚醒度とは目が覚めている度合いを示す指標である。覚醒度の値が低いほど、覚醒度制御の対象者が眠い状態であることを示す。
 覚醒度制御の対象者をユーザ、または、単に対象者とも称する。
 ここで、対象者の周囲環境の物理量とは、対象者に影響を及ぼす物理量(物理的な量)であり、ここでは特に、対象者の覚醒度に影響を及ぼす物理量である。対象者の周囲環境の物理量を、単に物理量とも称する。
 物理量の例として、室温などの空気温度、および、照明機器による照度などの明るさを挙げることができるが、これらに限定されない。例えば覚醒度制御システム1が、温度および明るさに加えて、あるいは代えて、湿気(湿度)、音または振動など、温度や明るさ以外の刺激を対象者に与えるようにしてもよい。また、覚醒度制御システム1は、物理量として、湿気(湿度)、音または振動などの大きさを用いるようにしてもよい。
 以下では、空気温度を単に温度と称する。但し、覚醒度制御システム1が空気温度に加えて、あるいは代えて、それ以外の温度を制御するようにしてもよい。例えば、覚醒度制御システム1が、対象者に直接接するものの温度を制御するようにしてもよい。具体例として、対象者の座席の座面にヒータが設けられて、覚醒度制御システム1がそのヒータの温度を制御してもよい。
 覚醒度制御システム1が物理量を制御する単位は、特定のものに限定されない。例えば、個人の座席にスポット式の空調機器(局所的な空調機器)および照明スタンドが設置され、覚醒度制御システム1が、座席単位で物理量を制御するようにしてもよい。あるいは、覚醒度制御システム1が、部屋単位で物理量を制御するようにしてもよいし、建物全体の物理量を制御するようにしてもよい。また、建物全体の物理量を制御する場合に、対象者は、その建物にいる全ての人でなくともよく、その建物にいる一部の人であってもよい。
 対象者の人数は、1人であってもよいし、複数であってもよい。覚醒度制御システム1が対象者の登録を受け付けるなど特定の者のみが対象者となっていてもよい。あるいは、覚醒度制御システム1の制御対象空間に位置する不特定の者が対象者となっていてもよい。対象者が複数いる場合、覚醒度制御システム1が、対象者毎に物理量を制御するようにしてもよいし、複数の対象者に共通で物理量を制御するようにしてもよい。
 対象者の覚醒度を向上させるために、例えば室温を高くする、または、照明を明るくするなど、人によっては快適性が低下するように物理量を制御することが考えられる。覚醒度制御システム1が、覚醒度制御の対象者の覚醒度を判定し、判定結果に応じて物理量を制御することで、対象者の覚醒度の確保と快適性とのバランスをとることができる。例えば、覚醒度制御システム1が、対象者の覚醒度が低下した場合のみ覚醒度を向上させるように物理量を制御するようにしてもよい。
 以下では、覚醒度制御システム1が、対象者の覚醒度を向上させる(眠気を覚ます)場合を例に説明するが、このような例に限定されない。例えば、覚醒度制御システム1が、対象者の覚醒度を低下させる(眠りに導く)ようにしてもよい。例えば、覚醒度制御システム1が時間帯によって、覚醒度を向上させるための制御と、覚醒度を低下させるための制御とを切り替えて実行するようにしてもよい。または、対象者の覚醒度が低下することが予測される場合に、覚醒度制御システム1は、対象者の覚醒度が低下しないよう(すなわち、対象者が、うとうとしないよう)に制御してもよい。または、対象者の覚醒度が向上することが予測される場合に、覚醒度制御システム1は、対象者の覚醒度が向上しないよう(すなわち、対象者が覚醒しないように)に制御してもよい。
 覚醒度制御装置100は、対象者の覚醒度に応じて環境制御機器200を制御する。覚醒度制御装置100は、環境制御機器200を制御することで対象者の周囲環境の物理量を制御し、それによって対象者の覚醒度を制御する。
 覚醒度制御装置100は、例えばパソコン(Personal Computer;PC)またはワークステーション(Work Station)等のコンピュータを用いて構成される。
 環境制御機器200は、物理量を調整する機器である。上記のように、物理量には、例えば、空気温度および照度などがある。温度は空調機器により調整し、照度は照明機器により調整することができる。このように、環境制御機器200の例として空調機器および照明機器を挙げることができるが、これらに限定されない。
 環境制御機器200は、制御対象機器の例に該当し、上記のように覚醒度制御装置100によって制御される。
 覚醒度制御装置100など、環境制御機器200以外の装置が、環境制御機器200から機器設定値などの運転状態に関する情報を取得可能であり、環境制御機器200に対して機器設定値の更新を行うことが可能である。ここで、機器設定値は、制御目標値として環境制御機器200に設定された物理量である。機器設定値を、物理量の設定値、または、単に設定値とも称する。
 環境制御機器200が空調機器である場合、機器設定値として設定温度を用いることができる。環境制御機器200が照明機器である場合、機器設定値として照明出力(例えば光度、照度、電流値、電力値など)を用いることができる。以下では、照明機器の機器設定値として照度を用いる場合を例に説明するが、これに限定されない。
 環境測定機器300は、温度、照度などの物理量を測定し数値データに変換する機器である。環境測定機器300の例として、温度センサおよび照度センサを挙げることができるが、これらに限定されない。
 覚醒度推定機器400は、対象者の覚醒度を生体情報などから推定し、数値データに変換する機器である。覚醒度推定機器400が、生体情報として体温、顔の動画および脈波のうち何れか一方、あるいはこれらの組み合わせを用いるようにしてもよいが、これらに限定されない。覚醒度推定機器400は、生体情報を測定または算出し、得られた生体情報を、覚醒度合いを示す数値(覚醒度)に変換する。
 覚醒度推定機器400は、覚醒度制御システム1に必須ではない。覚醒度制御システム1が覚醒度推定機器400を備えていない場合、物理量に基づいて対象の覚醒を推定する。
 次に、覚醒度制御装置100の機能構成を説明する。
 図2は、覚醒度制御装置100の機能構成の例を示す概略ブロック図である。図2に示す構成で、覚醒度制御装置100は、通信部110と、記憶部170と、制御部180とを備える。記憶部170は、物理量予測モデル171と、覚醒度予測モデル172とを備える(記憶する)。制御部180は、監視制御部181と、第1取得部182と、第2取得部183と、設定値算出部184と、物理量予測モデル演算部185と、覚醒度予測モデル演算部186と、設定値決定部187と、物理量予測モデル学習部188と、覚醒度予測モデル学習部189とを備える。
 通信部110は、制御部180の制御に従って、他の装置と通信を行う。特に、通信部110は、環境制御機器200、環境測定機器300、覚醒度推定機器400の各々から各種情報を受信する。また、通信部110は、環境制御機器200に機器設定値を送信する。
 記憶部170は、各種情報を記憶する。記憶部170は、覚醒度制御装置100が備える記憶デバイスを用いて構成される。
 物理量予測モデル171は、物理量の設定値(機器設定値)に基づいて、その物理量の予測値を算出する数理モデルである。
 より具体的には、物理量予測モデル171は、環境測定機器300が測定する物理量の測定値と、環境制御機器200に設定されている物理量の設定値とに基づいて、所定時間が経過したときの物理量の予測値を算出する。
 上記の所定時間が経過したときとは、物理量予測モデル171に与えられる物理量が測定された時刻から所定時間経過後の時刻である。物理量予測モデル171に与えられる物理量の測定時刻に代えて、覚醒度制御装置100(通信部110)がその物理量を受信した時刻を用いることができる。
 上記の所定時間は、一定の時間に固定されていてもよいし、モデルパラメータとして可変になっていてもよい。ここでいうモデルパラメータは、物理量予測モデル171の設定パラメータである。モデルパラメータの値をモデルパラメータ値と称する。
 覚醒度予測モデル172は、物理量予測モデル171が算出した物理量の予測値に基づいて、覚醒度の予測値を算出する数理モデルである。さらには、覚醒度予測モデル172は、物理量の予測値に加えて、物理量の変化量に基づいて、覚醒度の予測値を算出する。より具体的には、覚醒度予測モデル172は、物理量予測モデル171が算出した物理量の予測値の履歴を用いて、物理量の時間平均値と変化量とに基づいて、所定時間が経過したときの対象者の覚醒度の変化量の予測値を算出する。
 覚醒度予測モデル172が、少なくとも覚醒度の時間的なばらつきに基づいて、覚醒度の予測値を算出するようにしてもよい。
 制御部180は、覚醒度制御装置100の各部を制御して各種処理を実行する。制御部180は、覚醒度制御装置100が備えるCPU(Central Processing Unit、中央処理装置)が、記憶部170からプログラムを読み出して実行することで実現される。
 監視制御部181は、通信部110を介して環境制御機器200と通信を行う。環境制御機器200との通信で、監視制御部181は、環境制御機器200に設定されている機器設定値を取得する。また、監視制御部181は、環境制御機器200との通信で、環境制御機器200の機器設定値を更新する。例えば、監視制御部181は、定周期毎に環境制御機器200と通信を行い、通信で取得した機器設定値を取得時(受信時)のタイムスタンプと共に保存する。ここでいう保存は、例えば、記憶部170に記憶させることである。
 このように、監視制御部181は、制御対象機器に機器設定値を設定する。監視制御部181は、設定部(設定手段)の例に該当する。
 監視制御部181は、機器設定値として、設定値算出部184が算出した機器設定値、または、設定値決定部187が決定した機器設定値を環境制御機器200に設定する。設定値算出部184が機器設定値を算出可能、かつ、算出した機器設定値が所定の条件を満たす(算出した機器設定値が所定の条件以上である)、すなわち算出した機器設定値が高精度であると判定された場合、監視制御部181は、設定値算出部184が算出した機器設定値を環境制御機器200に設定する。一方、設定値算出部184が機器設定値を算出できない場合、または、覚醒度制御システム1が算出した機器設定値が所定の条件を満たさない、すなわち、算出した機器設定値が低精度であると判定された場合、監視制御部181は、設定値決定部187が決定した機器設定値を環境制御機器200に設定する。
 例えば、物理量予測モデル171の設定パラメータ値が未設定の場合、物理量予測モデル171が物理量の予測値を算出できず、それによって設定値算出部184が機器設定値を算出できないことが考えられる。また、覚醒度予測モデル172の設定パラメータ値が未設定の場合、覚醒度予測モデル172が覚醒度の予測値を算出できず、それによって設定値算出部184が機器設定値を算出できないことが考えられる。
 また、物理量予測モデル171による物理量の予測精度が所定の条件よりも低下した場合、それによって設定値算出部184が算出する機器設定値の精度が低下していることが考えられる。物理量予測モデル171の設定パラメータ値の設定から所定時間以上経過した場合も、物理量予測モデル171による物理量の予測精度が低下し、それによって設定値算出部184が算出する機器設定値の精度も低下していることが考えられる。
 また、覚醒度予測モデル172による覚醒度の予測精度が所定の条件よりも低下した場合、それによって設定値算出部184が算出する機器設定値の精度が低下していることが考えられる。覚醒度予測モデル172の設定パラメータ値の設定から所定時間以上経過した場合も、覚醒度予測モデル172による覚醒度の予測精度が低下し、それによって設定値算出部184が算出する機器設定値の精度も低下していることが考えられる。
 これらの場合のうち一部、または全ての場合に、監視制御部181が、設定値決定部187が決定した機器設定値を環境制御機器200に設定するようにしてもよい。
 第1取得部182は、通信部110を介して環境測定機器300と通信を行い、環境測定機器300が測定した物理量の測定値を取得する。例えば、第1取得部182は、定周期毎に環境測定機器300と通信を行い、通信で取得した物理量の測定値を取得時(受信時)のタイムスタンプと共に保存する。このタイムスタンプは、環境測定機器300による物理量の測定時を示しているとみなすことができる。
