WO2020161847A1 - 空気調和装置の室内機及び空気調和装置 - Google Patents

空気調和装置の室内機及び空気調和装置 Download PDF

Info

Publication number
WO2020161847A1
WO2020161847A1 PCT/JP2019/004349 JP2019004349W WO2020161847A1 WO 2020161847 A1 WO2020161847 A1 WO 2020161847A1 JP 2019004349 W JP2019004349 W JP 2019004349W WO 2020161847 A1 WO2020161847 A1 WO 2020161847A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
heat exchanger
fan
receiving device
water receiving
Prior art date
Application number
PCT/JP2019/004349
Other languages
English (en)
French (fr)
Inventor
皓亮 宮脇
洋次 尾中
智哉 福井
健一 迫田
翔太 森川
山田 彰二
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US17/416,515 priority Critical patent/US20220082294A1/en
Priority to PCT/JP2019/004349 priority patent/WO2020161847A1/ja
Priority to DE112019006837.7T priority patent/DE112019006837T5/de
Priority to JP2020570280A priority patent/JP7170755B2/ja
Priority to CN201980090383.7A priority patent/CN113454405B/zh
Publication of WO2020161847A1 publication Critical patent/WO2020161847A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0025Cross-flow or tangential fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate

Definitions

  • the present invention relates to an air conditioner indoor unit and an air conditioner including a fan and a heat exchanger.
  • the heat exchanger is arranged so as to be slanted so as to cover the fan in order to reduce the size of the housing (see, for example, Patent Document 1).
  • the present invention is to solve the above problems, and to provide an indoor unit and an air conditioner of an air conditioner capable of achieving both improvement of energy consumption performance and quality improvement of suppression of water dripping or splashing. With the goal.
  • An indoor unit of an air conditioner includes a fan having a rotation shaft extending in a lateral direction in a housing, a heat exchanger arranged in the housing on an upstream side of an air passage with respect to the fan, and An indoor unit of an air conditioner, comprising: a drain receiver that receives water generated in a housing in the vicinity of the lower end of the heat exchanger, wherein an airflow is discharged to the outside of the fan in the radial direction in the housing.
  • a first space having one opening and a second space having no opening and closing the outer side in the radial direction of the fan are formed separately in the axial direction of the rotation axis of the fan, and the first space is formed. Between the fan and the heat exchanger, at least a part of the first water receiving device arranged above the drain receiver.
  • the air conditioner according to the present invention includes the indoor unit of the above air conditioner.
  • the air conditioner indoor unit and the air conditioner of the present invention it is possible to prevent water from dripping from the heat exchanger to the fan in the first space having the first opening communicating with the living space of the user.
  • the first water receiving device is provided, and the dropping of water from the heat exchanger to the first opening can be suppressed.
  • the second space since the second space has no opening for discharging the airflow, the airflow is turned between the heat exchanger and the fan in the axial direction of the rotary shaft from the direction orthogonal to the axial direction of the rotary shaft of the fan. .. Therefore, in the second space, it is possible to suppress the dropping or splashing of water into the living space due to the inertial force of the air flow.
  • the heat exchangers are arranged in a slanted manner and mounted at a high density, energy consumption performance can be improved, and water dripping or splashing into the living space can be suppressed. Therefore, it is possible to achieve both the improvement of energy consumption performance and the quality improvement of suppressing the dropping or scattering of water.
  • FIG. 1 It is a perspective view which shows the drainage path from the 1st water receiving apparatus to the drainage hole in the indoor unit which concerns on Embodiment 1 of this invention. It is a conceptual diagram which shows the dropping range of water with respect to the inclination angle of the heat exchanger which concerns on Embodiment 1 of this invention. It is a conceptual diagram which shows the improvement effect of the mounting freedom degree of the heat exchanger by the 1st water receiving apparatus which concerns on Embodiment 1 of this invention. It is explanatory drawing which shows the indoor unit which concerns on Embodiment 2 of this invention by the vertical cross section of the AA line of FIG. FIG.
  • FIG. 9 is an explanatory diagram showing an indoor unit according to a first modification of the second embodiment of the present invention in a vertical cross section taken along the line AA of FIG. 2.
  • FIG. 6 is an explanatory view showing an indoor unit according to Embodiment 3 of the present invention in a vertical cross section taken along the line AA of FIG. 2. It is explanatory drawing which shows the 1st water receiving apparatus which concerns on Embodiment 3 of this invention in the cross section of the DD line of FIG. It is explanatory drawing which shows the 1st water receiving apparatus which concerns on the modification 2 of Embodiment 3 of this invention in the cross section of the DD line of FIG.
  • FIG. 18 is an explanatory diagram showing an indoor unit according to Embodiment 4 of the present invention in a vertical cross section taken along the line AA of FIG. 17.
  • FIG. 18 is an explanatory view showing an indoor unit according to a modified example 5 of the fourth embodiment of the present invention in a vertical cross section taken along the line AA of FIG. 17.
  • FIG. 24 is an explanatory diagram showing an indoor unit according to a sixth embodiment of the present invention in a cross section taken along the line CC of FIG. 23. It is explanatory drawing which shows the indoor unit which concerns on Embodiment 7 of this invention in the cross section of CC line of FIG. It is explanatory drawing which shows the indoor unit which concerns on the modification 6 of Embodiment 7 of this invention by the cross section of CC line of FIG.
  • FIG. 1 is a refrigerant circuit diagram showing an air conditioner 200 according to Embodiment 1 of the present invention.
  • the air conditioner 200 shown in FIG. 1 includes an indoor unit 201 and an outdoor unit 202.
  • the indoor unit 201 and the outdoor unit 202 are connected via the refrigerant pipe 13.
  • the arrow RF indicates the flow of the refrigerant during the cooling operation.
  • the outdoor unit 202 is installed in the outdoor space 301 outside the living space.
  • the outdoor unit 202 includes a compressor 15, a four-way valve 16, an outdoor heat exchanger 17, a fan 18, and a throttle device 19 in the housing 14.
  • the indoor unit 201 is installed in the living space 300.
  • the indoor unit 201 includes a heat exchanger 11, a fan 12, and a drain receiver 2.
  • the arrow AF indicates the flow of air whose temperature is adjusted in the living space 300 via the indoor unit 201.
  • FIG. 2 is a transparent perspective view showing the indoor unit 201 according to Embodiment 1 of the present invention.
  • FIG. 3 is an explanatory diagram showing the indoor unit 201 according to Embodiment 1 of the present invention in a vertical cross section taken along the line AA of FIG.
  • FIG. 4 is an explanatory diagram showing the indoor unit 201 according to Embodiment 1 of the present invention in a vertical cross section taken along line BB of FIG.
  • FIG. 5 is an explanatory view showing the indoor unit 201 according to Embodiment 1 of the present invention in a cross section taken along the line CC of FIG.
  • the indoor unit 201 has a housing 10 in which various parts are mounted.
  • the indoor unit 201 includes a heat exchanger 11, a fan 12, and a drain receiver 2.
  • the fan 12 has a rotating shaft 20 that extends in the lateral direction such as the horizontal direction in the housing 10 in the axial direction.
  • the fan 12 has a plurality of blades on the outer peripheral surface of the rotating shaft 20.
  • the fan 12 is rotationally driven by the drive source 21 with the rotating shaft 20.
  • the heat exchanger 11 is an indoor heat exchanger.
  • the heat exchanger 11 is arranged in the housing 10 upstream of the fan 12 in the air passage.
  • the upper end of the heat exchanger 11 is arranged at a position above the uppermost position of the rotation locus of the fan 12 in the gravity direction.
  • the lower end of the heat exchanger 11 is arranged at a position lower than the rotating shaft 20 of the fan 12 in the gravity direction.
  • the drain receiver 2 receives water generated in the housing 10 near the lower end of the heat exchanger 11 or below the lower end.
  • a second space 102 whose outer side is closed is formed separately in the axial direction of the rotation shaft 20 of the fan 12.
  • the first opening 4 discharges the airflow to the outside of the fan 12 in the radial direction.
  • a vertical wind direction plate 3 that changes the wind direction in the vertical direction is arranged in the first opening 4.
  • the first water receiving device 1 that receives water from the surface of the fins 31 of the heat exchanger 11 is provided between the fan 12 and the heat exchanger 11 in the first space 101. ..
  • the first water receiving device 1 is provided above the drain receiver 2.
  • the second space 102 may have a second water receiving device 62 having a smaller surface area than that of the first water receiving device 1 in the first space 101.
  • the drain receiver 2 has a drain hole 7 on the lowest surface.
  • a drain hose 8 is connected between the drain hole 7 and the outdoor unit 202.
  • FIG. 6 is a perspective view showing a drainage path of the heat exchanger 11 in the indoor unit 201 according to Embodiment 1 of the present invention.
  • FIG. 7 is a perspective view showing a drainage path from the first water receiving device 1 to the drain hole 7 in the indoor unit 201 according to Embodiment 1 of the present invention.
  • a water guiding passage 6 connected to the drain receiver 2 is formed on the surface 5 of the first water receiving device 1 facing the heat exchanger 11.
  • the facing surface 5 is a surface facing the heat exchanger 11 of the first water receiving device 1 or the second water receiving device 62 and facing upward.
  • the water droplets flowing to the drain receiver 2 are driven by gravity or the like through the drain hole 7 to reach the outdoor unit 202 by the drain hose 8 and are discharged to the outdoor space 301.
  • the airflow flowing through the indoor unit 201 flows from the living space 300 to the heat exchanger 11 and is cooled, and then flows from the fan 12 to the living space 300.
  • condensed water is generated on the fins 31 of the heat exchanger 11 depending on the humidity of the living space 300 and the temperature of the heat exchanger 11.
  • the airflow ventilating the heat exchanger 11 in the first space 101 forms a flow along the surface 5 facing the heat exchanger 11 of the first water receiving device 1 in the housing 10 of the indoor unit 201, It flows out from the first opening 4 into the room through the fan 12.
  • the airflow passing through the second space 102 is changed from a flow in a direction orthogonal to the axial direction of the rotation shaft 20 of the fan 12 to a flow in a direction parallel to the rotation shaft 20 in the housing 10 of the indoor unit 201. It flows into the room from the first opening 4 of the first space 101 via the fan 12.
  • the liquid-based refrigerant receives heat from the air in the living space 300 to become a gas-based refrigerant or a gas refrigerant, which is installed in the outdoor space 301 via the refrigerant pipe 13. It flows to the outdoor unit 202.
  • the refrigerant flowing to the outdoor unit 202 flows to the inlet of the compressor 15 via the four-way valve 16, is compressed by the compressor 15 to become high-temperature high-pressure gas refrigerant, and again passes through the four-way valve 16 to the outdoor heat exchanger 17 Flow to.
  • the refrigerant radiates heat to the air in the outdoor heat exchanger 17, becomes a liquid-phase refrigerant or a liquid-based refrigerant, is decompressed by the expansion device 19, and flows again into the indoor unit 201.
  • the water droplets 50 that have left the fins 31 of the heat exchanger 11 adhere to the surface 5 of the first water receiving device 1 facing the heat exchanger 11.
  • the water droplets 50 flow to the drain receiver 2 via the water guide passage 6 by a driving force such as gravity.
  • the water droplets flowing to the drain receiver 2 are transmitted to the outdoor unit 202 by the drain hose 8 through the drain hole 7 by the driving force such as gravity, and are discharged to the outdoor space 301.
  • FIG. 8 is a conceptual diagram which shows the dropping range of water with respect to the inclination angle of the heat exchanger 11 which concerns on Embodiment 1 of this invention.
  • the first space 101 provided with the first opening 4 and the second space 102 not provided with the first opening 4 have different drip ranges of the dew condensation water with respect to the inclination angle of the heat exchanger 11.
  • the condensed water drips in a wider range than the first space 101. This is because in the first space 101, the dew condensation water is easily dropped as water droplets 50 due to gravity or the inertial force of the airflow flowing through the first opening 4.
  • the second space 102 since the airflow turns from the vertical direction to the parallel direction with respect to the rotation axis 20 before reaching the first opening 4, the inertial force acting on the water droplet 50 becomes small, and the water droplet is scattered. Suppressed.
  • FIG. 9 is a conceptual diagram showing an effect of improving the mounting flexibility of the heat exchanger 11 by the first water receiving device 1 according to the first embodiment of the present invention.
  • the horizontal axis of FIG. 9 shows the ratio of the height H of the first water receiving device 1 to the height H 0 of the heat exchanger 11.
  • the vertical axis of FIG. 9 shows the allowable value of the inclination of the heat exchanger 11 when the first water receiving device 1 is provided in the first space 101.
  • the size of the first water receiving device 1 is a design value determined by the ventilation resistance of the housing 10 that is allowed by the performance of the fan 12.
  • the allowable value is a design item determined by the wind speed of the airflow flowing through the heat exchanger 11, the surface texture of the fin 31 member, and the like. Furthermore, since at least a part of the first water receiving device 1 is mounted at a position that is gravity upward of the drain receiving device 2, the water droplets 50 attached to the first water receiving device 1 are located above the drain receiving device 2. The potential energy of the water droplets 50 dropped and scattered on the water receiving device 1 can be guided to the drain receiver 2 by the driving force.
  • the first water receiving device 1 that prevents the dew condensation water from dripping onto the fan 12 is provided in the first space 101 where the first opening 4 is provided to the user's living space 300, thereby improving performance.
  • the heat exchanger 11 can be arranged at a high density and the heat transfer coefficient can be improved by increasing the wind speed.
  • the dewed water along the surface 5 facing the heat exchanger 11 of the first water receiving device 1 in the first space 101. It is possible to suppress the outflow of water from the heat exchanger 11 to the first opening 4 by forming a flow, and it is possible to achieve both performance improvement and quality improvement.
  • the upper ends of the fins 31 of the heat exchanger 11 are mounted at positions that are upward in the gravity direction with respect to at least one blade of the fan 12. That is, the upper ends of the fins 31 of the heat exchanger 11 are located above the upper ends of the rotation loci of the fan 12. Further, the lower ends of the fins 31 of the heat exchanger 11 are mounted at positions lower than the rotation shaft 20 of the fan 12 in the gravity direction.
