JP7182164B2 - 情報処理装置 - Google Patents

情報処理装置 Download PDF

Info

Publication number
JP7182164B2
JP7182164B2 JP2019006788A JP2019006788A JP7182164B2 JP 7182164 B2 JP7182164 B2 JP 7182164B2 JP 2019006788 A JP2019006788 A JP 2019006788A JP 2019006788 A JP2019006788 A JP 2019006788A JP 7182164 B2 JP7182164 B2 JP 7182164B2
Authority
JP
Japan
Prior art keywords
person
value
human body
temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019006788A
Other languages
English (en)
Other versions
JP2020115073A (ja
Inventor
信一 土居
千恵美 伊庭
智司 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Kyoto University
Original Assignee
Kansai Electric Power Co Inc
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Kyoto University filed Critical Kansai Electric Power Co Inc
Priority to JP2019006788A priority Critical patent/JP7182164B2/ja
Publication of JP2020115073A publication Critical patent/JP2020115073A/ja
Application granted granted Critical
Publication of JP7182164B2 publication Critical patent/JP7182164B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本開示は、空調装置の制御を支援する情報を生成するための技術に関する。
人体熱モデルを用いて空調を制御するための技術が開発されている。たとえば、特開2018-62190号公報(特許文献1)は、平均着衣量等の情報を人体熱モデルに入力して算出された体感温度から平均温冷感予測を算出し、平均温冷感予測に基づいて車内の空調強度を補正する車内空調システムを開示している。
特開2018-62190号公報
J. A. J. Stolwijk and J. D. Hardy、「Temperature Regulation in Man - A Theoretical Study」 Pfluegers Archiv 291、pp129-162、1966
しかしながら、特許文献1に記載の技術において、人体熱モデルに入力される平均着衣量は、線区または時間帯による利用者の平均年齢の情報に基づいて決定される。そのため、実際に乗車している不特定多数の人物の状態に応じて、対象空間の環境を快適にすることができない。そのため、不特定多数の人物が出入りするような対象空間であっても、人物の状態に応じて対象空間内の環境を快適に維持するための情報を生成することが可能な技術が望まれている。
ある局面に従うと、情報処理装置は、対象空間に入る人物を熱分布計測装置が計測することにより生成される対象熱分布を取得するための取得部と、人体の熱に影響を及ぼす入力パラメータの値を受けて人体の熱に関する出力パラメータの値を出力する人体熱モデルと対象熱分布とを用いることにより、人物が対象空間に入る前の入力パラメータの第1値を推定するための第1推定部と、人体熱モデルを用いて、対象空間に入ってからの人物の温冷感を推定するための第2推定部と、取得部が対象熱分布を取得する度に第2推定部によって推定された温冷感を所定期間において蓄積し、当該蓄積結果から温冷感ごとの人数分布を生成するための分布生成部と、人数分布に基づいて、空調装置の制御を支援するための支援情報を生成するための情報生成部とを備える。第2推定部は、第1推定部により推定された入力パラメータの第1値を人体熱モデルに入力することにより得られる出力パラメータの第1値を初期値として、対象空間に入ってからの入力パラメータの第2値を人体熱モデルに入力することにより、出力パラメータの第2値を演算する。第2推定部は、出力パラメータの第2値に基づいて人物の温冷感を推定する。
好ましくは、入力パラメータは、人物の着衣量、代謝量、体重及び体表面積を含む。出力パラメータは、着衣を含む人物の複数の部分の表面温度を含む。第1推定部は、対象熱分布における人物に対応する領域のサイズに基づいて、人物の体重及び体表面積の値を推定する。第1推定部は、対象熱分布における領域の温度分布に基づいて、人物の着衣量の値を推定する。第1推定部は、推定された体重、体表面積及び着衣量の値と、複数の仮想パターンの各々に対応する代謝量の値とを人体熱モデルに入力する入力処理により得られる複数の部分の表面温度と領域の温度分布とを比較する。第1推定部は、複数の仮想パターンの中から、領域の温度分布に最も近い複数の部分の表面温度に対応する仮想パターンを抽出する。第1推定部は、抽出された仮想パターンに対応する代謝量の値を、対象空間に入る前の人物の代謝量の値として推定する。
好ましくは、入力パラメータは、人物の着衣量、代謝量、体重及び体表面積を含む。出力パラメータは、着衣を含む人物の複数の部分の表面温度を含む。第1推定部は、対象熱分布における人物に対応する領域のサイズに基づいて、人物の体重及び体表面積の値を推定する。第1推定部は、推定された体重及び体表面積の値と、複数の仮想パターンの各々に対応する、着衣量の値及び代謝量の値とを人体熱モデルに入力する入力処理により得られる複数の部分の表面温度と領域の温度分布とを比較する。第1推定部は、複数の仮想パターンの中から、領域の温度分布に最も近い複数の部分の表面温度に対応する仮想パターンを抽出する。第1推定部は、抽出された仮想パターンに対応する着衣量の仮値を人物の着衣量の値として推定する。第1推定部は、抽出された仮想パターンに対応する代謝量の値を対象空間に入る前の人物の代謝量の値として推定する。
好ましくは、入力パラメータは、人物の周囲の温度、湿度、風速及び放射熱量をさらに含む。第1推定部は、入力処理において、さらに、対象空間外の環境に応じて定められる湿度、風速及び放射熱量の値と、複数の仮想パターンの各々に対応する温度の値とを人体熱モデルに入力する。第1推定部は、抽出された仮想パターンに対応する温度の値を対象空間に入る前の人物の周囲の温度の値として推定する。
好ましくは、入力パラメータの第2値は、第1推定部によって推定された人物の体重、体表面積及び着衣量の値と、対象空間内で想定される身体活動から定められる代謝量の値とを含む。
好ましくは、入力パラメータの第2値は、第1推定部によって推定された人物の体重、体表面積及び着衣量の値と、対象空間内で想定される身体活動から定められる代謝量の値と、対象空間内の環境に応じて定められる温度、湿度、風速及び放射熱量の値とを含む。
好ましくは、取得部は、人物までの距離を計測するための測距センサの出力値を受け、出力値が予め定められた距離に到達したときに熱分布計測装置によって計測された熱分布を対象熱分布として取得する。
好ましくは、上記情報処理装置は、上記情報に基づいて、上記空調装置を制御するための空調制御部をさらに備える。
他の局面に従うと、情報処理方法は、対象空間に入る人物を熱分布計測装置が計測することにより生成される対象熱分布を取得するステップと、人体の熱に影響を及ぼす入力パラメータの値を受けて人体の熱に関する出力パラメータの値を出力する人体熱モデルと対象熱分布とを用いることにより、人物が対象空間に入る前の入力パラメータの第1値を推定するステップと、人体熱モデルを用いて、対象空間に入ってからの人物の温冷感を推定するステップと、対象熱分布が取得される度に推定された温冷感を所定期間において蓄積し、当該蓄積結果から温冷感ごとの人数分布を生成するステップと、人数分布に基づいて、空調装置の制御を支援するための支援情報を生成するステップとを備える。人物の温冷感を推定するステップは、入力パラメータの第1値を人体熱モデルに入力することにより得られる出力パラメータの第1値を初期値として、対象空間に入ってからの入力パラメータの第2値を人体熱モデルに入力することにより、出力パラメータの第2値を演算するステップと、出力パラメータの第2値に基づいて人物の温冷感を推定するステップとを含む。
他の局面において、プログラムは、上記情報処理方法の各ステップをコンピュータに実行させる。
ある局面において、不特定多数の人物が出入りするような対象空間であっても、人物の状態に応じて対象空間内の環境を快適に維持するための情報を生成することができる。
実施の形態に従う空調システムが設置されている室内の様子を示す図である。 実施の形態1に従う情報処理装置の機能構成の一例を示す図である。 熱分布取得部による人物の入室の有無の判定方法を説明する図である。 熱分布処理部による切り出し処理の方法を説明する図である。 熱分布処理部による分割処理の方法を説明する図である。 着衣による温度変化の一例を模式的に示す図である。 最も外側の衣類の表面温度と皮膚温度との差と、着衣量との相関関係の一例を示す図である。 人体サイズ推定部による身長の推定方法を説明する図である。 身長と標準体重との相関関係の一例を示す図である。 人体熱モデルの一例を示す図である。 複数の仮想パターンの各々の仮皮膚温度の一例を示す図である。 対象空間に入ってからの人物の温冷感の変化の一例を示す図である。 分布生成部によって生成された人数分布の具体例を示す図である。 履歴データを生成する処理の流れを示すフローチャートである。 生成された履歴データを用いて空調装置を制御する処理の流れを示すフローチャートである。 情報処理装置の主要なハードウェア構成を示すブロック図である。 実施の形態2に従う情報処理装置の機能構成の一例を示す図である。 夏期において想定される7個の着衣パターンを示す図である。 中間期(春期及び秋期)において想定される8個の着衣パターンを示す図である。 冬期において想定される8個の着衣パターンを示す図である。
以下、図面を参照しつつ、本発明に従う実施の形態について説明する。以下の説明では、同一の部品及び構成要素には同一の符号を付してある。それらの名称及び機能も同じである。したがって、これらについての詳細な説明は繰り返さない。なお、以下で説明される実施の形態及び各変形例は、適宜選択的に組み合わされてもよい。
<A.実施の形態1>
[A1.空調システム]
図1を参照して、実施の形態1に従う空調システム1について説明する。図1は、実施の形態1に従う空調システム1が設置されている室内の様子を示す図である。
空調システム1は、たとえば、不特定多数の人物が出入りする対象空間2に設置される。対象空間2は、たとえば、スーパーマーケットなどの店舗、マンション、病院、学校、不特定多数の人が出入りするその他の空間である。
空調システム1は、測距センサ50と、熱分布計測装置51と、温湿度センサ52,53A,53Bと、操作パネル54と、情報処理装置100と、空調装置200とを含む。