 第2取得部183は、覚醒度推定機器400と通信を行い、対象者の覚醒度の推定値を取得する。例えば、第2取得部183は、定周期毎に覚醒度推定機器400と通信を行い、通信で取得した覚醒度の推定値を取得時(受信時)のタイムスタンプと共に保存する。
このタイムスタンプは、覚醒度推定機器400による覚醒度の推定時刻を示しているとみなすことができる。
 対象者の覚醒度の推定値を、覚醒度推定値とも称する。
 設定値算出部184は、ユーザの覚醒度を向上させるような、環境制御機器200の機器設定値を算出する。例えば、設定値算出部184は、定周期毎に機器設定値を算出する。設定値算出部184は、監視制御部181から機器設定値を取得し、第1取得部182から物理量の測定値を取得し、第2取得部183から覚醒度推定値を取得して、これらに基づいて機器設定値を算出する。設定値算出部184は、算出された機器設定値を監視制御部181に出力する。監視制御部181は、設定値算出部184から取得した機器設定値を、通信部110を介して環境制御機器200へ送信することで、環境制御機器200に機器設定値を設定する。
 設定値算出部184は、物理量予測モデル171および覚醒度予測モデル172を用いて、物理量に関する制約条件の下で最適化問題を解く(または、近似的に解く)ことによって、対象者の覚醒度を制御するための設定値を算出する。設定値算出部184は、最適化問題を解く(または、近似的に解く)ことによって、覚醒度がより高くなるように機器設定値を算出する。このように、設定値算出部184が最適化問題を解く処理は、覚醒度など目的関数値がより高く(あるいはより低く、あるいは目標値により近く)なるようにする処理の例に該当する。設定値算出部184は、最適化問題を解く(または、近似的に解く)ことによって、覚醒度が最高である場合における機器設定値を算出してもよい。
 設定値算出部184が解く最適化問題では、物理量予測モデル171を第1制約条件として用い、覚醒度予測モデル172を第2制約条件として用い、環境制御機器200の機器設定値が所定の範囲であるという条件を第3制約条件として用いる。設定値算出部184は、これらの制約条件を含む最適化問題を解く。ここでの機器設定値の所定の範囲は、環境制御機器200の仕様で定められた、設定可能な範囲である。
 また、設定値算出部184が解く最適化問題の目的関数は、例えば、1人以上(または、2人以上)の対象者、および、時間ステップの1区間以上における、覚醒度の変化量の予測値の総和値または平均値を算出する関数である。設定値算出部184は、この目的関数の値をより大きくするように最適化問題を解いて、機器設定値を算出する。設定値算出部184は、この目的関数が最大である場合における機器設定値を算出してもよい。覚醒度の変化量の予測値の総和値は、各対象者に関する覚醒度の変化量の予測値の和であってもよい。覚醒度の変化量の予測値の平均値は、各対象者に関する覚醒度の変化量の予測値の和を対象者の人数で割ることにより得られる値であってもよい。
 設定値算出部184が解く最適化問題を、覚醒度最適化モデルと称する。覚醒度最適化問題は、数理モデルとして構成される。
 設定値算出部184が、1人以上の対象者、および、時間ステップの1区間以上における、覚醒度の変化量の予測値の刈込み平均値がより大きくなるように、設定値を算出するようにしてもよい。
 設定値算出部184が刈り込み平均を用いることで、例えば対象者の中に、物理量の変化に対して覚醒度の変化が極端に小さい人、あるいは逆に極端に大きい人がいる場合にそれら極端な対象者を過大に評価しないようになるため、全体の最適化を図ることができる。または、この最適化は、一部の対象者に対して実施されてもよい。
 設定値算出部184が、機器設定値について算出される快適性のスコアに関する制約条件を含む最適化問題を解いて、この制約条件を満たす機器設定値を算出するようにしてもよい。例えば、設定値算出部184が、複数種類の機器設定値の各々について算出される快適性のペナルティスコアの総和が所定の範囲内になるように、複数種類の機器設定値をそれぞれ算出するようにしてもよい。言い換えると、設定値算出部184は、快適性スコアがある範囲に含まれているという条件を満たしている場合における、複数種類の機器設定値をそれぞれ算出するようにしてもよい。
 このように、設定値算出部184が快適性に関する制約条件を満たすように機器設定値を算出することで、快適性が極端に低下することを防止することができる。
 物理量予測モデル演算部185は、記憶部170から物理量予測モデル171を読み出して実行する。従って、物理量予測モデル演算部185が、物理量予測モデル171を用いて物理量の予測を実行する。
 覚醒度予測モデル演算部186は、記憶部170から覚醒度予測モデル172を読み出して実行する。従って、覚醒度予測モデル演算部186が、覚醒度予測モデル172を用いて覚醒度の予測を実行する。
 設定値決定部187は、設定値算出部184が高い覚醒効果が得られる機器設定値を算出できないときに、設定値算出部184の代わりに、機器設定値を算出し、監視制御部181に出力する。この目的の1つは、後述するように、物理量予測モデル学習部188、および、覚醒度予測モデル学習部189が効率良く学習を行えるような学習データを生成するためである。
 物理量予測モデル学習部188は、物理量予測モデル171の設定パラメータ値を機械学習等にて取得することで、物理量予測モデル171を設定または更新する。物理量予測モデル学習部188は、物理量予測モデル171の設定パラメータ値が未設定の場合、物理量予測モデル171による予測精度が所定の条件よりも低下した場合、および、物理量予測モデル171の設定パラメータ値の設定から所定時間以上経過した場合のうち少なくとも何れか1つの場合に、機械学習等を行う。
 物理量予測モデル学習部188は、学習データとして、監視制御部181から機器設定値を取得し、第1取得部182から物理量の測定値を取得する。物理量予測モデル学習部188は、これら物理量の測定値と前記物理量の設定値(機器設定値)とに基づく機械学習等を行って、物理量予測モデル171の設定パラメータ値を取得する。物理量予測モデル学習部188は、機械学習等によって得られた物理量予測モデル171のパラメータ値を設定値算出部184および設定値決定部187に出力する。
 覚醒度予測モデル学習部189は、覚醒度予測モデル172の設定パラメータ値を機械学習等にて取得することで、覚醒度予測モデル172を設定または更新する。
 覚醒度予測モデル学習部189は、覚醒度予測モデル172の設定パラメータ値が未設定の場合、覚醒度予測モデル172による予測精度が所定の条件よりも低下した場合、および、覚醒度予測モデル172の設定パラメータ値の設定から所定時間以上経過した場合のうち少なくとも何れか1つの場合に、機械学習等を行う。
 覚醒度制御装置100にとって、覚醒度予測モデル学習部189は必須ではない。特に、覚醒度制御システム1が覚醒度推定機器400を備えていない場合、覚醒度制御装置100は、外部から覚醒度の情報を取得せず、したがって、覚醒度の機械学習データにおける正解データを得られない。この場合、覚醒度制御装置100が覚醒度予測モデル学習部189を備えない構成とすることが考えられる。覚醒度予測モデル学習部189を備えない場合、覚醒度制御装置100が、覚醒度予測モデル172をそのまま使い続け、覚醒度予測モデル172の更新が必要になったときは、覚醒度制御システム1の管理者など人手で更新するといった運用が考えられる。あるいは、覚醒度制御装置100が、インターネットを介して最新のモデルパラメータ値を取得等の方法により、モデルパラメータ値を自動更新するようにしてもよい。
 覚醒度予測モデル学習部189は、学習データとして、第1取得部182から物理量の測定値を取得し、第2取得部183から覚醒度推定値を取得する。覚醒度予測モデル学習部189は、これら物理量の測定値、および、覚醒度(推定値)に基づく機械学習等を行って、覚醒度予測モデル172の設定パラメータ値を取得する。
 以下では、設定値算出部184、設定値決定部187、物理量予測モデル学習部188、覚醒度予測モデル学習部189それぞれについて具体的な計算手順の例を記す。
 まず、設定値算出部184が機器設定値の算出に用いる覚醒度最適化モデル(最適化問題)の例について説明する。設定値算出部184は、この覚醒度最適化モデルに対して数理最適化計算を実行することで、機器設定値を算出する。
 この覚醒度最適化モデルでは、以下の定数、係数、変数および関数を用いる。
(決定変数)
set :時間ステップtにおける空調温度設定値
set :時間ステップtにおける照明出力設定値
 決定変数は、最適化演算で設定値算出部184が値を算出する変数である。ここで説明する例の場合、設定値算出部184は、空調機器である環境制御機器200に設定する温度、および、照明機器である環境制御機器200に設定する照度を、最適化問題を解くことで算出する。
(従属変数)
Δ :覚醒度の変化量予測値の、対象者および時間ステップでの平均値
Δ :対象者iの覚醒度の変化量予測値の、時間ステップでの平均値
i,t Δ :時間ステップtにおける対象者iの覚醒度の変化量予測値
 :時間ステップtにおける温度予測値
Δ :時間ステップtにおける、温度の時間変化量の予測値
 なお、時間ステップtの前の1区間、すなわち、時間ステップt-1からtまでの変化量を、時間ステップtにおける変化量と称する。時間変化量とは、時間経過による変化量(経時変化量)である。
 :時間ステップtにおける照度予測値
Δ :時間ステップtにおける、照度の時間変化量の予測値
pnlty :時間ステップtにおける空調温度設定値の快適値からの逸脱度
pnlty :時間ステップtにおける照明出力設定値の快適値からの逸脱度
i,t σ :時間ステップtにおける対象者iの、覚醒度の時間変化量のばらつき度合
(定数・係数)
T :時間ステップのインデックスの集合
N :対象者のインデックスの集合
min :空調温度設定値の下限値
max :空調温度設定値の上限値
min :照明出力度設定値の下限値
max :照明出力設定値の上限値
best :空調温度設定値の快適値
 :空調温度のペナルティ係数
best :照明出力設定値の快適値
 :照明出力のペナルティ係数
max :ペナルティスコアの上限値
(τ) :相対時刻τにおける対象者iの覚醒度推定値
Δτ :時間ステップ幅
(関数)
 :覚醒度変化量予測関数(覚醒度予測モデル)
 :温度予測関数(物理量予測モデルの1つ)
 :照度予測関数(物理量予測モデルの1つ)
(インデックス)
t :時間ステップのインデックス
i :対象者のインデックス
 この覚醒度最適化モデルの目的関数は、式(1)のように示される。
Figure JPOXMLDOC01-appb-M000001
 AΔ(覚醒度の変化量予測値の、対象者および時間ステップでの平均値)は、式(2)のように示される。
Figure JPOXMLDOC01-appb-M000002
 A Δ(対象者iの覚醒度の変化量予測値の、時間ステップでの平均値)は、式(3)のように示される。
Figure JPOXMLDOC01-appb-M000003
 環境制御機器200のうち空調機器の機器設定値が所定の範囲内であるという制約条件は、式(4)のように示される。
Figure JPOXMLDOC01-appb-M000004
 環境制御機器200のうち照明機器の機器設定値が所定の範囲内であるという制約条件は、式(5)のように示される。
Figure JPOXMLDOC01-appb-M000005
 温度に関する物理量予測モデル171の制約条件は、式(6)のように示される。
Figure JPOXMLDOC01-appb-M000006
 照度に関する物理量予測モデル171の制約条件は、式(7)のように示される。
Figure JPOXMLDOC01-appb-M000007
 これら物理量予測モデル171の制約条件は、環境制御機器200に機器設定値を設定してから物理量が実際に機器設定値になるまでの遅れなど、環境制御機器200の動作に関する物理的な制約条件を示す。
