WO2020162000A1 - 非水電解質二次電池の製造方法及び非水電解質二次電池 - Google Patents

非水電解質二次電池の製造方法及び非水電解質二次電池 Download PDF

Info

Publication number
WO2020162000A1
WO2020162000A1 PCT/JP2019/046298 JP2019046298W WO2020162000A1 WO 2020162000 A1 WO2020162000 A1 WO 2020162000A1 JP 2019046298 W JP2019046298 W JP 2019046298W WO 2020162000 A1 WO2020162000 A1 WO 2020162000A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
winding
electrolyte secondary
positive
Prior art date
Application number
PCT/JP2019/046298
Other languages
English (en)
French (fr)
Inventor
赤穂 篤俊
曲 佳文
田村 和明
晶 西田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2020571004A priority Critical patent/JP7267312B2/ja
Priority to CN201980091394.7A priority patent/CN113396492B/zh
Priority to EP19914592.1A priority patent/EP3923378A4/en
Priority to US17/426,831 priority patent/US20220123296A1/en
Publication of WO2020162000A1 publication Critical patent/WO2020162000A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a method for manufacturing a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.
  • Patent Document 1 discloses a positive electrode mixture layer in which two layers having different compounding ratios of the binder contained in each layer are laminated.
  • Patent Document 1 cannot suppress the occurrence of cracks in the densified positive electrode mixture layer, and does not consider buckling of the positive electrode plate or the negative electrode plate. There is still room for improvement.
  • an object of the present disclosure is to provide a non-aqueous electrolyte secondary battery that suppresses buckling of the positive electrode plate or the negative electrode plate while suppressing cracks in the positive electrode mixture layer in the positive electrode plate having a high packing density. is there.
  • the non-aqueous electrolyte secondary battery which is one mode of the present disclosure is a non-aqueous electrolyte secondary battery including a flat wound electrode body in which a positive electrode plate and a negative electrode plate are wound via a separator, and the positive electrode is a positive electrode.
  • the lithium metal composite oxide represented by the formula (1) to (4) is included, and the flexibility index of the positive electrode plate is 15 to 19.
  • a method for manufacturing a non-aqueous electrolyte secondary battery includes a winding body forming step of winding a positive electrode plate, a negative electrode plate, and a separator around an elliptical winding core to form a winding body, An electrode body forming step of forming a flat wound electrode body by pressing after removing the winding core from the body, and the positive electrode plate includes a positive electrode core body and a positive electrode composite formed on both surfaces of the positive electrode core body.
  • the flexibility index of the positive electrode plate is 15 to 19.
  • a non-aqueous electrolyte secondary battery that suppresses buckling of the positive electrode plate or the negative electrode plate while suppressing cracks in the positive electrode mixture layer in the positive electrode plate having a high packing density.
  • FIG. 2 is a sectional view taken along the line AA of FIG. 1.
  • FIG. 3 is a perspective view of a spirally wound electrode body of the non-aqueous electrolyte secondary battery shown in FIG. It is the figure which showed in plan view the change of the shape from the shape of the winding body before pressing to the winding-type electrode body after pressing.
  • the vertical direction of the paper surface of FIGS. 1 to 3 may be expressed as “up, down”, the horizontal direction may be expressed as “left, right”, and the depth direction may be expressed as “front, back”.
  • FIG. 1 is a perspective view showing the appearance of a non-aqueous electrolyte secondary battery 100 that is an example of an embodiment
  • FIG. 2 is a vertical cross-sectional view including the line AA in FIG.
  • the non-aqueous electrolyte secondary battery 100 includes a battery case 20 having an outer casing 1 having an opening and a sealing plate 2 for sealing the opening.
  • the outer package 1 and the sealing plate 2 are preferably made of metal, for example, aluminum or aluminum alloy.
  • the exterior body 1 is a rectangular bottomed exterior body having a bottom and side walls and having an opening at a position facing the bottom.
  • the non-aqueous electrolyte secondary battery 100 shown in FIG. 1 is an example of a prismatic non-aqueous electrolyte secondary battery having a prismatic outer casing 1 (rectangular battery case 20).
  • the present invention is not limited to this, and may be a laminated external body non-aqueous electrolyte secondary battery or the like having an external body (battery case made of a laminated sheet) using a laminated sheet formed by laminating a metal foil with a resin sheet.
  • the sealing plate 2 is connected to the opening edge portion of the rectangular outer casing 1 by laser welding or the like.
  • the sealing plate 2 has an electrolyte injection hole 13.
  • the electrolytic solution injection hole 13 is sealed with a sealing plug 14 after injecting an electrolytic solution described later.
  • the sealing plate 2 has a gas exhaust valve 15.
  • the gas discharge valve 15 operates when the pressure inside the battery exceeds a predetermined value, and discharges the gas inside the battery to the outside of the battery.
  • the positive electrode terminal 4 is attached to the sealing plate 2 so as to project outside the battery case 20. Specifically, the positive electrode terminal 4 is inserted into a positive electrode terminal mounting hole formed in the sealing plate 2, and an external insulating member 9 disposed outside the battery in the positive electrode terminal mounting hole and disposed inside the battery. It is attached to the sealing plate 2 while being electrically insulated from the sealing plate 2 by the inner insulating member 8. The positive electrode terminal 4 is electrically connected to the positive electrode current collector 5 inside the battery case 20.
  • the positive electrode current collector 5 is provided on the sealing plate 2 with the inner insulating member 8 interposed therebetween.
  • the inner insulating member 8 and the outer insulating member 9 are preferably made of resin.
  • the negative electrode terminal 6 is attached to the sealing plate 2 so as to project outside the battery case 20. Specifically, the negative electrode terminal 6 is inserted into the negative electrode terminal mounting hole formed in the sealing plate 2, and the outer side insulating member 11 arranged outside the negative electrode terminal mounting hole of the battery and the inside of the battery. It is attached to the sealing plate 2 in a state of being electrically insulated from the sealing plate 2 by the inner insulating member 10. The negative electrode terminal 6 is electrically connected to the negative electrode current collector 7 in the battery case 20.
  • the negative electrode current collector 7 is provided on the sealing plate 2 with the inner insulating member 10 interposed therebetween.