測距センサ50は、対象空間2の出入口4の付近に設置され、出入口4を通過する人物までの距離を計測する。一例として、測距センサ50には、赤外線センサ、超音波センサなどが採用される。
熱分布計測装置51は、対象空間2の出入口4の付近に設置され、出入口4付近の物体(人物を含む)の表面温度の分布を示す熱分布を計測する。一例として、熱分布計測装置51には、赤外線サーモグラフィが採用される。
測距センサ50及び熱分布計測装置51は、情報処理装置100と通信接続されており、測距センサ50からの出力値及び熱分布計測装置51からの熱分布は、情報処理装置100に所定周期で出力される。測距センサ50及び熱分布計測装置51と情報処理装置100との間の通信は、無線通信または有線通信で実現される。
空調装置200は、室内機200Aと、換気装置200Bと、室外機200Cと、送風機200Dと含む。
温湿度センサ52は、たとえば、対象空間2内に設置され、室内の温度及び湿度を検知する。温湿度センサ53A,53Bは、たとえば、対象空間2外に設置され、室外の温度及び湿度を検知する。以下、温湿度センサ53A,53Bを特に区別しない場合、温湿度センサ53A,53Bの各々を「温湿度センサ53」という。温湿度センサ52,53Aは、たとえば、対象空間2の出入口4の付近に設置される。温湿度センサ53Bは、たとえば、室外機200Cの付近に設置される。温湿度センサ52,53は、情報処理装置100と通信接続されており、温湿度センサ52,53からの出力値は、情報処理装置100に所定周期で出力される。温湿度センサ52,53と情報処理装置100との間の通信は、無線通信または有線通信で実現される。
操作パネル54は、空調装置200に対する操作入力を受け付けるための入力装置である。一例として、操作パネル54は、電源のON/OFF操作、室温の設定操作、運転モード(たとえば、冷房モードや暖房モード)の切り替え操作などを受け付ける。
情報処理装置100は、たとえば、PC(Personal Computer)やサーバーである。情報処理装置100は、測距センサ50の出力値、熱分布計測装置51の熱分布、温湿度センサ52,53の出力値に基づいて、空調装置200の制御を支援するための情報(以下、「支援情報」という)を生成する。情報処理装置100による情報処理の詳細については後述する。情報処理装置100は、空調装置200と通信接続されている。情報処理装置100と空調装置200との間の通信は、無線通信または有線通信で実現される。
室内機200Aは、対象空間2の温度や湿度などを調節するための機械である。換気装置200Bは、対象空間の内外の空気を入れ替えるための機械である。室外機200Cは、室内機200Aとパイプを介して接続されている。当該パイプには、熱交換媒体としての冷媒が流れており、当該冷媒を介して対象空間の内外の熱交換が行われる。送風機200Dは、対象空間2内に空気の対流を発生させるための機械であり、例えばシーリングファン、サーキュレーターなどによって構成される。
なお、図1には、空調システム1が温湿度センサ52,53で構成されている例が示されているが、空調システム1は、対象空間2内の温湿度を検知する少なくとも1つの温湿度センサと、対象空間2外の温湿度を検知する少なくとも1つの温湿度センサとで構成されてもよい。
また、図1には、空調装置200が1つの室内機200A及び室外機200Cと2つの換気装置200Bと1つの送風機200Dとを含む例が示されるが、空調装置200は、室内機及び室外機と換気装置と送風機とのうちのいずれかを含めばよい。例えば、空調装置200は、室内機及び室外機のみを含み、換気装置と送風機とを含まなくてもよい。
さらに、図1には、空調装置200が1つの室内機200Aを含む例が示されているが、空調装置200は、2つ以上の室内機を含んでもよい。同様に、図1には、空調装置200が2つの換気装置200Bを含む例が示されているが、空調装置200は、1つまたは3つ以上の換気装置を含んでもよい。同様に、図1には、空調装置200が1つの室外機200Cを含む例が示されているが、空調装置200は、2つ以上の室外機を含んでもよい。同様に、図1には、空調装置200が1つの送風機200Dを含む例が示されているが、空調装置200は、2つ以上の送風機を含んでもよい。例えば、空調装置200は、シーリングファン及びサーキュレーターを含んでもよい。
[A2.情報処理装置の機能構成]
図2~図12を参照して、情報処理装置100の機能構成について説明する。図2は、実施の形態1に係る情報処理装置の機能構成の一例を示す図である。
図2に示されるように、情報処理装置100は、主な機能構成として、熱分布取得部110と、熱分布処理部112と、表面温度測定部114と、第1推定部120と、第2推定部140と、記憶装置150と、分布生成部160と、支援情報生成部170と、空調制御部180とを含む。以下では、これらの機能構成について順に説明する。
[A2-1.熱分布取得部110]
熱分布取得部110は、対象空間2に入る人物を熱分布計測装置51が計測することにより生成される対象熱分布Imgを取得する。具体的には、熱分布取得部110は、測距センサ50からの出力値に基づいて、人物が出入口4を通って対象空間2に入室したか否かを判定する。熱分布取得部110は、人物が対象空間2に入室したと判定されたタイミングで熱分布計測装置51によって計測された熱分布を対象熱分布Imgとして取得する。
図3を参照して、熱分布取得部110による対象熱分布Imgの取得方法について説明する。図3は、熱分布取得部110による人物の入室の有無の判定方法を説明する図である。熱分布取得部110は、測距センサ50からの出力値を常時監視する。人物が出入口4を通る場合、測距センサ50からの出力値が変動する。対象空間2内において測距センサ50が出入口4に向かって設置され、かつ、人物が出入口4を通って外部から内部に向かう方向に移動している場合、測距センサ50からの出力値は、人物の移動に伴い小さくなる。
具体的には、図3(a)に示されるように、人物が出入口4を通っていない場合(人物の入室完了時の3秒前)には、測距センサ50の出力値に変動がない。図3(b)に示されるように、人物が出入口4を通って入室し始めるとき(人物の入室完了時の2秒前)、測距センサ50の出力値は、例えば、人物までの距離が5mであることを示す。図3(c)に示されるように、人物が出入口4を通って入室完了すると、測距センサ50の出力値は、例えば、人物までの距離が3mであることを示す。
熱分布取得部110は、測距センサ50からの出力値が変動し、かつ、出力値が予め定められた距離(例えば3m)よりも大きい値から当該予め定められた距離に到達したタイミングに、人物の入室有と判定する。
熱分布取得部110は、熱分布計測装置51から受けた熱分布を所定期間(例えば5秒間)だけ蓄積する。熱分布処理部112は、蓄積した熱分布の中から、人物の入室有と判定した第1タイミングで熱分布計測装置51によって計測された熱分布を対象熱分布Imgとして取得する。さらに、熱分布取得部110は、測距センサ50からの出力値の変動がない第2タイミング(例えば、第1タイミングの3秒前のタイミング)で熱分布計測装置51によって計測された熱分布を背景熱分布Img0として取得する。熱分布取得部110は、取得した対象熱分布Imgと背景熱分布Img0とを熱分布処理部112に出力する。
[A2-2.熱分布処理部112]
熱分布処理部112は、対象熱分布Imgから人物に対応する領域を切り出す切り出し処理とともに、切り出した領域を複数の部分に分割する分割処理とを行なう。
図4及び図5を参照して、熱分布処理部112の処理の方法について説明する。図4は、熱分布処理部112による切り出し処理の方法を説明する図である。図4に示されるように、熱分布処理部112は、対象熱分布Imgと背景熱分布Img0との差分を算出し、当該差分が閾値を超える画素からなる領域を人物に対応する領域Rとして切り出す。
図5は、熱分布処理部112による分割処理の方法を説明する図である。図5に示されるように、熱分布処理部112は、例えば、対象熱分布Imgから切り出された領域Rを、前頭部Pa、体幹部Pb、腕部(脇から手首までの部分)Pc、手部Pd、大腿部Pe、脚部(膝から足首までの部分)Pf、足先部Pgの7つの部分に分割する。なお、図5には領域Rが7つの部分に分割される例が示されるが、分割個数は7個に限定されない。
熱分布処理部112は、領域Rに含まれる複数の画素の相対的な位置関係に基づいて、複数の部分に分割すればよい。例えば、熱分布処理部112は、領域Rのうち最上点(すなわち頭頂)から所定画素数分まで下の部分の画素を前頭部Paとして分割する。当該所定画素数は、領域Rのサイズから適宜決定され、例えば、領域Rの最上点から最下点までの画素数に所定係数を乗じた画素数である。
もしくは、熱分布処理部112は、領域Rと標準的な人体のモデル画像とを対比することにより、領域Rの各画素が属する部分を決定してもよい。
[A2-3.表面温度測定部114]
表面温度測定部114は、対象熱分布Imgから、着衣を含む人物における各部分の表面温度αを測定する。すなわち、表面温度測定部114は、複数の部分(前頭部Pa、体幹部Pb、腕部Pc、手部Pd、大腿部Pe、脚部Pf、足先部Pg(以下、単に「Pa~Pg」ともいう)の表面温度α(a)~α(g)を測定し、測定した表面温度α(a,b,c,d,e,f,g)を記憶装置150に格納する。表面温度αは、皮膚が露出している部分では皮膚温度を示し、着衣している部分では最も外側の衣服の表面温度を示す。通常、前頭部Pa及び手部Pdでは皮膚が露出している。そのため、前頭部Pa及び手部Pdの皮膚のみが露出している場合(長袖、長ズボンの場合)の例では、表面温度測定部114によって測定される前頭部Pa及び手部Pdの表面温度αは、前頭部Pa及び手部Pdの皮膚温度をそれぞれ示す。表面温度測定部114によって測定される他の部の表面温度αは、最も外側の衣服の表面温度を示す。
表面温度測定部114は、熱分布処理部112によって分割された複数の部分(Pa~Pg)の各々について、当該部分に属する複数の画素の温度を抽出する。表面温度測定部114は、抽出した複数の画素の温度の代表温度を表面温度αとして決定してもよい。代表温度として、例えば、複数の画素の中の最高温度、複数の画素全体の平均温度、複数の画素のうち温度が高い上位所定数の画素の平均温度などを用いることができる。また、部分ごとに代表温度の種類が異なってもよい。例えば、通常、皮膚が露出する前頭部Pa及び手部Pdについて、当該部分に属する複数の画素の中の最高温度が表面温度αとして測定され、通常、着衣される他の部分について、当該部分に属する複数の画素の平均温度が表面温度αとして測定されてもよい。
[A2-4.第1推定部120]
第1推定部120は、人体の熱に影響を及ぼす入力パラメータの値を受けて人体の熱に関する出力パラメータの値を出力する人体熱モデルと対象熱分布Imgとを用いることにより、人物が対象空間2に入る前の条件を推定する。第1推定部120は、着衣量推定部122と、人体サイズ推定部124と、条件推定部126とを含む。
[A2-5.着衣量推定部122]
着衣量推定部122は、対象熱分布Imgにおける人物に対応する領域Rの温度分布に基づいて、人物の複数の部位の各々の着衣量βを推定する。着衣量は、着衣の熱抵抗を示す。具体的には、着衣量推定部122は、領域Rに含まれる複数の画素の温度の中から最高温度を特定する。着衣量推定部122は、複数の部位の各々について、特定した最高温度と、領域Rのうちの当該部位に対応する部分の温度との差に基づいて、着衣量βを推定する。