  • the packaging density of the heat exchangers 11 per volume in the housing 10 of the indoor unit 201 can be improved, and the quality and performance can be improved without pressing the living space 300 of the user.
  • first spaces 101 and second spaces 102 in the housing 10 of the indoor unit 201 may exist, and a plurality of them may be alternately provided in the axial direction of the rotation shaft 20 of the fan 12.
  • the heat transfer tube 30 of the heat exchanger 11 may have a flat shape.
  • the direction of the flow of the refrigerant may be horizontal or vertical to the rotation shaft 20 of the fan 12.
  • the fins 31 of the heat exchanger 11 are plate fins. However, the fins 31 may be corrugated fins or the like without any problem.
  • the shape of the fan 12 may be different between the first space 101 and the second space 102, and there may be a part of the space without blades.
  • the first water receiving device 1 may function as a casing of the centrifugal blower in the first space 101 by covering the outer periphery of the fan 12 in the first space 101 as long as it is connected to the drain receiver 2. Further, the first water receiving device 1 and the drain receiver 2 may be integrally formed by resin molding or the like. Further, the fans 12 in the first space 101 and the second space 102 may communicate with each other or may be formed as separate members.
  • the first opening 4 is not limited to the configuration in which the casing 10 of the indoor unit 201 is arranged under the gravity. However, when the first opening 4 is provided on the gravity lower side, it is more effective because the amount of the condensed water dripping from the first opening 4 can be reduced.
  • the number of indoor units 201 and outdoor units 202 is not limited to one.
  • a plurality of indoor units 201 and outdoor units 202 may be connected.
  • the refrigerant pipe 13 that connects the indoor unit 201 and the outdoor unit 202 may be provided with a shunt controller or the like for controlling the refrigerant supplied to the plurality of indoor units 201, or with a gas-liquid separator or the like. ..
  • the type of refrigerant that circulates in the air conditioner 200 is not particularly limited.
  • the indoor unit 201 of the air conditioning apparatus 200 in FIG. 1 is illustrated by taking a wall-mounted housing as an example.
  • the form of the indoor unit 201 is not limited, and the indoor unit 201 may be a floor-standing type, a ceiling hanging type, a ceiling-embedded type, or the like.
  • the indoor unit 201 of the air conditioning apparatus 200 includes the fan 12 having the rotating shaft 20 extending in the lateral direction in the housing 10.
  • the indoor unit 201 of the air conditioner 200 includes the heat exchanger 11 arranged in the housing 10 on the upstream side of the air passage with respect to the fan 12.
  • the indoor unit 201 of the air conditioner 200 includes the drain receiver 2 that receives water generated in the housing 10 near the lower end of the heat exchanger 11.
  • At least a part of the first water receiving device 1 arranged above the drain receiver 2 is provided between the fan 12 and the heat exchanger 11 in the first space 101.
  • the first water receiving device 1 that prevents the dew condensation water from dripping from the heat exchanger 11 to the fan 12. Is provided, and the dropping of water from the heat exchanger 11 to the first opening 4 can be suppressed.
  • the air flow between the heat exchanger 11 and the fan 12 is from a direction orthogonal to the axial direction of the rotating shaft 20 of the fan 12 in the rotating shaft 20. Turn in the axial direction of. Therefore, in the second space 102, it is possible to suppress the dropping or splashing of water into the living space 300 due to the inertial force of the air flow.
  • the heat exchangers 11 are inclinedly arranged and mounted at high density, energy consumption performance can be improved, and water dripping or splashing into the living space 300 can be suppressed. Therefore, it is possible to achieve both the improvement of energy consumption performance and the quality improvement of suppressing the dropping or scattering of water.
  • the first embodiment there is no second water receiving device 62 between the fan 12 and the heat exchanger 11 in the second space 102, and there is only a large surface area of the first water receiving device 1 in the first space 101. A path is formed.
  • a second water receiving device 62 having a smaller surface area than the first water receiving device 1 in the first space 101 is provided between the fan 12 in the second space 102 and the heat exchanger 11.
  • the air flow whose downstream flow is blocked by the first water receiving device 1 in the first space 101 does not have the second water receiving device 62, and only the surface area of the first water receiving device 1 in the first space 101. It flows into the second space 102 having the second water receiving device 62 that has a wide air passage or a small surface area.
  • a reduction in the air flow rate of the heat exchanger 11 in the first space 101 can be suppressed, the heat exchange performance can be improved, and the energy consumption performance can be improved.
  • the water guiding passage 6 connected to the drain receiver 2 is provided on the facing surface 5 of the first water receiving device 1 or the second water receiving device 62 that faces the heat exchanger 11 and faces upward.
  • the water guiding passage 6 connected to the drain receiver 2 is provided on the facing surface 5 of the first water receiving device 1 or the second water receiving device 62 that faces the heat exchanger 11 and faces upward.
  • the water attached to the first water receiving device 1 or the second water receiving device 62 flows through the water guiding flow path 6 and flows into the drain receiver 2.
  • the water guiding flow path 6 flows into the drain receiver 2.
  • the upper end of the heat exchanger 11 is arranged at a position above the uppermost position of the rotation locus of the fan 12 in the gravity direction.
  • the lower end of the heat exchanger 11 is arranged at a position lower than the rotating shaft 20 of the fan 12 in the gravity direction.
  • the heat transfer area of the heat exchanger 11 can be expanded and the ventilation resistance can be reduced, and the airflow flowing into the indoor unit 201 can be efficiently heat-exchanged by the heat exchanger 11.
  • the air conditioning apparatus 200 includes the indoor unit 201 of the air conditioning apparatus 200 described above.
  • the air conditioner 200 includes the indoor unit 201 of the air conditioner 200 described above, and it is possible to achieve both improvement of energy consumption performance and quality improvement of suppressing water dripping or splashing.
  • FIG. 10 is an explanatory diagram showing an indoor unit 201 according to Embodiment 2 of the present invention in a vertical cross section taken along the line AA of FIG.
  • description of the same items as in the first embodiment will be omitted, and only the characteristic portions will be described.
  • the first water receiving device 1 faces the heat exchanger 11 in the first water receiving device 1 when viewed from the axial direction of the rotation shaft 20 of the fan 12, and faces upward.
  • 5 and the drain receiver 2 are connected to each other via a curved surface 40 which is an R surface having a curvature at least in part.
  • the curved surface 40 is a convex surface that faces upward toward the heat exchanger 11.
  • the first water receiving device 1 and the drain receiver 2 are connected by a smooth curved surface 40.
  • the connecting portion between the first water receiving device 1 and the drain receiver 2 the accumulation of water that causes an offensive odor or corrosion in addition to the scattering of water droplets can be suppressed, and the quality is improved.
  • the second water receiving device 62 (not shown) includes a drain receiving surface and an upward facing surface that faces the heat exchanger 11 of the second water receiving device 62 when viewed from the axial direction of the rotating shaft 20 of the fan 12. 2 may be connected via a curved surface which is an R surface having a curvature at least in part.
  • first water receiving device 1 or the second water receiving device 62 and the drain receiver 2 may be connected by a separate member.
  • ⁇ Modification 1> 11 is explanatory drawing which shows the indoor unit 201 which concerns on the modification 1 of Embodiment 2 of this invention by the longitudinal cross section of the AA line of FIG.
  • the description of the same items as in the first and second embodiments is omitted, and only the characteristic parts thereof will be described.
  • the curved surface 40 is a concave surface facing downward toward the heat exchanger 11.
  • the first water receiving device 1 or the second water receiving device 62 is the first water receiving device 1 or the second water receiving device when viewed from the axial direction of the rotation shaft 20 of the fan 12.
  • the facing surface 5 facing the heat exchanger 11 at 62 and the drain receiver 2 are connected to each other via a curved surface 40 having a curvature at least at a part thereof.
  • the quality of the indoor unit 201 can be improved.
  • FIG. 12 is an explanatory diagram showing an indoor unit 201 according to Embodiment 3 of the present invention in a vertical cross section taken along the line AA of FIG.
  • FIG. 13 is an explanatory view showing the first water receiving device 1 according to the third embodiment of the present invention in a cross section taken along the line DD in FIG.
  • description of the same items as those in the first embodiment, the second embodiment, and the first modification is omitted, and only the characteristic part thereof will be described.
  • the first water receiving device 1 faces the heat exchanger 11 and faces upward when viewed from a direction orthogonal to the axial direction of the rotation shaft 20 of the fan 12. At least a part of the surface 5 has a convex surface 41.
  • the convex surface 41 is formed in the central portion of the first water receiving device 1 in the axial direction of the rotating shaft 20 of the fan 12.
  • the water guiding channel 6 is formed at a position where the convex surface 41 of the facing surface 5 is lowered downward in the direction of gravity and near the axial end of the rotating shaft 20 of the fan 12.
  • the water conduit 6 is formed at both ends of the first water receiving device 1 other than the central portion in the axial direction of the rotating shaft 20 of the fan 12 other than the convex surface 41.
  • the second water receiving device 62 may have a convex surface on at least a part of an upward facing surface facing the heat exchanger 11 when viewed from a direction orthogonal to the rotation shaft 20 of the fan 12. ..
  • the water guide passage may be formed at a position where the convex surface of the facing surface of the second water receiving device 62 is lowered downward in the direction of gravity and near the axial end of the rotary shaft 20 of the fan 12.
  • the space between the heat exchanger 11 and the facing surface 5 of the first water receiving device 1 or the second water receiving device 62 facing the heat exchanger 11 is the space of the first water receiving device 1 or the second water receiving device 62. It can be formed wide at the ends. Therefore, the ventilation resistance of the airflow flowing along the facing surface 5 can be reduced, the reduction in the air volume of the heat exchanger 11 in the first space 101 can be suppressed, and the performance of the heat exchanger 11 is improved. Furthermore, the water guide channel 6 is formed at the end of the facing surface 5, and the infiltration of water droplets into the first opening 4 along the end of the facing surface 5 can be suppressed. As described above, both performance improvement and quality improvement can be achieved.
  • FIG. 14 is an explanatory view showing the first water receiving device 1 according to the second modification of the third embodiment of the present invention in a cross section taken along the line DD in FIG.
  • description of the same items as in the above-described first embodiment, second embodiment, third embodiment and modified example 1 will be omitted, and only the characteristic portions thereof will be described.
  • the first water receiving device 1 has a hook-shaped projection in which the end portion of the water guiding passage 6 is projected upward when viewed from a direction orthogonal to the axial direction of the rotating shaft 20 of the fan 12. 42 is formed.
  • the water droplets 50 flow along the protrusions 42 to the drain receiver 2 by gravity, the effect of suppressing the infiltration of the water droplets into the first opening 4 is improved, and the quality is improved.
  • FIG. 15 is an explanatory diagram showing a first water receiving device 1 according to a third modification of the third embodiment of the present invention in a cross section taken along the line DD in FIG.
  • description of the same items as those in the first, second, and third embodiments, the first modification, and the second modification will be omitted, and only the characteristic part will be described.
  • the water guiding channel 6 is a groove in which the facing surface 5 is recessed downward.
  • the shape 43 is formed.
  • the water droplets 50 are guided to the groove shape 43 by the surface tension, and flow into the drain receiver 2 by gravity.
  • the effect of suppressing the entry of water droplets into the first opening 4 is improved, and the quality is improved.
  • the turbulence of the airflow flowing through the facing surface 5 is smaller than that of the groove shape 43, the ventilation resistance is reduced, and the heat exchange performance is improved.
  • FIG. 16 is an explanatory diagram showing the first water receiving device 1 according to the fourth modification of the third embodiment of the present invention in a cross section taken along the line DD in FIG.
  • description of the same items as in the above-described first embodiment, second embodiment, third embodiment, modified example 1, modified example 2 and modified example 3 will be omitted, and only the characteristic parts thereof will be described.
  • the convex surface 41 is formed by raising the end of the first water receiving device 1 opposite to the second space 102 in the axial direction of the rotating shaft 20 of the fan 12 toward the heat exchanger 11 side. At the same time, the end of the first water receiving device 1 on the second space 102 side is formed lower than the heat exchanger 11 side.
  • the water guide passage 6 is located at a position where the convex surface 41 of the facing surface 5 is lowered downward in the direction of gravity, and in the axial direction of the rotating shaft 20 of the fan 12, which is the end of the first water receiving device 1 on the second space 102 side. It is formed near the end.
  • One water guiding channel 6 is formed only at the end of the first water receiving device 1 on the second space 102 side in the axial direction of the rotating shaft 20 of the fan 12 other than the convex surface 41.
  • the space between the heat exchanger 11 and the facing surface 5 of the first water receiving device 1 facing the heat exchanger 11 is at the end of the first water receiving device 1 on the second space 102 side.
  • a water guiding channel 6 is formed at the end of the facing surface 5, water entering the first opening 4 along the end of the facing surface 5 can be suppressed from entering, and water is dropped or splashed into the living space 300. Can be suppressed. Therefore, it is possible to achieve both the improvement of energy consumption performance and the quality improvement of suppressing the dropping or scattering of water.