 したがって、物理量予測モデル171は、説明変数として、対象者の覚醒度に影響する周辺環境の物理量を表すパラメータ、及び、前記物理量に影響を及ぼす制御機器の設定値を表すパラメータを含んでいる。また、物理量予測モデル171の被説明変数は、該物理量の予測値を表すパラメータである。式(6)、及び、式(7)には、物理量予測モデル171によって示されている所定の処理を、説明変数の値に適用することによって、被説明変数の値が算出されるという陽関数によって例示されている。尚、式(6)、及び、式(7)は、必ずしも、陽関数によって示されていなくてもよい。
 覚醒度予測モデル172の制約条件は、式(8)のように示される。
Figure JPOXMLDOC01-appb-M000008
 したがって、覚醒度予測モデル172は、説明変数として、物理量を表すパラメータ及びその時間変化量を表すパラメータを含んでいる。また、覚醒度予測モデル172の被説明変数は、該覚醒度の時間変化量の予測値を表すパラメータである。式(8)には、覚醒度予測モデル172によって示されている所定の処理を、説明変数の値に適用することによって、被説明変数の値が算出されるという陽関数によって例示されている。尚、式(8)は、必ずしも、陽関数によって示されていなくてもよい。
 覚醒度予測モデル172の制約条件は、物理量およびその変化に対する、対象者の覚醒度の変化の仕方を示す。
 T Δ(時間ステップtにおける、温度の時間変化量の予測値)は、式(9)のように示される。
Figure JPOXMLDOC01-appb-M000009
 L Δ(時間ステップtにおける、照度の時間変化量の予測値)は、式(10)のように示される。
Figure JPOXMLDOC01-appb-M000010
 設定値算出部184は、式(2)~(10)で示される制約条件の下で、式(1)~(3)で示される、全ユーザおよび全時間ステップについての覚醒度時間変化量予測値の平均値を表す目的関数を最大化する決定変数値を求める数理計画問題を解く。これによって、設定値算出部184は、機器設定値(決定変数値)を算出する。設定値算出部184が実行する処理は、たとえば、上述したような覚醒度最適化モデルを用いて、制約条件の下で目的関数の値が最大となるように設定値を算出する処理であるということもできる。設定値算出部184が実行する処理は、必ずしも、目的関数の値が最大となる場合の処理に限定されず、たとえば、目的関数の値が大きくなる場合の設定値を算出する処理であってもよい。
 上述したように、式(6)、(7)が物理量予測モデル171に関する制約条件である。式(8)~(10)が覚醒度予測モデル172に関する制約条件である。式(4)、(5)が、環境制御機器200の機器設定値が所定の範囲であるという制約条件である。
 設定値算出部184が用いる覚醒度最適化モデル(最適化問題)のオプションについて説明する。
 AΔ(覚醒度の変化量予測値の、対象者および時間ステップでの平均値)として刈り込み平均値を用いるようにしてもよい。この場合、式(2)に代えて式(11)を用いる。
Figure JPOXMLDOC01-appb-M000011
 すなわち、目的関数を式(1)~(3)の代わりに、式(1)、(3)、(11)の組み合わせとしてもよい。ここでtrimmedmeanは刈込み平均を示す。刈込み平均は、大きさ順に並べたデータの両端から決められた割合だけデータを捨て、残ったデータについて求めた算術平均である。これにより、極端に覚醒度が変化する、または、全く変化しない対象者を目的関数の数値計算上から除外することができるため、少数の特定の対象者に過度に合わせるような機器設定値が算出されることを防ぐ効果がある。
 すなわち、設定値算出部184が刈り込み平均を用いることで、例えば対象者の中に、物理量の変化に対して覚醒度の変化が極端に小さい人、あるいは逆に極端に大きい人がいる場合にそれら極端な対象者を過大に評価しないようになるため、全体の最適化を図ることができる。
 刈込み平均における切捨て割合(両端を合わせた割合)は10%が好適である。
 対象者の快適性があまり低下しないように、快適性に関する制約条件が、制約条件の中に含まれていてもよい。例えば、式(12)に示される快適性のペナルティスコアの制約条件が含まれていてもよい。
Figure JPOXMLDOC01-appb-M000012
 T pnlty(時間ステップtにおける空調温度設定値の快適値からの逸脱度)は、式(13)のように示される。
Figure JPOXMLDOC01-appb-M000013
 L pnlty(時間ステップtにおける照明出力設定値の快適値からの逸脱度)は、式(14)のように示される。
Figure JPOXMLDOC01-appb-M000014
 式(12)~(14)は、快適性ペナルティスコアについての総和が所定の範囲内(所定の大きさ以下)であるという制約条件を示している。言い換えると、空調と照明とが同時に不快となる機器設定値とならない制約条件である。これは、複数の環境制御機器、例えば、空調機器と照明機器について、それらの最も快適となる機器設定値からそれぞれの機器設定値が同時に離れてしまう状況を回避する効果がある。
 式(12)~(14)を制約条件に含める効果について、図3および図4を参照して説明する。
 図3は、設定値算出部184が用いる覚醒度最適化モデルに、式(12)~(14)の制約条件を含めない場合の、機器設定値の例を示す図である。図3のグラフの横軸は、空調設定値(空調温度設定値(温度))を示す。縦軸は、照明設定値(照明出力設定値(照度))を示す。
 図3の例では、空調機器に設定可能な温度の上限値および下限値の範囲内という制約条件、および、照明機器に設定可能な照度の上限値および下限値の範囲内という制約条件を満たす範囲で、機器設定値を任意に設定できる。領域A11(斜線部分)は、その制約条件を満たす範囲を示す。
 空調設定値、照明設定値のいずれについても、その上限値付近、または、その下限値付近では、対象者の快適性が比較的低いことが考えられる。従って、空調設定値、照明設定値ともに、その上限値付近、または、その下限値付近の何れかに設定されている場合、対象者にとって、温度の快適性の低下と照度の快適性の低下が合わさって、快適性の低下が大きいと考えられる。
 図4は、設定値算出部184が用いる覚醒度最適化モデルに、式(12)~(14)の制約条件を含める場合の、機器設定値の例を示す図である。図4のグラフの横軸は、空調設定値(空調温度設定値(温度))を示す。縦軸は、照明設定値(照明出力設定値(照度))を示す。
 図4の例では、図3の場合の制約条件に加えてさらに、空調設定値の快適値からのずれと照明設定値の快適値からのずれとの合計の大きさが、所定の大きさ以下であるという制約条件が設けられている。領域A12(斜線部分)は、その制約条件を満たす範囲を示す。これによって、空調機器、照明機器共に設定可能な空調設定値および照明設定値の範囲内であっても、ともに快適値から大きく外れる機器設定値には設定されなくなる。これにより、対象者にとって、温度の快適性の低下と照度の快適性の低下が合わさって快適性の低下が大きくなることを回避できる。
 図3と図4とを比較すると、式(12)~(14)の制約条件を追加することによる効果が、機器設定値の範囲領域が、図3における領域A11(斜線部分)から図4における領域A12(斜線部分)に変更されて、模式的に示されている。
 第2取得部183より覚醒度推定値を取得可能な場合は、式(8)に代えて式(15)を用いるようにしてもよい。
Figure JPOXMLDOC01-appb-M000015
 この場合、制約条件に式(16)が含まれていてもよい。
Figure JPOXMLDOC01-appb-M000016
 式(16)のAi,t-1 Δを、式(15)を用いて算出することができる。
 また、Ai,t σ(時間ステップtにおける対象者iの、覚醒度の時間変化量のばらつき度合)は、式(17)のように示される。
Figure JPOXMLDOC01-appb-M000017
 覚醒度予測モデル172として式(8)~(10)に代えて式(9)、(10)、(15)~(17)を用いることで、現在の覚醒度推定値を取り入れることができ、予測精度が高くなる効果がある。そのため覚醒度予測モデルは、説明変数として、覚醒度の時間平均値、時間変化量、時間ばらつきを含む。ここでstdは標準偏差を表し、時間ばらつきを標準偏差としている。また、ここでは将来の時間ばらつきは現在の値と同じであるとしている(数17)。
 式(16)のAi,t σ(時間ステップtにおける対象者iの、覚醒度の時間変化量のばらつき度合)のように、覚醒度予測モデル172への入力に覚醒度のばらつき度合いが含まれていてもよい。覚醒度のばらつき度合いが大きい場合、対象者がうとうとしていることが考えられ、対象者の覚醒度は比較的低いと考えられる。このように、覚醒度予測モデル172への入力に覚醒度のばらつき度合いが含まれていることで、覚醒度の現状をより正確に把握できると期待され、覚醒度の予測精度が向上すると期待される。
 物理量予測モデル171、覚醒度予測モデル172および覚醒度最適化モデルについて、さらに説明する。
 物理量予測モデル171は、物理量の測定値と対応する機器設定値に基づいて、所定時間が経過したときの物理量の予測値を算出することができる数理モデルである。物理量が温度であり、対応する環境制御機器200が空調機器である場合の物理量予測モデル171は、上記のように式(6)で示される。物理量が照度であり、対応する環境制御機器200が照明機器の場合の物理量予測モデル171は、上記のように式(7)で示される。
 物理量予測モデル171は、線形回帰モデルまたは非線形回帰モデルであってもよい。この場合、モデルのパラメータ値は、入出力データをペアとした学習データを用いて同定できる。非線形回帰モデルの例としては、決定木、非線形カーネルのサポートベクトル回帰、ニューラルネットワーク、などがある。パラメータ値の同定の際、事前に実験などにより得られた学習データで同定した値を初期値として用いることができる。また、物理量予測モデル学習部188がパラメータを更新するようにしてもよい。パラメータ値の同定アルゴリズムはモデルの関数形に合わせて適切な方法にて実行すればよく、例えば、線形回帰モデルの場合はサポートベクトル回帰によりパラメータの同定が可能である。
 但し、物理量予測モデル171の構成は特定の構成に限定されず、機械学習を適用可能ないろいろな構成とすることができる。
 覚醒度予測モデル172は、物理量の時間平均値と時間変化量において、所定時間が経過したときのユーザの覚醒度の変化量の予測値を算出することができる数理モデルである。物理量が温度および照度であり、対応する環境制御機器200がそれぞれ空調機器および照明機器である場合の覚醒度予測モデルは、上述したように式(8)~(10)で示される。
 覚醒度予測モデル172は、線形回帰モデルまたは非線形回帰モデルであってもよい。この場合、モデルのパラメータ値は入出力データをペアとした学習データを用いて同定できる。非線形回帰モデルの例としては、決定木、非線形カーネルのサポートベクトル回帰、ニューラルネットワーク、などがある。パラメータ値の同定の際、事前に実験などにより得られた学習データで同定した値を初期値として用いることができる。また、覚醒度予測モデル学習部189がパラメータを更新するようにしてもよい。パラメータ値の同定アルゴリズムはモデルの関数形に合わせて適切な方法にて実行すればよい。例えば、線形回帰モデルの場合はサポートベクトル回帰によりパラメータの同定が可能である。
 但し、覚醒度予測モデル172の構成は特定の構成に限定されず、機械学習を適用可能ないろいろな構成とすることができる。
 覚醒度最適化モデルは、非線形離散最適化問題であるため、例えば、遺伝的アルゴリズムまたは離散PSO(Particle Swarm Optimization)などのメタヒューリスティクスアルゴリズム(Meta Heuristic Algorithm)による数理最適化計算を実行して求解する。不等式の制約条件(上記の式(4)、(5)、(12))については、例えば、ペナルティ関数法による無制約最適化問題へ変換を行うか、ε制約法などとの組み合わせによる拡張を行ったメタヒューリスティクスを用いることで最適解を算出することができる。
 定数および係数の数値について説明を行う。
 時間ステップ幅Δτの値は、例えば、15~30分の範囲から適当な値とする。時間ステップ幅Δτの値は、覚醒度予測モデルの予測精度や覚醒効果などの観点から15分が好適である。