図6は、冬期における着衣による温度変化の一例を模式的に示す図である。図6には、3枚の衣服31~33を身に着けている例が示される。図6に示される例では、最も外側の衣服33の表面温度は、人体の皮膚温度より低くなっている。皮膚温度と最も外側の衣服33の表面温度との差は、衣服31~33の熱抵抗と空気層31’~33’の熱抵抗との和に依存する。空気層31’は、衣服31に接し、衣服31よりも人体側の空気層である。空気層32’は、衣服32に接し、衣服32よりも人体側の空気層である。空気層33’は、衣服33に接し、衣服33よりも人体側の空気層である。
図7は、冬期における、皮膚温度と最も外側の衣服の表面温度との差(以下、「表面温度差」という)と、着衣量との相関関係の一例を示す図である。図7に示されるように、相関関係152は、着衣量が大きくなる程、表面温度差の絶対値が大きくなる関係を示す。
領域Rから特定される最高温度は、通常、露出している皮膚温度を示す。対象熱分布Imgにおける複数の部分(Pa~Pg)の各々の温度は、当該部分に着けている最も外側の衣服の表面温度を示す。着衣量推定部122は、特定した最高温度または当該最高温度に所定係数を乗じた温度を着衣している部分の皮膚温度と仮定する。着衣量推定部122は、仮定した皮膚温度と対象熱分布Imgにおける各部位の温度との差と、図7に示されるような相関関係152とを用いて、当該部分の着衣量βを算出する。相関関係152は、予め記憶装置150に記憶されている。
相関関係152は、気温に応じて変化する。例えば、夏期では外気温度及び日射の影響により、皮膚温度よりも衣服の表面温度の方が高くなる可能性がある。そのため、記憶装置150は、気温ごとの相関関係152を予め記憶しておく。着衣量推定部122は、温湿度センサ53によって検知された温度に対応する相関関係152を用いて着衣量βを算出すればよい。
もしくは、記憶装置150は、基準となる気温における相関関係152を予め記憶しておく。着衣量推定部122は、温湿度センサ53によって検知された温度と当該基準となる気温との差に応じて相関関係152を補正し、補正後の相関関係152を用いて着衣量βを算出してもよい。
着衣量推定部122は、複数の部分(Pa~Pg)に対して着衣量β(a)~β(g)をそれぞれ推定する。着衣量推定部122は、推定した着衣量β(a,b,c,d,e,f,g)を記憶装置150に格納する。
[A2-6.人体サイズ推定部124]
人体サイズ推定部124は、対象熱分布Imgにおける人物に対応する領域Rのサイズに基づいて、当該人物の身長h、体重W及び体表面積(皮膚表面積ともいう)Sを推定する。
図8は、人体サイズ推定部による身長の推定方法を説明する図である。人体サイズ推定部124は、以下の式(1)に従って、人物の身長hを推定する。
h=N×M=N×(2d/P)×tan(θ/2)・・・式(1)
式(1)において、dは、熱分布計測装置51から人物までの距離を示す。対象熱分布Imgは、測距センサ50からの出力値が予め定められた距離(例えば3m)に到達したタイミングで計測される。そのため、dは一定値(例えば3m)となる。θは、熱分布計測装置51の画角である。Pは、熱分布における上下方向のピクセル数である。Mは、1ピクセルに対応する被写体の長さである。Nは、領域Rにおける上下方向のピクセル数(つまり頭頂から足先までのピクセル数)である。
さらに、人体サイズ推定部124は、推定した身長hに基づいて、人物の体重W及び体表面積Sを推定する。
図9は、身長と標準体重との相関関係の一例を示す図である。図9には、対象空間2に出入りする最も多い人種(例えば日本人)の標準体型から導き出される相関関係153が示される。
人体サイズ推定部124は、相関関係153と推定した身長hとに基づいて、人物の体重Wを推定する。さらに、人体サイズ推定部124は、身長h(cm)と推定した体重W(kg)とを以下の式(2)に代入することにより、体表面積S(m)を推定する。
S=100.315×(W0.383×h0.693×10-4) ・・・式(2)
人体サイズ推定部124は、推定した身長h、体重W及び体表面積Sを示す人体サイズ情報γを生成し、生成した人体サイズ情報γを記憶装置150に格納する。
[A2-7.条件推定部126]
条件推定部126は、人体熱モデルと対象熱分布とを用いることにより、対象空間2に入る前の人物の条件(例えば代謝量の値)を推定する。図2に示されるように、条件推定部126は、第1演算部127と、条件出力部128とを有する。
[A2-7-1.人体熱モデルの例]
人体熱モデルは、発汗、血流などの人間の体温調節反応を考慮した人体と環境との熱収支計算により、人体の体温分布を演算するための数理モデルである。さらに、人体熱モデルは、着衣における熱水分同時移動を考慮した数理モデルであってもよい。人体熱モデルは、人体の熱に影響を及ぼす複数の入力パラメータの値を受けて、人体の熱に関する複数の出力パラメータの値を出力する。複数の入力パラメータは、人物の周囲の環境条件を示す環境パラメータ(空間の温度、湿度、風速、放射熱量(長波長放射、日射を含む))及び人体側の条件を示す人体パラメータ(着衣量、代謝量(活動量)、体重、体表面積)を含む。複数の出力パラメータは、例えば、人体を構成する複数の部位の各々の温度、熱交換量及び着衣の含水率を含む。
人体熱モデルとしては、Stolwijkモデル(J. A. J. Stolwijk and J. D. Hardy、「Temperature Regulation in Man - A Theoretical Study」 Pfluegers Archiv 291、pp129-162、1966(非特許文献1)参照)、Wisselerモデルなどの多数のモデルが知られている。Stolwijkモデルは、人体を複数の部位に分割し、これらの部位に血流を加えて熱計算を行なう。
図10は、人体熱モデルの一例を示す図である。図10に示す人体熱モデルは、Stolwijkモデルを基に係数等を見直すことにより生成されるモデルである。具体的には、人体は、前頭部Pa、後頭部Ph、体幹部Pb、腕部Pc、手部Pd、大腿部Pe、脚部Pf、足先部Pgの8つの部分と中央血流溜りP18とに分割される。さらに、前頭部Paは、深部層である部位P2と皮膚層である部位P10とに分割される。後頭部Phは、深部層である部位P3と皮膚層である部位P11とに分割される。体幹部Pbは、深部層である部位P1と筋層である部位P4と皮膚層である部位P12とに分割される。腕部Pcは、深部層である部位P5と皮膚層である部位P13とに分割される。手部Pdは、深部層である部位P6と皮膚層である部位P14とに分割される。大腿部Peは、深部層である部位P7と皮膚層である部位P15とに分割される。脚部Pfは、深部層である部位P8と皮膚層である部位P16とに分割される。足先部Pgは、深部層である部位P9と皮膚層である部位P17とに分割される。ただし、人体の分割の仕方及び分割数は、対象空間2に応じて適宜設定される。そのため、人体熱モデルは、図10に示す例に限定されない。
図10に示されるような人体熱モデルを用いて、各部位Pi(i=1~18)における熱収支式を解くことにより、各部位Pi(i=1~18)の温度、各部位Pi(i=1~18)の温度の時間変化率、熱交換量(例えば、皮膚表面熱流など)、発汗量などが出力パラメータとして演算される。熱収支式として、公知の式(例えば、石黒晃子、鉾井修一、高田暁、石津京二、「着衣・寝具を考慮した睡眠時の人体熱モデルに関する研究」、日本建築学会環境系論文集,第74巻、第636号、pp.141-149,2009.2」)を用いればよい。
上記の人体熱モデルに対して、衣服(図6に示す衣服31~33参照)における熱水分移動及び衣服と人体との間の空気層(図6に示す空気層31’~33’参照)における熱水分同時移動モデルを適用してもよい。衣服及び空気層の熱水分同時移動モデルを人体熱モデルに適用することにより、着衣された部分の皮膚層である部位Piと空気層との間の熱及び水分の移動量、空気層と隣接する衣服との間の熱及び水分の移動量、及び、最も外側の衣服と周囲空気との間の熱及び水分の移動量が演算される。熱水分同時移動モデルは、熱収支式及び水分収支式によって規定される。熱収支式及び水分収支式には、対流温度、放射温度、対流熱伝達率、放射熱伝達率、空間の絶対湿度(または水蒸気圧、相対湿度)、湿気伝達率及び皮膚-着衣間湿気コンダクタンスなどが用いられる。対流温度、放射温度及び空間の絶対湿度は、例えば温湿度計測値に基づいて設定される。対流熱伝達率及び湿気伝達率は、例えば想定される風速に基づいて予め設定される。皮膚-着衣間湿気コンダクタンスは、着衣量βから決定される。
熱水分同時移動モデルには、公知の技術(例えば、高田暁、鉾井修一、川上直紀、工藤正則、「着衣における熱・水分の移動と蓄積を考慮した人体の非定常温熱生理応答-被験者実験とTWO-node modelを用いた解析-」、日本建築学会計画系論文集,第549号、pp.20-30,2001.11」)が用いられ得る。
人体熱モデルに熱水分移動モデルを適用することにより、人体熱モデルの出力パラメータには、複数の部分(Pa~Ph)のうち着衣量βが0ではない部分の衣服の表面温度Tcloth(a)~Tcloth(h)及び含水率が含まれる。
[A2-7-2.第1演算部]
人物が対象空間2に入るときの各部位の温度は、対象空間2に入るまでの当該人物の周囲の環境条件及び人体側条件に応じて変動する。例えば、対象空間2に入る直前まで冷房の効いた車内にいた人物と、対象空間2に入る直前まで暑い外気中にいた人物とでは、各部位の温度が異なる。また、対象空間2に入る直前まで走行していた人物と、対象空間2に入る直前まで車内で椅座姿勢であった人物とでは、各部位の温度が異なる。
第1演算部127は、複数の仮想パターンの各々について、当該仮想パターンに対応する入力パラメータの値を人体熱モデルに入力する入力処理を行ない、着衣を含む人物の複数の部分(Pa~Ph)の表面温度α’(a)~α’(h)をそれぞれ演算する。
具体的には、第1演算部127は、図10に示す人体熱モデルを用いる。第1演算部127は、複数の仮想パターンの各々について、当該仮想パターンに対応する入力パラメータの値を人体熱モデルに入力し、各部位Pi(i=1~18)の温度Tと衣服の温度Tcloth(a)~Tcloth(h)と衣服の含水率とを演算する。第1演算部127は、予め定められた基準状態にある人物が仮想パターンで規定時間(例えば10分)だけ過ごした後に対象空間2に入ったものと仮定して、人体熱モデルを用いた演算を行なう。すなわち、第1演算部127は、各部位Pi(i=1~18)の初期温度、衣服の初期温度及び衣服の含水率として基準状態に対応する所定値を設定する。そして、第1演算部127は、仮想パターンの条件下で規定時間経過した後の各部位Pi(i=1~18)の温度Tと、複数の部分(Pa~Ph)のうち着衣量βが0ではない部分の衣服の表面温度Tcloth(a)~Tcloth(h)とを演算する。
複数の仮想パターンは、少なくとも1つの変動パラメータについて互いに異なる値を有する。変動パラメータは、例えば、人物の周囲の温度、及び、人体の代謝量の少なくとも一方を含む。例えば、対象空間2に入るまでの環境に違いがあると想定される場合、複数の仮想パターンは、変動パラメータである温度について互いに異なる値を有する。また、人物によって対象空間2に入るまでの運動量に違いがあると想定される場合、複数の仮想パターンは、変動パラメータである代謝量について互いに異なる値を有する。
