WO2020162311A1 - 放射化抑制構造、及び壁体管理方法 - Google Patents
放射化抑制構造、及び壁体管理方法 Download PDFInfo
- Publication number
- WO2020162311A1 WO2020162311A1 PCT/JP2020/003391 JP2020003391W WO2020162311A1 WO 2020162311 A1 WO2020162311 A1 WO 2020162311A1 JP 2020003391 W JP2020003391 W JP 2020003391W WO 2020162311 A1 WO2020162311 A1 WO 2020162311A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shield
- activation
- inspection
- wall
- plate
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F1/00—Shielding characterised by the composition of the materials
- G21F1/02—Selection of uniform shielding materials
- G21F1/10—Organic substances; Dispersions in organic carriers
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F3/00—Shielding characterised by its physical form, e.g. granules, or shape of the material
Definitions
- the present invention relates to a technique for suppressing activation of a wall in a radiological facility such as a neutron capture therapy (BNCT: Boron Neutron Capture Therapy) that emits neutrons, or a room such as a research facility.
- BNCT Boron Neutron Capture Therapy
- the present invention relates to an activation suppression structure including a shield including wood and a boron-containing plate, and a method for controlling activation of a wall provided with this structure.
- Neutron capture therapy is a treatment method in which a boron compound is taken up by cancer cells and the cancer cells are destroyed by a nuclear reaction between the boron and neutrons.
- Boron particularly 10B has the property of reacting strongly with low-energy neutrons such as thermal neutrons, and as a result of fission reaction between boron and neutrons in cancer cells, a particle beam (alpha ray) is generated, and this particle The lines destroy the cancer cells.
- the range of particle beams generated by the nuclear fission reaction is about the diameter of cancer cells (about 10 to 14 ⁇ m), and does not affect normal cells other than cancer cells.
- Neutron capture therapy is also called "cancer cell-selective therapy" because conventional treatment with X-rays and gamma rays causes normal cells to undergo the same physical damage as cancer cells. At present, it is considered to be the most ideal treatment method for treatment.
- neutron capture therapy a patient is irradiated with neutrons using an irradiator or accelerator, but of course this irradiation is carried out in a room closed by walls etc. so that neutrons do not leak outside.
- irradiated neutron rays are absorbed by the patient, and partially absorbed by the wall and the like. Since neutrons do not have an electric charge, they easily reach the atomic nuclei in a substance, and low-energy neutrons that are suitably used in neutron capture therapy have a remarkable absorption phenomenon. And, as a result of absorbing neutrons, a part of the material forming the wall may cause so-called activation phenomenon in which stable isotopes become radioactive isotopes.
- the invention which suppresses the activation of the concrete wall body is disclosed by the neutron shielding structure which consists of the shielding body which consists of boron containing resin, and attenuation space.
- Patent Document 1 absorbs neutrons with a shield (containing boron) installed indoors, and the neutrons that have passed through the shield are attenuated spaces (a space formed between the shield and the wall). ) Is used to suppress the activation of the concrete wall.
- Patent Document 1 can also be expected to have an extremely high activation suppression effect, but when the inventors of the present application conducted research and development in search of a higher activation suppression effect, wood was used as the shield. Have found that is effective. Wood, especially wood with a large specific gravity such as purple heart and ipe (hereinafter referred to as “hard wood”), contains a large amount of hydrogen. A substance containing a large amount of hydrogen has a high ability to slow down fast neutrons, and the slowed down neutrons reach thermal equilibrium with the surroundings to become thermal neutrons (so-called elastic scattering).
- An object of the present invention is to solve the problem of the conventional technique, that is, to suppress the activation of the wall in the neutron generation chamber (the chamber in which neutrons are generated) with a higher effect than the conventional technique.
- the object of the present invention is to provide a structure capable of suppressing activation.
- Another object of the present invention is to provide a technique capable of confirming the activation status of the wall even after the activation suppression measures.
- the present invention utilizes wood containing a large amount of hydrogen and a member containing a boron compound such as boron carbide to suppress activation of the wall in the neutron generation chamber, and further, a first shield. It was made paying attention to the point that the second shield is installed and the necessity of replacement of the second shield is determined by evaluating the presence or absence of activation of the wall based on the measurement result of the measuring element. , Is based on an unprecedented idea.
- the activation suppression structure of the present invention is a structure that suppresses the activation of the wall that closes the chamber where neutrons are generated, and includes the first shield that is the intermediate plate.
- a plate-shaped member made of wood is used as the intermediate plate. Then, the first shield is installed on the front surface of the wall body.
- the activation suppression structure of the present invention can also be provided with a first shield in which a surface plate and an intermediate plate are laminated.
- a plate-shaped member is used as the surface plate.
- the first shield is installed on the front surface of the wall body so that the surface plate is on the indoor side.
- the activation suppression structure of the present invention may be provided with a first shield body in which an intermediate plate and a back plate are laminated.
- the back plate is a thin film (or plate) member containing a boron compound such as boron carbide.
- the first shield is installed on the front surface of the wall body with the back plate facing the wall body.
- the activation suppressing structure of the present invention may be a structure further including a void portion provided between the first shield and the wall.
- the activation suppression structure of the present invention may be a structure further including a second shield arranged between the void and the wall.
- the second shield is a plate-shaped member and is installed so that it can be replaced.
- a measurement element for evaluating the degree of activation is installed on the indoor surface of the second shield. ..
- the activation suppression structure of the present invention can also be a structure having an inspection hole and a plurality of inspection cores.
- the inspection hole is formed by penetrating the second shield and further in the thickness direction of the wall body, and the inspection core is formed of the same material as that of the wall body.
- the walls are arranged side by side in the thickness direction.
- the wall management method of the present invention is a method for evaluating activation of a wall on which an activation suppression structure is installed, and is a method including an activation evaluation step and a replacement determination step.
- this activation evaluation step the presence or absence of activation of the wall body is evaluated based on the measurement result of the measuring element, and in the replacement determination step, it is necessary to replace the second shield according to the evaluation result of the activation evaluation step. To judge.
- the wall management method of the present invention may be a method further including a core inspection step.
- this core inspection step when the wall body is evaluated to have been activated, the inspection core is extracted and the extracted inspection core is inspected.
- the replacement determination step it is determined whether or not the second shield needs to be replaced according to the evaluation result of the activation evaluation step and the inspection result of the core inspection step.
- the activation suppression structure and the wall body management method of the present invention have the following effects. (1) By changing neutrons into thermal neutrons when passing through wood containing a large amount of hydrogen and absorbing the thermal neutrons with a boron-containing shield, the wall body is more effective than the conventional technique. Can be suppressed. As a result, it is possible to surely avoid unnecessary exposure of the person in the neutron generation chamber, and to suppress the discharge of radioactive waste as much as possible. (2) The degree of activation can be confirmed at any timing even after the activation suppressing structure is installed, and the second shield can be replaced before activation. This can prevent the second shield from becoming radioactive waste. (3) It is possible to provide clean medical facilities, research facilities, inspection facilities, industrial facilities, etc. that have high cost rationality throughout the life cycle and do not generate radioactive waste.