  • the first water receiving device 1 or the second water receiving device 62 faces the heat exchanger 11 when viewed from a direction orthogonal to the axial direction of the rotating shaft 20 of the fan 12. At least a part of the facing surface 5 facing upward has a convex surface 41.
  • the water guide passage 6 is formed at a position where the convex surface 41 is lowered downward in the direction of gravity, and in the vicinity of the axial end of the rotating shaft 20 of the fan 12.
  • the space between the heat exchanger 11 and the facing surface 5 of the first water receiving device 1 or the second water receiving device 62 facing the heat exchanger 11 is the first water receiving device 1 or the second water receiving device. It can be formed wide at the end of the receiving device 62. Therefore, the ventilation resistance of the airflow flowing along the facing surface 5 can be reduced, the reduction in the air volume of the heat exchanger 11 in the first space 101 or the second space 102 can be suppressed, the heat exchange performance is improved, and the energy consumption performance is improved. Can be improved.
  • a water guiding channel 6 is formed at the end of the facing surface 5, water entering the first opening 4 along the end of the facing surface 5 can be suppressed from entering, and water is dropped or splashed into the living space 300. Can be suppressed. Therefore, it is possible to achieve both the improvement of energy consumption performance and the quality improvement of suppressing the dropping or scattering of water.
  • FIG. 17 is a transparent perspective view showing the indoor unit 201 according to Embodiment 4 of the present invention.
  • FIG. 18 is an explanatory diagram showing an indoor unit 201 according to Embodiment 4 of the present invention in a vertical cross section taken along the line AA of FIG.
  • description of the same items as those in the above-described first embodiment, second embodiment, third embodiment, modified example 1, modified example 2, modified example 3 and modified example 4 will be omitted, and only characteristic parts thereof will be described. ..
  • the indoor unit 201 includes the first water receiving device 1 in the first space 101.
  • the indoor unit 201 includes the second water receiving device 62 in the second space 102.
  • the surface area of the second water receiving device 62 in the second space 102 is smaller than that of the first water receiving device 1 in the first space 101.
  • the distance between at least a part of the second water receiving device 62 and the rotation shaft 20 of the fan 12 is the same as that of the first water receiving device 1 and the rotation shaft 20 of the fan 12. Longer than the distance.
  • a part of the second water receiving device 62 projects toward the heat exchanger 11 side with respect to the first water receiving device 1. ..
  • the second water receiving device 62 since the second water receiving device 62 is provided, the adhesion of the water droplet 50 to the fan 12 is suppressed, and the water droplet can be prevented from being scattered to the first opening portion 4 of the first space 101 by being transmitted through the fan 12. Quality improves. Further, the distance between at least a part of the second water receiving device 62 and the rotation shaft 20 of the fan 12 is farther from the fan 12 than the distance between the first water receiving device 1 and the rotation shaft 20 of the fan 12. .. Thereby, the blockage of the flow path of the air flow is suppressed, and the heat exchange performance can be improved by reducing the ventilation resistance.
  • the second water receiving device 62 may be provided with a water guiding channel connected to the first water receiving device 1. In this case, the second water receiving device 62 and the drain receiver 2 do not have to be connected in the second space 102.
  • FIG. 19 is an explanatory diagram showing an indoor unit 201 according to Modification 5 of Embodiment 4 of the present invention in a vertical cross section taken along the line AA of FIG.
  • the description of the same matters as those in the above-described first, second, third, fourth, modified example 1, modified example 2, modified example 3 and modified example 4 is omitted, and the features thereof are omitted. Only the part will be explained.
  • the second water receiving device 62 may be connected to the drain receiver 2 but not to the first water receiving device 1.
  • the water droplets 50 of the second water receiving device 62 directly flow into the drain receiver 2, and the first water receiving device that matches the shapes of the fan 12 of the first space 101 and the fan 12 of the second space 102.
  • the device 1 and the second water receiving device 62 can be designed, and the heat exchange performance can be improved.
  • the first water receiving device 1 is provided in the first space 101
  • the second water receiving device 62 is provided in the second space 102.
  • the distance between at least a part of the second water receiving device 62 and the rotation shaft 20 of the fan 12 is the same as that of the first water receiving device 1 and the rotation shaft 20 of the fan 12. Longer than the distance.
  • the blockage of the air flow by the second water receiving device 62 is suppressed, and the energy consumption performance can be improved by reducing the ventilation resistance.
  • FIG. 20 is a transparent perspective view showing the indoor unit 201 according to Embodiment 5 of the present invention.
  • FIG. 21 is an explanatory diagram showing an indoor unit 201 according to Embodiment 5 of the present invention in a vertical cross section taken along the line AA of FIG. 22 is an explanatory diagram showing an indoor unit 201 according to Embodiment 5 of the present invention in a vertical cross section taken along line BB of FIG.
  • description of the same items as those in the above-described first embodiment, second embodiment, third embodiment, fourth embodiment, modified example 1, modified example 2, modified example 3, modified example 4 and modified example 5 is omitted. However, only the characteristic part will be described.
  • the heat exchanger 11 is a separate body from the first space 101 and the second space 102.
  • the inclination angle of the heat exchanger 11 in the first space 101 with respect to the horizontal direction is ⁇ .
  • the inclination angle of the heat exchanger 11 in the second space 102 with respect to the horizontal direction is ⁇ .
  • is satisfied. Therefore, the point where the inclination angle ⁇ of the heat exchanger 11 with respect to the horizontal direction in the first space 101 intersects the horizontal line is greater than the inclination angle ⁇ of the heat exchanger 11 with respect to the horizontal direction in the second space 102 from the heat exchanger 11. Go away.
  • a partition member 70 that blocks an air flow that bypasses the heat exchanger 11 is provided at a boundary portion in a direction orthogonal to the rotating shaft 20 of the fan 12 and the device 11.
  • the inclination angle ⁇ of the heat exchanger 11 with respect to the horizontal direction is larger than that of the heat exchanger 11 in the first space 101. Therefore, the dew condensation water is drained through the fins 31 of the heat exchanger 11, and the water drops below the heat exchanger 11 in the first space 101 below the heat exchanger 11. Therefore, water in the second space 102 can be prevented from splashing into the living space 300, and the quality can be improved. Further, the heat transfer area of the heat exchanger 11 in the second space 102 can be increased as compared with the case where the heat exchanger 11 in the first space 101 is arranged at the same angle, which improves the heat exchange performance and reduces ventilation resistance. This can improve energy consumption performance.
  • the inclination angles of the heat exchanger 11 in the first space 101 and the second space 102 with respect to the horizontal direction are different.
  • the inclination angle of the heat exchanger 11 in the first space 101 with respect to the horizontal direction is ⁇ .
  • the inclination angle of the heat exchanger 11 in the second space 102 with respect to the horizontal direction is ⁇ . At this time, ⁇ is satisfied.
  • the inclination angle ⁇ of the heat exchanger 11 with respect to the horizontal direction is large.
  • the water generated in the heat exchanger 11 can drop along the heat exchanger 11 itself and be drained, the water can be suppressed from splashing into the living space 300, and the quality can be improved.
  • the heat transfer area of the heat exchanger 11 in the second space 102 can be expanded as compared with the case where the heat exchanger 11 in the second space 102 is arranged at the same angle as the heat exchanger 11 in the first space 101, The energy consumption performance can be improved by improving the performance of the heat exchanger 11 and reducing the ventilation resistance.
  • the heat in the heat exchanger 11 and the second space 102 in the first space 101 is different.
  • a partition member 70 that blocks an air flow that bypasses the heat exchanger 11 is provided at a boundary portion between the exchanger 11 and the rotation shaft 20 of the fan 12 in a direction orthogonal to the rotation shaft 20.
  • FIG. 23 is a transparent perspective view showing the indoor unit 201 according to Embodiment 6 of the present invention.
  • FIG. 24 is an explanatory diagram showing an indoor unit 201 according to Embodiment 6 of the present invention in a cross section taken along line CC of FIG.
  • first embodiment, second embodiment, third embodiment, fourth embodiment, fifth embodiment modified example 1, modified example 2, modified example 3, modified example 4 and modified example 5.
  • modified example 1 modified example 2, modified example 3, modified example 4 and modified example 5.
  • the description of the matters will be omitted, and only the characteristic portions will be described.
  • the distance between the rotary shaft 20 of the fan 12 and the heat exchanger 11 in the first space 101 is L1.
  • the distance between the rotary shaft 20 of the fan 12 and the heat exchanger 11 in the second space 102 is L2. At this time, L2 ⁇ L1 is satisfied.
  • the heat exchanger 11 in the first space 101 and the heat exchanger 11 in the second space 102 are continuous while being inclined with respect to the axial direction of the rotation shaft 20 of the fan 12.
  • the heat transfer performance of the heat exchanger 11 is increased due to the expansion of the heat transfer area. Can be improved. Further, the distance between the heat exchanger 11 in the second space 102 and the first opening 4 in the first space 101 becomes smaller. As a result, the airflow deviation in the axial direction of the rotary shaft 20 of the fan 12 in the air passing through the heat exchanger 11 in the second space 102 is reduced, and the heat exchange performance can be improved.
  • the distance between the rotary shaft 20 of the fan 12 and the heat exchanger 11 in the first space 101 is L1.
  • the distance between the rotary shaft 20 of the fan 12 and the heat exchanger 11 in the second space 102 is L2.
  • L2 ⁇ L1 is satisfied.
  • the heat exchange performance can be improved by expanding the heat transfer area of the heat exchanger 11 as compared with the case where the heat exchanger 11 is installed parallel to the axial direction of the rotating shaft 20 of the fan 12. Further, the distance between the heat exchanger 11 in the second space 102 and the first opening 4 in the first space 101 becomes small. As a result, the airflow deviation in the axial direction of the rotary shaft 20 of the fan 12 in the airflow passing through the heat exchanger 11 in the second space 102 is mitigated, and the heat exchange performance can be improved.
  • the heat exchanger 11 in the first space 101 and the heat exchanger 11 in the second space 102 are inclined and continuous with respect to the axial direction of the rotation shaft 20 of the fan 12.
  • the heat exchanger 11 can be continuously formed in the first space 101 and the second space 102, and the number of parts can be reduced.
  • FIG. 25 is an explanatory diagram showing an indoor unit 201 according to Embodiment 7 of the present invention in a cross section taken along the line CC of FIG.
  • the description of the same items as in the fifth modification will be omitted, and only the characteristic portions will be described.
  • FIG. 25 there is no heat exchanger 11 in at least a part of the housing 10 of the indoor unit 201 that faces the second space 102 and is partitioned in the axial direction of the rotation shaft 20 of the fan 12, and the air flow is not present.
  • a third space 103 having a second opening 80 for discharging the is formed.
  • One first space 101 is formed in the center of the indoor unit 201.
  • the first opening 4 is formed in the first space 101.
  • One second space 102 is formed on each side of the rotating shaft 20 of the fan 12 in the first space 101 in the axial direction.
  • One third space 103 is formed on each side surface of the indoor unit 201 in the axial direction of the rotary shaft 20 of the fan 12 in each of the two second spaces 102.
  • a second opening 80 is formed in each of the two third spaces 103.
  • the first water receiving device 1 is provided.
  • the second water receiving device 62 is not provided.
  • the airflow flowing through the second space 102 facing the third space 103 reaches the second opening 80 of the third space 103 from the direction orthogonal to the axial direction of the rotating shaft 20 to the axial direction of the rotating shaft 20. Convert. Therefore, the inertial force acting on the water droplet 50 is small, and the water droplet 50 can be suppressed from scattering from the second opening 80.
  • a fan 23 attached to the rotary shaft 20 is provided in the third space 103.
  • a centrifugal fan such as a turbo fan
  • the fan 23 increases the air pressure and the air volume even when the first water receiving device 1 is upsized for quality improvement and the ventilation in the first space 101 is obstructed. It is possible to improve the heat exchange performance and improve the performance and improve the quality.
  • FIG. 26 is an explanatory diagram showing an indoor unit 201 according to Modification 6 of Embodiment 7 of the present invention in a cross section taken along the line CC of FIG.
  • the first embodiment, the second embodiment, the third embodiment, the fourth embodiment, the fifth embodiment, the sixth embodiment, the seventh modification, the first modification, the second modification, and the third modification are performed.
  • the description of the same items as in Modifications 4 and 5 will be omitted, and only the characteristic portions will be described.
  • a second water receiving device 62 is provided near the boundary between the second space 102 and the third space 103.
  • the second water receiving device 62 in order to increase the air flow rate of the fan 23 in the third space 103 for the purpose of improving the heat exchange performance, the water droplets are scattered from the second opening 80 of the third space 103. Can be suppressed.
  • Embodiment 7 there is no heat exchanger 11 in at least a part of the housing 10 that faces the second space 102 and is divided in the axial direction of the rotation shaft 20 of the fan 12, and the airflow is discharged.
  • a third space 103 having the second opening 80 is formed.
  • the airflow flowing through the second space 102 facing the third space 103 reaches the second opening 80 in the third space 103 from a direction orthogonal to the axial direction of the rotating shaft 20 from the rotating shaft 20. Turn in the axial direction of. As a result, the inertial force acting on the water droplet 50 is reduced, and the splash of water from the second opening 80 can be suppressed.
  • the first to seventh embodiments of the present invention may be combined or applied to other parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Air-Flow Control Members (AREA)

