WO2020155446A1 - 一种牙科用氧化锆处理技术 - Google Patents

一种牙科用氧化锆处理技术 Download PDF

Info

Publication number
WO2020155446A1
WO2020155446A1 PCT/CN2019/084893 CN2019084893W WO2020155446A1 WO 2020155446 A1 WO2020155446 A1 WO 2020155446A1 CN 2019084893 W CN2019084893 W CN 2019084893W WO 2020155446 A1 WO2020155446 A1 WO 2020155446A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconia
solution
dyeing
treatment
acid
Prior art date
Application number
PCT/CN2019/084893
Other languages
English (en)
French (fr)
Inventor
鄢新章
李蛟
马勤
刘谋山
吴丹
刘帅
Original Assignee
成都贝施美医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都贝施美医疗科技股份有限公司 filed Critical 成都贝施美医疗科技股份有限公司
Publication of WO2020155446A1 publication Critical patent/WO2020155446A1/zh
Priority to US17/388,007 priority Critical patent/US11858867B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • A61C13/082Cosmetic aspects, e.g. inlays; Determination of the colour
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5045Rare-earth oxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/802Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
    • A61K6/818Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4535Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4535Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension
    • C04B41/4539Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied as a solution, emulsion, dispersion or suspension as a emulsion, dispersion or suspension
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00836Uses not provided for elsewhere in C04B2111/00 for medical or dental applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/80Optical properties, e.g. transparency or reflexibility
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/612Machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour

