JP6543235B2 - 周期的変動風を利用する車内空調方法及びシステム - Google Patents

周期的変動風を利用する車内空調方法及びシステム Download PDF

Info

Publication number
JP6543235B2
JP6543235B2 JP2016217998A JP2016217998A JP6543235B2 JP 6543235 B2 JP6543235 B2 JP 6543235B2 JP 2016217998 A JP2016217998 A JP 2016217998A JP 2016217998 A JP2016217998 A JP 2016217998A JP 6543235 B2 JP6543235 B2 JP 6543235B2
Authority
JP
Japan
Prior art keywords
wind
air conditioning
fluctuating
wind speed
correction amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016217998A
Other languages
English (en)
Other versions
JP2018075913A (ja
Inventor
広晴 遠藤
広晴 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2016217998A priority Critical patent/JP6543235B2/ja
Publication of JP2018075913A publication Critical patent/JP2018075913A/ja
Application granted granted Critical
Publication of JP6543235B2 publication Critical patent/JP6543235B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

本開示は、周期的変動風を利用する車内空調方法及びシステムに関するものである。
従来、複数人が滞在する空間では、冷房の補助として、扇風機や送風機による送風が利用されている。また、より多くの人に風が当たるように、扇風機や送風機の首振りや回転が行われるので、各人が受ける風は、首振りや回転の周期に対応する変動風、すなわち、周期的変動風となる(例えば、特許文献1参照。)。
特開平9−273800号公報
しかしながら、前記従来の技術では、室内全体の空気流を変動させて人の涼感を高めるだけであって、周期的変動風を体感した際の人の生理状態を十分に考慮していない。
ここでは、前記従来の技術の問題点を解決して、人体熱モデルに周期的変動風の風速を入力して人の生理状態を予測することによって、周期的変動風全体の総合的な温冷感を適切に反映することができる周期的変動風を利用する車内空調方法及びシステムを提供することを目的とする。
そのために、周期的変動風を利用する車内空調方法においては、周期的変動風の風速を人体熱モデルに入力して体感温度を算出する工程と、前記体感温度から平均温冷感予測を算出する工程と、前記平均温冷感予測から不満足率予測を算出する工程と、前記不満足率予測から空調強度又は周期的変動風発生器の強度の補正量を決定する工程と、を含む。
他の周期的変動風を利用する車内空調方法においては、さらに、前記人体熱モデルに入力される周期的変動風の風速は、周期的変動風体感時と予測平均皮膚温が同等となる定常風の風速に換算された定常風等価換算風速である。
更に他の周期的変動風を利用する車内空調方法においては、さらに、前記定常風等価換算風速は、周期的変動風体感時の予測平均皮膚温と定常風体感時の予測平均皮膚温との誤差が極小となる定常風の風速である。
更に他の周期的変動風を利用する車内空調方法においては、さらに、前記周期的変動風発生器の強度が所定の閾値より小さい場合、前記人体熱モデルに入力される周期的変動風の風速は、実測された風速である。
更に他の周期的変動風を利用する車内空調方法においては、さらに、前記不満足率予測から空調強度又は周期的変動風発生器の強度の補正量を決定する工程では、できる限り空調強度を低く抑えるように補正量を決定する。
更に他の周期的変動風を利用する車内空調方法においては、さらに、前記周期的変動風発生器は、往復しながら送風を行う横流ファンである。
更に他の周期的変動風を利用する車内空調方法においては、さらに、外気温及び乗客が発生する熱量から、温冷感変動を抑制する空調強度の他の補正量を計算する工程と、前記空調強度の他の補正量と、前記不満足率予測から決定された空調強度又は周期的変動風発生器の強度の補正量とを加算する工程とを更に含む。
周期的変動風を利用する車内空調システムにおいては、車両の客室内の空調を行う空調装置と、前記客室内に周期的変動風を発生させる周期的変動風発生器と、前記空調装置及び周期的変動風発生器の制御を行う制御器とを有する周期的変動風を利用する車内空調システムであって、周期的変動風の風速が入力される人体熱モデルを使用して体感温度を算出する人体熱モデル部と、前記体感温度から平均温冷感予測を算出する平均温冷感予測部と、前記平均温冷感予測から不満足率予測を算出する熱的不満足率予測部と、前記不満足率予測から空調強度又は周期的変動風発生器の強度の補正量を決定する補正量決定部と、を備える。
他の周期的変動風を利用する車内空調システムにおいては、さらに、周期的変動風の風速を、周期的変動風体感時と予測平均皮膚温が同等となる定常風の風速である定常風等価換算風速に換算して前記人体熱モデルに入力する定常風換算部を更に備える。
本開示によれば、人体熱モデルに周期的変動風の風速を入力して人の生理状態を予測する。これにより、周期的変動風全体の総合的な温冷感を適切に反映することができる。
本実施の形態における車内空調システムが搭載された車両を示す模式断面図である。 本実施の形態における車内空調システムの要部の機能構成を示すブロック図である。 本実施の形態における車内空調システムの第1補正量を得るための動作を説明する図である。 本実施の形態における定常風換算部の動作を説明する図である。 本実施の形態における定常風等価換算風速の計算例を示す図である。 本実施の形態における周期的変動風の風速の実測例を示す図である。 本実施の形態におけるモデルパラメータの例を示す図である。 本実施の形態における熱的不満足率を説明する図である。 本実施の形態における補正対象決定部の動作を説明する図である。 本実施の形態におけるファジールールの例を説明する図である。