  • the inner insulating member 10 and the outer insulating member 11 are preferably made of resin.
  • the non-aqueous electrolyte secondary battery 100 includes the spirally wound electrode body 3 and the electrolytic solution, and the outer casing 1 houses the spirally wound electrode body 3 and the electrolytic solution.
  • the spirally wound electrode body 3 has a spirally wound structure in which a positive electrode plate 30 and a negative electrode plate 31 are wound with a separator 32 in between.
  • a positive electrode tab 30c and a negative electrode tab 31c project from the positive electrode plate 30 and the negative electrode plate 31, respectively, in the upper part of the spirally wound electrode body 3, and the positive electrode tab 30c and the negative electrode tab 31c are respectively the positive electrode current collector 5 and the negative electrode current collector 5. It is connected to the body 7 by welding or the like.
  • the non-aqueous electrolyte secondary battery 100 may include an insulating sheet 12 arranged between the wound electrode body 3 and the outer casing 1, as shown in FIG.
  • the insulating sheet 12 has, for example, a box-like bottomed shape or a bag-like shape having an opening in the upper portion, like the exterior body 1. Since the insulating sheet 12 has a bottomed box shape or a bag shape having an opening at the top, the wound electrode body 3 is inserted from the opening of the insulating sheet 12, and the wound electrode body 3 is formed by the insulating sheet 12. Can be covered.
  • the material of the insulating sheet 12 is a material having electrical insulation, chemical stability that is not attacked by an electrolytic solution, and electrical stability that is not electrolyzed with respect to the voltage of the non-aqueous electrolyte secondary battery 100, It is not particularly limited.
  • a resin material such as polyethylene, polypropylene, or polyfluoroethylene can be used from the viewpoint of industrial versatility, manufacturing cost, and quality stability.
  • the insulating sheet 12 is not limited to the case shape such as the box shape or the bag shape described above.
  • the planar insulating sheet 12 extending in the horizontal direction and the vertical direction may be wound around the spirally wound electrode body 3 in the horizontal direction and the vertical direction. As a result, the spirally wound insulating sheet 12 can cover the spirally wound electrode body 3.
  • the electrolytic solution contains a solvent and an electrolyte salt dissolved in the solvent.
  • a non-aqueous solvent can be used as the solvent.
  • the non-aqueous solvent for example, carbonates, esters, ethers, nitriles, amides, and a mixed solvent of two or more of these may be used.
  • carbonates cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, vinylene carbonate; dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diethyl carbonate (DEC), methylpropyl carbonate Examples thereof include chain carbonates such as ethyl propyl carbonate and methyl isopropyl carbonate.
  • the non-aqueous solvent may contain a halogen-substituted product in which at least a part of hydrogen in the above solvent is replaced with a halogen atom such as fluorine.
  • the electrolytic solution is not limited to the liquid electrolyte, and may be a solid electrolyte using a gel polymer or the like.
  • the electrolyte salt includes a lithium salt.
  • As the lithium salt LiPF 6 or the like which is generally used as a supporting salt in the conventional non-aqueous electrolyte secondary battery 100 can be used. Further, an additive such as vinylene carbonate (VC) can be added as appropriate.
  • VC vinylene carbonate
  • FIG. 3 is a perspective view of the spirally wound electrode body 3, in which the outer end of the winding is developed.
  • the spirally wound electrode body 3 has a main body portion 3a and a tab portion 3b.
  • the tab portion 3b includes a pair of positive electrode tab 30c and negative electrode tab 31c. Both of the positive electrode tab 30c and the negative electrode tab 31c project upward from the void at the winding center of the main body 3a. Note that the positive electrode tab 30c and the negative electrode tab 31c may project from a place other than the winding center.
  • the positive electrode core body 30a extends to form the positive electrode tab 30c
  • the negative electrode core body 31a extends to form the negative electrode tab 31c.
  • the front side surface and the back side surface are substantially parallel to each other, and the left and right ends have a curved and flat shape.
  • the left and right ends have a curved and flat shape.
  • At the center of the winding of the main body 3a there is an elongated void in the left-right direction that is formed by removing the core, and this void penetrates the main body 3a in the vertical direction.
  • the main body 3a has a winding structure in which a positive electrode plate 30 and a negative electrode plate 31 are wound with a separator 32 in between.
  • the positive electrode plate 30 has a positive electrode core body 30a made of metal and a positive electrode mixture layer 30b containing a positive electrode active material formed on the positive electrode core body 30a.
  • a metal foil such as aluminum, which is stable in the potential range of the positive electrode plate 30, a film in which the metal is disposed on the surface layer, or the like is used.
  • the thickness of the positive electrode core body 30a is, for example, 10 to 20 ⁇ m.
  • the negative electrode plate 31 has a negative electrode core body 31a made of metal and a negative electrode mixture layer 31b containing a negative electrode active material formed on the negative electrode core body 31a.
  • a metal foil such as copper that is stable in the potential range of the negative electrode plate 31, a film in which the metal is arranged on the surface layer, and the like can be used.
  • the thickness of the negative electrode core body 31a is, for example, 5 to 15 ⁇ m.
  • the size of the positive electrode plate 30 is slightly smaller than the size of the negative electrode plate 31 in both the axial direction and the winding direction.
  • the flexibility index of the positive electrode plate 30 used for the spirally wound electrode body 3 is 15 to 19.
  • the flexibility index is an index indicating the softness of the positive electrode plate 30, and the larger the value of the flexibility index, the softer the positive electrode plate 30.
  • the density of the positive electrode active material in the positive electrode mixture layer 30b is not large, in other words, the flexibility index of the conventional positive electrode plate 30 not having a high packing density is larger than 19 and is 22, for example.
  • the flexibility index is large, the positive electrode plate 30 or the negative electrode plate 31 included in the spirally wound electrode body 3 tends to buckle after pressing the winding body.
  • the flexibility index is smaller than 13
  • the positive electrode plate 30 included in the spirally wound electrode body 3 is too hard and easily cracked.