Definitions

  • the invention belongs to the field of oral material processing, and specifically relates to a dental zirconia processing technology.
  • Zirconia is a composite material widely used in the field of dental restorations and has excellent mechanical properties. However, in the process of denture restoration, the material not only has excellent performance, but also needs to be given an aesthetic effect that is highly close to that of natural teeth.
  • the teeth of people who often smoke may be brown or even black. If the staining is not performed according to the actual situation of the patient's teeth, the dental implant will be very abrupt; but if the staining is compared on the spot, there are problems such as troublesome operation and longer staining time. In addition, when zirconia is dyed, there will still be some voids on its surface, which will easily allow bacteria and other substances to penetrate into it, affect the service life of the denture and even bring new oral health problems to the patient.
  • the existing general solution is: choose low-permeability zirconia as the substrate, then do veneer porcelain treatment on the zirconia surface, and use the porcelain surface to cover the metal; but this is not only cumbersome and costly Increase, and also need to consider the combination of zirconia and porcelain surface, and also need to adjust the color of the porcelain surface, which is very troublesome.
  • zirconia with high permeability is also used as the substrate. After the substrate is completed, the shading material is applied to achieve the shading effect; but the shading material is too thick to affect the appearance, and the shading effect cannot be achieved if the brush is too thin. It is difficult to grasp the painting technique, and the combination of opaque material and zirconia should also be considered.
  • a 16-color or 26-color denture is prepared in advance, and then the choice is made according to the needs of the patient during use.
  • these colors are based on yellow, red, and gray.
  • many patients' teeth are not limited to these colors. If the dentures prepared in advance are used directly, it is difficult to meet the individual needs of today.
  • the purpose of the present invention is to provide a technology for omni-directional treatment of dental zirconia.
  • a zirconia treatment method including the following steps:
  • zirconia which is a zirconia block made of zirconia powder after pre-sintering
  • the specific method of the opaque treatment is as follows: take the opaque solution and apply it on the pre-sintered zirconia surface, and after drying, perform the second sintering of the opaque solution and the zirconia together.
  • the formula of the opaque liquid includes: according to mass fraction, 95-98% mother liquor, 1.3-1.6% alcohol, 0.03-3.40% potassium nitrate, 0.1-0.3% yttrium chloride, 0.3-0.4 % Citric acid;
  • the formula of the mother liquor is: 18-23% ethylene glycol, 1-5% gluconic acid, 1-3% citric acid, 1-3% praseodymium nitrate and the balance of water according to mass fraction.
  • the conditions for the secondary sintering are: heat preservation at 1530°C for 2 hours.
  • the dyeing solution is dyeing solution 1, and the formula of dyeing solution 1 by mass fraction includes: 0.01 to 26% of coloring agent, 0.2 to 35% of dispersing agent , 60-97% solvent.
  • the colorant is at least one of erbium chloride, ferric chloride and manganese nitrate; and/or; the dispersant is polyethylene glycol.
  • the mass fraction of the polyethylene glycol is 10%.
  • the erbium chloride, ferric chloride and manganese nitrate are present at the same time, and the erbium chloride accounts for 0.5-13% of the mass of the dyeing solution, and the ferric chloride accounts for 0.5 to the mass of the dyeing solution. 6%, the manganese nitrate accounts for 0.01 to 6% of the mass of the dyeing solution.
  • the dyeing solution is dyeing solution 2
  • the formula of the dyeing solution 2 by mass fraction includes: 0.01 to 48% of coloring agent, 0.1 to 5% of dispersing agent , 0.05-2% complexing agent and 45-99% solvent.
  • the colorant is a mixture of one or more of erbium chloride, ferric chloride, neodymium nitrate, manganese nitrate, ammonium metavanadate, cerium nitrate, praseodymium nitrate, cobalt nitrate and nickel nitrate; and/ Or; the dispersant is any one of polyethylene glycol, polyacrylic acid or polyurethane; and/or; the complexing agent is citric acid, glucose, ethylenediaminetetraacetic acid, sodium citrate or 2,3 -Any of dimercaptosuccinic acid.
  • the surface protection treatment in step (3) is achieved by a cohesive solution;
  • the formula of the cohesive solution includes: 40-100 parts of base, 2-6 parts of diluent, 3 ⁇ 5 parts of binding monomer, 6 ⁇ 15 parts of polymerization inhibitor, 30 ⁇ 55 parts of carbon nanotubes, 20 ⁇ 60 parts of fillers, 1 ⁇ 8 parts of tartaric acid and 30 ⁇ 70 parts of water.
  • the method of using the cohesive solution is: mixing the dyeing solution with the cohesive solution to obtain a mixed solution, brushing the mixed solution on the surface of zirconia, crystallizing at high temperature, that is, simultaneously completing the dyeing step and surface protection Processing steps
  • the diluent is methacrylate; and/or; the adhesive monomer is 4-methacryloxyethyl trimellitic anhydride; and/or; the polymerization inhibitor is tert-butyl One or more mixtures of hydroquinone, hydroquinone, and p-tert-butylcatechol.
  • the filler is a mixture of two or more of silica, alumina, calcium fluoride, and titanium dioxide.
  • the filler is melted in order from high to low melting points of silica, alumina, calcium fluoride, and titanium dioxide. After the molten melt is mixed, it is quenched and pulverized to a particle size smaller than the carbon nanometer. The diameter of the tube.
  • the zirconia is subjected to surface roughening treatment before dyeing treatment and after shading treatment;
  • the specific method of surface roughening treatment includes the following steps:
  • Sandblasting sandblasting the zirconia with 30-60 ⁇ m zirconia powder under 0.2-0.3MPa atmospheric pressure for 5-10s; cleaning the zirconia after sandblasting with deionized water for 3 to 5 times;
  • a protective film is formed on the surface of the zirconia; the method for forming the protective film is specifically: painting a layer of silane coupling agent on the surface of the zirconia and drying it. .
  • the present invention provides a complete and omni-directional processing technology for zirconia substrates. Through the technical processing of the present invention, not only the individual needs of patients for teeth can be met, but also the convenient operation needs of doctors can be met.
  • the present invention firstly provides a new idea to solve the contradiction between the permeability and shading properties of zirconia: do not patch/paint the prepared zirconia
  • the opaque liquid treatment is performed on the zirconium dioxide ceramics that have not been subjected to secondary sintering, and then the zirconium dioxide ceramics with the opaque liquid are subjected to a secondary sintering process to make the components of the opaque liquid and the dioxide Zirconium ceramics react together to crystallize and become a part of zirconium dioxide ceramics.
  • the opaque liquid not only binds closely to the ceramic, but does not increase the thickness of the ceramic, and at the same time achieves a good balance between permeability and concealing effect.
  • the present invention first performs surface roughening treatment on zirconia, by adjusting the parameters of the surface roughening treatment, and then adjusting the amount of polyethylene glycol in the dyeing solution, so that when the amount of polyethylene glycol reaches 10%, the zirconia denture After the dyeing time is more than 15s, the color of the zirconia denture will not change, nor will it deepen with the extension of the dyeing time. In this way, in actual operation, even if the doctor is not particularly accurate in time control, the ideal tooth color can be obtained.
  • the present invention also provides a cohesive solution, which can be mixed with the dyeing solution or used after dyeing. After dyeing, there are still some large pores on the surface of zirconia. Bacteria, acids, enzymes and their products in the oral cavity can easily penetrate into the pores and cause oral infections and other hazards.
  • the adhesive solution can form a protective film on the surface of zirconia to reduce the occurrence of such hazards.
  • the specific process of the cohesive solution is as follows: when preparing the cohesive solution, the filler is first dispersed in the reaction system, and then the carbon nanotubes are added, so that the filler and the reaction are adhered to the inside and outside of the carbon nanotube tube. Solution, use carbon nanotubes as a bridge to build a scaffold in the pores on the surface of zirconia, and the adhesive solution outside the carbon nanotubes (when the adhesive solution is mixed with the dyeing solution, the adhesive solution at this time is still Mixed with the dyeing solution) and the inner wall of the pores, thereby increasing the bonding strength of the dyeing solution containing the adhesive solution and the zirconia, increasing the service life of the zirconia, and reducing the occurrence of fading problems.
  • the roughening treatment of the zirconia surface makes it easier for the dyeing solution containing the adhesive solution to be absorbed in the pores, and also makes it easier for the carbon nanotubes to build bridges in the pores.
  • the first step of the present invention for the treatment of dental zirconia is to solve the problem of the contradiction between the permeability and concealability of the zirconia substrate.
  • the specific solutions are as follows:
  • the present invention provides a product for improving/balancing the permeability and concealment of zirconia ceramics for dental use (hereinafter referred to as opaque liquid).
  • the formula is as follows: according to mass fraction, 95-98% mother liquor, 1.3-1.6% Alcohol, 0.03 to 3.40% potassium nitrate, 0.1 to 0.3% yttrium chloride, 0.3 to 0.4% citric acid.
  • the formula of the mother liquor is: according to mass fraction, 18-23% of ethylene glycol, 1-3% of gluconic acid, 1-3% of citric acid, 1-3% of praseodymium nitrate and the balance of water.
  • the potassium nitrate can make the zirconia substrate form a milky white color-shielding layer after sintering, thereby achieving the color-shielding effect; increasing the potassium nitrate concentration generally increases the color-shielding effect.
  • the alcohols function as a dispersant due to their good compatibility.
  • the yttrium chloride functions as a catalyst.
  • the preparation of the zirconia porcelain block needs to be pressed and pre-sintered for preliminary molding and preliminary crystallization; then a second sintering is performed to improve its density and mechanical strength.
  • the process of pressing and pre-sintering in the early stage can be carried out according to the prior art, and the shading liquid is specifically used in post-sintering and secondary sintering.
  • the specific method is: take the opaque liquid and apply it on the surface of the pre-sintered zirconia block (the amount of the opaque liquid on the surface of a single denture is ⁇ 0.001g, in actual operation, dip a little opaque liquid to paint without repeated paths That's it), repeat the painting twice, and then put it in an oven to dry at 90°C.
  • the opaque solution is applied to the substrate, and then the zirconia substrate is subjected to a second sintering process to make the opaque solution and oxidation
  • the zirconium substrate reacts and crystallizes together, and the zirconia substrate is directly dyed with the opaque liquid, so that the opaque layer becomes a part of the interior of the zirconia substrate and becomes the color of the substrate. After the opaque layer reacts with the substrate, it is tightly combined without additional Increase the volume of the substrate.
  • Example 1 The influence of the opaque liquid formula on the effect
  • the zirconia powder used in this example was purchased from Shanghai Linghao Metal Material Co., Ltd., and the article number is ZR-2.
  • the zirconium oxide powder was kept under pressure at 150 MPa for 10 minutes, and then formed by isostatic pressing. Then it was kept at 1050°C for 2h for pre-sintering. Then take out the pre-sintered zirconia porcelain block, take the same amount of each group of shading liquid and paint on the surface of the zirconia porcelain block, repeat the painting twice, and then put it into an oven to dry at 90°C.
  • the thickness detection is: detecting the thickness of three points of each group of zirconia substrates (the three points of each substrate are selected in the same position), and comparing the thickness of the three points with the control group to obtain the difference rate of the three groups, and take the average If the thickness difference is less than one ten thousandth, it is regarded as no difference.
  • the detection method of the shading condition is as follows: each group of prepared zirconia substrates are respectively sheathed on the same metal base, and under daily light conditions, visually observe whether the color is transparent, and observe the permeability and aesthetics. The results of each group are shown in Table 2.
  • the thickness detection is: detecting the thickness of three points of each group of zirconia substrates (the three points of each substrate are selected at the same position), and comparing the thickness of the three points of the blank control group to obtain the difference rate of the three groups. average value.
  • the detection method of the shading condition is as follows: the zirconium oxide substrates prepared in each group are respectively sheathed on the same metal base, and under the condition of daily light, the naked eye observes whether the color is transparent. The results of each group are shown in Table 4.
  • Example 2 The influence of the method of using the opaque liquid on the effect
  • Example Group 16 Use the formula of Example Group 16 to prepare 8 groups of opaque liquids, and then use different methods for each group of this Example. Among them, the treatment methods of each group are shown in Table 5.
  • the formula of Group 16 of the above-mentioned Example was selected and used according to the method of Group 1 of Example 2 to obtain a zirconia substrate.
  • the zirconia substrate is then dyed.
  • the present invention provides the following two dyeing treatment methods.
  • Method one is: prepare dyeing solution 1, after roughening the surface of the zirconia substrate, soak the zirconia substrate in dyeing solution 1 for more than 15 seconds, then take out the zirconia substrate, and then use a cohesive solution to perform surface roughening on the zirconia substrate Surface protection treatment.
  • the effect of the first method is that the dyeing is fast, and the dyeing depth does not change after a certain time (15s), which is convenient for the operation of the doctor.