 時間ステップインデックス集合Tは、予測ホライズンに相当する。時間変化による環境変化の刺激(温冷熱刺激など)を考慮するためには時間ステップ数を2以上とする必要がある。計算量のとのバランスから時間ステップ数は3または4が好適である。
 空調温度設定値の下限値Tmin、上限値Tmax、快適値Tbestの値を、入力インターフェースを設けてユーザに設定させてもよい。3つの値をそれぞれユーザに入力させてもよい。快適値Tbestのみをユーザに入力させて残りの2つの値を、快適性を損ねない前後1℃、つまり、「Tmin=Tbest-1」、「Tmax=Tbest+1」としてもよい。反対に、下限値Tmin、上限値Tmaxをユーザに入力させて残り1つの値を、平均値、つまり、「Tbest=(Tmin+Tmax)/2」としてもよい。このようにすることで、ユーザが温熱的に快適な範囲で覚醒効果を得られる空調温度設定値を算出することができる。
 同様に、照明出力設定値の下限値Lmin、上限値Lmax、快適値Lbestの値を、入力インターフェースを設けてユーザに設定させてもよい。3つの値をそれぞれユーザに入力させてもよい。快適値Lbestのみをユーザに入力させて残りの2つの値を、快適性を損ねない前後20%、つまり、「Lmin=Lbest-20」、「Lmax=Lbest+20」としてもよい。ここでは、Lmin、Lmax、Lbestの値について、パーセントによる表記としている。例えば、Lminの値を0%とし、Lmaxの値を100%としてもよい。
 反対に、下限値Lmin、上限値Lmaxをユーザに入力させて残り1つの値を、平均値、つまり、「Lbest=(Lmin+Lmax)/2」としてもよい。このようにすることで、ユーザが明るさ的に快適な範囲で覚醒効果を得られる照明出力設定値を算出することができる。
 空調温度のペナルティ係数pは、前述の通り快適値Tbestから前後1℃が不快の基準となることから、「p=1/1[point/℃]」が好適である。
 照明出力のペナルティ係数pは、前述の通り快適値Tbestから前後20%が不快の基準となることから、「p=1/20[point/%]」が好適である。
 ペナルティスコアの上限値pmaxは、1以上2未満することが好適である。例えば、「pmax=1.5」とすると良い。これは、同時に複数の環境制御機器による不快に対する許容は、高々2種類程度までである、ということが経験的に知られているためである。
 ここで、対象者のインデックス集合N、相対時刻τでの覚醒度推定値a(τ)は、第2取得部から取得した情報によって定まる定数である。よって以上より、機器設定値の算出に関わる全ての定数および係数は、特段の調整が不要であることがわかる。
 設定値算出部184の計算実行は、図5または図6に示す手順で行う。計算実行は周期をΔτとして定周期毎に実行することが好適である。
 図5は、設定値算出部184が機器設定値を算出して環境制御機器200に設定する処理の手順の第1例を示すフローチャートである。図5は、設定値算出部184が覚醒度推定値を用いずに機器設定値を算出する場合の例を示している。
 図5の処理で、設定値算出部184は、機器設定値を算出する処理の実行タイミングが到来したか否かを判定する(ステップS100)。実行タイミングが到来していないと判定した場合(ステップS100:No)、処理がステップS100へ戻る。これにより、設定値算出部184は、機器設定値を算出する処理の実行タイミングの到来を待ち受ける。
 一方、機器設定値を算出する処理の実行タイミングが到来したと判定した場合(ステップS100:Yes)、設定値算出部184は、監視制御部181から機器設定値を取得する(ステップS110)。
 また、設定値算出部184は、第1取得部182から環境測定値(環境測定機器300が測定した物理量の測定値)を取得する(ステップS120)。そして、設定値算出部184は、上述したように最適化問題を解くことで、機器設定値(機器設定値を更新するための値)を算出する(ステップS130)。ステップS130では、設定値算出部184は、覚醒度推定値を用いずに機器設定値を算出する。
 設定値算出部184は、得られた機器設定値を監視制御部181へ出力する(ステップS140)。監視制御部181は、設定値算出部184から得られた機器設定値を、通信部110を介して環境制御機器200へ送信することで、その機器設定値を環境制御機器200に設定する。
 ステップS140の後、設定値算出部184は、図5の処理を終了する。
 図6は、設定値算出部184が機器設定値を算出して環境制御機器200に設定する処理の手順の第2例を示すフローチャートである。図6は、設定値算出部184が覚醒度推定値を用いて機器設定値を算出する場合の例を示している。
 図6のステップS200~220は、図5のステップS100~120と同様である。
 ステップS220の後、設定値算出部184は、第2取得部183から覚醒度推定値を取得する(ステップS230)。
 そして、設定値算出部184は、上述したように最適化問題を解くことで、機器設定値(機器設定値を更新するための値)を算出する(ステップS240)。ステップS240では、設定値算出部184は、覚醒度推定値を用いて機器設定値を算出する。
 ステップS250は、図5のステップS140と同様である。
 ステップS250の後、設定値算出部184は、図6の処理を終了する。
 物理量予測モデル学習部188の計算実行は、図7に示す手順で行う。例えば、計算実行は定周期で実行し、周期は1日から2週間の範囲とし、1日が好適である。
 図7は、物理量予測モデル学習部188が機械学習で物理量予測モデル171のパラメータ値を算出する処理の手順の例を示すフローチャートである。
 図7の処理で、物理量予測モデル学習部188は、パラメータ値を算出する処理の実行タイミングが到来したか否かを判定する(ステップS300)。実行タイミングが到来していないと判定した場合(ステップS300:No)、処理がステップS300へ戻る。これにより、物理量予測モデル学習部188は、パラメータ値を算出する処理の実行タイミングの到来を待ち受ける。
 一方、パラメータ値を算出する処理の実行タイミングが到来したと判定した場合(ステップS300:Yes)、物理量予測モデル学習部188は、物理量予測モデル171が未学習か判定する(ステップS310)。
 具体的には、物理量予測モデル学習部188は、設定値算出部184に対して物理量予測モデル171のパラメータの取得を試みる。パラメータを取得ができた場合、物理量予測モデル学習部188は、物理量予測モデル171は学習済みであると判定する。一方、パラメータを取得できない場合、物理量予測モデル学習部188は、物理量予測モデル171は未学習であると判定する。
 物理量予測モデル171が学習済みであると判定した場合(ステップS310:No)、物理量予測モデル学習部188は、学習後に所定時間が経過しているか判定する(ステップS320)。具体的には、物理量予測モデル学習部188は、物理量予測モデル171のパラメータの最終更新日時を取得し、最終更新日時と現在時刻と比較してその差が所定時間を超えているかを判定する。この場合の所定時間は、例えば1日から2週間の範囲内の時間とし、1週間が好適である。
 学習後に所定時間が経過していないと判定した場合(ステップS320:No)、物理量予測モデル学習部188は、監視制御部181から機器設定値を取得する(ステップS330)。また、物理量予測モデル学習部188は、第1取得部182から物理量の測定値(環境測定値)を取得する(ステップS340)。
 そして、物理量予測モデル学習部188は、取得したデータと、物理量予測モデル171に設定されているパラメータ値とを用いて、物理量予測モデル171の予測精度の評価を行い、物理量予測モデル171の予測精度が低下したか判定する(ステップS350)。
 例えば、物理量予測モデル学習部188は、予測精度の評価指標を、平均絶対誤差率、または、相関係数などとして、評価指標が予め定めた値を下回ったか否かを判定する。判定の際には複数の評価指標を用いてもよい。例えば、物理量予測モデル学習部188が、平均絶対誤差率および相関係数を用いて、2つの評価指標ともに予め定めた値を下回ったときに予測精度が低下したと判定するようにしてもよい。
 物理量予測モデル171の予測精度が低下していないと判定した場合(ステップS350:No)、物理量予測モデル学習部188は、図7の処理を終了する。
 一方、物理量予測モデル171の予測精度が低下していると判定した場合(ステップS350:Yes)、物理量予測モデル学習部188は、取得した機器設定値および物理量の測定値を学習データとして機械学習等によるモデルパラメータ値の算出を実行する(ステップS360)。物理量予測モデル学習部188が、物理量予測モデルの関数形に合わせて適切な方法にて機械学習等を実行するようにすればよい。例えば、線形回帰モデルの場合は物理量予測モデル学習部188がサポートベクトル回帰を実行する。
 物理量予測モデル学習部188は、得られたパラメータ値を設定値算出部184へ出力することで、物理量予測モデル171のパラメータ値を更新する(ステップS370)。
 物理量予測モデル学習部188が、機械学習等により得られたパラメータにて予測精度の評価を行い、学習前よりも予測精度が改善された場合に、パラメータと学習計算を実行した日時とを設定値算出部184に出力するようにしてもよい。予測精度の評価指標は、平均絶対誤差率、または、相関係数などとすればよい。
 ステップS370の後、物理量予測モデル学習部188は、図7の処理を終了する。
 一方、ステップS310で、物理量予測モデル171が未学習であると判定した場合(ステップS310:Yes)、物理量予測モデル学習部188は、監視制御部181から機器設定値を取得する(ステップS331)。また、物理量予測モデル学習部188は、第1取得部182から物理量の測定値(環境測定値)を取得する(ステップS341)。
 ステップS341の後、処理がステップS360へ進む。
 一方、ステップS320で、学習後に所定時間が経過していると判定した場合(ステップS320:Yes)、処理がステップS331へ進む。
 覚醒度予測モデル学習部189の計算実行は、図8に示す手順で行う。例えば、計算実行は定周期毎に実行し、周期は1週間から1ヶ月の範囲とする。周期は、1ヶ月が好適である。
 図8は、覚醒度予測モデル学習部189が機械学習で覚醒度予測モデル172のパラメータ値を算出する処理の手順の例を示すフローチャートである。
 図8の処理で、覚醒度予測モデル学習部189は、パラメータ値を算出する処理の実行タイミングが到来したか否かを判定する(ステップS400)。実行タイミングが到来していないと判定した場合(ステップS400:No)、処理がステップS400へ戻る。これにより、覚醒度予測モデル学習部189は、パラメータ値を算出する処理の実行タイミングの到来を待ち受ける。
 一方、パラメータ値を算出する処理の実行タイミングが到来したと判定した場合(ステップS400:Yes)、覚醒度予測モデル学習部189は、覚醒度予測モデル172が未学習か判定する(ステップS410)。
 具体的には、覚醒度予測モデル学習部189は、設定値算出部184に対して覚醒度予測モデル172のパラメータの取得を試みる。パラメータを取得ができた場合、覚醒度予測モデル学習部189は、覚醒度予測モデル172は学習済みであると判定する。一方、パラメータを取得できない場合、覚醒度予測モデル学習部189は、覚醒度予測モデル172は未学習であると判定する。
 覚醒度予測モデル172が学習済みであると判定した場合(ステップS410:No)、覚醒度予測モデル学習部189は、学習後に所定時間が経過しているか判定する(ステップS420)。具体的には、覚醒度予測モデル学習部189は、覚醒度予測モデル172のパラメータの最終更新日時を取得し、最終更新日時と現在時刻と比較してその差が所定時間を超えているかを判定する。この所定時間は、例えば2週間から6ヶ月の範囲内の時間とし、2ヶ月が好適である。
 学習後に所定時間が経過していないと判定した場合(ステップS420:No)、覚醒度予測モデル学習部189は、第2取得部183から覚醒度推定値を取得する(ステップS430)。また、覚醒度予測モデル学習部189は、第1取得部182から物理量の測定値(環境測定値)を取得する(ステップS440)。