Abstract

空気調和装置の室内機は、ファンと、熱交換器と、ドレン受けと、を備える空気調和装置の室内機であって、筐体内には、ファンの半径方向外側に気流を排出する第1開口部を有する第1空間と、開口部が無くファンの半径方向外側を塞がれた第2空間と、がファンの回転軸の軸方向に区分けして形成され、第1空間のファンと熱交換器との間に、ドレン受けよりも上方に配置された第1水受け装置を少なくとも一部に有する。

Description

空気調和装置の室内機及び空気調和装置
 本発明は、ファンと熱交換器とを備える空気調和装置の室内機及び空気調和装置に関する。
 従来の空気調和装置では、筐体の大きさを削減するために熱交換器がファンの上にかぶさるように傾斜して配置されていた(たとえば、特許文献1参照)。
特開2015-230129号公報
 しかしながら、特許文献1の技術のように熱交換器がファンの上にかぶさるように配置されると、熱交換器が蒸発器として作用する冷房運転にて、フィンに発生する結露水に重力及び気流による慣性力が作用する。そして、慣性力が作用した結露水は、フィンから風路に浸入して吹出口から排出される。これにより、室内機から使用者の居住空間に水が飛び出す。
 上記の課題を回避する手段として、熱交換器の傾斜角度を軽減するなどの手法がある。しかし、筐体内の設置空間の不足による熱交換器の伝熱面積の減少によって、エネルギー消費性能が低下する課題がある。
 一方、室内機の小型化のために、ファンの外周面近傍に熱交換器が配置されると、ドレン受け端部などから水が吸引される。これにより、気流の排出口から室内に水が滴下又は飛散する課題がある。
 このように、室内機の小型化を図る場合に、エネルギー消費性能の向上と水の滴下又は飛散の抑制という品質改善との両立が達成できていない。
 本発明は、上記課題を解決するためのものであり、エネルギー消費性能の向上と水の滴下又は飛散の抑制という品質改善との両立が図れる空気調和装置の室内機及び空気調和装置を提供することを目的とする。
 本発明に係る空気調和装置の室内機は、筐体内に横方向に延伸した回転軸を有するファンと、前記筐体内に前記ファンよりも風路の上流側に配置された熱交換器と、前記筐体内に発生する水を前記熱交換器下端の近傍で受けるドレン受けと、を備える空気調和装置の室内機であって、前記筐体内には、前記ファンの半径方向外側に気流を排出する第1開口部を有する第1空間と、開口部が無く前記ファンの半径方向外側を塞がれた第2空間と、が前記ファンの回転軸の軸方向に区分けして形成され、前記第1空間の前記ファンと前記熱交換器との間に、前記ドレン受けよりも上方に配置された第1水受け装置を少なくとも一部に有するものである。
 本発明に係る空気調和装置は、上記の空気調和装置の室内機を備えるものである。
 本発明に係る空気調和装置の室内機及び空気調和装置によれば、使用者の居住空間に連通する第1開口部を有する第1空間には、熱交換器からファンへの水の滴下を防ぐ第1水受け装置が設けられ、熱交換器から第1開口部への水の滴下が抑制できる。また、第2空間には、気流を排出する開口部が無いので、気流が熱交換器とファンとの間にてファンの回転軸の軸方向とは直交方向から回転軸の軸方向に転向する。このため、第2空間では、気流の慣性力による居住空間への水の滴下又は飛散が抑制できる。これにより、熱交換器が傾斜して配置されて高密度に実装され、エネルギー消費性能が向上できるとともに、居住空間への水の滴下又は飛散が抑制できる。したがって、エネルギー消費性能の向上と水の滴下又は飛散の抑制という品質改善との両立が図れる。
本発明の実施の形態1に係る空気調和装置を示す冷媒回路図である。 本発明の実施の形態1に係る室内機を示す透過斜視図である。 本発明の実施の形態1に係る室内機を図2のA-A線での縦断面にて示す説明図である。 本発明の実施の形態1に係る室内機を図2のB-B線での縦断面にて示す説明図である。 本発明の実施の形態1に係る室内機を図2のC-C線での横断面にて示す説明図である。 本発明の実施の形態1に係る室内機における熱交換器の排水経路を示す斜視図である。 本発明の実施の形態1に係る室内機における第1水受け装置から排水孔までの排水経路を示す斜視図である。 本発明の実施の形態1に係る熱交換器の傾斜角度に対する水の滴下範囲を示す概念図である。 本発明の実施の形態1に係る第1水受け装置による熱交換器の実装自由度の向上効果を示す概念図である。 本発明の実施の形態2に係る室内機を図2のA-A線の縦断面にて示す説明図である。 本発明の実施の形態2の変形例1に係る室内機を図2のA-A線の縦断面にて示す説明図である。 本発明の実施の形態3に係る室内機を図2のA-A線の縦断面にて示す説明図である。 本発明の実施の形態3に係る第1水受け装置を図12のD-D線の横断面にて示す説明図である。 本発明の実施の形態3の変形例2に係る第1水受け装置を図12のD-D線の横断面にて示す説明図である。 本発明の実施の形態3の変形例3に係る第1水受け装置を図12のD-D線の横断面にて示す説明図である。 本発明の実施の形態3の変形例4に係る第1水受け装置を図12のD-D線の横断面にて示す説明図である。 本発明の実施の形態4に係る室内機を示す透過斜視図である。 本発明の実施の形態4に係る室内機を図17のA-A線の縦断面にて示す説明図である。 本発明の実施の形態4の変形例5に係る室内機を図17のA-A線の縦断面にて示す説明図である。 本発明の実施の形態5に係る室内機を示す透過斜視図である。 本発明の実施の形態5に係る室内機を図20のA-A線の縦断面にて示す説明図である。 本発明の実施の形態5に係る室内機を図20のB-B線の縦断面にて示す説明図である。 本発明の実施の形態6に係る室内機を示す透過斜視図である。 本発明の実施の形態6に係る室内機を図23のC-C線の横断面にて示す説明図である。 本発明の実施の形態7に係る室内機を図2のC-C線の横断面にて示す説明図である。 本発明の実施の形態7の変形例6に係る室内機を図2のC-C線の横断面にて示す説明図である。
 以下、図面に基づいて本発明の実施の形態について説明する。なお、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。また、断面図の図面においては、視認性に鑑みて適宜ハッチングを省略している。さらに、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
実施の形態1.
<空気調和装置200の構成>
 図1は、本発明の実施の形態1に係る空気調和装置200を示す冷媒回路図である。図1に示す空気調和装置200は、室内機201と室外機202とを備える。室内機201と室外機202とは、冷媒配管13を介して繋がっている。矢印RFは、冷房運転時の冷媒の流れを示している。
 室外機202は、居室空間外の屋外空間301に設置されている。室外機202は、筐体14内に、圧縮機15と、四方弁16と、室外熱交換器17と、ファン18と、絞り装置19とを備える。
 室内機201は、居住空間300に設置されている。室内機201は、熱交換器11と、ファン12と、ドレン受け2とを備える。矢印AFは、居住空間300内にて室内機201を介して温度調節される空気の流れを示している。
<室内機201の構成>
 図2は、本発明の実施の形態1に係る室内機201を示す透過斜視図である。図3は、本発明の実施の形態1に係る室内機201を図2のA-A線での縦断面にて示す説明図である。図4は、本発明の実施の形態1に係る室内機201を図2のB-B線での縦断面にて示す説明図である。図5は、本発明の実施の形態1に係る室内機201を図2のC-C線での横断面にて示す説明図である。
 室内機201は、内部に各種部品を搭載する筐体10を有する。室内機201は、熱交換器11と、ファン12と、ドレン受け2とを備える。
 ファン12は、筐体10内に水平方向などの横方向に軸方向を延伸した回転軸20を有する。ファン12は、回転軸20の外周面に複数の羽根を有する。ファン12は、回転軸20を駆動源21に回転駆動される。
 熱交換器11は、室内熱交換器である。熱交換器11は、筐体10内にファン12よりも風路の上流側に配置されている。熱交換器11の上端は、ファン12の回動軌跡の最上位置よりも重力方向上側の位置に配置されている。熱交換器11の下端は、ファン12の回転軸20よりも重力方向下側の位置に配置されている。
 ドレン受け2は、筐体10内に発生する水を熱交換器11の下端の近傍又は下端よりも下方などで受ける。
 図2に示すように、室内機201における筐体10内には、ファン12の半径方向外側に気流を排出する第1開口部4を有する第1空間101と、開口部が無くファン12の半径方向外側を塞がれた第2空間102と、がファン12の回転軸20の軸方向に区分けして形成されている。第1開口部4は、ファン12の半径方向外側に気流を排出する。第1開口部4には、上下方向に風向きを変える上下風向板3が配置されている。
 図3に示すように、第1空間101におけるファン12と熱交換器11との間には、熱交換器11のフィン31表面からの水を受ける第1水受け装置1を少なくとも一部に有する。第1水受け装置1は、ドレン受け2よりも上方に設けられている。
 図4に示すように、第2空間102におけるファン12と熱交換器11との間には、後述する第2水受け装置62が無く第1空間101の第1水受け装置1の表面積だけ広い風路が形成されている。なお、第2空間102には、第1空間101の第1水受け装置1よりも表面積が小さい第2水受け装置62を有しても良い。
 ドレン受け2には、最低面に排水孔7が形成されている。排水孔7と室外機202との間には、排水ホース8が繋がっている。
<室内機201の排水経路>
 図6は、本発明の実施の形態1に係る室内機201における熱交換器11の排水経路を示す斜視図である。図7は、本発明の実施の形態1に係る室内機201における第1水受け装置1から排水孔7までの排水経路を示す斜視図である。
 図6及び図7に示すように、第1水受け装置1における熱交換器11との対向面5には、ドレン受け2と接続された導水流路6が形成されている。対向面5は、第1水受け装置1又は第2水受け装置62の熱交換器11と対向する上を向いた面である。ドレン受け2に流れた水滴は、重力などを駆動力に排水孔7を介し、排水ホース8によって室外機202に至って屋外空間301へ排出される。
<空気調和装置200の冷房運転時の動作例>