  • Method two is: prepare dyeing solution 2, prepare cohesive solution, mix dyeing solution 2 with cohesive solution, apply the mixed solution to the surface of the zirconia substrate, or immerse the zirconia substrate in the mixed solution, and then crystallize at high temperature Finally, a layer of silane coupling agent is painted on the surface of the zirconia substrate for protection.
  • the effect of the second method is mainly that the dyeing method is simple, and a protective film will be formed on the surface of the zirconia substrate after dyeing, which can prolong the service life of the substrate.
  • the components of the dyeing solution 1 include: colorant, dispersant and solvent. Wherein, the colorant accounts for 0.01-26% of the mass of the dyeing liquid, the dispersant accounts for 0.2-35% of the mass of the dyeing liquid, and the solvent accounts for 60-97% of the mass of the dyeing liquid.
  • the colorant is at least one of erbium chloride, iron chloride and manganese nitrate.
  • the preferred solution is that the erbium chloride, ferric chloride and manganese nitrate coexist, and the erbium chloride accounts for 0.5 to 13% of the mass of the dyeing solution, and the ferric chloride accounts for the mass of the dyeing solution. 0.5 to 6%, the manganese nitrate accounts for 0.01 to 6% of the mass of the dyeing solution.
  • the dispersant is polyethylene glycol; the solvent is deionized water.
  • the preparation method of the dyeing solution 1 is as follows: Weigh the raw materials according to the weight of the above raw materials, add erbium chloride, ferric chloride, manganese nitrate and polyethylene glycol to deionized water, stir evenly, and use them separately.
  • the dyeing treatment method of the zirconia substrate is specifically:
  • the sandblasting process is: sandblasting the zirconia denture with 30-60 ⁇ m zirconia powder under 0.2-0.3MPa atmospheric pressure for 5-10 seconds.
  • the thermal acid treatment is: mixing hydrochloric acid and nitric acid uniformly, heating to 70-80° C. to obtain a mixed acid solution, and immersing the zirconia denture after surface sandblasting in 15-30 mL of the mixed acid solution.
  • the immersion time of the zirconia denture in the mixed acid solution is 10-15 min.
  • the concentration of the hydrochloric acid is 1 to 2 mol/L
  • the concentration of the nitric acid is 1 to 2 mol/L
  • the volume ratio of the hydrochloric acid to the nitric acid is 1:2 to 3.
  • step (2) the zirconia substrate is first immersed in the silane coupling agent for 1 to 2 minutes, and then immersed in the resin binder for 3 to 10 minutes. After soaking, put it in an oven at 90°C ⁇ 150°C to dry for 30min, then put it into the denture sintering furnace to heat up to 1530°C at a heating rate of 5°C/min, keep the temperature for 120min, and then cool down with the furnace.
  • Embodiment 3 The roughening treatment effect display of method 1
  • the zirconia denture was surface roughened.
  • a total of 18 groups were set up. The specific parameters of each group are shown in Table 7 below.
  • the zirconia denture after surface sandblasting was immersed in 20mL of mixed acid solution.
  • the heating temperature of the mixed acid was 80°C, and no treatment was used as a control group.
  • the raw material formula used is: erbium chloride, ferric chloride, manganese nitrate, polyethylene glycol and deionized water.
  • the specific raw material ratio is shown in Table 8 below.
  • the color display results are: the colors of the three groups of dyeing solutions prepared in each group have no obvious changes, the colors of groups a to c gradually darken from orange, the colors of groups d to f gradually darken from yellow, and the colors of groups g to i The color gradually deepened from gray-red, and the color of group j ⁇ l gradually deepened from yellow-red.
  • Example 5 Display of the effect of dyeing time in method one
  • Embodiment 7 Method 1 protection processing
  • the denture after dyeing in group 3 in Example 6 is soaked in silane coupling agent for 1 to 2 minutes, and then soaked in resin binder for 3 to 10 minutes to make the resin binder penetrate into the microscopic surface of the zirconia denture In the pores, the staining solution immersed in the pores is sealed, and a transparent film is formed on the surface of the zirconia denture, which effectively prevents the fading of the denture and the penetration of bacteria, acids, enzymes and their products in the human oral cavity. In the pores on the surface of the zirconium denture.
  • the zirconia denture After the immersion is completed, put the zirconia denture in an oven at 90°C ⁇ 150°C to dry for 30min, then put it into the denture sintering furnace and heat it up to 1530°C at a heating rate of 5°C/min, keep the temperature for crystallization for 120min, and then cool with the furnace.
  • the resin binder is a resin binder containing 10-methacryloxydecyl phosphate (MDP) phosphoric acid monomer, and both the resin binder and the silane coupling agent are commonly used in dentistry.
  • MDP 10-methacryloxydecyl phosphate
  • the components of the dyeing solution 2 include: colorant, dispersant, complexing agent and solvent.
  • the colorant accounts for 0.01 to 48% of the mass of the dyeing solution
  • the dispersant accounts for 0.1 to 5% of the mass of the dyeing solution
  • the complexing agent accounts for 0.05 to 2% of the mass of the dyeing solution
  • the solvent accounts for 45-99% of the mass of the dyeing liquid.
  • the coloring agent is a mixture of one or more of erbium chloride, ferric chloride, neodymium nitrate, manganese nitrate, ammonium metavanadate, cerium nitrate, praseodymium nitrate, cobalt nitrate and nickel nitrate;
  • the agent is polyethylene glycol, polyacrylic acid or polyurethane;
  • the complexing agent is citric acid, glucose, ethylenediaminetetraacetic acid, sodium citrate or 2,3-dimercaptosuccinic acid;
  • the solvent is deionized water .
  • Different colorants can be mixed to obtain dyeing solutions of different colors, which can be any of blue, gray, tetracycline yellow, tetracycline gray, tetracycline brown, brown, pink, red, purple, green or black.
  • the preparation method of the dyeing solution is as follows: adding each component to the solvent and mixing it evenly.
  • the components of the adhesive solution are: 40-100 parts matrix, 2-6 parts diluent, 3-5 parts adhesive monomer, 6-15 parts polymerization inhibitor, 30-55 parts carbon nano Tube, 20-60 parts filler, 1-8 parts tartaric acid and 30-70 parts water.
  • the matrix is bisphenol A-bis-glycidyl methacrylate (Bis-GMA), epoxy resin and 10-methacryloxydecyl phosphate (MDP); or, bisphenol-s-bis (3-Methacryloxy-2-hydroxypropyl)ether, epoxy resin and 10-methacryloxydecyl phosphate.
  • the preferred solution of the matrix is: mixing bisphenol A-diglycidyl methacrylate, epoxy resin and 10-methacryloxydecyl phosphate, and the mass ratio of each substance is 1:1:1 ⁇ 3.
  • the diluent is methacrylate (MMA), and the binding monomer is 4-methacryloxyethyl trimellitic anhydride (4-META).
  • the polymerization inhibitor is one or more mixtures of tert-butyl hydroquinone (TBHQ), hydroquinone (HQ) and p-tert-butyl catechol (TBC).
  • the preferred solution of the polymerization inhibitor is: mixing tert-butyl hydroquinone, hydroquinone and p-tert-butyl catechol at a mass ratio of 1:1:1.
  • the filler is obtained by pre-treating various metal oxides; the metal oxide is a mixture of two or more of silica, alumina, calcium fluoride and titanium dioxide.
  • a mixture of silica, alumina and calcium fluoride has a mass ratio of 1:1:1.
  • the specific pretreatment process is as follows: the metal oxides are sequentially melted according to their melting points from high to low, mixed uniformly, quenched, and then ground. The particle size after grinding is smaller than the diameter of the carbon nanotubes.
  • the preparation method of the cohesive solution is:
  • the molten liquid After the heat preservation is over, put the molten liquid in water for quenching to make the molten liquid solidify into a solid, and when the temperature of the solid is 200 ⁇ 300°C, put it in oil and cool to room temperature; take out the solid to dry and pulverize , Pulverize until the particle size is smaller than the diameter of the carbon nanotubes, that is, the particle size of the filler varies with the diameter of the carbon nanotubes used, and always keep the particle size of the filler smaller than the diameter of the carbon nanotube, preferably smaller than the diameter of the carbon nanotube 1/4 ⁇ 1/2 of the ratio, the filler powder is obtained.
  • step (3) Add the filler powder obtained in step (2) to the mixed liquid obtained in step (1), and then perform ultrasonic dispersion with a vibration frequency of 12-16kHz and a dispersion time of 10-20min; then add tert-butyl pair A mixture of hydroquinone, hydroquinone and p-tert-butylcatechol, stir evenly to obtain a mixed solution; finally add carbon nanotubes to the mixed solution.
  • the diameter of the carbon nanotubes is 10-20nm and the length is 0.5-2 ⁇ m , Continue ultrasonic dispersion, the vibration frequency is 19-25kHz, and the dispersion time is 15-30min.
  • step (3) Add tartaric acid (TA) to the solution obtained in step (3) to adjust the curing time of the entire reaction system, improve its operability, and obtain a cohesive solution after uniform stirring.
  • TA tartaric acid
  • the dyeing treatment method of the zirconia substrate is specifically:
  • the zirconia substrate is roughened. And carry out corresponding cleaning, if necessary, can also carry out cleaning after neutralization reaction.
  • the dosage of the cohesive solution is conventionally selected according to the zirconia denture that actually needs to be dyed, and the color of the dyeing solution is adjusted by controlling the concentration of metal ions in the dyeing solution, so as to control the mixing of the dyeing solution and the cohesive solution
  • the final color will be dyed to match the color of the patient’s teeth based on the color of the patient’s teeth.
  • the volume ratio of the adhesive solution to the staining solution 2 is 1 to 3:1, and the color of the mixed solution after the staining solution and the adhesive solution is adjusted according to the ratio, and the color of the mixed solution is consistent with that of the patient's teeth. The color is consistent, so that the color of the zirconia denture after dyeing is consistent with the color of the patient's teeth.
  • the specific staining process is as follows: according to the patient's tooth color, use a 2mm dye pen to dip a small amount of staining solution with adhesive solution on the surface of the denture. The amount of brushing is controlled according to the color of the patient's teeth. Dry it in an oven at °C ⁇ 150°C for 30min, then take it out and put it in the denture sintering furnace and heat it up to 1530°C at a heating rate of 5°C/min, keep the temperature for crystallization for 120min, and then cool down with the furnace. It is also possible to put the zirconia denture in a staining solution with a cohesive solution. After observing that the color of the zirconia denture is consistent with the patient's color, take out the zirconia denture and perform subsequent sintering operations.
  • a layer of silane coupling agent can be painted on the surface of the zirconia denture to improve the adhesive solution containing the staining solution Bond strength with zirconia denture.
  • Example 8 Dyeing solution 2 of different colors of method 2
  • the raw material formula used is neodymium nitrate, polyethylene glycol, citric acid and deionized water.
  • the specific raw material ratio and color display are shown in Table 11 below.
  • the raw material formula used is: manganese nitrate, polyethylene glycol, citric acid and deionized water.
  • the specific raw material ratio and color display are shown in Table 12 below.
  • the raw material formula used is: erbium chloride, manganese nitrate, ammonium metavanadate, cerium nitrate, polyethylene glycol, citric acid and deionized water, the specific raw material ratio and The color display is shown in Table 13 below.
  • the unit of concentration in Table 13 is mmol/L.
  • the unit of concentration in Table 14 is mmol/L.
  • the raw material formula used is: erbium chloride, ferric chloride, polyethylene glycol, citric acid and deionized water.
  • the specific raw material ratio and color display are shown in Table 15 below Show.
  • the raw material formula used is: erbium chloride, ferric chloride, praseodymium nitrate, cobalt nitrate, polyethylene glycol, citric acid and deionized water, the specific raw material ratio and color display See Table 16 below.
  • the unit of concentration in Table 16 is mmol/L.
  • the raw material formula used is: erbium chloride, polyethylene glycol, citric acid and deionized water.
  • the specific raw material ratio and color display are shown in Table 17 below.
  • the raw material formula used is: erbium chloride, polyethylene glycol, citric acid and deionized water.
  • the specific raw material ratio and color display are shown in Table 18 below.
  • the raw materials used are: neodymium nitrate, polyethylene glycol, citric acid and deionized water.
  • the specific raw material ratio and color display are shown in Table 19 below.
  • the raw material formula used is nickel nitrate, polyethylene glycol, citric acid and deionized water.
  • the specific raw material ratio and color display are shown in Table 20 below.
  • the raw material formula used is: erbium chloride, neodymium ferric chloride, neodymium nitrate, polyethylene glycol, citric acid and deionized water.
  • the specific raw material ratio and color display are shown in Table 21 below Shown.
  • the cohesive solution was prepared according to the above method, and the specific component ratios are shown in Table 22 below.
  • the unit of the distribution ratio of the adhesive solution in Table 22 is: parts by weight.
  • Embodiment 10 the roughening treatment of the zirconia substrate in the second method
  • Example 11 Demonstration of the dyeing effect of an embodiment of the second method
  • the color of the dyeing solution can be adjusted by increasing or decreasing the concentration of metal ions, thereby adjusting the color of the mixed solution to make it consistent with the color of the patient's teeth.
  • the volume ratio of the cohesive solution to the dyeing solution 2 is 1:1.
  • the mixed 6 groups of dyeing solutions containing the cohesive solution were respectively dyed on the treated zirconia dentures in Table 23, that is, each group of treated zirconia dentures in Table 23 were colored with 6 groups of dyeing solutions.
  • the dyeing results are shown in Table 24 below.
  • the bond strength is the bond strength between the dye solution containing the adhesive solution and the treated zirconia denture.
  • the results show that the zirconia denture treated in group 7 has the best bonding effect with the zirconia denture after mixing with the adhesive solution and dyeing solution prepared in group d.
  • Example 12 Demonstration of the dyeing method of another embodiment of Method 2
  • Another implementation of method two is: not mixing the dyeing solution 2 with the cohesive solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Composite Materials (AREA)
  • Dentistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dental Preparations (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种牙科用氧化锆处理方法,包括对氧化锆进行遮色处理、表面粗糙化处理、染色处理、表面保护处理和增设防护膜处理,并相应提出全新的遮色液、染色液和粘结性溶液。

