WO2020157839A1 - レーザ装置の波長制御方法及び電子デバイスの製造方法 - Google Patents

レーザ装置の波長制御方法及び電子デバイスの製造方法 Download PDF

Info

Publication number
WO2020157839A1
WO2020157839A1 PCT/JP2019/003041 JP2019003041W WO2020157839A1 WO 2020157839 A1 WO2020157839 A1 WO 2020157839A1 JP 2019003041 W JP2019003041 W JP 2019003041W WO 2020157839 A1 WO2020157839 A1 WO 2020157839A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
control method
time
data
target
Prior art date
Application number
PCT/JP2019/003041
Other languages
English (en)
French (fr)
Inventor
琢磨 山中
浩孝 宮本
Original Assignee
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社 filed Critical ギガフォトン株式会社
Priority to JP2020568925A priority Critical patent/JP7325452B2/ja
Priority to PCT/JP2019/003041 priority patent/WO2020157839A1/ja
Priority to CN201980079753.7A priority patent/CN113169510B/zh
Publication of WO2020157839A1 publication Critical patent/WO2020157839A1/ja
Priority to US17/341,570 priority patent/US11467502B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70025Production of exposure light, i.e. light sources by lasers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70041Production of exposure light, i.e. light sources by pulsed sources, e.g. multiplexing, pulse duration, interval control or intensity control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • H01S3/08009Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/136Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity
    • H01S3/137Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling devices placed within the cavity for stabilising of frequency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/139Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex

Definitions

  • the present disclosure relates to a laser device wavelength control method and an electronic device manufacturing method.
  • exposure apparatuses semiconductor exposure apparatuses
  • exposure apparatuses have been required to have improved resolution as semiconductor integrated circuits become finer and more highly integrated. Therefore, the wavelength of the light emitted from the exposure light source is being shortened.
  • a gas laser device is used as an exposure light source instead of a conventional mercury lamp.
  • the gas laser device for exposure a KrF excimer laser device that outputs an ultraviolet laser beam having a wavelength of 248 nm and an ArF excimer laser device that outputs an ultraviolet laser beam having a wavelength of 193 nm are used.
  • immersion exposure As a next-generation exposure technology, immersion exposure has been put into practical use, where the space between the exposure lens on the exposure device side and the wafer is filled with liquid. In this immersion exposure, since the refractive index between the exposure lens and the wafer changes, the apparent wavelength of the exposure light source becomes shorter.
  • immersion exposure is performed using an ArF excimer laser device as a light source for exposure, the wafer is irradiated with ultraviolet light having a wavelength of 134 nm in water. This technique is called ArF immersion exposure (or ArF immersion lithography).
  • the spontaneous amplitude of the KrF excimer laser device and ArF excimer laser device is wide, about 350 to 400 pm. Therefore, if the projection lens is made of a material that transmits ultraviolet rays such as KrF and ArF laser light, chromatic aberration may occur. As a result, the resolution may be reduced. Therefore, it is necessary to narrow the spectral line width of the laser light output from the gas laser device until the chromatic aberration becomes negligible. Therefore, in the laser resonator of the gas laser device, in order to narrow the spectral line width, a narrow band module (Line Narrow Module) having a narrow band element (etalon, grating, etc.) may be provided. ..
  • a laser device having a narrow spectral line width is referred to as a narrow band laser device.
  • a wavelength control method of a laser device sequentially acquires target wavelength data of pulsed laser light, sequentially stores the target wavelength data, sequentially measures the wavelength of the pulsed laser light, and acquires a measured wavelength. Then, the wavelength deviation is calculated using the measurement wavelength and the target wavelength data at the time before the time when the measurement wavelength was acquired, and the wavelength deviation is used to perform feedback control of the wavelength of the pulsed laser light.
  • An electronic device manufacturing method sequentially acquires target wavelength data of pulsed laser light, sequentially stores the target wavelength data, sequentially measures the wavelength of the pulsed laser light, and acquires a measurement wavelength.
  • the wavelength deviation is calculated using the measurement wavelength and the target wavelength data at the time before the time when the measurement wavelength was acquired, and the wavelength of the pulse laser light is feedback-controlled using the wavelength deviation to obtain the pulse laser light.
  • the process includes exposing the photosensitive substrate to pulsed laser light in order to output to the exposure apparatus and manufacture an electronic device.
  • FIG. 1 schematically shows the configuration of a laser device 1 in a comparative example.
  • FIG. 2 schematically shows the configuration of the laser device 1 in the comparative example.
  • FIG. 3 is a block diagram of the laser control unit 30 in the comparative example.
  • FIG. 4 is a flowchart of the laser control unit 30 in the comparative example.
  • FIG. 5 is a timing chart of wavelength control in the comparative example.
  • FIG. 6 is a block diagram of the laser control unit 30 according to the first embodiment of the present disclosure.
  • FIG. 7 is a flowchart of the laser control unit 30 in the first embodiment.
  • FIG. 8 is a timing chart of the wavelength control in the first embodiment.
  • FIG. 9 is a block diagram of the laser control unit 30 according to the second embodiment of the present disclosure.
  • FIG. 10 schematically shows the configuration of the exposure apparatus 100 connected to the laser apparatus 1.
  • FIGS. 1 and 2 schematically show the configuration of a laser device 1 in a comparative example.
  • the laser device 1 in the comparative example includes a laser oscillator 20, a laser controller 30, a wavelength monitor 51, and a driver 52.
  • the laser oscillation unit 20 includes a laser chamber 10, a pair of discharge electrodes 11a and 11b, a band narrowing module 14, an output coupling mirror 15, a beam splitter 22, and a power supply 23.
  • the band-narrowing module 14 and the output coupling mirror 15 form an optical resonator.
  • the laser chamber 10 is arranged in the optical path of the optical resonator.
  • the laser oscillator 20 is a master oscillator that outputs pulsed laser light that is incident on the exposure apparatus 100.
  • the power supply 23 includes a switch 24.
  • FIG. 1 shows the internal configuration of the laser oscillation unit 20 when the laser oscillation unit 20 is viewed in a direction substantially parallel to the discharge direction between the discharge electrodes 11a and 11b.
  • laser oscillation is substantially perpendicular to the discharge direction between the discharge electrodes 11a and 11b, and substantially perpendicular to the traveling direction of the pulsed laser light output from the output coupling mirror 15 toward the beam splitter 22.
  • the internal configuration of the laser oscillation unit 20 when the unit 20 is viewed is shown.
  • the traveling direction of the pulsed laser light output from the output coupling mirror 15 toward the beam splitter 22 is the Z direction.
  • the discharge direction between the discharge electrodes 11a and 11b is the V direction.
  • the direction perpendicular to both of these is the H direction.
  • the ⁇ V direction almost coincides with the direction of gravity.
  • the laser chamber 10 is a chamber in which a laser gas as a laser medium is sealed.
  • the laser gas includes, for example, argon gas or krypton gas as rare gas, fluorine gas as halogen gas, neon gas as buffer gas, and the like.
  • the discharge electrodes 11a and 11b are arranged in the laser chamber 10 as electrodes for exciting the laser medium by electric discharge.
  • the longitudinal direction of the discharge electrode 11a and the longitudinal direction of the discharge electrode 11b substantially coincide with the Z direction.
  • the discharge electrode 11a is connected to the power supply 23, and the discharge electrode 11b is connected to the ground potential.
  • Windows 10a and 10b are provided at both ends of the laser chamber 10.
  • the windows 10a and 10b are arranged such that the light incident surface and the HZ surface with respect to these windows are substantially parallel to each other and the light incident angle is substantially Brewster's angle.
  • the band-narrowing module 14 includes at least one prism, a grating 14e, holders 16a to 16e, and a housing 12.
  • the at least one prism includes four prisms 14a-14d.
  • Each of the four prisms 14a to 14d is made of calcium fluoride crystal.
  • the grating 14e is an Escher grating in which a surface is made of a material having a high reflectance and a large number of grooves are formed at predetermined intervals.
  • the housing 12 houses the prisms 14a to 14d and the grating 14e.
  • the prism 14a is supported by the holder 16a
  • the prism 14b is supported by the holder 16b
  • the prism 14c is supported by the holder 16c
  • the prism 14d is supported by the holder 16d
  • the grating 14e is supported by the holder 16e.
  • the holder 16b that supports the prism 14b is supported by the rotary stage 17b.
  • the holder 16c that supports the prism 14c is supported by the rotary stage 17c.
  • the rotation axes of the rotary stage 17b and the rotary stage 17c substantially coincide with the V direction.
  • the rotary stage 17b includes a piezo element as the wavelength actuator 25 (see FIG. 3).
  • the rotary stage 17c includes an automatic micrometer as the wavelength actuator 25. These wavelength actuators 25 are connected to the driver 52.
  • the housing 12 is connected to the laser chamber 10 via an optical path tube 21a.
  • the inside of the optical path tube 21a and the inside of the housing 12 communicate with each other.
  • An inert gas introduction tube 12c (see FIG. 1) is connected to the housing 12 at a position apart from the optical path tube 21a.
  • An inert gas discharge pipe 21c (see FIG. 2) is connected to the optical path pipe 21a. The inert gas is introduced into the housing 12 and the optical path tube 21a from the inert gas introduction pipe 12c, and is discharged from the inert gas discharge pipe 21c. In this way, the inside of the housing 12 and the inside of the optical path tube 21a are purged with the inert gas.
  • the output coupling mirror 15 is housed in the housing 13. A partial reflection film is coated on one surface of the output coupling mirror 15. The other surface of the output coupling mirror 15 is coated with an antireflection film.
  • the housing 13 is connected to the laser chamber 10 via an optical path tube 21b.
  • the inside of the optical path tube 21b and the inside of the housing 13 communicate with each other.
  • An inert gas introduction pipe and an inert gas discharge pipe (not shown) are connected to the optical path pipe 21b or the housing 13.
  • the inside of the optical path tube 21b and the inside of the housing 13 are purged with an inert gas.
  • the beam splitter 22 is arranged in the optical path of the pulsed laser light output from the output coupling mirror 15. A partial reflection film is coated on one surface of the beam splitter 22. The other surface of the beam splitter 22 is coated with an antireflection film.
  • a wavelength monitor 51 is arranged in the optical path of the pulsed laser light reflected by the beam splitter 22.
  • the wavelength monitor 51 includes a spectroscope such as an etalon (not shown) and an image sensor (not shown).
  • the laser control unit 30 sequentially acquires trigger signals output from the exposure apparatus 100 at regular time intervals.
  • the laser control unit 30 outputs this trigger signal to the switch 24 included in the power supply 23.
  • the power supply 23 applies a pulsed high voltage between the discharge electrodes 11a and 11b.
  • the light generated in the laser chamber 10 is emitted to the outside of the laser chamber 10 through the windows 10a and 10b.
  • the light emitted from the window 10a of the laser chamber 10 is refracted in the HZ plane by the prisms 14a to 14d, the beam width in the H direction is expanded, and the light is incident on the grating 14e.
  • the light incident on the grating 14e from the prisms 14a to 14d is reflected by the plurality of grooves of the grating 14e and is diffracted in the direction according to the wavelength of the light. Thereby, the light reflected by the plurality of grooves of the grating 14e is dispersed in the HZ plane.
  • the grating 14e is arranged in a Littrow arrangement such that the incident angle of light incident on the grating 14e from the prisms 14a to 14d and the diffraction angle of diffracted light of a desired wavelength match.
  • the prisms 14a to 14d reduce the beam width of the diffracted light from the grating 14e in the H direction and return the light into the laser chamber 10 via the window 10a.
  • the output coupling mirror 15 transmits part of the light emitted from the window 10b of the laser chamber 10 and outputs it, and reflects the other part of the light to return it to the laser chamber 10.
  • the light emitted from the laser chamber 10 reciprocates between the band-narrowing module 14 and the output coupling mirror 15, and is amplified each time it passes through the discharge space between the discharge electrodes 11a and 11b. Each time the light is folded back by the band-narrowing module 14, it is band-narrowed.
  • the light thus amplified is output from the output coupling mirror 15 as pulsed laser light.
  • This pulsed laser light has a wavelength in the vacuum ultraviolet region.
  • the beam splitter 22 transmits a part of the pulsed laser light output from the output coupling mirror 15 with high transmittance and reflects the other part.
  • the pulsed laser light transmitted through the beam splitter 22 enters the exposure apparatus 100.
  • the pulsed laser light reflected by the beam splitter 22 enters a spectroscope (not shown) included in the wavelength monitor 51.
  • the spectroscope forms an interference fringe of the pulsed laser light on the light receiving surface of an image sensor (not shown) included in the wavelength monitor 51.
  • the image sensor generates image data of interference fringes.
  • the wavelength monitor 51 transmits measurement data such as this image data to the laser control unit 30.
  • the laser control unit 30 acquires target wavelength data output from the exposure apparatus 100 at regular time intervals. Further, the laser control unit 30 receives the measurement data from the wavelength monitor 51 and acquires the measurement wavelength by calculating the wavelength of the pulsed laser light using this measurement data. The laser control unit 30 outputs a control signal to the driver 52 based on the target wavelength data and the measured wavelength. The driver 52 applies a drive voltage to the wavelength actuator 25 included in the rotary stages 17b and 17c according to the control signal.
  • the wavelength actuators 25 included in the rotary stages 17b and 17c rotate the prisms 14b and 14c clockwise or counterclockwise in FIG. 1 according to the drive voltage from the driver 52, respectively.
  • the incident angle of light on the grating 14e is adjusted, and the oscillation wavelength is adjusted.
  • the rough adjustment of the wavelength is performed by adjusting the posture of the prism 14c, and the fine adjustment of the wavelength is performed by adjusting the posture of the prism 14b.
  • the attitude of the prism 14b is adjusted, for example, within a burst period, which is a period in which pulsed laser light is output at a constant repetition frequency.
  • the attitude of the prism 14c is adjusted, for example, within a pause period in which the output of the pulsed laser light at a constant repetition frequency is paused.
  • the burst period corresponds to, for example, a period in which exposure device 100 exposes one exposure area of a semiconductor wafer.
  • the pause period corresponds to, for example, a period in which the image forming position of the reticle pattern is moved from one exposure area to another exposure area in exposure apparatus 100, or a period in which a semiconductor wafer is exchanged.
  • FIG. 3 is a block diagram of the laser control unit 30 in the comparative example.
  • the laser control unit 30 includes a reference value storage unit 31, an FF (feedforward) control calculation unit 33, an FB (feedback) control calculation unit 35, a sensitivity correction unit 37, an offset value storage unit 38, and a D/A. And a (digital-analog) converter 40.
  • the FF control calculation unit 33 includes an FF signal generation unit 43.
  • the FB control calculation unit 35 includes a PID (Proportional-Integral-Differential) calculation unit 45 and a wavelength calculation unit 47.
  • Each element of the laser control unit 30 may be configured by hardware or software.
  • the laser control unit 30 acquires the trigger signal, the reference value of the target wavelength, and the variation value of the target wavelength from the exposure apparatus 100.
  • the laser control unit 30 outputs a trigger signal to the switch 24 included in the power supply 23 of the laser oscillation unit 20.
  • the reference value and the variation value are examples of target wavelength data.
  • the laser control unit 30 separately acquires the reference value and the variation value from the exposure apparatus 100.
  • the reference value of the target wavelength is, for example, an initial value. Alternatively, the reference value of the target wavelength may be a value that is sequentially updated as the target wavelength changes.
  • the laser control unit 30 Upon obtaining the reference value from the exposure apparatus 100, the laser control unit 30 stores the reference value in the reference value storage unit 31.
  • the fluctuation value of the target wavelength is a value indicating the amount of displacement with respect to the reference value, and is a positive or negative value output from the exposure apparatus 100 at fixed time intervals.
  • the laser control unit 30 calculates the set value of the target wavelength by adding the variation value to the reference value by the addition unit 32.
  • the target wavelength setting value is an example of target wavelength data.
  • the laser control unit 30 inputs the set value of the target wavelength to the FF control calculation unit 33 and the FB control calculation unit 35 via the branching unit 42, respectively.
  • the laser control unit 30 may acquire the set value of the target wavelength from the exposure apparatus 100, instead of acquiring the reference value and the variation value from the exposure apparatus 100.
  • the FF signal generation unit 43 When the setting value of the target wavelength is input to the FF control calculation unit 33, the FF signal generation unit 43 generates the FF signal using the setting value of the target wavelength.
  • the FF signal includes, for example, a control value proportional to the set value of the target wavelength.
  • the laser control unit 30 receives the measurement data from the wavelength monitor 51.
  • the wavelength calculation unit 47 of the FB control calculation unit 35 acquires the measurement wavelength by calculating the wavelength of the pulsed laser light using the measurement data.
  • the FB control calculator 35 multiplies the value of the measured wavelength by -1, and the adder 49 adds it to the set value of the target wavelength.
  • the FB control calculation unit 35 calculates the difference between the measured wavelength and the set value of the target wavelength as the wavelength deviation.
  • the PID calculation unit 45 of the FB control calculation unit 35 performs PID calculation using the wavelength deviation to generate an FB signal.
  • the FB signal includes a control value that reduces the wavelength deviation.
  • the FB signal includes a control value such that the wavelength deviation approaches 0.
  • the FF signal and the FB signal are input to the sensitivity correction unit 37 via the addition unit 36.
  • the sensitivity correction unit 37 performs sensitivity correction on the FF signal and the FB signal according to the characteristics of the wavelength actuator 25 included in the rotary stage 17b (see FIGS. 1 and 2) of the laser oscillation unit 20.
  • the offset value storage unit 38 stores the offset value set so that the wavelength actuator 25 operates near the center of the control range of the wavelength actuator 25. For example, when the wavelength actuator 25 is controlled by the drive voltage in the range of 0V to 5V, the offset value is set to 2.5V.
  • the signal output from the sensitivity correction unit 37 is input to the D/A conversion unit 40 after the offset value is added by the addition unit 39.
  • the D/A converter 40 converts a digital control signal into an analog control signal and outputs it to the driver 52.
  • the driver 52 applies a drive voltage to the wavelength actuator 25 included in the rotary stage 17b according to the analog control signal.
  • the FF control based on the FF signal and the FB control based on the FB signal are performed.
  • FIG. 4 is a flowchart of the laser control unit 30 in the comparative example.
  • the laser control unit 30 performs the following processes (1) to (4).
  • (1) FF signal generation process triggered by acquisition of target wavelength data (S11, S12)
  • the laser control unit 30 determines whether or not the target wavelength data has been acquired from the exposure apparatus 100.
  • the target wavelength data that the laser control unit 30 acquires from the exposure apparatus 100 includes the reference value and the fluctuation value of the target wavelength
  • the laser control unit 30 determines whether or not both the reference value and the fluctuation value are acquired. judge.
  • the process proceeds to S12.
  • the target wavelength data is not acquired (S11: NO)
  • the laser control unit 30 repeats the process of S11 until the target wavelength data is acquired.
  • the laser control unit 30 causes the FF control calculation unit 33 to generate an FF signal using the target wavelength data.
  • the FF signal is used in S41 described later.
  • the laser control unit 30 advances the processing to S21.
  • S21 Process triggered by acquisition of trigger signal
  • the laser control unit 30 determines whether or not a trigger signal has been acquired from the exposure apparatus 100.
  • the process proceeds to S22.
  • the trigger signal is not acquired (S21: NO)
  • the laser control unit 30 repeats the process of S21 until the trigger signal is acquired.
  • the laser control unit 30 outputs a trigger signal to the laser oscillation unit 20. After S22, the laser control unit 30 advances the processing to S31.
  • the laser control unit 30 determines whether or not measurement data has been received from the wavelength monitor 51. When the measurement data is received (S31: YES), the laser control unit 30 advances the process to S32. When the measurement data is not received (S31: NO), the laser control unit 30 repeats the process of S31 until the measurement data is received.