 図1に示すように、室内機201を流れる気流は、居住空間300から熱交換器11に通風して冷却後、ファン12から居住空間300に流れる。このとき、居住空間300の湿度と熱交換器11の温度とに依存して、熱交換器11のフィン31上に結露水が発生する。第1空間101の熱交換器11に通風する気流は、室内機201の筐体10内にて、第1水受け装置1の熱交換器11との対向面5に沿った流れを形成し、ファン12を介して第1開口部4から室内に流出する。また、第2空間102に通風する気流は、室内機201の筐体10内にて、ファン12の回転軸20の軸方向に直交方向の流れから回転軸20に平行方向の流れに転向し、ファン12を介して第1空間101の第1開口部4から室内に流出する。
 室内機201を流れる冷媒では、熱交換器11にて、液主体冷媒が居住空間300の空気から熱を受け取ってガス主体冷媒又はガス冷媒になり、冷媒配管13を介して屋外空間301に設置する室外機202に流れる。室外機202に流れた冷媒は、四方弁16を介して圧縮機15の入口に流れ、圧縮機15にて圧縮されて高温高圧ガス冷媒になり、再び四方弁16を介して室外熱交換器17に流れる。冷媒は、室外熱交換器17にて空気に放熱し、液相冷媒又は液主体冷媒となり、絞り装置19にて減圧して再び室内機201に再度流れる。
 図6に示すように、室内機201内の熱交換器11にて結露した水滴50が一定の大きさに成長すると、水滴50が気流による慣性力110及び重力111を駆動力によって移動する。一部の水滴50は、表面張力により熱交換器11のフィン31上に保持されたまま熱交換器11の重力下方に降下する。その他の水滴50は、熱交換器11のフィン31を離脱して気流の下流側に移動する。このとき、熱交換器11のフィン31上に保持された水滴50は、ドレン受け2に流れる。一方、熱交換器11のフィン31を離脱した水滴50は、第1水受け装置1の熱交換器11との対向面5に付着する。図7に示すように、対向面5に付着した水滴50が再度一定の大きさに成長すると、水滴50が重力などの駆動力によって導水流路6を介してドレン受け2に流れる。ドレン受け2に流れた水滴は、重力などの駆動力によって排水孔7を介し、排水ホース8によって室外機202に伝わって屋外空間301に排出される。
<第1水受け装置1を搭載したことによる熱交換器11の実装自由度>
 図8は、本発明の実施の形態1に係る熱交換器11の傾斜角度に対する水の滴下範囲を示す概念図である。
 図8に示すように、第1開口部4を設けた第1空間101と第1開口部4を設けない第2空間102とでは、熱交換器11の傾斜角度対する結露水の滴下範囲が異なり、第2空間102では第1空間101より広い範囲で結露水が滴下する。これは、第1空間101にて、結露水が重力又は第1開口部4に流れる気流の慣性力を受けて水滴50として滴下し易いからである。一方、第2空間102では、気流が第1開口部4に至るまでに回転軸20に対して垂直方向から平行方向に転向するため、水滴50に作用する慣性力が小さくなり、水滴の飛散が抑制される。
 図9は、本発明の実施の形態1に係る第1水受け装置1による熱交換器11の実装自由度の向上効果を示す概念図である。図9の横軸には、熱交換器11の高さHに対する第1水受け装置1の高さHの割合が示されている。図9の縦軸には、第1空間101に第1水受け装置1を設けた場合の熱交換器11の傾きの許容値が示されている。
 許容値が大きいほど熱交換器11の実装自由度が大きく、形態に合わせて熱交換器11をより高密度に実装できる。第1水受け装置1の大きさは、ファン12の性能によって許容する筐体10の通風抵抗によって決定する設計値である。
 なお、許容値は、熱交換器11を流れる気流の風速又はフィン31の部材の表面性状などによって決定する設計事項である。さらに、第1水受け装置1の少なくとも一部がドレン受け2よりも重力上向きの位置に実装されたことにより、第1水受け装置1に付着した水滴50がドレン受け2よりも上側の第1水受け装置1に滴下及び飛散した水滴50の位置エネルギーを駆動力によってドレン受け2に導水できる。
<作用>
 以上、使用者の居住空間300への第1開口部4を設けた第1空間101にファン12への結露水の滴下を防ぐ第1水受け装置1が設けられたことにより、性能改善を目的に熱交換器11を傾斜した高密度配置及び風速増加による熱伝達率向上が図れる。加えて、結露水が重力又は気流の慣性力を受けて水滴50として滴下し易くなる場合でも、第1空間101にて第1水受け装置1の熱交換器11との対向面5に沿った流れを形成して熱交換器11から第1開口部4への水の流出が抑制でき、性能改善及び品質改善が両立できる。
 また、熱交換器11のフィン31の上端がファン12の少なくとも1枚の羽根よりも重力方向上向きの位置に実装されている。つまり、熱交換器11のフィン31の上端がファン12の回転軌跡の上端よりも上の位置に配置されている。また、熱交換器11のフィン31の下端がファン12の回転軸20よりも重力方向下向きの位置に実装されている。これにより、室内機201の筐体10における容積当たりの熱交換器11の実装密度が向上でき、使用者の居住空間300が圧迫されることなく、品質及び性能が改善できる。
<その他>
 なお、室内機201の筐体10における第1空間101と第2空間102とは、2以上存在しても良く、ファン12の回転軸20の軸方向に複数交互に設けても良い。また、熱交換器11の伝熱管30が扁平形状であっても良い。冷媒の流れの向きは、ファン12の回転軸20に対して水平方向でも垂直方向でも良い。さらに、熱交換器11のフィン31は、プレートフィンを図示している。しかし、フィン31は、波型フィンなどでも効果に支障がない。
 また、ファン12の形状は、第1空間101と第2空間102とで別でも良く、一部に羽根を備えない空間があっても良い。
 また、第1水受け装置1は、ドレン受け2に接続する限り、第1空間101におけるファン12の外周を覆うことにより、第1空間101にて遠心送風機のケーシングとして機能しても良い。さらに、第1水受け装置1とドレン受け2とは、樹脂成型などによって一体で形成しても良い。さらに、第1空間101と第2空間102とのファン12は、連通しても良いし、別部材で形成しても良い。
 また、第1開口部4は、室内機201の筐体10における重力下側に配置された構成に限定されるものではない。しかし、第1開口部4を重力下側に設けた場合には、第1開口部4から重力による結露水の滴下が低減できるため、より効果的である。
 また、室内機201及び室外機202の台数は、1つに限定することはない。室内機201及び室外機202の台数は、複数接続しても良い。さらに、室内機201と室外機202とを接続する冷媒配管13は、複数の室内機201に供給する冷媒を制御する分流コントローラーなどを介しても良いし、気液分離器などを介しても良い。なお、空気調和装置200を循環する冷媒種は、特に限定されるものではない。また、図1中の空気調和装置200の室内機201は、壁掛け筐体を例に図示している。しかし、室内機201の形態が限定されるものではなく、室内機201は、床置き型、天井吊り下げ型又は天井埋め込み型などでも良い。
<実施の形態1の効果>
 実施の形態1によれば、空気調和装置200の室内機201は、筐体10内に横方向に延伸した回転軸20を有するファン12を備える。空気調和装置200の室内機201は、筐体10内にファン12よりも風路の上流側に配置された熱交換器11を備える。空気調和装置200の室内機201は、筐体10内に発生する水を熱交換器11の下端の近傍で受けるドレン受け2を備える。筐体10内には、ファン12の半径方向外側に気流を排出する第1開口部4を有する第1空間101と、開口部が無くファン12の半径方向外側を塞がれた第2空間102と、がファン12の回転軸20の軸方向に区分けして形成されている。第1空間101のファン12と熱交換器11との間には、ドレン受け2よりも上方に配置された第1水受け装置1が少なくとも一部に設けられている。
 この構成によれば、使用者の居住空間300に連通する第1開口部4を有する第1空間101には、熱交換器11からファン12への結露水の滴下を防ぐ第1水受け装置1が設けられ、熱交換器11から第1開口部4への水の滴下が抑制できる。また、第2空間102には、気流を排出する開口部が無いので、気流が熱交換器11とファン12との間にてファン12の回転軸20の軸方向とは直交方向から回転軸20の軸方向に転向する。このため、第2空間102では、気流の慣性力による居住空間300への水の滴下又は飛散が抑制できる。これにより、熱交換器11が傾斜して配置されて高密度に実装され、エネルギー消費性能が向上できるとともに、居住空間300への水の滴下又は飛散が抑制できる。したがって、エネルギー消費性能の向上と水の滴下又は飛散の抑制という品質改善との両立が図れる。
 実施の形態1によれば、第2空間102のファン12と熱交換器11との間には、第2水受け装置62が無く第1空間101の第1水受け装置1の表面積だけ広い風路が形成される。又は、第2空間102のファン12と熱交換器11との間には、第1空間101の第1水受け装置1よりも表面積が小さい第2水受け装置62が設けられている。
 この構成によれば、第1空間101の第1水受け装置1によって下流への流れを阻害された気流が第2水受け装置62が無く第1空間101の第1水受け装置1の表面積だけ広い風路である又は表面積の小さい第2水受け装置62を有する第2空間102に流れ込む。これにより、第1空間101の熱交換器11の風量低下が抑制でき、熱交換性能が改善されてエネルギー消費性能が向上できる。
 実施の形態1によれば、第1水受け装置1又は第2水受け装置62の熱交換器11と対向する上を向いた対向面5には、ドレン受け2と接続された導水流路6が少なくとも一部に形成されている。
 この構成によれば、第1水受け装置1又は第2水受け装置62に付着した水が導水流路6を流通してドレン受け2に流される。これにより、第1水受け装置1又は第2水受け装置62に付着した水の飛散の抑制に加え、異臭又は腐食の原因となる水の滞留が抑制でき、室内機201の品質が改善できる。
 実施の形態1によれば、熱交換器11の上端は、ファン12の回転軌跡の最上位置よりも重力方向上側の位置に配置されている。熱交換器11の下端は、ファン12の回転軸20よりも重力方向下側の位置に配置されている。
 この構成によれば、熱交換器11の伝熱面積の拡大と通風抵抗の低減とが図れ、室内機201に流入する気流が熱交換器11によって効率良く熱交換できる。
 実施の形態1によれば、空気調和装置200は、上記の空気調和装置200の室内機201を備える。