以下、本実施の形態について図面を参照しながら詳細に説明する。
図1は本実施の形態における車内空調システムが搭載された車両を示す模式断面図である。なお、図において、(a)は側断面図、(b)は横断面図である。
図において、11は、本実施の形態における車内空調システムが搭載された車両であって、例えば、通勤列車等の列車、乗り合いバス、モノレール等の車両であって、いかなる種類の車両であってもよいが、ここでは、説明の都合上、通勤列車である場合についてのみ説明する。また、21は、本実施の形態における車内空調システムの空調装置であって、例えば、冷媒圧縮機、蒸発器、凝縮器、ファン等を備え、冷房、暖房、除湿、通風等の空調を行う装置であるが、ここでは、説明の都合上、冷房を行う場合についてのみ説明する。さらに、前記空調装置21は、必ずしも車両11の頂部に搭載される必要はなく、床下等のいかなる箇所に搭載されていてもよいが、ここでは、説明の都合上、車両11の頂部に搭載されている場合についてのみ説明する。
なお、本実施の形態において、車両11、空調装置21及びその他の装置の各部の構成及び動作を説明するために使用される上、下、左、右、前、後等の方向を示す表現は、絶対的なものでなく相対的なものであり、前記車両11、空調装置21及びその他の装置の各部が図に示される姿勢である場合に適切であるが、その姿勢が変化した場合には姿勢の変化に応じて変更して解釈されるべきものである。
前記車両11は、図示されない乗客が乗車する客室12と、該客室12の天井16の上方に位置する天井内空間13とを備える。そして、空調装置21は、矢印で示されるように、空調風としての冷却風27を天井内空間13内に送出する。すると、前記冷却風27は、天井16に形成された複数の吹出開口17を通って、客室12内に流入する。なお、該客室12内の空気は、天井16に形成されたリターン開口18を通って天井内空間13内に流入し、空調装置21に吸引される。
また、23は、本実施の形態における車内空調システムの横流ファンであり、天井16に複数個配設され、矢印28で示される角度範囲内で往復しながら、送風を行う。前記横流ファン23は、別名、クロスファン、ラインフローファン、タンジェンシャルファン、又は、貫流ファンとも呼ばれ、客室12内の空気を攪拌するための送風機であって、客室12内に周期的変動風を発生させる周期的変動風発生器として機能する。なお、該周期的変動風発生器は、客室12内に周期的変動風を発生させる機器であればいかなるタイプの機器であってもよく、例えば、首振り可能乃至回転可能な扇風機であってもよく、必ずしも天井16に配設される必要はなく、横流ファン23である必要もなく、複数でなく単数であってもよいが、ここでは、説明の都合上、天井16に複数個配設された横流ファン23である場合についてのみ説明する。
さらに、22は、本実施の形態における車内空調システムの制御器であり、例えば、CPU等の演算装置、半導体メモリ、ハードディスク等の記憶装置、有線又は無線の通信装置等を備える一種のコンピュータであって、前記記憶装置にインストールされたアプリケーションソフトウェア等のプログラムに従って動作し、前記空調装置21及び横流ファン23の制御を行う。なお、図に示される例において、制御器22は、空調装置21に一体的に取り付けられているが、必ずしも、空調装置21に一体的に取り付けられる必要はなく、空調装置21から離れた箇所に配設されていてもよい。
図に示される例において、前記客室12内には、床15の近傍の温度、湿度、風速、放射等を計測する床部センサ25aや、壁14の近傍の温度、湿度、風速、放射等を計測する壁部センサ25bが配設され、天井内空間13内には、リターン開口18の近傍の温度、湿度、風速、放射等を計測する天井部センサ25cが配設されている。なお、前記床部センサ25a、壁部センサ25b及び天井部センサ25cを統合的に説明する場合には、センサ25として説明する。本実施の形態における車内空調システムでは、前記センサ25の数、位置等は、図に示される例に限定されるものでなく、いくつであってもよいし、いかなる位置に配設されていてもよい。
次に、前記構成の車内空調システムの構成について説明する。
図2は本実施の形態における車内空調システムの要部の機能構成を示すブロック図である。
図において、31は、前記制御器22が備える情報取得部であり、センサ25及び設定情報発信部26から、客室12内外の温度、湿度等の情報を含む環境情報や、乗客の人数、性別、服装等の情報を含む乗客情報を取得する。なお、前記設定情報発信部26は、乗客情報に加え、事前の設定値やその他の情報を前記情報取得部31に送信する。32は、前記制御器22が備える温熱環境取得部であり、後述される定常風換算部32a及び登録風速データベース32bを含み、前記情報取得部31が取得した情報の中から、客室12内の温熱環境である車内温熱環境、乗客の平均代謝量、乗客の平均着衣量、乗客の男女比、風速等の情報を取得する。また、33は、前記制御器22が備える平均温冷感計算部であり、後述される人体熱モデル部33a及び平均温冷感予測部33bを含み、前記温熱環境取得部32が取得した情報に基づき、平均温冷感予測(DyPMV)を算出する。さらに、34は、前記制御器22が備える第1補正量計算部であり、後述される熱的不満足率予測部34a及び第1補正量決定部34bを含み、前記平均温冷感計算部33から、平均温冷感予測値を取得すると、乗客の熱的不満足率を推定し、第1補正量を算出する。なお、前記温熱環境取得部32、平均温冷感計算部33及び第1補正量計算部34が行う動作は、現在の乗客の平均温冷感を最適値に近付けるための補正である。
35は、前記制御器22が備える外気温及び乗車人数取得部であり、前記情報取得部31が取得した情報の中から、客室12外の温熱環境である外気温、乗客の人数等の情報を取得する。また、36は、前記制御器22が備える第2補正量計算部であり、前記外気温及び乗車人数取得部35が取得した情報に基づき、第2補正量を算出する。なお、前記外気温及び乗車人数取得部35並びに第2補正量計算部36が行う動作は、外気温及び乗客が発生する熱量から温冷感変動を抑制するための補正であって、今後の温冷感の変動を抑制するための補正である。