第1演算部127は、複数の入力パラメータのうち変動パラメータ以外の入力パラメータについて、複数の仮想パターンで共通の値を用いればよい。具体的には、第1演算部127は、複数の仮想パターンの全てにおいて、着衣量推定部122によって推定された着衣量βの値を用いる。第1演算部127は、複数の仮想パターンの全てにおいて、人体サイズ推定部124によって推定された体重W及び体表面積Sの値を用いる。また、第1演算部127は、複数の仮想パターンの全てにおいて、対象空間2外の環境に応じて定められる湿度、風速及び放射熱量の値を用いる。例えば、第1演算部127は、温湿度センサ53によって検知された湿度計測値を用いてもよい。第1演算部127は、複数の仮想パターンの全てにおいて、外部サーバーから配信される気象情報から定められる風速及び放射熱量を用いてもよい。さらに、変動パラメータに人物の周囲の温度が含まれない場合、第1演算部127は、複数の仮想パターンの全てにおいて、対象空間2外の環境に応じて定められる温度の値(例えば、温湿度センサ53によって検知された温度計測値)を用いてもよい。
第1演算部127は、複数の部分(Pa~Ph)のうち着衣量βが0である部分について、当該部分の皮膚層の部位の温度を当該部分の表面温度α’として演算する。第1演算部127は、複数の部分(Pa~Ph)のうち着衣量βが0でない部分について、当該部分における最も外側の衣服の温度を当該部分の表面温度α’として演算する。
[A2-7-3.仮想パターン]
図11は、仮想パターンごとに算出された複数の部分(Pa~Pg)の表面温度α’の一例を示す図である。図11に示す例では、温度及び代謝量の少なくとも一方が異なる15個の仮想パターンの各々について表面温度α’が算出されている。温度は、温湿度センサ53によって検知された外気温T1と、外気温T1より所定値d1だけ高い気温T1+d1と、外気温T1より所定値d2だけ低い気温T1-d2とのいずれかである。代謝量は、車内などの椅座安静時の代謝量と、歩行時の代謝量と、軽歩行(早歩き)時の代謝量と、軽運動(自転車走行)時の代謝量と、運動(走行)時の代謝量とのいずれかである。
なお、図11には、人物の周囲の温度として3つの条件から1つを選択し、代謝量として5つの条件から1つを選択することにより生成される、3×5=15個の仮想パターンが示される。しかしながら、人物の周囲の温度として準備される条件の個数は3個に限定されず、2個または4個以上であってもよい。同様に、代謝量として準備される条件の個数は5個に限定されず、2~4個または6個以上であってもよい。
[A2-7-4.条件出力部]
条件出力部128は、第1演算部127によって算出された複数の部分(Pa~Pg)の表面温度α’と対象熱分布Imgにおける領域Rの温度分布との比較結果に基づいて、人物が対象空間2に入る前の当該人物の条件を推定する。
具体的には、条件出力部128は、複数の仮想パターンの中から、表面温度測定部114によって測定された複数の部分(Pa~Pg)の表面温度αに最も近い表面温度α’に対応する仮想パターンを抽出する。条件出力部128は、抽出された仮想パターンに対応する代謝量の値を、対象空間2に入る前の人物の代謝量の値として推定する。さらに、条件出力部128は、抽出された仮想パターンに対応する温度の値を、対象空間に入る前の人物の周囲の温度の値として推定する。
条件出力部128は、抽出された仮想パターンに対応する変動パラメータ(例えば、温度及び代謝量)及び環境パラメータ(温度、湿度、風速及び放射熱量)の値を人体熱モデルに入力することにより得られる出力パラメータの値を含む条件情報δを第2推定部140に出力する。条件情報δに含まれる出力パラメータの値は、対象空間2に入るときの人物の条件を示す情報であり、各部位Pi(i=1~18)の温度、各部位Pi(i=1~18)の温度の時間変化率、熱交換量(例えば、皮膚表面熱流など)、発汗蓄積量、衣服の含水率などの値を含む。
[A2-8.第2推定部140]
第2推定部140は、人体熱モデルを用いて、対象空間2に入ってからの人物の温冷感の時間変化を推定する。
図12は、対象空間2に入ってからの人物の温冷感の時間変化の一例を示す図である。図12に示されるように、対象空間2に入ってからの人物の温冷感は、時間とともに変動し得る。この変動は、対象空間2に入るときの各部位Piの温度と、対象空間2の環境条件及び人体側の条件とに依存する。第2推定部140は、対象空間2の平均的な滞在時間を考慮して、対象空間2に入ってから所定時間(例えば、20分)経過後の温冷感εを記憶装置150に格納する。
図2に示されるように、第2推定部140は、第2演算部142と、温冷感予測部144とを有する。
[A2-8-1.第2演算部142]
第2演算部142は、条件情報δで示される出力パラメータの値を初期値とし、対象空間2に入ってからの複数の入力パラメータの値を人体熱モデルに入力することにより、対象空間2に入ってからの出力パラメータの値を演算する。第2演算部142は、対象空間2に入ってからの経過時間ごとの出力パラメータの値を演算する。
対象空間2に入ってからの複数の入力パラメータの値は、着衣量推定部122によって推定された着衣量βと、人体サイズ推定部124によって推定された体重W及び体表面積Sと、対象空間2内で想定される身体活動(例えば軽歩行)から定められる代謝量の値とを含む。
対象空間2に入ってからの複数の入力パラメータの値は、さらに、対象空間2内の環境に応じて定められる温度、湿度、風速及び放射熱量の値を含む。温度及び湿度の値は、温湿度センサ52の計測値から定められる。風速及び放射熱量の値は、予め実験またはシミュレーションにより定められる。
なお、人物の周囲の温度は、床面からの高さによって変動し得る。そのため、温湿度センサ52は、対象空間2における床面近傍の温度Tpと、床面から基準高さHの位置の温度Tqとを計測することが好ましい。基準高さHは例えば2mである。第2演算部142は、人体サイズ情報γに含まれる身長hと、温度Tp,Tqと、基準高さHとを用いて、人物の複数の部分(Pa~Ph)の各々の周囲の温度を決定すればよい。例えば、前頭部Pa及び後頭部Phの周囲の温度Ta、体幹部Pb及び腕部Pcの周囲の温度Tb、手部Pd及び大腿部Peの温度Td、脚部Pfの温度Tf、足先部Pgの温度Tgは、以下の式(3-1)~(3-5)に従って決定される。
Ta=Tp+k×(Tq-Tp)×h/H ・・・式(3-1)
Tb=Tp+k×(Tq-Tp)×h/H ・・・式(3-2)
Td=Tp+k×(Tq-Tp)×h/H ・・・式(3-3)
Tf=Tp+k×(Tq-Tp)×h/H ・・・式(3-4)
Tg=Tp ・・・式(3-5)
なお、係数kには、身長に対する、頭部中心の標準的な床面からの高さの割合が設定される。係数kには、身長に対する、体幹部中心の標準的な床面からの高さの割合が設定される。係数kには、身長に対する、手部中心の標準的な床面からの高さの割合が設定される。係数kには、身長に対する、脚部中心の標準的な床面からの高さの割合が設定される。
第2演算部142によって算出される出力パラメータには、各部位Pi(i=1~18)の温度、熱交換量(例えば皮膚表面熱流など)、発汗蓄積量、衣服の含水率などが含まれる。
[A2-8-2.温冷感予測部144]
温冷感予測部144は、第2演算部142によって算出された出力パラメータの値を取得する。温冷感予測部144は、取得した当該出力パラメータの値に基づいて、人物の温冷感を予測する。具体的には、温冷感予測部144は、取得した当該出力パラメータの値を公知の温冷感予測式に入力することにより、対象空間2に入ってからの温冷感εを予測する。
温冷感予測式としては、例えば、以下の式(4-1)~(4-5)が知られている。式(4-1)は、「Hui Zhang, Edward Arens, Charlie Huizenga, Taeyoung Han, "Thermal sensation and comfort models for non-uniform and transient environments: Part I: Local sensation of individual body parts", Building and Environment Volume 45, Issue 2, Pages 380-388, 2010.2」に開示されている。式(4-2)(4-3)は、「Satoru Takada, Sho Matsumoto, Takayuki Matsushita, "Prediction of whole-body thermal sensation in the non-steady state based on skin temperature", Building and Environment Volume 68, Pages 123-133, 2013.10」に開示されている。式(4-4)は、「森郁恵、鉾井修一、高田暁、田中宏明、「非定常状態における温冷感予測の実験的考察」、日本建築学会計画系論文集,No.563,pp.9-15,2003.1」に開示されている。式(4-5)は、「社団法人 空気調和・衛生工学会 「新版快適な温熱環境のメカニズム 豊かな生活空間をめざして」 丸善,2006」に開示されている。
Figure 0007182164000001
温冷感予測部144は、取得した当該出力パラメータの値の中から温冷感予測式で用いるパラメータの値を抽出し、抽出したパラメータの値を温冷感予測式に入力すればよい。例えば、部位の温度から温冷感を予測する温冷感予測式(例えば式(4-2))を用いる場合、温冷感予測部144は、第2演算部142によって演算された出力パラメータの値のうち、人物が対象空間2に入ってから所定時間経過後の部位の温度を用いればよい。部位の温度変化率から温冷感を予測する温冷感予測式を用いる場合、温冷感予測部144は、対象空間2に入ってからの経過時間ごとの出力パラメータの値から部位の温度変化率を演算し、当該温度変化率を温冷感予測式に入力すればよい。
[A2-9.記憶装置150]
記憶装置150は、各種のプログラム及び各種のデータを記憶する。例えば、記憶装置150は、対象熱分布Imgごとに、計測時刻と、表面温度αと、着衣量βと、人体サイズ情報γと、条件情報δと、温冷感εとを対応付けた履歴データ151を記憶する。
[A2-10.分布生成部160]
次に、図13を参照して、分布生成部160による人数分布162の生成方法について説明する。図13は、分布生成部によって生成された人数分布の具体例を示す図である。
分布生成部160は、対象空間2に人物が入り、熱分布取得部110が当該人物の対象熱分布Imgを取得する度に第2推定部140によって推定された温冷感の履歴から、温冷感ごとの人数分布162を生成する。
典型的には、分布生成部160は、履歴データ151のうち、現在から過去一定期間(たとえば、1時間)に算出された温冷感εを特定し、当該温冷感εを用いて人数分布162を生成する。これにより、現在から過去一定期間における温冷感εの人数分布162が生成される。生成された人数分布162は、支援情報生成部170に出力される。
[A2-11.支援情報生成部170]
支援情報生成部170は、人数分布162に基づいて、空調装置200の制御を支援するための支援情報172を生成する。支援情報172は、人数分布162のピークを「0:中立」に近づけるための情報であり、例えば、温度、湿度、風量、稼働台数などの推奨値を示す。生成された支援情報172は、空調制御部180に出力される。