  • the flexibility index of the positive electrode plate 30 is measured by the following procedure (hereinafter, sometimes referred to as “positive electrode winding test”). (1) A positive electrode plate 30 having a width of 50 mm and a length of 100 mm is wound around a core rod having a diameter of 5 mm and held for 60 seconds. (2) When the positive electrode plate 30 is released with the core rod oriented in the vertical direction, the positive electrode plate 30 springs back and spreads apart from the core rod. (3) The value obtained by removing the unit (mm) from the size of the inner diameter of the positive electrode plate 30 after spring back is defined as the flexibility index of the positive electrode plate 30.
  • the inner diameter of the positive electrode plate 30 means a diameter that passes through the center of the core rod and the position of the positive electrode plate 30 that is farthest from the center of the core rod while the positive electrode plate 30 makes one round around the core rod from the winding inner end. Means the length of.
  • the positive electrode mixture layer 30b preferably contains a positive electrode active material, a binder, and a conductive material, and is provided on both surfaces of the positive electrode core body 30a.
  • the positive electrode plate 30 is formed by applying a positive electrode active material slurry containing a positive electrode active material, a binder, a conductive material and the like on the positive electrode core body 30a, drying the coating film, and then compressing the slurry with a roller or the like. It can be produced by forming the layer 30b on both surfaces of the positive electrode core body 30a.
  • the positive electrode active material may contain a small amount of other lithium metal composite oxide or the like, but preferably contains the lithium metal composite oxide represented by the above general formula as a main component.
  • the lithium metal composite oxide may contain elements other than Ni, Co, Mn, and Al.
  • examples of other elements include alkali metal elements other than Li, transition metal elements other than Ni, Co, and Mn, alkaline earth metal elements, Group 12 elements, Group 13 elements other than Al, and Group 14 elements.
  • Specific examples include Zr, B, Mg, Ti, Fe, Cu, Zn, Sn, Na, K, Ba, Sr, Ca, W, Mo, Nb and Si.
  • Inorganic compound particles such as zirconium oxide, tungsten oxide, aluminum oxide, or lanthanoid-containing compound may be fixed to the surface of the lithium metal composite oxide particles.
  • the particle size of the lithium metal composite oxide is not particularly limited, but for example, the average particle size is preferably 2 ⁇ m or more and less than 30 ⁇ m. If the average particle size is less than 2 ⁇ m, the current may be impeded by the conductive material in the positive electrode mixture layer 30b to increase the resistance. On the other hand, when the average particle size is 30 ⁇ m or more, the load characteristics may decrease due to the decrease in the reaction area.
  • the average particle diameter is a volume average particle diameter measured by a laser diffraction method, and means a median diameter having a volume integrated value of 50% in a particle diameter distribution. The average particle size can be measured using, for example, a laser diffraction/scattering particle size distribution measuring device (manufactured by Horiba, Ltd.).
  • a fluororesin such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), a polyimide resin, an acrylic resin, a polyolefin resin Resin etc. are mentioned.
  • the binder can adjust the hardness of the positive electrode plate 30 to adjust the flexibility index of the spirally wound electrode body 3.
  • Examples of the conductive material contained in the positive electrode mixture layer 30b include carbon materials such as carbon black (CB), acetylene black (AB), Ketjen black, and graphite. These may be used individually by 1 type and may be used in mixture of 2 or more types.
  • carbon black CB
  • AB acetylene black
  • Ketjen black Ketjen black
  • graphite graphite
  • Packing density of the positive-electrode mixture layer 30b is 3.2g / cm 3 ⁇ 3.8g / cm 3. Within this range, the non-aqueous electrolyte secondary battery 100 including the positive electrode plate 30 having a high packing density while suppressing cracks in the positive electrode mixture layer 30b and buckling of the positive electrode plate 30 or the negative electrode plate 31 is provided. You can
  • the negative electrode mixture layer 31b preferably includes a negative electrode active material and a binder and is provided on both surfaces of the negative electrode core body 31a.
  • the negative electrode plate 31 is obtained by applying a negative electrode active material slurry containing a negative electrode active material, a binder and the like on the negative electrode core body 31a, drying the coating film, and then compressing it with a roller or the like to form the negative electrode mixture layer 31b. It can be manufactured by forming on both surfaces of the negative electrode core body 31a.
  • Examples of the negative electrode active material include low crystalline carbon-coated graphite obtained by forming a film of low crystalline carbon on the surface of graphite.
  • the low crystalline carbon is a carbon material in which the graphite crystal structure is not developed, is in an amorphous or microcrystalline state and has a turbostratic structure, or a carbon material having a very fine particle size instead of a spherical shape or a scale shape. Is.
  • a carbon material having a d(002) plane interval larger than 0.340 nm by X-ray diffraction is low crystalline carbon.
  • a carbon material observed by a scanning electron microscope (SEM) or the like and having an average primary particle size of 1 ⁇ m or less measured is also low crystalline carbon.
  • the low crystalline carbon include, for example, hard carbon (non-graphitizable carbon), soft carbon (graphitizable carbon), acetylene black, Ketjen black, thermal black, carbon black such as furnace black, carbon fiber, and the like.
  • Activated carbon etc. are mentioned.
  • the negative electrode active material is not particularly limited as long as it can reversibly occlude and release lithium ions, and examples thereof include carbon materials such as natural graphite and artificial graphite, and alloys with Li such as silicon (Si) and tin (Sn).
  • a metal to be converted, an oxide containing a metal element such as Si or Sn, or the like can be used.
  • the negative electrode mixture layer 31b may include a lithium titanium composite oxide.
  • a known binder can be used as the binder contained in the negative electrode mixture layer 31b.
  • a fluorine resin such as PTFE or PVdF, PAN, a polyimide resin, an acrylic resin.
  • polyolefin resins and the like can be used.
  • the binder used when preparing the negative electrode mixture slurry using an aqueous solvent includes CMC or a salt thereof, styrene-butadiene rubber (SBR), polyacrylic acid (PAA) or a salt thereof, polyvinyl alcohol (PVA). ) Etc. can be illustrated.