  • the laser control unit 30 calculates the wavelength of the pulsed laser light using the measurement data by the FB control calculation unit 35, and acquires the measurement wavelength.
  • the laser control unit 30 causes the FB control calculation unit 35 to calculate the wavelength deviation using the measured wavelength and the target wavelength data.
  • the calculation of the wavelength deviation is performed using the current target wavelength data.
  • the laser control unit 30 causes the FB control calculation unit 35 to perform PID calculation using the wavelength deviation to generate an FB signal.
  • the laser control unit 30 advances the processing to S41.
  • the FB signal is used in S41.
  • S41 Process for controlling wavelength actuator
  • the laser control unit 30 controls the wavelength actuator 25 by outputting a control signal based on the FF signal and the FB signal. After S41, the laser control unit 30 returns the process to S11.
  • FIG. 5 is a timing chart of wavelength control in the comparative example.
  • FIG. 5 shows the transition of some processes and signals on a common time axis. It is assumed that time advances from left to right in FIG.
  • the laser control unit 30 sequentially acquires target wavelength data output from the exposure apparatus 100 at regular time intervals. As a result, the target wavelength data is updated at regular time intervals.
  • the target wavelength data includes the reference value and the variation value of the target wavelength
  • the target wavelength data is updated every time the laser control unit 30 acquires the variation value.
  • the target wavelength data is maintained at a constant value until the next update is performed. For example, the target wavelength data is maintained at a constant value in each of the periods A1, A2, A3, and A4.
  • the FF control calculation unit 33 performs the FF signal generation process triggered by the acquisition of the target wavelength data. For example, the generation of the FF signal is started in synchronization with the start times of the periods A1, A2, A3, and A4, respectively.
  • the FF control calculation unit 33 generates an FF signal in each of the periods B1, B2, B3, B4.
  • the laser control unit 30 sequentially acquires trigger signals output from the exposure apparatus 100 at regular time intervals.
  • the laser control unit 30 outputs this trigger signal to the laser oscillation unit 20.
  • the laser oscillation unit 20 Upon acquisition of each trigger pulse included in this trigger signal, the laser oscillation unit 20 outputs each optical pulse of the pulsed laser light.
  • the wavelength monitor 51 receives each optical pulse of the pulse laser light output upon acquisition of each trigger pulse included in the trigger signal.
  • the wavelength monitor 51 receives the pulsed laser light
  • the wavelength monitor 51 generates measurement data such as image data of interference fringes.
  • the generation of measurement data by the wavelength monitor 51 is started in synchronization with the end times of the periods C1, C2, C3, and C4 corresponding to the trigger pulses included in the trigger signal.
  • the wavelength monitor 51 generates measurement data in each of the periods D1, D2, D3, and D4, and sequentially outputs the measurement data to the laser control unit 30.
  • the laser control unit 30 uses the FB control calculation unit 35 to calculate the wavelength of the pulsed laser light when the measurement data is received. For example, the wavelength calculation is started in synchronization with the end times of the periods D1, D2, D3, and D4 in which the wavelength monitor 51 generates the measurement data.
  • the FB control calculation unit 35 sequentially acquires the measurement wavelengths by calculating the wavelength of the pulsed laser light in each of the periods E1, E2, E3, and E4.
  • the FB control calculation unit 35 calculates the wavelength deviation using the measured wavelength and the target wavelength data, triggered by the acquisition of the measured wavelength. Further, the FB control calculation unit 35 performs PID calculation using the wavelength deviation. For example, the wavelength deviation calculation and the PID calculation are started in synchronization with the end times of the periods E1, E2, E3, and E4 for the FB control calculation unit 35 to calculate the wavelength of the pulsed laser light and acquire the measured wavelength. To be done. The FB control calculation unit 35 sequentially generates the FB signal by calculating the wavelength deviation and performing the PID calculation in the periods F1, F2, F3, and F4.
  • the wavelength deviation calculation and the PID calculation performed in the period F1 are performed using the target wavelength data in the period A2.
  • the calculation of the wavelength deviation and the PID calculation performed in the periods F2 and F3 are performed using the target wavelength data in the periods A3 and A4, respectively. That is, the calculation of the wavelength deviation and the PID calculation are performed using the current target wavelength data.
  • the calculation of the wavelength deviation and the PID calculation performed in the period F1 are performed using the measurement wavelength of the pulsed laser light whose wavelength is controlled using the target wavelength data in the period A1.
  • the wavelength deviation calculation and the PID calculation performed in the periods F2 and F3 are performed using the measurement wavelength of the pulsed laser light whose wavelength is controlled using the target wavelength data in the periods A2 and A3, respectively. That is, the calculation of the wavelength deviation and the PID calculation are performed using the current target wavelength data and the measured wavelength of the pulsed laser light output in the past.
  • the current target wavelength data and the past target wavelength data may be different. If the wavelength deviation is calculated and the PID is calculated using the current target wavelength data and the measured wavelength of the pulsed laser light whose wavelength is controlled using the past target wavelength data, there is a possibility that incorrect compensation may be applied. .. In such a case, the wavelength stability may deteriorate.
  • FIG. 6 is a block diagram of the laser control unit 30 according to the first embodiment of the present disclosure.
  • the laser control unit 30 includes a temporary storage unit 34a.
  • the configuration and operation of the laser device 1 excluding the laser control unit 30 are the same as the configuration and operation in the comparative example described with reference to FIGS. 1 and 2.
  • the temporary storage unit 34 a is arranged between the FB control calculation unit 35 and the branch unit 42 for inputting the set value of the target wavelength to the FF control calculation unit 33 and the FB control calculation unit 35.
  • the temporary storage unit 34a temporarily stores the set value of the target wavelength.
  • the trigger signal acquired from the exposure apparatus 100 is further input to the temporary storage unit 34a.
  • the temporary storage unit 34a sequentially stores the set value of the target wavelength at the time when the trigger signal is input.
  • the FB control calculation unit 35 calculates a wavelength deviation using the set value of the target wavelength stored in the temporary storage unit 34a, and performs a PID calculation to generate an FB signal.
  • the target wavelength set values sequentially stored in the temporary storage unit 34a may be input to the FB control calculation unit 35 and then sequentially deleted from the temporary storage unit 34a.
  • the FF control calculation unit 33 generates the FF signal using the current set value of the target wavelength instead of the set value of the target wavelength stored in the temporary storage unit 34a.
  • the configuration of the laser control unit 30 in the first embodiment is the same as the configuration of the comparative example described with reference to FIG.
  • FIG. 7 is a flowchart of the laser control unit 30 in the first embodiment.
  • the laser control unit 30 in the first embodiment uses the acquisition of the trigger signal as a trigger to perform a process of saving the target wavelength data (S23a) and a point of using the saved target wavelength data to calculate the wavelength deviation ( S33a) is different from the comparative example described above.
  • the processing from S11 to S22 in FIG. 7 is the same as the processing of the comparative example described with reference to FIG.
  • the laser control unit 30 stores the target wavelength data at the time when the trigger signal is acquired in the temporary storage unit 34a. After S23a, the laser control unit 30 advances the processing to S31.
  • the processing of S31 and S32 is the same as the processing of the comparative example described with reference to FIG.
  • the laser control unit 30 calculates the wavelength deviation using the measured wavelength and the target wavelength data stored in the temporary storage unit 34a.
  • the target wavelength data used for calculating the wavelength deviation is target wavelength data at a time before the time when the laser control unit 30 acquires the measurement wavelength.
  • the processing of S34 and S41 after S33a is the same as the processing of the comparative example described with reference to FIG.
  • FIG. 8 is a timing chart of the wavelength control in the first embodiment.
  • the laser control unit 30 sequentially stores the target wavelength data at the time when each trigger pulse is acquired, triggered by the acquisition of each trigger pulse included in the trigger signal. For example, when acquiring the trigger pulse in the period C1, the laser control unit 30 stores the target wavelength data in the period A1 corresponding to the time when the trigger pulse in the period C1 is acquired. Similarly, when the trigger pulse is acquired in the periods C2 and C3, the laser control unit 30 stores the target wavelength data in the periods A2 and A3, respectively.
  • the calculation of the wavelength deviation and the PID calculation in the period F1 are performed using the measurement wavelength acquired by measuring the wavelength of the optical pulse output triggered by the acquisition of the trigger pulse in the period C1.
  • This measurement wavelength is a measurement wavelength that the FB control calculation unit 35 acquires at the end time of the period E1. That is, the calculation of the wavelength deviation and the PID calculation in the period F1 are performed using the measurement wavelength acquired later than the time when the laser control unit 30 acquires the trigger pulse in the period C2 after the period C1.
  • the trigger pulse in the period C1 corresponds to the first trigger pulse in the present disclosure
  • the trigger pulse in the period C2 corresponds to the second trigger pulse in the present disclosure.
  • the calculation of the wavelength deviation and the PID calculation in the periods F2 and F3 are performed using the measurement wavelengths acquired after the time when the laser control unit 30 acquires the trigger pulse in the periods C3 and C4, respectively.
  • the calculation of the wavelength deviation and the PID calculation in the period F1 are not performed using the target wavelength data in the period A2, but are performed using the target wavelength data in the period A1. That is, the calculation of the wavelength deviation and the PID calculation in the period F1 are performed using the target wavelength data before the time when the laser control unit 30 acquires the trigger pulse in the period C2. In particular, the calculation of the wavelength deviation and the PID calculation in the period F1 are performed using the target wavelength data at the time when the laser control unit 30 acquires the trigger pulse in the period C1. Similarly, the calculation of the wavelength deviation and the PID calculation in the periods F2 and F3 are performed using the target wavelength data before the time when the laser control unit 30 acquires the trigger pulse in the periods C3 and C4, respectively. The calculation of the wavelength deviation and the PID calculation in the periods F2 and F3 are performed using the target wavelength data at the time when the laser control unit 30 acquires the trigger pulse in the periods C2 and C3, respectively.
  • the generation of the FF signal in the FF control calculation unit 33 is performed using the current target wavelength data, triggered by the acquisition of the target wavelength data. Therefore, the first time difference from the time when the laser control unit 30 acquires the target wavelength data to the time when the laser control unit 30 inputs the target wavelength data to the FF control calculation unit 33 is relatively short.
  • the time when the laser control unit 30 acquires the target wavelength data is, for example, the start time of the period A1, and corresponds to the first time in the present disclosure.
  • the time when the laser control unit 30 inputs the target wavelength data to the FF control calculation unit 33 is, for example, any time from the start to the end of the period B1, and corresponds to the second time in the present disclosure.
  • the generation of the FB signal in the FB control calculation unit 35 is triggered by the acquisition of the measurement wavelength and is performed using the target wavelength data at the time before the time when the measurement wavelength is acquired. Therefore, the second time difference from the time when the laser control unit 30 acquires the target wavelength data to the time when the laser control unit 30 inputs the target wavelength data to the FB control calculation unit 35 is smaller than the first time difference. Is also long.
  • the time when the laser control unit 30 acquires the target wavelength data is, for example, the start time of the period A1, and corresponds to the third time of the present disclosure.
  • the time when the laser control unit 30 inputs the target wavelength data to the FB control calculation unit 35 is, for example, any time from the start to the end of the period F1, and corresponds to the fourth time of the present disclosure.
  • the second time difference may be longer than the time interval at which the laser control unit 30 acquires the trigger signal.
  • the second time difference may be longer than the time interval at which the laser control unit 30 acquires the target wavelength data.
  • the laser control unit 30 calculates the wavelength deviation by using the measurement wavelength and the target wavelength data at the time before the time when the measurement wavelength is acquired. Therefore, even if the target wavelength data when the wavelength deviation is calculated and the PID calculation is different from the target wavelength data when the pulsed laser light is output, the deterioration of the wavelength stability can be suppressed.
  • FIG. 9 is a block diagram of the laser control unit 30 according to the second embodiment of the present disclosure.
  • the FF control calculator 33 of the laser controller 30 includes a notch filter 44b.
  • the FB control calculation unit 35 of the laser control unit 30 includes a notch filter 46b and an upsampling unit 48b.
  • the configuration and operation of the laser device 1 excluding the laser control unit 30 are the same as the configuration and operation in the comparative example described with reference to FIGS. 1 and 2.
  • the notch filter 44b is arranged between the FF signal generation unit 43 and the addition unit 36 that adds the FF signal that is the output signal of the FF control calculation unit 33 and the FB signal that is the output signal of the FB control calculation unit 35. To be done.
  • the notch filter 44b corresponds to the first notch filter in the present disclosure.
  • the notch filter 46b is arranged between the adder 36 and the PID calculator 45.
  • the notch filter 46b corresponds to the second notch filter in the present disclosure.
  • the upsampling unit 48b is arranged between the adding unit 49 that calculates the wavelength deviation and the wavelength calculating unit 47.
  • the configuration of the laser control unit 30 in the second embodiment is the same as the configuration of the first embodiment described with reference to FIG.
  • the exposure apparatus 100 outputs a variation value of the target wavelength at a repetition frequency of 6 kHz.
  • the FF signal generation unit 43 outputs the FF signal at the repetition frequency of 6 kHz.
  • the FF signal is input to the notch filter 44b.
  • the notch filter 44b reduces a frequency component including a predetermined frequency from the FF signal output from the FF signal generation unit 43.
  • the predetermined frequency is set to a value near the resonance frequency of the wavelength actuator 25. For example, when the wavelength actuator 25 has a resonance frequency of 2 kHz, the predetermined frequency is set to 2 kHz.
  • the notch filter 44b reduces the frequency component of 2 kHz from the FF signal of 6 kHz, whereby the vibration of the wavelength actuator 25 due to resonance is suppressed.
  • the exposure apparatus 100 outputs a trigger signal at a repetition frequency of 6 kHz.
  • the laser oscillator 20 outputs the pulsed laser light at a repetition frequency of 6 kHz.
  • the wavelength calculation unit 47 can output the measurement wavelength only at a repetition frequency of 3 kHz at maximum.
  • the wavelength calculator 47 outputs the measurement wavelength at the repetition frequency of 3 kHz.
  • the Nyquist frequency of the FB control calculation unit 35 is half the frequency of 3 kHz, which is 1.5 kHz.
  • the notch filter 46b is arranged in the FB control calculation unit 35, it becomes difficult to reduce the frequency component of 2 kHz which is the resonance frequency of the wavelength actuator 25. This is because it is difficult for the notch filter 46b to reduce frequency components higher than the Nyquist frequency.
  • the upsampling unit 48b upsamples the measurement wavelength to, for example, 6 kHz.
  • the adder 49 can calculate the wavelength deviation at the repetition frequency of 6 kHz, and the PID calculator 45 can output the FB signal at the repetition frequency of 6 kHz.
  • the FB signal is input to the notch filter 46b.
  • the notch filter 46b reduces frequency components including a predetermined frequency from the FB signal.
  • the predetermined frequency is set to a value near the resonance frequency of the wavelength actuator 25, similarly to the predetermined frequency reduced by the notch filter 44b.
  • the predetermined frequency is set to 2 kHz.
  • the measurement wavelength is upsampled to a repetition frequency that is more than twice the predetermined frequency, and the wavelength deviation is calculated using the upsampled measurement wavelength. Therefore, the PID calculator 45 outputs the FB signal at a repetition frequency exceeding twice the predetermined frequency. Thereby, the notch filter 46b can reduce the frequency component containing a predetermined frequency. The notch filter 46b reduces a frequency component including a predetermined frequency, so that vibration of the wavelength actuator 25 due to resonance is suppressed.
  • the notch filters 44b and 46b can suppress the resonance of the wavelength actuator 25 by reducing the predetermined frequency component included in the control signal. Thereby, the stability of wavelength can be improved. Further, even when the half of the repetition frequency of the measurement wavelength is lower than the resonance frequency of the wavelength actuator 25, the Nyquist frequency of the FB control calculation unit 35 is changed to the resonance frequency of the wavelength actuator 25 by upsampling the measurement wavelength. It can be higher. As a result, the stability of the feedback control can be improved, and the stability of the wavelength can be improved.
  • the FB signal may be output at a repetition frequency of 6 kHz as in the following (1) to (4).
  • the target wavelength data stored in the temporary storage unit 34a is downsampled to generate target wavelength data having a repetition frequency of 3 kHz which is the same as the repetition frequency of the measurement wavelength output from the wavelength calculation unit 47.
  • the wavelength deviation is calculated at the repetition frequency of 3 kHz by using the measured wavelength and the target wavelength data of the repetition frequency of 3 kHz.
  • the wavelength deviation of the repetition frequency of 3 kHz is upsampled to 6 kHz.
  • PID calculation is performed using the wavelength deviation of the repetition frequency of 6 kHz.
  • FIG. 10 schematically shows a configuration of the exposure apparatus 100 connected to the laser apparatus 1.
  • the laser device 1 generates pulsed laser light and outputs it to the exposure device 100.
  • the exposure apparatus 100 includes an illumination optical system 141 and a projection optical system 142.
  • the illumination optical system 141 illuminates the reticle pattern on the reticle stage RT with the pulsed laser light incident from the laser device 1.
  • the projection optical system 142 reduces and projects the pulsed laser light transmitted through the reticle to form an image on a workpiece (not shown) arranged on the workpiece table WT.
  • the workpiece is a photosensitive substrate such as a semiconductor wafer coated with photoresist.
  • the exposure apparatus 100 exposes the workpiece with pulsed laser light that reflects the reticle pattern by synchronously moving the reticle stage RT and the workpiece table WT in parallel.
  • An electronic device can be manufactured by transferring a device pattern onto a semiconductor wafer through the above-described exposure process.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)