例えば図13に示されるような人数分布162の場合、支援情報生成部170は、室内機200Aについて、現在の設定温度よりも所定値だけ低い設定温度を推奨する支援情報172を生成する。もしくは、支援情報生成部170は、送風機200Dについて、現在の送風量よりも所定値だけ多い送風量を推奨する支援情報172を生成してもよい。所定値は、人数分布162のピークの値に応じて決定される。
[A2-12.空調制御部180]
空調制御部180は、支援情報172を参照して、空調装置200を制御する。例えば、空調制御部180は、室内機200Aの設定温度を制御する。もしくは、空調制御部180は、換気装置の回転数またはオンオフを制御してもよい。
[A3.情報処理装置100の処理フロー]
図14及び図15を参照して、情報処理装置100の処理フローについて説明する。図14は、上述の履歴データ151(図2参照)を生成する処理の流れを示すフローチャートである。図15は、生成された履歴データ151を用いて空調装置200を制御する処理の流れを示すフローチャートである。図14及び図15に示される処理は、情報処理装置100がプログラムを実行することにより実現される。他の局面において、処理の一部または全部が、回路素子またはその他のハードウェアによって実行されてもよい。
[A3-1.検知履歴の生成フロー]
まず、図14を参照して、履歴データ151の生成フローについて説明する。ステップS1において、情報処理装置100は、測距センサ50の出力値の変動に基づいて、人物が対象空間2に入ったか否かを判断する。この判断手法は、[A2-1.熱分布取得部110]で説明した通りであるので、その説明については繰り返さない。人物が対象空間2に入ったと判断した場合(ステップS1においてYES)、情報処理装置100はステップS2の処理を実行する。そうでない場合には(ステップS1においてNO)、情報処理装置100は、再度ステップS1を実行する。
ステップS2において、情報処理装置100は、熱分布計測装置51から対象熱分布Imgを取得し、対象熱分布Imgに対する処理を行なう。
ステップS3において、情報処理装置100は、対象熱分布Imgに基づいて、複数の部分(Pa~Pg)の各々の表面温度αを測定する。測定された表面温度αは、記憶装置150に格納される。
ステップS4において、情報処理装置100は、対象熱分布Imgに基づいて、複数の部分(Pa~Pg)の各々の着衣量βを推定する。推定された着衣量βは、記憶装置150に格納される。
ステップS5において、情報処理装置100は、対象熱分布Imgに基づいて、人体サイズ(身長h、体重W及び体表面積S)を推定し、人体サイズ情報γを生成する。生成された人体サイズ情報γは、記憶装置150に格納される。
ステップS6において、情報処理装置100は、人体熱モデルと対象熱分布Imgから測定された表面温度αとを用いることにより、人物が対象空間2に入る前の変動パラメータ(例えば代謝量及び周囲の温度)の値を推定する。推定された変動パラメータの値を含む条件情報δは、記憶装置150に格納される。
ステップS7において、情報処理装置100は、ステップS4~6で推定された入力パラメータの値(以下、「入力パラメータの第1値」という)を人体熱モデルに入力することにより得られる出力パラメータの値(以下、「出力パラメータの第1値」という)を含む条件情報δを生成する。
ステップS8において、情報処理装置100は、条件情報δで示される出力パラメータの値を初期値とし、対象空間2に入ってからの入力パラメータの値(以下、「入力パラメータの第2値」という)を人体熱モデルに入力することにより、出力パラメータの値(以下、「出力パラメータの第2値」という)を演算する。
ステップS9において、情報処理装置100は、ステップS8で演算された出力パラメータの第2値に基づいて人物の温冷感εを推定する。推定された温冷感εは、記憶装置150に格納される。
このように、人物が対象空間2に入るたびに、ステップS2~S9が繰り返される。これにより、計測時刻と、表面温度αと、着衣量βと、人体サイズ情報γと、条件情報δと、温冷感εとを対応付けた履歴データ151が記憶装置150に蓄積される。
[A3-2.空調制御フロー]
次に、図15を参照して、履歴データ151を用いた空調制御フローについて説明する。ステップS11において、情報処理装置100は、規定タイミングが到来したか否かを判断する。一例として、規定タイミングは、予め定められた周期(たとえば、1時間ごと)で到来する。当該周期は、予め設定されていてもよいし、ユーザによって任意に設定されてもよい。情報処理装置100は、規定タイミングが到来したと判断した場合(ステップS11においてYES)、ステップS12を実行する。そうでない場合には(ステップS11においてNO)、情報処理装置100は、再度ステップS11を実行する。
ステップS12において、情報処理装置100は、履歴データ151に基づいて、温冷感ごとの人数分布162(図12参照)を生成する。
ステップS13において、情報処理装置100は、人数分布162に基づいて、空調装置200の制御を支援するための支援情報172を生成する。
ステップS14において、情報処理装置100は、生成された支援情報172に基づいて、空調装置200を制御する。
[A4.情報処理装置100のハードウェア構成]
図16を参照して、情報処理装置100のハードウェア構成の一例について説明する。図16は、情報処理装置100の主要なハードウェア構成を示すブロック図である。図16に示されるように、情報処理装置100は、制御装置101と、ROM(Read Only Memory)102と、RAM(Random Access Memory)103と、通信インターフェイス104と、表示インターフェイス105と、入力インターフェイス107と、記憶装置150とを含む。
制御装置101は、情報処理装置100を制御する。制御装置101は、たとえば、少なくとも1つの集積回路によって構成される。集積回路は、たとえば、少なくとも1つのCPU(Central Processing Unit)、少なくとも1つのASIC(Application Specific Integrated Circuit)、少なくとも1つのFPGA(Field Programmable Gate Array)、またはそれらの組み合わせなどによって構成される。
制御装置101は、情報処理装置100の情報処理プログラム155など各種プログラムを実行することで情報処理装置100を制御する。制御装置101は、情報処理プログラム155の実行命令を受け付けたことに基づいて、記憶装置150からROM102に情報処理プログラム155を読み出す。RAM103は、ワーキングメモリとして機能し、情報処理プログラム155の実行に必要な各種データを一時的に格納する。
情報処理装置100は、通信インターフェイス104を介して、外部の通信機器との間でデータをやり取りする。外部の通信機器は、たとえば、測距センサ50(図1参照)、熱分布計測装置51(図1参照)、温湿度センサ52,53(図1参照)、操作パネル54(図1参照)、空調装置200(図1参照)、サーバー(図示しない)、その他の通信端末などを含む。当該通信端末と情報処理装置100との間の通信は、無線通信で実現されてもよいし、有線通信で実現されてもよい。
表示インターフェイス105には、ディスプレイ106が接続され得る。表示インターフェイス105は、たとえば、HDMI(High-Definition Multimedia Interface)(登録商標)端子やVGA(Video Graphics Array)端子などである。表示インターフェイス105は、制御装置101などからの指令に従って、ディスプレイ106に対して、画像を表示するための画像信号を送出する。ディスプレイ106は、たとえば、液晶ディスプレイ、有機ELディスプレイ、またはその他の表示機器である。
入力インターフェイス107には、入力デバイス108が接続され得る。入力インターフェイス107は、たとえば、USB(Universal Serial Bus)端子である。入力インターフェイス107は、入力デバイス108からのユーザ操作を示す信号を受け付ける。入力デバイス108は、たとえば、マウス、キーボード、タッチパネル、またはユーザの操作を受け付けることが可能なその他の装置である。
記憶装置150は、たとえば、ハードディスクや外付けの記憶装置などの記憶媒体である。記憶装置150は、情報処理装置100の情報処理プログラム155、上述の履歴データ151(図2参照)、上述の相関関係152(図7参照)、上述の相関関係153(図12参照)などを格納する。これらの格納場所は、記憶装置150に限定されず、制御装置101の記憶領域(たとえば、キャッシュメモリなど)、ROM102、RAM103、外部機器(たとえば、サーバーや空調装置200)などに格納されていてもよい。
なお、情報処理プログラム155は、単体のプログラムとしてではなく、任意のプログラムの一部に組み込まれて提供されてもよい。この場合、本実施の形態に従う処理は、任意のプログラムと協働して実現される。このような一部のモジュールを含まないプログラムであっても、本実施の形態に従う情報処理プログラム155の趣旨を逸脱するものではない。さらに、情報処理プログラム155によって提供される機能の一部または全部は、専用のハードウェアによって実現されてもよい。さらに、少なくとも1つのサーバーが情報処理プログラム155の処理の一部を実行する所謂クラウドサービスのような形態で情報処理装置100が構成されてもよい。
<B.実施の形態2>
上記の実施の形態1では、対象熱分布Imgにおける領域Rの温度分布に基づいて着衣量βが推定されるものとした。しかしながら、着衣量βは、変動パラメータの1つとして条件推定部によって推定されてもよい。
図17は、実施の形態2に係る情報処理装置の機能構成の一例を示す図である。実施の形態2に係る情報処理装置100Aは、図2に示す情報処理装置100と比較して、第1推定部120の代わりに第1推定部120Aを備える点で相違する。第1推定部120Aは、図2に示す第1推定部120と比較して、着衣量推定部122及び条件推定部126の代わりに衣服形態推定部123及び条件推定部126Aを備える点で相違する。条件推定部126Aは、図2に示す条件推定部126と比較して、第1演算部127及び条件出力部128の代わりに第1演算部127A及び条件出力部128Aを含む点で相違する。
衣服形態推定部123は、対象熱分布Imgの領域Rの温度分布に基づいて、人物が着けている衣服の形態を推定する。衣服形態推定部123は、推定結果を第1演算部127Aに出力する。
例えば、衣服形態推定部123は、腕部Pcの表面温度が体幹部Pbの表面温度よりも前頭部Paの表面温度に近い場合に、衣服の形態が「半袖」であると推定すればよい。逆に、衣服形態推定部123は、腕部Pcの表面温度が前頭部Paの表面温度よりも体幹部Pbの表面温度に近い場合に、衣服の形態が「長袖」であると推定すればよい。
さらに、衣服形態推定部123は、脚部Pfの表面温度が体幹部Pbの表面温度よりも前頭部Paの表面温度に近い場合に、衣服の形態が「半ズボン(または短スカート)」であると推定すればよい。逆に、衣服形態推定部123は、腕部Pcの表面温度が前頭部Paの表面温度よりも体幹部Pbの表面温度に近い場合に、衣服の形態が「長ズボン(または長スカート)」であると推定すればよい。