  • a porous sheet having ion permeability and insulation is used for the separator 32.
  • the porous sheet include a microporous membrane, woven fabric, non-woven fabric and the like.
  • Suitable materials for the separator 32 are olefin resins such as polyethylene and polypropylene, and cellulose.
  • the separator 32 may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as an olefin resin.
  • a multilayer separator including a polyethylene layer and a polypropylene layer may be used, and a separator 32 having a surface coated with a resin such as an aramid resin or inorganic fine particles such as alumina or titania may be used.
  • FIG. 4 shows a change in shape from the shape of the winding body 40 before pressing to the shape of the wound electrode body 3 after pressing (the positive electrode tab 30c and the negative electrode tab 31c are not shown).
  • the three drawings on the upper side are plan views of the winding body 40 before pressing, and show the cases where the shape of the winding core 41 is a circle, an ellipse, and a flat rectangle from left to right, respectively.
  • the shapes of circles, ellipses, and flat rectangles are distinguished by the ratio of the major axes (w1, w2, w3) and the minor axes (t1, t2, t3) that pass through the center of each shape and intersect each other at right angles.
  • the circular shape includes a perfect circle and a substantially circular shape, and the ratio of the length of the short axis to the length of the long axis (hereinafter, referred to as flattening rate) t1/w1 is 95%. It means the case where it is 100% or less.
  • the elliptical shape is a shape that is flatter than a circular shape and has a flatness t2/w2 of 71% or more and less than 95%.
  • the flat rectangular shape is a shape that is flatter than an ellipse and has a flatness t3/w3 of less than 71%.
  • the flat rectangular shape may have rounded corners.
  • the positive electrode plate 30, the negative electrode plate 31, and the separator 32 are wound around the elliptical winding core 41 of FIG. 4B to form the winding body 40.
  • the elliptical shape can suppress buckling because the change in shape at the time of pressing is smaller than that in the circular shape. Further, if the flatness ratio is small up to the flat rectangular shape, the positive electrode plate 30 is curved at the left and right ends of the winding core 41, and thus cracks are likely to occur, and the elliptical shape is preferable to the flat rectangular shape.
  • the wound body 40 formed in the wound body forming step is pressed and molded into a flat electrode body after the winding core 41 is removed in the electrode body forming step.
  • the lower three views are plan views of the wound electrode body 3 after pressing. Whether the winding core 41 has a circular shape, an elliptical shape, or a flat rectangular shape, the winding core 41 can have substantially the same shape after pressing.
  • the ratio of the innermost circumference major axis of the winding body 40 to the innermost circumference major axis of the winding type electrode body 3 is 71% to It can be 94%.
  • the innermost circumference major axis means the longest dimension between the winding inner end of the spirally wound electrode body 3 or the winding body 40 and the winding center.
  • the ratio of the innermost major axis of the winding body 40 to the innermost major axis of the wound electrode body 3 is w1/w4, w2/w5, respectively. w3/w6.
  • Example 1 Li 1.054 Ni 0.199 Co 0.597 Mn 0.199 Zr 0.005 O 2 as a positive electrode active material, 5% by mass of carbon black with respect to the positive electrode active material, and 2% by mass of polyvinylidene fluoride (PVdF) with respect to the positive electrode active material.
  • PVdF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode plate was cut into a size of 50 mm in width and 100 mm in length, which was wound around a core rod having a diameter of 5 mm, held for 60 seconds, and then released. The diameter in the spring-back state was measured as a flexibility index. The flexibility index of the positive electrode plate was 19.
  • the positive electrode plate having a length of 500 mm and a width of 75 mm and the negative electrode plate having a length of 500 mm and a width of 78 mm were stacked via a separator made of a polypropylene microporous film having a thickness of 16 ⁇ m, one end was fixed, and the flatness was 85%. It was wound on an elliptical winding core. Next, the winding end was fixed with tape, the winding core was removed, and press molding was carried out to produce a winding type electrode body. It was confirmed from the appearance of the positive electrode plate and the negative electrode plate that the wound electrode body was disassembled after pressing, that neither the positive electrode plate nor the negative electrode plate was cracked or buckled.
  • Example 2 Regarding Example 2 and Example 3, the amount of the binder contained in the positive electrode mixture slurry was changed to 3% by mass with respect to the positive electrode active material and 4% by mass with respect to the positive electrode active material, respectively.
  • the positive electrode winding test and the winding type electrode body were evaluated in the same manner as in Example 1 except that the hardness of the material layer was adjusted.
  • the flexibility indexes in the positive electrode winding test of Examples 2 and 3 were 17 and 15, respectively.
  • Comparative Example 1 was the same as Example 1 except that the amount of the binder contained in the positive electrode mixture slurry was changed to 5% by mass with respect to the positive electrode active material to adjust the hardness of the positive electrode mixture layer.
  • the wound electrode body was evaluated by the method.
  • the flexibility index of the positive electrode winding test of Comparative Example 1 was 13.
  • Comparative Examples 2 to 5 the positive electrode winding test and the wound electrode body were performed in the same manner as in Examples 1 to 3 and Comparative Example 1 except that the shape of the winding core was changed to a circle having an oblateness of 95%. Was evaluated.
  • Comparative Examples 6 to 9 the positive electrode winding test and the winding type electrode were performed in the same manner as in Examples 1 to 3 and Comparative Example 1 except that the shape of the winding core was changed to a flat rectangle having an oblateness of 64%. The body was evaluated.
  • the wound-type electrode body having a flexibility index of 15 to 19 and produced using an elliptical winding core does not cause cracks in the positive electrode mixture layer, and has a positive electrode plate or a negative electrode plate. It was confirmed that buckling did not occur.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本開示の一形態である非水電解質二次電池は、正極板と負極板とがセパレータを介して巻回された扁平な巻回型電極体を備える非水電解質二次電池であって、正極板は、正極芯体と、正極芯体の両面に形成された正極合材層を有し、正極合材層は、一般式Li1+xMaO2+b(式中、x、a、及びbはx+a=1、-0.2<x≦0.2、-0.1≦b≦0.1の条件を満たし、MはNiとCoを含み、MnとAlからなる群より選択された少なくとも一種の元素を含む)で表されるリチウム金属複合酸化物を含み、正極板の柔軟性指数が15~19であることを特徴とする。このような正極板は正極合材層のクラック及び正極板又は負極板の座屈を抑制しつつ高充填密度化される。