そして、37は、前記制御器22が備える補正量取得部であり、前記第1補正量計算部34が算出した第1補正量と、前記第2補正量計算部36が算出した第2補正量とを加算した値を、空調装置21の制御量を補正するための補正量として取得する。
次に、前記構成の車内空調システムの動作について説明する。ここでは、前述のように、空調として冷房を行う場合についてのみ説明する。
図3は本実施の形態における車内空調システムの第1補正量を得るための動作を説明する図、図4は本実施の形態における定常風換算部の動作を説明する図、図5は本実施の形態における定常風等価換算風速の計算例を示す図、図6は本実施の形態における周期的変動風の風速の実測例を示す図、図7は本実施の形態におけるモデルパラメータの例を示す図、図8は本実施の形態における熱的不満足率を説明する図、図9は本実施の形態における補正対象決定部の動作を説明する図、図10は本実施の形態におけるファジールールの例を説明する図である。なお、図8において、(a)は季節調整パラメータの変化を示す図、(b)は不満足率の変化を示す図である。
本実施の形態における制御器22は、制御変数を乗客の平均温冷感とし、該平均温冷感が乗客の熱的不満足率が最小となる最適平均温冷感になるように、冷房強度及び/又は横流ファン23の強度である横流ファン強度を補正する。なお、最適平均温冷感は、車内の乗客の男女比や季節によって異なる。そこで、前記温熱環境取得部32、平均温冷感計算部33及び第1補正量計算部34が行う現在の乗客の平均温冷感を最適値に近付けるための補正では、乗客の性差や季節差を考慮した上で、現在の平均温冷感を最適平均温冷感に近付けるための冷房強度及び/又は横流ファン強度の補正量を計算する。また、外気温が車内温度より高い場合、熱が客室12内に貫流する。さらに、乗客も熱を発生する。そこで、前記外気温及び乗車人数取得部35並びに第2補正量計算部36が行う今後の温冷感の変動を抑制するための補正では、これらの熱負荷による温冷感変動を抑制するための冷房強度補正量を計算する。
既存の温熱指標として、ISO7730で採用されている予測平均温冷感(PMV:Predicted Mean Vote)、及び、予測不満足率(PPD:Predicted Percentage of Dissatisfied)がある。PMVは、周囲温熱環境による人体の熱負荷量を熱平衡式によって計算され、かかる熱負荷量と被験者実験での温冷感申告値とを結び付けた回帰式により、計算される。PPDは、あるPMVに対して何割の人が不満足と感じるかを予測するもので、PMVと被験者実験での不満足者の割合とを結び付けた回帰式によって、計算される。ただし、PMV及びPPDの適用範囲は定常環境であり、PMVとPPDとの関係には温熱快適性の季節差は考慮されていない。
図3には、本実施の形態における現在の乗客の平均温冷感を最適値に近付けるための補正に用いられる快適性指標の計算モデルが、制御器22の平均温冷感計算部33及び第1補正量計算部34の機能構成とともに示されている。前記計算モデルでは、前述のPMV及びPPDの計算方法を踏襲して、体感温度(DySET* )から平均温冷感予測(DyPMV)を算出する計算と、平均温冷感予測(DyPMV)から不満足率予測(DyPPD)を算出する計算との2段階の計算を行う。本実施の形態においては、体感温度(DySET* )から平均温冷感予測(DyPMV)を算出する計算に人体熱モデルを使用することによって、適用範囲を非定常温熱環境に拡張し(例えば、特許文献2参照。)、さらに、平均温冷感予測(DyPMV)から不満足率予測(DyPPD)を算出する計算に、各季節で実施した被験者実験データを反映させることによって、温熱快適性の季節特性を反映させる。ちなみに、特許文献2では、夏季にのみ実施された被験者実験データが用いられている。
特開2014−228172号公報
現在の乗客の平均温冷感を最適値に近付けるための補正では、図3に示されるように、平均温冷感計算部33は、人体熱モデル(例えば、非特許文献1参照。)を使用して、体感温度(DySET* )を算出する人体熱モデル部33aと、平均温冷感予測式に従って平均温冷感予測(DyPMV)を算出する平均温冷感予測部33bとを備える。
田辺他、「温熱環境評価のための65分割体温調整モデルに関する研究」、日本建築学会計画系論文集、No.541、pp.9−16、2001
前記人体熱モデル部33aは、非定常温熱環境下での体温調節系を有する人体熱モデルを使用して、環境−人体間及び人体内の熱移動計算を行う。なお、前記人体熱モデルには、温度(Ta(t))、湿度(RH(t))、風速、放射(Tr(t))、平均着衣量(Iclo)、及び、平均代謝量(M(t))が入力される。該平均代謝量(M(t))は、重量及び乗車人数に基づいて算出される。
SET* は、「温熱生理状態(皮膚温、発汗)及び放熱量が実在環境におけるものと同等になるような相対湿度50〔%〕の標準環境の気温」(単位は〔℃〕)として定義される温熱指標である。本実施の形態における体感温度(DySET* )は、温熱環境の非定常性を考慮したもので、非特許文献1でも紹介されている公知の指標である。
平均着衣量(Iclo)は、例えば、次の式(1)によって算出することができる(例えば、非特許文献2参照。)。
Figure 0006543235
ここで、平均年齢は、線区又は時間帯による利用者の平均年齢の情報を利用することができる場合には該情報に基づいて決定される。未知の場合には、例えば、男性は40歳、女性は30歳と仮定する。また、日平均気温には、過去数年の同日の気温の平均値や当日の気象予報による気温などを用いる。
大井元、石井昭夫、斎藤基之、城野修、「屋外における着衣に関するアンケート調査 その3:着衣量推定式の構築」、日本建築学会大会学術講演梗概集、pp.425−426、2000
また、平均代謝量(M(t))は、例えば、次の式(2)によって算出することができる。
Figure 0006543235
ここで、乗車人数が座席数以下の場合には、全員が座っていると仮定して、座位安静時に相当する代謝量である1.0〔met〕とする。また、乗車人数が座席数より多い場合には、立位乗客(代謝量は1.3〔met〕と仮定)を想定し、各々の人数で重付けした乗客の代謝量の平均値を算出する。