- FIG. 4 is a step diagram showing main steps of the wall body management method of the present invention.
- FIG. 1 is a plan view showing a situation in which the activation suppression structure 100 of the present invention is installed in a neutron generation chamber.
- the neutron generation chamber shown in this figure is closed (closed) with a concrete wall (hereinafter simply referred to as "concrete wall CW"), and an accelerator ND for generating neutrons is installed in the chamber.
- concrete wall CW concrete wall
- accelerator ND for generating neutrons
- the first shield 110 is installed on the indoor side (front surface) of the concrete wall CW, in other words, so as to cover the surface of the concrete wall CW.
- the structure Further, in the activation suppression structure 100, the first shield 110 is installed after securing a predetermined distance from the surface of the concrete wall CW, that is, the space (between the concrete wall CW and the first shield 110 ( Hereinafter, the structure may be provided with a "void 120". Further, as shown in FIG. 1, the second shield 130 may be installed between the concrete wall CW and the void 120.
- the first shield 110 includes wood (for example, a hardboard) and a boron compound-containing member such as boron carbide, attenuates neutrons by the wood, and further converts the neutrons into thermal neutrons when passing through the wood. By changing and causing the thermal neutrons to be absorbed by boron, the neutrons reaching the concrete wall CW are significantly reduced.
- the void 120 has a function of attenuating the energy of neutrons by ensuring a predetermined distance until reaching the concrete wall CW.
- the second shield 130 absorbs neutrons reaching the concrete wall CW.
- the second shield 130 is installed so that it can be easily replaced, and it is planned to replace it with a new second shield 130 when it is confirmed that activation has progressed in the future. It also functions as a protective material for CW.
- the wall management method of the present invention is a management method performed on the activation suppression structure 100 of the present invention. Therefore, first, the activation suppression structure 100 of the present invention will be described, and then the wall management of the present invention. The method will be described.
- the activation suppression structure 100 of the present invention has a form in which the first shield 110 is directly installed on the surface of the concrete wall CW (hereinafter, referred to as “first embodiment”), and a concrete wall.
- first embodiment the first shield 110
- second embodiment A mode in which the void 120 and the first shield 110 are installed on the front surface of the CW
- second embodiment the second shield 130
- the void 120 the front surface of the concrete wall CW.
- It can be roughly classified into a mode in which the first shield 110 is installed (hereinafter, referred to as a “third embodiment”).
- each embodiment will be described in order.
- FIG. 2 is a cross-sectional view showing the activation suppression structure 100 according to the first embodiment, and is a cross-sectional view of the concrete wall body CW forming the floor surface taken along a vertical plane.
- the first shield 110 is installed on the upper surface of the concrete wall body CW forming the floor surface, but the activation suppression structure 100 of the present invention forms not only the floor surface but also the ceiling surface and side surfaces. It is also possible to adopt a structure in which the first shield 110 is installed on the front surface of the concrete wall body CW.
- the first shield 110 includes an intermediate plate 112, and may have a laminated structure of a surface plate 111 and an intermediate plate 112, or as shown in FIG. 2, the surface plate 111, the intermediate plate 112, and the back plate 113.
- the plate-shaped member may have a structure in which the surface area is extremely large as compared with the thickness dimension (vertical dimension in FIG. 2).
- the surface plate 111 is a plate-shaped member made of gypsum plaster board or dolomite plaster board
- the intermediate plate 112 is a plate-shaped wooden member made of hard wood such as purple heart or ipe.
- the reason why the hard wood or the like is used as the intermediate plate 112 is that it contains a large amount of hydrogen for elastically scattering neutrons, and therefore has a considerable strength (shearing force, compressive force, tensile force) as the first shield 110.
- Strength The intermediate plate 112 may be a member having a higher strength than the surface plate 111 or may be a member having a lower strength than the surface plate 111.
- the surface plate 111 of the first shield 110 may use a quasi-incombustible material or an incombustible material.
- the one back plate 113 is a thin film-shaped or plate-shaped member made of a boron-containing resin, and for example, a member formed by molding a resin containing B4C can be used.
- the resin material containing boron is not limited to the B4C resin, and other resin materials such as a member in which boric anhydride is mixed in the resin and a member in which powdered olivine is mixed in the resin are used as the back plate 113. Can also be used as.
- wood containing a large amount of hydrogen can attenuate neutrons.
- the intermediate plate 112 alone has an effect of attenuating neutrons, and in the case where a small amount of neutrons are targeted, activation of the concrete wall CW can be suppressed. Therefore, when the activation suppressing structure 100 is installed in the neutron generation chamber where a small amount of neutrons are expected to be generated, the first shield 110 without the back plate 113, that is, the first shield 110 including the front plate 111 and the intermediate plate 112 is used. The shield 110 or the first shield 110 including only the intermediate plate 112 can be used.
- the first shield 110 is installed using screws, nails, or an adhesive so that the front plate 111 is on the indoor side and the back plate 113 is on the concrete wall CW side. ..
- the neutrons that have reached the intermediate plate 112 through the surface plate 111 are decelerated by the large amount of hydrogen contained in the hardwood and the decelerated neutrons reach thermal equilibrium with the surroundings and become thermal neutrons (so-called elastic scattering).
- the thermal neutrons that reach the back plate 113 are absorbed by boron, so that the amount of neutrons that reach the concrete wall body CW is significantly suppressed, that is, activation of the concrete wall body CW is suppressed. ..
- FIG. 3 is a cross-sectional view showing the activation suppression structure 100 according to the second embodiment, and is a cross-sectional view of the concrete wall body CW forming the floor surface taken along a vertical plane.
- the activation suppression structure 100 in the second embodiment is configured to include a void 120 in addition to the first shield 110.
- a neutron generating chamber that generates a large amount of neutrons
- not all neutrons may be absorbed by the first shield 110, so that the neutrons that have passed through the first shield 110 are attenuated by the void 120.
- the void 120 can be formed by arranging spacers between the concrete wall body CW and the first shield 110.
- the portion 120 may be formed, or the void portion 120 may be formed by arranging the shaped steel such as channel steel or H-shaped steel in a linear shape or a grid shape.
- the neutrons that have not passed through the back plate 113 and have passed through the first shield 110 are forced to move for a predetermined distance until reaching the concrete wall CW, thereby increasing the energy of the neutrons. It is attenuated, that is, the activation of the concrete wall CW is suppressed.