第1演算部127Aは、上記の第1演算部127と同様に、複数の仮想パターンの各々について、当該仮想パターンに対応する入力パラメータの値を人体熱モデルに入力し、複数の部分(Pa~Ph)の表面温度α’(a)~α’(h)をそれぞれ演算する。上述したように、複数の仮想パターンは、少なくとも1つの変動パラメータについて互いに異なる値を有する。本実施の形態2では、変動パラメータは、少なくとも着衣量を含む。
例えば、変動パラメータは、着衣量と代謝量とを含む。着衣量として想定される値の個数がN1個であり、代謝量として想定される値の個数がN2個である場合、N1×N2個の仮想パターンが予め生成される。
もしくは、変動パラメータは、着衣量と代謝量と人物の周囲の温度とを含む。着衣量として想定される値の個数がN1個であり、代謝量として想定される値の個数がN2個であり、周囲の温度として取り得る値の個数がN3個である場合、N1×N2×N3個の仮想パターンが予め生成される。
図18は、夏期において想定される7個の着衣パターンA1~A7を示す図である。図19は、中間期(春期及び秋期)において想定される8個の着衣パターンB1~B8を示す図である。図20は、冬期において想定される8個の着衣パターンC1~C8を示す図である。なお、着衣パターンの個数は、7,8個に限定されず、2~6個または8個以上であってもよい。
夏期である場合、複数の仮想パターンの各々は、図18に示す着衣パターンA1~A7のいずれかの着衣量に対応する。中間期である場合、複数の仮想パターンの各々は、図19に示す着衣パターンB1~B8のいずれかの着衣量に対応する。冬期である場合、複数の仮想パターンの各々は、図20に示す着衣パターンC1~C8のいずれかの着衣量に対応する。なお、1年を夏期、中間期及び冬期の3つの期間に分けることに限定されない。例えば、中間期を第1~第3中間期に分割し、1年を5つの期間に分けてもよい。第1中間期である場合、複数の仮想パターンの各々は、図18に示す着衣パターンA1~A7及び図19に示す着衣パターンB1~B8のいずれかの着衣量に対応してもよい。第2中間期である場合、複数の仮想パターンの各々は、図19に示す着衣パターンB1~B8のいずれかの着衣量に対応してもよい。第3中間期である場合、複数の仮想パターンの各々は、図19に示す着衣パターンB1~B8及び図20に示す着衣パターンC1~C8及びのいずれかの着衣量に対応してもよい。現在がいずれの期間に属するかの判断は、例えば現在の日付、外気温などを用いて行なわれる。
仮想パターンの個数が多い場合、第1演算部127Aの演算時間が長くなる。そこで、第1演算部127Aは、衣服形態推定部123の推定結果に基づいて、仮想パターンの個数を減らす。例えば、第1演算部127Aは、推定結果が「半袖」を示す場合、「長袖」を含む着衣パターンに対応する仮想パターンを演算対象から除外する。第1演算部127Aは、推定結果が「半ズボン」を示す場合、「長ズボン」を含む着衣パターンに対応する仮想パターンを演算対象から除外する。
第1演算部127Aは、演算対象となる複数の仮想パターンの各々について、当該仮想パターンに対応する入力パラメータの値を人体熱モデルに入力することにより、複数の部分(Pa~Ph)の表面温度α’(a)~α’(h)をそれぞれ演算する。
第1演算部127Aは、複数の入力パラメータのうち変動パラメータ(例えば、着衣量、代謝量及び人物の周囲の温度)以外の入力パラメータについて、複数の仮想パターンで共通の値を用いればよい。具体的には、第1演算部127Aは、複数の仮想パターンの全てにおいて、人体サイズ推定部124によって推定された体重W及び体表面積Sを用いる。また、第1演算部127Aは、複数の仮想パターンの全てにおいて、対象空間2外の環境に応じて定められる湿度、風速及び放射熱量の値を用いる。例えば、第1演算部127Aは、温湿度センサ53によって検知された湿度計測値を用いてもよい。第1演算部127Aは、複数の仮想パターンの全てにおいて、外部サーバーから配信される気象情報から定められる風速及び放射熱量を用いてもよい。さらに、変動パラメータに人物の周囲の温度が含まれない場合、第1演算部127Aは、複数の仮想パターンの全てにおいて、対象空間2外の環境に応じて定められる温度の値(例えば、温湿度センサ53によって検知された温度計測値)を用いてもよい。
条件出力部128Aは、第1演算部127Aによって算出された複数の部分(Pa~Pg)の表面温度α’と対象熱分布Imgにおける領域Rの温度分布との比較結果に基づいて、人物が対象空間2に入る前の当該人物の条件を推定する。
具体的には、条件出力部128Aは、複数の仮想パターンの中から、表面温度測定部114によって測定された複数の部分(Pa~Pg)の表面温度αに最も近い表面温度α’に対応する仮想パターンを抽出する。条件出力部128Aは、抽出された仮想パターンに対応する着衣量の値を、対象空間2に入る人物の着衣量の値として推定する。条件出力部128Aは、抽出された仮想パターンに対応する代謝量の値を、対象空間2に入る前の人物の代謝量の値として推定する。さらに、条件出力部128Aは、抽出された仮想パターンに対応する温度の値を、対象空間に入る前の人物の周囲の温度の値として推定する。
条件出力部128Aは、抽出された仮想パターンに対応する変動パラメータ(例えば、着衣量、周囲の温度及び代謝量)及び環境パラメータ(温度、湿度、風速及び放射熱量)の値を人体熱モデルに入力することにより得られる出力パラメータの値を含む条件情報δを第2推定部140に出力する。さらに、条件出力部128Aは、推定した着衣量βを条件情報δに含ませる。
このように、本実施の形態2によれば、想定される着衣量の複数の値の各々を人体熱モデルに入力することにより得られる複数の部分(Pa~Pg)の表面温度α’と、対象熱分布Imgから測定される複数の部分(Pa~Pg)の表面温度αとが比較される。そして、表面温度αに最も近い表面温度α’に対応する着衣量が、対象空間2に入る人物の着衣量として推定される。これにより、人物の着衣量の推定精度が向上する。
<C.変形例>
[C1.変形例1]
上記の説明では、情報処理装置100は、空調制御部180を備えるものとした。しかしながら、空調制御部180は、空調装置200に備えられていてもよい。この場合、空調装置200は、情報処理装置100から支援情報172を取得し、支援情報172に基づいた制御を行なう。
[C2.変形例2]
情報処理装置100,100Aは、空調制御部180の代わりに、支援情報172を外部のディスプレイ106(図15参照)に出力する出力部を備えてもよい。もしくは、情報処理装置100,100Aは、空調制御部180の代わりに、通信接続された外部の端末装置に支援情報172を出力する出力部を備えてもよい。これにより、対象空間2の空調管理の担当者は、ディスプレイ106または端末装置に表示された支援情報172を確認し、支援情報172に従って空調装置200を制御することができる。その結果、特定多数の人物が出入りするような対象空間2であっても、人物の状態に応じて対象空間2内の環境を快適に維持される。
[C3.変形例3]
出入口4が入口専用である場合、熱分布取得部110は、測距センサ50の出力値が予め定められた距離に到達したときに熱分布計測装置51によって計測された熱分布を対象熱分布Imgとして取得すればよい。
[C4.変形例4]
相関関係153は、標準体型に基づいて予め作成される。そのため、第1演算部127及び第2演算部142は、標準体型との差が大きい人物について、出力パラメータの値を精度良く演算できない可能性がある。したがって、表面温度測定部114、着衣量推定部122(または衣服形態推定部123)及び人体サイズ推定部124は、領域Rのサイズ(画素数)が所定範囲内である対象熱分布Imgのみ処理対象としてもよい。すなわち、領域Rのサイズが所定範囲外である対象熱分布Imgは、処理対象から除外されてもよい。例えば、極端に太った人物の対象熱分布Img及び子供の対象熱分布Imgは、処理対象から除外されてもよい。
<D.まとめ>
以上のように、情報処理装置100,100Aは、対象空間2に入る人物を熱分布計測装置51が計測することにより生成される対象熱分布Imgを取得する熱分布取得部110を備える。情報処理装置100,100Aは、人体の熱に影響を及ぼす入力パラメータの値を受けて人体の熱に関する出力パラメータの値を出力する人体熱モデルと対象熱分布とを用いることにより、人物が対象空間2に入る前の入力パラメータの第1値を推定する第1推定部120,120Aを備える。第1推定部120は、着衣量推定部122、人体サイズ推定部124及び条件推定部126により構成される。第1推定部120Aは、衣服形態推定部123、人体サイズ推定部124及び条件推定部126Aにより構成される。情報処理装置100,100Aは、人体熱モデルを用いて、対象空間2に入ってからの人物の温冷感を推定する第2推定部としての第2推定部140を備える。情報処理装置100,100Aは、熱分布取得部110が対象熱分布を取得する度に第2推定部140によって推定された温冷感εを所定期間において蓄積し、当該蓄積結果から温冷感ごとの人数分布162を生成するための分布生成部160を備える。情報処理装置100,100Aは、人数分布に基づいて、空調装置200の制御を支援するための支援情報を生成するための支援情報生成部170を備える。第2推定部140は、第1推定部により推定された入力パラメータの第1値を人体熱モデルに入力することにより得られる出力パラメータの第1値を初期値として、対象空間2に入ってからの入力パラメータの第2値を人体熱モデルに入力することにより、出力パラメータの第2値を演算する。第2推定部140は、出力パラメータの第2値に基づいて人物の温冷感を推定する。
上記の構成によれば、情報処理装置100,100Aは、対象空間2に入る前の人物の条件を推定し、当該条件を考慮して対象空間2に入った後の温冷感を推定できる。すなわち、人物の状態に応じた温冷感が推定される。そして、温冷感の人数分布162に基づいて空調装置200を制御するための支援情報172が生成される。温冷感は、対象空間2に入る人物の熱分布に基づいて推定される。そのため、不特定多数の人物が出入りするような対象空間2であっても、支援情報172を参考にすることにより、過度の冷房や暖房が抑制され、空調装置200の消費電力が削減される。
今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
1 空調システム、2 対象空間、4 出入口、31~33 衣服、31’~33’ 空気層、50 測距センサ、51 熱分布計測装置、52,53,53A,53B 温湿度センサ、54 操作パネル、100,100A 情報処理装置、101 制御装置、102 ROM、103 RAM、104 通信インターフェイス、105 表示インターフェイス、106 ディスプレイ、107 入力インターフェイス、108 入力デバイス、110 熱分布取得部、112 熱分布処理部、114 表面温度測定部、120,120A 第1推定部、122 着衣量推定部、123 衣服形態推定部、124 人体サイズ推定部、126,126A 条件推定部、127,127A 第1演算部、128,128A 条件出力部、140 第2推定部、142 第2演算部、144 温冷感予測部、150 記憶装置、151 履歴データ、152,153 相関関係、155 情報処理プログラム、160 分布生成部、162 人数分布、170 支援情報生成部、172 支援情報、180 空調制御部、200 空調装置、200A 室内機、200B 換気装置、200C 室外機、200D 送風機。