ところで、温冷感は、風速変動に対応して時々刻々と変動するので、周期的変動風全体の総合的な温冷感(1周期以上体感した場合の総合的な温冷感)を一意に決定することはできない。しかし、周期的変動風の人体への影響については、ある時刻の一瞬の温冷感というよりも、周期的変動風全体の総合的な温冷感を評価乃至予測することが有用な場合が多いと考えられる。そこで、本実施の形態においては、周期的変動風全体の総合的な温冷感を評価乃至予測するようになっている。
そのために、温熱環境取得部32は、図3に示されるような定常風換算部32a及び登録風速データベース32bを含んでいる。該登録風速データベース32bには、あらかじめ、横流ファン23の送風の強度設定(横流ファン強度(N))毎に、周期的変動風の風速の時系列データが格納されて登録されている。例えば、事前の風速の測定結果等に基づいて、実測データ又はそれを周期関数等で近似した模擬波形データを登録風速データとして登録する。当該時系列データは時間長さNt〔s〕の時系列データである。各部位の重み値としては、その表面積、温冷感への寄与度等の適当な値を用いることができる。なお、定常風換算部32aは、図4に示されるように、等価換算風速計算部32cを含み、該等価換算風速計算部32cが定常風等価換算風速を算出して、平均温冷感計算部33に送信する。
定常風換算部32aは、次のステップS1〜S4に示されるような動作を行って、定常風等価換算風速を出力する。なお、横流ファン強度(N)が低い場合には、周期的変動風がほとんど感じられないことが想定され、定常風と近似することができるので、定常風等価換算風速の算出を実行する横流ファン強度(N)の閾値Nmin があらかじめ設定されている。すなわち、図3に示されるように、横流ファン強度(N)が所定の閾値Nmin より小さい場合、定常風換算部32aは定常風等価換算風速を算出せず、実測された風速がそのまま平均温冷感計算部33の人体熱モデル部33aに入力されて使用される。なお、横流ファン強度(N)には、1〜Nmax 段階の設定があるものとする。そして、横流ファン強度(N)が閾値Nmin 段階以上の場合に、定常風等価換算風速の算出が実行される。
ステップS1:定常風換算部32aは、横流ファン強度(N)に対応した登録風速データ(登録風速データベース32bに登録されている風速のデータ)を人体熱モデル部33aの人体熱モデルに入力する。前記登録風速データは、前述のように、実測データ又はそれを周期関数等で近似した模擬波形データであって、時間長さはNt〔s〕である。また、風速以外の温熱環境値、すなわち、風速以外の温熱要素のデータである温度(Ta(t))、湿度(RH(t))、放射(Tr(t))、平均着衣量(Iclo)、及び、平均代謝量(M(t))が、人体熱モデルに入力される。これらのデータは、計算開始時点の測定値(又は、現時点から過去Tp〔s〕間の平均値)が、Nt〔s〕間継続するものと仮定した時系列データである。すると、人体熱モデルは、予測平均皮膚温(Tsk_v)を出力する。
ステップS2:定常風換算部32aは、定常風風速初期値(Vc(0))を人体熱モデル部33aの人体熱モデルに入力する。前記定常風風速初期値(Vc(0))は、Vc(0)がNt〔s〕間継続するものと仮定した時系列データである。例えば、Vc(0)=0.05〔m/s〕である。また、前記ステップS1で説明したものと同様の風速以外の温熱要素のデータが、人体熱モデルに入力される。すると、該人体熱モデルは、予測平均皮膚温(Tsk_c(0))を出力する。そして、定常風換算部32aは、変動風体感時の予測平均皮膚温と定常風体感時の予測平均皮膚温との平均二乗誤差として、Tsk_c(0)とTsk_vとの平均二乗誤差(RMS(0))を、次の式(3)によって算出する。
Figure 0006543235
ステップS3:定常風換算部32aの等価換算風速計算部32cは、定常風風速をdV〔m/s〕(例えば、0.05〔m/s〕)刻みで上昇させていき、Tsk_c(n)とTsk_vとの平均二乗誤差(RMS(n))を、次の式(4)によって算出する。
Figure 0006543235
ここで、nは定常風風速初期値(Vc(0))からの定常風風速の上昇回数である。n回目の定常風風速(Vc(n))は、Vc(n)=Vc(0)+n×dVである。そして、等価換算風速計算部32cは、n回目の平均二乗誤差(RMS(n))とn−1回目の平均二乗誤差(RMS(n−1))との差(dRMS(n))が0以上となったら(平均二乗誤差が減少から増加に転じたら)、計算を終了し、平均二乗誤差が減少から増加に転じる直前の定常風風速(Vc(n−1))を定常風等価換算風速とする。つまり、周期的変動風体感時の予測平均皮膚温と定常風体感時の予測平均皮膚温との誤差が極小となる定常風の風速を定常風等価換算風速とする。これにより、周期的変動風体感時と予測平均皮膚温が同等となる定常風風速を決定することができる。
ステップS4:定常風換算部32aの等価換算風速計算部32cは、前記ステップS3で決定した定常風等価換算風速(Vc(n−1))を平均温冷感計算部33の人体熱モデル部33aに入力する。これにより、周期的変動風全体の総合的な温冷感の予測値を得ることができる。
図5には、定常風換算部32aの等価換算風速計算部32cによって算出された定常風等価換算風速の例が示されている。これは、気温30〔℃〕、湿度70〔%rh〕に制御された人工気候室内に60分間滞在した後に、図6に示されるような風速の実測波形を有する周期的変動風(周期20秒、風速ピーク値2.0〔m/s〕)を体感した場合の例である。図5には、平均皮膚温の実測値(被験者8名の平均値)、周期的変動風風速を人体熱モデルに入力した場合に出力される予測平均皮膚温(Tsk_v)の例、前記ステップS2で説明した定常風風速を人体熱モデルに入力した場合に出力される予測平均皮膚温(Tsk_c)の例、及び、最終的に得られた定常風等価換算風速1.15〔m/s〕の場合の予測平均皮膚温(Tsk_c)の例が示されている。周期的変動風に対する平均皮膚温の計算では、図6に示されるような風速の実測波形に基づき、最大値2.0〔m/s〕、最小値0.2〔m/s〕、周期20秒となるsin関数で近似した模擬波形データが、人体熱モデルの入力風速として使用された。