Description

非水電解質二次電池の製造方法及び非水電解質二次電池
 本開示は、非水電解質二次電池の製造方法及び非水電解質二次電池に関する。
 近年、電気自動車等の車両に使用される非水電解質二次電池の高容量化の要求が高まっており、電池内の限られた空間により多くの活物質を導入して極板の高充填密度化を図る必要が生じている。特に、正極板と負極板とがセパレータを介して巻回された巻回型電極体を備える非水電解質二次電池では、正極板を高充填密度化すると正極合材層にクラックが発生することが課題である。他方、巻回型電極体においては、正極板又は負極板が電池内部で屈曲する座屈という現象が一定条件下で生じることが知られている。特許文献1は、それぞれの層に含まれる結着材の配合比率が異なる2層を積層した正極合材層を開示している。
特開2017-84769号公報
 しかし、特許文献1に開示された方法では、高密度化された正極合材層のクラックの発生を抑制することまではできず、また正極板又は負極板の座屈については考慮されていないため、未だに改良の余地がある。
 よって、本開示の目的は、高充填密度化された正極板において正極合材層のクラックを抑制しつつ、正極板又は負極板の座屈を抑制した非水電解質二次電池を提供することである。
 本開示の一形態である非水電解質二次電池は、正極板と負極板とがセパレータを介して巻回された扁平な巻回型電極体を備える非水電解質二次電池であって、正極板は、正極芯体と、正極芯体の両面に形成された正極合材層を有し、正極合材層は、一般式Li1+xa2+b(式中、x、a、及びbはx+a=1、-0.2<x≦0.2、-0.1≦b≦0.1の条件を満たし、MはNiとCoを含み、MnとAlからなる群より選択された少なくとも一種の元素を含む)で表されるリチウム金属複合酸化物を含み、正極板の柔軟性指数が15~19であることを特徴とする。
 本開示の一態様である非水電解質二次電池の製造方法は、正極板と負極板とセパレータとを楕円形状の巻芯に巻回して巻取体を形成する巻取体形成工程と、巻取体から巻芯を取り除いた後にプレスして扁平な巻回型電極体に成形する電極体成形工程とを含み、正極板は、正極芯体と、正極芯体の両面に形成された正極合材層を有し、正極合材層は、一般式Li1+xa2+b(式中、x、a、及びbはx+a=1、-0.2<x≦0.2、-0.1≦b≦0.1の条件を満たし、MはNiとCoを含み、MnとAlからなる群より選択された少なくとも一種の元素を含む)で表されるリチウム金属複合酸化物を含み、正極板の柔軟性指数が15~19であることを特徴とする。
 本開示の一態様によれば、高充填密度化された正極板において正極合材層のクラックを抑制しつつ、正極板又は負極板の座屈を抑制した非水電解質二次電池を提供することができる。
実施形態の一例である角形非水電解質二次電池を示す斜視図である。 図1のA-A線に沿った断面図である。 図2に示した非水電解質二次電池の巻回型電極体の斜視図であり、巻外端を展開した図である。 プレス前の巻取体の形状からプレス後の巻回型電極体への形状の変化を平面視で示した図である。
 以下、実施形態の一例について詳細に説明する。なお、本明細書において、図1~図3の紙面縦方向を「上、下」、横方向を「左、右」、奥行方向を「手前、奥」で表すことがある。
 図1及び図2を用いて、実施形態の一例である非水電解質二次電池100の構成を説明する。図1は、実施形態の一例である非水電解質二次電池100の外観を示す斜視図であり、図2は、図1におけるA-A線を含む上下方向の断面図である。図1~図2に示すように、非水電解質二次電池100は、開口を有する外装体1と、当該開口を封口する封口板2とを有する電池ケース20を備える。外装体1及び封口板2は、それぞれ金属製であることが好ましく、例えば、アルミニウム又はアルミニウム合金製とすることができる。外装体1は、底部と側壁を有し、底部と対向する位置に開口を有する角形の有底筒状の外装体である。図1に示す非水電解質二次電池100は、角形の外装体1(角形の電池ケース20)を有する角形非水電解質二次電池の例であるが、本実施形態の非水電解質二次電池は、これに限定されず、金属箔を樹脂シートでラミネートして形成されたラミネートシートを用いた外装体(ラミネートシート製電池ケース)を有するラミネート外装体非水電解質二次電池等でもよい。封口板2は、角形の外装体1の開口縁部にレーザ溶接等により接続される。
 封口板2は電解液注入孔13を有する。電解液注入孔13は、後述する電解液を注入した後、封止栓14により封止される。また、封口板2は、ガス排出弁15を有する。このガス排出弁15は電池内部の圧力が所定値以上となった場合に作動し、電池内部のガスを電池外部に排出する。
 封口板2には、電池ケース20外に突出するように正極端子4が取り付けられている。具体的には、正極端子4は、封口板2に形成された正極端子取り付け孔に挿入されており、正極端子取り付け孔の電池外側に配置された外部側絶縁部材9、電池内側に配置された内部側絶縁部材8により封口板2と電気的に絶縁された状態で封口板2に取り付けられている。正極端子4は、電池ケース20内で正極集電体5と電気的に接続している。正極集電体5は、内部側絶縁部材8を挟んで封口板2に設けられている。内部側絶縁部材8及び外部側絶縁部材9はそれぞれ樹脂製であることが好ましい。
 また、封口板2には、電池ケース20外に突出するように負極端子6が取り付けられている。具体的には、負極端子6は、封口板2に形成された負極端子取り付け孔に挿入されており、負極端子取り付け孔の電池外側に配置された外部側絶縁部材11、電池内側に配置された内部側絶縁部材10により封口板2と電気的に絶縁された状態で封口板2に取り付けられている。負極端子6は、電池ケース20内で負極集電体7と電気的に接続している。負極集電体7は、内部側絶縁部材10を挟んで封口板2に設けられている。内部側絶縁部材10及び外部側絶縁部材11はそれぞれ樹脂製であることが好ましい。
 非水電解質二次電池100は巻回型電極体3と電解液を備え、外装体1は巻回型電極体3と電解液を収容する。図3を参照して後述するように、巻回型電極体3は、正極板30と負極板31とがセパレータ32を介して巻回された巻回構造を有している。巻回型電極体3の上部において、正極板30及び負極板31から各々正極タブ30c及び負極タブ31cが突出しており、正極タブ30c及び負極タブ31cは、それぞれ正極集電体5及び負極集電体7に溶接等により接続されている。
 非水電解質二次電池100は、図2に示すように、巻回型電極体3と外装体1との間に配置される絶縁シート12を備えることができる。絶縁シート12は、例えば、外装体1と同様に、上部に開口を有する有底箱状又は袋状の形状を有している。絶縁シート12が上部に開口を有する有底箱状又は袋状の形状を有することで、巻回型電極体3を絶縁シート12の開口から挿入し、絶縁シート12によって巻回型電極体3を覆うことができる。
 絶縁シート12の素材は、電気的な絶縁性、電解液に侵されない化学的安定性、及び非水電解質二次電池100の電圧に対して電気分解しない電気的安定性を有する素材であれば、特に限定されない。絶縁シート12の素材としては、例えば、工業的な汎用性、製造コスト及び品質安定性の観点から、ポリエチレン、ポリプロピレン、ポリフッ化エチレン等の樹脂材料を用いることができる。なお、絶縁シート12は、上述の箱状又は袋状等のようなケース状の形状に限定されない。例えば、横方向と縦方向の二方向に延在する平面形状の絶縁シート12を、巻回型電極体3の周りに、横方向と縦方向の二方向に巻き付けてもよい。これにより、平面形状の絶縁シート12によって、巻回型電極体3を覆うことができる。