 この構成によれば、空気調和装置200が上記の空気調和装置200の室内機201を備え、エネルギー消費性能の向上と水の滴下又は飛散の抑制という品質改善との両立が図れる。
実施の形態2.
 図10は、本発明の実施の形態2に係る室内機201を図2のA-A線の縦断面にて示す説明図である。ここでは、上記実施の形態1と同事項の説明を省略し、その特徴部分のみを説明する。
 図10に示すように、第1水受け装置1は、ファン12の回転軸20の軸方向から見たときに、第1水受け装置1における熱交換器11と対向する上を向いた対向面5とドレン受け2とを少なくとも一部に曲率の付いたR面である曲面40を介して接続されている。曲面40は、熱交換器11に向けて上方向に凸状面である。
 第1水受け装置1とドレン受け2とが滑らかな曲面40で接続されている。これにより、第1水受け装置1とドレン受け2との接続部では、水滴の飛散に加えて異臭又は腐食の原因となる水の滞留が抑制でき、品質が改善する。
 なお、図示しない第2水受け装置62は、ファン12の回転軸20の軸方向から見たときに、第2水受け装置62における熱交換器11と対向する上を向いた対向面とドレン受け2とを少なくとも一部に曲率の付いたR面である曲面を介して接続されて良い。
 また、第1水受け装置1又は第2水受け装置62とドレン受け2との間は、別体の部材で接続されても良い。
<変形例1>
 図11は、本発明の実施の形態2の変形例1に係る室内機201を図2のA-A線の縦断面にて示す説明図である。ここでは、上記実施の形態1及び実施の形態2と同事項の説明を省略し、その特徴部分のみを説明する。
 図11に示すように、曲面40は、熱交換器11に向けて下方向に凹状面である。
<実施の形態2の効果>
 実施の形態2によれば、第1水受け装置1又は第2水受け装置62は、ファン12の回転軸20の軸方向から見たときに、第1水受け装置1又は第2水受け装置62における熱交換器11と対向する上を向いた対向面5とドレン受け2とを少なくとも一部に曲率の付いた曲面40を介して接続されている。
 この構成によれば、第1水受け装置1又は第2水受け装置62とドレン受け2との接続部にて、水の飛散の抑制に加え、異臭又は腐食の原因となる水の滞留が抑制でき、室内機201の品質が改善できる。
実施の形態3.
 図12は、本発明の実施の形態3に係る室内機201を図2のA-A線の縦断面にて示す説明図である。図13は、本発明の実施の形態3に係る第1水受け装置1を図12のD-D線の横断面にて示す説明図である。ここでは、上記実施の形態1、実施の形態2及び変形例1と同事項の説明を省略し、その特徴部分のみを説明する。
 図12及び図13に示すように、第1水受け装置1は、ファン12の回転軸20の軸方向とは直交する方向から見たときに、熱交換器11に対向する上を向いた対向面5の少なくとも一部に凸面41を有する。凸面41は、ファン12の回転軸20の軸方向において第1水受け装置1の中央部に形成されている。
 導水流路6は、対向面5の凸面41が重力方向下側に下がった位置、かつ、ファン12の回転軸20の軸方向の端部近傍に形成されている。導水流路6は、凸面41以外のファン12の回転軸20の軸方向において第1水受け装置1の中央部以外の両端部にそれぞれ形成されている。
 なお、第2水受け装置62は、ファン12の回転軸20に直交する方向から見たときに、熱交換器11に対向する上を向いた対向面の少なくとも一部に凸面を有して良い。導水流路は、第2水受け装置62における対向面の凸面が重力方向下側に下がった位置、かつ、ファン12の回転軸20の軸方向の端部近傍に形成されて良い。
 以上、第1水受け装置1又は第2水受け装置62の熱交換器11との対向面5と熱交換器11との間の空間が第1水受け装置1又は第2水受け装置62の端部にて広く形成できる。このため、対向面5を沿って流れる気流の通風抵抗が低減でき、第1空間101の熱交換器11の風量低下が抑制でき、熱交換器11の性能が改善する。さらに、対向面5の端部に導水流路6が形成され、対向面5の端部を伝っての第1開口部4への水滴の浸入が抑制できる。以上のように、性能改善と品質改善とが両立できる。
<変形例2>
 図14は、本発明の実施の形態3の変形例2に係る第1水受け装置1を図12のD-D線の横断面にて示す説明図である。ここでは、上記実施の形態1、実施の形態2、実施の形態3及び変形例1と同事項の説明を省略し、その特徴部分のみを説明する。
 図14に示すように、第1水受け装置1は、ファン12の回転軸20の軸方向とは直交方向から見たときに、導水流路6の端部を上向きに突出した鉤状の突起42に形成されている。
 突起42が形成されると、水滴50が突起42に沿って重力によってドレン受け2に流せ、第1開口部4への水滴の浸入抑制効果が向上し、品質が改善する。
<変形例3>
 図15は、本発明の実施の形態3の変形例3に係る第1水受け装置1を図12のD-D線の横断面にて示す説明図である。ここでは、上記実施の形態1、実施の形態2、実施の形態3、変形例1及び変形例2と同事項の説明を省略し、その特徴部分のみを説明する。
 図15に示すように、第1水受け装置1は、ファン12の回転軸20の軸方向とは直交方向から見たときに、導水流路6を、対向面5を下方に凹ませた溝形状43に形成されている。
 溝形状43が形成されると、水滴50が表面張力によって溝形状43に導水され、重力によってドレン受け2に流される。これにより、第1開口部4への水滴の浸入抑制効果が向上し、品質が改善する。また、溝形状43と比較して対向面5を流れる気流の乱れが小さく、通風抵抗が低減され、熱交換性能が改善される。
<変形例4>
 図16は、本発明の実施の形態3の変形例4に係る第1水受け装置1を図12のD-D線の横断面にて示す説明図である。ここでは、上記実施の形態1、実施の形態2、実施の形態3、変形例1、変形例2及び変形例3と同事項の説明を省略し、その特徴部分のみを説明する。
 図16に示すように、凸面41は、ファン12の回転軸20の軸方向において第1水受け装置1の第2空間102とは反対側端部を熱交換器11側に高めて形成されるとともに、第1水受け装置1の第2空間102側端部を熱交換器11側から低めて形成されている。
 導水流路6は、対向面5の凸面41が重力方向下側に下がった位置、かつ、第1水受け装置1の第2空間102側端部であるファン12の回転軸20の軸方向の端部近傍に形成されている。導水流路6は、凸面41以外のファン12の回転軸20の軸方向において第1水受け装置1の第2空間102側端部のみに1つ形成されている。
 図16の構成によれば、第1水受け装置1の熱交換器11との対向面5と熱交換器11との間の空間が第1水受け装置1の第2空間102側端部にて広く形成できる。このため、対向面5を沿って流れる気流の通風抵抗が第1空間101と第2空間102とが接続された室内機201内の中央部にて低減でき、第1空間101の熱交換器11の風量低下が抑制でき、熱交換性能が改善されてエネルギー消費性能が向上できる。また、対向面5の端部に導水流路6が形成され、対向面5の端部を伝って第1開口部4に至る水の浸入が抑制でき、居住空間300への水の滴下又は飛散が抑制できる。したがって、エネルギー消費性能の向上と水の滴下又は飛散の抑制という品質改善との両立が図れる。
<実施の形態3の効果>
 実施の形態3によれば、第1水受け装置1又は第2水受け装置62は、ファン12の回転軸20の軸方向とは直交する方向から見たときに、熱交換器11に対向する上を向いた対向面5の少なくとも一部に凸面41を有する。導水流路6は、凸面41が重力方向下側に下がった位置、かつ、ファン12の回転軸20の軸方向の端部近傍に形成されている。
 この構成によれば、第1水受け装置1又は第2水受け装置62の熱交換器11との対向面5と熱交換器11との間の空間が第1水受け装置1又は第2水受け装置62の端部にて広く形成できる。このため、対向面5を沿って流れる気流の通風抵抗が低減でき、第1空間101又は第2空間102の熱交換器11の風量低下が抑制でき、熱交換性能が改善されてエネルギー消費性能が向上できる。また、対向面5の端部に導水流路6が形成され、対向面5の端部を伝って第1開口部4に至る水の浸入が抑制でき、居住空間300への水の滴下又は飛散が抑制できる。したがって、エネルギー消費性能の向上と水の滴下又は飛散の抑制という品質改善との両立が図れる。
実施の形態4.
 図17は、本発明の実施の形態4に係る室内機201を示す透過斜視図である。図18は、本発明の実施の形態4に係る室内機201を図17のA-A線の縦断面にて示す説明図である。ここでは、上記実施の形態1、実施の形態2、実施の形態3、変形例1、変形例2、変形例3及び変形例4と同事項の説明を省略し、その特徴部分のみを説明する。
 図17及び図18に示すように、室内機201は、第1空間101に第1水受け装置1を備える。室内機201は、第2空間102に第2水受け装置62を備える。第2水受け装置62は、第2空間102にて、第1空間101の第1水受け装置1よりも表面積が小さい。
 ファン12の回転軸20の軸方向から見たときに、第2水受け装置62の少なくとも一部とファン12の回転軸20との距離が第1水受け装置1とファン12の回転軸20との距離よりも長い。具体的には、第1空間101側の回転軸20の軸方向から見たときに、第2水受け装置62の一部が第1水受け装置1よりも熱交換器11側に突出している。
 以上、第2水受け装置62が設けられるので、ファン12への水滴50の付着が抑制され、ファン12を伝うことによる第1空間101の第1開口部4への水滴の飛散が防止でき、品質が改善する。さらに、第2水受け装置62の少なくとも一部とファン12の回転軸20との距離が第1水受け装置1とファン12の回転軸20との距離よりもファン12から遠方に離間している。これにより、気流の流路の閉塞が抑制され、通風抵抗の低減によって熱交換性能が改善できる。
 なお、第2水受け装置62には、第1水受け装置1と接続された導水流路が形成されても良い。この場合には、第2水受け装置62とドレン受け2とが第2空間102で接続されなくても良い。
<変形例5>
 図19は、本発明の実施の形態4の変形例5に係る室内機201を図17のA-A線の縦断面にて示す説明図である。ここでは、上記実施の形態1、実施の形態2、実施の形態3、実施の形態4、変形例1、変形例2、変形例3及び変形例4と同事項の説明を省略し、その特徴部分のみを説明する。
 図19に示すように、第2水受け装置62は、ドレン受け2と接続されて第1水受け装置1と接続されない構成でも良い。