ここで、定常風等価換算風速とは、周期的変動風体感時と平均皮膚温が同等となる定常風風速として定義されたものであり、周期的変動風体感時の温冷感を、瞬時的なレベルではなく、複数周期体感した場合の総合的な温冷感を予測するための仮想風速である。周期的変動風の総合的な温冷感を予測するための風速換算方法として、変動風風速の時系列に対する統計値(平均値、標準偏差等)を採用する方法も考えられるが、それらは生理的根拠に乏しい。本実施の形態による方法は、人体熱モデルの生理状態予測に基づく風速換算方法である。
そして、平均温冷感予測部33bは、体感温度(DySET* )から、次の式(5)のような平均温冷感予測式に従って、平均温冷感予測(DyPMV)を算出する。
Figure 0006543235
ここで、p0 、p1 及びp2 は、被験者実験データによって導出されるモデルパラメータである。また、前記式(5)は、男女別に用意され、男女別の平均温冷感予測(DyPMV)が算出される。
算出された平均温冷感予測(DyPMV)の値は、多数の人が感じる温冷感の平均値であって、−4:寒い、−3:やや寒い、−2:涼しい、−1:やや涼しい、0:中立、1:やや暖かい、2:暖かい、3:やや暑い、4:暑い、に、それぞれ、相当する。
そして、第1補正量計算部34は、熱的不満足率予測式に従って不満足率(DyPPD)を算出する熱的不満足率予測部34aと、ファジールールに従って空調強度の補正量としての第1補正量を決定する第1補正量決定部34bとを備える。該第1補正量決定部34bは、平均温冷感最適補正を冷房強度の補正で行うか、横流ファン強度の補正で行うかを決定する補正対象決定部34cと、補正量決定関数を適用して第1補正量を決定する補正量決定関数適用部34dとを含んでいる。
前記熱的不満足率予測部34aは、乗客の性差及び季節差を考慮した上で、乗客の熱的不満足率を推定する。具体的には、前記熱的不満足率予測部34aは、平均温冷感計算部33が算出した平均温冷感予測(DyPMV)を使用し、次の式(6)〜(8)のような熱的不満足率予測式に従って、寒い不満足率(DyPPD_c又はDyPPD_cold)、暑い不満足率(DyPPD_h又はDyPPD_hot)、及び、合計の不満足率(DyPPD)を算出する。
Figure 0006543235
ここで、寒い不満足率(DyPPD_cold)は乗客全体のうちで寒くて不満足と感じる人の割合であり、暑い不満足率(DyPPD_hot)は乗客全体のうちで暑くて不満足と感じる人の割合である。また、ah 、ac 、bh 、bc は、被験者実験データによって導出されるモデルパラメータである。
さらに、bc-season及びbh-seasonは、季節差を考慮可能とするために、乗客の温熱的な生理及び心理状態の季節変化を総合的に表現する季節調整パラメータであって、日付を変数とする周期関数として、次の式(9)〜(12)で定義される。
Figure 0006543235
ここで、dayは、4月1日を第1日(day one)とした場合の日付であって、day=1〜365である。そして、Z0 は、4月1日から始まる1年の前期(前半)においては1となり、後期(後半)においては0となるパラメータであり、Z1 は、その逆の値となるパラメータである。
図7には、前記式(5)〜(12)における各種モデルパラメータの男女別の数値例が示されている。図7に示される例は、着衣及び姿勢を統一した優等車両実験のデータを使用し、全季節の実験結果に最もよく適合するものを選定して同定した結果である。なお、線形モデルは最小二乗法、ロジスティックモデルは最尤法によって同定した。
人の体温調節系は、春から夏にかけては、体表面からの熱放散を促すように血管拡張が進み、発汗量も増加する傾向にある。一方、秋から冬にかけては、体表面からの熱放散を抑制するように血管収縮が進み、発汗量も減少する傾向にある。このような体温調節系の季節変化が温熱快適性に影響すると考えられ(例えば、非特許文献3〜6参照。)、前記季節調整パラメータは、その影響の度合いを表現するために導入されている。また、1年の前期と後期とでは体温調節系の季節変化が温熱快適性に及ぼす影響が異なる可能性があるので、前期と後期とではsin関数の振幅は異なるものと仮定した(bc-seasonの前期及び後期におけるsin関数の振幅はCold0 及びCold1 に相当し、bh-seasonの前期及び後期におけるsin関数の振幅はHot0 及びHot1 に相当する。)。なお、季節調整パラメータにおけるsin関数表現は、日本の平均外気温の変動傾向にも概ね対応する。
中山昭雄編、「温熱生理学」、理工学社、1981 深井他、「標準新有効温度(SET* )と日本人の温熱感覚に関する実験的研究」、空気調和・衛生工学論文集、No.51、pp.139−147、1992 久保他、「温冷感と快適感の季節差に関する実験的研究」、人間と生活環境、1(1)、51−57、1994 安岡他、「住空間における生理心理反応からみた温熱的快適範囲の季節差に関する研究」、日本建築学会環境系論文集、第76巻、第663号、pp.479−484、2011
前記季節調整パラメータによる不満足率の季節変化は、例えば、図8のように表される。図8は、着衣及び姿勢を統一した優等車両実験のデータを使用し、全季節の実験結果に最もよく適合するものを選定して同定した結果であって、乗客が女性の場合を示している。なお、図において、(a)は季節調整パラメータの変化を示し、(b)は不満足率(DyPPD)の変化を示している。
図8に示される例は、1年の前期のうち、春から夏にかけては、寒い不快がより生じにくくなるが、暑い不快が生じやすくなることを示している。また、1年の後期のうち、秋から冬にかけては、寒い不快がより生じやすくなるが、秋から春にかけて、暑い不快は変化がない、すなわち、暑い不快に季節変化がないと近似することができることを示している。
なお、一部の鉄道車両では、空調制御において季節補正を行っているが、これは季節による乗客の着衣量の変化を推定して設定温度を補正するものであって、温熱快適性の季節特性を十分に考慮しているものではない(例えば、特許文献3参照。)。過去の実験研究において、同じ温熱環境(温度、湿度、風速、放射)、着衣量及び代謝量であっても、季節によって、人の感じる快適性が異なることが報告されている。したがって、年間を通して快適な車内空調の環境を実現するためには、本実施の形態において説明したような季節調整パラメータを使用し、温熱快適性の季節特性を考慮した車内空調を行う必要がある。
特開2001−199332号公報