 電解液は、溶媒と、溶媒に溶解した電解質塩とを含む。溶媒は、非水溶媒を使用できる。非水溶媒には、例えばカーボネート類、エステル類、エーテル類、ニトリル類、アミド類、およびこれらの2種以上の混合溶媒等を用いてもよい。カーボネート類としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネート類;ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状カーボネート類が挙げられる。非水溶媒は、上記の溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。なお、電解液は液体電解質に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。電解質塩は、リチウム塩を含む。リチウム塩には、従来の非水電解質二次電池100において支持塩として一般に使用されているLiPF6等を用いることができる。また、適宜ビニレンカーボネート(VC)等の添加剤を添加することもできる。
 次に、図3を用いて巻回型電極体3について詳説する。図3は、巻回型電極体3の斜視図であり、巻外端を展開した図である。巻回型電極体3は、本体部3aとタブ部3bを有する。
 タブ部3bは、一対の正極タブ30c及び負極タブ31cからなる。正極タブ30c及び負極タブ31cは、どちらも本体部3aの巻中心の空隙から上方に突出している。なお、正極タブ30c及び負極タブ31cは巻中心以外の箇所から突出していてもよい。
 本実施形態では、正極芯体30aが延出して正極タブ30cを構成し、負極芯体31aが延出して負極タブ31cを構成している。なお、正極芯体30a又は負極芯体31aにそれぞれ他の導電部材を接続し、正極タブ30c又は負極タブ31cとすることも可能である。正極タブ30cの根元部分には絶縁層ないし、正極芯体30aよりも電気抵抗が高い保護層を設けることが好ましい。
 本体部3aは、後述するように巻芯を抜いた後にプレスされて成形されるため、手前側の面と奥側の面が略平行で、左右端では湾曲した扁平な形状をしている。本体部3aの巻中心には、巻芯を抜いた跡にできる左右方向に細長い空隙があり、この空隙は上下方向に本体部3aを貫通している。
 本体部3aは、正極板30と負極板31とがセパレータ32を介して巻回された巻回構造を有している。正極板30は、金属製の正極芯体30aと、正極芯体30a上に形成された正極活物質を含む正極合材層30bを有する。正極芯体30aには、アルミニウムなどの正極板30の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等が用いられる。正極芯体30aの厚みは、例えば10~20μmである。負極板31は、金属製の負極芯体31aと、負極芯体31a上に形成された負極活物質を含む負極合材層31bを有する。負極芯体31aには、銅などの負極板31の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極芯体31aの厚みは、例えば5~15μmである。非水電解質二次電池100では、軸方向及び巻回方向のいずれにおいても、正極板30の大きさは負極板31の大きさよりも僅かに小さくするのが好ましい。
 巻回型電極体3に用いる正極板30の柔軟性指数は、15~19である。柔軟性指数とは、正極板30の柔らかさを示す指標であって、柔軟性指数の値が大きいほど正極板30は柔らかい。正極合材層30bにおける正極活物質の密度が大きくない、換言すれば、高充填密度化されていない従来の正極板30の柔軟性指数は、19よりも大きく、例えば22である。柔軟性指数が大きいと、巻取体をプレスした後に巻回型電極体3に含まれる正極板30又は負極板31は座屈しやすい。また、柔軟性指数が13よりも小さいと、巻回型電極体3に含まれる正極板30は硬すぎてクラックが入りやすい。
 正極板30の柔軟性指数は、以下の手順で測定される(以下、「正極巻回テスト」という場合がある)。
(1)幅50mmで長さ100mmの正極板30を直径5mmの芯棒に巻き付けて、60秒間保持する。
(2)芯棒が上下方向に向く姿勢で正極板30を解放すると、当該正極板30はスプリングバックして芯棒から離れて広がる。
(3)スプリングバックした後の正極板30の内径の大きさから単位(mm)を削除した値を正極板30の柔軟性指数とする。ここで、正極板30の内径とは、当該正極板30が巻内端から芯棒を一周する間において、芯棒の中心から最も離れた正極板30の箇所と芯棒の中心とを通る直径の長さを意味する。
 正極合材層30bは、正極活物質、結着剤、及び導電材を含み、正極芯体30aの両面に設けられることが好ましい。正極板30は、正極芯体30a上に正極活物質、結着剤、及び導電材等を含む正極活物質スラリを塗布し、塗膜を乾燥させた後、ローラ等により圧縮して正極合材層30bを正極芯体30aの両面に形成することにより作製できる。
 正極活物質としては、一般式Li1+xa2+b(式中、x、a、及びbはx+a=1、-0.2<x≦0.2、-0.1≦b≦0.1の条件を満たし、MはNiとCoを含み、MnとAlからなる群より選択された少なくとも一種の元素を含む)で表されるリチウム金属複合酸化物を含有する。正極活物質として、他のリチウム金属複合酸化物等が少量含まれていてもよいが、上記一般式で表されるリチウム金属複合酸化物を主成分とすることが好ましい。
 リチウム金属複合酸化物は、Ni、Co、Mn、及びAl以外の他の元素を含んでいてもよい。他の元素としては、例えばLi以外のアルカリ金属元素、Ni、Co、Mn以外の遷移金属元素、アルカリ土類金属元素、第12族元素、Al以外の第13族元素、並びに第14族元素が挙げられる。具体的には、Zr、B、Mg、Ti、Fe、Cu、Zn、Sn、Na、K、Ba、Sr、Ca、W、Mo、Nb、Si等が例示できる。なお、リチウム金属複合酸化物の粒子表面には、酸化ジルコニウム、酸化タングステン、酸化アルミニウム、ランタノイド含有化合物等の無機化合物粒子などが固着していてもよい。
 リチウム金属複合酸化物の粒径は、特に限定されないが、例えば平均粒径が2μm以上30μm未満であることが好ましい。平均粒径が2μm未満である場合、正極合材層30b内の導電材による通電を阻害して抵抗増加する場合がある。一方、平均粒径が30μm以上である場合、反応面積の低下により、負荷特性が低下する場合がある。平均粒径とは、レーザ回折法によって測定される体積平均粒径であって、粒子径分布において体積積算値が50%となるメジアン径を意味する。平均粒径は、例えば、レーザ回折散乱式粒度分布測定装置(株式会社堀場製作所製)を用いて測定できる。
 正極合材層30bに含まれる結着材としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素系樹脂、ポリアクリロニトリル(PAN)、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂などが挙げられる。結着材によって、正極板30の硬さを調整して、巻回型電極体3の柔軟性指数を調整することができる。
 正極合材層30bに含まれる導電材としては、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック、黒鉛等の炭素材料などが挙げられる。これらは、1種類を単独で用いてもよく、複数種を混合して用いてもよい。
 正極合材層30bの充填密度は3.2g/cm3~3.8g/cm3である。この範囲であれば、正極合材層30bのクラック及び正極板30又は負極板31の座屈を抑制しつつ高充填密度化された正極板30を備える非水電解質二次電池100を提供することができる。
 負極合材層31bは、負極活物質及び結着材を含み、負極芯体31aの両面に設けられることが好ましい。負極板31は、負極芯体31a上に負極活物質、及び結着剤等を含む負極活物質スラリを塗布し、塗膜を乾燥させた後、ローラ等により圧縮して負極合材層31bを負極芯体31aの両面に形成することにより作製できる。
 負極活物質は、例えば黒鉛の表面に低結晶性炭素の被膜を形成してなる低結晶性炭素被覆黒鉛が挙げられる。低結晶性炭素は、グラファイト結晶構造が発達していない、アモルファス若しくは微結晶で乱層構造な状態の炭素材料であるか、または、球形や鱗片形状でなく非常に微細な粒子径をもつ炭素材料である。例えば、X線回折によるd(002)面間隔が0.340nmより大きい炭素材料は低結晶性炭素である。また、走査型電子顕微鏡(SEM)等により観察され、測定される一次粒子の平均粒径が1μm以下である炭素材料も低結晶性炭素である。低結晶性炭素の具体例としては、例えば、ハードカーボン(難黒鉛化炭素)、ソフトカーボン(易黒鉛化炭素)、アセチレンブラック、ケッチェンブラック、サーマルブラック、ファーネスブラック等のカーボンブラック、カーボンファイバー、活性炭等が挙げられる。負極活物質としては、リチウムイオンを可逆的に吸蔵、放出できるものであれば特に限定されず、例えば天然黒鉛、人造黒鉛等の炭素材料、ケイ素(Si)、錫(Sn)等のLiと合金化する金属、又はSi、Sn等の金属元素を含む酸化物などを用いることができる。また、負極合材層31bは、リチウムチタン複合酸化物を含んでいてもよい。