 図19の構成によれば、第2水受け装置62の水滴50がドレン受け2に直接流れ、第1空間101のファン12と第2空間102のファン12との形状に合わせた第1水受け装置1及び第2水受け装置62が設計でき、熱交換性能が改善できる。
<実施の形態4の効果>
 実施の形態4によれば、第1空間101には、第1水受け装置1が設けられるとともに、第2空間102には、第2水受け装置62が設けられている。ファン12の回転軸20の軸方向から見たときに、第2水受け装置62の少なくとも一部とファン12の回転軸20との距離が第1水受け装置1とファン12の回転軸20との距離よりも長い。
 この構成によれば、第2水受け装置62による気流の閉塞が抑制され、通風抵抗の低減によってエネルギー消費性能が改善できる。
実施の形態5.
 図20は、本発明の実施の形態5に係る室内機201を示す透過斜視図である。図21は、本発明の実施の形態5に係る室内機201を図20のA-A線の縦断面にて示す説明図である。図22は、本発明の実施の形態5に係る室内機201を図20のB-B線の縦断面にて示す説明図である。ここでは、上記実施の形態1、実施の形態2、実施の形態3、実施の形態4、変形例1、変形例2、変形例3、変形例4及び変形例5と同事項の説明を省略し、その特徴部分のみを説明する。
 図20、図21及び図22に示すように、第1空間101と第2空間102とにおける熱交換器11の水平方向に対する傾斜角度が異なっている。このため、熱交換器11は、第1空間101と第2空間102とで別体である。
 第1空間101における熱交換器11の水平方向に対する傾斜角度をαとする。第2空間102における熱交換器11の水平方向に対する傾斜角度をβとする。このときに、α<βが満たされている。このため、第1空間101における熱交換器11の水平方向に対する傾斜角度αが水平線と交差する点は、第2空間102における熱交換器11の水平方向に対する傾斜角度βよりも熱交換器11から遠ざかる。
 図20に示すように、第1空間101と第2空間102とにおける熱交換器11の水平方向に対する傾斜角度が異なるときに、第1空間101における熱交換器11と第2空間102における熱交換器11とのファン12の回転軸20とは、直交方向の境界部に、熱交換器11を迂回する気流を遮る仕切部材70が設けられている。
 以上、第2空間102では、熱交換器11の水平方向に対する傾斜角度βが第1空間101の熱交換器11よりも大きい。このため、結露水が熱交換器11のフィン31間を伝って排水され、第1空間101の熱交換器11よりも熱交換器11の下方にて水が滴下する。このため、第2空間102での水の居住空間300への飛散が抑制でき、品質が改善できる。さらに、第1空間101の熱交換器11と同一角度に配置した場合と比較して第2空間102の熱交換器11の伝熱面積が拡大でき、熱交換性能の改善と通風抵抗の低減とによってエネルギー消費性能が向上できる。
<実施の形態5の効果>
 実施の形態5によれば、第1空間101と第2空間102とにおける熱交換器11の水平方向に対する傾斜角度が異なっている。第1空間101における熱交換器11の水平方向に対する傾斜角度をαとする。第2空間102における熱交換器11の水平方向に対する傾斜角度をβとする。このときに、α<βが満たされる。
 この構成によれば、第2空間102では熱交換器11の水平方向に対する傾斜角度βが大きい。このため、熱交換器11に発生する水が熱交換器11自体を伝って落下して排水でき、居住空間300への水の飛散が抑制でき、品質が改善できる。また、第2空間102の熱交換器11が第1空間101の熱交換器11と同一角度に配置された場合と比較し、第2空間102の熱交換器11の伝熱面積が拡大でき、熱交換器11の性能改善と通風抵抗の低減とによりエネルギー消費性能が向上できる。
 実施の形態5によれば、第1空間101と第2空間102とにおける熱交換器11の水平方向に対する傾斜角度が異なるときに、第1空間101における熱交換器11と第2空間102における熱交換器11とのファン12の回転軸20とは直交方向の境界部に、熱交換器11を迂回する気流を遮る仕切部材70が設けられている。
 この構成によれば、仕切部材70が熱交換器11を迂回する気流の発生を防止でき、熱交換器11の性能低下が防止されてエネルギー消費性能が向上できる。
実施の形態6.
 図23は、本発明の実施の形態6に係る室内機201を示す透過斜視図である。図24は、本発明の実施の形態6に係る室内機201を図23のC-C線の横断面にて示す説明図である。ここでは、上記実施の形態1、実施の形態2、実施の形態3、実施の形態4、実施の形態5、変形例1、変形例2、変形例3、変形例4及び変形例5と同事項の説明を省略し、その特徴部分のみを説明する。
 図23及び図24に示すように、第1空間101におけるファン12の回転軸20と熱交換器11との距離をL1とする。第2空間102におけるファン12の回転軸20と熱交換器11との距離をL2とする。このときに、L2<L1が満たされている。
 第1空間101における熱交換器11と第2空間102における熱交換器11とがファン12の回転軸20の軸方向に対して傾斜して連続している。
 図23及び図24の構成によれば、熱交換器11をファン12の回転軸20に対して平行に設置した場合と比較して、熱交換器11の伝熱面積の拡大によって熱交換性能が向上できる。さらに、第2空間102の熱交換器11と第1空間101の第1開口部4との距離が小さくなる。これにより、第2空間102の熱交換器11を通風する空気におけるファン12の回転軸20の軸方向の風量偏差が緩和され、熱交換性能が向上できる。
<実施の形態6の効果>
 実施の形態6によれば、第1空間101におけるファン12の回転軸20と熱交換器11との距離をL1とする。第2空間102におけるファン12の回転軸20と熱交換器11との距離をL2とする。このときに、L2<L1が満たされる。
 この構成によれば、熱交換器11をファン12の回転軸20の軸方向に対して平行に設置した場合と比較し、熱交換器11の伝熱面積の拡大によって熱交換性能が向上できる。また、第2空間102における熱交換器11と第1空間101における第1開口部4との距離が小さくなる。これにより、第2空間102の熱交換器11を通風する気流におけるファン12の回転軸20の軸方向の風量偏差が緩和され、熱交換性能が向上できる。
 実施の形態6によれば、第1空間101における熱交換器11と第2空間102における熱交換器11とがファン12の回転軸20の軸方向に対して傾斜して連続している。
 この構成によれば、熱交換器11が第1空間101と第2空間102とに連続して形成でき、部品点数が削減できる。
実施の形態7.
 図25は、本発明の実施の形態7に係る室内機201を図2のC-C線の横断面にて示す説明図である。ここでは、上記実施の形態1、実施の形態2、実施の形態3、実施の形態4、実施の形態5、実施の形態6、変形例1、変形例2、変形例3、変形例4及び変形例5と同事項の説明を省略し、その特徴部分のみを説明する。
 図25に示すように、室内機201の筐体10内における第2空間102に面してファン12の回転軸20の軸方向に区分けされた少なくとも一部に、熱交換器11が無くかつ気流を排出する第2開口部80を有する第3空間103が形成されている。
 第1空間101は、室内機201の中央に1つ形成されている。第1空間101には、第1開口部4が形成されている。第2空間102は、第1空間101のファン12の回転軸20の軸方向の両側にそれぞれ1つずつ形成されている。第3空間103は、2つの第2空間102のファン12の回転軸20の軸方向での室内機201の側面側にそれぞれ1つずつ形成されている。2つの第3空間103のそれぞれには、第2開口部80が形成されている。
 なお、第1水受け装置1が設けられている。しかし、第2水受け装置62が設けられていない。
 以上、第3空間103に面する第2空間102を流れる気流は、第3空間103の第2開口部80に至るまでに回転軸20の軸方向とは直交方向から回転軸20の軸方向に転向する。このため、水滴50に作用する慣性力が小さく、水滴50の第2開口部80からの飛散が抑制できる。
 なお、第3空間103には、回転軸20に取り付けられたファン23が設けられている。ファン23は、ターボファンなどの遠心送風機を用いることにより、品質改善のために第1水受け装置1が大型化し、第1空間101における通風が阻害される場合であっても、風圧と風量とを向上して、熱交換性能が向上でき、性能改善と品質改善との両立の効果がある。
<変形例6>
 図26は、本発明の実施の形態7の変形例6に係る室内機201を図2のC-C線の横断面にて示す説明図である。ここでは、上記実施の形態1、実施の形態2、実施の形態3、実施の形態4、実施の形態5、実施の形態6、実施の形態7、変形例1、変形例2、変形例3、変形例4及び変形例5と同事項の説明を省略し、その特徴部分のみを説明する。
 図26に示すように、第2空間102と第3空間103との境界近傍に、第2水受け装置62が設けられている。第2水受け装置62が設けられることにより、熱交換性能の向上を目的に第3空間103のファン23の送風量増加を図るにあたり、第3空間103の第2開口部80からの水滴の飛散が抑制できる。
<実施の形態7の効果>
 実施の形態7によれば、筐体10内における第2空間102に面してファン12の回転軸20の軸方向に区分けされた少なくとも一部に、熱交換器11が無くかつ気流を排出する第2開口部80を有する第3空間103が形成されている。
 この構成によれば、第3空間103に面する第2空間102を流れる気流は、第3空間103における第2開口部80に至るまでに回転軸20の軸方向とは直交方向から回転軸20の軸方向に転向する。これにより、水滴50に作用する慣性力が小さくなり、第2開口部80からの水の飛散が抑制できる。
 なお、本発明の実施の形態1~7を組み合わせてもよいし、他の部分に適用してもよい。
 1 第1水受け装置、2 ドレン受け、3 上下風向板、4 第1開口部、5 対向面、6 導水流路、7 排水孔、8 排水ホース、10 筐体、11 熱交換器、12 ファン、13 冷媒配管、14 筐体、15 圧縮機、16 四方弁、17 室外熱交換器、18 ファン、19 絞り装置、20 回転軸、21 駆動源、23 ファン、30 伝熱管、31 フィン、40 曲面、41 凸面、42 突起、43 溝形状、50 水滴、62 第2水受け装置、70 仕切部材、80 第2開口部、101 第1空間、102 第2空間、103 第3空間、110 慣性力、111 重力、200 空気調和装置、201 室内機、202 室外機、300 居住空間、301 屋外空間。