Abstract

レーザ装置の波長制御方法は、パルスレーザ光の目標波長データを順次取得し、目標波長データを順次保存し、パルスレーザ光の波長を順次計測して計測波長を取得し、計測波長と、計測波長を取得した時刻よりも前の時刻における目標波長データと、を用いて波長偏差を算出し、波長偏差を用いてパルスレーザ光の波長をフィードバック制御することを含む。

Description

レーザ装置の波長制御方法及び電子デバイスの製造方法
 本開示は、レーザ装置の波長制御方法及び電子デバイスの製造方法に関する。
 近年、半導体露光装置(以下、「露光装置」という)においては、半導体集積回路の微細化および高集積化につれて、解像力の向上が要請されている。このため、露光用光源から放出される光の短波長化が進められている。一般的に、露光用光源には、従来の水銀ランプに代わってガスレーザ装置が用いられる。たとえば、露光用のガスレーザ装置としては、波長248nmの紫外線のレーザ光を出力するKrFエキシマレーザ装置、ならびに波長193nmの紫外線のレーザ光を出力するArFエキシマレーザ装置が用いられる。
 次世代の露光技術としては、露光装置側の露光用レンズとウエハとの間が液体で満たされる液浸露光が実用化されている。この液浸露光では、露光用レンズとウエハとの間の屈折率が変化するため、露光用光源の見かけの波長が短波長化する。ArFエキシマレーザ装置を露光用光源として液浸露光が行われた場合、ウエハには水中における波長134nmの紫外光が照射される。この技術をArF液浸露光(又はArF液浸リソグラフィー)という。
 KrFエキシマレーザ装置およびArFエキシマレーザ装置の自然発振幅は、約350~400pmと広い。そのため、KrF及びArFレーザ光のような紫外線を透過する材料で投影レンズを構成すると、色収差が発生してしまう場合がある。その結果、解像力が低下し得る。そこで、ガスレーザ装置から出力されるレーザ光のスペクトル線幅を、色収差が無視できる程度となるまで狭帯域化する必要がある。そのため、ガスレーザ装置のレーザ共振器内には、スペクトル線幅を狭帯域化するために、狭帯域化素子(エタロン、グレーティング等)を有する狭帯域化モジュール(Line Narrow Module)が設けられる場合がある。以下では、スペクトル線幅が狭帯域化されるレーザ装置を狭帯域化レーザ装置という。
特開平06-203395号公報 特開平06-110554号公報 米国特許出願公開第2018/159297号 米国特許出願公開第2014/247384号 米国特許第6519496号明細書
概要
 本開示の1つの観点に係るレーザ装置の波長制御方法は、パルスレーザ光の目標波長データを順次取得し、目標波長データを順次保存し、パルスレーザ光の波長を順次計測して計測波長を取得し、計測波長と、計測波長を取得した時刻よりも前の時刻における目標波長データと、を用いて波長偏差を算出し、波長偏差を用いてパルスレーザ光の波長をフィードバック制御することを含む。
 本開示の1つの観点に係る電子デバイスの製造方法は、パルスレーザ光の目標波長データを順次取得し、目標波長データを順次保存し、パルスレーザ光の波長を順次計測して計測波長を取得し、計測波長と、計測波長を取得した時刻よりも前の時刻における目標波長データと、を用いて波長偏差を算出し、波長偏差を用いてパルスレーザ光の波長をフィードバック制御し、パルスレーザ光を露光装置に出力し、電子デバイスを製造するために、露光装置内で感光基板上にパルスレーザ光を露光することを含む。
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、比較例におけるレーザ装置1の構成を模式的に示す。 図2は、比較例におけるレーザ装置1の構成を模式的に示す。 図3は、比較例におけるレーザ制御部30のブロック図である。 図4は、比較例におけるレーザ制御部30のフローチャートである。 図5は、比較例における波長制御のタイミングチャートである。 図6は、本開示の第1の実施形態におけるレーザ制御部30のブロック図である。 図7は、第1の実施形態におけるレーザ制御部30のフローチャートである。 図8は、第1の実施形態における波長制御のタイミングチャートである。 図9は、本開示の第2の実施形態におけるレーザ制御部30のブロック図である。 図10は、レーザ装置1に接続された露光装置100の構成を概略的に示す。
実施形態
 内容
1.比較例
 1.1 レーザ装置の構成
  1.1.1 レーザチャンバ
  1.1.2 狭帯域化モジュール
  1.1.3 出力結合ミラー
 1.2 レーザ装置の動作
 1.3 レーザ制御部の構成
 1.4 レーザ制御部の動作
 1.5 タイミングチャート
 1.6 課題
2.過去の目標波長データを用いて波長偏差を算出するレーザ装置の波長制御
 2.1 レーザ制御部の構成
 2.2 レーザ制御部の動作
 2.3 タイミングチャート
 2.4 作用
3.制御信号に含まれる所定の周波数成分を低減するレーザ装置の波長制御
 3.1 レーザ制御部の構成
 3.2 レーザ制御部の動作
 3.3 作用
4.その他
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示の一例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
1.比較例
 1.1 レーザ装置の構成
 図1及び図2は、比較例におけるレーザ装置1の構成を模式的に示す。比較例におけるレーザ装置1は、レーザ発振部20と、レーザ制御部30と、波長モニタ51と、ドライバ52と、を含む。レーザ発振部20は、レーザチャンバ10と、一対の放電電極11a及び11bと、狭帯域化モジュール14と、出力結合ミラー15と、ビームスプリッタ22と、電源23と、を含んでいる。狭帯域化モジュール14と出力結合ミラー15とが、光共振器を構成する。レーザチャンバ10は、光共振器の光路に配置されている。レーザ発振部20は、露光装置100に入射させるパルスレーザ光を出力するマスターオシレータである。電源23は、スイッチ24を含む。
 図1においては、放電電極11a及び11bの間の放電方向に略平行な方向にレーザ発振部20を見たときのレーザ発振部20の内部構成が示されている。図2においては、放電電極11a及び11bの間の放電方向に略垂直で、且つ、出力結合ミラー15からビームスプリッタ22に向けて出力されるパルスレーザ光の進行方向に略垂直な方向にレーザ発振部20を見たときのレーザ発振部20の内部構成が示されている。出力結合ミラー15からビームスプリッタ22に向けて出力されるパルスレーザ光の進行方向を、Z方向とする。放電電極11a及び11bの間の放電方向を、V方向とする。これらの両方に垂直な方向を、H方向とする。-V方向は、重力の方向とほぼ一致している。
 1.1.1 レーザチャンバ
 レーザチャンバ10は、レーザ媒質としてのレーザガスが封入されるチャンバである。レーザガスは、例えばレアガスとしてアルゴンガス又はクリプトンガス、ハロゲンガスとしてフッ素ガス、バッファガスとしてネオンガス等を含む。
 放電電極11a及び11bは、レーザ媒質を放電により励起するための電極として、レーザチャンバ10内に配置されている。放電電極11aの長手方向及び放電電極11bの長手方向がそれぞれZ方向に略一致する。放電電極11aは電源23に接続され、放電電極11bは接地電位に接続される。
 レーザチャンバ10の両端にはウインドウ10a及び10bが設けられている。ウインドウ10a及び10bは、これらのウインドウに対する光の入射面とHZ面とが略平行となり、かつ、この光の入射角度が略ブリュースター角となるように配置されている。
 1.1.2 狭帯域化モジュール
 狭帯域化モジュール14は、少なくとも1つのプリズムと、グレーティング14eと、ホルダ16a~16eと、筐体12と、を含んでいる。少なくとも1つのプリズムは、4つのプリズム14a~14dを含む。
 4つのプリズム14a~14dの各々は、フッ化カルシウムの結晶で構成されている。グレーティング14eは、表面に高反射率の材料を含み、多数の溝が所定間隔で形成されたエシェールグレーティングである。
 筐体12は、プリズム14a~14d及びグレーティング14eを収容している。プリズム14aはホルダ16aに支持され、プリズム14bはホルダ16bに支持され、プリズム14cはホルダ16cに支持され、プリズム14dはホルダ16dに支持され、グレーティング14eはホルダ16eに支持されている。
 プリズム14bを支持するホルダ16bは、回転ステージ17bに支持されている。プリズム14cを支持するホルダ16cは、回転ステージ17cに支持されている。回転ステージ17b及び回転ステージ17cの回転軸は、それぞれV方向に略一致する。回転ステージ17bは、ピエゾ素子を波長アクチュエータ25(図3参照)として含む。回転ステージ17cは、自動マイクロメータを波長アクチュエータ25として含む。これらの波長アクチュエータ25は、ドライバ52に接続されている。
 筐体12は、光路管21aを介してレーザチャンバ10に接続されている。光路管21aの内部と筐体12の内部とは連通するようになっている。筐体12には、光路管21aから離れた位置に不活性ガス導入管12c(図1参照)が接続されている。光路管21aには、不活性ガス排出管21c(図2参照)が接続されている。不活性ガスが、不活性ガス導入管12cから筐体12の内部及び光路管21aの内部に導入され、不活性ガス排出管21cから排出される。このようにして筐体12の内部及び光路管21aの内部が不活性ガスでパージされる。
 1.1.3 出力結合ミラー
 出力結合ミラー15は、筐体13に収容されている。出力結合ミラー15の一方の面には、部分反射膜がコーティングされている。出力結合ミラー15の他方の面には、反射防止膜がコーティングされている。
 筐体13は、光路管21bを介してレーザチャンバ10に接続されている。光路管21bの内部と筐体13の内部とは連通するようになっている。光路管21b又は筐体13には図示しない不活性ガス導入管及び不活性ガス排出管が接続されている。光路管21bの内部及び筐体13の内部は、不活性ガスでパージされる。
 ビームスプリッタ22は、出力結合ミラー15から出力されたパルスレーザ光の光路に配置されている。ビームスプリッタ22の一方の面には、部分反射膜がコーティングされている。ビームスプリッタ22の他方の面には、反射防止膜がコーティングされている。
 ビームスプリッタ22によって反射されたパルスレーザ光の光路に、波長モニタ51が配置されている。波長モニタ51は、図示しないエタロン等の分光器と、図示しないイメージセンサと、を含む。
 1.2 レーザ装置の動作
 レーザ制御部30は、露光装置100から一定の時間間隔で出力されるトリガ信号を順次取得する。レーザ制御部30は、このトリガ信号を、電源23に含まれるスイッチ24に出力する。スイッチ24にトリガ信号が入力されると、電源23は、放電電極11a及び11b間にパルス状の高電圧を印加する。
 放電電極11a及び11b間にパルス状の高電圧が印加されると、放電電極11a及び11b間に放電が起こる。この放電のエネルギーにより、レーザチャンバ10内のレーザ媒質が励起されて高エネルギー準位に移行する。励起されたレーザ媒質が、その後低エネルギー準位に移行するとき、そのエネルギー準位差に応じた波長の光を放出する。
 レーザチャンバ10内で発生した光は、ウインドウ10a及び10bを介してレーザチャンバ10の外部に出射する。レーザチャンバ10のウインドウ10aから出射した光は、プリズム14a~14dによってHZ面内で屈折させられることにより、H方向のビーム幅を拡大させられて、グレーティング14eに入射する。
 プリズム14a~14dからグレーティング14eに入射した光は、グレーティング14eの複数の溝によって反射されるとともに、光の波長に応じた方向に回折させられる。これにより、グレーティング14eの複数の溝によって反射された光はHZ面内で分散させられる。グレーティング14eは、プリズム14a~14dからグレーティング14eに入射する光の入射角と、所望波長の回折光の回折角と、が一致するようにリトロー配置されている。
 プリズム14a~14dは、グレーティング14eからの回折光のH方向のビーム幅を縮小させるとともに、その光を、ウインドウ10aを介して、レーザチャンバ10内に戻す。
 出力結合ミラー15は、レーザチャンバ10のウインドウ10bから出射した光のうちの一部を透過させて出力し、他の一部を反射させてレーザチャンバ10内に戻す。
 このようにして、レーザチャンバ10から出射した光は、狭帯域化モジュール14と出力結合ミラー15との間で往復し、放電電極11a及び11bの間の放電空間を通過する度に増幅される。この光は、狭帯域化モジュール14で折り返される度に狭帯域化される。こうして増幅された光が、出力結合ミラー15からパルスレーザ光として出力される。このパルスレーザ光は、真空紫外域の波長を有する。
 ビームスプリッタ22は、出力結合ミラー15から出力されたパルスレーザ光の一部を高い透過率で透過させ、他の一部を反射する。ビームスプリッタ22を透過したパルスレーザ光は、露光装置100に入射する。ビームスプリッタ22によって反射されたパルスレーザ光は、波長モニタ51に含まれる図示しない分光器に入射する。分光器は、パルスレーザ光の干渉縞を、波長モニタ51に含まれる図示しないイメージセンサの受光面に形成する。イメージセンサは、干渉縞の画像データを生成する。波長モニタ51は、この画像データなどの計測データを、レーザ制御部30に送信する。