そして、第1補正量決定部34bの補正対象決定部34cは、図9に示されるように、乗客男女比の情報に基づく男女比による重付け加算を行って、算出された寒い不満足率及び暑い不満足率に基づいて、平均温冷感最適補正を冷房強度の補正で行うか、又は、横流ファン強度の補正で行うか、すなわち、冷房強度又は横流ファン強度のいずれに対して補正量決定関数を適用するかを決定する。なお、図9に示される方法は、できる限り冷房強度を低く抑えて補正するための方法である。
乗客男女比の情報は、例えば、女性専用車両として使用される時間帯には女性が1で男性が0であるとする。また、例えば、線区又は時間帯毎の男女比に関する乗客情報を利用することができる場合には該乗客情報に基づいて設定される。さらに、例えば、全く未知である場合には、デフォルトとして男女が半々(0.5)であるものとする。
補正対象決定部34cは、男女比による重付け加算を行った後、暑い不満足率(DyPPD_h)が寒い不満足率(DyPPD_c)以上であるか否かを判断する。
そして、暑い不満足率が寒い不満足率以上である場合、すなわち、暑い不満足率が大きい場合、補正対象決定部34cは、横流ファン強度(N)がNmax であるか否かを判断する。前述のように、横流ファン強度には、1〜Nmax 段階の設定があるものとする。そして、横流ファン強度がNmax である場合、補正対象決定部34cは、冷房強度に対して補正量決定関数を適用することに決定する。また、横流ファン強度がNmax でない場合、補正対象決定部34cは、できる限り横流ファン強度の補正で快適性を改善するように、横流ファン強度に対して補正量決定関数を適用することに決定する。
一方、暑い不満足率が寒い不満足率以上でない場合、すなわち、寒い不満足率が大きい場合、補正対象決定部34cは、冷房強度が1であるか否かを判断する。そして、冷房強度が1である場合、補正対象決定部34cは、横流ファン強度に対して補正量決定関数を適用することに決定する。また、冷房強度が1でない場合、補正対象決定部34cは、できる限り冷房強度を下げて快適性を改善するように、冷房強度に対して補正量決定関数を適用することに決定する。
そして、第1補正量決定部34bの補正量決定関数適用部34dは、補正対象決定部34cの決定に従って、冷房強度又は横流ファン強度に対して補正量決定関数を適用し、第1補正量を決定する。なお、前記補正量決定関数は、例えば、以下の式(13)で表されるファジールールである。
Figure 0006543235
なお、該式(13)では、冷房強度及び横流ファン強度が数段階(例えば、5段階)に設定されていることを想定している。
例えば、前記式(13)における最初の行(1)は、暑い不満足率が寒い不満足率よりも大きく、かつ、前時刻よりも暑い不満足率が増大している、という状況なので、冷房強度又は横流ファン強度をより大きくする、という補正を行う旨を意味している。行(1)の意味する状況は、図10に示されている。
また、例えば、前記式(13)における最後の行(9)は、寒い不満足率が暑い不満足率よりも大きく、かつ、前時刻よりも寒い不満足率が増大している、という状況なので、冷房強度又は横流ファン強度をより小さくする、という補正を行う旨を意味している。
このようにして、第1補正量を決定することによって、乗客の寒い不満足率及び暑い不満足率の合計の不満足率が最小となるような最適平均温冷感を実現することができる。なお、暖房を行う場合にも、同様の考え方によって、第1補正量を決定することができる。そして、決定された空調強度の補正量である第1補正量は、図2に示されるように、第2補正量計算部36が算出した他の空調強度の補正量である第2補正量に加算され、補正量取得部37に送信される。
本実施の形態において、外気温及び乗車人数取得部35並びに第2補正量計算部36が行う動作である今後の温冷感の変動を抑制するための補正の動作についての説明は、既知の先行技術(例えば、非特許文献7参照。)と同様であるので、その詳細な説明を省略する。なお、前記先行技術は、例えば、外気温と乗車率とを変数とするファジー推論による制御であり、冷房を想定した場合には、「IF 外気温が高い AND 乗車率が高い THEN 冷房強度をより大きくする」というような制御である。
白石他、「車内環境向上を目指した空調システム」、三菱電機技報、18(10)、27−37、2007
このように、本実施の形態において、周期的変動風を利用する車内空調方法は、周期的変動風の風速を人体熱モデルに入力して体感温度を算出する工程と、体感温度から平均温冷感予測を算出する工程と、平均温冷感予測から不満足率予測を算出する工程と、不満足率予測から空調強度又は周期的変動風発生器としての横流ファン23の強度の補正量を決定する工程と、を含んでいる。これにより、周期的変動風全体の総合的な温冷感を適切に反映することができる。したがって、快適な室内空調環境を乗客に対して提供することができる。
また、人体熱モデルに入力される周期的変動風の風速は、周期的変動風体感時と予測平均皮膚温が同等となる定常風の風速に換算された定常風等価換算風速である。さらに、定常風等価換算風速は、周期的変動風体感時の予測平均皮膚温と定常風体感時の予測平均皮膚温との誤差が極小となる定常風の風速である。さらに、横流ファン23の強度が所定の閾値より小さい場合、人体熱モデルに入力される周期的変動風の風速は、実測された風速である。さらに、不満足率予測から空調強度又は横流ファン23の強度の補正量を決定する工程では、できる限り空調強度を低く抑えるように補正量を決定する。さらに、周期的変動風を利用する車内空調方法は、外気温及び乗客が発生する熱量から、温冷感変動を抑制する空調強度の他の補正量を計算する工程と、空調強度の他の補正量と、不満足率予測から決定された空調強度又は横流ファン23の強度の補正量とを加算する工程とを更に含んでいる。
なお、本明細書の開示は、好適で例示的な実施の形態に関する特徴を述べたものである。ここに添付された特許請求の範囲内及びその趣旨内における種々の他の実施の形態、修正及び変形は、当業者であれば、本明細書の開示を総覧することにより、当然に考え付くことである。
本発明は、周期的変動風を利用する車内空調方法及びシステムに適用することができる。
11 車両
12 客室
21 空調装置
22 制御器
23 横流ファン
32a 定常風換算部
33a 人体熱モデル部
33b 平均温冷感予測部
34a 熱的不満足率予測部