Description

一种牙科用氧化锆处理技术 技术领域
本发明属于口腔材料处理领域,具体涉及一种牙科用氧化锆处理技术。
背景技术
氧化锆是目前牙科修复界广泛使用的复合材料,具有优异的力学性能。但是在义齿修复过程中,材料除了具有优异的性能之外,还需要被赋予高度接近天然牙齿的美学效果。
人们对义齿美学效果的追求,使得氧化锆被制作为义齿时,至少存在以下两个难以解决的困难:(1)使用氧化锆制作种植义齿上部修复体时,不仅要求其通透性好,还要求其具有一定的遮盖效果,以避免种植体基台的金属颜色外透、影响美观。而通透性和遮盖效果间存在一定的矛盾性,难以解决。(2)在获得通透性、遮色性能都较为优异的氧化锆后,也无法直接将其作为种植体使用。这是因为,虽说患者的牙齿颜色看似只存在黄白两色,但在操作实践中,往往存在各种过渡色及特殊色,例如经常吸烟的人群牙齿可能为棕色甚至黑色。如果不根据患者牙齿实况进行染色,则会导致种植牙非常突兀;但如果现场比对染色,又存在操作麻烦、染色时间较长等问题。另外,氧化锆在染色时,其表面还会存在一些空隙,容易使细菌等物质渗入其中,影响义齿使用寿命甚至为患者带来新的口腔健康问题。
针对问题(1),现有的一般解决思路为:选用通透度低的氧化锆做基底,再在氧化锆表面做饰面瓷处理,利用瓷面遮盖金属;但这样做不仅工序繁琐、成本增加,而且还需考虑氧化锆和瓷面的结合问题,还需另外对瓷面的颜色进行调整,非常麻烦。业内也有选用通透度高的氧化锆做基底,基底完成后,再涂刷遮色材料以达到遮色效果;但遮色材料刷得过厚影响美观,刷得过薄则无法实现遮挡效果,难以把握涂刷技术, 另外还需考虑遮色材料与氧化锆结合的问题。更重要的是,无论是贴瓷还是涂刷的方法,都需在氧化锆基底外部增加一层材料、占用一定的空间,对于义齿这样对尺寸精确度要求较高的产品而言,如果要考虑增加的空间,会大大增加制作的难度和成本;如果不考虑增加的空间,又会影响义齿的安装和使用效果。
针对问题(2),现在一般以VITA比色板为参考,预先制备好16色或26色的义齿,在使用时再根据患者的需求进行选择。但这些颜色是以黄、红、灰为基调的;而如上所述,很多患者的牙齿并不局限于这些颜色,如果使用预先已制备好的义齿进行直接使用,难以符合当今的个性化需求。
因此,提供一种对牙科用氧化锆进行全方位处理的技术,使之既可以满足患者对牙齿美学的个性化需求,又能满足医生操作时的便捷性需求,具有重要的现实意义。
发明内容
本发明的目的是提供一种对牙科用氧化锆进行全方位处理的技术。
为实现上述发明目的,本发明所采用的技术方案是:一种氧化锆处理方法,包括如下步骤:
(1)对氧化锆进行遮色处理,所述氧化锆为氧化锆粉末经预烧结后制成的氧化锆瓷块;
(2)对氧化锆进行染色处理;
(3)对氧化锆进行表面保护处理;
所述遮色处理的具体方法为:取遮色液涂刷于预烧结后的氧化锆表面,烘干后,将遮色液和氧化锆一起进行二次烧结。
优选的,所述遮色液的配方包括:按质量分数,95~98%的母液、1.3~1.6%的醇、0.03~3.40%的硝酸钾、0.1~0.3%的氯化钇、0.3~0.4%的柠檬酸;
所述母液的配方为:按质量分数,18~23%的乙二醇、1~5%的葡萄 糖酸、1~3%的柠檬酸、1~3%的硝酸镨和余量的水。
优选的,所述二次烧结的条件为:1530℃下保温2h。
优选的,步骤(2)所述染色反应中,所述染色液为染色液1,所述染色液1的配方按质量分数,包括:0.01~26%的着色剂,0.2~35%的分散剂,60~97%的溶剂。
优选的,所述着色剂为氯化铒、氯化铁和硝酸锰中的至少一种;和/或;所述分散剂为聚乙二醇。
优选的,所述聚乙二醇的质量分数为10%。
优选的,所述氯化铒、氯化铁和硝酸锰同时存在,且所述氯化铒占所述染色液质量的0.5~13%,所述氯化铁占所述染色液质量的0.5~6%,所述硝酸锰占所述染色液质量的0.01~6%。
优选的,步骤(2)所述染色反应中,所述染色液为染色液2,所述染色液2的配方按质量分数,包括:0.01~48%的着色剂,0.1~5%的分散剂,0.05~2%的络合剂和45~99%的溶剂。
优选的,所述着色剂为氯化铒、氯化铁、硝酸钕、硝酸锰、偏钒酸铵、硝酸铈、硝酸镨、硝酸钴和硝酸镍中的一种或多种的混合物;和/或;所述分散剂为聚乙二醇、聚丙烯酸或聚氨酯中的任意一种;和/或;所述络合剂为柠檬酸、葡萄糖、乙二胺四乙酸、柠檬酸钠或2,3-二巯基丁二酸中的任意一种。
优选的,步骤(3)所述表面保护处理,通过粘结性溶液实现;所述粘结性溶液的配方,按质量份数,包括:40~100份基质、2~6份稀释剂、3~5份粘结性单体、6~15份阻聚剂、30~55份碳纳米管、20~60份填料、1~8份酒石酸和30~70份水。
优选的,所述粘结性溶液的使用方法为:将染色液与粘结性溶液混合得混合液,将所述混合液涂刷到氧化锆表面,高温结晶,即同时完成染色步骤和表面保护处理步骤;
或;将粘结性溶液涂刷在染色处理后的氧化锆表面,干燥即可。
优选的,所述稀释剂为甲基丙烯酸酯;和/或;所述粘结性单体为4-甲基丙烯酰氧乙基偏苯三酸酐;和/或;所述阻聚剂为叔丁基对苯二酚、对苯二酚、对叔丁基邻苯二酚中的一种或多种混合物。
优选的,所述填料为二氧化硅、氧化铝、氟化钙、二氧化钛中两种或两种以上的混合物。
优选的,所述填料按二氧化硅、氧化铝、氟化钙、二氧化钛的熔点从高到低依次熔化,将熔化后的熔融液混匀后,淬冷,粉碎至粒径小于所述碳纳米管的直径。
优选的,所述氧化锆在进行染色处理前、遮色处理后,先进行表面粗糙化处理;所述表面粗糙化处理的具体方法包括如下步骤:
(1)喷砂处理:用30~60μm的氧化锆粉末在0.2~0.3MPa大气压下对所述氧化锆喷砂5~10s;对喷砂后的氧化锆进行去离子水清洗3~5次;
(2)热酸处理:将盐酸和硝酸混合均匀,所述盐酸的浓度为1~2mol/L,所述硝酸的浓度为1~2mol/L,所述盐酸和硝酸的体积比为1:2~3;加热至70~80℃后,得混合酸溶液;将表面喷砂处理后的所述氧化锆浸泡在混合酸溶液10~15min;
(2)使用去离子水清洗氧化锆3~5次。
优选的,所述氧化锆在进行表面保护处理后,再对氧化锆表面形成一层防护膜;所述防护膜形成方法具体为:在氧化锆表面涂刷一层硅烷偶联剂,干燥即可。
本发明具有以下有益效果:
(1)本发明提供了对氧化锆基底的完整、全方位处理技术。通过本发明的技术处理,不仅可以满足患者对牙齿的个性化需求,也可以满足医生的便捷操作需求。
(2)作为本发明技术方案的第一步,本发明首先提供了一种解决氧化锆通透性和遮色性间矛盾的全新思路:不对已制备完成的二氧化锆 进行贴片/涂刷等处理,而是对尚未进行二次烧结的二氧化锆陶瓷进行遮色液处理,随后再对带有遮色液的二氧化锆陶瓷进行二次烧结工艺,使遮色液的成分与二氧化锆陶瓷一起反应结晶,成为二氧化锆陶瓷的一部分。遮色液不仅与陶瓷结合紧密,且不会增加陶瓷的厚度,同时在通透性和遮盖效果间取得了很好的平衡。
(3)获得通透性和遮色性均优异的氧化锆基底后,如何使其与患者的牙齿颜色相适应、同时便于医生操作,是本发明解决的第二个难题。本发明先对氧化锆进行表面粗糙化处理,通过调节表面粗糙化处理的参数,再结合染色液中聚乙二醇的用量调节,使聚乙二醇的用量达到10%时,氧化锆义齿的染色时间在15s以上后,氧化锆义齿的颜色不再变化,也不随染色时间的延长而加深。这样在实际操作时,即使医生对时间把控不是特别精确,也可以获得理想的牙齿颜色。
(4)本发明还提供了一种粘结性溶液,该溶液可以与染色液混合使用,也可以在染色结束后使用。染色后,氧化锆表面还存在一些较大的孔隙,口腔中的细菌、酸、酶及其产物等容易渗透到孔隙中,进而造成口腔感染等危害。粘结性溶液可以在氧化锆表面形成一层防护膜,减少这类危害的发生。
粘结性溶液发挥作用的具体过程为:在制备粘结性溶液时,先将填料分散在反应体系中,再加入碳纳米管,使碳纳米管的管内和管外均粘附有填料和反应溶液,以碳纳米管为桥梁在氧化锆表面的孔隙内搭建支架,而碳纳米管管外的粘结性溶液(当粘结性溶液与染色液混合使用时,此时的粘结性溶液还混合有染色液)与孔隙的内壁结合,从而增加了含有粘结性溶液的染色液与氧化锆的粘结强度,增加氧化锆的使用寿命,减少褪色问题的发生。氧化锆表面的粗糙化处理使含有粘结性溶液的染色液更容易被吸附在孔隙内,也使碳纳米管更容易在其孔隙内搭建桥梁。
具体实施方式
一、本发明对牙科用氧化锆进行处理的第一步,即为解决氧化锆基底通透性和遮盖性间的矛盾的问题。具体解决方法如下:
本发明提供了一种改善/平衡牙科用氧化锆陶瓷通透性和遮盖性的产品(以下简称遮色液),其配方为:按质量分数,95~98%的母液、1.3~1.6%的醇、0.03~3.40%的硝酸钾、0.1~0.3%的氯化钇、0.3~0.4%的柠檬酸。
所述母液的配方为:按质量分数,18~23%的乙二醇、1~5%的葡萄糖酸、1~3%的柠檬酸、1~3%的硝酸镨和余量的水。
其中,所述硝酸钾可以使氧化锆基底在烧结后形成乳白色的遮色层,从而达到遮色的效果;硝酸钾浓度增加,一般而言,遮色效果也会增强。所述醇类因其良好的相容性,从而具有分散剂的作用。所述氯化钇起到催化剂的作用。
将所述遮色液除母液外的各组分准确称量后,常温下进行初混,再加入母液,充分搅拌溶解混匀,即得所需遮色液。
氧化锆瓷块制备时需要先经过压制、预烧结,进行初步成型和初步结晶;再进行二次烧结以提高其致密度和力学强度。所述前期的压制、预烧结等过程,按现有技术进行即可,遮色液具体用于预烧结后、二次烧结中。其具体方法为:取遮色液涂刷于预烧结后的氧化锆瓷块表面(单颗义齿表面的遮色液用量≤0.001g,实际操作时蘸取少许遮色液进行无重复路径涂刷即可),重复涂刷两遍,然后放入烘箱90℃烘干。半小时后取出,放入有锆珠的坩埚内,放进烧结炉中,设置烧结炉的温度曲线,1530℃下保温2h,让遮色液与氧化锆瓷块共同完成二次烧结即可。
在氧化锆基底初步制作成型(已完成预烧结)、未进行二次烧结前,将所述遮色液涂刷在基底上,再将氧化锆基底进行二次烧结工序,使遮色液与氧化锆基底一起反应结晶,利用遮色液直接对氧化锆基底进行染色,使遮色层成为氧化锆基底内部的一部分,成为基底自带的颜色,遮色层与基底反应后结合紧密,不会额外增加基底的体积。
下面结合具体实施例,对本发明进行进一步的阐述。
实施例一:遮色液配方对效果的影响
1、使用上述方法制备9组遮色液,其中,各组遮色液的配方为:96.83%的母液、1.52%的乙醇、1.1%的硝酸钾、0.2%的氯化钇、0.35%的柠檬酸。所述母液的配方如表1所示,表中数字表示该组分在遮色液中占的质量分数,余量为去离子水,各组分总和为100%。
本实施例中使用的氧化锆粉末购自上海凌颢金属材料有限公司,货号为ZR-2。将氧化锆粉末在150MPa下保压10min,等静压成型。随后在1050℃下保温2h,进行预烧结。随后取出完成预烧结的氧化锆瓷块,取等量各组遮色液涂刷于氧化锆瓷块表面,重复涂刷两遍,然后放入烘箱90℃烘干。半小时后取出,放入有锆珠的坩埚内,放进烧结炉中,1530℃下保温2h,完成二次烧结即可。同时设置对照组,即直接将完成预烧结的氧化锆瓷块在1530℃下保温2h,不进行遮色液涂刷处理。
表1各组所用母液的配方表
组别 乙二醇 葡萄糖酸 柠檬酸 硝酸镨
组1 18% 3% 2% 2%
组2 20% 3% 2% 2%
组3 23% 3% 2% 2%
组4 20% 1% 2% 2%
组5 20% 5% 2% 2%