 レーザ制御部30は、露光装置100から一定の時間間隔で出力される目標波長データを取得する。また、レーザ制御部30は、波長モニタ51から計測データを受信し、この計測データを用いてパルスレーザ光の波長を算出することにより計測波長を取得する。レーザ制御部30は、目標波長データと計測波長とに基づいて、ドライバ52に制御信号を出力する。ドライバ52は、制御信号に従って、回転ステージ17b及び17cに含まれる波長アクチュエータ25に駆動電圧を印加する。
 回転ステージ17b及び17cに含まれる波長アクチュエータ25は、ドライバ52からの駆動電圧に従って、それぞれプリズム14b及び14cを図1の時計回り又は反時計回りに回転させる。プリズム14b及び14cが回転させられてプリズム14b及び14cの姿勢が調整されることにより、グレーティング14eへの光の入射角が調整され、発振波長が調整される。
 プリズム14cの姿勢が調整されることによって波長の粗調整が行われ、プリズム14bの姿勢が調整されることによって波長の微調整が行われる。プリズム14bの姿勢の調整は、例えば、一定の繰返し周波数でパルスレーザ光の出力が行われる期間であるバースト期間内に行われる。プリズム14cの姿勢の調整は、例えば、一定の繰返し周波数でのパルスレーザ光の出力を休止する期間である休止期間内に行われる。バースト期間は、例えば、露光装置100において半導体ウエハの1つの露光エリアの露光を行う期間に相当する。休止期間は、例えば、露光装置100において1つの露光エリアから他の露光エリアにレチクルパターンの結像位置を移動する期間や、半導体ウエハを交換する期間に相当する。
 1.3 レーザ制御部の構成
 図3は、比較例におけるレーザ制御部30のブロック図である。レーザ制御部30は、基準値記憶部31と、FF(フィードフォワード)制御演算部33と、FB(フィードバック)制御演算部35と、感度補正部37と、オフセット値記憶部38と、D/A(デジタル-アナログ)変換部40と、を含む。FF制御演算部33は、FF信号生成部43を含む。FB制御演算部35は、PID(Proportional-Integral-Differential)演算部45と、波長算出部47と、を含む。レーザ制御部30の各要素は、ハードウェアによって構成されてもよいし、ソフトウェアによって構成されてもよい。
 レーザ制御部30は、トリガ信号と、目標波長の基準値と、目標波長の変動値と、を露光装置100から取得する。レーザ制御部30は、レーザ発振部20の電源23に含まれるスイッチ24にトリガ信号を出力する。基準値及び変動値は、目標波長データの一例である。レーザ制御部30は、露光装置100から基準値と変動値とを別々に取得する。
 目標波長の基準値は、例えば、初期値である。あるいは、目標波長の基準値は、目標波長の変動に伴って順次更新される値であってもよい。レーザ制御部30は、露光装置100から基準値を取得すると、基準値を基準値記憶部31に記憶する。
 目標波長の変動値は、基準値に対する変位量を示す値であり、一定の時間間隔で露光装置100から出力される正又は負の値である。
 レーザ制御部30は、露光装置100から変動値を取得すると、加算部32によって基準値に変動値を加算することにより、目標波長の設定値を算出する。目標波長の設定値は、目標波長データの一例である。レーザ制御部30は、目標波長の設定値を、分岐部42を介してFF制御演算部33とFB制御演算部35とにそれぞれ入力する。
 レーザ制御部30は、露光装置100から基準値及び変動値を取得する代わりに、露光装置100から目標波長の設定値を取得してもよい。
 FF制御演算部33に目標波長の設定値が入力されると、FF信号生成部43は、目標波長の設定値を用いてFF信号を生成する。FF信号は、例えば、目標波長の設定値に比例する制御値を含む。
 上述のように、レーザ制御部30は波長モニタ51から計測データを受信する。レーザ制御部30が計測データを受信すると、FB制御演算部35の波長算出部47は、計測データを用いてパルスレーザ光の波長を算出することにより、計測波長を取得する。FB制御演算部35は、計測波長の値に-1を乗算し、加算部49により目標波長の設定値と加算する。これにより、FB制御演算部35は、目標波長の設定値に対する計測波長の差分を波長偏差として算出する。FB制御演算部35のPID演算部45は、波長偏差を用いてPID演算を行い、FB信号を生成する。FB信号は、波長偏差を低減するような制御値を含む。例えば、FB信号は、波長偏差が0に近づくような制御値を含む。
 FF信号とFB信号とは加算部36を介して感度補正部37に入力される。
 感度補正部37は、レーザ発振部20の回転ステージ17b(図1、図2参照)に含まれる波長アクチュエータ25の特性に応じて、FF信号及びFB信号に対して感度補正を行う。
 オフセット値記憶部38は、波長アクチュエータ25の制御範囲の中心付近で波長アクチュエータ25が動作するように設定されたオフセット値を記憶している。例えば、波長アクチュエータ25が0Vから5Vまでの範囲の駆動電圧で制御される場合に、オフセット値は2.5Vに設定される。感度補正部37から出力された信号は、加算部39によってオフセット値が加算された後で、D/A変換部40に入力される。
 D/A変換部40は、デジタルの制御信号をアナログの制御信号に変換してドライバ52に出力する。ドライバ52は、アナログの制御信号に従って、回転ステージ17bに含まれる波長アクチュエータ25に駆動電圧を印加する。以上により、FF信号に基づくFF制御と、FB信号に基づくFB制御と、が行われる。
 1.4 レーザ制御部の動作
 図4は、比較例におけるレーザ制御部30のフローチャートである。レーザ制御部30は、以下の(1)~(4)の処理を行う。
(1)目標波長データの取得を契機とするFF信号生成処理(S11、S12)
(2)トリガ信号の取得を契機とする処理(S21、S22)
(3)計測データの受信を契機とするFB信号生成処理(S31~S34)
(4)波長アクチュエータを制御する処理(S41)
(1)目標波長データの取得を契機とするFF信号生成処理(S11、S12)
 S11において、レーザ制御部30は、露光装置100から目標波長データを取得したか否かを判定する。レーザ制御部30が露光装置100から取得する目標波長データが目標波長の基準値と変動値とを含む場合には、レーザ制御部30は、基準値と変動値の両方を取得したか否かを判定する。レーザ制御部30は、目標波長データを取得した場合(S11:YES)、S12に処理を進める。レーザ制御部30は、目標波長データを取得していない場合(S11:NO)、目標波長データを取得するまでS11の処理を繰り返す。
 S12において、レーザ制御部30は、FF制御演算部33により、目標波長データを用いてFF信号を生成する。FF信号は、後述のS41において使用される。S12の後、レーザ制御部30は、S21に処理を進める。
(2)トリガ信号の取得を契機とする処理(S21、S22)
 S21において、レーザ制御部30は、露光装置100からトリガ信号を取得したか否かを判定する。レーザ制御部30は、トリガ信号を取得した場合(S21:YES)、S22に処理を進める。レーザ制御部30は、トリガ信号を取得していない場合(S21:NO)、トリガ信号を取得するまでS21の処理を繰り返す。
 S22において、レーザ制御部30は、レーザ発振部20にトリガ信号を出力する。S22の後、レーザ制御部30は、S31に処理を進める。
(3)計測データの受信を契機とするFB信号生成処理(S31~S34)
 S31において、レーザ制御部30は、波長モニタ51から計測データを受信したか否かを判定する。レーザ制御部30は、計測データを受信した場合(S31:YES)、S32に処理を進める。レーザ制御部30は、計測データを受信していない場合(S31:NO)、計測データを受信するまでS31の処理を繰り返す。
 S32において、レーザ制御部30は、FB制御演算部35により、計測データを用いてパルスレーザ光の波長を算出し、計測波長を取得する。
 次に、S33において、レーザ制御部30は、FB制御演算部35により、計測波長と目標波長データとを用いて波長偏差を算出する。この波長偏差の算出は、現在の目標波長データを用いて行われる。
 次に、S34において、レーザ制御部30は、FB制御演算部35により、波長偏差を用いたPID演算を行い、FB信号を生成する。S34の後、レーザ制御部30は、S41に処理を進める。FB信号は、S41において使用される。
(4)波長アクチュエータを制御する処理(S41)
 S41において、レーザ制御部30は、FF信号及びFB信号に基づいて制御信号を出力することにより、波長アクチュエータ25を制御する。S41の後、レーザ制御部30は、処理をS11に戻す。
 1.5 タイミングチャート
 図5は、比較例における波長制御のタイミングチャートである。図5は、幾つかの処理及び信号について、それらの推移を共通の時間軸で示す。図5の左から右方向に時間が進むものとする。
 レーザ制御部30は、露光装置100から一定の時間間隔で出力される目標波長データを順次取得する。これにより、目標波長データが一定の時間間隔で更新される。目標波長データが目標波長の基準値と変動値とを含む場合には、レーザ制御部30が変動値を取得するごとに、目標波長データが更新される。目標波長データが更新された後、次の更新が行われるまでの間は、目標波長データは一定値に維持される。例えば、期間A1、A2、A3、A4のそれぞれにおいては、目標波長データは一定値に維持される。
 FF制御演算部33は、目標波長データの取得を契機として、FF信号生成処理を行う。例えば、期間A1、A2、A3、A4の開始時刻とそれぞれ同期して、FF信号の生成が開始される。FF制御演算部33は、期間B1、B2、B3、B4においてそれぞれFF信号を生成する。
 レーザ制御部30は、露光装置100から一定の時間間隔で出力されるトリガ信号を順次取得する。レーザ制御部30は、このトリガ信号をレーザ発振部20に出力する。このトリガ信号に含まれる各トリガパルスの取得を契機として、レーザ発振部20がパルスレーザ光の各光パルスを出力する。
 波長モニタ51は、トリガ信号に含まれる各トリガパルスの取得を契機として出力されたパルスレーザ光の各光パルスを受光する。波長モニタ51は、パルスレーザ光を受光すると、干渉縞の画像データなどの計測データを生成する。例えば、トリガ信号に含まれる各トリガパルスに相当する期間C1、C2、C3、C4の終了時刻とそれぞれ同期して、波長モニタ51による計測データの生成が開始される。波長モニタ51は、期間D1、D2、D3、D4においてそれぞれ計測データを生成し、計測データをレーザ制御部30に順次出力する。
 レーザ制御部30は、計測データの受信を契機として、FB制御演算部35によりパルスレーザ光の波長を算出する。例えば、波長モニタ51が計測データを生成する期間D1、D2、D3、D4の終了時刻とそれぞれ同期して、波長の算出が開始される。FB制御演算部35は、期間E1、E2、E3、E4においてそれぞれパルスレーザ光の波長を算出することにより、計測波長を順次取得する。
 FB制御演算部35は、計測波長の取得を契機として、計測波長と目標波長データとを用いて波長偏差を算出する。さらに、FB制御演算部35は、波長偏差を用いてPID演算を行う。例えば、FB制御演算部35がパルスレーザ光の波長を算出して計測波長を取得するための期間E1、E2、E3、E4の終了時刻とそれぞれ同期して、波長偏差の算出及びPID演算が開始される。FB制御演算部35は、期間F1、F2、F3、F4においてそれぞれ波長偏差の算出及びPID演算を行うことにより、FB信号を順次生成する。
 1.6 課題
 図5に示されるように、期間F1に行われる波長偏差の算出及びPID演算は、期間A2における目標波長データを用いて行われる。同様に、期間F2、F3に行われる波長偏差の算出及びPID演算は、それぞれ期間A3、A4における目標波長データを用いて行われる。すなわち、波長偏差の算出及びPID演算は、現在の目標波長データを用いて行われる。
 しかしながら、期間F1に行われる波長偏差の算出及びPID演算は、期間A1における目標波長データを用いて波長制御されたパルスレーザ光の計測波長を用いて行われる。同様に、期間F2、F3に行われる波長偏差の算出及びPID演算は、それぞれ期間A2、A3における目標波長データを用いて波長制御されたパルスレーザ光の計測波長を用いて行われる。すなわち、波長偏差の算出及びPID演算は、現在の目標波長データと、過去に出力されたパルスレーザ光の計測波長とを用いて行われる。
 そして、現在の目標波長データと過去の目標波長データとは異なっている場合がある。現在の目標波長データと、過去の目標波長データを用いて波長制御されたパルスレーザ光の計測波長と、を用いて波長偏差の算出及びPID演算を行うと、誤った補償を施す可能性がある。このような場合、波長の安定性が悪化する可能性がある。
 以下に説明する実施形態においては、波長偏差の算出及びPID演算をする時の目標波長データと、パルスレーザ光を出力した時の目標波長データと、が異なっていても、波長の安定性の悪化を抑制し得るレーザ装置及び波長制御方法が開示される。
2.過去の目標波長データを用いて波長偏差を算出するレーザ装置の波長制御
 2.1 レーザ制御部の構成
 図6は、本開示の第1の実施形態におけるレーザ制御部30のブロック図である。第1の実施形態において、レーザ制御部30は、一時保存部34aを含む。第1の実施形態において、レーザ制御部30を除くレーザ装置1の構成及び動作は、図1及び図2を参照しながら説明した比較例における構成及び動作と同様である。