Claims (9)

  1. 周期的変動風の風速を人体熱モデルに入力して体感温度を算出する工程と、
    前記体感温度から平均温冷感予測を算出する工程と、
    前記平均温冷感予測から不満足率予測を算出する工程と、
    前記不満足率予測から空調強度又は周期的変動風発生器の強度の補正量を決定する工程と、
    を含むことを特徴とする周期的変動風を利用する車内空調方法。
  2. 前記人体熱モデルに入力される周期的変動風の風速は、周期的変動風体感時と予測平均皮膚温が同等となる定常風の風速に換算された定常風等価換算風速である請求項1に記載の周期的変動風を利用する車内空調方法。
  3. 前記定常風等価換算風速は、周期的変動風体感時の予測平均皮膚温と定常風体感時の予測平均皮膚温との誤差が極小となる定常風の風速である請求項2に記載の周期的変動風を利用する車内空調方法。
  4. 前記周期的変動風発生器の強度が所定の閾値より小さい場合、前記人体熱モデルに入力される周期的変動風の風速は、実測された風速である請求項1に記載の周期的変動風を利用する車内空調方法。
  5. 前記不満足率予測から空調強度又は周期的変動風発生器の強度の補正量を決定する工程では、できる限り空調強度を低く抑えるように補正量を決定する請求項1〜4のいずれか1項に記載の周期的変動風を利用する車内空調方法。
  6. 前記周期的変動風発生器は、往復しながら送風を行う横流ファンである請求項1〜5のいずれか1項に記載の周期的変動風を利用する車内空調方法。
  7. 外気温及び乗客が発生する熱量から、温冷感変動を抑制する空調強度の他の補正量を計算する工程と、
    前記空調強度の他の補正量と、前記不満足率予測から決定された空調強度又は周期的変動風発生器の強度の補正量とを加算する工程とを更に含む請求項1〜6のいずれか1項に記載の周期的変動風を利用する車内空調方法。
  8. 車両の客室内の空調を行う空調装置と、前記客室内に周期的変動風を発生させる周期的変動風発生器と、前記空調装置及び周期的変動風発生器の制御を行う制御器とを有する周期的変動風を利用する車内空調システムであって、
    周期的変動風の風速が入力される人体熱モデルを使用して体感温度を算出する人体熱モデル部と、
    前記体感温度から平均温冷感予測を算出する平均温冷感予測部と、
    前記平均温冷感予測から不満足率予測を算出する熱的不満足率予測部と、
    前記不満足率予測から空調強度又は周期的変動風発生器の強度の補正量を決定する補正量決定部と、
    を備えることを特徴とする周期的変動風を利用する車内空調システム。
  9. 周期的変動風の風速を、周期的変動風体感時と予測平均皮膚温が同等となる定常風の風速である定常風等価換算風速に換算して前記人体熱モデルに入力する定常風換算部を更に備える請求項8に記載の周期的変動風を利用する車内空調システム。
JP2016217998A 2016-11-08 2016-11-08 周期的変動風を利用する車内空調方法及びシステム Active JP6543235B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016217998A JP6543235B2 (ja) 2016-11-08 2016-11-08 周期的変動風を利用する車内空調方法及びシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016217998A JP6543235B2 (ja) 2016-11-08 2016-11-08 周期的変動風を利用する車内空調方法及びシステム