Claims (13)

  1.  筐体内に横方向に延伸した回転軸を有するファンと、
     前記筐体内に前記ファンよりも風路の上流側に配置された熱交換器と、
     前記筐体内に発生する水を前記熱交換器下端の近傍で受けるドレン受けと、
    を備える空気調和装置の室内機であって、
     前記筐体内には、前記ファンの半径方向外側に気流を排出する第1開口部を有する第1空間と、開口部が無く前記ファンの半径方向外側を塞がれた第2空間と、が前記ファンの回転軸の軸方向に区分けして形成され、
     前記第1空間の前記ファンと前記熱交換器との間に、前記ドレン受けよりも上方に配置された第1水受け装置を少なくとも一部に有する空気調和装置の室内機。
  2.  前記第2空間の前記ファンと前記熱交換器との間に、前記第1空間の前記第1水受け装置よりも表面積が小さい第2水受け装置を有する、又は、前記第2水受け装置が無く前記第1空間の前記第1水受け装置の表面積だけ広い風路が形成される請求項1に記載の空気調和装置の室内機。
  3.  前記第1水受け装置又は前記第2水受け装置の前記熱交換器と対向する対向面には、前記ドレン受けと接続された導水流路が少なくとも一部に形成される請求項2に記載の空気調和装置の室内機。
  4.  前記熱交換器の上端は、前記ファンの回転軌跡の最上位置よりも重力方向上側の位置に配置され、
     前記熱交換器の下端は、前記ファンの回転軸よりも重力方向下側の位置に配置される請求項1~請求項3のいずれか1項に記載の空気調和装置の室内機。
  5.  前記第1水受け装置又は前記第2水受け装置は、前記ファンの回転軸の軸方向から見たときに、前記第1水受け装置又は前記第2水受け装置における前記熱交換器と対向する対向面と前記ドレン受けとを少なくとも一部に曲率の付いた曲面を介して接続される請求項2又は請求項2に従属する請求項3又は請求項4に記載の空気調和装置の室内機。
  6.  前記第1水受け装置又は前記第2水受け装置は、前記ファンの回転軸の軸方向に直交する方向から見たときに、前記熱交換器に対向する対向面の少なくとも一部に凸面を有し、
     前記導水流路は、前記凸面が重力方向下側に下がった位置で、かつ、前記ファンの回転軸の軸方向の端部近傍に形成される請求項2又は請求項2に従属する請求項3~請求項5のいずれか1項に記載の空気調和装置の室内機。
  7.  前記第1空間に前記第1水受け装置を有するとともに、前記第2空間に前記第2水受け装置を有し、
     前記ファンの回転軸の軸方向から見たときに、前記第2水受け装置の少なくとも一部と前記ファンの回転軸との距離が前記第1水受け装置と前記ファンの回転軸との距離よりも長い請求項2又は請求項2に従属する請求項3~請求項6のいずれか1項に記載の空気調和装置の室内機。
  8.  前記第1空間と前記第2空間とにおける前記熱交換器の水平方向に対する傾斜角度が異なり、
     前記第1空間における前記熱交換器の水平方向に対する傾斜角度をαとし、前記第2空間における前記熱交換器の水平方向に対する傾斜角度をβとしたときに、α<βが満たされる請求項1~請求項7のいずれか1項に記載の空気調和装置の室内機。
  9.  前記第1空間と前記第2空間とにおける前記熱交換器の水平方向に対する傾斜角度が異なるときに、前記第1空間における前記熱交換器と前記第2空間における前記熱交換器との前記ファンの回転軸とは直交方向の境界部に、前記熱交換器を迂回する気流を遮る仕切部材を有する請求項8に記載の空気調和装置の室内機。
  10.  前記第1空間における前記ファンの回転軸と前記熱交換器との距離をL1とし、前記第2空間における前記ファンの回転軸と前記熱交換器との距離をL2としたときに、L2<L1が満たされる請求項1~請求項9のいずれか1項に記載の空気調和装置の室内機。
  11.  前記第1空間における前記熱交換器と前記第2空間における前記熱交換器とが前記ファンの回転軸の軸方向に対して傾斜して連続する請求項10に記載の空気調和装置の室内機。
  12.  前記筐体内における前記第2空間に面して前記ファンの回転軸の軸方向に区分けされた少なくとも一部に、前記熱交換器が無くかつ気流を排出する第2開口部を有する第3空間が形成される請求項1~請求項11のいずれか1項に記載の空気調和装置の室内機。
  13.  請求項1~請求項12のいずれか1項に記載の空気調和装置の室内機を備える空気調和装置。
PCT/JP2019/004349 2019-02-07 2019-02-07 空気調和装置の室内機及び空気調和装置 WO2020161847A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/416,515 US20220082294A1 (en) 2019-02-07 2019-02-07 Indoor unit of air-conditioning apparatus and air-conditioning apparatus
PCT/JP2019/004349 WO2020161847A1 (ja) 2019-02-07 2019-02-07 空気調和装置の室内機及び空気調和装置
DE112019006837.7T DE112019006837T5 (de) 2019-02-07 2019-02-07 Inneneinheit einer klimaanlage und klimaanlage
JP2020570280A JP7170755B2 (ja) 2019-02-07 2019-02-07 空気調和装置の室内機及び空気調和装置
CN201980090383.7A CN113454405B (zh) 2019-02-07 2019-02-07 空调装置的室内机及空调装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/004349 WO2020161847A1 (ja) 2019-02-07 2019-02-07 空気調和装置の室内機及び空気調和装置

Publications (1)

Publication Number Publication Date
WO2020161847A1 true WO2020161847A1 (ja) 2020-08-13

Family

ID=71948174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004349 WO2020161847A1 (ja) 2019-02-07 2019-02-07 空気調和装置の室内機及び空気調和装置

Country Status (5)

Country Link
US (1) US20220082294A1 (ja)
JP (1) JP7170755B2 (ja)
CN (1) CN113454405B (ja)
DE (1) DE112019006837T5 (ja)
WO (1) WO2020161847A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274721A (ja) * 1999-03-19 2000-10-06 Fujitsu General Ltd 空気調和機
JP2001116347A (ja) * 1999-10-20 2001-04-27 Fujitsu General Ltd 空気調和機
JP2009250601A (ja) * 2008-04-11 2009-10-29 Mitsubishi Electric Corp クロスフローファン及びこれを備えた空気調和機
JP2012255628A (ja) * 2011-06-10 2012-12-27 Mitsubishi Electric Corp 空気調和機

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3289746A (en) * 1964-09-28 1966-12-06 American Air Filter Co Air conditioning apparatus
JPH06221605A (ja) * 1993-01-28 1994-08-12 Sanyo Electric Co Ltd 空気調和機
JPH0933096A (ja) * 1995-07-19 1997-02-07 Toshiba Corp 空気調和機
CN100359257C (zh) * 2003-05-20 2008-01-02 乐金电子(天津)电器有限公司 管道型空调凝结水排水结构
JP2005090768A (ja) * 2003-09-12 2005-04-07 Fujitsu General Ltd 一体型空気調和機
CN1782599A (zh) * 2004-11-29 2006-06-07 乐金电子(天津)电器有限公司 空调室内机冷凝水冷量回收装置
JP2008025872A (ja) * 2006-07-19 2008-02-07 Matsushita Electric Ind Co Ltd 空気調和機
CN101201193A (zh) * 2006-12-15 2008-06-18 乐金电子(天津)电器有限公司 一种空调器室内机
FR2920527A1 (fr) * 2007-09-04 2009-03-06 Bruno Harbuta Climatiseur mural a eau glacee et a ventilation naturelle pour refroidir et deshumidifier l'air ambiant d'une piece
CN101639246A (zh) * 2008-07-29 2010-02-03 乐金电子(天津)电器有限公司 柜式空调室内机
WO2010089920A1 (ja) * 2009-02-05 2010-08-12 三菱電機株式会社 空気調和機の室内機、及び空気調和機
CN101608816A (zh) * 2009-07-13 2009-12-23 广东志高空调有限公司 一种挂壁式空调器室内机
CN101737917B (zh) * 2009-12-17 2012-11-14 四川长虹空调有限公司 柜式空调器室内机的送风结构
ES2398514T3 (es) * 2010-05-13 2013-03-19 Lg Electronics, Inc. Acondicionador de aire
JP5247784B2 (ja) * 2010-10-04 2013-07-24 三菱電機株式会社 空気調和機
JP5992735B2 (ja) * 2012-06-12 2016-09-14 シャープ株式会社 空気調和機
CN103486660A (zh) * 2012-06-13 2014-01-01 珠海格力电器股份有限公司 风管室内机
JP2014119131A (ja) * 2012-12-13 2014-06-30 Mitsubishi Electric Corp 空気調和機の室内機
US10077784B2 (en) * 2013-06-25 2018-09-18 Hewlett Packard Enterprise Development Lp Fan module
JP6238763B2 (ja) * 2014-01-22 2017-11-29 三菱電機株式会社 空気調和機の室内機及び空気調和機
CN104864494B (zh) * 2014-02-21 2018-11-09 大金工业株式会社 空调机室内机
JP6169252B2 (ja) * 2014-03-27 2017-07-26 三菱電機株式会社 空気調和装置の室内機
CN105091087B (zh) * 2014-04-30 2018-08-31 青岛海尔空调器有限总公司 具有两个换热器的空调室内机
JP6383942B2 (ja) 2014-06-05 2018-09-05 パナソニックIpマネジメント株式会社 熱交換器
CN204254836U (zh) * 2014-08-18 2015-04-08 广东美的暖通设备有限公司 嵌入式空调室内机
JP6467584B2 (ja) * 2014-11-12 2019-02-13 パナソニックIpマネジメント株式会社 空気調和機
CN104930686A (zh) * 2015-06-09 2015-09-23 珠海格力电器股份有限公司 壁挂室内机及空调器
WO2017026012A1 (ja) * 2015-08-07 2017-02-16 三菱電機株式会社 空気調和機の室内機
CN206803454U (zh) * 2017-06-19 2017-12-26 宁波奥克斯电气股份有限公司 一种空调的穿墙机用集水盘
CN107559961B (zh) * 2017-08-31 2024-03-12 广东美的制冷设备有限公司 天花机
CN107702208A (zh) * 2017-09-19 2018-02-16 青岛海尔空调器有限总公司 室内机
CN208296101U (zh) * 2018-06-13 2018-12-28 广东美的制冷设备有限公司 空调室内机和具有其的空调器
CN108954535B (zh) * 2018-08-24 2023-09-08 珠海格力电器股份有限公司 角型架、室内机及空调器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274721A (ja) * 1999-03-19 2000-10-06 Fujitsu General Ltd 空気調和機
JP2001116347A (ja) * 1999-10-20 2001-04-27 Fujitsu General Ltd 空気調和機
JP2009250601A (ja) * 2008-04-11 2009-10-29 Mitsubishi Electric Corp クロスフローファン及びこれを備えた空気調和機
JP2012255628A (ja) * 2011-06-10 2012-12-27 Mitsubishi Electric Corp 空気調和機

Also Published As

Publication number Publication date
JP7170755B2 (ja) 2022-11-14
CN113454405B (zh) 2022-11-11
CN113454405A (zh) 2021-09-28
JPWO2020161847A1 (ja) 2021-09-30
US20220082294A1 (en) 2022-03-17
DE112019006837T5 (de) 2021-10-21

Similar Documents

Publication Publication Date Title
EP3534076B1 (en) Indoor machine and air conditioner
EP1326054B1 (en) Decorative panel for air conditioning system, air outlet unit, and air conditioning system
US11002451B2 (en) Air conditioner
JP6058242B2 (ja) 空気調和機
JP5143317B1 (ja) 空気調和装置の室内機
CN101595309B (zh) 西洛克风扇及空调装置
US20150292508A1 (en) Air conditioner
JP6429221B2 (ja) 空気調和機
EP3504485B1 (en) Air conditioner
JP2008275231A (ja) 空気調和装置
WO2017199444A1 (ja) 遠心送風機、空気調和装置および冷凍サイクル装置
EP1316760B1 (en) Decorative panel for air conditioning system, air outlet blow-off unit, and air conditioning system
EP1975522B1 (en) Air conditioner
WO2020161847A1 (ja) 空気調和装置の室内機及び空気調和装置
CN114440316B (zh) 风道组件和具有其的空气调节设备
CN114484611A (zh) 壁挂式空调室内机
WO2019123743A1 (ja) 空気調和機の室内機
CN108386905B (zh) 空调
JP2005062661A (ja) 送風部の送風騒音低減装置
JP2008095971A (ja) 空気調和装置の室内ユニット
EP4249821A1 (en) Indoor unit, and refrigeration cycle device
KR101419944B1 (ko) 공기 조화기의 실내기
JP6211101B2 (ja) 遠心ファン、空気調和装置及び空気清浄装置
KR200247271Y1 (ko) 냉난방기의 공냉식 응축기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020570280

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19914550

Country of ref document: EP

Kind code of ref document: A1