 一時保存部34aは、FB制御演算部35と、目標波長の設定値をFF制御演算部33とFB制御演算部35とに入力するための分岐部42と、の間に配置される。一時保存部34aは、目標波長の設定値を一時的に保存する。一時保存部34aには、さらに、露光装置100から取得したトリガ信号が入力される。一時保存部34aは、トリガ信号が入力された時刻における目標波長の設定値を順次保存する。
 FB制御演算部35は、一時保存部34aに保存された目標波長の設定値を用いて波長偏差を算出し、PID演算を行うことにより、FB信号を生成する。一時保存部34aに順次保存された目標波長の設定値は、FB制御演算部35に入力された後、一時保存部34aから順次消去されてもよい。
 FF制御演算部33は、一時保存部34aに保存された目標波長の設定値ではなく、現在の目標波長の設定値を用いてFF信号を生成する。
 他の点については、第1の実施形態におけるレーザ制御部30の構成は、図3を参照しながら説明した比較例の構成と同様である。
 2.2 レーザ制御部の動作
 図7は、第1の実施形態におけるレーザ制御部30のフローチャートである。第1の実施形態におけるレーザ制御部30は、トリガ信号の取得を契機として、目標波長データを保存する処理を行う点(S23a)および、波長偏差の算出に保存された目標波長データを用いる点(S33a)で、上述の比較例と異なる。
 図7のS11からS22までの処理は、図4を参照しながら説明した比較例の処理と同様である。S22の後、S23aにおいて、レーザ制御部30は、トリガ信号を取得した時刻における目標波長データを、一時保存部34aに保存する。S23aの後、レーザ制御部30は、S31に処理を進める。
 S31及びS32の処理は、図4を参照しながら説明した比較例の処理と同様である。S32の後、S33aにおいて、レーザ制御部30は、計測波長と、一時保存部34aに保存された目標波長データと、を用いて波長偏差を算出する。この波長偏差の算出に用いられる目標波長データは、レーザ制御部30が計測波長を取得した時刻よりも前の時刻における目標波長データである。S33aの後のS34及びS41の処理は、図4を参照しながら説明した比較例の処理と同様である。
 2.3 タイミングチャート
 図8は、第1の実施形態における波長制御のタイミングチャートである。第1の実施形態において、レーザ制御部30は、トリガ信号に含まれる各トリガパルスの取得を契機として、各トリガパルスを取得した時刻における目標波長データを順次保存する。例えば、レーザ制御部30は、トリガパルスを期間C1において取得した場合に、期間C1におけるトリガパルスを取得した時刻に対応する期間A1における目標波長データを保存する。同様に、レーザ制御部30は、トリガパルスを期間C2、C3において取得した場合に、それぞれ、期間A2、A3における目標波長データを保存する。
 期間F1における波長偏差の算出及びPID演算は、期間C1のトリガパルスの取得を契機として出力された光パルスの波長を計測して取得した計測波長を用いて行われる。この計測波長は、FB制御演算部35が期間E1の終了時刻において取得する計測波長である。すなわち、期間F1における波長偏差の算出及びPID演算は、レーザ制御部30が期間C1より後の期間C2におけるトリガパルスを取得した時刻よりも、さらに後に取得した計測波長を用いて行われる。期間F1における波長偏差の算出及びPID演算に関し、期間C1のトリガパルスは本開示における第1のトリガパルスに相当し、期間C2のトリガパルスは本開示における第2のトリガパルスに相当する。同様に、期間F2、F3における波長偏差の算出及びPID演算は、それぞれ、レーザ制御部30が期間C3、C4におけるトリガパルスを取得した時刻より後に取得した計測波長を用いて行われる。
 期間F1における波長偏差の算出及びPID演算は、期間A2における目標波長データを用いて行われるのではなく、期間A1における目標波長データを用いて行われる。すなわち、期間F1における波長偏差の算出及びPID演算は、期間C2におけるトリガパルスをレーザ制御部30が取得した時刻より前における目標波長データを用いて行われる。特に、期間F1における波長偏差の算出及びPID演算は、期間C1におけるトリガパルスをレーザ制御部30が取得した時刻における目標波長データを用いて行われる。同様に、期間F2、F3における波長偏差の算出及びPID演算は、それぞれ、期間C3、C4におけるトリガパルスをレーザ制御部30が取得した時刻より前における目標波長データを用いて行われる。期間F2、F3における波長偏差の算出及びPID演算は、それぞれ、期間C2、C3におけるトリガパルスをレーザ制御部30が取得した時刻における目標波長データを用いて行われる。
 FF制御演算部33におけるFF信号の生成は、目標波長データの取得を契機として、現在の目標波長データを用いて行われる。このため、目標波長データをレーザ制御部30が取得した時刻から、この目標波長データをレーザ制御部30がFF制御演算部33に入力する時刻までの第1の時間差は、比較的短い。ここで、目標波長データをレーザ制御部30が取得した時刻は、例えば期間A1の開始時刻であり、本開示における第1の時刻に相当する。目標波長データをレーザ制御部30がFF制御演算部33に入力する時刻は、例えば期間B1の開始から終了までの間のいずれかの時刻であり、本開示における第2の時刻に相当する。
 一方、FB制御演算部35におけるFB信号の生成は、計測波長の取得を契機として、計測波長を取得した時刻よりも前の時刻における目標波長データを用いて行われる。このため、目標波長データをレーザ制御部30が取得した時刻から、この目標波長データをレーザ制御部30がFB制御演算部35に入力する時刻までの第2の時間差は、上記第1の時間差よりも長い。ここで、目標波長データをレーザ制御部30が取得した時刻は、例えば期間A1の開始時刻であり、本開示の第3の時刻に相当する。目標波長データをレーザ制御部30がFB制御演算部35に入力する時刻は、例えば期間F1の開始から終了までの間のいずれかの時刻であり、本開示の第4の時刻に相当する。第2の時間差は、レーザ制御部30がトリガ信号を取得する時間間隔より長くてもよい。第2の時間差は、レーザ制御部30が目標波長データを取得する時間間隔より長くてもよい。 
 2.4 作用
 第1の実施形態によれば、レーザ制御部30は、計測波長と、この計測波長を取得した時刻よりも前の時刻における目標波長データと、を用いて波長偏差を算出する。これにより、波長偏差の算出及びPID演算をする時の目標波長データと、パルスレーザ光を出力した時の目標波長データと、が異なっていても、波長の安定性の悪化を抑制し得る。
3.制御信号に含まれる所定の周波数成分を低減するレーザ装置の波長制御
 3.1 レーザ制御部の構成
 図9は、本開示の第2の実施形態におけるレーザ制御部30のブロック図である。第2の実施形態において、レーザ制御部30のFF制御演算部33は、ノッチフィルタ44bを含む。レーザ制御部30のFB制御演算部35は、ノッチフィルタ46bと、アップサンプリング部48bと、を含む。第2の実施形態において、レーザ制御部30を除くレーザ装置1の構成及び動作は、図1及び図2を参照しながら説明した比較例における構成及び動作と同様である。
 ノッチフィルタ44bは、FF制御演算部33の出力信号であるFF信号とFB制御演算部35の出力信号であるFB信号とを加算する加算部36と、FF信号生成部43と、の間に配置される。ノッチフィルタ44bは、本開示における第1のノッチフィルタに相当する。
 ノッチフィルタ46bは、加算部36とPID演算部45との間に配置される。ノッチフィルタ46bは、本開示における第2のノッチフィルタに相当する。
 アップサンプリング部48bは、波長偏差を算出する加算部49と、波長算出部47と、の間に配置される。
 他の点については、第2の実施形態におけるレーザ制御部30の構成は、図6を参照しながら説明した第1の実施形態の構成と同様である。
 3.2 レーザ制御部の動作
 例えば、露光装置100から6kHzの繰返し周波数で目標波長の変動値が出力されるとする。この場合、FF信号生成部43は6kHzの繰返し周波数でFF信号を出力する。
 FF信号は、ノッチフィルタ44bに入力される。ノッチフィルタ44bは、FF信号生成部43から出力されるFF信号から所定の周波数を含む周波数成分を低減する。所定の周波数は、波長アクチュエータ25の共振周波数付近の値に設定される。例えば、波長アクチュエータ25が2kHzの共振周波数をもつ場合、所定の周波数は、2kHzに設定される。
 ノッチフィルタ44bが、6kHzのFF信号から2kHzの周波数成分を低減することにより、波長アクチュエータ25が共振によって加振されることが抑制される。
 また、例えば、露光装置100から6kHzの繰返し周波数でトリガ信号が出力されるとする。この場合、レーザ発振部20は6kHzの繰返し周波数でパルスレーザ光を出力する。
 しかし、例えば、波長算出部47が最大で3kHzの繰返し周波数でしか計測波長を出力できない場合があり得る。例えば、波長モニタ51が3kHzの繰返し周波数で計測データを出力する場合に、波長算出部47は3kHzの繰返し周波数で計測波長を出力する。
 ここで、FB制御演算部35が3kHzの繰返し周波数でFB信号を生成する場合には、FB制御演算部35のナイキスト周波数は、3kHzの半分の周波数であり、1.5kHzとなる。この場合、FB制御演算部35にノッチフィルタ46bを配置しても、波長アクチュエータ25の共振周波数である2kHzの周波数成分を低減することが困難となる。ナイキスト周波数より高い周波数成分をノッチフィルタ46bで低減することが困難なためである。
 第2の実施形態においては、アップサンプリング部48bにより、計測波長を例えば6kHzにアップサンプリングする。これにより、加算部49が6kHzの繰返し周波数で波長偏差を算出し、PID演算部45が6kHzの繰返し周波数でFB信号を出力することが可能となる。
 FB信号は、ノッチフィルタ46bに入力される。ノッチフィルタ46bは、FB信号から所定の周波数を含む周波数成分を低減する。所定の周波数は、ノッチフィルタ44bによって低減される所定の周波数と同様に、波長アクチュエータ25の共振周波数付近の値に設定される。例えば、所定の周波数は、2kHzに設定される。
 計測波長が、所定の周波数の2倍を超える繰返し周波数にアップサンプリングされ、波長偏差が、アップサンプリングされた計測波長を用いて算出される。従って、PID演算部45は、所定の周波数の2倍を超える繰返し周波数でFB信号を出力する。これにより、ノッチフィルタ46bは所定の周波数を含む周波数成分を低減できる。ノッチフィルタ46bが所定の周波数を含む周波数成分を低減することにより、波長アクチュエータ25が共振によって加振されることが抑制される。
 3.3 作用
 第2の実施形態によれば、ノッチフィルタ44b及び46bが、制御信号に含まれる所定の周波数成分を低減することにより、波長アクチュエータ25の共振を抑制できる。これにより、波長の安定性が向上し得る。
 また、計測波長の繰返し周波数の半分の周波数が波長アクチュエータ25の共振周波数より低い場合であっても、計測波長をアップサンプリングすることにより、FB制御演算部35のナイキスト周波数を波長アクチュエータ25の共振周波数より高くすることができる。これにより、フィードバック制御の安定性が向上し、波長の安定性が向上し得る。
 第2の実施形態では計測波長を6kHzにアップサンプリングする場合について説明したが、本開示はこれに限定されない。例えば、次の(1)~(4)のようにして、FB信号を6kHzの繰返し周波数で出力可能としてもよい。
(1)一時保存部34aに保存される目標波長データをダウンサンプリングして、波長算出部47から出力される計測波長の繰返し周波数と同じ3kHzの繰返し周波数の目標波長データを生成する。
(2)3kHzの繰返し周波数の計測波長及び目標波長データを用いて、3kHzの繰返し周波数で波長偏差を算出する。
(3)3kHzの繰返し周波数の波長偏差を、6kHzにアップサンプリングする。
(4)6kHzの繰返し周波数の波長偏差を用いてPID演算を行う。
4.その他
 図10は、レーザ装置1に接続された露光装置100の構成を概略的に示す。上述のように、レーザ装置1はパルスレーザ光を生成して露光装置100に出力する。
 図10において、露光装置100は、照明光学系141と投影光学系142とを含む。照明光学系141は、レーザ装置1から入射したパルスレーザ光によって、レチクルステージRTのレチクルパターンを照明する。投影光学系142は、レチクルを透過したパルスレーザ光を、縮小投影してワークピーステーブルWT上に配置された図示しないワークピースに結像させる。ワークピースはフォトレジストが塗布された半導体ウエハ等の感光基板である。露光装置100は、レチクルステージRTとワークピーステーブルWTとを同期して平行移動させることにより、レチクルパターンを反映したパルスレーザ光をワークピースに露光する。以上のような露光工程によって半導体ウエハにデバイスパターンを転写することで電子デバイスを製造することができる。
 上記の説明は、制限ではなく単なる例示を意図したものである。従って、添付の特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかであろう。
 本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書及び添付の特許請求の範囲に記載される修飾句「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。