Publications (2)

Publication Number Publication Date
JP2018075913A JP2018075913A (ja) 2018-05-17
JP6543235B2 true JP6543235B2 (ja) 2019-07-10

Family

ID=62149839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016217998A Active JP6543235B2 (ja) 2016-11-08 2016-11-08 周期的変動風を利用する車内空調方法及びシステム

Country Status (1)

Country Link
JP (1) JP6543235B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109334692A (zh) * 2018-10-10 2019-02-15 重庆中车四方所科技有限公司 一种轨道交通车辆客室通风智能控制系统及方法
DE112021000304T5 (de) * 2020-02-05 2022-10-27 Gentherm Inc. Auf thermophysiologie basierendes mikroklima-steuerungssystem

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193739A (ja) * 1991-09-17 1996-07-30 Shimizu Corp 総合環境調整装置
JPH06147599A (ja) * 1992-11-16 1994-05-27 Toshiba Corp 快適空調制御装置
JP3842688B2 (ja) * 2002-03-29 2006-11-08 株式会社東芝 車両用空調制御方法
JP4432457B2 (ja) * 2003-10-30 2010-03-17 ダイキン工業株式会社 エリア別空調制御システム、エリア別空調制御方法及びエリア別空調制御プログラム
JP6076829B2 (ja) * 2013-05-21 2017-02-08 公益財団法人鉄道総合技術研究所 列車内の温熱環境評価方法
JP6280733B2 (ja) * 2013-11-26 2018-02-14 大和ハウス工業株式会社 空調制御システム及び空調制御方法

Also Published As

Publication number Publication date
JP2018075913A (ja) 2018-05-17

Similar Documents

Publication Publication Date Title
Liu et al. A neural network evaluation model for individual thermal comfort
Simion et al. Factors which influence the thermal comfort inside of vehicles
CN213501729U (zh) 用于机动车辆乘客舱的热管理系统
US20180110958A1 (en) Sleeping environment control system and method
KR101162582B1 (ko) 습도 추정 장치 및 습도 추정 방법
JP6076829B2 (ja) 列車内の温熱環境評価方法
Cheong et al. Local thermal sensation and comfort study in a field environment chamber served by displacement ventilation system in the tropics
JP6618450B2 (ja) 車内空調方法及びシステム
Pala et al. An investigation of thermal comfort inside a bus during heating period within a climatic chamber
US20220009307A1 (en) Thermal management system for a motor-vehicle passenger compartment
Barrios et al. The Comfstat-automatically sensing thermal comfort for smart thermostats
JP2017015288A (ja) 空気調和機及び空気調和機の制御方法
JP3214317B2 (ja) 空調装置
CN111757814A (zh) 机动车辆热管理系统
JP7182164B2 (ja) 情報処理装置
KR20210077777A (ko) 자동차 승객실을 위한 열 관리 시스템
JP7219392B2 (ja) 空調制御システム
JP6543235B2 (ja) 周期的変動風を利用する車内空調方法及びシステム
JP2008232467A (ja) 空調制御システム
Kim et al. Influencing factors on thermal comfort and biosignals of occupant-a review
Lee et al. Machine learning-based personal thermal comfort model for electric vehicles with local infrared radiant warmers
JP2002022238A (ja) 快適感評価装置及び空調制御装置
JP3751830B2 (ja) 空調制御装置
JP4196484B2 (ja) 空気調和システムの制御装置及びその制御方法
JPWO2020105088A1 (ja) 空気調和装置の制御システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190614

R150 Certificate of patent or registration of utility model

Ref document number: 6543235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150