 そして、覚醒度予測モデル学習部189は、取得したデータと、覚醒度予測モデル172に設定されているパラメータ値とを用いて、覚醒度予測モデル172の予測精度の評価を行い、覚醒度予測モデル172の予測精度が低下したか判定する(ステップS450)。
 例えば、覚醒度予測モデル学習部189は、予測精度の評価指標を、平均絶対誤差率、または、相関係数などとして、評価指標が予め定めた値を下回ったか否かを判定する。判定の際には複数の評価指標を用いてもよい。例えば、覚醒度予測モデル学習部189が、平均絶対誤差率および相関係数を用いて、2つの評価指標ともに予め定めた値を下回ったときに予測精度が低下したと判定するようにしてもよい。
 覚醒度予測モデル172の予測精度が低下していないと判定した場合(ステップS450:No)、覚醒度予測モデル学習部189は、図8の処理を終了する。
 一方、覚醒度予測モデル172の予測精度が低下していると判定した場合(ステップS450:Yes)、覚醒度予測モデル学習部189は、取得した覚醒度推定値および物理量の測定値(環境測定値)を学習データとして機械学習によるモデルパラメータ値の算出を実行する(ステップS460)。覚醒度予測モデル学習部189が、物理量予測モデルの関数形に合わせて適切な方法にて機械学習を実行するようにすればよい。例えば、線形回帰モデルの場合は覚醒度予測モデル学習部189がサポートベクトル回帰を実行する。
 覚醒度予測モデル学習部189は、得られたパラメータ値を設定値算出部184へ出力することで、覚醒度予測モデル172のパラメータ値を更新する(ステップS470)。
 覚醒度予測モデル学習部189が、機械学習等により得られたパラメータにて予測精度の評価を行い、学習前よりも予測精度が改善された場合に、パラメータと学習計算を実行した日時とを設定値算出部184に出力するようにしてもよい。予測精度の評価指標は、平均絶対誤差率、または、相関係数などとすればよい。
 ステップS470の後、覚醒度予測モデル学習部189は、図8の処理を終了する。
 一方、ステップS410で、覚醒度予測モデル172が未学習であると判定した場合(ステップS410:Yes)、覚醒度予測モデル学習部189は、第2取得部183から覚醒度推定値を取得する(ステップS431)。また、覚醒度予測モデル学習部189は、第1取得部182から物理量の測定値(環境測定値)を取得する(ステップS441)。
 ステップS441の後、処理がステップS460へ進む。
 一方、ステップS420で、学習後に所定時間が経過していると判定した場合(ステップS420:Yes)、処理がステップS431へ進む。
 設定値決定部187は、図9~図12に示す手順で処理を行う。例えば、計算実行は定周期毎に実行し、周期は1日から2週間の範囲とする。周期は、1日が好適である。
 図9は、設定値決定部187が機器設定値を決定して出力する処理手順の第1例を示す図である。設定値決定部187は、物理量予測モデル171、覚醒度予測モデル172の各々について、図9の処理を行う。例えば、設定値決定部187が、物理量予測モデル171および覚醒度予測モデル172について同期を取りながら各々に図9の処理を適用し、条件分岐では、両モデルの判定結果を総合的に勘案して分岐を行うようにしてもよい。
 図9の処理で、設定値決定部187は、機器設定値を決定する処理の実行タイミングが到来したか否かを判定する(ステップS500)。実行タイミングが到来していないと判定した場合(ステップS500:No)、処理がステップS500へ戻る。これにより、設定値決定部187は、機器設定値を決定する処理の実行タイミングの到来を待ち受ける。
 一方、機器設定値を決定する処理の実行タイミングが到来したと判定した場合(ステップS500;Yes)、設定値決定部187は、物理量予測モデル171および覚醒度予測モデル172のうち何れか処理対象となっている方が未学習か判定する(ステップS510)。
 具体的には、設定値決定部187は、設定値算出部184に対して、物理量予測モデル171および覚醒度予測モデル172のうち何れか処理対象となっている方のパラメータの取得を試みる。設定値決定部187は、パラメータを取得ができたモデルについては学習済みであると判定する。一方、設定値決定部187は、パラメータを取得できなかったモデルは未学習であると判定する。
 処理対象のモデルが学習済みであると判定した場合(ステップS510:No)、設定値決定部187は、監視制御部181から機器設定値を取得する(ステップS520)。
 また、処理対象のモデルが物理量予測モデル171である場合、設定値決定部187は、第1取得部182から物理量の測定値(環境測定値)を取得する(ステップS530)。処理対象のモデルが覚醒度予測モデル172である場合は、設定値決定部187は、ステップ530で、第2取得部183から覚醒度推定値を取得する。
 そして、設定値決定部187は、取得してデータおよび処理対象のモデルのパラメータ値を用いて、処理対象のモデルの予測精度の評価を行い、予測精度が低下したか判定する(ステップS540)。
 例えば、設定値決定部187は、予測精度の評価指標を、平均絶対誤差率、または、相関係数などとして、評価指標が予め定めた値を下回ったか否かを判定する。判定の際には複数の評価指標を用いてもよい。例えば、設定値決定部187が、平均絶対誤差率および相関係数を用いて、2つの評価指標ともに予め定めた値を下回ったときに予測精度が低下したと判定するようにしてもよい。
 処理対象のモデルの予測精度が低下していないと判定した場合(ステップS540:No)、設定値決定部187は、図9の処理を終了する。
 一方、処理対象のモデルの予測精度が低下していると判定した場合(ステップS540:Yes)、設定値決定部187は、機器設定値を決定する(ステップS550)。具体的には、設定値決定部187は、機器設定値の上下限範囲内で、できるだけ変動が大きくなるような機器設定値を決定する。機器設定値の上下限範囲は、例えば式(4)および(5)に示されている。例えば、設定値決定部187が、図10に示すように機器設定値を上限値と下限値との範囲内において周期的に変更させるようにしてもよい。
 図10は、環境制御機器200に対する、設定値決定部187による機器設定値の設定例を示す図である。図10の部分(A)は、環境制御機器200が空調機器である場合の、設定値決定部187による機器設定値の設定例を示す。図10の部分(A)のグラフの横軸は時間を示す。縦軸は、機器設定値(空調設定値(空調温度設定値))を示す。
 図10の部分(A)の例で、設定値決定部187は、空調設定値をその上限値と下限値との範囲内で大きく変化させている。具体的には、設定値決定部187は、空調設定値をその上限値と下限値とに周期的に変化させている。
 このように、設定値決定部187が環境制御機器200(図10の例では空調機器)に対する機器設定値を大きく変化させることで、機械学習等に適した、説明変数値の変化が比較的大きいデータが得られる。
 図10の部分(B)は、環境制御機器200が照明機器である場合の、設定値決定部187による機器設定値の設定例を示す。図10の部分(B)のグラフの横軸は時間を示す。縦軸は、機器設定値(照明設定値(照明出力設定値))を示す。
 図10の部分(B)の例で、設定値決定部187は、図10の部分(A)の場合と同様、照明設定値をその上限値と下限値との範囲内で大きく変化させている。
 また、図10の部分(A)の例と図10の部分(B)の例とを比較すると、設定値決定部187は、空調機器と照明機器とで異なる周期で機器設定値を変化させている。具体的には、設定値決定部187は、照明機器の機器設定値を、空調機器の場合の半分の周期で変化させている。
 このように、複数種類の環境制御機器200が存在する場合に、設定値決定部187が、それぞれの周期を異なるようにして複数種類の環境制御機器200の機器設定値の上限値と下限値の組み合わせが網羅的となるように、機器設定値を変化させる。このとき、温度の時間変化は照度の時間変化よりも遅いため、空調機器の機器設定値の変動周期を照明機器の機器設定値の変動周期よりも長くすることが好適である。他にも、設定値決定部187が、予め定めた変動パターンに従うように機器設定値を決定してもよいし、単純にランダムに機器設定値を決定してもよい。
 設定値決定部187は、機器設定値を算出した場合(図9の例ではステップS550)に、設定値算出部184に対して設定値算出計算の実行不許可情報を送信する。実行不可情報には有効期限が付与されており、実行不許可情報を取得した設定値算出部184は、有効期限までは一連の処理(ステップS110~S140またはS210~S240)を実行しない。例えば、ステップS100またはS200にて、処理が「No」に分岐する。
 ステップS550の後、設定値決定部187は、決定した機器設定値を設定値算出部184へ出力することで、処理対象のモデルのパラメータ値を設定または更新する(ステップS560)。
 ステップS560の後、設定値決定部187は、図9の処理を終了する。
 一方、ステップS510で処理対象のモデルが未学習みであると判定した場合(ステップS510:Yes)、設定値決定部187は、監視制御部181から機器設定値を取得する(ステップS521)。
 また、処理対象のモデルが物理量予測モデル171である場合、設定値決定部187は、第1取得部182から物理量の測定値を取得する(ステップS531)。処理対象のモデルが覚醒度予測モデル172である場合は、設定値決定部187は、ステップ531で、第2取得部183から覚醒度推定値を取得する。
 ステップS531の後、処理がステップS550へ進む。
 図11は、設定値決定部187が機器設定値を決定して出力する処理手順の第2例を示す図である。図9が、処理対象のモデルが物理量予測モデル171である場合の例を示しているのに対して、図11は、処理対象のモデルが覚醒度予測モデル172である場合の例を示している。このため、図9のステップS520、S521のいずれでも、設定値決定部187が機器設定値を取得するのに対し、図11のステップS620、S621のいずれでも、設定値決定部187は覚醒度推定値を取得する。
 それ以外の点については、図11の処理は図9の場合と同様である。
 上述したように、設定値決定部187は、機器設定値を算出した場合に、設定値算出部184に対して設定値算出計算の実行不許可情報を送信する。図11では、設定値決定部187は、ステップS650で、設定値算出部184に対して設定値算出計算の実行不許可情報を送信する。
 図12は、設定値決定部187が機器設定値を決定して出力する処理手順の第3例を示す図である。図9が、処理対象のモデルが物理量予測モデル171である場合の例を示し、図11が、処理対象のモデルが覚醒度予測モデル172である場合の例を示している。これらに対し、図12は、物理量予測モデル171および覚醒度予測モデル172の両方を処理対象とする場合の例を示している。
 このため、図9の処理では、設定値決定部187が機器設定値を取得し、図11の処理では、設定値決定部187が覚醒度推定値を取得するのに対し、図12の処理では、設定値決定部187は、機器設定値を取得および覚醒度推定値の両方を取得する。具体的には、設定値決定部187は、図12のステップS720およびS721で機器設定値を取得し、ステップS730およびS731で覚醒度設定値を取得する。
 図12のステップS710で、物理量予測モデル171および覚醒度予測モデル172のうち何れか一方でも判定がYesとなった場合には、処理がYesへ分岐するようにしてもよい。ステップS750についても、何れか一方でも判定がYesとなった場合には、処理がYesへ分岐するようにしてもよい。ステップS700についても、何れか一方でも判定がYesとなった場合には、処理がYesへ分岐するようにしてもよい。このように、物理量予測モデル171の処理と覚醒度予測モデル172の処理との同期を取り、両方のモデルを総合的に勘案して条件分岐するようにしてもよい。
 あるいは、物理量予測モデル171と覚醒度予測モデル172とで分岐先が異なる場合、別々に図12の処理を行うようにしてもよい。
 それ以外の点については、図12の処理は、図9の場合および図11の場合と同様である。