- FIG. 4 is a cross-sectional view showing the activation suppression structure 100 according to the third embodiment, and is a cross-sectional view of the concrete wall body CW forming the side wall taken along a horizontal plane.
- the activation suppression structure 100 according to the third embodiment is configured to include a second shield 130 in addition to the first shield 110 and the void 120.
- the second shield 130 is a plate-shaped member such as an RC (Reinforced Concrete) panel, is arranged so as to contact the surface of the concrete wall CW, and is installed so that it can be easily replaced by using an anchor bolt or the like. To be done.
- RC Reinforced Concrete
- a void 120 is formed on the indoor side of the second shield 130, and the first shield 110 is further installed on the indoor side. Then, the measurement element 140 is attached to a part of the surface of the second shield 130 so as to be located in the void 120.
- the measuring element 140 is one that can obtain a measured value for evaluating the degree of activation, can be manufactured as a dedicated one, and is conventionally used (for example, is distributed in the market). Can also be used.
- the back plate 113 of the first shield 110 absorbs thermal neutrons and the void 120 attenuates the energy of the neutrons, some neutrons may reach the concrete wall CW, so the third embodiment Then, the second shield 130 is further installed on the front surface of the concrete wall CW. However, if the second shield 130 continues to receive neutrons for a long period of time, it is possible that the second shield 130 becomes radioactive and must be treated as radioactive waste. Therefore, the structure is such that the second shield 130 can be replaced before activation, so that the measurement element 140 is installed so that the degree of activation of the second shield 130 can be regularly checked, and the second The shield 130 is replaceably installed.
- an inspection hole 150 can be provided as shown in FIG.
- a plurality of (four in the drawing) inspection cores 160 are arranged in the inspection holes 150.
- the inspection hole 150 is a series of continuous holes formed by connecting a through hole formed in the second shield 130 and a lateral hole formed by drilling the concrete wall CW in the thickness direction. It can be provided at one or two or more locations.
- the inspection core 160 is a test body for inspecting the degree of activation of the concrete wall body CW, just in case. Therefore, the inspection core 160 is formed of the same material as the concrete wall body CW. Further, a plurality of inspection cores 160 are arranged side by side in the depth direction of the concrete wall body CW so that the degree of activation depending on the depth direction (wall thickness direction) of the concrete wall body CW can be confirmed.
- the wall body management method of the invention of the present application is a management method performed on the activation suppression structure 100 described thus far, and therefore, description overlapping with the contents described in the activation suppression structure 100 is avoided, and the wall of the invention of the present application is avoided. Only the contents specific to the body management method will be explained. That is, the contents not described here are the same as those described in “2. Activation suppression structure”.
- FIG. 5 is a flow chart showing main steps of the wall body management method of the present invention
- FIG. 6 is a step diagram showing main steps of the wall body management method of the present invention.
- a core inspection will be carried out to evaluate the depth to which activation has occurred. Specifically, as shown in FIG. 6C, after removing the first shield 110, the inspection core 160 is extracted (Step 104), and a predetermined inspection is performed on the extracted inspection core 160 (Step 105). ). Then, based on the measurement result of the measuring element 140 and the inspection result of the inspection core 160, it is determined whether or not the second shield 130 needs to be replaced (Step 106).