Claims (16)

  1.  パルスレーザ光の目標波長データを順次取得し、
     前記目標波長データを順次保存し、
     前記パルスレーザ光の波長を順次計測して計測波長を取得し、
     前記計測波長と、前記計測波長を取得した時刻よりも前の時刻における前記目標波長データと、を用いて波長偏差を算出し、前記波長偏差を用いて前記パルスレーザ光の波長をフィードバック制御する
    ことを含むレーザ装置の波長制御方法。
  2.  請求項1記載の波長制御方法であって、
     前記目標波長データを露光装置から取得する、波長制御方法。
  3.  請求項1記載の波長制御方法であって、
     前記フィードバック制御は、前記波長偏差を低減するように波長アクチュエータを制御することを含む、波長制御方法。
  4.  請求項3記載の波長制御方法であって、
     前記波長アクチュエータは、ピエゾ素子を含む、波長制御方法。
  5.  請求項1記載の波長制御方法であって、
     前記パルスレーザ光の各光パルスを出力する契機となるトリガ信号を順次取得する
    ことをさらに含み、
     前記トリガ信号を取得した時刻における前記目標波長データを保存し、
     前記トリガ信号を取得した時刻における前記目標波長データを用いて前記波長偏差を算出する、波長制御方法。
  6.  請求項5記載の波長制御方法であって、
     前記トリガ信号を露光装置から取得する、波長制御方法。
  7.  請求項1記載の波長制御方法であって、
     第1のトリガパルスと前記第1のトリガパルスより後の第2のトリガパルスとを含むトリガ信号を順次取得することをさらに含み、
     前記第1のトリガパルスの取得を契機として出力された光パルスの波長を計測して取得した前記計測波長であって前記第2のトリガパルスを取得した時刻より後に取得した前記計測波長を用いて前記波長偏差を算出する、波長制御方法。
  8.  請求項7記載の波長制御方法であって、
     前記第2のトリガパルスを取得した時刻より前における前記目標波長データを用いて前記波長偏差を算出する、波長制御方法。
  9.  請求項7記載の波長制御方法であって、
     前記第1のトリガパルスを取得した時刻における前記目標波長データを用いて前記波長偏差を算出する、波長制御方法。
  10.  請求項1記載の波長制御方法であって、
     第1の時刻における前記目標波長データを、第2の時刻にフィードフォワード制御演算部に入力し、
     第3の時刻における前記目標波長データを、第4の時刻であって前記第1の時刻から前記第2の時刻までの第1の時間差よりも前記第3の時刻から前記第4の時刻までの第2の時間差の方が長くなるような前記第4の時刻にフィードバック制御演算部に入力し、
     前記第1の時刻における前記目標波長データを用いて、前記パルスレーザ光の波長をフィードフォワード制御する
    ことをさらに含み、
     前記第3の時刻における前記目標波長データを用いて、前記波長偏差を算出する、波長制御方法。
  11.  請求項10記載の波長制御方法であって、
     前記第2の時間差は、前記トリガ信号を取得する時間間隔より長い、波長制御方法。
  12.  請求項10記載の波長制御方法であって、
     前記第2の時間差は、前記目標波長データを取得する時間間隔より長い、波長制御方法。
  13.  請求項10記載の波長制御方法であって、
     前記フィードフォワード制御演算部の出力信号を第1のノッチフィルタに入力して所定の周波数成分を低減し、
     前記フィードバック制御演算部の出力信号を第2のノッチフィルタに入力して前記所定の周波数成分を低減する
    ことをさらに含む、波長制御方法。
  14.  請求項13記載の波長制御方法であって、
     前記フィードバック制御は、前記波長偏差を低減するように波長アクチュエータを制御することを含み、
     前記所定の周波数は、前記波長アクチュエータの共振周波数である、波長制御方法。
  15.  請求項13記載の波長制御方法であって、
     前記計測波長を、前記所定の周波数の2倍を超える繰返し周波数にアップサンプリングすることをさらに含み、
     アップサンプリングされた前記計測波長を用いて、前記波長偏差を算出する、波長制御方法。
  16.  電子デバイスの製造方法であって、
     パルスレーザ光の目標波長データを順次取得し、
     前記目標波長データを順次保存し、
     前記パルスレーザ光の波長を順次計測して計測波長を取得し、
     前記計測波長と、前記計測波長を取得した時刻よりも前の時刻における前記目標波長データと、を用いて波長偏差を算出し、前記波長偏差を用いて前記パルスレーザ光の波長をフィードバック制御し、
     前記パルスレーザ光を露光装置に出力し、
     電子デバイスを製造するために、前記露光装置内で感光基板上に前記パルスレーザ光を露光する
    ことを含む電子デバイスの製造方法。
PCT/JP2019/003041 2019-01-29 2019-01-29 レーザ装置の波長制御方法及び電子デバイスの製造方法 WO2020157839A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020568925A JP7325452B2 (ja) 2019-01-29 2019-01-29 レーザ装置の波長制御方法及び電子デバイスの製造方法
PCT/JP2019/003041 WO2020157839A1 (ja) 2019-01-29 2019-01-29 レーザ装置の波長制御方法及び電子デバイスの製造方法
CN201980079753.7A CN113169510B (zh) 2019-01-29 2019-01-29 激光装置的波长控制方法和电子器件的制造方法
US17/341,570 US11467502B2 (en) 2019-01-29 2021-06-08 Wavelength control method of laser apparatus and electronic device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/003041 WO2020157839A1 (ja) 2019-01-29 2019-01-29 レーザ装置の波長制御方法及び電子デバイスの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/341,570 Continuation US11467502B2 (en) 2019-01-29 2021-06-08 Wavelength control method of laser apparatus and electronic device manufacturing method