 上述したように、設定値決定部187は、機器設定値を算出した場合に、設定値算出部184に対して設定値算出計算の実行不許可情報を送信する。図12では、設定値決定部187は、ステップS760で、設定値算出部184に対して設定値算出計算の実行不許可情報を送信する。
 以上のように、物理量予測モデル171は、対象者の覚醒度に影響する物理量の設定値に基づいて、その物理量の予測値を算出する。覚醒度予測モデル172は、物理量予測モデル171が算出する物理量の予測値に基づいて、覚醒度の予測値を算出する。設定値算出部184は、物理量予測モデル171、および、覚醒度予測モデル172を用いて、物理量に関する制約条件の下で、対象者の覚醒度を制御するための設定値(機器設定値)を算出する。監視制御部181は、算出された設定値を環境制御機器200に設定する。
 このように、物理量予測モデル171が物理量の予測値を算出し、覚醒度予測モデル172が、その物理量の予測値を用いて覚醒度を予測することで、覚醒度の予測に物理量の変化の見込みを組み込むことができる。覚醒度制御装置100によれば、この点で、覚醒度制御の際に、周囲環境への働きかけが覚醒度に及ぼす影響をより正確に把握することができる。
 また、覚醒度制御装置100によれば、上述したように機器設定値の算出に関わる全ての定数および係数について、特段の調整を不要とすることができる。
 また、設定値算出部184は、覚醒度がより高くなるように設定値を算出する。
 覚醒度制御装置100によれば、対象者の覚醒度の向上を図ることができ、例えば、対象者が作業を行っている場合に作業効率の向上を図ることができる。
 また、物理量予測モデル171は、物理量の測定値と制御対象機器の設定値とに基づいて、所定時間が経過したときの物理量の予測値を算出することができる数理モデルである。
 物理量予測モデル171が数理モデルとして構成されていることで、物理量予測モデル171を構成する数式等に意味付けを行うことができる。この意味を解釈することで、物理量予測モデル171の妥当性を検証することができる。
 覚醒度予測モデル172は、物理量の時間平均値と変化量とに基づいて、所定時間が経過したときの対象者の覚醒度の変化量の予測値を算出することができる数理モデルである。
 覚醒度予測モデル172が数理モデルとして構成されていることで、覚醒度予測モデル172を構成する数式等に意味付けを行うことができる。この意味を解釈することで、覚醒度予測モデル172の妥当性を検証することができる。
 また、設定値算出部184は、数理モデルである覚醒度最適化モデルにて、目的関数の値がより大きくなるように設定値を算出する。具体的には、設定値算出部184は、この覚醒度最適化モデルが示す最適化問題を解く。この覚醒度最適化モデルは、制約条件に、物理量予測モデルである第1制約条件、覚醒度予測モデルである第2制約条件、および、環境制御機器の設定値が所定の範囲である第3制約条件を含む。また、この覚醒度最適化モデルの目的関数は、1人以上の対象者、および、時間ステップの1区間以上における、覚醒度の変化量の予測値の総和値または平均値を算出する関数である。
 設定値算出部184が数理モデルである覚醒度最適化モデルを用いることで、覚醒度最適化モデルを構成する数式等に意味付けを行うことができる。この意味を解釈することで、覚醒度最適化モデルの妥当性を検証することができる。覚醒度最適化モデルの妥当性の検証によって、設定値算出部184が行う処理の妥当性を検証することができる。
 また、設定値算出部184は、1人以上の対象者、および、時間ステップの1区間以上における、覚醒度の変化量の予測値の刈込み平均値がより大きくなるように設定値を算出する。
 設定値算出部184が刈り込み平均を用いることで、例えば対象者の中に、物理量の変化に対して覚醒度の変化が極端に小さい人、あるいは逆に極端に大きい人がいる場合にそれら極端な対象者を過大に評価しないようになるため、全体の最適化を図ることができる。
 また、設定値算出部184は、設定値について算出される快適性のスコアに関する制約条件を満たす設定値を算出する。
 これにより、設定値算出部184は、覚醒度だけでなく快適性も配慮された設定値を算出することができる。覚醒度制御装置100は、この点で、覚醒度と快適性とのバランスをとることができる。
 また、設定値算出部184は、複数種類の設定値の各々について算出される快適性のペナルティスコアの総和が所定の範囲内になるように、複数種類の設定値をそれぞれ算出する。
 これにより、複数種類の環境制御機器200がある場合に、設定値算出部184は、これら複数種類の環境制御機器200全体で快適性の確保を図ることができる。覚醒度制御装置100によれば、この点で、快適性の確保を図ることができ、かつ、1種類の環境制御機器200のみの制御で快適性の確保を図る場合よりも設定値の設定の自由度が大きい。
 また、覚醒度予測モデル172は、物理量の予測値に加えて、物理量の変化量に基づいて、覚醒度の予測値を算出する。
 覚醒度は物理量の変化の大きさに敏感に反応すると考えられる。覚醒度予測モデル172が物理量の大きさに基づいて覚醒度の予測を行うことで、覚醒度を高精度に予測できると期待される。
 また、覚醒度予測モデル172は、少なくとも覚醒度の時間的なばらつきに基づいて、覚醒度の予測値を算出する。
 覚醒度の時間的なばらつき(ばらつき度合い)が大きい場合、対象者がうとうとしていることが考えられ、対象者の覚醒度は比較的低いと考えられる。覚醒度予測モデル172が覚醒度の時間的なばらつきに基づいて覚醒度の予測を行うことで、覚醒度の現状をより正確に把握できると期待され、覚醒度の予測精度が向上すると期待される。
 また、物理量予測モデル学習部188は、物理量の測定値と物理量の設定値とに基づく機械学習等を行って、物理量予測モデル171の設定パラメータ値を取得する。
 これにより、物理量予測モデル学習部188は、物理量予測モデル171の設定パラメータ値を自動的に取得することができ、覚醒度制御装置100の管理者などの人手で設定パラメータ値を求める必要がない。覚醒度制御装置100によれば、この点で、物理量予測モデル171の設定を行う手間を軽減することができる。
 また、物理量予測モデル学習部188は、物理量予測モデル171の設定パラメータ値が未設定の場合、物理量予測モデル171による予測精度が所定の条件よりも低下した場合、および、物理量予測モデル171の設定パラメータ値の設定から所定時間以上経過した場合のうち少なくとも何れか1つの場合に、機械学習等を行う。
 これにより、物理量予測モデル学習部188は、必要に応じて機械学習等を行うことができる。よって、例えば機械学習等を定常的に繰り返す場合と比較して物理量予測モデル学習部188の処理負荷が軽くて済む。
 また、覚醒度予測モデル学習部189は、物理量の測定値、および、覚醒度に基づく機械学習を行って、覚醒度予測モデルの設定パラメータ値を取得する。
 これにより、覚醒度予測モデル学習部189は、覚醒度予測モデル172の設定パラメータ値を自動的に取得することができる。よって、覚醒度制御装置100の管理者などの人手で設定パラメータ値を求める必要がない。覚醒度制御装置100によれば、この点で、覚醒度予測モデル172の設定を行う手間を軽減することができる。
 また、覚醒度予測モデル学習部189は、覚醒度予測モデル172の設定パラメータ値が未設定の場合、覚醒度予測モデル172による予測精度が所定の条件よりも低下した場合、および、覚醒度予測モデル172の設定パラメータ値の設定から所定時間以上経過した場合のうち少なくとも何れか1つの場合に、機械学習を行う。
 これにより、覚醒度予測モデル学習部189は、必要に応じて機械学習等を行うことができる。よって、例えば機械学習等を定常的に繰り返す場合と比較して覚醒度予測モデル学習部189の処理負荷が軽くて済む。
 また、設定値決定部187は、設定値を、その設定値の所定の範囲内で決定する。監視制御部181は、物理量予測モデル171の設定パラメータ値が未設定の場合、物理量予測モデル171による予測精度が所定の条件よりも低下した場合、物理量予測モデル171の設定パラメータ値の設定から所定時間以上経過した場合、覚醒度予測モデル172の設定パラメータ値が未設定の場合、覚醒度予測モデル172による予測精度が所定の条件よりも低下した場合、および、覚醒度予測モデル172の設定パラメータ値の設定から所定時間以上経過した場合のうち少なくとも何れか1つの場合に、設定値算出部184が算出した設定値に代えて、設定値決定部187が決定した設定値を環境制御機器200に設定する。
 設定値決定部187が、設定値を決定することで、設定値算出部184による覚醒度制御における最適解以外の設定値を環境制御機器200に設定することができ、より幅広い学習データを得られる。物理量予測モデル学習部188および覚醒度予測モデル学習部189のうち少なくとも何れか一方が、設定値決定部187が決定した設定値に基づいて得られた学習データを用いて機械学習等を行うことで、より高精度に機械学習を行うことができ、この点で、モデルの精度を高めることができる。
 次に、図13を参照して本発明の実施形態の構成について説明する。
 図13は、実施形態に係る覚醒度制御装置10の構成の例を示す図である。図13に示す覚醒度制御装置10は、物理量予測モデル(物理量予測モデルを記憶した記憶部)11と、覚醒度予測モデル(覚醒度予測モデルを記憶した記憶部)12と、設定値算出部13と、設定部14とを備える。
 かかる構成で、物理量予測モデル11は、対象者の覚醒度に影響する物理量の設定値に基づいて、その物理量の予測値を算出する。覚醒度予測モデル12は、前記予測値に基づいて、前記覚醒度の予測値を算出する。設定値算出部13は、前記物理量予測モデル、および、前記覚醒度予測モデルを用いて、前記物理量に関する制約条件の下で、前記対象者の覚醒度を制御するための前記設定値を算出する。設定部14は、算出された前記設定値を、前記物理量に影響を及ぼす制御対象機器に設定する。
 このように、物理量予測モデル11が物理量の予測値を算出し、覚醒度予測モデル12が、その物理量の予測値を用いて覚醒度を予測することで、覚醒度の予測に物理量の変化の見込みを組み込むことができる。覚醒度制御装置10によれば、この点で、覚醒度制御の際に、周囲環境への働きかけが覚醒度に及ぼす影響をより正確に把握することができる。
 覚醒度制御装置100の構成は、コンピュータを用いた構成に限定されない。例えば、覚醒度制御装置100が、ASIC(Application Specific Integrated Circuit)を用いて構成されるなど、専用のハードウェアを用いて構成されていてもよい。
 本発明の実施形態は、任意の処理を、CPU(Central Processing Unit)にコンピュータプログラムを実行させることにより実現することも可能である。
 この場合、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、DVD(Digital Versatile Disc)、BD(Blu-ray(登録商標) Disc)、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。
 この出願は、2019年2月4日に出願された日本国特願2019-018212を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は、覚醒度制御装置、覚醒度制御方法および記録媒体に適用してもよい。
 1 覚醒度制御システム
 10、100 覚醒度制御装置
 11、171 物理量予測モデル
 12、172 覚醒度予測モデル
 13、184 設定値算出部(設定値算出手段)
 14 設定部(設定手段)
 110 通信部(通信手段)
 170 記憶部(記憶手段)
 180 制御部(制御手段)
 181 監視制御部(監視制御手段)
 182 第1取得部(第1取得手段)
 183 第2取得部(第2取得手段)
 185 物理量予測モデル演算部(物理量予測モデル演算手段)
 186 覚醒度予測モデル演算部(覚醒度予測モデル演算手段)
 187 設定値決定部(設定値決定手段)
 188 物理量予測モデル学習部(物理量予測モデル学習手段)
 189 覚醒度予測モデル学習部(覚醒度予測モデル学習手段)
 200 環境制御機器
 300 環境測定機器
 400 覚醒度推定機器