组6 20% 3% 1% 2%
组7 20% 3% 3% 2%
组8 20% 3% 2% 1%
组9 20% 3% 2% 3%
2、对各组氧化锆基底进行透光率检测、三点抗弯强度检测、厚度检测和遮色情况检测。其中,所述厚度检测为:分别检测各组氧化锆基底三点的厚度(各基底选择的三点位置相同),并分别与对照组的三点厚度进行对比,获得三组差异率,取平均值,厚度差异低于万分之一,视为无差异。所述遮色情况检测方法为:将各组制备的氧化锆基底分别套于相同的金属基台上,在日常光照情况下肉眼观察是否透色,并观察 通透性和美观程度。各组结果如表2所示。
表2各组二氧化锆基底结果展示
组别 透光率(%) 抗弯强度(MPa) 厚度差异 是否透色 通透性
组1 21.2% 1201 无差异 优异
组2 15.3% 1215 无差异 优异
组3 19.2% 1209 无差异 优异
组4 19.6% 1190 无差异 优异
组5 21.5% 1196 无差异 优异
组6 25.2% 1193 无差异 优异
组7 20.5% 1201 无差异 优异
组8 26.4% 1203 无差异 优异
组9 31.5% 1207 无差异 优异
对照组 42.1% 1205 / 优异
3、使用步骤1的组2中母液的配方制备母液,再以该母液制备14组遮色液(组10~组23),其中,各组遮色液的配方如表3所示,表中数字表示该组分在遮色液中占的质量分数。所述遮色液的具体使用方法为同上。
表3各组所用遮色液的配方表
组别 母液 醇的种类 硝酸钾 氯化钇 柠檬酸
组10 95.00% 乙醇 4.15% 0.30% 0.20% 0.35%
组11 96.63% 乙醇 2.52% 0.30% 0.20% 0.35%
组12 96.83% 乙醇 1.52% 0.30% 0.20% 0.35%
组13 97.88% 乙醇 1.27% 0.30% 0.20% 0.35%
组14 95.00% 乙醇 1.52% 2.93% 0.20% 0.35%
组15 96.63% 乙醇 1.52% 1.30% 0.20% 0.35%
组16 96.83% 乙醇 1.52% 1.10% 0.20% 0.35%
组17 97.88% 乙醇 1.52% 0.05% 0.20% 0.35%
组18 96.93% 乙醇 1.52% 1.10% 0.10% 0.35%
组19 96.93% 乙醇 1.52% 1.10% 0.30% 0.35%
组20 96.93% 乙醇 1.52% 1.10% 0.20% 0.20%
组21 96.93% 乙醇 1.52% 1.10% 0.20% 0.40%
组22 96.83% 乙二醇 1.52% 1.10% 0.20% 0.35%
组23 96.83% 甲醇 1.52% 1.10% 0.20% 0.35%
4、对各组氧化锆基底进行透光率检测、三点抗弯强度检测、厚度检测和遮色情况检测。其中,所述厚度检测为:分别检测各组氧化锆基底三点的厚度(各基底选择的三点位置相同),并分别与空白对照组的 三点厚度进行对比,获得三组差异率,取平均值。所述遮色情况检测方法为:将各组制备的氧化锆基底分别套于相同的金属基台上,在日常光照情况下肉眼观察是否透色。各组结果如表4所示。
表4各组二氧化锆基底结果展示
组别 透光率(%) 抗弯强度(MPa) 厚度差异 是否透色 通透性
组10 26.5% 1209 无差异 优异
组11 23.2% 1210 无差异 优异
组12 28.4% 1210 无差异 优异
组13 31.2% 1213 无差异 优异
组14 17.2% 1198 无差异 优异
组15 16.3% 1203 无差异 优异
组16 15.2% 1217 无差异 优异
组17 33.6% 1209 无差异 优异
组18 19.2% 1213 无差异 优异
组19 20.0% 1213 无差异 优异
组20 16.3% 1208 无差异 优异
组21 17.6% 1206 无差异 优异
组22 16.1% 1213 无差异 优异
组23 15.9% 1211 无差异 优异
实施例二:遮色液使用方法对效果的影响
1、使用实施例一组16的配方制备8组遮色液,再分别对本实施例各组采用不同的使用方法。其中,各组处理方法如表5所示。
表5各组遮色液使用方法对照表
组别 遮色液涂刷时机 遮色液涂刷次数 是否烘干 烘干温度
组1 氧化锆基底二次烧结前 两遍 90℃
组2 氧化锆基底二次烧结后 两遍 90℃
组3 氧化锆基底二次烧结前 一遍 90℃
组4 氧化锆基底二次烧结前 四遍 90℃
组5 氧化锆基底二次烧结前 两遍 /
组6 氧化锆基底二次烧结前 两遍 30℃
组7 氧化锆基底二次烧结前 两遍 60℃
组8 氧化锆基底二次烧结前 两遍 120℃
2、单独制备一组氧化锆基底,未进行遮色液涂刷,其余制备和烧结条件完全相同,作为空白对照组。各组结果如表6所示。其中,未烘干是指未进行烘干,直接进行烧结工艺。
表6各组氧化锆基底结果展示
组别 透光率(%) 抗弯强度(MPa) 厚度差异 是否透色 通透性
组1 15.6% 1213 无差异 优异
组2 33.7% 1203 +3‰ 良好
组3 29.3% 1207 无差异 优异
组4 10.5% 1210 无差异 良好
组5 28.6% 1198 无差异 良好
组6 23.6% 1203 无差异 优异
组7 21.3% 1205 无差异 优异
组8 19.1% 1210 无差异 优异
空白对照组 43.2% 1207 / 优异
选用上述实施例一组16的配方,按实施例二组1的方法进行使用,获得氧化锆基底。随后对氧化锆基底进行染色处理。当然,也可以不对氧化锆基底进行遮色液处理,直接进行染色;只是可能通透性、遮色性会有所不及。
本发明提供下述两种染色处理方法。方法一为:制备染色液1,对氧化锆基底进行表面粗糙化处理后,将氧化锆基底浸泡于染色液1中15s以上,随后取出氧化锆基底,再使用粘结性溶液对氧化锆基底进行表面保护处理。方法一的效果主要在于染色快速,且在特定时间后(15s)染色深度不再变化,方便医生的操作。
方法二为:制备染色液2,制备粘结性溶液,将染色液2与粘结性溶液混合,将混合液涂刷到氧化锆基底表面,或将氧化锆基底浸入混合液内,随后高温结晶,最后在氧化锆基底表面涂刷一层硅烷偶联剂进行保护。方法二的效果主要在于染色方法简单,染色结束后会在氧化锆基底表面形成一层防护膜,延长基底使用寿命。
下面分别对方法一和方法二进行详述。
方法一:
1、所述染色液1的组分包括:着色剂、分散剂和溶剂。其中,所述着色剂占所述染色液质量的0.01~26%,所述分散剂占所述染色液质量的0.2~35%,所述溶剂占所述染色液质量的60~97%。
所述着色剂为氯化铒、氯化铁和硝酸锰中的至少一种。优选的方案为,所述氯化铒、氯化铁和硝酸锰同时存在,且所述氯化铒占所述染色液质量的0.5~13%,所述氯化铁占所述染色液质量的0.5~6%,所述硝酸锰占所述染色液质量的0.01~6%。所述分散剂为聚乙二醇;所述溶剂为去离子水。
所述染色液1的制备方法为:根据上述原料的重量称取原料,将氯化铒、氯化铁、硝酸锰和聚乙二醇加入到去离子水中,搅拌均匀,分装备用即可。
2、所述氧化锆基底的染色处理方法具体为:
(1)对所述氧化锆基底进行表面粗糙化处理,具体为通过对所述氧化锆义齿进行表面喷砂处理和热酸处理来控制所述氧化锆义齿的表面粗糙度。
所述喷砂处理为:用30~60μm的氧化锆粉末在0.2~0.3MPa大气压下对所述氧化锆义齿喷砂5~10s。所述热酸处理为:将盐酸和硝酸混合均匀,加热至70~80℃后,得混合酸溶液,将表面喷砂处理后的所述氧化锆义齿浸泡在15~30mL的混合酸溶液中。所述氧化锆义齿在混合酸溶液中的浸泡时间为10~15min。所述盐酸的浓度为1~2mol/L,所述硝酸的浓度为1~2mol/L,所述盐酸和硝酸的体积比为1:2~3。
(2)使用去离子水清洗粗糙化处理后的氧化锆基底3~5次,随后使用染色液1浸泡氧化锆基底,浸泡时长为15s以上。在浸泡15s后,随着浸泡时间的加长,染色的颜色不会再继续加深。
(3)将染色完成后的氧化锆基底放入义齿烧结炉中按照5℃/min的升温速率升温到1530℃,保温结晶120min,随炉冷却即可。
(4)优选的方案为,步骤(2)结束后,先将氧化锆基底浸泡在硅烷偶联剂中1~2min,然后再浸泡在树脂粘结剂中3~10min。浸泡完成后,再放到90℃~150℃烘箱中干燥30min,再放入义齿烧结炉中按照5℃/min的升温速率升温到1530℃,保温结晶120min,随炉冷却即可。
下面结合具体的实施例,对方法一进行进一步阐释。
实施例三:方法一的粗糙化处理效果展示
按照上述方法对氧化锆义齿进行表面粗糙化处理,总共设置18组,每组处理的具体参数见下表7所示,其中,将表面喷砂处理后的氧化锆义齿浸泡在20mL的混合酸溶液中,混合酸的加热温度为80℃,以不处理作为对照组。
表7氧化锆义齿的表面粗糙化处理
Figure PCTCN2019084893-appb-000001
将上述各组处理后的氧化锆义齿放入水中浸泡2~5分钟,然后晾干备用。
实施例四:方法一的染色液效果展示
配制染色液,使用的原料配方为:氯化铒、氯化铁、硝酸锰、聚乙二醇和去离子水,具体的原料配比见下表8所示。颜色显示结果为:每组中所配制的三组染色液的颜色均无明显的变化,组a~组c颜色由橙 黄逐渐加深,组d~组f颜色由黄色逐渐加深,组g~组i颜色由灰红逐渐加深,组j~组l颜色由黄红逐渐加深。
表8染色液的配方表
Figure PCTCN2019084893-appb-000002
Figure PCTCN2019084893-appb-000003
实施例五:方法一中染色时长效果展示
选取表8的组a中颜色为橙黄,聚乙二醇含量为6%的染色液,对表1中处理后的氧化锆义齿进行染色,其染色时间和氧化锆义齿颜色变化见下表9所示。其中,染色时间指的是氧化锆义齿颜色不再发生变化的时间。结果显示:按照组7中的参数对氧化锆义齿进行处理后,氧化锆义齿达到指定颜色的时间和达到平衡的时间较短。
表9各组氧化锆义齿的染色时间和颜色变化
Figure PCTCN2019084893-appb-000004
Figure PCTCN2019084893-appb-000005
实施例六:方法一中聚乙二醇效果展示
选择按照组7中的参数对氧化锆义齿处理后,考察聚乙二醇的用量对染色时间的影响,具体见下表10所示。结果显示:当聚乙二醇含量为10%时,义齿浸泡15s之后,随着浸泡时间延长义齿颜色保持不变。
表10聚乙二醇用量对浸泡时间的影响
Figure PCTCN2019084893-appb-000006
实施例七:方法一的保护处理
将实施例六中的组3染色完成后的义齿,浸泡在硅烷偶联剂中1~2min,然后再浸泡在树脂粘结剂中3~10min,使树脂粘结剂渗入氧化锆义齿表面的微观孔隙中,将浸入孔隙中的染色液封存,并在氧化锆义齿的表面形成一层透明的膜,有效的避免了义齿的褪色,以及人口腔中的 细菌、酸、酶及其产物渗透到氧化锆义齿表面的孔隙中。浸泡完成后,将氧化锆义齿放到90℃~150℃烘箱中干燥30min,再放入义齿烧结炉中按照5℃/min的升温速率升温到1530℃,保温结晶120min,随炉冷却即可。
其中,树脂粘结剂为含有10-甲基丙烯酰氧癸基磷酸酯(MDP)磷酸单体的树脂粘结剂,树脂粘结剂和硅烷偶联剂均为牙科常用的试剂。