 負極合材層31bに含まれる結着材には、公知の結着材を用いることができ、正極の場合と同様に、PTFE、PVdF等のフッ素系樹脂、PAN、ポリイミド系樹脂、アクリル系樹脂、並びに、ポリオレフィン系樹脂等を用いることができる。また、水系溶媒を用いて負極合材スラリを調製する場合に用いられる結着材としては、CMC又はその塩、スチレンブタジエンゴム(SBR)、ポリアクリル酸(PAA)又はその塩、ポリビニルアルコール(PVA)等が例示できる。
 セパレータ32には、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔膜、織布、不織布等が挙げられる。セパレータ32の材質としては、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、セルロース等が好適である。セパレータ32は、セルロース繊維層及びオレフィン系樹脂等の熱可塑性樹脂繊維層を有する積層体であってもよい。また、ポリエチレン層及びポリプロピレン層を含む多層セパレータであってもよく、セパレータ32の表面にアラミド系樹脂等の樹脂、又はアルミナ、チタニア等の無機微粒子が塗布されたものを用いることもできる。
 次に図4を用いて巻回型電極体3の製造方法について詳説する。図4は、プレス前の巻取体40の形状からプレス後の巻回型電極体3への形状の変化を示している(正極タブ30c及び負極タブ31cは図示していない)。上側の3つの図は、プレス前の巻取体40の平面図であり、左から右に巻芯41の形状がそれぞれ円、楕円、扁平長方形の場合を示している。円、楕円、及び扁平長方形の形状は、それぞれの形状の中心を通りお互いに直角に交わる長軸(w1、w2、w3)と短軸(t1、t2、t3)との比によって区別される。ここで、円形状とは、真円と略円の形をした形状とを含み、長軸の長さに対する短軸の長さの割合(以下、扁平率とする)t1/w1が、95%以上100%以下である場合をいう。楕円形状とは、円形状よりも扁平な形状であり、扁平率t2/w2が71%以上95%未満である場合をいう。扁平長方形形状とは、楕円よりもさらに扁平な形状であり、扁平率t3/w3が71%未満の場合をいう。なお、扁平長方形形状は角が丸くてもよい。
 巻取体形成工程において、正極板30と負極板31とセパレータ32とを図4(b)の楕円形状の巻芯41に巻回して巻取体40を形成する。楕円形状とすることでプレス時の形状の変化が円形状よりも小さいので座屈を抑制できる。また、扁平長方形形状まで扁平率が小さいと巻芯41の左右端で正極板30が湾曲しているためクラックが入りやすく、楕円形状の方が扁平長方形形状よりも好ましい。
 巻取体形成工程において形成した巻取体40は、電極体成形工程において、巻芯41が取り除かれた後にプレスされて扁平な電極体に成形される。図4において下側の3つの図がプレス後の巻回型電極体3の平面図である。巻芯41が円、楕円、又は扁平長方形のいずれの形状であってもプレス後には略同じ形状とすることができる。
 巻回型電極体3の最内周長径に対する巻取体40の最内周長径の比率(巻取体40の最内周長径/巻回型電極体3の最内周長径)が71%~94%とすることができる。ここで、最内周長径とは、巻回型電極体3又は巻取体40の巻内端から巻中心を一周する間において最も長い寸法をいう。巻芯41の形状が円、楕円、扁平長方形の各場合について、巻回型電極体3の最内周長径に対する巻取体40の最内周長径の比率はそれぞれw1/w4、w2/w5、w3/w6である。
 以下、実施例により本実施形態をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
<実施例1>
 正極活物質としてのLi1.054Ni0.199Co0.597Mn0.199Zr0.0052と、当該正極活物質に対して5質量%のカーボンブラックと、当該正極活物質に対して2質量%のポリフッ化ビニリデン(PVdF)とを混合した後、N-メチル-2-ピロリドン(NMP)を加え、混合機(プライミクス株式会社製、T.K.ハイビスミックス)を用いて撹拌して、正極合材スラリを調製した。このスラリを正極芯体としての厚み15μmのアルミニウム箔にコーティングした後、乾燥させ、ローラで圧縮した。このようにして正極芯体の両面に正極合材層が形成された厚さ140μmの正極板を作製した。
 負極活物質として低結晶性炭素被覆黒鉛と、当該負極活物質に対して1質量%のスチレンブタジエンゴム(SBR)と、当該負極活物質に対して0.5質量%のカルボキシメチルセルロースとを混合した後、水を加え、混合機(プライミクス株式会社製、T.K.ハイビスミックス)を用いて撹拌して、負極合材スラリを調製した。このスラリを負極芯体としての厚み10μmの銅箔にコーティングした後、乾燥させ、ローラで圧縮した。このようにして負極芯体の両面に負極合材層が形成された厚さ160μmの負極板を作製した。
 [正極巻回テスト]
 上記正極板を幅50mm、長さ100mm寸法に切り出し、それを直径5mmの芯棒に巻回し、60秒間保持した後に解放した。スプリングバックした状態での直径を柔軟性指数として測定した。正極板の柔軟性指数は19であった。
 [巻回型電極体の評価]
 長さ500mm、幅75mmの上記正極板及び長さ500mm、幅78mmの上記負極板を厚さ16μmのポリプロピレン製の微多孔膜からなるセパレータを介して重ね、一端を固定し、扁平率が85%の楕円形状の巻芯に巻回した。次に巻回端部をテープで固定し、巻芯を取り除きプレス成形して巻回型電極体を作製した。プレス後の巻回型電極体を解体した正極板や負極板の外観から、正極板及び負極板にクラックや座屈が発生していないことを確認した。
<実施例2~3>
 実施例2と実施例3について、正極合材スラリに含む結着材の量をそれぞれ、正極活物質に対して3質量%と、正極活物質に対して4質量%とに変更して正極合材層の硬さを調整した以外は、実施例1と同様の方法で正極巻回テスト及び巻回型電極体の評価を行った。実施例2と実施例3の正極巻回テストによる柔軟性指数は、それぞれ17と15であった。
<比較例1>
 比較例1は、正極合材スラリに含む結着材の量を、正極活物質に対して5質量%に変更して正極合材層の硬さを調整した以外は、実施例1と同様の方法で巻回型電極体の評価を行った。比較例1の正極巻回テストによる柔軟性指数は、13であった。
<比較例2~5>
 比較例2~5は、巻芯の形状を扁平率が95%の円に変更した以外は、実施例1~3及び比較例1とそれぞれ同様の方法で正極巻回テスト及び巻回型電極体の評価を行った。
<比較例6~9>
 比較例6~9は、巻芯の形状を扁平率が64%の扁平長方形に変更した以外は、実施例1~3及び比較例1とそれぞれ同様の方法で正極巻回テスト及び巻回型電極体の評価を行った。
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、柔軟性指数が15~19で、楕円形状の巻芯を用いて作製した巻回型電極体は、正極合材層にクラックが生じず、また正極板又は負極板に座屈も生じないことが確認できた。
 1 外装体、2 封口板、3 巻回型電極体、3a 本体部、3b タブ部、4 正極端子、5 正極集電体、6 負極端子、7 負極集電体、8,10 内部側絶縁部材、9,11 外部側絶縁部材、12 絶縁シート、13 電解液注入孔、14 封止栓、15 ガス排出弁、20 電池ケース、30 正極板、30a 正極芯体、30b 正極合材層、30c 正極タブ、31 負極板、31a 負極芯体、31b 負極合材層、31c 負極タブ、32 セパレータ、40 巻取体、41 巻芯、100 非水電解質二次電池。