Claims (10)

  1. 対象空間に入る人物を熱分布計測装置が計測することにより生成される対象熱分布を取得するための取得部と、
    人体の熱に影響を及ぼす入力パラメータの値を受けて人体の熱に関する出力パラメータの値を出力する人体熱モデルと前記対象熱分布とを用いることにより、前記人物が前記対象空間に入る前の前記入力パラメータの第1値を推定するための第1推定部と、
    前記人体熱モデルを用いて、前記対象空間に入ってからの前記人物の温冷感を推定するための第2推定部と、
    前記取得部が前記対象熱分布を取得する度に前記第2推定部によって推定された温冷感を所定期間において蓄積し、当該蓄積結果から温冷感ごとの人数分布を生成するための分布生成部と、
    前記人数分布に基づいて、空調装置の制御を支援するための支援情報を生成するための情報生成部とを備え、
    前記第2推定部は、
    前記第1推定部により推定された前記入力パラメータの前記第1値を前記人体熱モデルに入力することにより得られる前記出力パラメータの第1値を初期値として、前記対象空間に入ってからの前記入力パラメータの第2値を前記人体熱モデルに入力することにより、前記出力パラメータの第2値を演算し、
    前記出力パラメータの前記第2値に基づいて前記人物の温冷感を推定する、情報処理装置。
  2. 前記入力パラメータは、前記人物の着衣量、代謝量、体重及び体表面積を含み、
    前記出力パラメータは、着衣を含む前記人物の複数の部分の表面温度を含み、
    前記第1推定部は、
    前記対象熱分布における前記人物に対応する領域のサイズに基づいて、前記人物の体重及び体表面積の値を推定し、
    前記対象熱分布における前記領域の温度分布に基づいて、前記人物の着衣量の値を推定し、
    推定された体重、体表面積及び着衣量の値と、複数の仮想パターンの各々に対応する代謝量の値とを前記人体熱モデルに入力する入力処理により得られる前記複数の部分の表面温度と前記領域の温度分布とを比較し、
    前記複数の仮想パターンの中から、前記領域の温度分布に最も近い前記複数の部分の表面温度に対応する仮想パターンを抽出し、
    抽出された仮想パターンに対応する代謝量の値を、前記対象空間に入る前の前記人物の代謝量の値として推定する、請求項1に記載の情報処理装置。
  3. 前記入力パラメータは、前記人物の着衣量、代謝量、体重及び体表面積を含み、
    前記出力パラメータは、着衣を含む前記人物の複数の部分の表面温度を含み、
    前記第1推定部は、
    前記対象熱分布における前記人物に対応する領域のサイズに基づいて、前記人物の体重及び体表面積の値を推定し、
    推定された体重及び体表面積の値と、複数の仮想パターンの各々に対応する、着衣量の値及び代謝量の値とを前記人体熱モデルに入力する入力処理により得られる前記複数の部分の表面温度と前記領域の温度分布とを比較し、
    前記複数の仮想パターンの中から、前記領域の温度分布に最も近い前記複数の部分の表面温度に対応する仮想パターンを抽出し、
    抽出された仮想パターンに対応する着衣量の値を前記人物の着衣量の値として推定し、
    前記抽出された仮想パターンに対応する代謝量の値を前記対象空間に入る前の前記人物の代謝量の値として推定する、請求項1に記載の情報処理装置。
  4. 前記入力パラメータは、前記人物の周囲の温度、湿度、風速及び放射熱量をさらに含み、
    前記第1推定部は、
    前記入力処理において、さらに、前記対象空間外の環境に応じて定められる湿度、風速及び放射熱量の値と、前記複数の仮想パターンの各々に対応する温度の値とを前記人体熱モデルに入力し、
    前記抽出された仮想パターンに対応する温度の値を前記対象空間に入る前の前記人物の周囲の温度の値として推定する、請求項2または3に記載の情報処理装置。
  5. 前記入力パラメータの前記第2値は、前記第1推定部によって推定された前記人物の体重、体表面積及び着衣量の値と、前記対象空間内で想定される身体活動から定められる代謝量の値とを含む、請求項2または3に記載の情報処理装置。
  6. 前記入力パラメータの前記第2値は、前記第1推定部によって推定された前記人物の体重、体表面積及び着衣量の値と、前記対象空間内で想定される身体活動から定められる代謝量の値と、前記対象空間内の環境に応じて定められる温度、湿度、風速及び放射熱量の値とを含む、請求項4に記載の情報処理装置。
  7. 前記取得部は、
    前記人物までの距離を計測するための測距センサの出力値を受け、
    前記出力値が予め定められた距離に到達したときに前記熱分布計測装置によって計測された熱分布を前記対象熱分布として取得する、請求項1から6のいずれか1項に記載の情報処理装置。
  8. 前記支援情報に基づいて、前記空調装置を制御するための空調制御部をさらに備える、請求項1から7のいずれか1項に記載の情報処理装置。
  9. 対象空間に入る人物を熱分布計測装置が計測することにより生成される対象熱分布を取得するステップと、
    人体の熱に影響を及ぼす入力パラメータの値を受けて人体の熱に関する出力パラメータの値を出力する人体熱モデルと前記対象熱分布とを用いることにより、前記人物が前記対象空間に入る前の前記入力パラメータの第1値を推定するステップと、
    前記人体熱モデルを用いて、前記対象空間に入ってからの前記人物の温冷感を推定するステップと、
    前記対象熱分布が取得される度に推定された温冷感を所定期間において蓄積し、当該蓄積結果から温冷感ごとの人数分布を生成するステップと、
    前記人数分布に基づいて、空調装置の制御を支援するための支援情報を生成するステップとを備え、
    前記人物の温冷感を推定するステップは、
    前記入力パラメータの前記第1値を前記人体熱モデルに入力することにより得られる前記出力パラメータの第1値を初期値として、前記対象空間に入ってからの前記入力パラメータの第2値を前記人体熱モデルに入力することにより、前記出力パラメータの第2値を演算するステップと、
    前記出力パラメータの前記第2値に基づいて前記人物の温冷感を推定するステップとを含む、情報処理方法。
  10. 対象空間に入る人物を熱分布計測装置が計測することにより生成される対象熱分布を取得するステップと、
    人体の熱に影響を及ぼす入力パラメータの値を受けて人体の熱に関する出力パラメータの値を出力する人体熱モデルと前記対象熱分布とを用いることにより、前記人物が前記対象空間に入る前の前記入力パラメータの第1値を推定するステップと、
    前記人体熱モデルを用いて、前記対象空間に入ってからの前記人物の温冷感を推定するステップと、
    前記対象熱分布が取得される度に推定された温冷感を所定期間において蓄積し、当該蓄積結果から温冷感ごとの人数分布を生成するステップと、
    前記人数分布に基づいて、空調装置の制御を支援するための支援情報を生成するステップとをコンピュータに実行させ、
    前記人物の温冷感を推定するステップは、
    前記入力パラメータの前記第1値を前記人体熱モデルに入力することにより得られる前記出力パラメータの第1値を初期値として、前記対象空間に入ってからの前記入力パラメータの第2値を前記人体熱モデルに入力することにより、前記出力パラメータの第2値を演算するステップと、
    前記出力パラメータの前記第2値に基づいて前記人物の温冷感を推定するステップとを含む、プログラム。
JP2019006788A 2019-01-18 2019-01-18 情報処理装置 Active JP7182164B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019006788A JP7182164B2 (ja) 2019-01-18 2019-01-18 情報処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019006788A JP7182164B2 (ja) 2019-01-18 2019-01-18 情報処理装置