方法二:
1、所述染色液2的组分包括:着色剂、分散剂、络合剂和溶剂。其中,所述着色剂占所述染色液质量的0.01~48%,所述分散剂占所述染色液质量的0.1~5%,所述络合剂占所述染色液质量的0.05~2%,所述溶剂占所述染色液质量的45~99%。
其中,所述着色剂为氯化铒、氯化铁、硝酸钕、硝酸锰、偏钒酸铵、硝酸铈、硝酸镨、硝酸钴和硝酸镍中的一种或多种的混合物;所述分散剂为聚乙二醇、聚丙烯酸或聚氨酯;所述络合剂为柠檬酸、葡萄糖、乙二胺四乙酸、柠檬酸钠或2,3-二巯基丁二酸;所述溶剂为去离子水。将不同着色剂进行混合后可得到不同颜色的染色液,可为蓝色、灰色、四环素黄、四环素灰、四环素棕、棕、粉色、红色、紫色、绿色或黑色中的任意一种颜色。
所述染色液的制备方法为:将各组分加入溶剂中,混匀即可。
2、所述粘结性溶液的组分为:40~100份基质、2~6份稀释剂、3~5份粘结性单体、6~15份阻聚剂、30~55份碳纳米管、20~60份填料、1~8份酒石酸和30~70份水。
其中,所述基质为双酚A-双甲基丙烯酸缩水甘油酯(Bis-GMA)、环氧树脂和10-甲基丙烯酰氧癸基磷酸酯(MDP);或,双酚-s-双(3-甲基丙烯酰氧基-2-羟丙基)醚、环氧树脂和10-甲基丙烯酰氧癸基磷酸酯。所述基质的优选方案为:将双酚A-双甲基丙烯酸缩水甘油酯、环氧树脂和10-甲基丙烯酰氧癸基磷酸酯进行混合,各物质质量比为1:1:1~3。
所述稀释剂为甲基丙烯酸酯(MMA),所述粘结性单体为4-甲基丙烯酰氧乙基偏苯三酸酐(4-META)。所述阻聚剂为叔丁基对苯二酚(TBHQ)、对苯二酚(HQ)和对叔丁基邻苯二酚(TBC)中的一种或多种混合物。所述阻聚剂的优选方案为:将叔丁基对苯二酚、对苯二酚和对叔丁基邻苯二酚按质量比为1:1:1进行混合。
所述填料为将多种金属氧化物进行预处理后得到;所述金属氧化物为二氧化硅、氧化铝、氟化钙和二氧化钛中两种或两种以上的混合物。优选为,二氧化硅、氧化铝和氟化钙的混合物,其质量比为1:1:1。具体的预处理过程为:将所述金属氧化物按照其熔点从高到低依次熔化,混合均匀后进行淬冷,然后进行研磨。研磨后的粒径小于所述碳纳米管的直径。
所述粘结性溶液的制备方法为:
(1)将双酚A-双甲基丙烯酸缩水甘油酯、环氧树脂和10-甲基丙烯酰氧癸基磷酸酯按比例加入水中混合均匀,然后加入甲基丙烯酸酯和4-甲基丙烯酰氧乙基偏苯三酸酐搅拌均匀后备用。
(2)将二氧化硅、氧化铝和氟化钙按照熔点从高到低依次进行熔化,具体为:先熔化氧化铝,然后熔化二氧化硅,最后熔化氟化钙,将熔化后的熔融液体在氟化钙的熔点下保温15~30min,以达到物相平衡。保温结束后,将熔融液体放入水中淬冷,使熔融液体凝固成固体,并至该固体的温度为200~300℃时,放入油中冷却至室温;将固体取出晾干后,进行粉碎,粉碎至粒径小于碳纳米管的直径即可,即填料的粒径随所使用的碳纳米管的直径进行变化,始终保持填料的粒径小于碳纳米管的直径,优选为小于碳纳米管直径的1/4~1/2,即得到填料粉末。
(3)将步骤(2)得到的填料粉末加入到步骤(1)中得到的混合液体中,然后进行超声分散,振动频率为12~16kHz,分散时间为10~20min;然后加入叔丁基对苯二酚、对苯二酚和对叔丁基邻苯二酚的混合物,搅拌均匀,得混合液;最后向混合液中加入碳纳米管,碳纳米管 的直径为10~20nm,长度为0.5~2μm,继续进行超声分散,振动频率为19~25kHz,分散时间为15~30min。
(4)向步骤(3)所得的溶液中加入酒石酸(TA),用以调节整个反应体系的固化时间,提高其可操作性,搅拌均匀后得到粘结性溶液。同时,可根据实际情况,向粘结性溶液中加入适量的水,来调节粘结性溶液的稠度。
3、所述氧化锆基底的染色处理方法具体为:
(1)按方法一的表面粗糙化处理方法,对氧化锆基底进行粗糙化处理。并进行相应的清洗,必要时还可以进行中和反应后在进行清洗。
(2)将所述染色液2加入所述粘结性溶液中。所述粘结性溶液的取用量根据实际需要染色的氧化锆义齿进行常规选择,并通过控制染色液中金属离子的浓度来调节染色液颜色的深浅,从而控制染色液与粘结性溶液混合后最终呈现的颜色,最终根据病人牙齿的颜色,将氧化锆义齿染成与病人牙齿颜色一致。具体的:粘结性溶液与染色液2的体积比为1~3:1,根据该配比调节染色液与粘结性溶液混合后溶液的颜色,而该混合后溶液的颜色与病人牙齿的颜色一致,从而使氧化锆义齿染色后的颜色与病人牙齿的颜色一致。
具体的染色过程为:根据病人牙齿颜色,用2mm染色笔蘸少量加有粘结性溶液的染色液往义齿表面涂刷,涂刷量根据病人牙齿颜色深浅进行控制,涂刷好之后放到90℃~150℃烘箱中干燥30min,然后取出放入义齿烧结炉中按照5℃/min的升温速率升温到1530℃,保温结晶120min,随炉冷却即可。也可将氧化锆义齿放入加有粘结性溶液的染色液中,观察到氧化锆义齿的颜色与病人的颜色一致后,将氧化锆义齿取出,再进行后续烧结操作。
进一步优化方案,为了使含有粘结性溶液的染色液与氧化锆义齿粘结的更加牢固,可在氧化锆义齿的表面涂刷一层硅烷偶联剂,从而提高含有染色液的粘结性溶液与氧化锆义齿的粘结强度。
下面结合具体实施例,对方法二进行进一步阐释。
实施例八:方法二的不同颜色的染色液2
1、配制颜色为蓝色的染色液2,使用的原料配方为:硝酸钕、聚乙二醇、柠檬酸和去离子水,具体的原料配比和颜色显示见下表11所示。
表11蓝色染色液的配比及颜色显示
Figure PCTCN2019084893-appb-000007
2、配制颜色为灰色的染色液2,使用的原料配方为:硝酸锰、聚乙二醇、柠檬酸和去离子水,具体的原料配比和颜色显示见下表12所示。
表12灰色染色液的配比及颜色显示
Figure PCTCN2019084893-appb-000008
3、配制颜色为四环素黄的染色液,使用的原料配方为:氯化铒、硝酸锰、偏钒酸铵、硝酸铈、聚乙二醇、柠檬酸和去离子水,具体的原料配比和颜色显示见下表13所示。
表13四环素黄染色液的配比及颜色显示
Figure PCTCN2019084893-appb-000009
注:表13中浓度单位为mmol/L。
4.配制颜色为四环素灰的染色液,使用的原料配方为:氯化铒、氯 化铁、硝酸锰、聚乙二醇、柠檬酸和去离子水,具体的原料配比和颜色显示见下表14所示。
表14四环素灰染色液的配比及颜色显示
Figure PCTCN2019084893-appb-000010
注:表14中浓度单位为mmol/L。
5.配制颜色为四环素棕的染色液,使用的原料配方为:氯化铒、氯化铁、聚乙二醇、柠檬酸和去离子水,具体的原料配比和颜色显示见下表15所示。
表15四环素棕染色液的配比及颜色显示
Figure PCTCN2019084893-appb-000011
6.配制颜色为棕色的染色液,使用的原料配方为:氯化铒、氯化铁、硝酸镨、硝酸钴、聚乙二醇、柠檬酸和去离子水,具体的原料配比和颜色显示见下表16所示。
表16棕色染色液的配比及颜色显示
Figure PCTCN2019084893-appb-000012
注:表16中浓度单位为mmol/L。
7.配制颜色为粉色的染色液,使用的原料配方为:氯化铒、聚乙二醇、柠檬酸和去离子水,具体的原料配比和颜色显示见下表17所示。
表17粉色染色液的配比及颜色显示
Figure PCTCN2019084893-appb-000013
8.配制颜色为红色的染色液,使用的原料配方为:氯化铒、聚乙二醇、柠檬酸和去离子水,具体的原料配比和颜色显示见下表18所示。
表18红色染色液的配比及颜色显示
Figure PCTCN2019084893-appb-000014
9.配制颜色为紫色的染色液,使用的原料配方为:硝酸钕、聚乙二醇、柠檬酸和去离子水,具体的原料配比和颜色显示见下表19所示。
表19紫色染色液的配比及颜色显示
Figure PCTCN2019084893-appb-000015
10.配制颜色为绿色的染色液,使用的原料配方为:硝酸镍、聚乙二醇、柠檬酸和去离子水,具体的原料配比和颜色显示见下表20所示。
表20绿色染色液的配比及颜色显示
Figure PCTCN2019084893-appb-000016
Figure PCTCN2019084893-appb-000017
11.配制颜色为黑色的染色液,使用的原料配方为:氯化铒、氯化铁硝酸钕、聚乙二醇、柠檬酸和去离子水,具体的原料配比和颜色显示见下表21所示。
表21黑色染色液的配比及颜色显示
Figure PCTCN2019084893-appb-000018
由以上各表配制的染色液可以看出,随着金属离子浓度的增加,染色液的颜色液相应的增加。
实施例九:方法二中粘结性溶液
按照上述方法配制粘结性溶液,具体的成分配比见下表22所示。
表22粘结性溶液的成分配比
Figure PCTCN2019084893-appb-000019
注:表22中粘结性溶液的各成分配比的单位为:重量份。
实施例十:方法二中对氧化锆基底的粗糙化处理
按照上述方法对氧化锆进行表面粗糙化处理,总共设置18组,每组处理的具体参数见下表23所示,其中,将表面喷砂处理后的氧化锆义齿浸泡在20mL的混合酸溶液中,混合酸的加热温度为80℃。
表23氧化锆义齿的表面粗糙化处理
Figure PCTCN2019084893-appb-000020
将上述各组处理后的氧化锆义齿放入水中浸泡2~5分钟,然后晾干备用。
实施例十一:方法二的一种实施方式的染色效果展示
选择表11~表21中的任意一种颜色的染色液,与表22中的6组粘结性溶液进行混合,将混合液的颜色调节至与病人牙齿的颜色一致即可。具体可通过增加或减少金属离子的浓度来调节染色液颜色的深浅,从而调节混合液的颜色,使其达到与病人牙齿的颜色一致为止。其中,粘结性溶液与染色液2的体积比为1:1。
将混合后的含有粘结性溶液的6组染色液分别对表23中经过处理 后的氧化锆义齿进行染色,即表23中每组处理的氧化锆义齿分别用6组染色液进行上色。染色结果详见下表24所示,其中粘结强度为含有粘结性溶液的染色液与处理后氧化锆义齿的粘结强度。结果显示:组7处理的氧化锆义齿与组d配制的粘结性溶液和染色液进行混合后,与氧化锆义齿的粘结效果最好。
表24染色结果及粘结强度
Figure PCTCN2019084893-appb-000021
Figure PCTCN2019084893-appb-000022
Figure PCTCN2019084893-appb-000023
Figure PCTCN2019084893-appb-000024
Figure PCTCN2019084893-appb-000025
Figure PCTCN2019084893-appb-000026
实施例十二:方法二的另一种实施方式的染色方法展示
方法二的另一种实施方式为:不将染色液2与粘结性溶液进行混合。先使用染色液2对已完成表面粗糙化处理的氧化锆基底进行染色,待观察氧化锆与病人牙齿的颜色一致时,则停止染色,将氧化锆进行烘干,然后放入粘结性溶液中浸泡1~20min,将氧化锆孔隙内的染色液进行封 存,将氧化锆表面的孔隙填满,在氧化锆表面形成一层保护膜,避免了人在使用氧化锆义齿的过程中,空腔中的细菌、酶等物质进行到孔隙中,进而引起感染等危害。最后取出,放入义齿烧结炉中按照5℃/min的升温速率升温到1530℃,保温结晶120min,随炉冷却即可。