Claims (6)

  1.  対象者の覚醒度に影響する周辺環境の物理量及び前記物理量に影響を及ぼす制御機器の設定値を説明変数として含み、前記物理量の予測値を被説明変数とする陽関数である物理量予測モデルと、前記物理量及びその時間変化量を説明変数として含み、前記覚醒度の時間変化量の予測値を被説明変数とする陽関数である覚醒度予測モデルと、前記設定値が所定の範囲に含まれているという設定値範囲条件とを含む制約条件、並びに、前記対象者を含む1人以上の対象者、及び、2区間以上の時間ステップ数についての前記覚醒度の変化量の予測値が所定の条件を満たす前記1人以上の対象者の予測値の総和値または平均値を表す目的関数を含む覚醒度最適化モデルを用いて、前記制約条件の下で、前記目的関数の値が最大となるように前記設定値を算出する設定値算出手段と、
     算出された前記設定値を、前記制御機器に設定する設定手段と、
     を備える覚醒度制御装置。
  2.  前記制約条件は、前記設定値を含む複数の設定値について算出される快適性のペナルティスコアの総和が所定の範囲に含まれているという快適性条件を含む、
     請求項1に記載の覚醒度制御装置。
  3.  前記覚醒度予測モデルは、説明変数として、前記覚醒度の時間変化量を含む、
     請求項1または請求項2に記載の覚醒度制御装置。
  4.  前記覚醒度予測モデルは、説明変数として、前記覚醒度の時間的なばらつき含む、
     請求項1から3の何れか一項に記載の覚醒度制御装置。
  5.  コンピュータによって、対象者の覚醒度に影響する周辺環境の物理量及び前記物理量に影響を及ぼす制御機器の設定値を説明変数として含み、前記物理量の予測値を被説明変数とする陽関数である物理量予測モデルと、前記物理量及びその時間変化量を説明変数として含み、前記覚醒度の時間変化量の予測値を被説明変数とする陽関数である覚醒度予測モデルと、前記設定値が所定の範囲に含まれているという設定値範囲条件とを含む制約条件、並びに、前記対象者を含む1人以上の対象者、及び、2区間以上の時間ステップ数についての前記覚醒度の変化量の予測値が所定の条件を満たす前記1人以上の対象者の予測値の総和値または平均値を表す目的関数を含む覚醒度最適化モデルを用いて、前記制約条件の下で、前記目的関数の値が最大となるように前記設定値を算出し、
     算出された前記設定値を、前記制御機器に設定する
     ことを含む覚醒度制御方法。
  6.  コンピュータに、
     対象者の覚醒度に影響する周辺環境の物理量及び前記物理量に影響を及ぼす制御機器の設定値を説明変数として含み、前記物理量の予測値を被説明変数とする陽関数である物理量予測モデルと、前記物理量及びその時間変化量を説明変数として含み、前記覚醒度の時間変化量の予測値を被説明変数とする陽関数である覚醒度予測モデルと、前記設定値が所定の範囲に含まれているという設定値範囲条件とを含む制約条件、並びに、前記対象者を含む1人以上の対象者、及び、2区間以上の時間ステップ数についての前記覚醒度の変化量の予測値が所定の条件を満たす前記1人以上の対象者の予測値の総和値または平均値を表す目的関数を含む覚醒度最適化モデルを用いて、前記制約条件の下で、前記目的関数の値が最大となるように前記設定値を算出し、
     算出された前記設定値を、前記制御機器に設定する、
     ことを実行させるためのプログラムを記憶した記録媒体。
PCT/JP2020/003701 2019-02-04 2020-01-31 覚醒度制御装置、覚醒度制御方法および記録媒体 WO2020162362A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/427,234 US11826147B2 (en) 2019-02-04 2020-01-31 Arousal level control apparatus, arousal level control method, and recording medium
JP2020571168A JPWO2020162362A1 (ja) 2019-02-04 2020-01-31 覚醒度制御装置、覚醒度制御方法およびプログラム
US18/385,506 US20240057915A1 (en) 2019-02-04 2023-10-31 Arousal level control apparatus, arousal level control method, and recording medium
US18/385,502 US20240065601A1 (en) 2019-02-04 2023-10-31 Arousal level control apparatus, arousal level control method, and recording medium
US18/385,606 US20240057916A1 (en) 2019-02-04 2023-10-31 Arousal level control apparatus, arousal level control method, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019018212 2019-02-04
JP2019-018212 2019-02-04