- the inspected inspection core 160 is placed in the inspection hole 150 (Step 109).
- the first shield 110 and the existing second shield 130 are removed as shown in FIG.
- the shield 130 is installed (Step 107).
- the inspection core 160 inspected as shown in FIG. 6E is housed in the inspection hole 150, and the first shield 110 is returned to the original state as shown in FIG. 6F. (Step 109).
- the invention of the present application is to solve the problem that the facility where neutrons are generated currently has, namely, to promote the spread of particle beam cancer treatment, reduce unnecessary exposure of radiation workers, and generate radioactive waste. Considering to reduce the above, the invention of the present application is not only industrially applicable but also expected to make a great social contribution.
- Activation Suppression Structure of the Present Invention 110 First Shield (of Activation Suppression) 111 Face Plate (of First Shield) 112 Intermediate Plate (of First Shield) 113 Back Plate of First Shield 120 Void (of activation suppression structure) 130 Second shield (of activation suppression structure) 140 Measuring element (of activation suppression structure) 150 Inspection hole (of activation suppression structure) 160 (of activation suppression structure) Inspection core HC Confirmation hole ND Accelerator CR (within confirmation hole) Core CW Concrete wall
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Building Environments (AREA)
- Radiation-Therapy Devices (AREA)
- Measurement Of Radiation (AREA)
Abstract
[課題]本願発明の課題は、従来技術が抱える問題を解決することであり、すなわち、従来技術よりもさらに高い効果をもって中性子発生室内の壁体の放射化を抑制することができる放射化抑制構造を提供することである。 [解決手段]本願発明の放射化抑制構造は、中性子発生室内を閉鎖する壁体の放射化を抑制する構造であり、第1遮蔽体を備えたものである。また本願発明の放射化抑制構造は、中間板と裏面板が積層された第1遮蔽体を備えたものとすることもできる。裏面板は、炭化ホウ素等のホウ素化合物を含有する薄膜状(あるいは板状)の部材である。この場合、第1遮蔽体は、裏面板が壁体側となるように壁体の前面に設置される。
Description
本願発明は、例えば中性子捕捉療法(BNCT:Boron Neutron Capture Therapy)など中性子が発生する放射線医療施設や、研究施設といった室内において、その壁体の放射化を抑制する技術に関するものであり、より具体的には、木材とホウ素含有板を含む遮蔽体を備えた放射化抑制構造と、この構造が設けられた壁体の放射化を管理する方法に関するものである。
中性子捕捉療法は、癌細胞にホウ素化合物を取り込ませ、そのホウ素と中性子との核反応によって癌細胞を破壊する治療法である。ホウ素(特に10B)は、熱中性子をはじめとする低エネルギーの中性子と大きく反応する性質があり、癌細胞内のホウ素と中性子が核分裂反応した結果、粒子線(アルファ線)が発生し、この粒子線によって癌細胞を破壊する。
核分裂反応によって発生する粒子線の飛程は、癌細胞の直径程度(約10~14μm)であり、癌細胞以外の正常な細胞に影響を与えることがない。従来のX線やガンマ線による治療が、癌細胞とほぼ同じ物理的ダメージを正常細胞に与えることから、中性子捕捉療法は「癌細胞選択性治療」とも呼ばれ、特に悪性脳腫瘍や悪性黒色腫などの治療にとって現状では最も理想に近い治療法とされている。
ところで中性子捕捉療法では、照射器や加速器などを用いて患者に対する中性子線の照射が行われるが、当然ながらこの照射は外部に中性子線が漏れないよう壁体等で閉鎖された室内で行われる。もちろん、照射された中性子線すべてが患者に吸収されるわけではなく、部分的には壁体等にも吸収される。中性子は電荷を持たないため、物質中の原子核に比較的容易に到達しやすく、しかも中性子捕捉療法で好適に使用される低エネルギーの中性子は吸収現象が顕著である。そして壁体を構成する物質の一部が、中性子を吸収した結果、安定同位体から放射性同位体となるいわゆる放射化現象を起こすことがある。
短半減期核種によって放射化したコンクリートは、多量の放射線を放出することが知られている。そのため、室内にいる者は無用な被曝を受けることとなる。また、長年にわたって中性子が照射されると、コンクリート製の壁体は放射化が進んで、長半減期核種が多量に生成され、その結果、放射化したコンクリート壁体は、放射性廃棄物として処分する必要があり、通常の廃棄物に比べ多大な廃棄コストを強いられる。
このように、放射化の原因となる中性子が発生する施設等では、壁体の放射化が一つの大きな問題となっていた。そこで特許文献1では、ホウ素含有樹脂からなる遮蔽体と減衰空間からなる中性子遮蔽構造によって、コンクリート製の壁体の放射化を抑制する発明を開示している。
特許文献1で提案される発明は、室内側に設置した遮蔽体(ホウ素含有)で中性子を吸収し、さらに遮蔽体を通過した中性子は減衰空間(遮蔽体と壁体の間に形成される空間)で減衰させ、これによりコンクリート壁体の放射化を抑制する構造である。
特許文献1の発明も極めて高い放射化抑制効果を期待することができるが、本願の発明者らがさらに高い放射化抑制効果を求めて研究、開発を行ったところ、遮蔽体として木材を利用することが有効であることを見出した。木材、特にパープルハートやイペといった比重が大きく硬い木材(以下、「ハードウッド等」という。)には多量の水素が含有されている。水素を多量に含む物質は高速中性子を減速させる能力が高く、減速された中性子は周囲と熱平衡に達し熱中性子となる(いわゆる弾性散乱)。つまり、多量の水素を含有する木材を通過する際に中性子を熱中性子に変化させ、この熱中性子をホウ素含有の遮蔽体で吸収することによって、さらに高い放射化抑制効果が得られるわけである。また、多量の水素を含有する木材は中性子を減衰させることができることから、少量の中性子を対象とするケースではコンクリート壁体の放射化の抑制も可能となる。
他方、遮蔽体などを用いてコンクリート壁体の放射化抑制を図ったとしても、実際には壁体の一部が放射化していることも考えられる。ところが従来の放射化抑制技術では、遮蔽体等を設置した後に(つまり対策後に)コンクリート壁体の放射化状況を検査しあるいは確認することはそれほど多くなかった。室内にいる者の無用な被曝を確実に避け、放射性廃棄物の排出を極力抑えるためには、放射化抑制の対策を行った後であってもコンクリート壁体の放射化の状況を確認し、その状況によっては早い段階で何らかの対策を講じることが望ましい。