Claims (5)

  1.  正極板と負極板とがセパレータを介して巻回された扁平な巻回型電極体を備える非水電解質二次電池であって、
     前記正極板は、正極芯体と、前記正極芯体の両面に形成された正極合材層を有し、
     前記正極合材層は、一般式Li1+xa2+b(式中、x、a、及びbはx+a=1、-0.2<x≦0.2、-0.1≦b≦0.1の条件を満たし、MはNiとCoを含み、MnとAlからなる群より選択された少なくとも一種の元素を含む)で表されるリチウム金属複合酸化物を含み、
     前記正極板の柔軟性指数が15~19である、非水電解質二次電池。
  2.  前記正極合材層の充填密度が3.2g/cm3~3.8g/cm3である、請求項1に記載の非水電解質二次電池。
  3.  正極板と負極板とセパレータとを楕円形状の巻芯に巻回して巻取体を形成する巻取体形成工程と、
     前記巻取体から巻芯を取り除いた後にプレスして扁平な巻回型電極体に成形する電極体成形工程とを含み、
     前記正極板は、正極芯体と、前記正極芯体の両面に形成された正極合材層を有し、
     前記正極合材層は、一般式Li1+xa2+b(式中、x、a、及びbはx+a=1、-0.2<x≦0.2、-0.1≦b≦0.1の条件を満たし、MはNiとCoを含み、MnとAlからなる群より選択された少なくとも一種の元素を含む)で表されるリチウム金属複合酸化物を含み、
     前記正極板の柔軟性指数が15~19である、非水電解質二次電池の製造方法。
  4.  前記巻回型電極体の最内周長径に対する前記巻取体の最内周長径の比率が71%~94%である、請求項3に記載の非水電解質二次電池の製造方法。
  5.  前記正極合材層の充填密度が3.2g/cm3~3.8g/cm3である、請求項3又は4に記載の非水電解質二次電池の製造方法。
PCT/JP2019/046298 2019-02-08 2019-11-27 非水電解質二次電池の製造方法及び非水電解質二次電池 WO2020162000A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020571004A JP7267312B2 (ja) 2019-02-08 2019-11-27 非水電解質二次電池の製造方法及び非水電解質二次電池
CN201980091394.7A CN113396492B (zh) 2019-02-08 2019-11-27 非水电解质二次电池的制造方法及非水电解质二次电池
EP19914592.1A EP3923378A4 (en) 2019-02-08 2019-11-27 PROCESS FOR MANUFACTURING AN ANHYDROUS ELECTROLYTE SECONDARY BATTERY AND ANHYDROUS ELECTROLYTE SECONDARY BATTERY
US17/426,831 US20220123296A1 (en) 2019-02-08 2019-11-27 Method for manufacturing nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-021805 2019-02-08
JP2019021805 2019-02-08

Publications (1)

Publication Number Publication Date
WO2020162000A1 true WO2020162000A1 (ja) 2020-08-13

Family

ID=71947392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046298 WO2020162000A1 (ja) 2019-02-08 2019-11-27 非水電解質二次電池の製造方法及び非水電解質二次電池

Country Status (5)

Country Link
US (1) US20220123296A1 (ja)
EP (1) EP3923378A4 (ja)
JP (1) JP7267312B2 (ja)
CN (1) CN113396492B (ja)
WO (1) WO2020162000A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216015471U (zh) * 2021-09-23 2022-03-11 宁德时代新能源科技股份有限公司 一种电极组件的制造装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132566A (ja) * 1983-01-20 1984-07-30 Sanyo Electric Co Ltd アルカリ電池用陽極板の化成法
JP2011171250A (ja) * 2010-02-22 2011-09-01 Sanyo Electric Co Ltd 非水電解質二次電池及びその製造方法
JP2017084769A (ja) 2015-10-22 2017-05-18 日立マクセル株式会社 非水電解質二次電池用正極および非水電解質二次電池
JP2018163781A (ja) * 2017-03-24 2018-10-18 三洋電機株式会社 非水電解質二次電池
JP2018170240A (ja) * 2017-03-30 2018-11-01 三洋電機株式会社 非水電解質二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4438863B2 (ja) * 2007-12-27 2010-03-24 Tdk株式会社 巻回型電気化学デバイス及びその製造方法
JP5534595B2 (ja) * 2010-04-19 2014-07-02 日立マクセル株式会社 リチウム二次電池用正極およびリチウム二次電池
JP6287185B2 (ja) * 2013-12-26 2018-03-07 三洋電機株式会社 非水電解質二次電池及び非水電解質二次電池の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132566A (ja) * 1983-01-20 1984-07-30 Sanyo Electric Co Ltd アルカリ電池用陽極板の化成法
JP2011171250A (ja) * 2010-02-22 2011-09-01 Sanyo Electric Co Ltd 非水電解質二次電池及びその製造方法
JP2017084769A (ja) 2015-10-22 2017-05-18 日立マクセル株式会社 非水電解質二次電池用正極および非水電解質二次電池
JP2018163781A (ja) * 2017-03-24 2018-10-18 三洋電機株式会社 非水電解質二次電池
JP2018170240A (ja) * 2017-03-30 2018-11-01 三洋電機株式会社 非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3923378A4

Also Published As

Publication number Publication date
EP3923378A1 (en) 2021-12-15
JP7267312B2 (ja) 2023-05-01
EP3923378A4 (en) 2022-03-23
US20220123296A1 (en) 2022-04-21
CN113396492A (zh) 2021-09-14
JPWO2020162000A1 (ja) 2021-12-09
CN113396492B (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
JP7236658B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
US11791471B2 (en) Nonaqueous-electrolyte secondary battery and secondary battery module
JPWO2018047656A1 (ja) リチウムイオン二次電池およびその製造方法
US20210226294A1 (en) Electrical storage device and electrical storage module
WO2020218473A1 (ja) 極板、非水電解質二次電池、及び極板の製造方法
WO2020026649A1 (ja) 電池用電極、電池、および電池用電極の製造方法
US20210249646A1 (en) Nonaqueous-electrolyte secondary battery and secondary battery module
JP7394327B2 (ja) 二次電池
US10741831B2 (en) Method for producing positive electrode for nonaqueous electrolyte secondary batteries and method for producing nonaqueous electrolyte secondary battery
US10193136B2 (en) Nonaqueous electrolyte secondary battery
WO2020162000A1 (ja) 非水電解質二次電池の製造方法及び非水電解質二次電池
CN112673499B (zh) 二次电池用正极和二次电池
KR101905061B1 (ko) 리튬 이온 이차 전지
US20210202933A1 (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP7003006B2 (ja) 非水電解質二次電池用負極活物質の製造方法
WO2020090410A1 (ja) 二次電池
CN113632256B (zh) 二次电池
WO2024042998A1 (ja) 非水電解質二次電池
US11721802B2 (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2016194589A1 (ja) リチウムイオン二次電池
WO2023276479A1 (ja) 非水電解質二次電池用正極および非水電解質二次電池
WO2023053582A1 (ja) 二次電池用正極、及びそれを用いた二次電池
WO2024042939A1 (ja) 非水電解質二次電池
WO2019167493A1 (ja) 非水電解質二次電池の充電方法、及び非水電解質二次電池の充電システム
JP2020177739A (ja) 非水電解質蓄電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914592

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571004

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019914592

Country of ref document: EP

Effective date: 20210908