Publications (1)

Publication Number Publication Date
WO2020157839A1 true WO2020157839A1 (ja) 2020-08-06

Family

ID=71841449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003041 WO2020157839A1 (ja) 2019-01-29 2019-01-29 レーザ装置の波長制御方法及び電子デバイスの製造方法

Country Status (4)

Country Link
US (1) US11467502B2 (ja)
JP (1) JP7325452B2 (ja)
CN (1) CN113169510B (ja)
WO (1) WO2020157839A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244237A1 (ja) * 2021-05-21 2022-11-24 ギガフォトン株式会社 レーザ装置及び電子デバイスの製造方法
WO2022249444A1 (ja) * 2021-05-28 2022-12-01 ギガフォトン株式会社 波長計測装置、狭帯域化レーザ装置、及び電子デバイスの製造方法
WO2023276103A1 (ja) * 2021-07-01 2023-01-05 ギガフォトン株式会社 波長制御方法、レーザ装置、及び電子デバイスの製造方法
WO2023007685A1 (ja) * 2021-07-29 2023-02-02 ギガフォトン株式会社 放電励起型レーザ装置の制御方法、放電励起型レーザ装置、及び電子デバイスの製造方法
WO2023181159A1 (ja) * 2022-03-23 2023-09-28 ギガフォトン株式会社 狭帯域化レーザ装置、及び電子デバイスの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021186743A1 (ja) * 2020-03-19 2021-09-23 ギガフォトン株式会社 狭帯域化装置、及び電子デバイスの製造方法
WO2024052057A1 (en) * 2022-09-06 2024-03-14 Asml Netherlands B.V. Method for monitoring proper functioning of one or more components of a lithography system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307997A (ja) * 2000-04-26 2001-11-02 Canon Inc レーザ発振装置、露光装置、半導体デバイス製造方法、半導体製造工場、および、露光装置の保守方法
US20020141464A1 (en) * 2001-03-29 2002-10-03 Gigaphoton Inc. Wavelength control device for laser device
JP2013511842A (ja) * 2009-11-18 2013-04-04 サイマー インコーポレイテッド 最新レーザ波長制御
WO2014192704A1 (ja) * 2013-05-27 2014-12-04 ギガフォトン株式会社 レーザ装置及びアクチュエータを制御する方法
JP2017538963A (ja) * 2014-12-09 2017-12-28 サイマー リミテッド ライアビリティ カンパニー 光源内の外乱の補償
US20180159297A1 (en) * 2016-12-07 2018-06-07 Cymer, Llc Wavelength control system for pulse-by-pulse wavelength target tracking in duv light source
JP2018517278A (ja) * 2015-04-08 2018-06-28 サイマー リミテッド ライアビリティ カンパニー 光源のための波長安定化

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3203816B2 (ja) * 1992-09-26 2001-08-27 豊田工機株式会社 サーボ制御装置
JPH06203395A (ja) * 1992-12-28 1994-07-22 Matsushita Electric Ind Co Ltd 光ディスク装置
JP4102457B2 (ja) * 1997-05-09 2008-06-18 株式会社小松製作所 狭帯域化レーザ装置
US6120190A (en) * 1997-11-26 2000-09-19 Lasertron, Inc. Spatially variable bandpass filter monitoring and feedback control of laser wavelength especially in wavelength division multiplexing communication systems
JPH11204856A (ja) * 1998-01-19 1999-07-30 Komatsu Ltd 波長検出制御装置
JP2000242321A (ja) 1999-02-19 2000-09-08 Fujitsu Ltd フィードバック制御装置、ディジタルフィルタ装置、および記憶装置
WO2002088660A1 (fr) * 2001-04-27 2002-11-07 Anritsu Corporation Dispositif et procede de mesure des proprietes de longueur d'onde employant une lumiere dont la longueur d'onde change continuellement
JP5393930B2 (ja) 2011-06-29 2014-01-22 オリンパスイメージング株式会社 カメラ装置、交換レンズ装置、カメラ本体部およびフォーカス制御方法
WO2014030645A1 (ja) * 2012-08-23 2014-02-27 ギガフォトン株式会社 光源装置及びデータ処理方法
WO2016084263A1 (ja) * 2014-11-28 2016-06-02 ギガフォトン株式会社 狭帯域化レーザ装置
CN108475896B (zh) * 2016-02-02 2020-12-11 极光先进雷射株式会社 窄带化激光装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307997A (ja) * 2000-04-26 2001-11-02 Canon Inc レーザ発振装置、露光装置、半導体デバイス製造方法、半導体製造工場、および、露光装置の保守方法
US20020141464A1 (en) * 2001-03-29 2002-10-03 Gigaphoton Inc. Wavelength control device for laser device
JP2013511842A (ja) * 2009-11-18 2013-04-04 サイマー インコーポレイテッド 最新レーザ波長制御
WO2014192704A1 (ja) * 2013-05-27 2014-12-04 ギガフォトン株式会社 レーザ装置及びアクチュエータを制御する方法
JP2017538963A (ja) * 2014-12-09 2017-12-28 サイマー リミテッド ライアビリティ カンパニー 光源内の外乱の補償
JP2018517278A (ja) * 2015-04-08 2018-06-28 サイマー リミテッド ライアビリティ カンパニー 光源のための波長安定化
US20180159297A1 (en) * 2016-12-07 2018-06-07 Cymer, Llc Wavelength control system for pulse-by-pulse wavelength target tracking in duv light source

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244237A1 (ja) * 2021-05-21 2022-11-24 ギガフォトン株式会社 レーザ装置及び電子デバイスの製造方法
WO2022249444A1 (ja) * 2021-05-28 2022-12-01 ギガフォトン株式会社 波長計測装置、狭帯域化レーザ装置、及び電子デバイスの製造方法
WO2023276103A1 (ja) * 2021-07-01 2023-01-05 ギガフォトン株式会社 波長制御方法、レーザ装置、及び電子デバイスの製造方法
WO2023007685A1 (ja) * 2021-07-29 2023-02-02 ギガフォトン株式会社 放電励起型レーザ装置の制御方法、放電励起型レーザ装置、及び電子デバイスの製造方法
WO2023181159A1 (ja) * 2022-03-23 2023-09-28 ギガフォトン株式会社 狭帯域化レーザ装置、及び電子デバイスの製造方法

Also Published As

Publication number Publication date
CN113169510A (zh) 2021-07-23
CN113169510B (zh) 2023-11-10
US11467502B2 (en) 2022-10-11
US20210294223A1 (en) 2021-09-23
JPWO2020157839A1 (ja) 2021-11-25
JP7325452B2 (ja) 2023-08-14

Similar Documents

Publication Publication Date Title
JP7325452B2 (ja) レーザ装置の波長制御方法及び電子デバイスの製造方法
KR20080031660A (ko) 노광 장치, 노광 방법 및 디바이스 제조 방법, 및 시스템
JP6762364B2 (ja) レーザシステム
WO2019111315A1 (ja) エキシマレーザ装置、及び電子デバイスの製造方法
US20240128706A1 (en) Control method of discharge-excitation type laser device, discharge-excitation type laser device, and electronic device manufacturing method
US20230064314A1 (en) Line narrowing gas laser device, wavelength control method, and electronic device manufacturing method
US20240136787A1 (en) Gas laser device and electronic device manufacturing method
US10447001B2 (en) Laser unit
US11978997B2 (en) Laser apparatus and electronic device manufacturing method
US10797465B2 (en) Laser apparatus
WO2023276103A1 (ja) 波長制御方法、レーザ装置、及び電子デバイスの製造方法
WO2022180698A1 (ja) レーザ装置、及び電子デバイスの製造方法
WO2022172382A1 (ja) レーザシステム、スペクトル波形算出方法、及び電子デバイスの製造方法
JP7231560B2 (ja) 光学素子の移動装置、狭帯域化レーザ装置、及び電子デバイスの製造方法
JP2006179600A (ja) 多段増幅型レーザシステム
US20240079844A1 (en) Laser device, laser oscillation method, and electronic device manufacturing method
WO2024047871A1 (ja) 狭帯域化レーザ装置、及び電子デバイスの製造方法
US20230066377A1 (en) Alignment adjuster and method for manufacturing electronic devices
WO2024201774A1 (ja) レーザ装置、露光装置、及び電子デバイスの製造方法
JP7416811B2 (ja) レーザ装置、及び電子デバイスの製造方法
US20240072510A1 (en) Laser device, laser control method, and electronic device manufacturing method
JP2023507070A (ja) 光源装置用のエネルギー補正モジュール
CN116601839A (zh) 根据准分子激光器的重复频率调制其波长的设备和方法
CN116982005A (zh) 谱波形的控制方法、激光装置、曝光装置和电子器件的制造方法
CN117121313A (zh) 激光装置及电子器件的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912573

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020568925

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912573

Country of ref document: EP

Kind code of ref document: A1