本願発明の課題は、従来技術が抱える問題を解決することであり、すなわち、従来技術よりもさらに高い効果をもって中性子発生室(中性子が発生する部屋)内の壁体の放射化を抑制することができる放射化抑制構造を提供することである。また、放射化抑制の対策後も壁体の放射化の状況を確認することができる技術の提供も本願発明の課題の一つである。
本願発明は、多量の水素を含有する木材、及び炭化ホウ素等のホウ素化合物を含有する部材を利用して中性子発生室内の壁体の放射化を抑制する、という点、さらには第1遮蔽体と第2遮蔽体を設置するとともに計測素子の計測結果に基づいて壁体の放射化の有無を評価し第2遮蔽体の交換の要否を判定する、という点に着目してなされたものであり、これまでにない発想に基づいて行われたものである。
本願発明の放射化抑制構造は、中性子が発生する室内を閉鎖する壁体の放射化を抑制する構造であり、中間板からなる第1遮蔽体を備えたものである。なお中間板は、木材を用いた板状の部材が用いられる。そして壁体の前面に第1遮蔽体が設置される。
本願発明の放射化抑制構造は、表面板と中間板が積層された第1遮蔽体を備えたものとすることもできる。なお表面板は、板状の部材が用いられる。この場合、表面板が室内側となるように、壁体の前面に第1遮蔽体が設置される。
本願発明の放射化抑制構造は、中間板と裏面板が積層された第1遮蔽体を備えたものとすることもできる。裏面板は、炭化ホウ素等のホウ素化合物を含有する薄膜状(あるいは板状)の部材である。この場合、第1遮蔽体は、裏面板が壁体側となるように壁体の前面に設置される。
本願発明の放射化抑制構造は、第1遮蔽体と壁体との間に設けられた空隙部をさらに備えた構造とすることもできる。
本願発明の放射化抑制構造は、空隙部と壁体との間に配置される第2遮蔽体をさらに備えた構造とすることもできる。この第2遮蔽体は、板状の部材であって、交換可能となるように設置され、第2遮蔽体の室内側表面には、放射化の程度を評価するための計測素子が設置される。
本願発明の放射化抑制構造は、検査孔と複数の検査用コアを備えた構造とすることもできる。この検査孔は、第2遮蔽体を貫通しさらに壁体の厚さ方向に穿孔されたものであり、検査用コアは、壁体と同等の材料で形成されるものであって検査孔内に壁体の厚さ方向に並べて配置される。
本願発明の壁体管理方法は、放射化抑制構造が設置された壁体の放射化を評価する方法であり、放射化評価工程と交換判定工程を備えた方法である。この放射化評価工程では、計測素子の計測結果に基づいて壁体の放射化の有無を評価し、交換判定工程では、放射化評価工程の評価結果に応じて第2遮蔽体の交換の要否を判定する。
本願発明の壁体管理方法は、コア検査工程をさらに備えた方法とすることもできる。このコア検査工程では、壁体が放射化されたと評価されたときに、検査用コアを抜き取るとともに、その抜き取った検査用コアを検査する。この場合、交換判定工程では、放射化評価工程の評価結果、そしてコア検査工程の検査結果に応じて、第2遮蔽体の交換の要否を判定する。
本願発明の放射化抑制構造、及び壁体管理方法には、次のような効果がある。
(1)多量の水素を含有する木材を通過する際に中性子を熱中性子に変化させ、その熱中性子をホウ素含有の遮蔽体で吸収することで、従来技術に比してさらに効果的に壁体の放射化を抑制することができる。その結果、中性子発生室内にいる者の無用な被曝を確実に回避することができ、放射性廃棄物の排出を極力抑えることができる。
(2)放射化抑制構造を設置した後も任意のタイミングで放射化の程度を確認することができ、放射化する前に第2遮蔽体を交換することができる。これにより、第2遮蔽体が放射性廃棄物となることを未然に防ぐことができる。
(3)ライフサイクル全体を通してコスト合理性が高く、しかも放射性廃棄物が生じないクリーンな医療施設や研究施設、検査施設、産業施設等を提供することができる。
(1)多量の水素を含有する木材を通過する際に中性子を熱中性子に変化させ、その熱中性子をホウ素含有の遮蔽体で吸収することで、従来技術に比してさらに効果的に壁体の放射化を抑制することができる。その結果、中性子発生室内にいる者の無用な被曝を確実に回避することができ、放射性廃棄物の排出を極力抑えることができる。
(2)放射化抑制構造を設置した後も任意のタイミングで放射化の程度を確認することができ、放射化する前に第2遮蔽体を交換することができる。これにより、第2遮蔽体が放射性廃棄物となることを未然に防ぐことができる。
(3)ライフサイクル全体を通してコスト合理性が高く、しかも放射性廃棄物が生じないクリーンな医療施設や研究施設、検査施設、産業施設等を提供することができる。
1.全体概要
本願発明の放射化抑制構造、及び壁体管理方法の実施形態の一例を、図に基づいて説明する。図1は、中性子発生室に本願発明の放射化抑制構造100が設置された状況を示す平面図である。この図に示す中性子発生室はコンクリート製の壁体(以下、単に「コンクリート壁体CW」という。)で閉鎖(密閉)されており、室内には中性子が発生する加速器NDが設置されている。なお、図1では加速器NDが設置された中性子発生室を示しているが、加速器NDに限らず中性子が発生する施設であれば本願発明を効果的に実施することができる。
本願発明の放射化抑制構造、及び壁体管理方法の実施形態の一例を、図に基づいて説明する。図1は、中性子発生室に本願発明の放射化抑制構造100が設置された状況を示す平面図である。この図に示す中性子発生室はコンクリート製の壁体(以下、単に「コンクリート壁体CW」という。)で閉鎖(密閉)されており、室内には中性子が発生する加速器NDが設置されている。なお、図1では加速器NDが設置された中性子発生室を示しているが、加速器NDに限らず中性子が発生する施設であれば本願発明を効果的に実施することができる。
本願発明の放射化抑制構造100は、図1に示すようにコンクリート壁体CWの室内側(前面)に、換言すればコンクリート壁体CWの表面を覆うように第1遮蔽体110が設置された構造である。また放射化抑制構造100は、コンクリート壁体CWの表面から所定の距離を確保したうえで第1遮蔽体110を設置することとし、すなわちコンクリート壁体CWと第1遮蔽体110の間にスペース(以下、「空隙部120」という。)を設けた構造とすることもできる。さらに図1に示すように、コンクリート壁体CWと空隙部120との間に第2遮蔽体130を設置した構造としてもよい。
第1遮蔽体110は、木材(例えばハードボード等)や炭化ホウ素をはじめとするホウ素化合物含有部材を含むもので、木材によって中性子を減衰させ、さらに、木材を通過する際に中性子を熱中性子に変化させ、この熱中性子をホウ素に吸収させることによって、コンクリート壁体CWに到達する中性子を大幅に低減するものである。また空隙部120は、コンクリート壁体CWに到達するまでの所定距離を確保することによって、中性子のエネルギーを減衰させる機能を有するものである。さらに第2遮蔽体130は、コンクリート壁体CWに到達する中性子を未然に吸収するものである。なお第2遮蔽体130は、容易に交換できるように設置され、将来放射化が進んだことが認められたときには新たな第2遮蔽体130と交換することが予定されており、いわばコンクリート壁体CWの保護材としても機能するものである。
2.放射化抑制構造
次に、本願発明の放射化抑制構造100の例について図を参照しながら詳しく説明する。なお、本願発明の壁体管理方法は、本願発明の放射化抑制構造100に対して行う管理方法であり、したがってまずは本願発明の放射化抑制構造100について説明し、その後に本願発明の壁体管理方法について説明することとする。
次に、本願発明の放射化抑制構造100の例について図を参照しながら詳しく説明する。なお、本願発明の壁体管理方法は、本願発明の放射化抑制構造100に対して行う管理方法であり、したがってまずは本願発明の放射化抑制構造100について説明し、その後に本願発明の壁体管理方法について説明することとする。
既述したとおり本願発明の放射化抑制構造100は、コンクリート壁体CWの表面に直接、第1遮蔽体110を設置する形態(以下、「第1の実施形態」という。)と、コンクリート壁体CWの前面に空隙部120、及び第1遮蔽体110を設置する形態(以下、「第2の実施形態」という。)、コンクリート壁体CWの前面に第2遮蔽体130、空隙部120、及び第1遮蔽体110を設置する形態(以下、「第3の実施形態」という。)に大別することができる。以下、それぞれ実施形態ごとに順に説明していく。
(第1の実施形態)
図2は、第1の実施形態における放射化抑制構造100を示す断面図であり、床面を形成するコンクリート壁体CWを鉛直面で切断した断面図である。なおこの図では、床面を形成するコンクリート壁体CWの上面に第1遮蔽体110を設置しているが、本願発明の放射化抑制構造100は、床面に限らず天井面や側面を形成するコンクリート壁体CWの前面に第1遮蔽体110を設置した構造とすることもできる。