Publications (2)

Publication Number Publication Date
JP2020115073A JP2020115073A (ja) 2020-07-30
JP7182164B2 true JP7182164B2 (ja) 2022-12-02

Family

ID=71778457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019006788A Active JP7182164B2 (ja) 2019-01-18 2019-01-18 情報処理装置

Country Status (1)

Country Link
JP (1) JP7182164B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7127784B2 (ja) * 2020-11-04 2022-08-30 ダイキン工業株式会社 温度負荷軽減装置、温度負荷軽減方法、及びコンピュータプログラム
JP7511196B2 (ja) 2021-02-17 2024-07-05 パナソニックIpマネジメント株式会社 温冷感推定装置、空調装置、空調システム、温冷感推定方法及びプログラム
CN113465137A (zh) * 2021-04-29 2021-10-01 青岛海尔空调器有限总公司 空调智能控制方法、装置、电子设备和存储介质
WO2023007977A1 (ja) * 2021-07-30 2023-02-02 パナソニックIpマネジメント株式会社 環境制御システム、環境制御方法及びプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022238A (ja) 2000-07-07 2002-01-23 Toyota Central Res & Dev Lab Inc 快適感評価装置及び空調制御装置
JP2017003195A (ja) 2015-06-10 2017-01-05 パナソニック株式会社 空気調和機、センサシステムおよびその温冷感推定方法
JP2017032268A (ja) 2015-07-31 2017-02-09 パナソニックIpマネジメント株式会社 空調制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022238A (ja) 2000-07-07 2002-01-23 Toyota Central Res & Dev Lab Inc 快適感評価装置及び空調制御装置
JP2017003195A (ja) 2015-06-10 2017-01-05 パナソニック株式会社 空気調和機、センサシステムおよびその温冷感推定方法
JP2017032268A (ja) 2015-07-31 2017-02-09 パナソニックIpマネジメント株式会社 空調制御装置

Also Published As

Publication number Publication date
JP2020115073A (ja) 2020-07-30

Similar Documents

Publication Publication Date Title
JP7182164B2 (ja) 情報処理装置
CN213501729U (zh) 用于机动车辆乘客舱的热管理系统
Luo et al. Thermal comfort evaluated for combinations of energy-efficient personal heating and cooling devices
Schellen et al. The use of a thermophysiological model in the built environment to predict thermal sensation: coupling with the indoor environment and thermal sensation
Choi et al. Investigation of the possibility of the use of heart rate as a human factor for thermal sensation models
Foda et al. Design strategy for maximizing the energy-efficiency of a localized floor-heating system using a thermal manikin with human thermoregulatory control
He et al. Control behaviors and thermal comfort in a shared room with desk fans and adjustable thermostat
Arens et al. Partial-and whole-body thermal sensation and comfort—Part I: Uniform environmental conditions
US20160363340A1 (en) Air conditioner, sensor system, and thermal sensation estimation method
Wang et al. Experimental comparison of local direct heating to improve thermal comfort of workers
Cheong et al. Local thermal sensation and comfort study in a field environment chamber served by displacement ventilation system in the tropics
Lundgren-Kownacki et al. Human responses in heat–comparison of the Predicted Heat Strain and the Fiala multi-node model for a case of intermittent work
US20220009307A1 (en) Thermal management system for a motor-vehicle passenger compartment
Huang et al. Applicability of whole-body heat balance models for evaluating thermal sensation under non-uniform air movement in warm environments
Wang et al. Study on clothing insulation distribution between half-bodies and its effects on thermal comfort in cold environments
Streblow Thermal sensation and comfort model for inhomogeneous indoor environments
KR102703954B1 (ko) 자동차 승객실을 위한 열 관리 시스템
Qingqing et al. Effect of temperature and clothing thermal resistance on human sweat at low activity levels
Wang et al. Experimental study on local floor heating mats to improve thermal comfort of workers in cold environments
JP2013088105A (ja) 空調制御システム
Liu et al. Predicted percentage dissatisfied with vertical temperature gradient
EP3502582B1 (en) Method for controlling a hvac-apparatus, control unit and use of a control unit
Cheong et al. Assessment of thermal environment using a thermal manikin in a field environment chamber served by displacement ventilation system
Rewitz et al. Influence of gender, age and BMI on human physiological response and thermal sensation for transient indoor environments with displacement ventilation
Gao et al. Human thermal comfort under lateral radiant asymmetries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211222

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221111

R150 Certificate of patent or registration of utility model

Ref document number: 7182164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150