Claims (16)

  1. 一种氧化锆处理方法,其特征在于:包括如下步骤:
    (1)对氧化锆进行遮色处理,所述氧化锆为氧化锆粉末经预烧结后制成的氧化锆瓷块;
    (2)对氧化锆进行染色处理;
    (3)对氧化锆进行表面保护处理;
    所述遮色处理的具体方法为:取遮色液涂刷于预烧结后的氧化锆表面,烘干后,将遮色液和氧化锆一起进行二次烧结。
  2. 根据权利要求1所述氧化锆处理方法,其特征在于:所述遮色液的配方包括:按质量分数,95~98%的母液、1.3~1.6%的醇、0.03~3.40%的硝酸钾、0.1~0.3%的氯化钇、0.3~0.4%的柠檬酸;
    所述母液的配方为:按质量分数,18~23%的乙二醇、1~5%的葡萄糖酸、1~3%的柠檬酸、1~3%的硝酸镨和余量的水。
  3. 根据权利要求1所述氧化锆处理方法,其特征在于:所述二次烧结的条件为:1530℃下保温2h。
  4. 根据权利要求1所述氧化锆处理方法,其特征在于:步骤(2)所述染色处理中,所述染色液为染色液1,所述染色液1的配方按质量分数,包括:0.01~26%的着色剂,0.2~35%的分散剂,60~97%的溶剂。
  5. 根据权利要求4所述氧化锆处理方法,其特征在于:所述着色剂为氯化铒、氯化铁和硝酸锰中的至少一种;和/或;所述分散剂为聚乙二醇。
  6. 根据权利要求5所述氧化锆处理方法,其特征在于:所述聚乙二醇的质量分数为10%。
  7. 根据权利要求5所述氧化锆处理方法,其特征在于:所述氯化铒、氯化铁和硝酸锰同时存在,且所述氯化铒占所述染色液质量的0.5~13%,所述氯化铁占所述染色液质量的0.5~6%,所述硝酸锰占所述染色液质量的0.01~6%。
  8. 根据权利要求1所述氧化锆处理方法,其特征在于:步骤(2) 所述染色处理中,所述染色液为染色液2,所述染色液2的配方按质量分数,包括:0.01~48%的着色剂,0.1~5%的分散剂,0.05~2%的络合剂和45~99%的溶剂。
  9. 根据权利要求8所述氧化锆处理方法,其特征在于:所述着色剂为氯化铒、氯化铁、硝酸钕、硝酸锰、偏钒酸铵、硝酸铈、硝酸镨、硝酸钴和硝酸镍中的一种或多种的混合物;和/或;所述分散剂为聚乙二醇、聚丙烯酸或聚氨酯中的任意一种;和/或;所述络合剂为柠檬酸、葡萄糖、乙二胺四乙酸、柠檬酸钠或2,3-二巯基丁二酸中的任意一种。
  10. 根据权利要求1所述氧化锆处理方法,其特征在于:步骤(3)所述表面保护处理,通过粘结性溶液实现;所述粘结性溶液的配方,按质量份数,包括:40~100份基质、2~6份稀释剂、3~5份粘结性单体、6~15份阻聚剂、30~55份碳纳米管、20~60份填料、1~8份酒石酸和30~70份水。
  11. 根据权利要求10所述氧化锆处理方法,其特征在于:所述粘结性溶液的使用方法为:将染色液与粘结性溶液混合得混合液,将所述混合液涂刷到氧化锆表面,高温结晶,即同时完成染色步骤和表面保护处理步骤;
    或;将粘结性溶液涂刷在染色处理后的氧化锆表面,干燥即可。
  12. 根据权利要求10所述的氧化锆处理方法,其特征在于:所述稀释剂为甲基丙烯酸酯;和/或;所述粘结性单体为4-甲基丙烯酰氧乙基偏苯三酸酐;和/或;所述阻聚剂为叔丁基对苯二酚、对苯二酚、对叔丁基邻苯二酚中的一种或多种混合物。
  13. 根据权利要求10所述的氧化锆处理方法,其特征在于:所述填料为二氧化硅、氧化铝、氟化钙、二氧化钛中两种或两种以上的混合物。
  14. 根据权利要求13所述的氧化锆处理方法,其特征在于:所述填料按二氧化硅、氧化铝、氟化钙、二氧化钛的熔点从高到低依次熔化, 将熔化后的熔融液混匀后,淬冷,粉碎至粒径小于所述碳纳米管的直径。
  15. 根据权利要求1所述氧化锆处理方法,其特征在于:所述氧化锆在进行染色处理前、遮色处理后,先进行表面粗糙化处理;所述表面粗糙化处理的具体方法包括如下步骤:
    (1)喷砂处理:用30~60μm的氧化锆粉末在0.2~0.3MPa大气压下对所述氧化锆喷砂5~10s;对喷砂后的氧化锆进行去离子水清洗3~5次;
    (2)热酸处理:将盐酸和硝酸混合均匀,所述盐酸的浓度为1~2mol/L,所述硝酸的浓度为1~2mol/L,所述盐酸和硝酸的体积比为1:2~3;加热至70~80℃后,得混合酸溶液;将表面喷砂处理后的所述氧化锆浸泡在混合酸溶液10~15min;
    (2)使用去离子水清洗氧化锆3~5次。
  16. 根据权利要求1所述氧化锆处理方法,其特征在于:所述氧化锆在进行表面保护处理后,再对氧化锆表面形成一层防护膜;所述防护膜形成方法具体为:在氧化锆表面涂刷一层硅烷偶联剂,干燥即可。
PCT/CN2019/084893 2019-01-30 2019-04-29 一种牙科用氧化锆处理技术 WO2020155446A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/388,007 US11858867B2 (en) 2019-01-30 2021-07-29 Dental zirconia treatment technology