図2は、第1の実施形態における放射化抑制構造100を示す断面図であり、床面を形成するコンクリート壁体CWを鉛直面で切断した断面図である。なおこの図では、床面を形成するコンクリート壁体CWの上面に第1遮蔽体110を設置しているが、本願発明の放射化抑制構造100は、床面に限らず天井面や側面を形成するコンクリート壁体CWの前面に第1遮蔽体110を設置した構造とすることもできる。
第1遮蔽体110は、中間板112を含むものであり、表面板111と中間板112の積層構成とすることも、あるいは図2に示すように表面板111と中間板112、そして裏面板113の順で積層された構成とすることもでき、肉厚寸法(図2では上下寸法)に比して表面積が極端に大きな板状の部材である。このうち表面板111は、石膏プラスターボードやドロマイトプラスターボードなどを利用した板状の部材であり、中間板112は、パープルハートやイペといったハードウッド等を利用した板状の木製部材である。中間板112としてハードウッド等を利用する理由は、中性子を弾性散乱させるための水素を多量に含有しているからであり、第1遮蔽体110としての相当の強度(せん断力や圧縮力、引張力など)を確保するためである。中間板112は、表面板111より高強度の部材とすることもできるし、表面板111より低強度の部材とすることもできる。なお、壁や天井に対して放射化抑制構造100を設置する場合、第1遮蔽体110の表面板111は準不燃材あるいは不燃材を利用するとよい。
一方の裏面板113は、ホウ素含有樹脂からなる薄膜状あるいは板状の部材であり、例えばB4Cを含む樹脂を成型した部材を用いることができる。もちろん、ホウ素を含有する樹脂材であればB4C樹脂に限らず、無水ホウ酸を樹脂に混ぜた部材や、粉状の灰ホウ石を樹脂に混ぜた部材など、他の樹脂材を裏面板113として用いることもできる。ところで、既述したとおり多量の水素を含有する木材は中性子を減衰させることができる。つまり、中間板112のみでも中性子を減衰させる効果があり、少量の中性子を対象とするケースではコンクリート壁体CWの放射化を抑制することもできる。したがって、少量の中性子の発生が予想される中性子発生室内に放射化抑制構造100を設置する場合は、裏面板113を省略した第1遮蔽体110、すなわち表面板111と中間板112からなる第1遮蔽体110、あるいは中間板112のみからなる第1遮蔽体110を用いることができる。
第1遮蔽体110は、図2に示すように表面板111が室内側となり、かつ裏面板113がコンクリート壁体CW側となるように、ビスや釘あるいは接着剤などを利用して設置される。これにより、表面板111を通じて中間板112まで到達した中性子は、ハードウッド等に含まれる多量の水素によって減速し、減速した中性子は周囲と熱平衡に達し熱中性子となる(いわゆる弾性散乱)。そして、裏面板113に到達した熱中性子がホウ素に吸収されることによって、コンクリート壁体CWに到達する中性子の量が大幅に抑えられ、すなわちコンクリート壁体CWの放射化が抑制されるわけである。
(第2の実施形態)
図3は、第2の実施形態における放射化抑制構造100を示す断面図であり、床面を形成するコンクリート壁体CWを鉛直面で切断した断面図である。この図に示すように第2の実施形態における放射化抑制構造100は、第1遮蔽体110に加え空隙部120を含んで構成される。多量の中性子が発生する中性子発生室の場合、第1遮蔽体110で全ての中性子が吸収されないこともあり、第1遮蔽体110を透過した中性子を空隙部120で減衰させる構造としている。空隙部120は、コンクリート壁体CWと第1遮蔽体110の間にスペーサーを配置することで形成することができ、例えば、複数個所にスペーサーを離散的に配置(点在配置)することで空隙部120を形成してもよいし、溝形鋼やH形鋼といった形鋼を利用して線状あるいは格子状に配置することで空隙部120を形成してもよい。
図3は、第2の実施形態における放射化抑制構造100を示す断面図であり、床面を形成するコンクリート壁体CWを鉛直面で切断した断面図である。この図に示すように第2の実施形態における放射化抑制構造100は、第1遮蔽体110に加え空隙部120を含んで構成される。多量の中性子が発生する中性子発生室の場合、第1遮蔽体110で全ての中性子が吸収されないこともあり、第1遮蔽体110を透過した中性子を空隙部120で減衰させる構造としている。空隙部120は、コンクリート壁体CWと第1遮蔽体110の間にスペーサーを配置することで形成することができ、例えば、複数個所にスペーサーを離散的に配置(点在配置)することで空隙部120を形成してもよいし、溝形鋼やH形鋼といった形鋼を利用して線状あるいは格子状に配置することで空隙部120を形成してもよい。
空隙部120を設けることで、裏面板113に吸収されずに第1遮蔽体110を通過した中性子は、コンクリート壁体CWに到達するまでの所定距離の移動を強いられ、これにより中性子のエネルギーが減衰し、すなわちコンクリート壁体CWの放射化が抑制されるわけである。
(第3の実施形態)
図4は、第3の実施形態における放射化抑制構造100を示す断面図であり、側壁を形成するコンクリート壁体CWを水平面で切断した断面図である。この図に示すように第3の実施形態における放射化抑制構造100は、第1遮蔽体110と空隙部120に加え第2遮蔽体130を含んで構成される。第2遮蔽体130は、RC(Reinforced Concrete)パネルといった板状の部材であり、コンクリート壁体CWの表面に接触するように配置され、アンカーボルト等を利用することで容易に交換できるように設置される。
図4は、第3の実施形態における放射化抑制構造100を示す断面図であり、側壁を形成するコンクリート壁体CWを水平面で切断した断面図である。この図に示すように第3の実施形態における放射化抑制構造100は、第1遮蔽体110と空隙部120に加え第2遮蔽体130を含んで構成される。第2遮蔽体130は、RC(Reinforced Concrete)パネルといった板状の部材であり、コンクリート壁体CWの表面に接触するように配置され、アンカーボルト等を利用することで容易に交換できるように設置される。
図4に示すように第2遮蔽体130の室内側には空隙部120が形成され、さらにその室内側には第1遮蔽体110が設置される。そして、第2遮蔽体130の表面の一部には、空隙部120内に位置するように計測素子140が貼付される。この計測素子140は、放射化の程度を評価するための計測値が得られるものであり、専用のものとして製造することもできるし、従来用いられている(例えば市場に流通している)ものを利用することもできる。
第1遮蔽体110の裏面板113によって熱中性子を吸収し、空隙部120によって中性子のエネルギーを減衰させるものの、一部の中性子はコンクリート壁体CWに到達するおそれもあるため、第3の実施形態では、コンクリート壁体CWの前面にさらに第2遮蔽体130を設置している。しかしながら第2遮蔽体130が長期にわたって中性子を受け続けると、第2遮蔽体130が放射化し、放射性廃棄物として処理しなければならないことも考えられる。そこで、放射化する前に第2遮蔽体130を取り換えることができる構造とし、そのため、第2遮蔽体130の放射化の程度が定期的に把握できるように計測素子140を設置するとともに、第2遮蔽体130を交換可能に設置するわけである。
また、第3の実施形態における放射化抑制構造100では、図4に示すように検査孔150を設けることもできる。そしてこの検査孔150内には、複数(図では4個)の検査用コア160が配置される。検査孔150は、第2遮蔽体130に形成される貫通孔と、コンクリート壁体CWを厚さ方向に穿孔して形成される横孔が、接続されて一連の連続孔となったものであり、1又は2箇所以上に設けることができる。
検査用コア160は、念のためコンクリート壁体CWの放射化の程度を検査するための試験体であり、したがって検査用コア160はコンクリート壁体CWと同等の材料で形成される。また、コンクリート壁体CWの深度方向(壁厚方向)に応じた放射化の程度を確認することができるように、複数の検査用コア160がコンクリート壁体CWの深度方向に並べて配置される。
3.壁体管理方法
続いて、本願発明の壁体管理方法ついて図5と図6を参照しながら説明する。なお、本願発明の壁体管理方法は、ここまで説明した放射化抑制構造100に対して行う管理方法であり、したがって放射化抑制構造100で説明した内容と重複する説明は避け、本願発明の壁体管理方法に特有の内容のみ説明することとする。すなわち、ここに記載されていない内容は、「2.放射化抑制構造」で説明したものと同様である。