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US17/427,234 A-371-Of-International US11826147B2 (en) 2019-02-04 2020-01-31 Arousal level control apparatus, arousal level control method, and recording medium
US18/385,606 Continuation US20240057916A1 (en) 2019-02-04 2023-10-31 Arousal level control apparatus, arousal level control method, and recording medium
US18/385,506 Continuation US20240057915A1 (en) 2019-02-04 2023-10-31 Arousal level control apparatus, arousal level control method, and recording medium
US18/385,502 Continuation US20240065601A1 (en) 2019-02-04 2023-10-31 Arousal level control apparatus, arousal level control method, and recording medium

Publications (1)

Publication Number Publication Date
WO2020162362A1 true WO2020162362A1 (ja) 2020-08-13

Family

ID=71948035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003701 WO2020162362A1 (ja) 2019-02-04 2020-01-31 覚醒度制御装置、覚醒度制御方法および記録媒体

Country Status (3)

Country Link
US (4) US11826147B2 (ja)
JP (1) JPWO2020162362A1 (ja)
WO (1) WO2020162362A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013027570A (ja) * 2011-07-28 2013-02-07 Panasonic Corp 心理状態評価装置、心理状態評価システム、心理状態評価方法およびプログラム
JP2018066555A (ja) * 2016-10-21 2018-04-26 財團法人工業技術研究院Industrial Technology Research Institute 睡眠環境制御システムおよび方法
JP2018524137A (ja) * 2015-06-15 2018-08-30 メディバイオ リミテッドMedibio Limited 心理状態を評価するための方法およびシステム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09140799A (ja) 1995-11-27 1997-06-03 Matsushita Electric Works Ltd 覚醒度維持方法
JP2006349288A (ja) 2005-06-17 2006-12-28 Nippon Telegr & Teleph Corp <Ntt> 空調管理システム、空調管理方法、空調管理装置並びにそのプログラムおよび記録媒体
JP2013012029A (ja) 2011-06-29 2013-01-17 Nissan Motor Co Ltd 覚醒誘導装置
JP6043933B2 (ja) 2012-03-29 2016-12-14 富士重工業株式会社 眠気レベルの推定装置、眠気レベルの推定方法および眠気レベルの推定処理プログラム
CN113509158B (zh) * 2015-07-22 2024-09-20 松下电器(美国)知识产权公司 清醒度预测方法、清醒度预测装置以及控制对象设备
JP6668999B2 (ja) 2016-08-08 2020-03-18 株式会社デンソー 運転支援装置
JP2018088966A (ja) 2016-11-30 2018-06-14 アイシン精機株式会社 気分推定システム
CN110268451A (zh) * 2017-02-10 2019-09-20 皇家飞利浦有限公司 驾驶员和乘客的健康和睡眠互动
JP6535694B2 (ja) 2017-02-22 2019-06-26 株式会社ジンズ 情報処理方法、情報処理装置及びプログラム
CN110809430B (zh) * 2017-07-19 2023-07-04 松下知识产权经营株式会社 睡意推测装置以及觉醒诱导装置
JP6387173B1 (ja) 2017-10-30 2018-09-05 ダイキン工業株式会社 眠気推定装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013027570A (ja) * 2011-07-28 2013-02-07 Panasonic Corp 心理状態評価装置、心理状態評価システム、心理状態評価方法およびプログラム
JP2018524137A (ja) * 2015-06-15 2018-08-30 メディバイオ リミテッドMedibio Limited 心理状態を評価するための方法およびシステム
JP2018066555A (ja) * 2016-10-21 2018-04-26 財團法人工業技術研究院Industrial Technology Research Institute 睡眠環境制御システムおよび方法

Also Published As

Publication number Publication date
US20240057916A1 (en) 2024-02-22
US20220095976A1 (en) 2022-03-31
US20240065601A1 (en) 2024-02-29
JPWO2020162362A1 (ja) 2021-10-21
US20240057915A1 (en) 2024-02-22
US11826147B2 (en) 2023-11-28

Similar Documents

Publication Publication Date Title
JP5258665B2 (ja) 設備運用システム
EP3683513B1 (en) Drowsiness estimation device
EP3680567B1 (en) Concentration estimation device
WO2020162358A1 (ja) 覚醒度制御装置、覚醒度制御方法および記録媒体
JP6333364B2 (ja) 空調換気システム
US8172155B2 (en) Thermal sensation determining apparatus and method, and air-conditioning control apparatus using thermal sensation determination result
US20170123442A1 (en) System and Method of Smart and Energy-Saving Environmental Control
JP5964141B2 (ja) 空調制御システムおよび空調制御方法
JP6837199B2 (ja) 覚醒誘導装置及び覚醒誘導システム
US20200256581A1 (en) Air conditioning control device
JP2017062060A (ja) 環境状態制御システム
JP2016223694A (ja) 空調制御装置、空調制御方法、および空調制御プログラム
JP6618450B2 (ja) 車内空調方法及びシステム
WO2020162362A1 (ja) 覚醒度制御装置、覚醒度制御方法および記録媒体
JP6797284B2 (ja) 空気調和装置、空気調和システム、および、制御方法
JP2019190768A (ja) 環境制御システム
CN115289633A (zh) 空调控制方法及装置、空调器、存储介质
JP6543235B2 (ja) 周期的変動風を利用する車内空調方法及びシステム
JP7207525B2 (ja) 生理状態制御装置、制御対象機器の作動方法、生理状態特性表示方法およびプログラム
KR101925970B1 (ko) 신체 열용량을 이용한 스마트 선풍기 및 이를 이용한 스마트 선풍기 제어 방법
JP7539048B2 (ja) 制御方法、空気調和機およびプログラム
WO2024004465A1 (ja) 環境制御システム、環境調整システム、環境制御方法、及びプログラム
JP2023166275A (ja) 空調システム
JP2023054614A (ja) 環境制御システム
JP2024057774A (ja) 空調制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20752013

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571168

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20752013

Country of ref document: EP

Kind code of ref document: A1