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910092490.5 2019-01-30
CN201910092490.5A CN109608233A (zh) 2019-01-30 2019-01-30 一种改善牙科用二氧化锆陶瓷通透性的技术

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/388,007 Continuation US11858867B2 (en) 2019-01-30 2021-07-29 Dental zirconia treatment technology

Publications (1)

Publication Number Publication Date
WO2020155446A1 true WO2020155446A1 (zh) 2020-08-06

Family

ID=66019323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084893 WO2020155446A1 (zh) 2019-01-30 2019-04-29 一种牙科用氧化锆处理技术

Country Status (3)

Country Link
US (1) US11858867B2 (zh)
CN (1) CN109608233A (zh)
WO (1) WO2020155446A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107867A1 (ja) 2020-11-19 2022-05-27 クラレノリタケデンタル株式会社 遮蔽性を有する歯科用セラミックス着色液

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109608233A (zh) 2019-01-30 2019-04-12 成都贝施美医疗科技股份有限公司 一种改善牙科用二氧化锆陶瓷通透性的技术
CN110240491B (zh) * 2019-07-09 2021-11-23 成都贝施美生物科技有限公司 一种高韧性的氧化锆瓷块
CN114368966B (zh) * 2021-03-26 2022-12-02 浙江丹斯登生物材料有限公司 一种氧化锆基全瓷义齿及其制备方法
CN114933489B (zh) * 2022-07-01 2023-03-24 杭州新致美义齿研发有限公司 一种全瓷牙染色液、制备方法及染色液在全瓷牙上的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103622837A (zh) * 2013-12-02 2014-03-12 上海纳米技术及应用国家工程研究中心有限公司 自酸蚀双亲性齿科粘结剂及其制备方法
CN105854080A (zh) * 2016-04-29 2016-08-17 成都贝施美生物科技有限公司 一种氧化锆牙种植体表面处理方法
CN105963035A (zh) * 2016-04-29 2016-09-28 成都贝施美生物科技有限公司 一种牙科氧化锆陶瓷用染色液
US20180235847A1 (en) * 2017-02-22 2018-08-23 James R. Glidewell Dental Ceramics, Inc. High Strength and Translucency Dental Ceramic Materials, Devices and Methods
CN109608233A (zh) * 2019-01-30 2019-04-12 成都贝施美医疗科技股份有限公司 一种改善牙科用二氧化锆陶瓷通透性的技术

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2781366B1 (fr) * 1998-07-23 2000-10-13 Norton Desmarquest Fine Cerami Composition ceramique coloree a base de zircone stabilisee pour applications dentaires
US8178012B1 (en) * 2006-04-06 2012-05-15 Ivoclar Vivadent Ag Shaded zirconium oxide articles and methods
DE102007011337A1 (de) * 2007-03-06 2008-09-11 Hermsdorfer Institut Für Technische Keramik E.V. Verblendkeramik für dentale Restaurationen aus yttriumstabilisiertem Zirkoniumdioxid und Verfahren zur Verblendung von dentalen Restaurationen aus yttriumstabilisiertem Zirkoniumdioxid
EP2025659A1 (en) * 2007-07-23 2009-02-18 3M Innovative Properties Company Colouring solution for dental ceramic articles and related methods
DE102008026980A1 (de) * 2008-05-29 2009-12-03 Wieland Dental + Technik Gmbh & Co. Kg Verfahren und Kit zur Dotierung oder Einfärbung von porösen Keramiken
US8696954B2 (en) * 2010-06-09 2014-04-15 Tanaka Dental Products Method, system, and composition for coloring ceramics
EP2500009A1 (en) * 2011-03-17 2012-09-19 3M Innovative Properties Company Dental ceramic article, process of production and use thereof
AU2012271939B2 (en) * 2011-06-22 2017-01-19 Degudent Gmbh Dental restoration, method for production thereof and glass ceramic
CN102584225A (zh) * 2012-03-05 2012-07-18 深圳市爱尔创科技有限公司 牙科用着色氧化锆坯体的制备方法
CN102674888A (zh) * 2012-05-15 2012-09-19 深圳市爱尔创科技有限公司 用于牙科氧化锆陶瓷制品的着色溶液及使用方法
WO2014046949A1 (en) * 2012-09-20 2014-03-27 3M Innovative Properties Company Coloring of zirconia ceramics
JP6360146B2 (ja) * 2013-03-12 2018-07-18 スリーエム イノベイティブ プロパティズ カンパニー 歯科用セラミックの蛍光付与着色溶液
CN103641472B (zh) * 2013-11-14 2015-04-15 厦门惠方生物科技有限公司 一种制备着色半透性氧化锆预烧结体的方法
RU2685716C2 (ru) * 2014-07-31 2019-04-23 3М Инновейтив Пропертиз Компани Комплект, содержащий стоматологическую заготовку для фрезерования и раствор для окрашивания
CN104926370A (zh) * 2015-06-08 2015-09-23 南充三环电子有限公司 一种牙科陶瓷染色液
CN105294167B (zh) * 2015-12-09 2018-08-17 秦皇岛泽克尼陶瓷科技有限公司 一种氧化锆预烧义齿用染色液
CN105924228A (zh) * 2016-04-29 2016-09-07 成都贝施美生物科技有限公司 一种牙科氧化锆陶瓷的染色方法
CN105924162A (zh) * 2016-04-29 2016-09-07 成都贝施美生物科技有限公司 一种氧化锆牙科修复体的染色工艺
CN106187319B (zh) * 2016-07-27 2019-11-12 珠海新茂义齿科技有限公司 一种氧化锆浸泡着色染色工艺
CN108703890B (zh) * 2018-04-22 2021-06-08 杭州而然科技有限公司 一种遮色氧化锆修复体
CN108530106A (zh) * 2018-06-14 2018-09-14 长沙鹏登生物陶瓷有限公司 一种制备渐变色氧化锆义齿陶瓷坯体的染色液
CN109095950A (zh) * 2018-08-24 2018-12-28 爱迪特(秦皇岛)科技股份有限公司 一种牙科氧化锆陶瓷用遮色液及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103622837A (zh) * 2013-12-02 2014-03-12 上海纳米技术及应用国家工程研究中心有限公司 自酸蚀双亲性齿科粘结剂及其制备方法
CN105854080A (zh) * 2016-04-29 2016-08-17 成都贝施美生物科技有限公司 一种氧化锆牙种植体表面处理方法
CN105963035A (zh) * 2016-04-29 2016-09-28 成都贝施美生物科技有限公司 一种牙科氧化锆陶瓷用染色液
US20180235847A1 (en) * 2017-02-22 2018-08-23 James R. Glidewell Dental Ceramics, Inc. High Strength and Translucency Dental Ceramic Materials, Devices and Methods
CN109608233A (zh) * 2019-01-30 2019-04-12 成都贝施美医疗科技股份有限公司 一种改善牙科用二氧化锆陶瓷通透性的技术

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107867A1 (ja) 2020-11-19 2022-05-27 クラレノリタケデンタル株式会社 遮蔽性を有する歯科用セラミックス着色液
KR20230110259A (ko) 2020-11-19 2023-07-21 쿠라레 노리타케 덴탈 가부시키가이샤 차폐성을 갖는 치과용 세라믹스 착색액

Also Published As

Publication number Publication date
US11858867B2 (en) 2024-01-02
CN109608233A (zh) 2019-04-12
US20210355042A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
WO2020155446A1 (zh) 一种牙科用氧化锆处理技术
CN109987969B (zh) 一种快速浸泡氧化锆义齿染色液
CA2898793C (en) Blank for dental purposes
CA2880280C (en) Lithium silicate glass ceramic and glass with caesium oxide content
CN110317059B (zh) 一种各层收缩均匀的分层氧化锆瓷块技术
KR101562610B1 (ko) 치과용 지르코니아 재료의 반투명성을 변화시키기 위한 방법
JP2018090487A (ja) ZrO2成分を含有するケイ酸リチウムガラスセラミックおよびガラス
CN109970468B (zh) 一种彩色氧化锆义齿染色液
EP4442660A1 (en) Ceramic material and repair material for improving surface adhesion of dental zirconia, and preparation method and bonding method for repair material
JP5072657B2 (ja) アルミノシリケートガラスおよびセラミックス系歯冠陶材用の色調調整組成物
CN107500761B (zh) 一种深蓝色氧化锆陶瓷的制备方法
CN112694253A (zh) 起始玻璃、具有核的硅酸锂玻璃及其制备方法和应用
Mehta et al. Bonding to zirconia: elucidating the confusion
KR100934595B1 (ko) 치과용 보철물의 제조 방법 및 이에 사용하기 위한 키트
CN113087389A (zh) 具有不同透光性的硅酸锂玻璃或硅酸锂玻璃陶瓷坯体的制备方法
CN108703890A (zh) 一种遮色氧化锆修复体
CN110327220A (zh) 氧化锆-树脂双连续复合材料、应用及其制备方法
CN105924228A (zh) 一种牙科氧化锆陶瓷的染色方法
WO2023082756A1 (zh) 一种硅酸锂玻璃陶瓷修复体及其制备方法
EP3265047A1 (de) Stoffgemisch, sprühbare verblendkeramik-zusammensetzung, verfahren zur beschichtung von dentalen restaurationen aus zirkoniumdioxid und dentale restauration aus zirkoniumdioxid
CN103086603B (zh) 一种用于制作牙科修复体的着色玻璃陶瓷及其制备方法
CN107935623A (zh) 一种耐磨的陶瓷材料及其制备方法和应用
JPH0245048A (ja) 歯冠修復物の製造方法及びそれに用いるキット
CN110467459B (zh) 一种氧化锆瓷块的高精度染色方法
CN115073939A (zh) 一种氧化锆陶瓷染色液及制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912949

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19912949

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/02/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19912949

Country of ref document: EP

Kind code of ref document: A1