続いて、本願発明の壁体管理方法ついて図5と図6を参照しながら説明する。なお、本願発明の壁体管理方法は、ここまで説明した放射化抑制構造100に対して行う管理方法であり、したがって放射化抑制構造100で説明した内容と重複する説明は避け、本願発明の壁体管理方法に特有の内容のみ説明することとする。すなわち、ここに記載されていない内容は、「2.放射化抑制構造」で説明したものと同様である。
図5は、本願発明の壁体管理方法の主な工程を示すフロー図であり、図6は、本願発明の壁体管理方法の主な工程を示すステップ図である。まず、図6(a)に示すように第1遮蔽体110に設けられた確認孔HC内に挿入されたコアCRを取り外し(Step101)、図6(b)に示す状態としたうえで計測素子140の計測値を確認する(Step102)。計測素子140の計測結果が得られると、これに基づいてコンクリート壁体CWの放射化の有無を評価し(Step103)、放射化が認められない場合は確認孔HC内にコアCRを戻す(Step109)。一方、放射化が認められる場合はコア検査を実施し、どの程度の深さまで放射化しているか評価する。具体的には、図6(c)に示すように第1遮蔽体110を取り外したうえで検査用コア160を抜き取り(Step104)、抜き取った検査用コア160に対して所定の検査を行う(Step105)。そして、計測素子140の計測結果と、検査用コア160の検査結果に基づいて、第2遮蔽体130の交換の要否を判断する(Step106)。
第2遮蔽体130の交換が不要であると判断された場合は、検査した検査用コア160を検査孔150内に収める(Step109)。一方、第2遮蔽体130の交換が必要であると判断された場合は、図6(d)に示すように第1遮蔽体110と既設の第2遮蔽体130を取り外すとともに、新たな第2遮蔽体130を設置する(Step107)。第2遮蔽体130を交換すると、図6(e)に示すように検査した検査用コア160を検査孔150内に収め、図6(f)に示すように第1遮蔽体110を元に戻す(Step109)。このとき、検査した検査用コア160のうち放射化が認められたものは、新たな検査用コア160に交換したうえで検査孔150内に収めるとよい(Step108)。
本願発明の放射化抑制構造、及び壁体管理方法は、陽子線治療や重粒子線治療、中性子捕捉療法など中性子が発生する医療施設をはじめ、研究施設、検査施設、産業施設等などで、特に有効に利用することができる。本願発明は、中性子が発生する施設が現状抱える課題を解決するものであり、すなわち粒子線がん治療の普及を促進するとともに、放射線業務従事者の無用な被ばくを低減し、放射性廃棄物の発生を低減することを考えれば、本願発明は産業上利用できるばかりでなく社会的にも大きな貢献を期待し得る発明である。
100 本願発明の放射化抑制構造
110 (放射化抑制構造の)第1遮蔽体
111 (第1遮蔽体の)表面板
112 (第1遮蔽体の)中間板
113 (第1遮蔽体の)裏面板
120 (放射化抑制構造の)空隙部
130 (放射化抑制構造の)第2遮蔽体
140 (放射化抑制構造の)計測素子
150 (放射化抑制構造の)検査孔
160 (放射化抑制構造の)検査用コア
HC 確認孔
ND 加速器
CR (確認孔内の)コア
CW コンクリート壁体
110 (放射化抑制構造の)第1遮蔽体
111 (第1遮蔽体の)表面板
112 (第1遮蔽体の)中間板
113 (第1遮蔽体の)裏面板
120 (放射化抑制構造の)空隙部
130 (放射化抑制構造の)第2遮蔽体
140 (放射化抑制構造の)計測素子
150 (放射化抑制構造の)検査孔
160 (放射化抑制構造の)検査用コア
HC 確認孔
ND 加速器
CR (確認孔内の)コア
CW コンクリート壁体
Claims (7)
- 中性子が発生する室内を閉鎖する壁体の放射化を抑制する構造において、
前記壁体の前面に設置される第1遮蔽体と、
前記第1遮蔽体と前記壁体との間に設けられた空隙部と、
前記空隙部と前記壁体との間に配置される第2遮蔽体と、を備え、
前記第2遮蔽体は、板状の部材であって、交換可能となるように設置され、
前記第2遮蔽体の室内側表面には、放射化の程度を評価するための計測素子が設置された、
ことを特徴とする放射化抑制構造。 - 前記第1遮蔽体は、木材を用いた板状の中間板を含む、
ことを特徴とする請求項1記載の放射化抑制構造。 - 前記第1遮蔽体は、板状の表面板と前記中間板が積層されて形成され、
前記表面板が室内側となるように前記第1遮蔽体が設置された、
ことを特徴とする請求項2記載の放射化抑制構造。 - 前記第1遮蔽体は、前記中間板と裏面板が積層されて形成され、
前記裏面板は、ホウ素化合物を含有する薄膜状又は板状の部材であり、
前記裏面板が前記壁体側となるように前記第1遮蔽体が設置された、
ことを特徴とする請求項2又は請求項3記載の放射化抑制構造。 - 前記第2遮蔽体を貫通し、さらに前記壁体の厚さ方向に穿孔された検査孔と、
前記検査孔内に設置される複数の検査用コアと、を備え、
前記検査用コアは、前記壁体と同等の材料で形成され、
さらに複数の前記検査用コアは、前記壁体の厚さ方向に並べて配置された、
ことを特徴とする請求項1乃至請求項4のいずれかに記載の放射化抑制構造。 - 中性子が発生する室内を閉鎖する壁体の放射化を評価する方法において、
前記壁体の表面側には、請求項1乃至請求項4のいずれかに記載の前記放射化抑制構造が設置され、
前記計測素子の計測結果に基づいて、前記壁体の放射化の有無を評価する放射化評価工程と、
前記放射化評価工程の評価結果に応じて、前記第2遮蔽体の交換の要否を判定する交換判定工程と、
を備えた、ことを特徴とする壁体管理方法。 - 前記放射化抑制構造は、前記第2遮蔽体を貫通しさらに前記壁体の厚さ方向に穿孔された検査孔と、該検査孔内に設置される複数の検査用コアと、を備え、
前記検査用コアは、前記壁体と同等の材料で形成されるとともに、該壁体の厚さ方向に並べて配置され、
前記放射化評価工程において前記壁体が放射化されたと評価されたときに、前記検査用コアを抜き取るとともに、該検査用コアを検査するコア検査工程と、をさらに備え、
前記交換判定工程では、前記放射化評価工程の評価結果、及び前記コア検査工程の検査結果に応じて、前記第2遮蔽体の交換の要否を判定する、
ことを特徴とする請求項6記載の壁体管理方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080010973.7A CN113348519B (zh) | 2019-02-04 | 2020-01-30 | 放射性化抑制构造和壁体管理方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019017670A JP6656440B1 (ja) | 2019-02-04 | 2019-02-04 | 放射化抑制構造、及び壁体管理方法 |
JP2019-017670 | 2019-02-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020162311A1 true WO2020162311A1 (ja) | 2020-08-13 |
Family
ID=69997878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/003391 WO2020162311A1 (ja) | 2019-02-04 | 2020-01-30 | 放射化抑制構造、及び壁体管理方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6656440B1 (ja) |
CN (1) | CN113348519B (ja) |
WO (1) | WO2020162311A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7255573B2 (ja) * | 2020-07-23 | 2023-04-11 | 株式会社三洋物産 | 遊技機 |
JP7255569B2 (ja) * | 2020-07-23 | 2023-04-11 | 株式会社三洋物産 | 遊技機 |
JP7255570B2 (ja) * | 2020-07-23 | 2023-04-11 | 株式会社三洋物産 | 遊技機 |
JP7255572B2 (ja) * | 2020-07-23 | 2023-04-11 | 株式会社三洋物産 | 遊技機 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6349574B2 (ja) * | 1981-08-04 | 1988-10-05 | Kawasaki Seitetsu Kk | |
JP2006112970A (ja) * | 2004-10-15 | 2006-04-27 | Taisei Corp | コンクリート建築物及びそのメンテナンス方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62278491A (ja) * | 1986-05-28 | 1987-12-03 | 株式会社日立製作所 | 生体遮蔽体の放射化測定容易化構造 |
JPH06324193A (ja) * | 1993-05-13 | 1994-11-25 | Hitachi Ltd | 貫通部遮蔽構造 |
JP3540497B2 (ja) * | 1995-04-20 | 2004-07-07 | 日本メジフィジックス株式会社 | 放射性物質用遮蔽部材の製造方法 |
JPH11231094A (ja) * | 1998-02-12 | 1999-08-27 | Toshiba Corp | 放射線遮蔽装置 |
JP2001221891A (ja) * | 2000-02-08 | 2001-08-17 | Hosoya Fireworks Co Ltd | 建造物緊急遮断設備 |
JP2003004888A (ja) * | 2001-06-15 | 2003-01-08 | Central Res Inst Of Electric Power Ind | 使用済燃料検査装置 |
US7312466B2 (en) * | 2005-05-26 | 2007-12-25 | Tdy Industries, Inc. | High efficiency shield array |
US7989787B2 (en) * | 2006-04-25 | 2011-08-02 | Jan Forster | Structure element, in particular for radiation shielding constructions |
JP4440904B2 (ja) * | 2006-08-21 | 2010-03-24 | 三菱電機株式会社 | 被曝防止機能付き車椅子およびこれを利用した医療受診施設用システム |
JP5787698B2 (ja) * | 2011-09-30 | 2015-09-30 | 株式会社東芝 | 放射線検出装置 |
JP2013108931A (ja) * | 2011-11-24 | 2013-06-06 | Trust Life:Kk | 難燃・不燃性放射線遮蔽部材及びそれを用いた積層部材、構造部材又はケース |
JP2013228327A (ja) * | 2012-04-26 | 2013-11-07 | Kajima Corp | 放射線遮蔽体、放射線遮蔽構造物、並びに放射線遮蔽方法 |
US9588236B2 (en) * | 2012-09-12 | 2017-03-07 | Mitsubishi Electric Corporation | Radioactivity analyzing apparatus |
JP6241008B2 (ja) * | 2013-06-26 | 2017-12-06 | 株式会社Cics | 中性子遮蔽構造及びこれを用いた中性子遮蔽方法 |
JP6004559B2 (ja) * | 2014-11-27 | 2016-10-12 | 株式会社安藤・間 | 中性子照射室 |
JP2016223954A (ja) * | 2015-06-01 | 2016-12-28 | 株式会社安藤・間 | 貫通孔内遮蔽構造 |
-
2019
- 2019-02-04 JP JP2019017670A patent/JP6656440B1/ja active Active
-
2020
- 2020-01-30 CN CN202080010973.7A patent/CN113348519B/zh active Active
- 2020-01-30 WO PCT/JP2020/003391 patent/WO2020162311A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6349574B2 (ja) * | 1981-08-04 | 1988-10-05 | Kawasaki Seitetsu Kk | |
JP2006112970A (ja) * | 2004-10-15 | 2006-04-27 | Taisei Corp | コンクリート建築物及びそのメンテナンス方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2020125944A (ja) | 2020-08-20 |
CN113348519A (zh) | 2021-09-03 |
JP6656440B1 (ja) | 2020-03-04 |
CN113348519B (zh) | 2024-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020162311A1 (ja) | 放射化抑制構造、及び壁体管理方法 | |
DiJulio et al. | A polyethylene-B4C based concrete for enhanced neutron shielding at neutron research facilities | |
US8139705B2 (en) | Screened chamber for ion therapy | |
JP7282412B2 (ja) | 遮蔽設備およびその製造方法 | |
RU2730600C1 (ru) | Защитный экран для рентгеновской установки | |
Shultis et al. | Radiation shielding and radiological protection | |
Barman et al. | Investigation of radiation shielding characteristic features of different wood species | |
JP6004559B2 (ja) | 中性子照射室 | |
JP6656442B1 (ja) | 遮蔽体、及び放射化抑制構造 | |
JP4307379B2 (ja) | エネルギー領域GeVまでの中性子に対するイオン治療用シールドルーム | |
JP7450365B2 (ja) | 放射化抑制構造 | |
JP6349574B2 (ja) | 中性子遮蔽構造 | |
JP2017026563A (ja) | 中性子遮蔽材、その製造方法、および、中性子遮蔽容器 | |
JP2020126038A5 (ja) | ||
JP4402562B2 (ja) | コンクリート建築物及びそのメンテナンス方法 | |
Wang et al. | The neutron dose equivalent evaluation and shielding at the maze entrance of a Varian Clinac 23EX treatment room | |
JP2022178432A (ja) | 放射化抑制構造、及び放射化抑制構造構築方法 | |
JP6775700B1 (ja) | 放射化抑制構造構築方法 | |
Augusto et al. | An overview of the shielding optimization studies for the TRIUMF-ARIEL facility | |
Rokni et al. | Radiation shielding at high-energy electron and proton accelerators | |
Khripunov | Radiation Source Terms and Fields Assessment at the T-15MD Facility | |
Sello | Determination of shielding effectiveness of some selected materials available in lesotho using MCNP code | |
Ipe et al. | Secondary radiation production and shielding for proton therapy facilities | |
AUTh et al. | HNPS Advances in Nuclear Physics | |
Ene | High-energy neutron attenuation in iron and concrete: Verification of FLUKA Monte Carlo code by comparison with HIMAC experimental results |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20752990 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20752990 Country of ref document: EP Kind code of ref document: A1 |